1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2017 RackTop Systems. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dbuf.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dsl_dir.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/spa.h> 39 #include <sys/zio.h> 40 #include <sys/dmu_zfetch.h> 41 #include <sys/range_tree.h> 42 43 dnode_stats_t dnode_stats = { 44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, 45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, 46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, 47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, 48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, 49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, 50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, 51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, 52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, 53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, 54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, 55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, 56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, 57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, 58 { "dnode_hold_free_txg", KSTAT_DATA_UINT64 }, 59 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, 60 { "dnode_allocate", KSTAT_DATA_UINT64 }, 61 { "dnode_reallocate", KSTAT_DATA_UINT64 }, 62 { "dnode_buf_evict", KSTAT_DATA_UINT64 }, 63 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, 64 { "dnode_alloc_race", KSTAT_DATA_UINT64 }, 65 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, 66 { "dnode_move_invalid", KSTAT_DATA_UINT64 }, 67 { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, 68 { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, 69 { "dnode_move_special", KSTAT_DATA_UINT64 }, 70 { "dnode_move_handle", KSTAT_DATA_UINT64 }, 71 { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, 72 { "dnode_move_active", KSTAT_DATA_UINT64 }, 73 }; 74 75 static kstat_t *dnode_ksp; 76 static kmem_cache_t *dnode_cache; 77 78 static dnode_phys_t dnode_phys_zero; 79 80 int zfs_default_bs = SPA_MINBLOCKSHIFT; 81 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 82 83 #ifdef _KERNEL 84 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 85 #endif /* _KERNEL */ 86 87 static int 88 dbuf_compare(const void *x1, const void *x2) 89 { 90 const dmu_buf_impl_t *d1 = x1; 91 const dmu_buf_impl_t *d2 = x2; 92 93 int cmp = AVL_CMP(d1->db_level, d2->db_level); 94 if (likely(cmp)) 95 return (cmp); 96 97 cmp = AVL_CMP(d1->db_blkid, d2->db_blkid); 98 if (likely(cmp)) 99 return (cmp); 100 101 if (d1->db_state == DB_SEARCH) { 102 ASSERT3S(d2->db_state, !=, DB_SEARCH); 103 return (-1); 104 } else if (d2->db_state == DB_SEARCH) { 105 ASSERT3S(d1->db_state, !=, DB_SEARCH); 106 return (1); 107 } 108 109 return (AVL_PCMP(d1, d2)); 110 } 111 112 /* ARGSUSED */ 113 static int 114 dnode_cons(void *arg, void *unused, int kmflag) 115 { 116 dnode_t *dn = arg; 117 int i; 118 119 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 120 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 121 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 122 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 123 124 /* 125 * Every dbuf has a reference, and dropping a tracked reference is 126 * O(number of references), so don't track dn_holds. 127 */ 128 zfs_refcount_create_untracked(&dn->dn_holds); 129 zfs_refcount_create(&dn->dn_tx_holds); 130 list_link_init(&dn->dn_link); 131 132 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 133 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 134 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 135 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 136 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 137 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 138 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 139 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid)); 140 141 for (i = 0; i < TXG_SIZE; i++) { 142 multilist_link_init(&dn->dn_dirty_link[i]); 143 dn->dn_free_ranges[i] = NULL; 144 list_create(&dn->dn_dirty_records[i], 145 sizeof (dbuf_dirty_record_t), 146 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 147 } 148 149 dn->dn_allocated_txg = 0; 150 dn->dn_free_txg = 0; 151 dn->dn_assigned_txg = 0; 152 dn->dn_dirty_txg = 0; 153 dn->dn_dirtyctx = 0; 154 dn->dn_dirtyctx_firstset = NULL; 155 dn->dn_bonus = NULL; 156 dn->dn_have_spill = B_FALSE; 157 dn->dn_zio = NULL; 158 dn->dn_oldused = 0; 159 dn->dn_oldflags = 0; 160 dn->dn_olduid = 0; 161 dn->dn_oldgid = 0; 162 dn->dn_newuid = 0; 163 dn->dn_newgid = 0; 164 dn->dn_id_flags = 0; 165 166 dn->dn_dbufs_count = 0; 167 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 168 offsetof(dmu_buf_impl_t, db_link)); 169 170 dn->dn_moved = 0; 171 return (0); 172 } 173 174 /* ARGSUSED */ 175 static void 176 dnode_dest(void *arg, void *unused) 177 { 178 int i; 179 dnode_t *dn = arg; 180 181 rw_destroy(&dn->dn_struct_rwlock); 182 mutex_destroy(&dn->dn_mtx); 183 mutex_destroy(&dn->dn_dbufs_mtx); 184 cv_destroy(&dn->dn_notxholds); 185 zfs_refcount_destroy(&dn->dn_holds); 186 zfs_refcount_destroy(&dn->dn_tx_holds); 187 ASSERT(!list_link_active(&dn->dn_link)); 188 189 for (i = 0; i < TXG_SIZE; i++) { 190 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 191 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 192 list_destroy(&dn->dn_dirty_records[i]); 193 ASSERT0(dn->dn_next_nblkptr[i]); 194 ASSERT0(dn->dn_next_nlevels[i]); 195 ASSERT0(dn->dn_next_indblkshift[i]); 196 ASSERT0(dn->dn_next_bonustype[i]); 197 ASSERT0(dn->dn_rm_spillblk[i]); 198 ASSERT0(dn->dn_next_bonuslen[i]); 199 ASSERT0(dn->dn_next_blksz[i]); 200 ASSERT0(dn->dn_next_maxblkid[i]); 201 } 202 203 ASSERT0(dn->dn_allocated_txg); 204 ASSERT0(dn->dn_free_txg); 205 ASSERT0(dn->dn_assigned_txg); 206 ASSERT0(dn->dn_dirty_txg); 207 ASSERT0(dn->dn_dirtyctx); 208 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 209 ASSERT3P(dn->dn_bonus, ==, NULL); 210 ASSERT(!dn->dn_have_spill); 211 ASSERT3P(dn->dn_zio, ==, NULL); 212 ASSERT0(dn->dn_oldused); 213 ASSERT0(dn->dn_oldflags); 214 ASSERT0(dn->dn_olduid); 215 ASSERT0(dn->dn_oldgid); 216 ASSERT0(dn->dn_newuid); 217 ASSERT0(dn->dn_newgid); 218 ASSERT0(dn->dn_id_flags); 219 220 ASSERT0(dn->dn_dbufs_count); 221 avl_destroy(&dn->dn_dbufs); 222 } 223 224 void 225 dnode_init(void) 226 { 227 ASSERT(dnode_cache == NULL); 228 dnode_cache = kmem_cache_create("dnode_t", 229 sizeof (dnode_t), 230 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 231 #ifdef _KERNEL 232 kmem_cache_set_move(dnode_cache, dnode_move); 233 234 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", 235 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), 236 KSTAT_FLAG_VIRTUAL); 237 if (dnode_ksp != NULL) { 238 dnode_ksp->ks_data = &dnode_stats; 239 kstat_install(dnode_ksp); 240 } 241 #endif /* _KERNEL */ 242 } 243 244 void 245 dnode_fini(void) 246 { 247 if (dnode_ksp != NULL) { 248 kstat_delete(dnode_ksp); 249 dnode_ksp = NULL; 250 } 251 252 kmem_cache_destroy(dnode_cache); 253 dnode_cache = NULL; 254 } 255 256 257 #ifdef ZFS_DEBUG 258 void 259 dnode_verify(dnode_t *dn) 260 { 261 int drop_struct_lock = FALSE; 262 263 ASSERT(dn->dn_phys); 264 ASSERT(dn->dn_objset); 265 ASSERT(dn->dn_handle->dnh_dnode == dn); 266 267 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 268 269 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 270 return; 271 272 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 273 rw_enter(&dn->dn_struct_rwlock, RW_READER); 274 drop_struct_lock = TRUE; 275 } 276 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 277 int i; 278 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 279 ASSERT3U(dn->dn_indblkshift, >=, 0); 280 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 281 if (dn->dn_datablkshift) { 282 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 283 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 284 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 285 } 286 ASSERT3U(dn->dn_nlevels, <=, 30); 287 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 288 ASSERT3U(dn->dn_nblkptr, >=, 1); 289 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 290 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); 291 ASSERT3U(dn->dn_datablksz, ==, 292 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 293 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 294 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 295 dn->dn_bonuslen, <=, max_bonuslen); 296 for (i = 0; i < TXG_SIZE; i++) { 297 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 298 } 299 } 300 if (dn->dn_phys->dn_type != DMU_OT_NONE) 301 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 302 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 303 if (dn->dn_dbuf != NULL) { 304 ASSERT3P(dn->dn_phys, ==, 305 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 306 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 307 } 308 if (drop_struct_lock) 309 rw_exit(&dn->dn_struct_rwlock); 310 } 311 #endif 312 313 void 314 dnode_byteswap(dnode_phys_t *dnp) 315 { 316 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 317 int i; 318 319 if (dnp->dn_type == DMU_OT_NONE) { 320 bzero(dnp, sizeof (dnode_phys_t)); 321 return; 322 } 323 324 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 325 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 326 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); 327 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 328 dnp->dn_used = BSWAP_64(dnp->dn_used); 329 330 /* 331 * dn_nblkptr is only one byte, so it's OK to read it in either 332 * byte order. We can't read dn_bouslen. 333 */ 334 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 335 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 336 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 337 buf64[i] = BSWAP_64(buf64[i]); 338 339 /* 340 * OK to check dn_bonuslen for zero, because it won't matter if 341 * we have the wrong byte order. This is necessary because the 342 * dnode dnode is smaller than a regular dnode. 343 */ 344 if (dnp->dn_bonuslen != 0) { 345 /* 346 * Note that the bonus length calculated here may be 347 * longer than the actual bonus buffer. This is because 348 * we always put the bonus buffer after the last block 349 * pointer (instead of packing it against the end of the 350 * dnode buffer). 351 */ 352 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 353 int slots = dnp->dn_extra_slots + 1; 354 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off; 355 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 356 dmu_object_byteswap_t byteswap = 357 DMU_OT_BYTESWAP(dnp->dn_bonustype); 358 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 359 } 360 361 /* Swap SPILL block if we have one */ 362 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 363 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); 364 365 } 366 367 void 368 dnode_buf_byteswap(void *vbuf, size_t size) 369 { 370 int i = 0; 371 372 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 373 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 374 375 while (i < size) { 376 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i); 377 dnode_byteswap(dnp); 378 379 i += DNODE_MIN_SIZE; 380 if (dnp->dn_type != DMU_OT_NONE) 381 i += dnp->dn_extra_slots * DNODE_MIN_SIZE; 382 } 383 } 384 385 void 386 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 387 { 388 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 389 390 dnode_setdirty(dn, tx); 391 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 392 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 393 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 394 dn->dn_bonuslen = newsize; 395 if (newsize == 0) 396 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 397 else 398 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 399 rw_exit(&dn->dn_struct_rwlock); 400 } 401 402 void 403 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 404 { 405 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 406 dnode_setdirty(dn, tx); 407 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 408 dn->dn_bonustype = newtype; 409 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 410 rw_exit(&dn->dn_struct_rwlock); 411 } 412 413 void 414 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 415 { 416 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 417 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 418 dnode_setdirty(dn, tx); 419 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; 420 dn->dn_have_spill = B_FALSE; 421 } 422 423 static void 424 dnode_setdblksz(dnode_t *dn, int size) 425 { 426 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 427 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 428 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 429 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 430 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 431 dn->dn_datablksz = size; 432 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 433 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 434 } 435 436 static dnode_t * 437 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 438 uint64_t object, dnode_handle_t *dnh) 439 { 440 dnode_t *dn; 441 442 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 443 #ifdef _KERNEL 444 ASSERT(!POINTER_IS_VALID(dn->dn_objset)); 445 #endif /* _KERNEL */ 446 dn->dn_moved = 0; 447 448 /* 449 * Defer setting dn_objset until the dnode is ready to be a candidate 450 * for the dnode_move() callback. 451 */ 452 dn->dn_object = object; 453 dn->dn_dbuf = db; 454 dn->dn_handle = dnh; 455 dn->dn_phys = dnp; 456 457 if (dnp->dn_datablkszsec) { 458 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 459 } else { 460 dn->dn_datablksz = 0; 461 dn->dn_datablkszsec = 0; 462 dn->dn_datablkshift = 0; 463 } 464 dn->dn_indblkshift = dnp->dn_indblkshift; 465 dn->dn_nlevels = dnp->dn_nlevels; 466 dn->dn_type = dnp->dn_type; 467 dn->dn_nblkptr = dnp->dn_nblkptr; 468 dn->dn_checksum = dnp->dn_checksum; 469 dn->dn_compress = dnp->dn_compress; 470 dn->dn_bonustype = dnp->dn_bonustype; 471 dn->dn_bonuslen = dnp->dn_bonuslen; 472 dn->dn_num_slots = dnp->dn_extra_slots + 1; 473 dn->dn_maxblkid = dnp->dn_maxblkid; 474 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 475 dn->dn_id_flags = 0; 476 477 dmu_zfetch_init(&dn->dn_zfetch, dn); 478 479 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 480 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 481 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); 482 483 mutex_enter(&os->os_lock); 484 485 /* 486 * Exclude special dnodes from os_dnodes so an empty os_dnodes 487 * signifies that the special dnodes have no references from 488 * their children (the entries in os_dnodes). This allows 489 * dnode_destroy() to easily determine if the last child has 490 * been removed and then complete eviction of the objset. 491 */ 492 if (!DMU_OBJECT_IS_SPECIAL(object)) 493 list_insert_head(&os->os_dnodes, dn); 494 membar_producer(); 495 496 /* 497 * Everything else must be valid before assigning dn_objset 498 * makes the dnode eligible for dnode_move(). 499 */ 500 dn->dn_objset = os; 501 502 dnh->dnh_dnode = dn; 503 mutex_exit(&os->os_lock); 504 505 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); 506 507 return (dn); 508 } 509 510 /* 511 * Caller must be holding the dnode handle, which is released upon return. 512 */ 513 static void 514 dnode_destroy(dnode_t *dn) 515 { 516 objset_t *os = dn->dn_objset; 517 boolean_t complete_os_eviction = B_FALSE; 518 519 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 520 521 mutex_enter(&os->os_lock); 522 POINTER_INVALIDATE(&dn->dn_objset); 523 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 524 list_remove(&os->os_dnodes, dn); 525 complete_os_eviction = 526 list_is_empty(&os->os_dnodes) && 527 list_link_active(&os->os_evicting_node); 528 } 529 mutex_exit(&os->os_lock); 530 531 /* the dnode can no longer move, so we can release the handle */ 532 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) 533 zrl_remove(&dn->dn_handle->dnh_zrlock); 534 535 dn->dn_allocated_txg = 0; 536 dn->dn_free_txg = 0; 537 dn->dn_assigned_txg = 0; 538 dn->dn_dirty_txg = 0; 539 540 dn->dn_dirtyctx = 0; 541 if (dn->dn_dirtyctx_firstset != NULL) { 542 kmem_free(dn->dn_dirtyctx_firstset, 1); 543 dn->dn_dirtyctx_firstset = NULL; 544 } 545 if (dn->dn_bonus != NULL) { 546 mutex_enter(&dn->dn_bonus->db_mtx); 547 dbuf_destroy(dn->dn_bonus); 548 dn->dn_bonus = NULL; 549 } 550 dn->dn_zio = NULL; 551 552 dn->dn_have_spill = B_FALSE; 553 dn->dn_oldused = 0; 554 dn->dn_oldflags = 0; 555 dn->dn_olduid = 0; 556 dn->dn_oldgid = 0; 557 dn->dn_newuid = 0; 558 dn->dn_newgid = 0; 559 dn->dn_id_flags = 0; 560 561 dmu_zfetch_fini(&dn->dn_zfetch); 562 kmem_cache_free(dnode_cache, dn); 563 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); 564 565 if (complete_os_eviction) 566 dmu_objset_evict_done(os); 567 } 568 569 void 570 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 571 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) 572 { 573 int i; 574 575 ASSERT3U(dn_slots, >, 0); 576 ASSERT3U(dn_slots << DNODE_SHIFT, <=, 577 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); 578 ASSERT3U(blocksize, <=, 579 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 580 if (blocksize == 0) 581 blocksize = 1 << zfs_default_bs; 582 else 583 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 584 585 if (ibs == 0) 586 ibs = zfs_default_ibs; 587 588 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 589 590 dprintf("os=%p obj=%" PRIu64 " txg=%" PRIu64 591 " blocksize=%d ibs=%d dn_slots=%d\n", 592 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots); 593 DNODE_STAT_BUMP(dnode_allocate); 594 595 ASSERT(dn->dn_type == DMU_OT_NONE); 596 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 597 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 598 ASSERT(ot != DMU_OT_NONE); 599 ASSERT(DMU_OT_IS_VALID(ot)); 600 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 601 (bonustype == DMU_OT_SA && bonuslen == 0) || 602 (bonustype != DMU_OT_NONE && bonuslen != 0)); 603 ASSERT(DMU_OT_IS_VALID(bonustype)); 604 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); 605 ASSERT(dn->dn_type == DMU_OT_NONE); 606 ASSERT0(dn->dn_maxblkid); 607 ASSERT0(dn->dn_allocated_txg); 608 ASSERT0(dn->dn_dirty_txg); 609 ASSERT0(dn->dn_assigned_txg); 610 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 611 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1); 612 ASSERT(avl_is_empty(&dn->dn_dbufs)); 613 614 for (i = 0; i < TXG_SIZE; i++) { 615 ASSERT0(dn->dn_next_nblkptr[i]); 616 ASSERT0(dn->dn_next_nlevels[i]); 617 ASSERT0(dn->dn_next_indblkshift[i]); 618 ASSERT0(dn->dn_next_bonuslen[i]); 619 ASSERT0(dn->dn_next_bonustype[i]); 620 ASSERT0(dn->dn_rm_spillblk[i]); 621 ASSERT0(dn->dn_next_blksz[i]); 622 ASSERT0(dn->dn_next_maxblkid[i]); 623 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 624 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 625 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 626 } 627 628 dn->dn_type = ot; 629 dnode_setdblksz(dn, blocksize); 630 dn->dn_indblkshift = ibs; 631 dn->dn_nlevels = 1; 632 dn->dn_num_slots = dn_slots; 633 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 634 dn->dn_nblkptr = 1; 635 else { 636 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, 637 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 638 SPA_BLKPTRSHIFT)); 639 } 640 641 dn->dn_bonustype = bonustype; 642 dn->dn_bonuslen = bonuslen; 643 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 644 dn->dn_compress = ZIO_COMPRESS_INHERIT; 645 dn->dn_dirtyctx = 0; 646 647 dn->dn_free_txg = 0; 648 if (dn->dn_dirtyctx_firstset) { 649 kmem_free(dn->dn_dirtyctx_firstset, 1); 650 dn->dn_dirtyctx_firstset = NULL; 651 } 652 653 dn->dn_allocated_txg = tx->tx_txg; 654 dn->dn_id_flags = 0; 655 656 dnode_setdirty(dn, tx); 657 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 658 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 659 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 660 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 661 } 662 663 void 664 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 665 dmu_object_type_t bonustype, int bonuslen, int dn_slots, 666 boolean_t keep_spill, dmu_tx_t *tx) 667 { 668 int nblkptr; 669 670 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 671 ASSERT3U(blocksize, <=, 672 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 673 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 674 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 675 ASSERT(tx->tx_txg != 0); 676 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 677 (bonustype != DMU_OT_NONE && bonuslen != 0) || 678 (bonustype == DMU_OT_SA && bonuslen == 0)); 679 ASSERT(DMU_OT_IS_VALID(bonustype)); 680 ASSERT3U(bonuslen, <=, 681 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); 682 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT)); 683 684 dnode_free_interior_slots(dn); 685 DNODE_STAT_BUMP(dnode_reallocate); 686 687 /* clean up any unreferenced dbufs */ 688 dnode_evict_dbufs(dn); 689 690 dn->dn_id_flags = 0; 691 692 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 693 dnode_setdirty(dn, tx); 694 if (dn->dn_datablksz != blocksize) { 695 /* change blocksize */ 696 ASSERT(dn->dn_maxblkid == 0 && 697 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 698 dnode_block_freed(dn, 0))); 699 dnode_setdblksz(dn, blocksize); 700 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 701 } 702 if (dn->dn_bonuslen != bonuslen) 703 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 704 705 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 706 nblkptr = 1; 707 else 708 nblkptr = MIN(DN_MAX_NBLKPTR, 709 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 710 SPA_BLKPTRSHIFT)); 711 if (dn->dn_bonustype != bonustype) 712 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; 713 if (dn->dn_nblkptr != nblkptr) 714 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; 715 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) { 716 dbuf_rm_spill(dn, tx); 717 dnode_rm_spill(dn, tx); 718 } 719 rw_exit(&dn->dn_struct_rwlock); 720 721 /* change type */ 722 dn->dn_type = ot; 723 724 /* change bonus size and type */ 725 mutex_enter(&dn->dn_mtx); 726 dn->dn_bonustype = bonustype; 727 dn->dn_bonuslen = bonuslen; 728 dn->dn_num_slots = dn_slots; 729 dn->dn_nblkptr = nblkptr; 730 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 731 dn->dn_compress = ZIO_COMPRESS_INHERIT; 732 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 733 734 /* fix up the bonus db_size */ 735 if (dn->dn_bonus) { 736 dn->dn_bonus->db.db_size = 737 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 738 (dn->dn_nblkptr - 1) * sizeof (blkptr_t); 739 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 740 } 741 742 dn->dn_allocated_txg = tx->tx_txg; 743 mutex_exit(&dn->dn_mtx); 744 } 745 746 #ifdef _KERNEL 747 static void 748 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 749 { 750 int i; 751 752 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 753 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 754 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 755 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); 756 757 /* Copy fields. */ 758 ndn->dn_objset = odn->dn_objset; 759 ndn->dn_object = odn->dn_object; 760 ndn->dn_dbuf = odn->dn_dbuf; 761 ndn->dn_handle = odn->dn_handle; 762 ndn->dn_phys = odn->dn_phys; 763 ndn->dn_type = odn->dn_type; 764 ndn->dn_bonuslen = odn->dn_bonuslen; 765 ndn->dn_bonustype = odn->dn_bonustype; 766 ndn->dn_nblkptr = odn->dn_nblkptr; 767 ndn->dn_checksum = odn->dn_checksum; 768 ndn->dn_compress = odn->dn_compress; 769 ndn->dn_nlevels = odn->dn_nlevels; 770 ndn->dn_indblkshift = odn->dn_indblkshift; 771 ndn->dn_datablkshift = odn->dn_datablkshift; 772 ndn->dn_datablkszsec = odn->dn_datablkszsec; 773 ndn->dn_datablksz = odn->dn_datablksz; 774 ndn->dn_maxblkid = odn->dn_maxblkid; 775 ndn->dn_num_slots = odn->dn_num_slots; 776 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0], 777 sizeof (odn->dn_next_type)); 778 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 779 sizeof (odn->dn_next_nblkptr)); 780 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 781 sizeof (odn->dn_next_nlevels)); 782 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 783 sizeof (odn->dn_next_indblkshift)); 784 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 785 sizeof (odn->dn_next_bonustype)); 786 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 787 sizeof (odn->dn_rm_spillblk)); 788 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 789 sizeof (odn->dn_next_bonuslen)); 790 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 791 sizeof (odn->dn_next_blksz)); 792 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0], 793 sizeof (odn->dn_next_maxblkid)); 794 for (i = 0; i < TXG_SIZE; i++) { 795 list_move_tail(&ndn->dn_dirty_records[i], 796 &odn->dn_dirty_records[i]); 797 } 798 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 799 sizeof (odn->dn_free_ranges)); 800 ndn->dn_allocated_txg = odn->dn_allocated_txg; 801 ndn->dn_free_txg = odn->dn_free_txg; 802 ndn->dn_assigned_txg = odn->dn_assigned_txg; 803 ndn->dn_dirty_txg = odn->dn_dirty_txg; 804 ndn->dn_dirtyctx = odn->dn_dirtyctx; 805 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 806 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0); 807 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 808 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 809 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 810 ndn->dn_dbufs_count = odn->dn_dbufs_count; 811 ndn->dn_bonus = odn->dn_bonus; 812 ndn->dn_have_spill = odn->dn_have_spill; 813 ndn->dn_zio = odn->dn_zio; 814 ndn->dn_oldused = odn->dn_oldused; 815 ndn->dn_oldflags = odn->dn_oldflags; 816 ndn->dn_olduid = odn->dn_olduid; 817 ndn->dn_oldgid = odn->dn_oldgid; 818 ndn->dn_newuid = odn->dn_newuid; 819 ndn->dn_newgid = odn->dn_newgid; 820 ndn->dn_id_flags = odn->dn_id_flags; 821 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 822 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 823 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 824 825 /* 826 * Update back pointers. Updating the handle fixes the back pointer of 827 * every descendant dbuf as well as the bonus dbuf. 828 */ 829 ASSERT(ndn->dn_handle->dnh_dnode == odn); 830 ndn->dn_handle->dnh_dnode = ndn; 831 if (ndn->dn_zfetch.zf_dnode == odn) { 832 ndn->dn_zfetch.zf_dnode = ndn; 833 } 834 835 /* 836 * Invalidate the original dnode by clearing all of its back pointers. 837 */ 838 odn->dn_dbuf = NULL; 839 odn->dn_handle = NULL; 840 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 841 offsetof(dmu_buf_impl_t, db_link)); 842 odn->dn_dbufs_count = 0; 843 odn->dn_bonus = NULL; 844 odn->dn_zfetch.zf_dnode = NULL; 845 846 /* 847 * Set the low bit of the objset pointer to ensure that dnode_move() 848 * recognizes the dnode as invalid in any subsequent callback. 849 */ 850 POINTER_INVALIDATE(&odn->dn_objset); 851 852 /* 853 * Satisfy the destructor. 854 */ 855 for (i = 0; i < TXG_SIZE; i++) { 856 list_create(&odn->dn_dirty_records[i], 857 sizeof (dbuf_dirty_record_t), 858 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 859 odn->dn_free_ranges[i] = NULL; 860 odn->dn_next_nlevels[i] = 0; 861 odn->dn_next_indblkshift[i] = 0; 862 odn->dn_next_bonustype[i] = 0; 863 odn->dn_rm_spillblk[i] = 0; 864 odn->dn_next_bonuslen[i] = 0; 865 odn->dn_next_blksz[i] = 0; 866 } 867 odn->dn_allocated_txg = 0; 868 odn->dn_free_txg = 0; 869 odn->dn_assigned_txg = 0; 870 odn->dn_dirty_txg = 0; 871 odn->dn_dirtyctx = 0; 872 odn->dn_dirtyctx_firstset = NULL; 873 odn->dn_have_spill = B_FALSE; 874 odn->dn_zio = NULL; 875 odn->dn_oldused = 0; 876 odn->dn_oldflags = 0; 877 odn->dn_olduid = 0; 878 odn->dn_oldgid = 0; 879 odn->dn_newuid = 0; 880 odn->dn_newgid = 0; 881 odn->dn_id_flags = 0; 882 883 /* 884 * Mark the dnode. 885 */ 886 ndn->dn_moved = 1; 887 odn->dn_moved = (uint8_t)-1; 888 } 889 890 /*ARGSUSED*/ 891 static kmem_cbrc_t 892 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 893 { 894 dnode_t *odn = buf, *ndn = newbuf; 895 objset_t *os; 896 int64_t refcount; 897 uint32_t dbufs; 898 899 /* 900 * The dnode is on the objset's list of known dnodes if the objset 901 * pointer is valid. We set the low bit of the objset pointer when 902 * freeing the dnode to invalidate it, and the memory patterns written 903 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 904 * A newly created dnode sets the objset pointer last of all to indicate 905 * that the dnode is known and in a valid state to be moved by this 906 * function. 907 */ 908 os = odn->dn_objset; 909 if (!POINTER_IS_VALID(os)) { 910 DNODE_STAT_BUMP(dnode_move_invalid); 911 return (KMEM_CBRC_DONT_KNOW); 912 } 913 914 /* 915 * Ensure that the objset does not go away during the move. 916 */ 917 rw_enter(&os_lock, RW_WRITER); 918 if (os != odn->dn_objset) { 919 rw_exit(&os_lock); 920 DNODE_STAT_BUMP(dnode_move_recheck1); 921 return (KMEM_CBRC_DONT_KNOW); 922 } 923 924 /* 925 * If the dnode is still valid, then so is the objset. We know that no 926 * valid objset can be freed while we hold os_lock, so we can safely 927 * ensure that the objset remains in use. 928 */ 929 mutex_enter(&os->os_lock); 930 931 /* 932 * Recheck the objset pointer in case the dnode was removed just before 933 * acquiring the lock. 934 */ 935 if (os != odn->dn_objset) { 936 mutex_exit(&os->os_lock); 937 rw_exit(&os_lock); 938 DNODE_STAT_BUMP(dnode_move_recheck2); 939 return (KMEM_CBRC_DONT_KNOW); 940 } 941 942 /* 943 * At this point we know that as long as we hold os->os_lock, the dnode 944 * cannot be freed and fields within the dnode can be safely accessed. 945 * The objset listing this dnode cannot go away as long as this dnode is 946 * on its list. 947 */ 948 rw_exit(&os_lock); 949 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 950 mutex_exit(&os->os_lock); 951 DNODE_STAT_BUMP(dnode_move_special); 952 return (KMEM_CBRC_NO); 953 } 954 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 955 956 /* 957 * Lock the dnode handle to prevent the dnode from obtaining any new 958 * holds. This also prevents the descendant dbufs and the bonus dbuf 959 * from accessing the dnode, so that we can discount their holds. The 960 * handle is safe to access because we know that while the dnode cannot 961 * go away, neither can its handle. Once we hold dnh_zrlock, we can 962 * safely move any dnode referenced only by dbufs. 963 */ 964 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 965 mutex_exit(&os->os_lock); 966 DNODE_STAT_BUMP(dnode_move_handle); 967 return (KMEM_CBRC_LATER); 968 } 969 970 /* 971 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 972 * We need to guarantee that there is a hold for every dbuf in order to 973 * determine whether the dnode is actively referenced. Falsely matching 974 * a dbuf to an active hold would lead to an unsafe move. It's possible 975 * that a thread already having an active dnode hold is about to add a 976 * dbuf, and we can't compare hold and dbuf counts while the add is in 977 * progress. 978 */ 979 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 980 zrl_exit(&odn->dn_handle->dnh_zrlock); 981 mutex_exit(&os->os_lock); 982 DNODE_STAT_BUMP(dnode_move_rwlock); 983 return (KMEM_CBRC_LATER); 984 } 985 986 /* 987 * A dbuf may be removed (evicted) without an active dnode hold. In that 988 * case, the dbuf count is decremented under the handle lock before the 989 * dbuf's hold is released. This order ensures that if we count the hold 990 * after the dbuf is removed but before its hold is released, we will 991 * treat the unmatched hold as active and exit safely. If we count the 992 * hold before the dbuf is removed, the hold is discounted, and the 993 * removal is blocked until the move completes. 994 */ 995 refcount = zfs_refcount_count(&odn->dn_holds); 996 ASSERT(refcount >= 0); 997 dbufs = odn->dn_dbufs_count; 998 999 /* We can't have more dbufs than dnode holds. */ 1000 ASSERT3U(dbufs, <=, refcount); 1001 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 1002 uint32_t, dbufs); 1003 1004 if (refcount > dbufs) { 1005 rw_exit(&odn->dn_struct_rwlock); 1006 zrl_exit(&odn->dn_handle->dnh_zrlock); 1007 mutex_exit(&os->os_lock); 1008 DNODE_STAT_BUMP(dnode_move_active); 1009 return (KMEM_CBRC_LATER); 1010 } 1011 1012 rw_exit(&odn->dn_struct_rwlock); 1013 1014 /* 1015 * At this point we know that anyone with a hold on the dnode is not 1016 * actively referencing it. The dnode is known and in a valid state to 1017 * move. We're holding the locks needed to execute the critical section. 1018 */ 1019 dnode_move_impl(odn, ndn); 1020 1021 list_link_replace(&odn->dn_link, &ndn->dn_link); 1022 /* If the dnode was safe to move, the refcount cannot have changed. */ 1023 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds)); 1024 ASSERT(dbufs == ndn->dn_dbufs_count); 1025 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 1026 mutex_exit(&os->os_lock); 1027 1028 return (KMEM_CBRC_YES); 1029 } 1030 #endif /* _KERNEL */ 1031 1032 static void 1033 dnode_slots_hold(dnode_children_t *children, int idx, int slots) 1034 { 1035 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1036 1037 for (int i = idx; i < idx + slots; i++) { 1038 dnode_handle_t *dnh = &children->dnc_children[i]; 1039 zrl_add(&dnh->dnh_zrlock); 1040 } 1041 } 1042 1043 static void 1044 dnode_slots_rele(dnode_children_t *children, int idx, int slots) 1045 { 1046 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1047 1048 for (int i = idx; i < idx + slots; i++) { 1049 dnode_handle_t *dnh = &children->dnc_children[i]; 1050 1051 if (zrl_is_locked(&dnh->dnh_zrlock)) 1052 zrl_exit(&dnh->dnh_zrlock); 1053 else 1054 zrl_remove(&dnh->dnh_zrlock); 1055 } 1056 } 1057 1058 static int 1059 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots) 1060 { 1061 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1062 1063 for (int i = idx; i < idx + slots; i++) { 1064 dnode_handle_t *dnh = &children->dnc_children[i]; 1065 1066 if (!zrl_tryenter(&dnh->dnh_zrlock)) { 1067 for (int j = idx; j < i; j++) { 1068 dnh = &children->dnc_children[j]; 1069 zrl_exit(&dnh->dnh_zrlock); 1070 } 1071 1072 return (0); 1073 } 1074 } 1075 1076 return (1); 1077 } 1078 1079 static void 1080 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) 1081 { 1082 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1083 1084 for (int i = idx; i < idx + slots; i++) { 1085 dnode_handle_t *dnh = &children->dnc_children[i]; 1086 dnh->dnh_dnode = ptr; 1087 } 1088 } 1089 1090 static boolean_t 1091 dnode_check_slots_free(dnode_children_t *children, int idx, int slots) 1092 { 1093 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1094 1095 /* 1096 * If all dnode slots are either already free or 1097 * evictable return B_TRUE. 1098 */ 1099 for (int i = idx; i < idx + slots; i++) { 1100 dnode_handle_t *dnh = &children->dnc_children[i]; 1101 dnode_t *dn = dnh->dnh_dnode; 1102 1103 if (dn == DN_SLOT_FREE) { 1104 continue; 1105 } else if (DN_SLOT_IS_PTR(dn)) { 1106 mutex_enter(&dn->dn_mtx); 1107 boolean_t can_free = (dn->dn_type == DMU_OT_NONE && 1108 zfs_refcount_is_zero(&dn->dn_holds) && 1109 !DNODE_IS_DIRTY(dn)); 1110 mutex_exit(&dn->dn_mtx); 1111 1112 if (!can_free) 1113 return (B_FALSE); 1114 else 1115 continue; 1116 } else { 1117 return (B_FALSE); 1118 } 1119 } 1120 1121 return (B_TRUE); 1122 } 1123 1124 static void 1125 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) 1126 { 1127 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1128 1129 for (int i = idx; i < idx + slots; i++) { 1130 dnode_handle_t *dnh = &children->dnc_children[i]; 1131 1132 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 1133 1134 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1135 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); 1136 dnode_destroy(dnh->dnh_dnode); 1137 dnh->dnh_dnode = DN_SLOT_FREE; 1138 } 1139 } 1140 } 1141 1142 void 1143 dnode_free_interior_slots(dnode_t *dn) 1144 { 1145 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); 1146 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; 1147 int idx = (dn->dn_object & (epb - 1)) + 1; 1148 int slots = dn->dn_num_slots - 1; 1149 1150 if (slots == 0) 1151 return; 1152 1153 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1154 1155 while (!dnode_slots_tryenter(children, idx, slots)) 1156 DNODE_STAT_BUMP(dnode_free_interior_lock_retry); 1157 1158 dnode_set_slots(children, idx, slots, DN_SLOT_FREE); 1159 dnode_slots_rele(children, idx, slots); 1160 } 1161 1162 void 1163 dnode_special_close(dnode_handle_t *dnh) 1164 { 1165 dnode_t *dn = dnh->dnh_dnode; 1166 1167 /* 1168 * Wait for final references to the dnode to clear. This can 1169 * only happen if the arc is asynchronously evicting state that 1170 * has a hold on this dnode while we are trying to evict this 1171 * dnode. 1172 */ 1173 while (zfs_refcount_count(&dn->dn_holds) > 0) 1174 delay(1); 1175 ASSERT(dn->dn_dbuf == NULL || 1176 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1177 zrl_add(&dnh->dnh_zrlock); 1178 dnode_destroy(dn); /* implicit zrl_remove() */ 1179 zrl_destroy(&dnh->dnh_zrlock); 1180 dnh->dnh_dnode = NULL; 1181 } 1182 1183 void 1184 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1185 dnode_handle_t *dnh) 1186 { 1187 dnode_t *dn; 1188 1189 zrl_init(&dnh->dnh_zrlock); 1190 zrl_tryenter(&dnh->dnh_zrlock); 1191 1192 dn = dnode_create(os, dnp, NULL, object, dnh); 1193 DNODE_VERIFY(dn); 1194 1195 zrl_exit(&dnh->dnh_zrlock); 1196 } 1197 1198 static void 1199 dnode_buf_evict_async(void *dbu) 1200 { 1201 dnode_children_t *dnc = dbu; 1202 1203 DNODE_STAT_BUMP(dnode_buf_evict); 1204 1205 for (int i = 0; i < dnc->dnc_count; i++) { 1206 dnode_handle_t *dnh = &dnc->dnc_children[i]; 1207 dnode_t *dn; 1208 1209 /* 1210 * The dnode handle lock guards against the dnode moving to 1211 * another valid address, so there is no need here to guard 1212 * against changes to or from NULL. 1213 */ 1214 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1215 zrl_destroy(&dnh->dnh_zrlock); 1216 dnh->dnh_dnode = DN_SLOT_UNINIT; 1217 continue; 1218 } 1219 1220 zrl_add(&dnh->dnh_zrlock); 1221 dn = dnh->dnh_dnode; 1222 /* 1223 * If there are holds on this dnode, then there should 1224 * be holds on the dnode's containing dbuf as well; thus 1225 * it wouldn't be eligible for eviction and this function 1226 * would not have been called. 1227 */ 1228 ASSERT(zfs_refcount_is_zero(&dn->dn_holds)); 1229 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 1230 1231 dnode_destroy(dn); /* implicit zrl_remove() for first slot */ 1232 zrl_destroy(&dnh->dnh_zrlock); 1233 dnh->dnh_dnode = DN_SLOT_UNINIT; 1234 } 1235 kmem_free(dnc, sizeof (dnode_children_t) + 1236 dnc->dnc_count * sizeof (dnode_handle_t)); 1237 } 1238 1239 /* 1240 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used 1241 * to ensure the hole at the specified object offset is large enough to 1242 * hold the dnode being created. The slots parameter is also used to ensure 1243 * a dnode does not span multiple dnode blocks. In both of these cases, if 1244 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases 1245 * are only possible when using DNODE_MUST_BE_FREE. 1246 * 1247 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. 1248 * dnode_hold_impl() will check if the requested dnode is already consumed 1249 * as an extra dnode slot by an large dnode, in which case it returns 1250 * ENOENT. 1251 * 1252 * errors: 1253 * EINVAL - invalid object number or flags. 1254 * ENOSPC - hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) 1255 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) 1256 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) 1257 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) 1258 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) 1259 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) 1260 * EIO - i/o error error when reading the meta dnode dbuf. 1261 * succeeds even for free dnodes. 1262 */ 1263 int 1264 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, 1265 void *tag, dnode_t **dnp) 1266 { 1267 int epb, idx, err; 1268 int drop_struct_lock = FALSE; 1269 int type; 1270 uint64_t blk; 1271 dnode_t *mdn, *dn; 1272 dmu_buf_impl_t *db; 1273 dnode_children_t *dnc; 1274 dnode_phys_t *dn_block; 1275 dnode_handle_t *dnh; 1276 1277 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); 1278 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); 1279 1280 /* 1281 * If you are holding the spa config lock as writer, you shouldn't 1282 * be asking the DMU to do *anything* unless it's the root pool 1283 * which may require us to read from the root filesystem while 1284 * holding some (not all) of the locks as writer. 1285 */ 1286 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1287 (spa_is_root(os->os_spa) && 1288 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1289 1290 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1291 1292 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) { 1293 dn = (object == DMU_USERUSED_OBJECT) ? 1294 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os); 1295 if (dn == NULL) 1296 return (SET_ERROR(ENOENT)); 1297 type = dn->dn_type; 1298 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1299 return (SET_ERROR(ENOENT)); 1300 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1301 return (SET_ERROR(EEXIST)); 1302 DNODE_VERIFY(dn); 1303 (void) zfs_refcount_add(&dn->dn_holds, tag); 1304 *dnp = dn; 1305 return (0); 1306 } 1307 1308 if (object == 0 || object >= DN_MAX_OBJECT) 1309 return (SET_ERROR(EINVAL)); 1310 1311 mdn = DMU_META_DNODE(os); 1312 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1313 1314 DNODE_VERIFY(mdn); 1315 1316 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1317 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1318 drop_struct_lock = TRUE; 1319 } 1320 1321 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1322 1323 db = dbuf_hold(mdn, blk, FTAG); 1324 if (drop_struct_lock) 1325 rw_exit(&mdn->dn_struct_rwlock); 1326 if (db == NULL) { 1327 DNODE_STAT_BUMP(dnode_hold_dbuf_hold); 1328 return (SET_ERROR(EIO)); 1329 } 1330 /* 1331 * We do not need to decrypt to read the dnode so it doesn't matter 1332 * if we get the encrypted or decrypted version. 1333 */ 1334 err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT); 1335 if (err) { 1336 DNODE_STAT_BUMP(dnode_hold_dbuf_read); 1337 dbuf_rele(db, FTAG); 1338 return (err); 1339 } 1340 1341 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1342 epb = db->db.db_size >> DNODE_SHIFT; 1343 1344 idx = object & (epb - 1); 1345 dn_block = (dnode_phys_t *)db->db.db_data; 1346 1347 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1348 dnc = dmu_buf_get_user(&db->db); 1349 dnh = NULL; 1350 if (dnc == NULL) { 1351 dnode_children_t *winner; 1352 int skip = 0; 1353 1354 dnc = kmem_zalloc(sizeof (dnode_children_t) + 1355 epb * sizeof (dnode_handle_t), KM_SLEEP); 1356 dnc->dnc_count = epb; 1357 dnh = &dnc->dnc_children[0]; 1358 1359 /* Initialize dnode slot status from dnode_phys_t */ 1360 for (int i = 0; i < epb; i++) { 1361 zrl_init(&dnh[i].dnh_zrlock); 1362 1363 if (skip) { 1364 skip--; 1365 continue; 1366 } 1367 1368 if (dn_block[i].dn_type != DMU_OT_NONE) { 1369 int interior = dn_block[i].dn_extra_slots; 1370 1371 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); 1372 dnode_set_slots(dnc, i + 1, interior, 1373 DN_SLOT_INTERIOR); 1374 skip = interior; 1375 } else { 1376 dnh[i].dnh_dnode = DN_SLOT_FREE; 1377 skip = 0; 1378 } 1379 } 1380 1381 dmu_buf_init_user(&dnc->dnc_dbu, NULL, 1382 dnode_buf_evict_async, NULL); 1383 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); 1384 if (winner != NULL) { 1385 1386 for (int i = 0; i < epb; i++) 1387 zrl_destroy(&dnh[i].dnh_zrlock); 1388 1389 kmem_free(dnc, sizeof (dnode_children_t) + 1390 epb * sizeof (dnode_handle_t)); 1391 dnc = winner; 1392 } 1393 } 1394 1395 ASSERT(dnc->dnc_count == epb); 1396 dn = DN_SLOT_UNINIT; 1397 1398 if (flag & DNODE_MUST_BE_ALLOCATED) { 1399 slots = 1; 1400 1401 while (dn == DN_SLOT_UNINIT) { 1402 dnode_slots_hold(dnc, idx, slots); 1403 dnh = &dnc->dnc_children[idx]; 1404 1405 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1406 dn = dnh->dnh_dnode; 1407 break; 1408 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { 1409 DNODE_STAT_BUMP(dnode_hold_alloc_interior); 1410 dnode_slots_rele(dnc, idx, slots); 1411 dbuf_rele(db, FTAG); 1412 return (SET_ERROR(EEXIST)); 1413 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { 1414 DNODE_STAT_BUMP(dnode_hold_alloc_misses); 1415 dnode_slots_rele(dnc, idx, slots); 1416 dbuf_rele(db, FTAG); 1417 return (SET_ERROR(ENOENT)); 1418 } 1419 1420 dnode_slots_rele(dnc, idx, slots); 1421 if (!dnode_slots_tryenter(dnc, idx, slots)) { 1422 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry); 1423 continue; 1424 } 1425 1426 /* 1427 * Someone else won the race and called dnode_create() 1428 * after we checked DN_SLOT_IS_PTR() above but before 1429 * we acquired the lock. 1430 */ 1431 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1432 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); 1433 dn = dnh->dnh_dnode; 1434 } else { 1435 dn = dnode_create(os, dn_block + idx, db, 1436 object, dnh); 1437 } 1438 } 1439 1440 mutex_enter(&dn->dn_mtx); 1441 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { 1442 DNODE_STAT_BUMP(dnode_hold_alloc_type_none); 1443 mutex_exit(&dn->dn_mtx); 1444 dnode_slots_rele(dnc, idx, slots); 1445 dbuf_rele(db, FTAG); 1446 return (SET_ERROR(ENOENT)); 1447 } 1448 1449 DNODE_STAT_BUMP(dnode_hold_alloc_hits); 1450 } else if (flag & DNODE_MUST_BE_FREE) { 1451 1452 if (idx + slots - 1 >= DNODES_PER_BLOCK) { 1453 DNODE_STAT_BUMP(dnode_hold_free_overflow); 1454 dbuf_rele(db, FTAG); 1455 return (SET_ERROR(ENOSPC)); 1456 } 1457 1458 while (dn == DN_SLOT_UNINIT) { 1459 dnode_slots_hold(dnc, idx, slots); 1460 1461 if (!dnode_check_slots_free(dnc, idx, slots)) { 1462 DNODE_STAT_BUMP(dnode_hold_free_misses); 1463 dnode_slots_rele(dnc, idx, slots); 1464 dbuf_rele(db, FTAG); 1465 return (SET_ERROR(ENOSPC)); 1466 } 1467 1468 dnode_slots_rele(dnc, idx, slots); 1469 if (!dnode_slots_tryenter(dnc, idx, slots)) { 1470 DNODE_STAT_BUMP(dnode_hold_free_lock_retry); 1471 continue; 1472 } 1473 1474 if (!dnode_check_slots_free(dnc, idx, slots)) { 1475 DNODE_STAT_BUMP(dnode_hold_free_lock_misses); 1476 dnode_slots_rele(dnc, idx, slots); 1477 dbuf_rele(db, FTAG); 1478 return (SET_ERROR(ENOSPC)); 1479 } 1480 1481 /* 1482 * Allocated but otherwise free dnodes which would 1483 * be in the interior of a multi-slot dnodes need 1484 * to be freed. Single slot dnodes can be safely 1485 * re-purposed as a performance optimization. 1486 */ 1487 if (slots > 1) 1488 dnode_reclaim_slots(dnc, idx + 1, slots - 1); 1489 1490 dnh = &dnc->dnc_children[idx]; 1491 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1492 dn = dnh->dnh_dnode; 1493 } else { 1494 dn = dnode_create(os, dn_block + idx, db, 1495 object, dnh); 1496 } 1497 } 1498 1499 mutex_enter(&dn->dn_mtx); 1500 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { 1501 DNODE_STAT_BUMP(dnode_hold_free_refcount); 1502 mutex_exit(&dn->dn_mtx); 1503 dnode_slots_rele(dnc, idx, slots); 1504 dbuf_rele(db, FTAG); 1505 return (SET_ERROR(EEXIST)); 1506 } 1507 1508 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); 1509 DNODE_STAT_BUMP(dnode_hold_free_hits); 1510 } else { 1511 dbuf_rele(db, FTAG); 1512 return (SET_ERROR(EINVAL)); 1513 } 1514 1515 if (dn->dn_free_txg) { 1516 DNODE_STAT_BUMP(dnode_hold_free_txg); 1517 type = dn->dn_type; 1518 mutex_exit(&dn->dn_mtx); 1519 dnode_slots_rele(dnc, idx, slots); 1520 dbuf_rele(db, FTAG); 1521 return (SET_ERROR((flag & DNODE_MUST_BE_ALLOCATED) ? 1522 ENOENT : EEXIST)); 1523 } 1524 1525 if (zfs_refcount_add(&dn->dn_holds, tag) == 1) 1526 dbuf_add_ref(db, dnh); 1527 1528 mutex_exit(&dn->dn_mtx); 1529 1530 /* Now we can rely on the hold to prevent the dnode from moving. */ 1531 dnode_slots_rele(dnc, idx, slots); 1532 1533 DNODE_VERIFY(dn); 1534 ASSERT3P(dn->dn_dbuf, ==, db); 1535 ASSERT3U(dn->dn_object, ==, object); 1536 dbuf_rele(db, FTAG); 1537 1538 *dnp = dn; 1539 return (0); 1540 } 1541 1542 /* 1543 * Return held dnode if the object is allocated, NULL if not. 1544 */ 1545 int 1546 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1547 { 1548 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, 1549 dnp)); 1550 } 1551 1552 /* 1553 * Can only add a reference if there is already at least one 1554 * reference on the dnode. Returns FALSE if unable to add a 1555 * new reference. 1556 */ 1557 boolean_t 1558 dnode_add_ref(dnode_t *dn, void *tag) 1559 { 1560 mutex_enter(&dn->dn_mtx); 1561 if (zfs_refcount_is_zero(&dn->dn_holds)) { 1562 mutex_exit(&dn->dn_mtx); 1563 return (FALSE); 1564 } 1565 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag)); 1566 mutex_exit(&dn->dn_mtx); 1567 return (TRUE); 1568 } 1569 1570 void 1571 dnode_rele(dnode_t *dn, void *tag) 1572 { 1573 mutex_enter(&dn->dn_mtx); 1574 dnode_rele_and_unlock(dn, tag, B_FALSE); 1575 } 1576 1577 void 1578 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting) 1579 { 1580 uint64_t refs; 1581 /* Get while the hold prevents the dnode from moving. */ 1582 dmu_buf_impl_t *db = dn->dn_dbuf; 1583 dnode_handle_t *dnh = dn->dn_handle; 1584 1585 refs = zfs_refcount_remove(&dn->dn_holds, tag); 1586 mutex_exit(&dn->dn_mtx); 1587 1588 /* 1589 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1590 * indirectly by dbuf_rele() while relying on the dnode handle to 1591 * prevent the dnode from moving, since releasing the last hold could 1592 * result in the dnode's parent dbuf evicting its dnode handles. For 1593 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1594 * other direct or indirect hold on the dnode must first drop the dnode 1595 * handle. 1596 */ 1597 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1598 1599 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1600 if (refs == 0 && db != NULL) { 1601 /* 1602 * Another thread could add a hold to the dnode handle in 1603 * dnode_hold_impl() while holding the parent dbuf. Since the 1604 * hold on the parent dbuf prevents the handle from being 1605 * destroyed, the hold on the handle is OK. We can't yet assert 1606 * that the handle has zero references, but that will be 1607 * asserted anyway when the handle gets destroyed. 1608 */ 1609 mutex_enter(&db->db_mtx); 1610 dbuf_rele_and_unlock(db, dnh, evicting); 1611 } 1612 } 1613 1614 void 1615 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1616 { 1617 objset_t *os = dn->dn_objset; 1618 uint64_t txg = tx->tx_txg; 1619 1620 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1621 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1622 return; 1623 } 1624 1625 DNODE_VERIFY(dn); 1626 1627 #ifdef ZFS_DEBUG 1628 mutex_enter(&dn->dn_mtx); 1629 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1630 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1631 mutex_exit(&dn->dn_mtx); 1632 #endif 1633 1634 /* 1635 * Determine old uid/gid when necessary 1636 */ 1637 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1638 1639 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK]; 1640 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1641 1642 /* 1643 * If we are already marked dirty, we're done. 1644 */ 1645 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1646 multilist_sublist_unlock(mls); 1647 return; 1648 } 1649 1650 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) || 1651 !avl_is_empty(&dn->dn_dbufs)); 1652 ASSERT(dn->dn_datablksz != 0); 1653 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); 1654 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); 1655 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); 1656 1657 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1658 dn->dn_object, txg); 1659 1660 multilist_sublist_insert_head(mls, dn); 1661 1662 multilist_sublist_unlock(mls); 1663 1664 /* 1665 * The dnode maintains a hold on its containing dbuf as 1666 * long as there are holds on it. Each instantiated child 1667 * dbuf maintains a hold on the dnode. When the last child 1668 * drops its hold, the dnode will drop its hold on the 1669 * containing dbuf. We add a "dirty hold" here so that the 1670 * dnode will hang around after we finish processing its 1671 * children. 1672 */ 1673 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1674 1675 (void) dbuf_dirty(dn->dn_dbuf, tx); 1676 1677 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1678 } 1679 1680 void 1681 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1682 { 1683 mutex_enter(&dn->dn_mtx); 1684 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1685 mutex_exit(&dn->dn_mtx); 1686 return; 1687 } 1688 dn->dn_free_txg = tx->tx_txg; 1689 mutex_exit(&dn->dn_mtx); 1690 1691 dnode_setdirty(dn, tx); 1692 } 1693 1694 /* 1695 * Try to change the block size for the indicated dnode. This can only 1696 * succeed if there are no blocks allocated or dirty beyond first block 1697 */ 1698 int 1699 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1700 { 1701 dmu_buf_impl_t *db; 1702 int err; 1703 1704 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1705 if (size == 0) 1706 size = SPA_MINBLOCKSIZE; 1707 else 1708 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1709 1710 if (ibs == dn->dn_indblkshift) 1711 ibs = 0; 1712 1713 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1714 return (0); 1715 1716 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1717 1718 /* Check for any allocated blocks beyond the first */ 1719 if (dn->dn_maxblkid != 0) 1720 goto fail; 1721 1722 mutex_enter(&dn->dn_dbufs_mtx); 1723 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1724 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1725 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1726 db->db_blkid != DMU_SPILL_BLKID) { 1727 mutex_exit(&dn->dn_dbufs_mtx); 1728 goto fail; 1729 } 1730 } 1731 mutex_exit(&dn->dn_dbufs_mtx); 1732 1733 if (ibs && dn->dn_nlevels != 1) 1734 goto fail; 1735 1736 /* resize the old block */ 1737 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1738 if (err == 0) 1739 dbuf_new_size(db, size, tx); 1740 else if (err != ENOENT) 1741 goto fail; 1742 1743 dnode_setdblksz(dn, size); 1744 dnode_setdirty(dn, tx); 1745 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1746 if (ibs) { 1747 dn->dn_indblkshift = ibs; 1748 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1749 } 1750 /* rele after we have fixed the blocksize in the dnode */ 1751 if (db) 1752 dbuf_rele(db, FTAG); 1753 1754 rw_exit(&dn->dn_struct_rwlock); 1755 return (0); 1756 1757 fail: 1758 rw_exit(&dn->dn_struct_rwlock); 1759 return (SET_ERROR(ENOTSUP)); 1760 } 1761 1762 static void 1763 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx) 1764 { 1765 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1766 int old_nlevels = dn->dn_nlevels; 1767 dmu_buf_impl_t *db; 1768 list_t *list; 1769 dbuf_dirty_record_t *new, *dr, *dr_next; 1770 1771 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1772 1773 dn->dn_nlevels = new_nlevels; 1774 1775 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1776 dn->dn_next_nlevels[txgoff] = new_nlevels; 1777 1778 /* dirty the left indirects */ 1779 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1780 ASSERT(db != NULL); 1781 new = dbuf_dirty(db, tx); 1782 dbuf_rele(db, FTAG); 1783 1784 /* transfer the dirty records to the new indirect */ 1785 mutex_enter(&dn->dn_mtx); 1786 mutex_enter(&new->dt.di.dr_mtx); 1787 list = &dn->dn_dirty_records[txgoff]; 1788 for (dr = list_head(list); dr; dr = dr_next) { 1789 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1790 if (dr->dr_dbuf->db_level != new_nlevels-1 && 1791 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1792 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 1793 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 1794 list_remove(&dn->dn_dirty_records[txgoff], dr); 1795 list_insert_tail(&new->dt.di.dr_children, dr); 1796 dr->dr_parent = new; 1797 } 1798 } 1799 mutex_exit(&new->dt.di.dr_mtx); 1800 mutex_exit(&dn->dn_mtx); 1801 } 1802 1803 int 1804 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx) 1805 { 1806 int ret = 0; 1807 1808 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1809 1810 if (dn->dn_nlevels == nlevels) { 1811 ret = 0; 1812 goto out; 1813 } else if (nlevels < dn->dn_nlevels) { 1814 ret = SET_ERROR(EINVAL); 1815 goto out; 1816 } 1817 1818 dnode_set_nlevels_impl(dn, nlevels, tx); 1819 1820 out: 1821 rw_exit(&dn->dn_struct_rwlock); 1822 return (ret); 1823 } 1824 1825 /* read-holding callers must not rely on the lock being continuously held */ 1826 void 1827 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read, 1828 boolean_t force) 1829 { 1830 int epbs, new_nlevels; 1831 uint64_t sz; 1832 1833 ASSERT(blkid != DMU_BONUS_BLKID); 1834 1835 ASSERT(have_read ? 1836 RW_READ_HELD(&dn->dn_struct_rwlock) : 1837 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1838 1839 /* 1840 * if we have a read-lock, check to see if we need to do any work 1841 * before upgrading to a write-lock. 1842 */ 1843 if (have_read) { 1844 if (blkid <= dn->dn_maxblkid) 1845 return; 1846 1847 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1848 rw_exit(&dn->dn_struct_rwlock); 1849 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1850 } 1851 } 1852 1853 /* 1854 * Raw sends (indicated by the force flag) require that we take the 1855 * given blkid even if the value is lower than the current value. 1856 */ 1857 if (!force && blkid <= dn->dn_maxblkid) 1858 goto out; 1859 1860 /* 1861 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff] 1862 * to indicate that this field is set. This allows us to set the 1863 * maxblkid to 0 on an existing object in dnode_sync(). 1864 */ 1865 dn->dn_maxblkid = blkid; 1866 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] = 1867 blkid | DMU_NEXT_MAXBLKID_SET; 1868 1869 /* 1870 * Compute the number of levels necessary to support the new maxblkid. 1871 * Raw sends will ensure nlevels is set correctly for us. 1872 */ 1873 new_nlevels = 1; 1874 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1875 for (sz = dn->dn_nblkptr; 1876 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1877 new_nlevels++; 1878 1879 if (!force) { 1880 if (new_nlevels > dn->dn_nlevels) 1881 dnode_set_nlevels_impl(dn, new_nlevels, tx); 1882 } else { 1883 ASSERT3U(dn->dn_nlevels, >=, new_nlevels); 1884 } 1885 1886 out: 1887 if (have_read) 1888 rw_downgrade(&dn->dn_struct_rwlock); 1889 } 1890 1891 static void 1892 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1893 { 1894 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1895 if (db != NULL) { 1896 dmu_buf_will_dirty(&db->db, tx); 1897 dbuf_rele(db, FTAG); 1898 } 1899 } 1900 1901 /* 1902 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid 1903 * and end_blkid. 1904 */ 1905 static void 1906 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1907 dmu_tx_t *tx) 1908 { 1909 dmu_buf_impl_t db_search; 1910 dmu_buf_impl_t *db; 1911 avl_index_t where; 1912 1913 mutex_enter(&dn->dn_dbufs_mtx); 1914 1915 db_search.db_level = 1; 1916 db_search.db_blkid = start_blkid + 1; 1917 db_search.db_state = DB_SEARCH; 1918 for (;;) { 1919 1920 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1921 if (db == NULL) 1922 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1923 1924 if (db == NULL || db->db_level != 1 || 1925 db->db_blkid >= end_blkid) { 1926 break; 1927 } 1928 1929 /* 1930 * Setup the next blkid we want to search for. 1931 */ 1932 db_search.db_blkid = db->db_blkid + 1; 1933 ASSERT3U(db->db_blkid, >=, start_blkid); 1934 1935 /* 1936 * If the dbuf transitions to DB_EVICTING while we're trying 1937 * to dirty it, then we will be unable to discover it in 1938 * the dbuf hash table. This will result in a call to 1939 * dbuf_create() which needs to acquire the dn_dbufs_mtx 1940 * lock. To avoid a deadlock, we drop the lock before 1941 * dirtying the level-1 dbuf. 1942 */ 1943 mutex_exit(&dn->dn_dbufs_mtx); 1944 dnode_dirty_l1(dn, db->db_blkid, tx); 1945 mutex_enter(&dn->dn_dbufs_mtx); 1946 } 1947 1948 #ifdef ZFS_DEBUG 1949 /* 1950 * Walk all the in-core level-1 dbufs and verify they have been dirtied. 1951 */ 1952 db_search.db_level = 1; 1953 db_search.db_blkid = start_blkid + 1; 1954 db_search.db_state = DB_SEARCH; 1955 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1956 if (db == NULL) 1957 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1958 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { 1959 if (db->db_level != 1 || db->db_blkid >= end_blkid) 1960 break; 1961 ASSERT(db->db_dirtycnt > 0); 1962 } 1963 #endif 1964 mutex_exit(&dn->dn_dbufs_mtx); 1965 } 1966 1967 void 1968 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 1969 { 1970 dmu_buf_impl_t *db; 1971 uint64_t blkoff, blkid, nblks; 1972 int blksz, blkshift, head, tail; 1973 int trunc = FALSE; 1974 int epbs; 1975 1976 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1977 blksz = dn->dn_datablksz; 1978 blkshift = dn->dn_datablkshift; 1979 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1980 1981 if (len == DMU_OBJECT_END) { 1982 len = UINT64_MAX - off; 1983 trunc = TRUE; 1984 } 1985 1986 /* 1987 * First, block align the region to free: 1988 */ 1989 if (ISP2(blksz)) { 1990 head = P2NPHASE(off, blksz); 1991 blkoff = P2PHASE(off, blksz); 1992 if ((off >> blkshift) > dn->dn_maxblkid) 1993 goto out; 1994 } else { 1995 ASSERT(dn->dn_maxblkid == 0); 1996 if (off == 0 && len >= blksz) { 1997 /* 1998 * Freeing the whole block; fast-track this request. 1999 */ 2000 blkid = 0; 2001 nblks = 1; 2002 if (dn->dn_nlevels > 1) 2003 dnode_dirty_l1(dn, 0, tx); 2004 goto done; 2005 } else if (off >= blksz) { 2006 /* Freeing past end-of-data */ 2007 goto out; 2008 } else { 2009 /* Freeing part of the block. */ 2010 head = blksz - off; 2011 ASSERT3U(head, >, 0); 2012 } 2013 blkoff = off; 2014 } 2015 /* zero out any partial block data at the start of the range */ 2016 if (head) { 2017 ASSERT3U(blkoff + head, ==, blksz); 2018 if (len < head) 2019 head = len; 2020 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 2021 TRUE, FALSE, FTAG, &db) == 0) { 2022 caddr_t data; 2023 2024 /* don't dirty if it isn't on disk and isn't dirty */ 2025 if (db->db_last_dirty || 2026 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 2027 rw_exit(&dn->dn_struct_rwlock); 2028 dmu_buf_will_dirty(&db->db, tx); 2029 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2030 data = db->db.db_data; 2031 bzero(data + blkoff, head); 2032 } 2033 dbuf_rele(db, FTAG); 2034 } 2035 off += head; 2036 len -= head; 2037 } 2038 2039 /* If the range was less than one block, we're done */ 2040 if (len == 0) 2041 goto out; 2042 2043 /* If the remaining range is past end of file, we're done */ 2044 if ((off >> blkshift) > dn->dn_maxblkid) 2045 goto out; 2046 2047 ASSERT(ISP2(blksz)); 2048 if (trunc) 2049 tail = 0; 2050 else 2051 tail = P2PHASE(len, blksz); 2052 2053 ASSERT0(P2PHASE(off, blksz)); 2054 /* zero out any partial block data at the end of the range */ 2055 if (tail) { 2056 if (len < tail) 2057 tail = len; 2058 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 2059 TRUE, FALSE, FTAG, &db) == 0) { 2060 /* don't dirty if not on disk and not dirty */ 2061 if (db->db_last_dirty || 2062 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 2063 rw_exit(&dn->dn_struct_rwlock); 2064 dmu_buf_will_dirty(&db->db, tx); 2065 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2066 bzero(db->db.db_data, tail); 2067 } 2068 dbuf_rele(db, FTAG); 2069 } 2070 len -= tail; 2071 } 2072 2073 /* If the range did not include a full block, we are done */ 2074 if (len == 0) 2075 goto out; 2076 2077 ASSERT(IS_P2ALIGNED(off, blksz)); 2078 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 2079 blkid = off >> blkshift; 2080 nblks = len >> blkshift; 2081 if (trunc) 2082 nblks += 1; 2083 2084 /* 2085 * Dirty all the indirect blocks in this range. Note that only 2086 * the first and last indirect blocks can actually be written 2087 * (if they were partially freed) -- they must be dirtied, even if 2088 * they do not exist on disk yet. The interior blocks will 2089 * be freed by free_children(), so they will not actually be written. 2090 * Even though these interior blocks will not be written, we 2091 * dirty them for two reasons: 2092 * 2093 * - It ensures that the indirect blocks remain in memory until 2094 * syncing context. (They have already been prefetched by 2095 * dmu_tx_hold_free(), so we don't have to worry about reading 2096 * them serially here.) 2097 * 2098 * - The dirty space accounting will put pressure on the txg sync 2099 * mechanism to begin syncing, and to delay transactions if there 2100 * is a large amount of freeing. Even though these indirect 2101 * blocks will not be written, we could need to write the same 2102 * amount of space if we copy the freed BPs into deadlists. 2103 */ 2104 if (dn->dn_nlevels > 1) { 2105 uint64_t first, last; 2106 2107 first = blkid >> epbs; 2108 dnode_dirty_l1(dn, first, tx); 2109 if (trunc) 2110 last = dn->dn_maxblkid >> epbs; 2111 else 2112 last = (blkid + nblks - 1) >> epbs; 2113 if (last != first) 2114 dnode_dirty_l1(dn, last, tx); 2115 2116 dnode_dirty_l1range(dn, first, last, tx); 2117 2118 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 2119 SPA_BLKPTRSHIFT; 2120 for (uint64_t i = first + 1; i < last; i++) { 2121 /* 2122 * Set i to the blockid of the next non-hole 2123 * level-1 indirect block at or after i. Note 2124 * that dnode_next_offset() operates in terms of 2125 * level-0-equivalent bytes. 2126 */ 2127 uint64_t ibyte = i << shift; 2128 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 2129 &ibyte, 2, 1, 0); 2130 i = ibyte >> shift; 2131 if (i >= last) 2132 break; 2133 2134 /* 2135 * Normally we should not see an error, either 2136 * from dnode_next_offset() or dbuf_hold_level() 2137 * (except for ESRCH from dnode_next_offset). 2138 * If there is an i/o error, then when we read 2139 * this block in syncing context, it will use 2140 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 2141 * to the "failmode" property. dnode_next_offset() 2142 * doesn't have a flag to indicate MUSTSUCCEED. 2143 */ 2144 if (err != 0) 2145 break; 2146 2147 dnode_dirty_l1(dn, i, tx); 2148 } 2149 } 2150 2151 done: 2152 /* 2153 * Add this range to the dnode range list. 2154 * We will finish up this free operation in the syncing phase. 2155 */ 2156 mutex_enter(&dn->dn_mtx); 2157 int txgoff = tx->tx_txg & TXG_MASK; 2158 if (dn->dn_free_ranges[txgoff] == NULL) { 2159 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL); 2160 } 2161 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 2162 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 2163 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 2164 blkid, nblks, tx->tx_txg); 2165 mutex_exit(&dn->dn_mtx); 2166 2167 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 2168 dnode_setdirty(dn, tx); 2169 out: 2170 2171 rw_exit(&dn->dn_struct_rwlock); 2172 } 2173 2174 static boolean_t 2175 dnode_spill_freed(dnode_t *dn) 2176 { 2177 int i; 2178 2179 mutex_enter(&dn->dn_mtx); 2180 for (i = 0; i < TXG_SIZE; i++) { 2181 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 2182 break; 2183 } 2184 mutex_exit(&dn->dn_mtx); 2185 return (i < TXG_SIZE); 2186 } 2187 2188 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 2189 uint64_t 2190 dnode_block_freed(dnode_t *dn, uint64_t blkid) 2191 { 2192 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 2193 int i; 2194 2195 if (blkid == DMU_BONUS_BLKID) 2196 return (FALSE); 2197 2198 /* 2199 * If we're in the process of opening the pool, dp will not be 2200 * set yet, but there shouldn't be anything dirty. 2201 */ 2202 if (dp == NULL) 2203 return (FALSE); 2204 2205 if (dn->dn_free_txg) 2206 return (TRUE); 2207 2208 if (blkid == DMU_SPILL_BLKID) 2209 return (dnode_spill_freed(dn)); 2210 2211 mutex_enter(&dn->dn_mtx); 2212 for (i = 0; i < TXG_SIZE; i++) { 2213 if (dn->dn_free_ranges[i] != NULL && 2214 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 2215 break; 2216 } 2217 mutex_exit(&dn->dn_mtx); 2218 return (i < TXG_SIZE); 2219 } 2220 2221 /* call from syncing context when we actually write/free space for this dnode */ 2222 void 2223 dnode_diduse_space(dnode_t *dn, int64_t delta) 2224 { 2225 uint64_t space; 2226 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 2227 dn, dn->dn_phys, 2228 (u_longlong_t)dn->dn_phys->dn_used, 2229 (longlong_t)delta); 2230 2231 mutex_enter(&dn->dn_mtx); 2232 space = DN_USED_BYTES(dn->dn_phys); 2233 if (delta > 0) { 2234 ASSERT3U(space + delta, >=, space); /* no overflow */ 2235 } else { 2236 ASSERT3U(space, >=, -delta); /* no underflow */ 2237 } 2238 space += delta; 2239 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 2240 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 2241 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 2242 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 2243 } else { 2244 dn->dn_phys->dn_used = space; 2245 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 2246 } 2247 mutex_exit(&dn->dn_mtx); 2248 } 2249 2250 /* 2251 * Scans a block at the indicated "level" looking for a hole or data, 2252 * depending on 'flags'. 2253 * 2254 * If level > 0, then we are scanning an indirect block looking at its 2255 * pointers. If level == 0, then we are looking at a block of dnodes. 2256 * 2257 * If we don't find what we are looking for in the block, we return ESRCH. 2258 * Otherwise, return with *offset pointing to the beginning (if searching 2259 * forwards) or end (if searching backwards) of the range covered by the 2260 * block pointer we matched on (or dnode). 2261 * 2262 * The basic search algorithm used below by dnode_next_offset() is to 2263 * use this function to search up the block tree (widen the search) until 2264 * we find something (i.e., we don't return ESRCH) and then search back 2265 * down the tree (narrow the search) until we reach our original search 2266 * level. 2267 */ 2268 static int 2269 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 2270 int lvl, uint64_t blkfill, uint64_t txg) 2271 { 2272 dmu_buf_impl_t *db = NULL; 2273 void *data = NULL; 2274 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2275 uint64_t epb = 1ULL << epbs; 2276 uint64_t minfill, maxfill; 2277 boolean_t hole; 2278 int i, inc, error, span; 2279 2280 dprintf("probing object %llu offset %llx level %d of %u\n", 2281 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 2282 2283 hole = ((flags & DNODE_FIND_HOLE) != 0); 2284 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 2285 ASSERT(txg == 0 || !hole); 2286 2287 if (lvl == dn->dn_phys->dn_nlevels) { 2288 error = 0; 2289 epb = dn->dn_phys->dn_nblkptr; 2290 data = dn->dn_phys->dn_blkptr; 2291 } else { 2292 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 2293 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 2294 if (error) { 2295 if (error != ENOENT) 2296 return (error); 2297 if (hole) 2298 return (0); 2299 /* 2300 * This can only happen when we are searching up 2301 * the block tree for data. We don't really need to 2302 * adjust the offset, as we will just end up looking 2303 * at the pointer to this block in its parent, and its 2304 * going to be unallocated, so we will skip over it. 2305 */ 2306 return (SET_ERROR(ESRCH)); 2307 } 2308 error = dbuf_read(db, NULL, 2309 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT); 2310 if (error) { 2311 dbuf_rele(db, FTAG); 2312 return (error); 2313 } 2314 data = db->db.db_data; 2315 } 2316 2317 2318 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 2319 db->db_blkptr->blk_birth <= txg || 2320 BP_IS_HOLE(db->db_blkptr))) { 2321 /* 2322 * This can only happen when we are searching up the tree 2323 * and these conditions mean that we need to keep climbing. 2324 */ 2325 error = SET_ERROR(ESRCH); 2326 } else if (lvl == 0) { 2327 dnode_phys_t *dnp = data; 2328 2329 ASSERT(dn->dn_type == DMU_OT_DNODE); 2330 ASSERT(!(flags & DNODE_FIND_BACKWARDS)); 2331 2332 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); 2333 i < blkfill; i += dnp[i].dn_extra_slots + 1) { 2334 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 2335 break; 2336 } 2337 2338 if (i == blkfill) 2339 error = SET_ERROR(ESRCH); 2340 2341 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + 2342 (i << DNODE_SHIFT); 2343 } else { 2344 blkptr_t *bp = data; 2345 uint64_t start = *offset; 2346 span = (lvl - 1) * epbs + dn->dn_datablkshift; 2347 minfill = 0; 2348 maxfill = blkfill << ((lvl - 1) * epbs); 2349 2350 if (hole) 2351 maxfill--; 2352 else 2353 minfill++; 2354 2355 *offset = *offset >> span; 2356 for (i = BF64_GET(*offset, 0, epbs); 2357 i >= 0 && i < epb; i += inc) { 2358 if (BP_GET_FILL(&bp[i]) >= minfill && 2359 BP_GET_FILL(&bp[i]) <= maxfill && 2360 (hole || bp[i].blk_birth > txg)) 2361 break; 2362 if (inc > 0 || *offset > 0) 2363 *offset += inc; 2364 } 2365 *offset = *offset << span; 2366 if (inc < 0) { 2367 /* traversing backwards; position offset at the end */ 2368 ASSERT3U(*offset, <=, start); 2369 *offset = MIN(*offset + (1ULL << span) - 1, start); 2370 } else if (*offset < start) { 2371 *offset = start; 2372 } 2373 if (i < 0 || i >= epb) 2374 error = SET_ERROR(ESRCH); 2375 } 2376 2377 if (db) 2378 dbuf_rele(db, FTAG); 2379 2380 return (error); 2381 } 2382 2383 /* 2384 * Find the next hole, data, or sparse region at or after *offset. 2385 * The value 'blkfill' tells us how many items we expect to find 2386 * in an L0 data block; this value is 1 for normal objects, 2387 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 2388 * DNODES_PER_BLOCK when searching for sparse regions thereof. 2389 * 2390 * Examples: 2391 * 2392 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 2393 * Finds the next/previous hole/data in a file. 2394 * Used in dmu_offset_next(). 2395 * 2396 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 2397 * Finds the next free/allocated dnode an objset's meta-dnode. 2398 * Only finds objects that have new contents since txg (ie. 2399 * bonus buffer changes and content removal are ignored). 2400 * Used in dmu_object_next(). 2401 * 2402 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 2403 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 2404 * Used in dmu_object_alloc(). 2405 */ 2406 int 2407 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 2408 int minlvl, uint64_t blkfill, uint64_t txg) 2409 { 2410 uint64_t initial_offset = *offset; 2411 int lvl, maxlvl; 2412 int error = 0; 2413 2414 if (!(flags & DNODE_FIND_HAVELOCK)) 2415 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2416 2417 if (dn->dn_phys->dn_nlevels == 0) { 2418 error = SET_ERROR(ESRCH); 2419 goto out; 2420 } 2421 2422 if (dn->dn_datablkshift == 0) { 2423 if (*offset < dn->dn_datablksz) { 2424 if (flags & DNODE_FIND_HOLE) 2425 *offset = dn->dn_datablksz; 2426 } else { 2427 error = SET_ERROR(ESRCH); 2428 } 2429 goto out; 2430 } 2431 2432 maxlvl = dn->dn_phys->dn_nlevels; 2433 2434 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2435 error = dnode_next_offset_level(dn, 2436 flags, offset, lvl, blkfill, txg); 2437 if (error != ESRCH) 2438 break; 2439 } 2440 2441 while (error == 0 && --lvl >= minlvl) { 2442 error = dnode_next_offset_level(dn, 2443 flags, offset, lvl, blkfill, txg); 2444 } 2445 2446 /* 2447 * There's always a "virtual hole" at the end of the object, even 2448 * if all BP's which physically exist are non-holes. 2449 */ 2450 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2451 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2452 error = 0; 2453 } 2454 2455 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2456 initial_offset < *offset : initial_offset > *offset)) 2457 error = SET_ERROR(ESRCH); 2458 out: 2459 if (!(flags & DNODE_FIND_HAVELOCK)) 2460 rw_exit(&dn->dn_struct_rwlock); 2461 2462 return (error); 2463 } 2464