1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2017 RackTop Systems. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dbuf.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dsl_dir.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/spa.h> 39 #include <sys/zio.h> 40 #include <sys/dmu_zfetch.h> 41 #include <sys/range_tree.h> 42 #include <sys/zfs_project.h> 43 44 dnode_stats_t dnode_stats = { 45 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, 46 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, 47 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, 48 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, 49 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, 50 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, 51 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, 52 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, 53 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, 54 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, 55 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, 56 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, 57 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, 58 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, 59 { "dnode_hold_free_txg", KSTAT_DATA_UINT64 }, 60 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, 61 { "dnode_allocate", KSTAT_DATA_UINT64 }, 62 { "dnode_reallocate", KSTAT_DATA_UINT64 }, 63 { "dnode_buf_evict", KSTAT_DATA_UINT64 }, 64 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, 65 { "dnode_alloc_race", KSTAT_DATA_UINT64 }, 66 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, 67 { "dnode_move_invalid", KSTAT_DATA_UINT64 }, 68 { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, 69 { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, 70 { "dnode_move_special", KSTAT_DATA_UINT64 }, 71 { "dnode_move_handle", KSTAT_DATA_UINT64 }, 72 { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, 73 { "dnode_move_active", KSTAT_DATA_UINT64 }, 74 }; 75 76 static kstat_t *dnode_ksp; 77 static kmem_cache_t *dnode_cache; 78 79 static dnode_phys_t dnode_phys_zero; 80 81 int zfs_default_bs = SPA_MINBLOCKSHIFT; 82 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 83 84 #ifdef _KERNEL 85 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 86 #endif /* _KERNEL */ 87 88 static int 89 dbuf_compare(const void *x1, const void *x2) 90 { 91 const dmu_buf_impl_t *d1 = x1; 92 const dmu_buf_impl_t *d2 = x2; 93 94 int cmp = AVL_CMP(d1->db_level, d2->db_level); 95 if (likely(cmp)) 96 return (cmp); 97 98 cmp = AVL_CMP(d1->db_blkid, d2->db_blkid); 99 if (likely(cmp)) 100 return (cmp); 101 102 if (d1->db_state == DB_SEARCH) { 103 ASSERT3S(d2->db_state, !=, DB_SEARCH); 104 return (-1); 105 } else if (d2->db_state == DB_SEARCH) { 106 ASSERT3S(d1->db_state, !=, DB_SEARCH); 107 return (1); 108 } 109 110 return (AVL_PCMP(d1, d2)); 111 } 112 113 /* ARGSUSED */ 114 static int 115 dnode_cons(void *arg, void *unused, int kmflag) 116 { 117 dnode_t *dn = arg; 118 int i; 119 120 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 121 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 122 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 123 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 124 125 /* 126 * Every dbuf has a reference, and dropping a tracked reference is 127 * O(number of references), so don't track dn_holds. 128 */ 129 zfs_refcount_create_untracked(&dn->dn_holds); 130 zfs_refcount_create(&dn->dn_tx_holds); 131 list_link_init(&dn->dn_link); 132 133 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 134 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 135 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 136 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 137 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 138 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 139 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 140 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid)); 141 142 for (i = 0; i < TXG_SIZE; i++) { 143 multilist_link_init(&dn->dn_dirty_link[i]); 144 dn->dn_free_ranges[i] = NULL; 145 list_create(&dn->dn_dirty_records[i], 146 sizeof (dbuf_dirty_record_t), 147 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 148 } 149 150 dn->dn_allocated_txg = 0; 151 dn->dn_free_txg = 0; 152 dn->dn_assigned_txg = 0; 153 dn->dn_dirty_txg = 0; 154 dn->dn_dirtyctx = 0; 155 dn->dn_dirtyctx_firstset = NULL; 156 dn->dn_bonus = NULL; 157 dn->dn_have_spill = B_FALSE; 158 dn->dn_zio = NULL; 159 dn->dn_oldused = 0; 160 dn->dn_oldflags = 0; 161 dn->dn_olduid = 0; 162 dn->dn_oldgid = 0; 163 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 164 dn->dn_newuid = 0; 165 dn->dn_newgid = 0; 166 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 167 dn->dn_id_flags = 0; 168 169 dn->dn_dbufs_count = 0; 170 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 171 offsetof(dmu_buf_impl_t, db_link)); 172 173 dn->dn_moved = 0; 174 return (0); 175 } 176 177 /* ARGSUSED */ 178 static void 179 dnode_dest(void *arg, void *unused) 180 { 181 int i; 182 dnode_t *dn = arg; 183 184 rw_destroy(&dn->dn_struct_rwlock); 185 mutex_destroy(&dn->dn_mtx); 186 mutex_destroy(&dn->dn_dbufs_mtx); 187 cv_destroy(&dn->dn_notxholds); 188 zfs_refcount_destroy(&dn->dn_holds); 189 zfs_refcount_destroy(&dn->dn_tx_holds); 190 ASSERT(!list_link_active(&dn->dn_link)); 191 192 for (i = 0; i < TXG_SIZE; i++) { 193 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 194 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 195 list_destroy(&dn->dn_dirty_records[i]); 196 ASSERT0(dn->dn_next_nblkptr[i]); 197 ASSERT0(dn->dn_next_nlevels[i]); 198 ASSERT0(dn->dn_next_indblkshift[i]); 199 ASSERT0(dn->dn_next_bonustype[i]); 200 ASSERT0(dn->dn_rm_spillblk[i]); 201 ASSERT0(dn->dn_next_bonuslen[i]); 202 ASSERT0(dn->dn_next_blksz[i]); 203 ASSERT0(dn->dn_next_maxblkid[i]); 204 } 205 206 ASSERT0(dn->dn_allocated_txg); 207 ASSERT0(dn->dn_free_txg); 208 ASSERT0(dn->dn_assigned_txg); 209 ASSERT0(dn->dn_dirty_txg); 210 ASSERT0(dn->dn_dirtyctx); 211 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 212 ASSERT3P(dn->dn_bonus, ==, NULL); 213 ASSERT(!dn->dn_have_spill); 214 ASSERT3P(dn->dn_zio, ==, NULL); 215 ASSERT0(dn->dn_oldused); 216 ASSERT0(dn->dn_oldflags); 217 ASSERT0(dn->dn_olduid); 218 ASSERT0(dn->dn_oldgid); 219 ASSERT0(dn->dn_oldprojid); 220 ASSERT0(dn->dn_newuid); 221 ASSERT0(dn->dn_newgid); 222 ASSERT0(dn->dn_newprojid); 223 ASSERT0(dn->dn_id_flags); 224 225 ASSERT0(dn->dn_dbufs_count); 226 avl_destroy(&dn->dn_dbufs); 227 } 228 229 void 230 dnode_init(void) 231 { 232 ASSERT(dnode_cache == NULL); 233 dnode_cache = kmem_cache_create("dnode_t", 234 sizeof (dnode_t), 235 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 236 #ifdef _KERNEL 237 kmem_cache_set_move(dnode_cache, dnode_move); 238 239 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", 240 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), 241 KSTAT_FLAG_VIRTUAL); 242 if (dnode_ksp != NULL) { 243 dnode_ksp->ks_data = &dnode_stats; 244 kstat_install(dnode_ksp); 245 } 246 #endif /* _KERNEL */ 247 } 248 249 void 250 dnode_fini(void) 251 { 252 if (dnode_ksp != NULL) { 253 kstat_delete(dnode_ksp); 254 dnode_ksp = NULL; 255 } 256 257 kmem_cache_destroy(dnode_cache); 258 dnode_cache = NULL; 259 } 260 261 262 #ifdef ZFS_DEBUG 263 void 264 dnode_verify(dnode_t *dn) 265 { 266 int drop_struct_lock = FALSE; 267 268 ASSERT(dn->dn_phys); 269 ASSERT(dn->dn_objset); 270 ASSERT(dn->dn_handle->dnh_dnode == dn); 271 272 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 273 274 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 275 return; 276 277 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 278 rw_enter(&dn->dn_struct_rwlock, RW_READER); 279 drop_struct_lock = TRUE; 280 } 281 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 282 int i; 283 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 284 ASSERT3U(dn->dn_indblkshift, >=, 0); 285 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 286 if (dn->dn_datablkshift) { 287 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 288 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 289 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 290 } 291 ASSERT3U(dn->dn_nlevels, <=, 30); 292 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 293 ASSERT3U(dn->dn_nblkptr, >=, 1); 294 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 295 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); 296 ASSERT3U(dn->dn_datablksz, ==, 297 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 298 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 299 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 300 dn->dn_bonuslen, <=, max_bonuslen); 301 for (i = 0; i < TXG_SIZE; i++) { 302 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 303 } 304 } 305 if (dn->dn_phys->dn_type != DMU_OT_NONE) 306 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 307 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 308 if (dn->dn_dbuf != NULL) { 309 ASSERT3P(dn->dn_phys, ==, 310 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 311 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 312 } 313 if (drop_struct_lock) 314 rw_exit(&dn->dn_struct_rwlock); 315 } 316 #endif 317 318 void 319 dnode_byteswap(dnode_phys_t *dnp) 320 { 321 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 322 int i; 323 324 if (dnp->dn_type == DMU_OT_NONE) { 325 bzero(dnp, sizeof (dnode_phys_t)); 326 return; 327 } 328 329 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 330 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 331 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); 332 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 333 dnp->dn_used = BSWAP_64(dnp->dn_used); 334 335 /* 336 * dn_nblkptr is only one byte, so it's OK to read it in either 337 * byte order. We can't read dn_bouslen. 338 */ 339 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 340 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 341 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 342 buf64[i] = BSWAP_64(buf64[i]); 343 344 /* 345 * OK to check dn_bonuslen for zero, because it won't matter if 346 * we have the wrong byte order. This is necessary because the 347 * dnode dnode is smaller than a regular dnode. 348 */ 349 if (dnp->dn_bonuslen != 0) { 350 /* 351 * Note that the bonus length calculated here may be 352 * longer than the actual bonus buffer. This is because 353 * we always put the bonus buffer after the last block 354 * pointer (instead of packing it against the end of the 355 * dnode buffer). 356 */ 357 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 358 int slots = dnp->dn_extra_slots + 1; 359 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off; 360 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 361 dmu_object_byteswap_t byteswap = 362 DMU_OT_BYTESWAP(dnp->dn_bonustype); 363 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 364 } 365 366 /* Swap SPILL block if we have one */ 367 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 368 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); 369 370 } 371 372 void 373 dnode_buf_byteswap(void *vbuf, size_t size) 374 { 375 int i = 0; 376 377 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 378 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 379 380 while (i < size) { 381 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i); 382 dnode_byteswap(dnp); 383 384 i += DNODE_MIN_SIZE; 385 if (dnp->dn_type != DMU_OT_NONE) 386 i += dnp->dn_extra_slots * DNODE_MIN_SIZE; 387 } 388 } 389 390 void 391 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 392 { 393 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 394 395 dnode_setdirty(dn, tx); 396 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 397 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 398 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 399 dn->dn_bonuslen = newsize; 400 if (newsize == 0) 401 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 402 else 403 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 404 rw_exit(&dn->dn_struct_rwlock); 405 } 406 407 void 408 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 409 { 410 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 411 dnode_setdirty(dn, tx); 412 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 413 dn->dn_bonustype = newtype; 414 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 415 rw_exit(&dn->dn_struct_rwlock); 416 } 417 418 void 419 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 420 { 421 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 422 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 423 dnode_setdirty(dn, tx); 424 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; 425 dn->dn_have_spill = B_FALSE; 426 } 427 428 static void 429 dnode_setdblksz(dnode_t *dn, int size) 430 { 431 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 432 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 433 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 434 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 435 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 436 dn->dn_datablksz = size; 437 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 438 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 439 } 440 441 static dnode_t * 442 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 443 uint64_t object, dnode_handle_t *dnh) 444 { 445 dnode_t *dn; 446 447 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 448 #ifdef _KERNEL 449 ASSERT(!POINTER_IS_VALID(dn->dn_objset)); 450 #endif /* _KERNEL */ 451 dn->dn_moved = 0; 452 453 /* 454 * Defer setting dn_objset until the dnode is ready to be a candidate 455 * for the dnode_move() callback. 456 */ 457 dn->dn_object = object; 458 dn->dn_dbuf = db; 459 dn->dn_handle = dnh; 460 dn->dn_phys = dnp; 461 462 if (dnp->dn_datablkszsec) { 463 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 464 } else { 465 dn->dn_datablksz = 0; 466 dn->dn_datablkszsec = 0; 467 dn->dn_datablkshift = 0; 468 } 469 dn->dn_indblkshift = dnp->dn_indblkshift; 470 dn->dn_nlevels = dnp->dn_nlevels; 471 dn->dn_type = dnp->dn_type; 472 dn->dn_nblkptr = dnp->dn_nblkptr; 473 dn->dn_checksum = dnp->dn_checksum; 474 dn->dn_compress = dnp->dn_compress; 475 dn->dn_bonustype = dnp->dn_bonustype; 476 dn->dn_bonuslen = dnp->dn_bonuslen; 477 dn->dn_num_slots = dnp->dn_extra_slots + 1; 478 dn->dn_maxblkid = dnp->dn_maxblkid; 479 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 480 dn->dn_id_flags = 0; 481 482 dmu_zfetch_init(&dn->dn_zfetch, dn); 483 484 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 485 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 486 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); 487 488 mutex_enter(&os->os_lock); 489 490 /* 491 * Exclude special dnodes from os_dnodes so an empty os_dnodes 492 * signifies that the special dnodes have no references from 493 * their children (the entries in os_dnodes). This allows 494 * dnode_destroy() to easily determine if the last child has 495 * been removed and then complete eviction of the objset. 496 */ 497 if (!DMU_OBJECT_IS_SPECIAL(object)) 498 list_insert_head(&os->os_dnodes, dn); 499 membar_producer(); 500 501 /* 502 * Everything else must be valid before assigning dn_objset 503 * makes the dnode eligible for dnode_move(). 504 */ 505 dn->dn_objset = os; 506 507 dnh->dnh_dnode = dn; 508 mutex_exit(&os->os_lock); 509 510 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); 511 512 return (dn); 513 } 514 515 /* 516 * Caller must be holding the dnode handle, which is released upon return. 517 */ 518 static void 519 dnode_destroy(dnode_t *dn) 520 { 521 objset_t *os = dn->dn_objset; 522 boolean_t complete_os_eviction = B_FALSE; 523 524 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 525 526 mutex_enter(&os->os_lock); 527 POINTER_INVALIDATE(&dn->dn_objset); 528 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 529 list_remove(&os->os_dnodes, dn); 530 complete_os_eviction = 531 list_is_empty(&os->os_dnodes) && 532 list_link_active(&os->os_evicting_node); 533 } 534 mutex_exit(&os->os_lock); 535 536 /* the dnode can no longer move, so we can release the handle */ 537 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) 538 zrl_remove(&dn->dn_handle->dnh_zrlock); 539 540 dn->dn_allocated_txg = 0; 541 dn->dn_free_txg = 0; 542 dn->dn_assigned_txg = 0; 543 dn->dn_dirty_txg = 0; 544 545 dn->dn_dirtyctx = 0; 546 if (dn->dn_dirtyctx_firstset != NULL) { 547 kmem_free(dn->dn_dirtyctx_firstset, 1); 548 dn->dn_dirtyctx_firstset = NULL; 549 } 550 if (dn->dn_bonus != NULL) { 551 mutex_enter(&dn->dn_bonus->db_mtx); 552 dbuf_destroy(dn->dn_bonus); 553 dn->dn_bonus = NULL; 554 } 555 dn->dn_zio = NULL; 556 557 dn->dn_have_spill = B_FALSE; 558 dn->dn_oldused = 0; 559 dn->dn_oldflags = 0; 560 dn->dn_olduid = 0; 561 dn->dn_oldgid = 0; 562 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 563 dn->dn_newuid = 0; 564 dn->dn_newgid = 0; 565 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 566 dn->dn_id_flags = 0; 567 568 dmu_zfetch_fini(&dn->dn_zfetch); 569 kmem_cache_free(dnode_cache, dn); 570 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); 571 572 if (complete_os_eviction) 573 dmu_objset_evict_done(os); 574 } 575 576 void 577 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 578 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) 579 { 580 int i; 581 582 ASSERT3U(dn_slots, >, 0); 583 ASSERT3U(dn_slots << DNODE_SHIFT, <=, 584 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); 585 ASSERT3U(blocksize, <=, 586 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 587 if (blocksize == 0) 588 blocksize = 1 << zfs_default_bs; 589 else 590 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 591 592 if (ibs == 0) 593 ibs = zfs_default_ibs; 594 595 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 596 597 dprintf("os=%p obj=%" PRIu64 " txg=%" PRIu64 598 " blocksize=%d ibs=%d dn_slots=%d\n", 599 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots); 600 DNODE_STAT_BUMP(dnode_allocate); 601 602 ASSERT(dn->dn_type == DMU_OT_NONE); 603 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 604 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 605 ASSERT(ot != DMU_OT_NONE); 606 ASSERT(DMU_OT_IS_VALID(ot)); 607 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 608 (bonustype == DMU_OT_SA && bonuslen == 0) || 609 (bonustype != DMU_OT_NONE && bonuslen != 0)); 610 ASSERT(DMU_OT_IS_VALID(bonustype)); 611 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); 612 ASSERT(dn->dn_type == DMU_OT_NONE); 613 ASSERT0(dn->dn_maxblkid); 614 ASSERT0(dn->dn_allocated_txg); 615 ASSERT0(dn->dn_dirty_txg); 616 ASSERT0(dn->dn_assigned_txg); 617 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 618 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1); 619 ASSERT(avl_is_empty(&dn->dn_dbufs)); 620 621 for (i = 0; i < TXG_SIZE; i++) { 622 ASSERT0(dn->dn_next_nblkptr[i]); 623 ASSERT0(dn->dn_next_nlevels[i]); 624 ASSERT0(dn->dn_next_indblkshift[i]); 625 ASSERT0(dn->dn_next_bonuslen[i]); 626 ASSERT0(dn->dn_next_bonustype[i]); 627 ASSERT0(dn->dn_rm_spillblk[i]); 628 ASSERT0(dn->dn_next_blksz[i]); 629 ASSERT0(dn->dn_next_maxblkid[i]); 630 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 631 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 632 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 633 } 634 635 dn->dn_type = ot; 636 dnode_setdblksz(dn, blocksize); 637 dn->dn_indblkshift = ibs; 638 dn->dn_nlevels = 1; 639 dn->dn_num_slots = dn_slots; 640 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 641 dn->dn_nblkptr = 1; 642 else { 643 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, 644 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 645 SPA_BLKPTRSHIFT)); 646 } 647 648 dn->dn_bonustype = bonustype; 649 dn->dn_bonuslen = bonuslen; 650 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 651 dn->dn_compress = ZIO_COMPRESS_INHERIT; 652 dn->dn_dirtyctx = 0; 653 654 dn->dn_free_txg = 0; 655 if (dn->dn_dirtyctx_firstset) { 656 kmem_free(dn->dn_dirtyctx_firstset, 1); 657 dn->dn_dirtyctx_firstset = NULL; 658 } 659 660 dn->dn_allocated_txg = tx->tx_txg; 661 dn->dn_id_flags = 0; 662 663 dnode_setdirty(dn, tx); 664 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 665 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 666 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 667 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 668 } 669 670 void 671 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 672 dmu_object_type_t bonustype, int bonuslen, int dn_slots, 673 boolean_t keep_spill, dmu_tx_t *tx) 674 { 675 int nblkptr; 676 677 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 678 ASSERT3U(blocksize, <=, 679 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 680 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 681 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 682 ASSERT(tx->tx_txg != 0); 683 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 684 (bonustype != DMU_OT_NONE && bonuslen != 0) || 685 (bonustype == DMU_OT_SA && bonuslen == 0)); 686 ASSERT(DMU_OT_IS_VALID(bonustype)); 687 ASSERT3U(bonuslen, <=, 688 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); 689 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT)); 690 691 dnode_free_interior_slots(dn); 692 DNODE_STAT_BUMP(dnode_reallocate); 693 694 /* clean up any unreferenced dbufs */ 695 dnode_evict_dbufs(dn); 696 697 dn->dn_id_flags = 0; 698 699 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 700 dnode_setdirty(dn, tx); 701 if (dn->dn_datablksz != blocksize) { 702 /* change blocksize */ 703 ASSERT(dn->dn_maxblkid == 0 && 704 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 705 dnode_block_freed(dn, 0))); 706 dnode_setdblksz(dn, blocksize); 707 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 708 } 709 if (dn->dn_bonuslen != bonuslen) 710 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 711 712 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 713 nblkptr = 1; 714 else 715 nblkptr = MIN(DN_MAX_NBLKPTR, 716 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 717 SPA_BLKPTRSHIFT)); 718 if (dn->dn_bonustype != bonustype) 719 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; 720 if (dn->dn_nblkptr != nblkptr) 721 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; 722 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) { 723 dbuf_rm_spill(dn, tx); 724 dnode_rm_spill(dn, tx); 725 } 726 rw_exit(&dn->dn_struct_rwlock); 727 728 /* change type */ 729 dn->dn_type = ot; 730 731 /* change bonus size and type */ 732 mutex_enter(&dn->dn_mtx); 733 dn->dn_bonustype = bonustype; 734 dn->dn_bonuslen = bonuslen; 735 dn->dn_num_slots = dn_slots; 736 dn->dn_nblkptr = nblkptr; 737 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 738 dn->dn_compress = ZIO_COMPRESS_INHERIT; 739 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 740 741 /* fix up the bonus db_size */ 742 if (dn->dn_bonus) { 743 dn->dn_bonus->db.db_size = 744 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 745 (dn->dn_nblkptr - 1) * sizeof (blkptr_t); 746 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 747 } 748 749 dn->dn_allocated_txg = tx->tx_txg; 750 mutex_exit(&dn->dn_mtx); 751 } 752 753 #ifdef _KERNEL 754 static void 755 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 756 { 757 int i; 758 759 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 760 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 761 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 762 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); 763 764 /* Copy fields. */ 765 ndn->dn_objset = odn->dn_objset; 766 ndn->dn_object = odn->dn_object; 767 ndn->dn_dbuf = odn->dn_dbuf; 768 ndn->dn_handle = odn->dn_handle; 769 ndn->dn_phys = odn->dn_phys; 770 ndn->dn_type = odn->dn_type; 771 ndn->dn_bonuslen = odn->dn_bonuslen; 772 ndn->dn_bonustype = odn->dn_bonustype; 773 ndn->dn_nblkptr = odn->dn_nblkptr; 774 ndn->dn_checksum = odn->dn_checksum; 775 ndn->dn_compress = odn->dn_compress; 776 ndn->dn_nlevels = odn->dn_nlevels; 777 ndn->dn_indblkshift = odn->dn_indblkshift; 778 ndn->dn_datablkshift = odn->dn_datablkshift; 779 ndn->dn_datablkszsec = odn->dn_datablkszsec; 780 ndn->dn_datablksz = odn->dn_datablksz; 781 ndn->dn_maxblkid = odn->dn_maxblkid; 782 ndn->dn_num_slots = odn->dn_num_slots; 783 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0], 784 sizeof (odn->dn_next_type)); 785 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 786 sizeof (odn->dn_next_nblkptr)); 787 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 788 sizeof (odn->dn_next_nlevels)); 789 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 790 sizeof (odn->dn_next_indblkshift)); 791 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 792 sizeof (odn->dn_next_bonustype)); 793 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 794 sizeof (odn->dn_rm_spillblk)); 795 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 796 sizeof (odn->dn_next_bonuslen)); 797 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 798 sizeof (odn->dn_next_blksz)); 799 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0], 800 sizeof (odn->dn_next_maxblkid)); 801 for (i = 0; i < TXG_SIZE; i++) { 802 list_move_tail(&ndn->dn_dirty_records[i], 803 &odn->dn_dirty_records[i]); 804 } 805 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 806 sizeof (odn->dn_free_ranges)); 807 ndn->dn_allocated_txg = odn->dn_allocated_txg; 808 ndn->dn_free_txg = odn->dn_free_txg; 809 ndn->dn_assigned_txg = odn->dn_assigned_txg; 810 ndn->dn_dirty_txg = odn->dn_dirty_txg; 811 ndn->dn_dirtyctx = odn->dn_dirtyctx; 812 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 813 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0); 814 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 815 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 816 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 817 ndn->dn_dbufs_count = odn->dn_dbufs_count; 818 ndn->dn_bonus = odn->dn_bonus; 819 ndn->dn_have_spill = odn->dn_have_spill; 820 ndn->dn_zio = odn->dn_zio; 821 ndn->dn_oldused = odn->dn_oldused; 822 ndn->dn_oldflags = odn->dn_oldflags; 823 ndn->dn_olduid = odn->dn_olduid; 824 ndn->dn_oldgid = odn->dn_oldgid; 825 ndn->dn_oldprojid = odn->dn_oldprojid; 826 ndn->dn_newuid = odn->dn_newuid; 827 ndn->dn_newgid = odn->dn_newgid; 828 ndn->dn_newprojid = odn->dn_newprojid; 829 ndn->dn_id_flags = odn->dn_id_flags; 830 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 831 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 832 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 833 834 /* 835 * Update back pointers. Updating the handle fixes the back pointer of 836 * every descendant dbuf as well as the bonus dbuf. 837 */ 838 ASSERT(ndn->dn_handle->dnh_dnode == odn); 839 ndn->dn_handle->dnh_dnode = ndn; 840 if (ndn->dn_zfetch.zf_dnode == odn) { 841 ndn->dn_zfetch.zf_dnode = ndn; 842 } 843 844 /* 845 * Invalidate the original dnode by clearing all of its back pointers. 846 */ 847 odn->dn_dbuf = NULL; 848 odn->dn_handle = NULL; 849 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 850 offsetof(dmu_buf_impl_t, db_link)); 851 odn->dn_dbufs_count = 0; 852 odn->dn_bonus = NULL; 853 odn->dn_zfetch.zf_dnode = NULL; 854 855 /* 856 * Set the low bit of the objset pointer to ensure that dnode_move() 857 * recognizes the dnode as invalid in any subsequent callback. 858 */ 859 POINTER_INVALIDATE(&odn->dn_objset); 860 861 /* 862 * Satisfy the destructor. 863 */ 864 for (i = 0; i < TXG_SIZE; i++) { 865 list_create(&odn->dn_dirty_records[i], 866 sizeof (dbuf_dirty_record_t), 867 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 868 odn->dn_free_ranges[i] = NULL; 869 odn->dn_next_nlevels[i] = 0; 870 odn->dn_next_indblkshift[i] = 0; 871 odn->dn_next_bonustype[i] = 0; 872 odn->dn_rm_spillblk[i] = 0; 873 odn->dn_next_bonuslen[i] = 0; 874 odn->dn_next_blksz[i] = 0; 875 } 876 odn->dn_allocated_txg = 0; 877 odn->dn_free_txg = 0; 878 odn->dn_assigned_txg = 0; 879 odn->dn_dirty_txg = 0; 880 odn->dn_dirtyctx = 0; 881 odn->dn_dirtyctx_firstset = NULL; 882 odn->dn_have_spill = B_FALSE; 883 odn->dn_zio = NULL; 884 odn->dn_oldused = 0; 885 odn->dn_oldflags = 0; 886 odn->dn_olduid = 0; 887 odn->dn_oldgid = 0; 888 odn->dn_oldprojid = ZFS_DEFAULT_PROJID; 889 odn->dn_newuid = 0; 890 odn->dn_newgid = 0; 891 odn->dn_newprojid = ZFS_DEFAULT_PROJID; 892 odn->dn_id_flags = 0; 893 894 /* 895 * Mark the dnode. 896 */ 897 ndn->dn_moved = 1; 898 odn->dn_moved = (uint8_t)-1; 899 } 900 901 /*ARGSUSED*/ 902 static kmem_cbrc_t 903 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 904 { 905 dnode_t *odn = buf, *ndn = newbuf; 906 objset_t *os; 907 int64_t refcount; 908 uint32_t dbufs; 909 910 /* 911 * The dnode is on the objset's list of known dnodes if the objset 912 * pointer is valid. We set the low bit of the objset pointer when 913 * freeing the dnode to invalidate it, and the memory patterns written 914 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 915 * A newly created dnode sets the objset pointer last of all to indicate 916 * that the dnode is known and in a valid state to be moved by this 917 * function. 918 */ 919 os = odn->dn_objset; 920 if (!POINTER_IS_VALID(os)) { 921 DNODE_STAT_BUMP(dnode_move_invalid); 922 return (KMEM_CBRC_DONT_KNOW); 923 } 924 925 /* 926 * Ensure that the objset does not go away during the move. 927 */ 928 rw_enter(&os_lock, RW_WRITER); 929 if (os != odn->dn_objset) { 930 rw_exit(&os_lock); 931 DNODE_STAT_BUMP(dnode_move_recheck1); 932 return (KMEM_CBRC_DONT_KNOW); 933 } 934 935 /* 936 * If the dnode is still valid, then so is the objset. We know that no 937 * valid objset can be freed while we hold os_lock, so we can safely 938 * ensure that the objset remains in use. 939 */ 940 mutex_enter(&os->os_lock); 941 942 /* 943 * Recheck the objset pointer in case the dnode was removed just before 944 * acquiring the lock. 945 */ 946 if (os != odn->dn_objset) { 947 mutex_exit(&os->os_lock); 948 rw_exit(&os_lock); 949 DNODE_STAT_BUMP(dnode_move_recheck2); 950 return (KMEM_CBRC_DONT_KNOW); 951 } 952 953 /* 954 * At this point we know that as long as we hold os->os_lock, the dnode 955 * cannot be freed and fields within the dnode can be safely accessed. 956 * The objset listing this dnode cannot go away as long as this dnode is 957 * on its list. 958 */ 959 rw_exit(&os_lock); 960 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 961 mutex_exit(&os->os_lock); 962 DNODE_STAT_BUMP(dnode_move_special); 963 return (KMEM_CBRC_NO); 964 } 965 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 966 967 /* 968 * Lock the dnode handle to prevent the dnode from obtaining any new 969 * holds. This also prevents the descendant dbufs and the bonus dbuf 970 * from accessing the dnode, so that we can discount their holds. The 971 * handle is safe to access because we know that while the dnode cannot 972 * go away, neither can its handle. Once we hold dnh_zrlock, we can 973 * safely move any dnode referenced only by dbufs. 974 */ 975 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 976 mutex_exit(&os->os_lock); 977 DNODE_STAT_BUMP(dnode_move_handle); 978 return (KMEM_CBRC_LATER); 979 } 980 981 /* 982 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 983 * We need to guarantee that there is a hold for every dbuf in order to 984 * determine whether the dnode is actively referenced. Falsely matching 985 * a dbuf to an active hold would lead to an unsafe move. It's possible 986 * that a thread already having an active dnode hold is about to add a 987 * dbuf, and we can't compare hold and dbuf counts while the add is in 988 * progress. 989 */ 990 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 991 zrl_exit(&odn->dn_handle->dnh_zrlock); 992 mutex_exit(&os->os_lock); 993 DNODE_STAT_BUMP(dnode_move_rwlock); 994 return (KMEM_CBRC_LATER); 995 } 996 997 /* 998 * A dbuf may be removed (evicted) without an active dnode hold. In that 999 * case, the dbuf count is decremented under the handle lock before the 1000 * dbuf's hold is released. This order ensures that if we count the hold 1001 * after the dbuf is removed but before its hold is released, we will 1002 * treat the unmatched hold as active and exit safely. If we count the 1003 * hold before the dbuf is removed, the hold is discounted, and the 1004 * removal is blocked until the move completes. 1005 */ 1006 refcount = zfs_refcount_count(&odn->dn_holds); 1007 ASSERT(refcount >= 0); 1008 dbufs = odn->dn_dbufs_count; 1009 1010 /* We can't have more dbufs than dnode holds. */ 1011 ASSERT3U(dbufs, <=, refcount); 1012 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 1013 uint32_t, dbufs); 1014 1015 if (refcount > dbufs) { 1016 rw_exit(&odn->dn_struct_rwlock); 1017 zrl_exit(&odn->dn_handle->dnh_zrlock); 1018 mutex_exit(&os->os_lock); 1019 DNODE_STAT_BUMP(dnode_move_active); 1020 return (KMEM_CBRC_LATER); 1021 } 1022 1023 rw_exit(&odn->dn_struct_rwlock); 1024 1025 /* 1026 * At this point we know that anyone with a hold on the dnode is not 1027 * actively referencing it. The dnode is known and in a valid state to 1028 * move. We're holding the locks needed to execute the critical section. 1029 */ 1030 dnode_move_impl(odn, ndn); 1031 1032 list_link_replace(&odn->dn_link, &ndn->dn_link); 1033 /* If the dnode was safe to move, the refcount cannot have changed. */ 1034 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds)); 1035 ASSERT(dbufs == ndn->dn_dbufs_count); 1036 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 1037 mutex_exit(&os->os_lock); 1038 1039 return (KMEM_CBRC_YES); 1040 } 1041 #endif /* _KERNEL */ 1042 1043 static void 1044 dnode_slots_hold(dnode_children_t *children, int idx, int slots) 1045 { 1046 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1047 1048 for (int i = idx; i < idx + slots; i++) { 1049 dnode_handle_t *dnh = &children->dnc_children[i]; 1050 zrl_add(&dnh->dnh_zrlock); 1051 } 1052 } 1053 1054 static void 1055 dnode_slots_rele(dnode_children_t *children, int idx, int slots) 1056 { 1057 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1058 1059 for (int i = idx; i < idx + slots; i++) { 1060 dnode_handle_t *dnh = &children->dnc_children[i]; 1061 1062 if (zrl_is_locked(&dnh->dnh_zrlock)) 1063 zrl_exit(&dnh->dnh_zrlock); 1064 else 1065 zrl_remove(&dnh->dnh_zrlock); 1066 } 1067 } 1068 1069 static int 1070 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots) 1071 { 1072 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1073 1074 for (int i = idx; i < idx + slots; i++) { 1075 dnode_handle_t *dnh = &children->dnc_children[i]; 1076 1077 if (!zrl_tryenter(&dnh->dnh_zrlock)) { 1078 for (int j = idx; j < i; j++) { 1079 dnh = &children->dnc_children[j]; 1080 zrl_exit(&dnh->dnh_zrlock); 1081 } 1082 1083 return (0); 1084 } 1085 } 1086 1087 return (1); 1088 } 1089 1090 static void 1091 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) 1092 { 1093 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1094 1095 for (int i = idx; i < idx + slots; i++) { 1096 dnode_handle_t *dnh = &children->dnc_children[i]; 1097 dnh->dnh_dnode = ptr; 1098 } 1099 } 1100 1101 static boolean_t 1102 dnode_check_slots_free(dnode_children_t *children, int idx, int slots) 1103 { 1104 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1105 1106 /* 1107 * If all dnode slots are either already free or 1108 * evictable return B_TRUE. 1109 */ 1110 for (int i = idx; i < idx + slots; i++) { 1111 dnode_handle_t *dnh = &children->dnc_children[i]; 1112 dnode_t *dn = dnh->dnh_dnode; 1113 1114 if (dn == DN_SLOT_FREE) { 1115 continue; 1116 } else if (DN_SLOT_IS_PTR(dn)) { 1117 mutex_enter(&dn->dn_mtx); 1118 boolean_t can_free = (dn->dn_type == DMU_OT_NONE && 1119 zfs_refcount_is_zero(&dn->dn_holds) && 1120 !DNODE_IS_DIRTY(dn)); 1121 mutex_exit(&dn->dn_mtx); 1122 1123 if (!can_free) 1124 return (B_FALSE); 1125 else 1126 continue; 1127 } else { 1128 return (B_FALSE); 1129 } 1130 } 1131 1132 return (B_TRUE); 1133 } 1134 1135 static void 1136 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) 1137 { 1138 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1139 1140 for (int i = idx; i < idx + slots; i++) { 1141 dnode_handle_t *dnh = &children->dnc_children[i]; 1142 1143 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 1144 1145 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1146 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); 1147 dnode_destroy(dnh->dnh_dnode); 1148 dnh->dnh_dnode = DN_SLOT_FREE; 1149 } 1150 } 1151 } 1152 1153 void 1154 dnode_free_interior_slots(dnode_t *dn) 1155 { 1156 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); 1157 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; 1158 int idx = (dn->dn_object & (epb - 1)) + 1; 1159 int slots = dn->dn_num_slots - 1; 1160 1161 if (slots == 0) 1162 return; 1163 1164 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1165 1166 while (!dnode_slots_tryenter(children, idx, slots)) 1167 DNODE_STAT_BUMP(dnode_free_interior_lock_retry); 1168 1169 dnode_set_slots(children, idx, slots, DN_SLOT_FREE); 1170 dnode_slots_rele(children, idx, slots); 1171 } 1172 1173 void 1174 dnode_special_close(dnode_handle_t *dnh) 1175 { 1176 dnode_t *dn = dnh->dnh_dnode; 1177 1178 /* 1179 * Wait for final references to the dnode to clear. This can 1180 * only happen if the arc is asynchronously evicting state that 1181 * has a hold on this dnode while we are trying to evict this 1182 * dnode. 1183 */ 1184 while (zfs_refcount_count(&dn->dn_holds) > 0) 1185 delay(1); 1186 ASSERT(dn->dn_dbuf == NULL || 1187 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1188 zrl_add(&dnh->dnh_zrlock); 1189 dnode_destroy(dn); /* implicit zrl_remove() */ 1190 zrl_destroy(&dnh->dnh_zrlock); 1191 dnh->dnh_dnode = NULL; 1192 } 1193 1194 void 1195 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1196 dnode_handle_t *dnh) 1197 { 1198 dnode_t *dn; 1199 1200 zrl_init(&dnh->dnh_zrlock); 1201 zrl_tryenter(&dnh->dnh_zrlock); 1202 1203 dn = dnode_create(os, dnp, NULL, object, dnh); 1204 DNODE_VERIFY(dn); 1205 1206 zrl_exit(&dnh->dnh_zrlock); 1207 } 1208 1209 static void 1210 dnode_buf_evict_async(void *dbu) 1211 { 1212 dnode_children_t *dnc = dbu; 1213 1214 DNODE_STAT_BUMP(dnode_buf_evict); 1215 1216 for (int i = 0; i < dnc->dnc_count; i++) { 1217 dnode_handle_t *dnh = &dnc->dnc_children[i]; 1218 dnode_t *dn; 1219 1220 /* 1221 * The dnode handle lock guards against the dnode moving to 1222 * another valid address, so there is no need here to guard 1223 * against changes to or from NULL. 1224 */ 1225 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1226 zrl_destroy(&dnh->dnh_zrlock); 1227 dnh->dnh_dnode = DN_SLOT_UNINIT; 1228 continue; 1229 } 1230 1231 zrl_add(&dnh->dnh_zrlock); 1232 dn = dnh->dnh_dnode; 1233 /* 1234 * If there are holds on this dnode, then there should 1235 * be holds on the dnode's containing dbuf as well; thus 1236 * it wouldn't be eligible for eviction and this function 1237 * would not have been called. 1238 */ 1239 ASSERT(zfs_refcount_is_zero(&dn->dn_holds)); 1240 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 1241 1242 dnode_destroy(dn); /* implicit zrl_remove() for first slot */ 1243 zrl_destroy(&dnh->dnh_zrlock); 1244 dnh->dnh_dnode = DN_SLOT_UNINIT; 1245 } 1246 kmem_free(dnc, sizeof (dnode_children_t) + 1247 dnc->dnc_count * sizeof (dnode_handle_t)); 1248 } 1249 1250 /* 1251 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used 1252 * to ensure the hole at the specified object offset is large enough to 1253 * hold the dnode being created. The slots parameter is also used to ensure 1254 * a dnode does not span multiple dnode blocks. In both of these cases, if 1255 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases 1256 * are only possible when using DNODE_MUST_BE_FREE. 1257 * 1258 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. 1259 * dnode_hold_impl() will check if the requested dnode is already consumed 1260 * as an extra dnode slot by an large dnode, in which case it returns 1261 * ENOENT. 1262 * 1263 * errors: 1264 * EINVAL - invalid object number or flags. 1265 * ENOSPC - hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) 1266 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) 1267 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) 1268 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) 1269 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) 1270 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) 1271 * EIO - i/o error error when reading the meta dnode dbuf. 1272 * succeeds even for free dnodes. 1273 */ 1274 int 1275 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, 1276 void *tag, dnode_t **dnp) 1277 { 1278 int epb, idx, err; 1279 int drop_struct_lock = FALSE; 1280 int type; 1281 uint64_t blk; 1282 dnode_t *mdn, *dn; 1283 dmu_buf_impl_t *db; 1284 dnode_children_t *dnc; 1285 dnode_phys_t *dn_block; 1286 dnode_handle_t *dnh; 1287 1288 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); 1289 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); 1290 1291 /* 1292 * If you are holding the spa config lock as writer, you shouldn't 1293 * be asking the DMU to do *anything* unless it's the root pool 1294 * which may require us to read from the root filesystem while 1295 * holding some (not all) of the locks as writer. 1296 */ 1297 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1298 (spa_is_root(os->os_spa) && 1299 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1300 1301 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1302 1303 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT || 1304 object == DMU_PROJECTUSED_OBJECT) { 1305 if (object == DMU_USERUSED_OBJECT) 1306 dn = DMU_USERUSED_DNODE(os); 1307 else if (object == DMU_GROUPUSED_OBJECT) 1308 dn = DMU_GROUPUSED_DNODE(os); 1309 else 1310 dn = DMU_PROJECTUSED_DNODE(os); 1311 if (dn == NULL) 1312 return (SET_ERROR(ENOENT)); 1313 type = dn->dn_type; 1314 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1315 return (SET_ERROR(ENOENT)); 1316 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1317 return (SET_ERROR(EEXIST)); 1318 DNODE_VERIFY(dn); 1319 (void) zfs_refcount_add(&dn->dn_holds, tag); 1320 *dnp = dn; 1321 return (0); 1322 } 1323 1324 if (object == 0 || object >= DN_MAX_OBJECT) 1325 return (SET_ERROR(EINVAL)); 1326 1327 mdn = DMU_META_DNODE(os); 1328 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1329 1330 DNODE_VERIFY(mdn); 1331 1332 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1333 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1334 drop_struct_lock = TRUE; 1335 } 1336 1337 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1338 1339 db = dbuf_hold(mdn, blk, FTAG); 1340 if (drop_struct_lock) 1341 rw_exit(&mdn->dn_struct_rwlock); 1342 if (db == NULL) { 1343 DNODE_STAT_BUMP(dnode_hold_dbuf_hold); 1344 return (SET_ERROR(EIO)); 1345 } 1346 /* 1347 * We do not need to decrypt to read the dnode so it doesn't matter 1348 * if we get the encrypted or decrypted version. 1349 */ 1350 err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT); 1351 if (err) { 1352 DNODE_STAT_BUMP(dnode_hold_dbuf_read); 1353 dbuf_rele(db, FTAG); 1354 return (err); 1355 } 1356 1357 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1358 epb = db->db.db_size >> DNODE_SHIFT; 1359 1360 idx = object & (epb - 1); 1361 dn_block = (dnode_phys_t *)db->db.db_data; 1362 1363 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1364 dnc = dmu_buf_get_user(&db->db); 1365 dnh = NULL; 1366 if (dnc == NULL) { 1367 dnode_children_t *winner; 1368 int skip = 0; 1369 1370 dnc = kmem_zalloc(sizeof (dnode_children_t) + 1371 epb * sizeof (dnode_handle_t), KM_SLEEP); 1372 dnc->dnc_count = epb; 1373 dnh = &dnc->dnc_children[0]; 1374 1375 /* Initialize dnode slot status from dnode_phys_t */ 1376 for (int i = 0; i < epb; i++) { 1377 zrl_init(&dnh[i].dnh_zrlock); 1378 1379 if (skip) { 1380 skip--; 1381 continue; 1382 } 1383 1384 if (dn_block[i].dn_type != DMU_OT_NONE) { 1385 int interior = dn_block[i].dn_extra_slots; 1386 1387 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); 1388 dnode_set_slots(dnc, i + 1, interior, 1389 DN_SLOT_INTERIOR); 1390 skip = interior; 1391 } else { 1392 dnh[i].dnh_dnode = DN_SLOT_FREE; 1393 skip = 0; 1394 } 1395 } 1396 1397 dmu_buf_init_user(&dnc->dnc_dbu, NULL, 1398 dnode_buf_evict_async, NULL); 1399 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); 1400 if (winner != NULL) { 1401 1402 for (int i = 0; i < epb; i++) 1403 zrl_destroy(&dnh[i].dnh_zrlock); 1404 1405 kmem_free(dnc, sizeof (dnode_children_t) + 1406 epb * sizeof (dnode_handle_t)); 1407 dnc = winner; 1408 } 1409 } 1410 1411 ASSERT(dnc->dnc_count == epb); 1412 dn = DN_SLOT_UNINIT; 1413 1414 if (flag & DNODE_MUST_BE_ALLOCATED) { 1415 slots = 1; 1416 1417 while (dn == DN_SLOT_UNINIT) { 1418 dnode_slots_hold(dnc, idx, slots); 1419 dnh = &dnc->dnc_children[idx]; 1420 1421 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1422 dn = dnh->dnh_dnode; 1423 break; 1424 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { 1425 DNODE_STAT_BUMP(dnode_hold_alloc_interior); 1426 dnode_slots_rele(dnc, idx, slots); 1427 dbuf_rele(db, FTAG); 1428 return (SET_ERROR(EEXIST)); 1429 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { 1430 DNODE_STAT_BUMP(dnode_hold_alloc_misses); 1431 dnode_slots_rele(dnc, idx, slots); 1432 dbuf_rele(db, FTAG); 1433 return (SET_ERROR(ENOENT)); 1434 } 1435 1436 dnode_slots_rele(dnc, idx, slots); 1437 if (!dnode_slots_tryenter(dnc, idx, slots)) { 1438 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry); 1439 continue; 1440 } 1441 1442 /* 1443 * Someone else won the race and called dnode_create() 1444 * after we checked DN_SLOT_IS_PTR() above but before 1445 * we acquired the lock. 1446 */ 1447 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1448 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); 1449 dn = dnh->dnh_dnode; 1450 } else { 1451 dn = dnode_create(os, dn_block + idx, db, 1452 object, dnh); 1453 } 1454 } 1455 1456 mutex_enter(&dn->dn_mtx); 1457 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { 1458 DNODE_STAT_BUMP(dnode_hold_alloc_type_none); 1459 mutex_exit(&dn->dn_mtx); 1460 dnode_slots_rele(dnc, idx, slots); 1461 dbuf_rele(db, FTAG); 1462 return (SET_ERROR(ENOENT)); 1463 } 1464 1465 DNODE_STAT_BUMP(dnode_hold_alloc_hits); 1466 } else if (flag & DNODE_MUST_BE_FREE) { 1467 1468 if (idx + slots - 1 >= DNODES_PER_BLOCK) { 1469 DNODE_STAT_BUMP(dnode_hold_free_overflow); 1470 dbuf_rele(db, FTAG); 1471 return (SET_ERROR(ENOSPC)); 1472 } 1473 1474 while (dn == DN_SLOT_UNINIT) { 1475 dnode_slots_hold(dnc, idx, slots); 1476 1477 if (!dnode_check_slots_free(dnc, idx, slots)) { 1478 DNODE_STAT_BUMP(dnode_hold_free_misses); 1479 dnode_slots_rele(dnc, idx, slots); 1480 dbuf_rele(db, FTAG); 1481 return (SET_ERROR(ENOSPC)); 1482 } 1483 1484 dnode_slots_rele(dnc, idx, slots); 1485 if (!dnode_slots_tryenter(dnc, idx, slots)) { 1486 DNODE_STAT_BUMP(dnode_hold_free_lock_retry); 1487 continue; 1488 } 1489 1490 if (!dnode_check_slots_free(dnc, idx, slots)) { 1491 DNODE_STAT_BUMP(dnode_hold_free_lock_misses); 1492 dnode_slots_rele(dnc, idx, slots); 1493 dbuf_rele(db, FTAG); 1494 return (SET_ERROR(ENOSPC)); 1495 } 1496 1497 /* 1498 * Allocated but otherwise free dnodes which would 1499 * be in the interior of a multi-slot dnodes need 1500 * to be freed. Single slot dnodes can be safely 1501 * re-purposed as a performance optimization. 1502 */ 1503 if (slots > 1) 1504 dnode_reclaim_slots(dnc, idx + 1, slots - 1); 1505 1506 dnh = &dnc->dnc_children[idx]; 1507 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1508 dn = dnh->dnh_dnode; 1509 } else { 1510 dn = dnode_create(os, dn_block + idx, db, 1511 object, dnh); 1512 } 1513 } 1514 1515 mutex_enter(&dn->dn_mtx); 1516 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { 1517 DNODE_STAT_BUMP(dnode_hold_free_refcount); 1518 mutex_exit(&dn->dn_mtx); 1519 dnode_slots_rele(dnc, idx, slots); 1520 dbuf_rele(db, FTAG); 1521 return (SET_ERROR(EEXIST)); 1522 } 1523 1524 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); 1525 DNODE_STAT_BUMP(dnode_hold_free_hits); 1526 } else { 1527 dbuf_rele(db, FTAG); 1528 return (SET_ERROR(EINVAL)); 1529 } 1530 1531 if (dn->dn_free_txg) { 1532 DNODE_STAT_BUMP(dnode_hold_free_txg); 1533 type = dn->dn_type; 1534 mutex_exit(&dn->dn_mtx); 1535 dnode_slots_rele(dnc, idx, slots); 1536 dbuf_rele(db, FTAG); 1537 return (SET_ERROR((flag & DNODE_MUST_BE_ALLOCATED) ? 1538 ENOENT : EEXIST)); 1539 } 1540 1541 if (zfs_refcount_add(&dn->dn_holds, tag) == 1) 1542 dbuf_add_ref(db, dnh); 1543 1544 mutex_exit(&dn->dn_mtx); 1545 1546 /* Now we can rely on the hold to prevent the dnode from moving. */ 1547 dnode_slots_rele(dnc, idx, slots); 1548 1549 DNODE_VERIFY(dn); 1550 ASSERT3P(dn->dn_dbuf, ==, db); 1551 ASSERT3U(dn->dn_object, ==, object); 1552 dbuf_rele(db, FTAG); 1553 1554 *dnp = dn; 1555 return (0); 1556 } 1557 1558 /* 1559 * Return held dnode if the object is allocated, NULL if not. 1560 */ 1561 int 1562 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1563 { 1564 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, 1565 dnp)); 1566 } 1567 1568 /* 1569 * Can only add a reference if there is already at least one 1570 * reference on the dnode. Returns FALSE if unable to add a 1571 * new reference. 1572 */ 1573 boolean_t 1574 dnode_add_ref(dnode_t *dn, void *tag) 1575 { 1576 mutex_enter(&dn->dn_mtx); 1577 if (zfs_refcount_is_zero(&dn->dn_holds)) { 1578 mutex_exit(&dn->dn_mtx); 1579 return (FALSE); 1580 } 1581 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag)); 1582 mutex_exit(&dn->dn_mtx); 1583 return (TRUE); 1584 } 1585 1586 void 1587 dnode_rele(dnode_t *dn, void *tag) 1588 { 1589 mutex_enter(&dn->dn_mtx); 1590 dnode_rele_and_unlock(dn, tag, B_FALSE); 1591 } 1592 1593 void 1594 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting) 1595 { 1596 uint64_t refs; 1597 /* Get while the hold prevents the dnode from moving. */ 1598 dmu_buf_impl_t *db = dn->dn_dbuf; 1599 dnode_handle_t *dnh = dn->dn_handle; 1600 1601 refs = zfs_refcount_remove(&dn->dn_holds, tag); 1602 mutex_exit(&dn->dn_mtx); 1603 1604 /* 1605 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1606 * indirectly by dbuf_rele() while relying on the dnode handle to 1607 * prevent the dnode from moving, since releasing the last hold could 1608 * result in the dnode's parent dbuf evicting its dnode handles. For 1609 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1610 * other direct or indirect hold on the dnode must first drop the dnode 1611 * handle. 1612 */ 1613 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1614 1615 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1616 if (refs == 0 && db != NULL) { 1617 /* 1618 * Another thread could add a hold to the dnode handle in 1619 * dnode_hold_impl() while holding the parent dbuf. Since the 1620 * hold on the parent dbuf prevents the handle from being 1621 * destroyed, the hold on the handle is OK. We can't yet assert 1622 * that the handle has zero references, but that will be 1623 * asserted anyway when the handle gets destroyed. 1624 */ 1625 mutex_enter(&db->db_mtx); 1626 dbuf_rele_and_unlock(db, dnh, evicting); 1627 } 1628 } 1629 1630 void 1631 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1632 { 1633 objset_t *os = dn->dn_objset; 1634 uint64_t txg = tx->tx_txg; 1635 1636 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1637 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1638 return; 1639 } 1640 1641 DNODE_VERIFY(dn); 1642 1643 #ifdef ZFS_DEBUG 1644 mutex_enter(&dn->dn_mtx); 1645 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1646 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1647 mutex_exit(&dn->dn_mtx); 1648 #endif 1649 1650 /* 1651 * Determine old uid/gid when necessary 1652 */ 1653 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1654 1655 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK]; 1656 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1657 1658 /* 1659 * If we are already marked dirty, we're done. 1660 */ 1661 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1662 multilist_sublist_unlock(mls); 1663 return; 1664 } 1665 1666 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) || 1667 !avl_is_empty(&dn->dn_dbufs)); 1668 ASSERT(dn->dn_datablksz != 0); 1669 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); 1670 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); 1671 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); 1672 1673 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1674 dn->dn_object, txg); 1675 1676 multilist_sublist_insert_head(mls, dn); 1677 1678 multilist_sublist_unlock(mls); 1679 1680 /* 1681 * The dnode maintains a hold on its containing dbuf as 1682 * long as there are holds on it. Each instantiated child 1683 * dbuf maintains a hold on the dnode. When the last child 1684 * drops its hold, the dnode will drop its hold on the 1685 * containing dbuf. We add a "dirty hold" here so that the 1686 * dnode will hang around after we finish processing its 1687 * children. 1688 */ 1689 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1690 1691 (void) dbuf_dirty(dn->dn_dbuf, tx); 1692 1693 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1694 } 1695 1696 void 1697 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1698 { 1699 mutex_enter(&dn->dn_mtx); 1700 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1701 mutex_exit(&dn->dn_mtx); 1702 return; 1703 } 1704 dn->dn_free_txg = tx->tx_txg; 1705 mutex_exit(&dn->dn_mtx); 1706 1707 dnode_setdirty(dn, tx); 1708 } 1709 1710 /* 1711 * Try to change the block size for the indicated dnode. This can only 1712 * succeed if there are no blocks allocated or dirty beyond first block 1713 */ 1714 int 1715 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1716 { 1717 dmu_buf_impl_t *db; 1718 int err; 1719 1720 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1721 if (size == 0) 1722 size = SPA_MINBLOCKSIZE; 1723 else 1724 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1725 1726 if (ibs == dn->dn_indblkshift) 1727 ibs = 0; 1728 1729 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1730 return (0); 1731 1732 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1733 1734 /* Check for any allocated blocks beyond the first */ 1735 if (dn->dn_maxblkid != 0) 1736 goto fail; 1737 1738 mutex_enter(&dn->dn_dbufs_mtx); 1739 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1740 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1741 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1742 db->db_blkid != DMU_SPILL_BLKID) { 1743 mutex_exit(&dn->dn_dbufs_mtx); 1744 goto fail; 1745 } 1746 } 1747 mutex_exit(&dn->dn_dbufs_mtx); 1748 1749 if (ibs && dn->dn_nlevels != 1) 1750 goto fail; 1751 1752 /* resize the old block */ 1753 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1754 if (err == 0) 1755 dbuf_new_size(db, size, tx); 1756 else if (err != ENOENT) 1757 goto fail; 1758 1759 dnode_setdblksz(dn, size); 1760 dnode_setdirty(dn, tx); 1761 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1762 if (ibs) { 1763 dn->dn_indblkshift = ibs; 1764 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1765 } 1766 /* rele after we have fixed the blocksize in the dnode */ 1767 if (db) 1768 dbuf_rele(db, FTAG); 1769 1770 rw_exit(&dn->dn_struct_rwlock); 1771 return (0); 1772 1773 fail: 1774 rw_exit(&dn->dn_struct_rwlock); 1775 return (SET_ERROR(ENOTSUP)); 1776 } 1777 1778 static void 1779 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx) 1780 { 1781 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1782 int old_nlevels = dn->dn_nlevels; 1783 dmu_buf_impl_t *db; 1784 list_t *list; 1785 dbuf_dirty_record_t *new, *dr, *dr_next; 1786 1787 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1788 1789 dn->dn_nlevels = new_nlevels; 1790 1791 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1792 dn->dn_next_nlevels[txgoff] = new_nlevels; 1793 1794 /* dirty the left indirects */ 1795 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1796 ASSERT(db != NULL); 1797 new = dbuf_dirty(db, tx); 1798 dbuf_rele(db, FTAG); 1799 1800 /* transfer the dirty records to the new indirect */ 1801 mutex_enter(&dn->dn_mtx); 1802 mutex_enter(&new->dt.di.dr_mtx); 1803 list = &dn->dn_dirty_records[txgoff]; 1804 for (dr = list_head(list); dr; dr = dr_next) { 1805 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1806 if (dr->dr_dbuf->db_level != new_nlevels-1 && 1807 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1808 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 1809 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 1810 list_remove(&dn->dn_dirty_records[txgoff], dr); 1811 list_insert_tail(&new->dt.di.dr_children, dr); 1812 dr->dr_parent = new; 1813 } 1814 } 1815 mutex_exit(&new->dt.di.dr_mtx); 1816 mutex_exit(&dn->dn_mtx); 1817 } 1818 1819 int 1820 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx) 1821 { 1822 int ret = 0; 1823 1824 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1825 1826 if (dn->dn_nlevels == nlevels) { 1827 ret = 0; 1828 goto out; 1829 } else if (nlevels < dn->dn_nlevels) { 1830 ret = SET_ERROR(EINVAL); 1831 goto out; 1832 } 1833 1834 dnode_set_nlevels_impl(dn, nlevels, tx); 1835 1836 out: 1837 rw_exit(&dn->dn_struct_rwlock); 1838 return (ret); 1839 } 1840 1841 /* read-holding callers must not rely on the lock being continuously held */ 1842 void 1843 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read, 1844 boolean_t force) 1845 { 1846 int epbs, new_nlevels; 1847 uint64_t sz; 1848 1849 ASSERT(blkid != DMU_BONUS_BLKID); 1850 1851 ASSERT(have_read ? 1852 RW_READ_HELD(&dn->dn_struct_rwlock) : 1853 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1854 1855 /* 1856 * if we have a read-lock, check to see if we need to do any work 1857 * before upgrading to a write-lock. 1858 */ 1859 if (have_read) { 1860 if (blkid <= dn->dn_maxblkid) 1861 return; 1862 1863 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1864 rw_exit(&dn->dn_struct_rwlock); 1865 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1866 } 1867 } 1868 1869 /* 1870 * Raw sends (indicated by the force flag) require that we take the 1871 * given blkid even if the value is lower than the current value. 1872 */ 1873 if (!force && blkid <= dn->dn_maxblkid) 1874 goto out; 1875 1876 /* 1877 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff] 1878 * to indicate that this field is set. This allows us to set the 1879 * maxblkid to 0 on an existing object in dnode_sync(). 1880 */ 1881 dn->dn_maxblkid = blkid; 1882 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] = 1883 blkid | DMU_NEXT_MAXBLKID_SET; 1884 1885 /* 1886 * Compute the number of levels necessary to support the new maxblkid. 1887 * Raw sends will ensure nlevels is set correctly for us. 1888 */ 1889 new_nlevels = 1; 1890 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1891 for (sz = dn->dn_nblkptr; 1892 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1893 new_nlevels++; 1894 1895 if (!force) { 1896 if (new_nlevels > dn->dn_nlevels) 1897 dnode_set_nlevels_impl(dn, new_nlevels, tx); 1898 } else { 1899 ASSERT3U(dn->dn_nlevels, >=, new_nlevels); 1900 } 1901 1902 out: 1903 if (have_read) 1904 rw_downgrade(&dn->dn_struct_rwlock); 1905 } 1906 1907 static void 1908 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1909 { 1910 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1911 if (db != NULL) { 1912 dmu_buf_will_dirty(&db->db, tx); 1913 dbuf_rele(db, FTAG); 1914 } 1915 } 1916 1917 /* 1918 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid 1919 * and end_blkid. 1920 */ 1921 static void 1922 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1923 dmu_tx_t *tx) 1924 { 1925 dmu_buf_impl_t db_search; 1926 dmu_buf_impl_t *db; 1927 avl_index_t where; 1928 1929 mutex_enter(&dn->dn_dbufs_mtx); 1930 1931 db_search.db_level = 1; 1932 db_search.db_blkid = start_blkid + 1; 1933 db_search.db_state = DB_SEARCH; 1934 for (;;) { 1935 1936 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1937 if (db == NULL) 1938 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1939 1940 if (db == NULL || db->db_level != 1 || 1941 db->db_blkid >= end_blkid) { 1942 break; 1943 } 1944 1945 /* 1946 * Setup the next blkid we want to search for. 1947 */ 1948 db_search.db_blkid = db->db_blkid + 1; 1949 ASSERT3U(db->db_blkid, >=, start_blkid); 1950 1951 /* 1952 * If the dbuf transitions to DB_EVICTING while we're trying 1953 * to dirty it, then we will be unable to discover it in 1954 * the dbuf hash table. This will result in a call to 1955 * dbuf_create() which needs to acquire the dn_dbufs_mtx 1956 * lock. To avoid a deadlock, we drop the lock before 1957 * dirtying the level-1 dbuf. 1958 */ 1959 mutex_exit(&dn->dn_dbufs_mtx); 1960 dnode_dirty_l1(dn, db->db_blkid, tx); 1961 mutex_enter(&dn->dn_dbufs_mtx); 1962 } 1963 1964 #ifdef ZFS_DEBUG 1965 /* 1966 * Walk all the in-core level-1 dbufs and verify they have been dirtied. 1967 */ 1968 db_search.db_level = 1; 1969 db_search.db_blkid = start_blkid + 1; 1970 db_search.db_state = DB_SEARCH; 1971 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1972 if (db == NULL) 1973 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1974 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { 1975 if (db->db_level != 1 || db->db_blkid >= end_blkid) 1976 break; 1977 ASSERT(db->db_dirtycnt > 0); 1978 } 1979 #endif 1980 mutex_exit(&dn->dn_dbufs_mtx); 1981 } 1982 1983 void 1984 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 1985 { 1986 dmu_buf_impl_t *db; 1987 uint64_t blkoff, blkid, nblks; 1988 int blksz, blkshift, head, tail; 1989 int trunc = FALSE; 1990 int epbs; 1991 1992 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1993 blksz = dn->dn_datablksz; 1994 blkshift = dn->dn_datablkshift; 1995 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1996 1997 if (len == DMU_OBJECT_END) { 1998 len = UINT64_MAX - off; 1999 trunc = TRUE; 2000 } 2001 2002 /* 2003 * First, block align the region to free: 2004 */ 2005 if (ISP2(blksz)) { 2006 head = P2NPHASE(off, blksz); 2007 blkoff = P2PHASE(off, blksz); 2008 if ((off >> blkshift) > dn->dn_maxblkid) 2009 goto out; 2010 } else { 2011 ASSERT(dn->dn_maxblkid == 0); 2012 if (off == 0 && len >= blksz) { 2013 /* 2014 * Freeing the whole block; fast-track this request. 2015 */ 2016 blkid = 0; 2017 nblks = 1; 2018 if (dn->dn_nlevels > 1) 2019 dnode_dirty_l1(dn, 0, tx); 2020 goto done; 2021 } else if (off >= blksz) { 2022 /* Freeing past end-of-data */ 2023 goto out; 2024 } else { 2025 /* Freeing part of the block. */ 2026 head = blksz - off; 2027 ASSERT3U(head, >, 0); 2028 } 2029 blkoff = off; 2030 } 2031 /* zero out any partial block data at the start of the range */ 2032 if (head) { 2033 ASSERT3U(blkoff + head, ==, blksz); 2034 if (len < head) 2035 head = len; 2036 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 2037 TRUE, FALSE, FTAG, &db) == 0) { 2038 caddr_t data; 2039 2040 /* don't dirty if it isn't on disk and isn't dirty */ 2041 if (db->db_last_dirty || 2042 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 2043 rw_exit(&dn->dn_struct_rwlock); 2044 dmu_buf_will_dirty(&db->db, tx); 2045 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2046 data = db->db.db_data; 2047 bzero(data + blkoff, head); 2048 } 2049 dbuf_rele(db, FTAG); 2050 } 2051 off += head; 2052 len -= head; 2053 } 2054 2055 /* If the range was less than one block, we're done */ 2056 if (len == 0) 2057 goto out; 2058 2059 /* If the remaining range is past end of file, we're done */ 2060 if ((off >> blkshift) > dn->dn_maxblkid) 2061 goto out; 2062 2063 ASSERT(ISP2(blksz)); 2064 if (trunc) 2065 tail = 0; 2066 else 2067 tail = P2PHASE(len, blksz); 2068 2069 ASSERT0(P2PHASE(off, blksz)); 2070 /* zero out any partial block data at the end of the range */ 2071 if (tail) { 2072 if (len < tail) 2073 tail = len; 2074 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 2075 TRUE, FALSE, FTAG, &db) == 0) { 2076 /* don't dirty if not on disk and not dirty */ 2077 if (db->db_last_dirty || 2078 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 2079 rw_exit(&dn->dn_struct_rwlock); 2080 dmu_buf_will_dirty(&db->db, tx); 2081 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2082 bzero(db->db.db_data, tail); 2083 } 2084 dbuf_rele(db, FTAG); 2085 } 2086 len -= tail; 2087 } 2088 2089 /* If the range did not include a full block, we are done */ 2090 if (len == 0) 2091 goto out; 2092 2093 ASSERT(IS_P2ALIGNED(off, blksz)); 2094 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 2095 blkid = off >> blkshift; 2096 nblks = len >> blkshift; 2097 if (trunc) 2098 nblks += 1; 2099 2100 /* 2101 * Dirty all the indirect blocks in this range. Note that only 2102 * the first and last indirect blocks can actually be written 2103 * (if they were partially freed) -- they must be dirtied, even if 2104 * they do not exist on disk yet. The interior blocks will 2105 * be freed by free_children(), so they will not actually be written. 2106 * Even though these interior blocks will not be written, we 2107 * dirty them for two reasons: 2108 * 2109 * - It ensures that the indirect blocks remain in memory until 2110 * syncing context. (They have already been prefetched by 2111 * dmu_tx_hold_free(), so we don't have to worry about reading 2112 * them serially here.) 2113 * 2114 * - The dirty space accounting will put pressure on the txg sync 2115 * mechanism to begin syncing, and to delay transactions if there 2116 * is a large amount of freeing. Even though these indirect 2117 * blocks will not be written, we could need to write the same 2118 * amount of space if we copy the freed BPs into deadlists. 2119 */ 2120 if (dn->dn_nlevels > 1) { 2121 uint64_t first, last; 2122 2123 first = blkid >> epbs; 2124 dnode_dirty_l1(dn, first, tx); 2125 if (trunc) 2126 last = dn->dn_maxblkid >> epbs; 2127 else 2128 last = (blkid + nblks - 1) >> epbs; 2129 if (last != first) 2130 dnode_dirty_l1(dn, last, tx); 2131 2132 dnode_dirty_l1range(dn, first, last, tx); 2133 2134 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 2135 SPA_BLKPTRSHIFT; 2136 for (uint64_t i = first + 1; i < last; i++) { 2137 /* 2138 * Set i to the blockid of the next non-hole 2139 * level-1 indirect block at or after i. Note 2140 * that dnode_next_offset() operates in terms of 2141 * level-0-equivalent bytes. 2142 */ 2143 uint64_t ibyte = i << shift; 2144 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 2145 &ibyte, 2, 1, 0); 2146 i = ibyte >> shift; 2147 if (i >= last) 2148 break; 2149 2150 /* 2151 * Normally we should not see an error, either 2152 * from dnode_next_offset() or dbuf_hold_level() 2153 * (except for ESRCH from dnode_next_offset). 2154 * If there is an i/o error, then when we read 2155 * this block in syncing context, it will use 2156 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 2157 * to the "failmode" property. dnode_next_offset() 2158 * doesn't have a flag to indicate MUSTSUCCEED. 2159 */ 2160 if (err != 0) 2161 break; 2162 2163 dnode_dirty_l1(dn, i, tx); 2164 } 2165 } 2166 2167 done: 2168 /* 2169 * Add this range to the dnode range list. 2170 * We will finish up this free operation in the syncing phase. 2171 */ 2172 mutex_enter(&dn->dn_mtx); 2173 int txgoff = tx->tx_txg & TXG_MASK; 2174 if (dn->dn_free_ranges[txgoff] == NULL) { 2175 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL); 2176 } 2177 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 2178 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 2179 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 2180 blkid, nblks, tx->tx_txg); 2181 mutex_exit(&dn->dn_mtx); 2182 2183 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 2184 dnode_setdirty(dn, tx); 2185 out: 2186 2187 rw_exit(&dn->dn_struct_rwlock); 2188 } 2189 2190 static boolean_t 2191 dnode_spill_freed(dnode_t *dn) 2192 { 2193 int i; 2194 2195 mutex_enter(&dn->dn_mtx); 2196 for (i = 0; i < TXG_SIZE; i++) { 2197 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 2198 break; 2199 } 2200 mutex_exit(&dn->dn_mtx); 2201 return (i < TXG_SIZE); 2202 } 2203 2204 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 2205 uint64_t 2206 dnode_block_freed(dnode_t *dn, uint64_t blkid) 2207 { 2208 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 2209 int i; 2210 2211 if (blkid == DMU_BONUS_BLKID) 2212 return (FALSE); 2213 2214 /* 2215 * If we're in the process of opening the pool, dp will not be 2216 * set yet, but there shouldn't be anything dirty. 2217 */ 2218 if (dp == NULL) 2219 return (FALSE); 2220 2221 if (dn->dn_free_txg) 2222 return (TRUE); 2223 2224 if (blkid == DMU_SPILL_BLKID) 2225 return (dnode_spill_freed(dn)); 2226 2227 mutex_enter(&dn->dn_mtx); 2228 for (i = 0; i < TXG_SIZE; i++) { 2229 if (dn->dn_free_ranges[i] != NULL && 2230 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 2231 break; 2232 } 2233 mutex_exit(&dn->dn_mtx); 2234 return (i < TXG_SIZE); 2235 } 2236 2237 /* call from syncing context when we actually write/free space for this dnode */ 2238 void 2239 dnode_diduse_space(dnode_t *dn, int64_t delta) 2240 { 2241 uint64_t space; 2242 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 2243 dn, dn->dn_phys, 2244 (u_longlong_t)dn->dn_phys->dn_used, 2245 (longlong_t)delta); 2246 2247 mutex_enter(&dn->dn_mtx); 2248 space = DN_USED_BYTES(dn->dn_phys); 2249 if (delta > 0) { 2250 ASSERT3U(space + delta, >=, space); /* no overflow */ 2251 } else { 2252 ASSERT3U(space, >=, -delta); /* no underflow */ 2253 } 2254 space += delta; 2255 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 2256 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 2257 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 2258 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 2259 } else { 2260 dn->dn_phys->dn_used = space; 2261 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 2262 } 2263 mutex_exit(&dn->dn_mtx); 2264 } 2265 2266 /* 2267 * Scans a block at the indicated "level" looking for a hole or data, 2268 * depending on 'flags'. 2269 * 2270 * If level > 0, then we are scanning an indirect block looking at its 2271 * pointers. If level == 0, then we are looking at a block of dnodes. 2272 * 2273 * If we don't find what we are looking for in the block, we return ESRCH. 2274 * Otherwise, return with *offset pointing to the beginning (if searching 2275 * forwards) or end (if searching backwards) of the range covered by the 2276 * block pointer we matched on (or dnode). 2277 * 2278 * The basic search algorithm used below by dnode_next_offset() is to 2279 * use this function to search up the block tree (widen the search) until 2280 * we find something (i.e., we don't return ESRCH) and then search back 2281 * down the tree (narrow the search) until we reach our original search 2282 * level. 2283 */ 2284 static int 2285 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 2286 int lvl, uint64_t blkfill, uint64_t txg) 2287 { 2288 dmu_buf_impl_t *db = NULL; 2289 void *data = NULL; 2290 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2291 uint64_t epb = 1ULL << epbs; 2292 uint64_t minfill, maxfill; 2293 boolean_t hole; 2294 int i, inc, error, span; 2295 2296 dprintf("probing object %llu offset %llx level %d of %u\n", 2297 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 2298 2299 hole = ((flags & DNODE_FIND_HOLE) != 0); 2300 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 2301 ASSERT(txg == 0 || !hole); 2302 2303 if (lvl == dn->dn_phys->dn_nlevels) { 2304 error = 0; 2305 epb = dn->dn_phys->dn_nblkptr; 2306 data = dn->dn_phys->dn_blkptr; 2307 } else { 2308 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 2309 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 2310 if (error) { 2311 if (error != ENOENT) 2312 return (error); 2313 if (hole) 2314 return (0); 2315 /* 2316 * This can only happen when we are searching up 2317 * the block tree for data. We don't really need to 2318 * adjust the offset, as we will just end up looking 2319 * at the pointer to this block in its parent, and its 2320 * going to be unallocated, so we will skip over it. 2321 */ 2322 return (SET_ERROR(ESRCH)); 2323 } 2324 error = dbuf_read(db, NULL, 2325 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT); 2326 if (error) { 2327 dbuf_rele(db, FTAG); 2328 return (error); 2329 } 2330 data = db->db.db_data; 2331 } 2332 2333 2334 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 2335 db->db_blkptr->blk_birth <= txg || 2336 BP_IS_HOLE(db->db_blkptr))) { 2337 /* 2338 * This can only happen when we are searching up the tree 2339 * and these conditions mean that we need to keep climbing. 2340 */ 2341 error = SET_ERROR(ESRCH); 2342 } else if (lvl == 0) { 2343 dnode_phys_t *dnp = data; 2344 2345 ASSERT(dn->dn_type == DMU_OT_DNODE); 2346 ASSERT(!(flags & DNODE_FIND_BACKWARDS)); 2347 2348 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); 2349 i < blkfill; i += dnp[i].dn_extra_slots + 1) { 2350 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 2351 break; 2352 } 2353 2354 if (i == blkfill) 2355 error = SET_ERROR(ESRCH); 2356 2357 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + 2358 (i << DNODE_SHIFT); 2359 } else { 2360 blkptr_t *bp = data; 2361 uint64_t start = *offset; 2362 span = (lvl - 1) * epbs + dn->dn_datablkshift; 2363 minfill = 0; 2364 maxfill = blkfill << ((lvl - 1) * epbs); 2365 2366 if (hole) 2367 maxfill--; 2368 else 2369 minfill++; 2370 2371 *offset = *offset >> span; 2372 for (i = BF64_GET(*offset, 0, epbs); 2373 i >= 0 && i < epb; i += inc) { 2374 if (BP_GET_FILL(&bp[i]) >= minfill && 2375 BP_GET_FILL(&bp[i]) <= maxfill && 2376 (hole || bp[i].blk_birth > txg)) 2377 break; 2378 if (inc > 0 || *offset > 0) 2379 *offset += inc; 2380 } 2381 *offset = *offset << span; 2382 if (inc < 0) { 2383 /* traversing backwards; position offset at the end */ 2384 ASSERT3U(*offset, <=, start); 2385 *offset = MIN(*offset + (1ULL << span) - 1, start); 2386 } else if (*offset < start) { 2387 *offset = start; 2388 } 2389 if (i < 0 || i >= epb) 2390 error = SET_ERROR(ESRCH); 2391 } 2392 2393 if (db) 2394 dbuf_rele(db, FTAG); 2395 2396 return (error); 2397 } 2398 2399 /* 2400 * Find the next hole, data, or sparse region at or after *offset. 2401 * The value 'blkfill' tells us how many items we expect to find 2402 * in an L0 data block; this value is 1 for normal objects, 2403 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 2404 * DNODES_PER_BLOCK when searching for sparse regions thereof. 2405 * 2406 * Examples: 2407 * 2408 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 2409 * Finds the next/previous hole/data in a file. 2410 * Used in dmu_offset_next(). 2411 * 2412 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 2413 * Finds the next free/allocated dnode an objset's meta-dnode. 2414 * Only finds objects that have new contents since txg (ie. 2415 * bonus buffer changes and content removal are ignored). 2416 * Used in dmu_object_next(). 2417 * 2418 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 2419 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 2420 * Used in dmu_object_alloc(). 2421 */ 2422 int 2423 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 2424 int minlvl, uint64_t blkfill, uint64_t txg) 2425 { 2426 uint64_t initial_offset = *offset; 2427 int lvl, maxlvl; 2428 int error = 0; 2429 2430 if (!(flags & DNODE_FIND_HAVELOCK)) 2431 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2432 2433 if (dn->dn_phys->dn_nlevels == 0) { 2434 error = SET_ERROR(ESRCH); 2435 goto out; 2436 } 2437 2438 if (dn->dn_datablkshift == 0) { 2439 if (*offset < dn->dn_datablksz) { 2440 if (flags & DNODE_FIND_HOLE) 2441 *offset = dn->dn_datablksz; 2442 } else { 2443 error = SET_ERROR(ESRCH); 2444 } 2445 goto out; 2446 } 2447 2448 maxlvl = dn->dn_phys->dn_nlevels; 2449 2450 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2451 error = dnode_next_offset_level(dn, 2452 flags, offset, lvl, blkfill, txg); 2453 if (error != ESRCH) 2454 break; 2455 } 2456 2457 while (error == 0 && --lvl >= minlvl) { 2458 error = dnode_next_offset_level(dn, 2459 flags, offset, lvl, blkfill, txg); 2460 } 2461 2462 /* 2463 * There's always a "virtual hole" at the end of the object, even 2464 * if all BP's which physically exist are non-holes. 2465 */ 2466 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2467 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2468 error = 0; 2469 } 2470 2471 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2472 initial_offset < *offset : initial_offset > *offset)) 2473 error = SET_ERROR(ESRCH); 2474 out: 2475 if (!(flags & DNODE_FIND_HAVELOCK)) 2476 rw_exit(&dn->dn_struct_rwlock); 2477 2478 return (error); 2479 } 2480