1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2017 RackTop Systems. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dbuf.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dsl_dir.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/spa.h> 39 #include <sys/zio.h> 40 #include <sys/dmu_zfetch.h> 41 #include <sys/range_tree.h> 42 43 dnode_stats_t dnode_stats = { 44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, 45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, 46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, 47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, 48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, 49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, 50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, 51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, 52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, 53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, 54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, 55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, 56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, 57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, 58 { "dnode_hold_free_txg", KSTAT_DATA_UINT64 }, 59 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, 60 { "dnode_allocate", KSTAT_DATA_UINT64 }, 61 { "dnode_reallocate", KSTAT_DATA_UINT64 }, 62 { "dnode_buf_evict", KSTAT_DATA_UINT64 }, 63 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, 64 { "dnode_alloc_race", KSTAT_DATA_UINT64 }, 65 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, 66 { "dnode_move_invalid", KSTAT_DATA_UINT64 }, 67 { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, 68 { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, 69 { "dnode_move_special", KSTAT_DATA_UINT64 }, 70 { "dnode_move_handle", KSTAT_DATA_UINT64 }, 71 { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, 72 { "dnode_move_active", KSTAT_DATA_UINT64 }, 73 }; 74 75 static kstat_t *dnode_ksp; 76 static kmem_cache_t *dnode_cache; 77 78 static dnode_phys_t dnode_phys_zero; 79 80 int zfs_default_bs = SPA_MINBLOCKSHIFT; 81 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 82 83 #ifdef _KERNEL 84 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 85 #endif /* _KERNEL */ 86 87 static int 88 dbuf_compare(const void *x1, const void *x2) 89 { 90 const dmu_buf_impl_t *d1 = x1; 91 const dmu_buf_impl_t *d2 = x2; 92 93 if (d1->db_level < d2->db_level) { 94 return (-1); 95 } 96 if (d1->db_level > d2->db_level) { 97 return (1); 98 } 99 100 if (d1->db_blkid < d2->db_blkid) { 101 return (-1); 102 } 103 if (d1->db_blkid > d2->db_blkid) { 104 return (1); 105 } 106 107 if (d1->db_state == DB_SEARCH) { 108 ASSERT3S(d2->db_state, !=, DB_SEARCH); 109 return (-1); 110 } else if (d2->db_state == DB_SEARCH) { 111 ASSERT3S(d1->db_state, !=, DB_SEARCH); 112 return (1); 113 } 114 115 if ((uintptr_t)d1 < (uintptr_t)d2) { 116 return (-1); 117 } 118 if ((uintptr_t)d1 > (uintptr_t)d2) { 119 return (1); 120 } 121 return (0); 122 } 123 124 /* ARGSUSED */ 125 static int 126 dnode_cons(void *arg, void *unused, int kmflag) 127 { 128 dnode_t *dn = arg; 129 int i; 130 131 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 132 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 133 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 134 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 135 136 /* 137 * Every dbuf has a reference, and dropping a tracked reference is 138 * O(number of references), so don't track dn_holds. 139 */ 140 zfs_refcount_create_untracked(&dn->dn_holds); 141 zfs_refcount_create(&dn->dn_tx_holds); 142 list_link_init(&dn->dn_link); 143 144 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 145 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 146 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 147 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 148 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 149 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 150 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 151 152 for (i = 0; i < TXG_SIZE; i++) { 153 list_link_init(&dn->dn_dirty_link[i]); 154 dn->dn_free_ranges[i] = NULL; 155 list_create(&dn->dn_dirty_records[i], 156 sizeof (dbuf_dirty_record_t), 157 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 158 } 159 160 dn->dn_allocated_txg = 0; 161 dn->dn_free_txg = 0; 162 dn->dn_assigned_txg = 0; 163 dn->dn_dirtyctx = 0; 164 dn->dn_dirtyctx_firstset = NULL; 165 dn->dn_bonus = NULL; 166 dn->dn_have_spill = B_FALSE; 167 dn->dn_zio = NULL; 168 dn->dn_oldused = 0; 169 dn->dn_oldflags = 0; 170 dn->dn_olduid = 0; 171 dn->dn_oldgid = 0; 172 dn->dn_newuid = 0; 173 dn->dn_newgid = 0; 174 dn->dn_id_flags = 0; 175 176 dn->dn_dbufs_count = 0; 177 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 178 offsetof(dmu_buf_impl_t, db_link)); 179 180 dn->dn_moved = 0; 181 return (0); 182 } 183 184 /* ARGSUSED */ 185 static void 186 dnode_dest(void *arg, void *unused) 187 { 188 int i; 189 dnode_t *dn = arg; 190 191 rw_destroy(&dn->dn_struct_rwlock); 192 mutex_destroy(&dn->dn_mtx); 193 mutex_destroy(&dn->dn_dbufs_mtx); 194 cv_destroy(&dn->dn_notxholds); 195 zfs_refcount_destroy(&dn->dn_holds); 196 zfs_refcount_destroy(&dn->dn_tx_holds); 197 ASSERT(!list_link_active(&dn->dn_link)); 198 199 for (i = 0; i < TXG_SIZE; i++) { 200 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 201 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 202 list_destroy(&dn->dn_dirty_records[i]); 203 ASSERT0(dn->dn_next_nblkptr[i]); 204 ASSERT0(dn->dn_next_nlevels[i]); 205 ASSERT0(dn->dn_next_indblkshift[i]); 206 ASSERT0(dn->dn_next_bonustype[i]); 207 ASSERT0(dn->dn_rm_spillblk[i]); 208 ASSERT0(dn->dn_next_bonuslen[i]); 209 ASSERT0(dn->dn_next_blksz[i]); 210 } 211 212 ASSERT0(dn->dn_allocated_txg); 213 ASSERT0(dn->dn_free_txg); 214 ASSERT0(dn->dn_assigned_txg); 215 ASSERT0(dn->dn_dirtyctx); 216 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 217 ASSERT3P(dn->dn_bonus, ==, NULL); 218 ASSERT(!dn->dn_have_spill); 219 ASSERT3P(dn->dn_zio, ==, NULL); 220 ASSERT0(dn->dn_oldused); 221 ASSERT0(dn->dn_oldflags); 222 ASSERT0(dn->dn_olduid); 223 ASSERT0(dn->dn_oldgid); 224 ASSERT0(dn->dn_newuid); 225 ASSERT0(dn->dn_newgid); 226 ASSERT0(dn->dn_id_flags); 227 228 ASSERT0(dn->dn_dbufs_count); 229 avl_destroy(&dn->dn_dbufs); 230 } 231 232 void 233 dnode_init(void) 234 { 235 ASSERT(dnode_cache == NULL); 236 dnode_cache = kmem_cache_create("dnode_t", 237 sizeof (dnode_t), 238 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 239 #ifdef _KERNEL 240 kmem_cache_set_move(dnode_cache, dnode_move); 241 242 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", 243 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), 244 KSTAT_FLAG_VIRTUAL); 245 if (dnode_ksp != NULL) { 246 dnode_ksp->ks_data = &dnode_stats; 247 kstat_install(dnode_ksp); 248 } 249 #endif /* _KERNEL */ 250 } 251 252 void 253 dnode_fini(void) 254 { 255 if (dnode_ksp != NULL) { 256 kstat_delete(dnode_ksp); 257 dnode_ksp = NULL; 258 } 259 260 kmem_cache_destroy(dnode_cache); 261 dnode_cache = NULL; 262 } 263 264 265 #ifdef ZFS_DEBUG 266 void 267 dnode_verify(dnode_t *dn) 268 { 269 int drop_struct_lock = FALSE; 270 271 ASSERT(dn->dn_phys); 272 ASSERT(dn->dn_objset); 273 ASSERT(dn->dn_handle->dnh_dnode == dn); 274 275 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 276 277 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 278 return; 279 280 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 281 rw_enter(&dn->dn_struct_rwlock, RW_READER); 282 drop_struct_lock = TRUE; 283 } 284 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 285 int i; 286 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 287 ASSERT3U(dn->dn_indblkshift, >=, 0); 288 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 289 if (dn->dn_datablkshift) { 290 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 291 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 292 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 293 } 294 ASSERT3U(dn->dn_nlevels, <=, 30); 295 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 296 ASSERT3U(dn->dn_nblkptr, >=, 1); 297 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 298 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); 299 ASSERT3U(dn->dn_datablksz, ==, 300 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 301 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 302 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 303 dn->dn_bonuslen, <=, max_bonuslen); 304 for (i = 0; i < TXG_SIZE; i++) { 305 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 306 } 307 } 308 if (dn->dn_phys->dn_type != DMU_OT_NONE) 309 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 310 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 311 if (dn->dn_dbuf != NULL) { 312 ASSERT3P(dn->dn_phys, ==, 313 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 314 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 315 } 316 if (drop_struct_lock) 317 rw_exit(&dn->dn_struct_rwlock); 318 } 319 #endif 320 321 void 322 dnode_byteswap(dnode_phys_t *dnp) 323 { 324 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 325 int i; 326 327 if (dnp->dn_type == DMU_OT_NONE) { 328 bzero(dnp, sizeof (dnode_phys_t)); 329 return; 330 } 331 332 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 333 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 334 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); 335 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 336 dnp->dn_used = BSWAP_64(dnp->dn_used); 337 338 /* 339 * dn_nblkptr is only one byte, so it's OK to read it in either 340 * byte order. We can't read dn_bouslen. 341 */ 342 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 343 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 344 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 345 buf64[i] = BSWAP_64(buf64[i]); 346 347 /* 348 * OK to check dn_bonuslen for zero, because it won't matter if 349 * we have the wrong byte order. This is necessary because the 350 * dnode dnode is smaller than a regular dnode. 351 */ 352 if (dnp->dn_bonuslen != 0) { 353 /* 354 * Note that the bonus length calculated here may be 355 * longer than the actual bonus buffer. This is because 356 * we always put the bonus buffer after the last block 357 * pointer (instead of packing it against the end of the 358 * dnode buffer). 359 */ 360 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 361 int slots = dnp->dn_extra_slots + 1; 362 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off; 363 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 364 dmu_object_byteswap_t byteswap = 365 DMU_OT_BYTESWAP(dnp->dn_bonustype); 366 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 367 } 368 369 /* Swap SPILL block if we have one */ 370 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 371 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); 372 373 } 374 375 void 376 dnode_buf_byteswap(void *vbuf, size_t size) 377 { 378 int i = 0; 379 380 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 381 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 382 383 while (i < size) { 384 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i); 385 dnode_byteswap(dnp); 386 387 i += DNODE_MIN_SIZE; 388 if (dnp->dn_type != DMU_OT_NONE) 389 i += dnp->dn_extra_slots * DNODE_MIN_SIZE; 390 } 391 } 392 393 void 394 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 395 { 396 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 397 398 dnode_setdirty(dn, tx); 399 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 400 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 401 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 402 dn->dn_bonuslen = newsize; 403 if (newsize == 0) 404 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 405 else 406 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 407 rw_exit(&dn->dn_struct_rwlock); 408 } 409 410 void 411 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 412 { 413 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 414 dnode_setdirty(dn, tx); 415 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 416 dn->dn_bonustype = newtype; 417 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 418 rw_exit(&dn->dn_struct_rwlock); 419 } 420 421 void 422 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 423 { 424 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 425 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 426 dnode_setdirty(dn, tx); 427 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; 428 dn->dn_have_spill = B_FALSE; 429 } 430 431 static void 432 dnode_setdblksz(dnode_t *dn, int size) 433 { 434 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 435 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 436 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 437 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 438 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 439 dn->dn_datablksz = size; 440 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 441 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 442 } 443 444 static dnode_t * 445 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 446 uint64_t object, dnode_handle_t *dnh) 447 { 448 dnode_t *dn; 449 450 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 451 #ifdef _KERNEL 452 ASSERT(!POINTER_IS_VALID(dn->dn_objset)); 453 #endif /* _KERNEL */ 454 dn->dn_moved = 0; 455 456 /* 457 * Defer setting dn_objset until the dnode is ready to be a candidate 458 * for the dnode_move() callback. 459 */ 460 dn->dn_object = object; 461 dn->dn_dbuf = db; 462 dn->dn_handle = dnh; 463 dn->dn_phys = dnp; 464 465 if (dnp->dn_datablkszsec) { 466 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 467 } else { 468 dn->dn_datablksz = 0; 469 dn->dn_datablkszsec = 0; 470 dn->dn_datablkshift = 0; 471 } 472 dn->dn_indblkshift = dnp->dn_indblkshift; 473 dn->dn_nlevels = dnp->dn_nlevels; 474 dn->dn_type = dnp->dn_type; 475 dn->dn_nblkptr = dnp->dn_nblkptr; 476 dn->dn_checksum = dnp->dn_checksum; 477 dn->dn_compress = dnp->dn_compress; 478 dn->dn_bonustype = dnp->dn_bonustype; 479 dn->dn_bonuslen = dnp->dn_bonuslen; 480 dn->dn_num_slots = dnp->dn_extra_slots + 1; 481 dn->dn_maxblkid = dnp->dn_maxblkid; 482 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 483 dn->dn_id_flags = 0; 484 485 dmu_zfetch_init(&dn->dn_zfetch, dn); 486 487 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 488 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 489 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); 490 491 mutex_enter(&os->os_lock); 492 493 /* 494 * Exclude special dnodes from os_dnodes so an empty os_dnodes 495 * signifies that the special dnodes have no references from 496 * their children (the entries in os_dnodes). This allows 497 * dnode_destroy() to easily determine if the last child has 498 * been removed and then complete eviction of the objset. 499 */ 500 if (!DMU_OBJECT_IS_SPECIAL(object)) 501 list_insert_head(&os->os_dnodes, dn); 502 membar_producer(); 503 504 /* 505 * Everything else must be valid before assigning dn_objset 506 * makes the dnode eligible for dnode_move(). 507 */ 508 dn->dn_objset = os; 509 510 dnh->dnh_dnode = dn; 511 mutex_exit(&os->os_lock); 512 513 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); 514 515 return (dn); 516 } 517 518 /* 519 * Caller must be holding the dnode handle, which is released upon return. 520 */ 521 static void 522 dnode_destroy(dnode_t *dn) 523 { 524 objset_t *os = dn->dn_objset; 525 boolean_t complete_os_eviction = B_FALSE; 526 527 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 528 529 mutex_enter(&os->os_lock); 530 POINTER_INVALIDATE(&dn->dn_objset); 531 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 532 list_remove(&os->os_dnodes, dn); 533 complete_os_eviction = 534 list_is_empty(&os->os_dnodes) && 535 list_link_active(&os->os_evicting_node); 536 } 537 mutex_exit(&os->os_lock); 538 539 /* the dnode can no longer move, so we can release the handle */ 540 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) 541 zrl_remove(&dn->dn_handle->dnh_zrlock); 542 543 dn->dn_allocated_txg = 0; 544 dn->dn_free_txg = 0; 545 dn->dn_assigned_txg = 0; 546 547 dn->dn_dirtyctx = 0; 548 if (dn->dn_dirtyctx_firstset != NULL) { 549 kmem_free(dn->dn_dirtyctx_firstset, 1); 550 dn->dn_dirtyctx_firstset = NULL; 551 } 552 if (dn->dn_bonus != NULL) { 553 mutex_enter(&dn->dn_bonus->db_mtx); 554 dbuf_destroy(dn->dn_bonus); 555 dn->dn_bonus = NULL; 556 } 557 dn->dn_zio = NULL; 558 559 dn->dn_have_spill = B_FALSE; 560 dn->dn_oldused = 0; 561 dn->dn_oldflags = 0; 562 dn->dn_olduid = 0; 563 dn->dn_oldgid = 0; 564 dn->dn_newuid = 0; 565 dn->dn_newgid = 0; 566 dn->dn_id_flags = 0; 567 568 dmu_zfetch_fini(&dn->dn_zfetch); 569 kmem_cache_free(dnode_cache, dn); 570 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); 571 572 if (complete_os_eviction) 573 dmu_objset_evict_done(os); 574 } 575 576 void 577 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 578 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) 579 { 580 int i; 581 582 ASSERT3U(dn_slots, >, 0); 583 ASSERT3U(dn_slots << DNODE_SHIFT, <=, 584 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); 585 ASSERT3U(blocksize, <=, 586 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 587 if (blocksize == 0) 588 blocksize = 1 << zfs_default_bs; 589 else 590 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 591 592 if (ibs == 0) 593 ibs = zfs_default_ibs; 594 595 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 596 597 dprintf("os=%p obj=%" PRIu64 " txg=%" PRIu64 598 " blocksize=%d ibs=%d dn_slots=%d\n", 599 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots); 600 DNODE_STAT_BUMP(dnode_allocate); 601 602 ASSERT(dn->dn_type == DMU_OT_NONE); 603 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 604 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 605 ASSERT(ot != DMU_OT_NONE); 606 ASSERT(DMU_OT_IS_VALID(ot)); 607 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 608 (bonustype == DMU_OT_SA && bonuslen == 0) || 609 (bonustype != DMU_OT_NONE && bonuslen != 0)); 610 ASSERT(DMU_OT_IS_VALID(bonustype)); 611 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); 612 ASSERT(dn->dn_type == DMU_OT_NONE); 613 ASSERT0(dn->dn_maxblkid); 614 ASSERT0(dn->dn_allocated_txg); 615 ASSERT0(dn->dn_assigned_txg); 616 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 617 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1); 618 ASSERT(avl_is_empty(&dn->dn_dbufs)); 619 620 for (i = 0; i < TXG_SIZE; i++) { 621 ASSERT0(dn->dn_next_nblkptr[i]); 622 ASSERT0(dn->dn_next_nlevels[i]); 623 ASSERT0(dn->dn_next_indblkshift[i]); 624 ASSERT0(dn->dn_next_bonuslen[i]); 625 ASSERT0(dn->dn_next_bonustype[i]); 626 ASSERT0(dn->dn_rm_spillblk[i]); 627 ASSERT0(dn->dn_next_blksz[i]); 628 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 629 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 630 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 631 } 632 633 dn->dn_type = ot; 634 dnode_setdblksz(dn, blocksize); 635 dn->dn_indblkshift = ibs; 636 dn->dn_nlevels = 1; 637 dn->dn_num_slots = dn_slots; 638 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 639 dn->dn_nblkptr = 1; 640 else { 641 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, 642 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 643 SPA_BLKPTRSHIFT)); 644 } 645 646 dn->dn_bonustype = bonustype; 647 dn->dn_bonuslen = bonuslen; 648 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 649 dn->dn_compress = ZIO_COMPRESS_INHERIT; 650 dn->dn_dirtyctx = 0; 651 652 dn->dn_free_txg = 0; 653 if (dn->dn_dirtyctx_firstset) { 654 kmem_free(dn->dn_dirtyctx_firstset, 1); 655 dn->dn_dirtyctx_firstset = NULL; 656 } 657 658 dn->dn_allocated_txg = tx->tx_txg; 659 dn->dn_id_flags = 0; 660 661 dnode_setdirty(dn, tx); 662 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 663 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 664 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 665 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 666 } 667 668 void 669 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 670 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) 671 { 672 int nblkptr; 673 674 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 675 ASSERT3U(blocksize, <=, 676 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 677 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 678 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 679 ASSERT(tx->tx_txg != 0); 680 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 681 (bonustype != DMU_OT_NONE && bonuslen != 0) || 682 (bonustype == DMU_OT_SA && bonuslen == 0)); 683 ASSERT(DMU_OT_IS_VALID(bonustype)); 684 ASSERT3U(bonuslen, <=, 685 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); 686 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT)); 687 688 dnode_free_interior_slots(dn); 689 DNODE_STAT_BUMP(dnode_reallocate); 690 691 /* clean up any unreferenced dbufs */ 692 dnode_evict_dbufs(dn); 693 694 dn->dn_id_flags = 0; 695 696 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 697 dnode_setdirty(dn, tx); 698 if (dn->dn_datablksz != blocksize) { 699 /* change blocksize */ 700 ASSERT(dn->dn_maxblkid == 0 && 701 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 702 dnode_block_freed(dn, 0))); 703 dnode_setdblksz(dn, blocksize); 704 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 705 } 706 if (dn->dn_bonuslen != bonuslen) 707 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 708 709 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 710 nblkptr = 1; 711 else 712 nblkptr = MIN(DN_MAX_NBLKPTR, 713 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 714 SPA_BLKPTRSHIFT)); 715 if (dn->dn_bonustype != bonustype) 716 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; 717 if (dn->dn_nblkptr != nblkptr) 718 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; 719 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 720 dbuf_rm_spill(dn, tx); 721 dnode_rm_spill(dn, tx); 722 } 723 rw_exit(&dn->dn_struct_rwlock); 724 725 /* change type */ 726 dn->dn_type = ot; 727 728 /* change bonus size and type */ 729 mutex_enter(&dn->dn_mtx); 730 dn->dn_bonustype = bonustype; 731 dn->dn_bonuslen = bonuslen; 732 dn->dn_num_slots = dn_slots; 733 dn->dn_nblkptr = nblkptr; 734 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 735 dn->dn_compress = ZIO_COMPRESS_INHERIT; 736 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 737 738 /* fix up the bonus db_size */ 739 if (dn->dn_bonus) { 740 dn->dn_bonus->db.db_size = 741 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 742 (dn->dn_nblkptr - 1) * sizeof (blkptr_t); 743 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 744 } 745 746 dn->dn_allocated_txg = tx->tx_txg; 747 mutex_exit(&dn->dn_mtx); 748 } 749 750 #ifdef _KERNEL 751 static void 752 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 753 { 754 int i; 755 756 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 757 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 758 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 759 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); 760 761 /* Copy fields. */ 762 ndn->dn_objset = odn->dn_objset; 763 ndn->dn_object = odn->dn_object; 764 ndn->dn_dbuf = odn->dn_dbuf; 765 ndn->dn_handle = odn->dn_handle; 766 ndn->dn_phys = odn->dn_phys; 767 ndn->dn_type = odn->dn_type; 768 ndn->dn_bonuslen = odn->dn_bonuslen; 769 ndn->dn_bonustype = odn->dn_bonustype; 770 ndn->dn_nblkptr = odn->dn_nblkptr; 771 ndn->dn_checksum = odn->dn_checksum; 772 ndn->dn_compress = odn->dn_compress; 773 ndn->dn_nlevels = odn->dn_nlevels; 774 ndn->dn_indblkshift = odn->dn_indblkshift; 775 ndn->dn_datablkshift = odn->dn_datablkshift; 776 ndn->dn_datablkszsec = odn->dn_datablkszsec; 777 ndn->dn_datablksz = odn->dn_datablksz; 778 ndn->dn_maxblkid = odn->dn_maxblkid; 779 ndn->dn_num_slots = odn->dn_num_slots; 780 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0], 781 sizeof (odn->dn_next_type)); 782 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 783 sizeof (odn->dn_next_nblkptr)); 784 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 785 sizeof (odn->dn_next_nlevels)); 786 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 787 sizeof (odn->dn_next_indblkshift)); 788 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 789 sizeof (odn->dn_next_bonustype)); 790 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 791 sizeof (odn->dn_rm_spillblk)); 792 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 793 sizeof (odn->dn_next_bonuslen)); 794 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 795 sizeof (odn->dn_next_blksz)); 796 for (i = 0; i < TXG_SIZE; i++) { 797 list_move_tail(&ndn->dn_dirty_records[i], 798 &odn->dn_dirty_records[i]); 799 } 800 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 801 sizeof (odn->dn_free_ranges)); 802 ndn->dn_allocated_txg = odn->dn_allocated_txg; 803 ndn->dn_free_txg = odn->dn_free_txg; 804 ndn->dn_assigned_txg = odn->dn_assigned_txg; 805 ndn->dn_dirtyctx = odn->dn_dirtyctx; 806 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 807 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0); 808 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 809 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 810 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 811 ndn->dn_dbufs_count = odn->dn_dbufs_count; 812 ndn->dn_bonus = odn->dn_bonus; 813 ndn->dn_have_spill = odn->dn_have_spill; 814 ndn->dn_zio = odn->dn_zio; 815 ndn->dn_oldused = odn->dn_oldused; 816 ndn->dn_oldflags = odn->dn_oldflags; 817 ndn->dn_olduid = odn->dn_olduid; 818 ndn->dn_oldgid = odn->dn_oldgid; 819 ndn->dn_newuid = odn->dn_newuid; 820 ndn->dn_newgid = odn->dn_newgid; 821 ndn->dn_id_flags = odn->dn_id_flags; 822 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 823 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 824 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 825 826 /* 827 * Update back pointers. Updating the handle fixes the back pointer of 828 * every descendant dbuf as well as the bonus dbuf. 829 */ 830 ASSERT(ndn->dn_handle->dnh_dnode == odn); 831 ndn->dn_handle->dnh_dnode = ndn; 832 if (ndn->dn_zfetch.zf_dnode == odn) { 833 ndn->dn_zfetch.zf_dnode = ndn; 834 } 835 836 /* 837 * Invalidate the original dnode by clearing all of its back pointers. 838 */ 839 odn->dn_dbuf = NULL; 840 odn->dn_handle = NULL; 841 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 842 offsetof(dmu_buf_impl_t, db_link)); 843 odn->dn_dbufs_count = 0; 844 odn->dn_bonus = NULL; 845 odn->dn_zfetch.zf_dnode = NULL; 846 847 /* 848 * Set the low bit of the objset pointer to ensure that dnode_move() 849 * recognizes the dnode as invalid in any subsequent callback. 850 */ 851 POINTER_INVALIDATE(&odn->dn_objset); 852 853 /* 854 * Satisfy the destructor. 855 */ 856 for (i = 0; i < TXG_SIZE; i++) { 857 list_create(&odn->dn_dirty_records[i], 858 sizeof (dbuf_dirty_record_t), 859 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 860 odn->dn_free_ranges[i] = NULL; 861 odn->dn_next_nlevels[i] = 0; 862 odn->dn_next_indblkshift[i] = 0; 863 odn->dn_next_bonustype[i] = 0; 864 odn->dn_rm_spillblk[i] = 0; 865 odn->dn_next_bonuslen[i] = 0; 866 odn->dn_next_blksz[i] = 0; 867 } 868 odn->dn_allocated_txg = 0; 869 odn->dn_free_txg = 0; 870 odn->dn_assigned_txg = 0; 871 odn->dn_dirtyctx = 0; 872 odn->dn_dirtyctx_firstset = NULL; 873 odn->dn_have_spill = B_FALSE; 874 odn->dn_zio = NULL; 875 odn->dn_oldused = 0; 876 odn->dn_oldflags = 0; 877 odn->dn_olduid = 0; 878 odn->dn_oldgid = 0; 879 odn->dn_newuid = 0; 880 odn->dn_newgid = 0; 881 odn->dn_id_flags = 0; 882 883 /* 884 * Mark the dnode. 885 */ 886 ndn->dn_moved = 1; 887 odn->dn_moved = (uint8_t)-1; 888 } 889 890 /*ARGSUSED*/ 891 static kmem_cbrc_t 892 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 893 { 894 dnode_t *odn = buf, *ndn = newbuf; 895 objset_t *os; 896 int64_t refcount; 897 uint32_t dbufs; 898 899 /* 900 * The dnode is on the objset's list of known dnodes if the objset 901 * pointer is valid. We set the low bit of the objset pointer when 902 * freeing the dnode to invalidate it, and the memory patterns written 903 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 904 * A newly created dnode sets the objset pointer last of all to indicate 905 * that the dnode is known and in a valid state to be moved by this 906 * function. 907 */ 908 os = odn->dn_objset; 909 if (!POINTER_IS_VALID(os)) { 910 DNODE_STAT_BUMP(dnode_move_invalid); 911 return (KMEM_CBRC_DONT_KNOW); 912 } 913 914 /* 915 * Ensure that the objset does not go away during the move. 916 */ 917 rw_enter(&os_lock, RW_WRITER); 918 if (os != odn->dn_objset) { 919 rw_exit(&os_lock); 920 DNODE_STAT_BUMP(dnode_move_recheck1); 921 return (KMEM_CBRC_DONT_KNOW); 922 } 923 924 /* 925 * If the dnode is still valid, then so is the objset. We know that no 926 * valid objset can be freed while we hold os_lock, so we can safely 927 * ensure that the objset remains in use. 928 */ 929 mutex_enter(&os->os_lock); 930 931 /* 932 * Recheck the objset pointer in case the dnode was removed just before 933 * acquiring the lock. 934 */ 935 if (os != odn->dn_objset) { 936 mutex_exit(&os->os_lock); 937 rw_exit(&os_lock); 938 DNODE_STAT_BUMP(dnode_move_recheck2); 939 return (KMEM_CBRC_DONT_KNOW); 940 } 941 942 /* 943 * At this point we know that as long as we hold os->os_lock, the dnode 944 * cannot be freed and fields within the dnode can be safely accessed. 945 * The objset listing this dnode cannot go away as long as this dnode is 946 * on its list. 947 */ 948 rw_exit(&os_lock); 949 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 950 mutex_exit(&os->os_lock); 951 DNODE_STAT_BUMP(dnode_move_special); 952 return (KMEM_CBRC_NO); 953 } 954 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 955 956 /* 957 * Lock the dnode handle to prevent the dnode from obtaining any new 958 * holds. This also prevents the descendant dbufs and the bonus dbuf 959 * from accessing the dnode, so that we can discount their holds. The 960 * handle is safe to access because we know that while the dnode cannot 961 * go away, neither can its handle. Once we hold dnh_zrlock, we can 962 * safely move any dnode referenced only by dbufs. 963 */ 964 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 965 mutex_exit(&os->os_lock); 966 DNODE_STAT_BUMP(dnode_move_handle); 967 return (KMEM_CBRC_LATER); 968 } 969 970 /* 971 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 972 * We need to guarantee that there is a hold for every dbuf in order to 973 * determine whether the dnode is actively referenced. Falsely matching 974 * a dbuf to an active hold would lead to an unsafe move. It's possible 975 * that a thread already having an active dnode hold is about to add a 976 * dbuf, and we can't compare hold and dbuf counts while the add is in 977 * progress. 978 */ 979 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 980 zrl_exit(&odn->dn_handle->dnh_zrlock); 981 mutex_exit(&os->os_lock); 982 DNODE_STAT_BUMP(dnode_move_rwlock); 983 return (KMEM_CBRC_LATER); 984 } 985 986 /* 987 * A dbuf may be removed (evicted) without an active dnode hold. In that 988 * case, the dbuf count is decremented under the handle lock before the 989 * dbuf's hold is released. This order ensures that if we count the hold 990 * after the dbuf is removed but before its hold is released, we will 991 * treat the unmatched hold as active and exit safely. If we count the 992 * hold before the dbuf is removed, the hold is discounted, and the 993 * removal is blocked until the move completes. 994 */ 995 refcount = zfs_refcount_count(&odn->dn_holds); 996 ASSERT(refcount >= 0); 997 dbufs = odn->dn_dbufs_count; 998 999 /* We can't have more dbufs than dnode holds. */ 1000 ASSERT3U(dbufs, <=, refcount); 1001 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 1002 uint32_t, dbufs); 1003 1004 if (refcount > dbufs) { 1005 rw_exit(&odn->dn_struct_rwlock); 1006 zrl_exit(&odn->dn_handle->dnh_zrlock); 1007 mutex_exit(&os->os_lock); 1008 DNODE_STAT_BUMP(dnode_move_active); 1009 return (KMEM_CBRC_LATER); 1010 } 1011 1012 rw_exit(&odn->dn_struct_rwlock); 1013 1014 /* 1015 * At this point we know that anyone with a hold on the dnode is not 1016 * actively referencing it. The dnode is known and in a valid state to 1017 * move. We're holding the locks needed to execute the critical section. 1018 */ 1019 dnode_move_impl(odn, ndn); 1020 1021 list_link_replace(&odn->dn_link, &ndn->dn_link); 1022 /* If the dnode was safe to move, the refcount cannot have changed. */ 1023 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds)); 1024 ASSERT(dbufs == ndn->dn_dbufs_count); 1025 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 1026 mutex_exit(&os->os_lock); 1027 1028 return (KMEM_CBRC_YES); 1029 } 1030 #endif /* _KERNEL */ 1031 1032 static void 1033 dnode_slots_hold(dnode_children_t *children, int idx, int slots) 1034 { 1035 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1036 1037 for (int i = idx; i < idx + slots; i++) { 1038 dnode_handle_t *dnh = &children->dnc_children[i]; 1039 zrl_add(&dnh->dnh_zrlock); 1040 } 1041 } 1042 1043 static void 1044 dnode_slots_rele(dnode_children_t *children, int idx, int slots) 1045 { 1046 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1047 1048 for (int i = idx; i < idx + slots; i++) { 1049 dnode_handle_t *dnh = &children->dnc_children[i]; 1050 1051 if (zrl_is_locked(&dnh->dnh_zrlock)) 1052 zrl_exit(&dnh->dnh_zrlock); 1053 else 1054 zrl_remove(&dnh->dnh_zrlock); 1055 } 1056 } 1057 1058 static int 1059 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots) 1060 { 1061 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1062 1063 for (int i = idx; i < idx + slots; i++) { 1064 dnode_handle_t *dnh = &children->dnc_children[i]; 1065 1066 if (!zrl_tryenter(&dnh->dnh_zrlock)) { 1067 for (int j = idx; j < i; j++) { 1068 dnh = &children->dnc_children[j]; 1069 zrl_exit(&dnh->dnh_zrlock); 1070 } 1071 1072 return (0); 1073 } 1074 } 1075 1076 return (1); 1077 } 1078 1079 static void 1080 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) 1081 { 1082 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1083 1084 for (int i = idx; i < idx + slots; i++) { 1085 dnode_handle_t *dnh = &children->dnc_children[i]; 1086 dnh->dnh_dnode = ptr; 1087 } 1088 } 1089 1090 static boolean_t 1091 dnode_check_slots_free(dnode_children_t *children, int idx, int slots) 1092 { 1093 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1094 1095 for (int i = idx; i < idx + slots; i++) { 1096 dnode_handle_t *dnh = &children->dnc_children[i]; 1097 dnode_t *dn = dnh->dnh_dnode; 1098 1099 if (dn == DN_SLOT_FREE) { 1100 continue; 1101 } else if (DN_SLOT_IS_PTR(dn)) { 1102 mutex_enter(&dn->dn_mtx); 1103 dmu_object_type_t type = dn->dn_type; 1104 mutex_exit(&dn->dn_mtx); 1105 1106 if (type != DMU_OT_NONE) 1107 return (B_FALSE); 1108 1109 continue; 1110 } else { 1111 return (B_FALSE); 1112 } 1113 1114 return (B_FALSE); 1115 } 1116 1117 return (B_TRUE); 1118 } 1119 1120 static void 1121 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) 1122 { 1123 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1124 1125 for (int i = idx; i < idx + slots; i++) { 1126 dnode_handle_t *dnh = &children->dnc_children[i]; 1127 1128 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 1129 1130 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1131 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); 1132 dnode_destroy(dnh->dnh_dnode); 1133 dnh->dnh_dnode = DN_SLOT_FREE; 1134 } 1135 } 1136 } 1137 1138 void 1139 dnode_free_interior_slots(dnode_t *dn) 1140 { 1141 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); 1142 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; 1143 int idx = (dn->dn_object & (epb - 1)) + 1; 1144 int slots = dn->dn_num_slots - 1; 1145 1146 if (slots == 0) 1147 return; 1148 1149 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1150 1151 while (!dnode_slots_tryenter(children, idx, slots)) 1152 DNODE_STAT_BUMP(dnode_free_interior_lock_retry); 1153 1154 dnode_set_slots(children, idx, slots, DN_SLOT_FREE); 1155 dnode_slots_rele(children, idx, slots); 1156 } 1157 1158 void 1159 dnode_special_close(dnode_handle_t *dnh) 1160 { 1161 dnode_t *dn = dnh->dnh_dnode; 1162 1163 /* 1164 * Wait for final references to the dnode to clear. This can 1165 * only happen if the arc is asynchronously evicting state that 1166 * has a hold on this dnode while we are trying to evict this 1167 * dnode. 1168 */ 1169 while (zfs_refcount_count(&dn->dn_holds) > 0) 1170 delay(1); 1171 ASSERT(dn->dn_dbuf == NULL || 1172 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1173 zrl_add(&dnh->dnh_zrlock); 1174 dnode_destroy(dn); /* implicit zrl_remove() */ 1175 zrl_destroy(&dnh->dnh_zrlock); 1176 dnh->dnh_dnode = NULL; 1177 } 1178 1179 void 1180 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1181 dnode_handle_t *dnh) 1182 { 1183 dnode_t *dn; 1184 1185 zrl_init(&dnh->dnh_zrlock); 1186 zrl_tryenter(&dnh->dnh_zrlock); 1187 1188 dn = dnode_create(os, dnp, NULL, object, dnh); 1189 DNODE_VERIFY(dn); 1190 1191 zrl_exit(&dnh->dnh_zrlock); 1192 } 1193 1194 static void 1195 dnode_buf_evict_async(void *dbu) 1196 { 1197 dnode_children_t *dnc = dbu; 1198 1199 DNODE_STAT_BUMP(dnode_buf_evict); 1200 1201 for (int i = 0; i < dnc->dnc_count; i++) { 1202 dnode_handle_t *dnh = &dnc->dnc_children[i]; 1203 dnode_t *dn; 1204 1205 /* 1206 * The dnode handle lock guards against the dnode moving to 1207 * another valid address, so there is no need here to guard 1208 * against changes to or from NULL. 1209 */ 1210 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1211 zrl_destroy(&dnh->dnh_zrlock); 1212 dnh->dnh_dnode = DN_SLOT_UNINIT; 1213 continue; 1214 } 1215 1216 zrl_add(&dnh->dnh_zrlock); 1217 dn = dnh->dnh_dnode; 1218 /* 1219 * If there are holds on this dnode, then there should 1220 * be holds on the dnode's containing dbuf as well; thus 1221 * it wouldn't be eligible for eviction and this function 1222 * would not have been called. 1223 */ 1224 ASSERT(zfs_refcount_is_zero(&dn->dn_holds)); 1225 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 1226 1227 dnode_destroy(dn); /* implicit zrl_remove() for first slot */ 1228 zrl_destroy(&dnh->dnh_zrlock); 1229 dnh->dnh_dnode = DN_SLOT_UNINIT; 1230 } 1231 kmem_free(dnc, sizeof (dnode_children_t) + 1232 dnc->dnc_count * sizeof (dnode_handle_t)); 1233 } 1234 1235 /* 1236 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used 1237 * to ensure the hole at the specified object offset is large enough to 1238 * hold the dnode being created. The slots parameter is also used to ensure 1239 * a dnode does not span multiple dnode blocks. In both of these cases, if 1240 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases 1241 * are only possible when using DNODE_MUST_BE_FREE. 1242 * 1243 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. 1244 * dnode_hold_impl() will check if the requested dnode is already consumed 1245 * as an extra dnode slot by an large dnode, in which case it returns 1246 * ENOENT. 1247 * 1248 * errors: 1249 * EINVAL - invalid object number or flags. 1250 * ENOSPC - hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) 1251 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) 1252 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) 1253 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) 1254 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) 1255 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) 1256 * EIO - i/o error error when reading the meta dnode dbuf. 1257 * succeeds even for free dnodes. 1258 */ 1259 int 1260 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, 1261 void *tag, dnode_t **dnp) 1262 { 1263 int epb, idx, err; 1264 int drop_struct_lock = FALSE; 1265 int type; 1266 uint64_t blk; 1267 dnode_t *mdn, *dn; 1268 dmu_buf_impl_t *db; 1269 dnode_children_t *dnc; 1270 dnode_phys_t *dn_block; 1271 dnode_handle_t *dnh; 1272 1273 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); 1274 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); 1275 1276 /* 1277 * If you are holding the spa config lock as writer, you shouldn't 1278 * be asking the DMU to do *anything* unless it's the root pool 1279 * which may require us to read from the root filesystem while 1280 * holding some (not all) of the locks as writer. 1281 */ 1282 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1283 (spa_is_root(os->os_spa) && 1284 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1285 1286 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1287 1288 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) { 1289 dn = (object == DMU_USERUSED_OBJECT) ? 1290 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os); 1291 if (dn == NULL) 1292 return (SET_ERROR(ENOENT)); 1293 type = dn->dn_type; 1294 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1295 return (SET_ERROR(ENOENT)); 1296 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1297 return (SET_ERROR(EEXIST)); 1298 DNODE_VERIFY(dn); 1299 (void) zfs_refcount_add(&dn->dn_holds, tag); 1300 *dnp = dn; 1301 return (0); 1302 } 1303 1304 if (object == 0 || object >= DN_MAX_OBJECT) 1305 return (SET_ERROR(EINVAL)); 1306 1307 mdn = DMU_META_DNODE(os); 1308 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1309 1310 DNODE_VERIFY(mdn); 1311 1312 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1313 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1314 drop_struct_lock = TRUE; 1315 } 1316 1317 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1318 1319 db = dbuf_hold(mdn, blk, FTAG); 1320 if (drop_struct_lock) 1321 rw_exit(&mdn->dn_struct_rwlock); 1322 if (db == NULL) { 1323 DNODE_STAT_BUMP(dnode_hold_dbuf_hold); 1324 return (SET_ERROR(EIO)); 1325 } 1326 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 1327 if (err) { 1328 DNODE_STAT_BUMP(dnode_hold_dbuf_read); 1329 dbuf_rele(db, FTAG); 1330 return (err); 1331 } 1332 1333 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1334 epb = db->db.db_size >> DNODE_SHIFT; 1335 1336 idx = object & (epb - 1); 1337 dn_block = (dnode_phys_t *)db->db.db_data; 1338 1339 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1340 dnc = dmu_buf_get_user(&db->db); 1341 dnh = NULL; 1342 if (dnc == NULL) { 1343 dnode_children_t *winner; 1344 int skip = 0; 1345 1346 dnc = kmem_zalloc(sizeof (dnode_children_t) + 1347 epb * sizeof (dnode_handle_t), KM_SLEEP); 1348 dnc->dnc_count = epb; 1349 dnh = &dnc->dnc_children[0]; 1350 1351 /* Initialize dnode slot status from dnode_phys_t */ 1352 for (int i = 0; i < epb; i++) { 1353 zrl_init(&dnh[i].dnh_zrlock); 1354 1355 if (skip) { 1356 skip--; 1357 continue; 1358 } 1359 1360 if (dn_block[i].dn_type != DMU_OT_NONE) { 1361 int interior = dn_block[i].dn_extra_slots; 1362 1363 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); 1364 dnode_set_slots(dnc, i + 1, interior, 1365 DN_SLOT_INTERIOR); 1366 skip = interior; 1367 } else { 1368 dnh[i].dnh_dnode = DN_SLOT_FREE; 1369 skip = 0; 1370 } 1371 } 1372 1373 dmu_buf_init_user(&dnc->dnc_dbu, NULL, 1374 dnode_buf_evict_async, NULL); 1375 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); 1376 if (winner != NULL) { 1377 1378 for (int i = 0; i < epb; i++) 1379 zrl_destroy(&dnh[i].dnh_zrlock); 1380 1381 kmem_free(dnc, sizeof (dnode_children_t) + 1382 epb * sizeof (dnode_handle_t)); 1383 dnc = winner; 1384 } 1385 } 1386 1387 ASSERT(dnc->dnc_count == epb); 1388 dn = DN_SLOT_UNINIT; 1389 1390 if (flag & DNODE_MUST_BE_ALLOCATED) { 1391 slots = 1; 1392 1393 while (dn == DN_SLOT_UNINIT) { 1394 dnode_slots_hold(dnc, idx, slots); 1395 dnh = &dnc->dnc_children[idx]; 1396 1397 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1398 dn = dnh->dnh_dnode; 1399 break; 1400 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { 1401 DNODE_STAT_BUMP(dnode_hold_alloc_interior); 1402 dnode_slots_rele(dnc, idx, slots); 1403 dbuf_rele(db, FTAG); 1404 return (SET_ERROR(EEXIST)); 1405 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { 1406 DNODE_STAT_BUMP(dnode_hold_alloc_misses); 1407 dnode_slots_rele(dnc, idx, slots); 1408 dbuf_rele(db, FTAG); 1409 return (SET_ERROR(ENOENT)); 1410 } 1411 1412 dnode_slots_rele(dnc, idx, slots); 1413 if (!dnode_slots_tryenter(dnc, idx, slots)) { 1414 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry); 1415 continue; 1416 } 1417 1418 /* 1419 * Someone else won the race and called dnode_create() 1420 * after we checked DN_SLOT_IS_PTR() above but before 1421 * we acquired the lock. 1422 */ 1423 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1424 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); 1425 dn = dnh->dnh_dnode; 1426 } else { 1427 dn = dnode_create(os, dn_block + idx, db, 1428 object, dnh); 1429 } 1430 } 1431 1432 mutex_enter(&dn->dn_mtx); 1433 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { 1434 DNODE_STAT_BUMP(dnode_hold_alloc_type_none); 1435 mutex_exit(&dn->dn_mtx); 1436 dnode_slots_rele(dnc, idx, slots); 1437 dbuf_rele(db, FTAG); 1438 return (SET_ERROR(ENOENT)); 1439 } 1440 1441 DNODE_STAT_BUMP(dnode_hold_alloc_hits); 1442 } else if (flag & DNODE_MUST_BE_FREE) { 1443 1444 if (idx + slots - 1 >= DNODES_PER_BLOCK) { 1445 DNODE_STAT_BUMP(dnode_hold_free_overflow); 1446 dbuf_rele(db, FTAG); 1447 return (SET_ERROR(ENOSPC)); 1448 } 1449 1450 while (dn == DN_SLOT_UNINIT) { 1451 dnode_slots_hold(dnc, idx, slots); 1452 1453 if (!dnode_check_slots_free(dnc, idx, slots)) { 1454 DNODE_STAT_BUMP(dnode_hold_free_misses); 1455 dnode_slots_rele(dnc, idx, slots); 1456 dbuf_rele(db, FTAG); 1457 return (SET_ERROR(ENOSPC)); 1458 } 1459 1460 dnode_slots_rele(dnc, idx, slots); 1461 if (!dnode_slots_tryenter(dnc, idx, slots)) { 1462 DNODE_STAT_BUMP(dnode_hold_free_lock_retry); 1463 continue; 1464 } 1465 1466 if (!dnode_check_slots_free(dnc, idx, slots)) { 1467 DNODE_STAT_BUMP(dnode_hold_free_lock_misses); 1468 dnode_slots_rele(dnc, idx, slots); 1469 dbuf_rele(db, FTAG); 1470 return (SET_ERROR(ENOSPC)); 1471 } 1472 1473 /* 1474 * Allocated but otherwise free dnodes which would 1475 * be in the interior of a multi-slot dnodes need 1476 * to be freed. Single slot dnodes can be safely 1477 * re-purposed as a performance optimization. 1478 */ 1479 if (slots > 1) 1480 dnode_reclaim_slots(dnc, idx + 1, slots - 1); 1481 1482 dnh = &dnc->dnc_children[idx]; 1483 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1484 dn = dnh->dnh_dnode; 1485 } else { 1486 dn = dnode_create(os, dn_block + idx, db, 1487 object, dnh); 1488 } 1489 } 1490 1491 mutex_enter(&dn->dn_mtx); 1492 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { 1493 DNODE_STAT_BUMP(dnode_hold_free_refcount); 1494 mutex_exit(&dn->dn_mtx); 1495 dnode_slots_rele(dnc, idx, slots); 1496 dbuf_rele(db, FTAG); 1497 return (SET_ERROR(EEXIST)); 1498 } 1499 1500 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); 1501 DNODE_STAT_BUMP(dnode_hold_free_hits); 1502 } else { 1503 dbuf_rele(db, FTAG); 1504 return (SET_ERROR(EINVAL)); 1505 } 1506 1507 if (dn->dn_free_txg) { 1508 DNODE_STAT_BUMP(dnode_hold_free_txg); 1509 type = dn->dn_type; 1510 mutex_exit(&dn->dn_mtx); 1511 dnode_slots_rele(dnc, idx, slots); 1512 dbuf_rele(db, FTAG); 1513 return (SET_ERROR((flag & DNODE_MUST_BE_ALLOCATED) ? 1514 ENOENT : EEXIST)); 1515 } 1516 1517 if (zfs_refcount_add(&dn->dn_holds, tag) == 1) 1518 dbuf_add_ref(db, dnh); 1519 1520 mutex_exit(&dn->dn_mtx); 1521 1522 /* Now we can rely on the hold to prevent the dnode from moving. */ 1523 dnode_slots_rele(dnc, idx, slots); 1524 1525 DNODE_VERIFY(dn); 1526 ASSERT3P(dn->dn_dbuf, ==, db); 1527 ASSERT3U(dn->dn_object, ==, object); 1528 dbuf_rele(db, FTAG); 1529 1530 *dnp = dn; 1531 return (0); 1532 } 1533 1534 /* 1535 * Return held dnode if the object is allocated, NULL if not. 1536 */ 1537 int 1538 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1539 { 1540 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, 1541 dnp)); 1542 } 1543 1544 /* 1545 * Can only add a reference if there is already at least one 1546 * reference on the dnode. Returns FALSE if unable to add a 1547 * new reference. 1548 */ 1549 boolean_t 1550 dnode_add_ref(dnode_t *dn, void *tag) 1551 { 1552 mutex_enter(&dn->dn_mtx); 1553 if (zfs_refcount_is_zero(&dn->dn_holds)) { 1554 mutex_exit(&dn->dn_mtx); 1555 return (FALSE); 1556 } 1557 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag)); 1558 mutex_exit(&dn->dn_mtx); 1559 return (TRUE); 1560 } 1561 1562 void 1563 dnode_rele(dnode_t *dn, void *tag) 1564 { 1565 mutex_enter(&dn->dn_mtx); 1566 dnode_rele_and_unlock(dn, tag, B_FALSE); 1567 } 1568 1569 void 1570 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting) 1571 { 1572 uint64_t refs; 1573 /* Get while the hold prevents the dnode from moving. */ 1574 dmu_buf_impl_t *db = dn->dn_dbuf; 1575 dnode_handle_t *dnh = dn->dn_handle; 1576 1577 refs = zfs_refcount_remove(&dn->dn_holds, tag); 1578 mutex_exit(&dn->dn_mtx); 1579 1580 /* 1581 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1582 * indirectly by dbuf_rele() while relying on the dnode handle to 1583 * prevent the dnode from moving, since releasing the last hold could 1584 * result in the dnode's parent dbuf evicting its dnode handles. For 1585 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1586 * other direct or indirect hold on the dnode must first drop the dnode 1587 * handle. 1588 */ 1589 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1590 1591 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1592 if (refs == 0 && db != NULL) { 1593 /* 1594 * Another thread could add a hold to the dnode handle in 1595 * dnode_hold_impl() while holding the parent dbuf. Since the 1596 * hold on the parent dbuf prevents the handle from being 1597 * destroyed, the hold on the handle is OK. We can't yet assert 1598 * that the handle has zero references, but that will be 1599 * asserted anyway when the handle gets destroyed. 1600 */ 1601 mutex_enter(&db->db_mtx); 1602 dbuf_rele_and_unlock(db, dnh, evicting); 1603 } 1604 } 1605 1606 void 1607 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1608 { 1609 objset_t *os = dn->dn_objset; 1610 uint64_t txg = tx->tx_txg; 1611 1612 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1613 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1614 return; 1615 } 1616 1617 DNODE_VERIFY(dn); 1618 1619 #ifdef ZFS_DEBUG 1620 mutex_enter(&dn->dn_mtx); 1621 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1622 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1623 mutex_exit(&dn->dn_mtx); 1624 #endif 1625 1626 /* 1627 * Determine old uid/gid when necessary 1628 */ 1629 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1630 1631 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK]; 1632 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1633 1634 /* 1635 * If we are already marked dirty, we're done. 1636 */ 1637 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1638 multilist_sublist_unlock(mls); 1639 return; 1640 } 1641 1642 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) || 1643 !avl_is_empty(&dn->dn_dbufs)); 1644 ASSERT(dn->dn_datablksz != 0); 1645 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); 1646 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); 1647 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); 1648 1649 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1650 dn->dn_object, txg); 1651 1652 multilist_sublist_insert_head(mls, dn); 1653 1654 multilist_sublist_unlock(mls); 1655 1656 /* 1657 * The dnode maintains a hold on its containing dbuf as 1658 * long as there are holds on it. Each instantiated child 1659 * dbuf maintains a hold on the dnode. When the last child 1660 * drops its hold, the dnode will drop its hold on the 1661 * containing dbuf. We add a "dirty hold" here so that the 1662 * dnode will hang around after we finish processing its 1663 * children. 1664 */ 1665 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1666 1667 (void) dbuf_dirty(dn->dn_dbuf, tx); 1668 1669 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1670 } 1671 1672 void 1673 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1674 { 1675 mutex_enter(&dn->dn_mtx); 1676 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1677 mutex_exit(&dn->dn_mtx); 1678 return; 1679 } 1680 dn->dn_free_txg = tx->tx_txg; 1681 mutex_exit(&dn->dn_mtx); 1682 1683 dnode_setdirty(dn, tx); 1684 } 1685 1686 /* 1687 * Try to change the block size for the indicated dnode. This can only 1688 * succeed if there are no blocks allocated or dirty beyond first block 1689 */ 1690 int 1691 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1692 { 1693 dmu_buf_impl_t *db; 1694 int err; 1695 1696 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1697 if (size == 0) 1698 size = SPA_MINBLOCKSIZE; 1699 else 1700 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1701 1702 if (ibs == dn->dn_indblkshift) 1703 ibs = 0; 1704 1705 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1706 return (0); 1707 1708 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1709 1710 /* Check for any allocated blocks beyond the first */ 1711 if (dn->dn_maxblkid != 0) 1712 goto fail; 1713 1714 mutex_enter(&dn->dn_dbufs_mtx); 1715 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1716 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1717 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1718 db->db_blkid != DMU_SPILL_BLKID) { 1719 mutex_exit(&dn->dn_dbufs_mtx); 1720 goto fail; 1721 } 1722 } 1723 mutex_exit(&dn->dn_dbufs_mtx); 1724 1725 if (ibs && dn->dn_nlevels != 1) 1726 goto fail; 1727 1728 /* resize the old block */ 1729 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1730 if (err == 0) 1731 dbuf_new_size(db, size, tx); 1732 else if (err != ENOENT) 1733 goto fail; 1734 1735 dnode_setdblksz(dn, size); 1736 dnode_setdirty(dn, tx); 1737 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1738 if (ibs) { 1739 dn->dn_indblkshift = ibs; 1740 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1741 } 1742 /* rele after we have fixed the blocksize in the dnode */ 1743 if (db) 1744 dbuf_rele(db, FTAG); 1745 1746 rw_exit(&dn->dn_struct_rwlock); 1747 return (0); 1748 1749 fail: 1750 rw_exit(&dn->dn_struct_rwlock); 1751 return (SET_ERROR(ENOTSUP)); 1752 } 1753 1754 /* read-holding callers must not rely on the lock being continuously held */ 1755 void 1756 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read) 1757 { 1758 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1759 int epbs, new_nlevels; 1760 uint64_t sz; 1761 1762 ASSERT(blkid != DMU_BONUS_BLKID); 1763 1764 ASSERT(have_read ? 1765 RW_READ_HELD(&dn->dn_struct_rwlock) : 1766 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1767 1768 /* 1769 * if we have a read-lock, check to see if we need to do any work 1770 * before upgrading to a write-lock. 1771 */ 1772 if (have_read) { 1773 if (blkid <= dn->dn_maxblkid) 1774 return; 1775 1776 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1777 rw_exit(&dn->dn_struct_rwlock); 1778 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1779 } 1780 } 1781 1782 if (blkid <= dn->dn_maxblkid) 1783 goto out; 1784 1785 dn->dn_maxblkid = blkid; 1786 1787 /* 1788 * Compute the number of levels necessary to support the new maxblkid. 1789 */ 1790 new_nlevels = 1; 1791 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1792 for (sz = dn->dn_nblkptr; 1793 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1794 new_nlevels++; 1795 1796 if (new_nlevels > dn->dn_nlevels) { 1797 int old_nlevels = dn->dn_nlevels; 1798 dmu_buf_impl_t *db; 1799 list_t *list; 1800 dbuf_dirty_record_t *new, *dr, *dr_next; 1801 1802 dn->dn_nlevels = new_nlevels; 1803 1804 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1805 dn->dn_next_nlevels[txgoff] = new_nlevels; 1806 1807 /* dirty the left indirects */ 1808 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1809 ASSERT(db != NULL); 1810 new = dbuf_dirty(db, tx); 1811 dbuf_rele(db, FTAG); 1812 1813 /* transfer the dirty records to the new indirect */ 1814 mutex_enter(&dn->dn_mtx); 1815 mutex_enter(&new->dt.di.dr_mtx); 1816 list = &dn->dn_dirty_records[txgoff]; 1817 for (dr = list_head(list); dr; dr = dr_next) { 1818 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1819 if (dr->dr_dbuf->db_level != new_nlevels-1 && 1820 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1821 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 1822 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 1823 list_remove(&dn->dn_dirty_records[txgoff], dr); 1824 list_insert_tail(&new->dt.di.dr_children, dr); 1825 dr->dr_parent = new; 1826 } 1827 } 1828 mutex_exit(&new->dt.di.dr_mtx); 1829 mutex_exit(&dn->dn_mtx); 1830 } 1831 1832 out: 1833 if (have_read) 1834 rw_downgrade(&dn->dn_struct_rwlock); 1835 } 1836 1837 static void 1838 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1839 { 1840 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1841 if (db != NULL) { 1842 dmu_buf_will_dirty(&db->db, tx); 1843 dbuf_rele(db, FTAG); 1844 } 1845 } 1846 1847 /* 1848 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid 1849 * and end_blkid. 1850 */ 1851 static void 1852 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1853 dmu_tx_t *tx) 1854 { 1855 dmu_buf_impl_t db_search; 1856 dmu_buf_impl_t *db; 1857 avl_index_t where; 1858 1859 mutex_enter(&dn->dn_dbufs_mtx); 1860 1861 db_search.db_level = 1; 1862 db_search.db_blkid = start_blkid + 1; 1863 db_search.db_state = DB_SEARCH; 1864 for (;;) { 1865 1866 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1867 if (db == NULL) 1868 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1869 1870 if (db == NULL || db->db_level != 1 || 1871 db->db_blkid >= end_blkid) { 1872 break; 1873 } 1874 1875 /* 1876 * Setup the next blkid we want to search for. 1877 */ 1878 db_search.db_blkid = db->db_blkid + 1; 1879 ASSERT3U(db->db_blkid, >=, start_blkid); 1880 1881 /* 1882 * If the dbuf transitions to DB_EVICTING while we're trying 1883 * to dirty it, then we will be unable to discover it in 1884 * the dbuf hash table. This will result in a call to 1885 * dbuf_create() which needs to acquire the dn_dbufs_mtx 1886 * lock. To avoid a deadlock, we drop the lock before 1887 * dirtying the level-1 dbuf. 1888 */ 1889 mutex_exit(&dn->dn_dbufs_mtx); 1890 dnode_dirty_l1(dn, db->db_blkid, tx); 1891 mutex_enter(&dn->dn_dbufs_mtx); 1892 } 1893 1894 #ifdef ZFS_DEBUG 1895 /* 1896 * Walk all the in-core level-1 dbufs and verify they have been dirtied. 1897 */ 1898 db_search.db_level = 1; 1899 db_search.db_blkid = start_blkid + 1; 1900 db_search.db_state = DB_SEARCH; 1901 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1902 if (db == NULL) 1903 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1904 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { 1905 if (db->db_level != 1 || db->db_blkid >= end_blkid) 1906 break; 1907 ASSERT(db->db_dirtycnt > 0); 1908 } 1909 #endif 1910 mutex_exit(&dn->dn_dbufs_mtx); 1911 } 1912 1913 void 1914 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 1915 { 1916 dmu_buf_impl_t *db; 1917 uint64_t blkoff, blkid, nblks; 1918 int blksz, blkshift, head, tail; 1919 int trunc = FALSE; 1920 int epbs; 1921 1922 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1923 blksz = dn->dn_datablksz; 1924 blkshift = dn->dn_datablkshift; 1925 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1926 1927 if (len == DMU_OBJECT_END) { 1928 len = UINT64_MAX - off; 1929 trunc = TRUE; 1930 } 1931 1932 /* 1933 * First, block align the region to free: 1934 */ 1935 if (ISP2(blksz)) { 1936 head = P2NPHASE(off, blksz); 1937 blkoff = P2PHASE(off, blksz); 1938 if ((off >> blkshift) > dn->dn_maxblkid) 1939 goto out; 1940 } else { 1941 ASSERT(dn->dn_maxblkid == 0); 1942 if (off == 0 && len >= blksz) { 1943 /* 1944 * Freeing the whole block; fast-track this request. 1945 */ 1946 blkid = 0; 1947 nblks = 1; 1948 if (dn->dn_nlevels > 1) 1949 dnode_dirty_l1(dn, 0, tx); 1950 goto done; 1951 } else if (off >= blksz) { 1952 /* Freeing past end-of-data */ 1953 goto out; 1954 } else { 1955 /* Freeing part of the block. */ 1956 head = blksz - off; 1957 ASSERT3U(head, >, 0); 1958 } 1959 blkoff = off; 1960 } 1961 /* zero out any partial block data at the start of the range */ 1962 if (head) { 1963 ASSERT3U(blkoff + head, ==, blksz); 1964 if (len < head) 1965 head = len; 1966 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 1967 TRUE, FALSE, FTAG, &db) == 0) { 1968 caddr_t data; 1969 1970 /* don't dirty if it isn't on disk and isn't dirty */ 1971 if (db->db_last_dirty || 1972 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1973 rw_exit(&dn->dn_struct_rwlock); 1974 dmu_buf_will_dirty(&db->db, tx); 1975 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1976 data = db->db.db_data; 1977 bzero(data + blkoff, head); 1978 } 1979 dbuf_rele(db, FTAG); 1980 } 1981 off += head; 1982 len -= head; 1983 } 1984 1985 /* If the range was less than one block, we're done */ 1986 if (len == 0) 1987 goto out; 1988 1989 /* If the remaining range is past end of file, we're done */ 1990 if ((off >> blkshift) > dn->dn_maxblkid) 1991 goto out; 1992 1993 ASSERT(ISP2(blksz)); 1994 if (trunc) 1995 tail = 0; 1996 else 1997 tail = P2PHASE(len, blksz); 1998 1999 ASSERT0(P2PHASE(off, blksz)); 2000 /* zero out any partial block data at the end of the range */ 2001 if (tail) { 2002 if (len < tail) 2003 tail = len; 2004 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 2005 TRUE, FALSE, FTAG, &db) == 0) { 2006 /* don't dirty if not on disk and not dirty */ 2007 if (db->db_last_dirty || 2008 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 2009 rw_exit(&dn->dn_struct_rwlock); 2010 dmu_buf_will_dirty(&db->db, tx); 2011 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2012 bzero(db->db.db_data, tail); 2013 } 2014 dbuf_rele(db, FTAG); 2015 } 2016 len -= tail; 2017 } 2018 2019 /* If the range did not include a full block, we are done */ 2020 if (len == 0) 2021 goto out; 2022 2023 ASSERT(IS_P2ALIGNED(off, blksz)); 2024 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 2025 blkid = off >> blkshift; 2026 nblks = len >> blkshift; 2027 if (trunc) 2028 nblks += 1; 2029 2030 /* 2031 * Dirty all the indirect blocks in this range. Note that only 2032 * the first and last indirect blocks can actually be written 2033 * (if they were partially freed) -- they must be dirtied, even if 2034 * they do not exist on disk yet. The interior blocks will 2035 * be freed by free_children(), so they will not actually be written. 2036 * Even though these interior blocks will not be written, we 2037 * dirty them for two reasons: 2038 * 2039 * - It ensures that the indirect blocks remain in memory until 2040 * syncing context. (They have already been prefetched by 2041 * dmu_tx_hold_free(), so we don't have to worry about reading 2042 * them serially here.) 2043 * 2044 * - The dirty space accounting will put pressure on the txg sync 2045 * mechanism to begin syncing, and to delay transactions if there 2046 * is a large amount of freeing. Even though these indirect 2047 * blocks will not be written, we could need to write the same 2048 * amount of space if we copy the freed BPs into deadlists. 2049 */ 2050 if (dn->dn_nlevels > 1) { 2051 uint64_t first, last; 2052 2053 first = blkid >> epbs; 2054 dnode_dirty_l1(dn, first, tx); 2055 if (trunc) 2056 last = dn->dn_maxblkid >> epbs; 2057 else 2058 last = (blkid + nblks - 1) >> epbs; 2059 if (last != first) 2060 dnode_dirty_l1(dn, last, tx); 2061 2062 dnode_dirty_l1range(dn, first, last, tx); 2063 2064 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 2065 SPA_BLKPTRSHIFT; 2066 for (uint64_t i = first + 1; i < last; i++) { 2067 /* 2068 * Set i to the blockid of the next non-hole 2069 * level-1 indirect block at or after i. Note 2070 * that dnode_next_offset() operates in terms of 2071 * level-0-equivalent bytes. 2072 */ 2073 uint64_t ibyte = i << shift; 2074 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 2075 &ibyte, 2, 1, 0); 2076 i = ibyte >> shift; 2077 if (i >= last) 2078 break; 2079 2080 /* 2081 * Normally we should not see an error, either 2082 * from dnode_next_offset() or dbuf_hold_level() 2083 * (except for ESRCH from dnode_next_offset). 2084 * If there is an i/o error, then when we read 2085 * this block in syncing context, it will use 2086 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 2087 * to the "failmode" property. dnode_next_offset() 2088 * doesn't have a flag to indicate MUSTSUCCEED. 2089 */ 2090 if (err != 0) 2091 break; 2092 2093 dnode_dirty_l1(dn, i, tx); 2094 } 2095 } 2096 2097 done: 2098 /* 2099 * Add this range to the dnode range list. 2100 * We will finish up this free operation in the syncing phase. 2101 */ 2102 mutex_enter(&dn->dn_mtx); 2103 int txgoff = tx->tx_txg & TXG_MASK; 2104 if (dn->dn_free_ranges[txgoff] == NULL) { 2105 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL); 2106 } 2107 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 2108 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 2109 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 2110 blkid, nblks, tx->tx_txg); 2111 mutex_exit(&dn->dn_mtx); 2112 2113 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 2114 dnode_setdirty(dn, tx); 2115 out: 2116 2117 rw_exit(&dn->dn_struct_rwlock); 2118 } 2119 2120 static boolean_t 2121 dnode_spill_freed(dnode_t *dn) 2122 { 2123 int i; 2124 2125 mutex_enter(&dn->dn_mtx); 2126 for (i = 0; i < TXG_SIZE; i++) { 2127 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 2128 break; 2129 } 2130 mutex_exit(&dn->dn_mtx); 2131 return (i < TXG_SIZE); 2132 } 2133 2134 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 2135 uint64_t 2136 dnode_block_freed(dnode_t *dn, uint64_t blkid) 2137 { 2138 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 2139 int i; 2140 2141 if (blkid == DMU_BONUS_BLKID) 2142 return (FALSE); 2143 2144 /* 2145 * If we're in the process of opening the pool, dp will not be 2146 * set yet, but there shouldn't be anything dirty. 2147 */ 2148 if (dp == NULL) 2149 return (FALSE); 2150 2151 if (dn->dn_free_txg) 2152 return (TRUE); 2153 2154 if (blkid == DMU_SPILL_BLKID) 2155 return (dnode_spill_freed(dn)); 2156 2157 mutex_enter(&dn->dn_mtx); 2158 for (i = 0; i < TXG_SIZE; i++) { 2159 if (dn->dn_free_ranges[i] != NULL && 2160 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 2161 break; 2162 } 2163 mutex_exit(&dn->dn_mtx); 2164 return (i < TXG_SIZE); 2165 } 2166 2167 /* call from syncing context when we actually write/free space for this dnode */ 2168 void 2169 dnode_diduse_space(dnode_t *dn, int64_t delta) 2170 { 2171 uint64_t space; 2172 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 2173 dn, dn->dn_phys, 2174 (u_longlong_t)dn->dn_phys->dn_used, 2175 (longlong_t)delta); 2176 2177 mutex_enter(&dn->dn_mtx); 2178 space = DN_USED_BYTES(dn->dn_phys); 2179 if (delta > 0) { 2180 ASSERT3U(space + delta, >=, space); /* no overflow */ 2181 } else { 2182 ASSERT3U(space, >=, -delta); /* no underflow */ 2183 } 2184 space += delta; 2185 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 2186 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 2187 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 2188 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 2189 } else { 2190 dn->dn_phys->dn_used = space; 2191 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 2192 } 2193 mutex_exit(&dn->dn_mtx); 2194 } 2195 2196 /* 2197 * Scans a block at the indicated "level" looking for a hole or data, 2198 * depending on 'flags'. 2199 * 2200 * If level > 0, then we are scanning an indirect block looking at its 2201 * pointers. If level == 0, then we are looking at a block of dnodes. 2202 * 2203 * If we don't find what we are looking for in the block, we return ESRCH. 2204 * Otherwise, return with *offset pointing to the beginning (if searching 2205 * forwards) or end (if searching backwards) of the range covered by the 2206 * block pointer we matched on (or dnode). 2207 * 2208 * The basic search algorithm used below by dnode_next_offset() is to 2209 * use this function to search up the block tree (widen the search) until 2210 * we find something (i.e., we don't return ESRCH) and then search back 2211 * down the tree (narrow the search) until we reach our original search 2212 * level. 2213 */ 2214 static int 2215 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 2216 int lvl, uint64_t blkfill, uint64_t txg) 2217 { 2218 dmu_buf_impl_t *db = NULL; 2219 void *data = NULL; 2220 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2221 uint64_t epb = 1ULL << epbs; 2222 uint64_t minfill, maxfill; 2223 boolean_t hole; 2224 int i, inc, error, span; 2225 2226 dprintf("probing object %llu offset %llx level %d of %u\n", 2227 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 2228 2229 hole = ((flags & DNODE_FIND_HOLE) != 0); 2230 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 2231 ASSERT(txg == 0 || !hole); 2232 2233 if (lvl == dn->dn_phys->dn_nlevels) { 2234 error = 0; 2235 epb = dn->dn_phys->dn_nblkptr; 2236 data = dn->dn_phys->dn_blkptr; 2237 } else { 2238 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 2239 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 2240 if (error) { 2241 if (error != ENOENT) 2242 return (error); 2243 if (hole) 2244 return (0); 2245 /* 2246 * This can only happen when we are searching up 2247 * the block tree for data. We don't really need to 2248 * adjust the offset, as we will just end up looking 2249 * at the pointer to this block in its parent, and its 2250 * going to be unallocated, so we will skip over it. 2251 */ 2252 return (SET_ERROR(ESRCH)); 2253 } 2254 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT); 2255 if (error) { 2256 dbuf_rele(db, FTAG); 2257 return (error); 2258 } 2259 data = db->db.db_data; 2260 } 2261 2262 2263 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 2264 db->db_blkptr->blk_birth <= txg || 2265 BP_IS_HOLE(db->db_blkptr))) { 2266 /* 2267 * This can only happen when we are searching up the tree 2268 * and these conditions mean that we need to keep climbing. 2269 */ 2270 error = SET_ERROR(ESRCH); 2271 } else if (lvl == 0) { 2272 dnode_phys_t *dnp = data; 2273 2274 ASSERT(dn->dn_type == DMU_OT_DNODE); 2275 ASSERT(!(flags & DNODE_FIND_BACKWARDS)); 2276 2277 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); 2278 i < blkfill; i += dnp[i].dn_extra_slots + 1) { 2279 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 2280 break; 2281 } 2282 2283 if (i == blkfill) 2284 error = SET_ERROR(ESRCH); 2285 2286 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + 2287 (i << DNODE_SHIFT); 2288 } else { 2289 blkptr_t *bp = data; 2290 uint64_t start = *offset; 2291 span = (lvl - 1) * epbs + dn->dn_datablkshift; 2292 minfill = 0; 2293 maxfill = blkfill << ((lvl - 1) * epbs); 2294 2295 if (hole) 2296 maxfill--; 2297 else 2298 minfill++; 2299 2300 *offset = *offset >> span; 2301 for (i = BF64_GET(*offset, 0, epbs); 2302 i >= 0 && i < epb; i += inc) { 2303 if (BP_GET_FILL(&bp[i]) >= minfill && 2304 BP_GET_FILL(&bp[i]) <= maxfill && 2305 (hole || bp[i].blk_birth > txg)) 2306 break; 2307 if (inc > 0 || *offset > 0) 2308 *offset += inc; 2309 } 2310 *offset = *offset << span; 2311 if (inc < 0) { 2312 /* traversing backwards; position offset at the end */ 2313 ASSERT3U(*offset, <=, start); 2314 *offset = MIN(*offset + (1ULL << span) - 1, start); 2315 } else if (*offset < start) { 2316 *offset = start; 2317 } 2318 if (i < 0 || i >= epb) 2319 error = SET_ERROR(ESRCH); 2320 } 2321 2322 if (db) 2323 dbuf_rele(db, FTAG); 2324 2325 return (error); 2326 } 2327 2328 /* 2329 * Find the next hole, data, or sparse region at or after *offset. 2330 * The value 'blkfill' tells us how many items we expect to find 2331 * in an L0 data block; this value is 1 for normal objects, 2332 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 2333 * DNODES_PER_BLOCK when searching for sparse regions thereof. 2334 * 2335 * Examples: 2336 * 2337 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 2338 * Finds the next/previous hole/data in a file. 2339 * Used in dmu_offset_next(). 2340 * 2341 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 2342 * Finds the next free/allocated dnode an objset's meta-dnode. 2343 * Only finds objects that have new contents since txg (ie. 2344 * bonus buffer changes and content removal are ignored). 2345 * Used in dmu_object_next(). 2346 * 2347 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 2348 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 2349 * Used in dmu_object_alloc(). 2350 */ 2351 int 2352 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 2353 int minlvl, uint64_t blkfill, uint64_t txg) 2354 { 2355 uint64_t initial_offset = *offset; 2356 int lvl, maxlvl; 2357 int error = 0; 2358 2359 if (!(flags & DNODE_FIND_HAVELOCK)) 2360 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2361 2362 if (dn->dn_phys->dn_nlevels == 0) { 2363 error = SET_ERROR(ESRCH); 2364 goto out; 2365 } 2366 2367 if (dn->dn_datablkshift == 0) { 2368 if (*offset < dn->dn_datablksz) { 2369 if (flags & DNODE_FIND_HOLE) 2370 *offset = dn->dn_datablksz; 2371 } else { 2372 error = SET_ERROR(ESRCH); 2373 } 2374 goto out; 2375 } 2376 2377 maxlvl = dn->dn_phys->dn_nlevels; 2378 2379 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2380 error = dnode_next_offset_level(dn, 2381 flags, offset, lvl, blkfill, txg); 2382 if (error != ESRCH) 2383 break; 2384 } 2385 2386 while (error == 0 && --lvl >= minlvl) { 2387 error = dnode_next_offset_level(dn, 2388 flags, offset, lvl, blkfill, txg); 2389 } 2390 2391 /* 2392 * There's always a "virtual hole" at the end of the object, even 2393 * if all BP's which physically exist are non-holes. 2394 */ 2395 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2396 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2397 error = 0; 2398 } 2399 2400 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2401 initial_offset < *offset : initial_offset > *offset)) 2402 error = SET_ERROR(ESRCH); 2403 out: 2404 if (!(flags & DNODE_FIND_HAVELOCK)) 2405 rw_exit(&dn->dn_struct_rwlock); 2406 2407 return (error); 2408 } 2409