1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2017 RackTop Systems. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dbuf.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dsl_dir.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/spa.h> 39 #include <sys/zio.h> 40 #include <sys/dmu_zfetch.h> 41 #include <sys/range_tree.h> 42 43 static kmem_cache_t *dnode_cache; 44 /* 45 * Define DNODE_STATS to turn on statistic gathering. By default, it is only 46 * turned on when DEBUG is also defined. 47 */ 48 #ifdef DEBUG 49 #define DNODE_STATS 50 #endif /* DEBUG */ 51 52 #ifdef DNODE_STATS 53 #define DNODE_STAT_ADD(stat) ((stat)++) 54 #else 55 #define DNODE_STAT_ADD(stat) /* nothing */ 56 #endif /* DNODE_STATS */ 57 58 static dnode_phys_t dnode_phys_zero; 59 60 int zfs_default_bs = SPA_MINBLOCKSHIFT; 61 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 62 63 #ifdef _KERNEL 64 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 65 #endif /* _KERNEL */ 66 67 static int 68 dbuf_compare(const void *x1, const void *x2) 69 { 70 const dmu_buf_impl_t *d1 = x1; 71 const dmu_buf_impl_t *d2 = x2; 72 73 if (d1->db_level < d2->db_level) { 74 return (-1); 75 } 76 if (d1->db_level > d2->db_level) { 77 return (1); 78 } 79 80 if (d1->db_blkid < d2->db_blkid) { 81 return (-1); 82 } 83 if (d1->db_blkid > d2->db_blkid) { 84 return (1); 85 } 86 87 if (d1->db_state == DB_SEARCH) { 88 ASSERT3S(d2->db_state, !=, DB_SEARCH); 89 return (-1); 90 } else if (d2->db_state == DB_SEARCH) { 91 ASSERT3S(d1->db_state, !=, DB_SEARCH); 92 return (1); 93 } 94 95 if ((uintptr_t)d1 < (uintptr_t)d2) { 96 return (-1); 97 } 98 if ((uintptr_t)d1 > (uintptr_t)d2) { 99 return (1); 100 } 101 return (0); 102 } 103 104 /* ARGSUSED */ 105 static int 106 dnode_cons(void *arg, void *unused, int kmflag) 107 { 108 dnode_t *dn = arg; 109 int i; 110 111 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 112 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 113 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 114 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 115 116 /* 117 * Every dbuf has a reference, and dropping a tracked reference is 118 * O(number of references), so don't track dn_holds. 119 */ 120 refcount_create_untracked(&dn->dn_holds); 121 refcount_create(&dn->dn_tx_holds); 122 list_link_init(&dn->dn_link); 123 124 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 125 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 126 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 127 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 128 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 129 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 130 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 131 132 for (i = 0; i < TXG_SIZE; i++) { 133 list_link_init(&dn->dn_dirty_link[i]); 134 dn->dn_free_ranges[i] = NULL; 135 list_create(&dn->dn_dirty_records[i], 136 sizeof (dbuf_dirty_record_t), 137 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 138 } 139 140 dn->dn_allocated_txg = 0; 141 dn->dn_free_txg = 0; 142 dn->dn_assigned_txg = 0; 143 dn->dn_dirtyctx = 0; 144 dn->dn_dirtyctx_firstset = NULL; 145 dn->dn_bonus = NULL; 146 dn->dn_have_spill = B_FALSE; 147 dn->dn_zio = NULL; 148 dn->dn_oldused = 0; 149 dn->dn_oldflags = 0; 150 dn->dn_olduid = 0; 151 dn->dn_oldgid = 0; 152 dn->dn_newuid = 0; 153 dn->dn_newgid = 0; 154 dn->dn_id_flags = 0; 155 156 dn->dn_dbufs_count = 0; 157 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 158 offsetof(dmu_buf_impl_t, db_link)); 159 160 dn->dn_moved = 0; 161 return (0); 162 } 163 164 /* ARGSUSED */ 165 static void 166 dnode_dest(void *arg, void *unused) 167 { 168 int i; 169 dnode_t *dn = arg; 170 171 rw_destroy(&dn->dn_struct_rwlock); 172 mutex_destroy(&dn->dn_mtx); 173 mutex_destroy(&dn->dn_dbufs_mtx); 174 cv_destroy(&dn->dn_notxholds); 175 refcount_destroy(&dn->dn_holds); 176 refcount_destroy(&dn->dn_tx_holds); 177 ASSERT(!list_link_active(&dn->dn_link)); 178 179 for (i = 0; i < TXG_SIZE; i++) { 180 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 181 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 182 list_destroy(&dn->dn_dirty_records[i]); 183 ASSERT0(dn->dn_next_nblkptr[i]); 184 ASSERT0(dn->dn_next_nlevels[i]); 185 ASSERT0(dn->dn_next_indblkshift[i]); 186 ASSERT0(dn->dn_next_bonustype[i]); 187 ASSERT0(dn->dn_rm_spillblk[i]); 188 ASSERT0(dn->dn_next_bonuslen[i]); 189 ASSERT0(dn->dn_next_blksz[i]); 190 } 191 192 ASSERT0(dn->dn_allocated_txg); 193 ASSERT0(dn->dn_free_txg); 194 ASSERT0(dn->dn_assigned_txg); 195 ASSERT0(dn->dn_dirtyctx); 196 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 197 ASSERT3P(dn->dn_bonus, ==, NULL); 198 ASSERT(!dn->dn_have_spill); 199 ASSERT3P(dn->dn_zio, ==, NULL); 200 ASSERT0(dn->dn_oldused); 201 ASSERT0(dn->dn_oldflags); 202 ASSERT0(dn->dn_olduid); 203 ASSERT0(dn->dn_oldgid); 204 ASSERT0(dn->dn_newuid); 205 ASSERT0(dn->dn_newgid); 206 ASSERT0(dn->dn_id_flags); 207 208 ASSERT0(dn->dn_dbufs_count); 209 avl_destroy(&dn->dn_dbufs); 210 } 211 212 void 213 dnode_init(void) 214 { 215 ASSERT(dnode_cache == NULL); 216 dnode_cache = kmem_cache_create("dnode_t", 217 sizeof (dnode_t), 218 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 219 #ifdef _KERNEL 220 kmem_cache_set_move(dnode_cache, dnode_move); 221 #endif /* _KERNEL */ 222 } 223 224 void 225 dnode_fini(void) 226 { 227 kmem_cache_destroy(dnode_cache); 228 dnode_cache = NULL; 229 } 230 231 232 #ifdef ZFS_DEBUG 233 void 234 dnode_verify(dnode_t *dn) 235 { 236 int drop_struct_lock = FALSE; 237 238 ASSERT(dn->dn_phys); 239 ASSERT(dn->dn_objset); 240 ASSERT(dn->dn_handle->dnh_dnode == dn); 241 242 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 243 244 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 245 return; 246 247 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 248 rw_enter(&dn->dn_struct_rwlock, RW_READER); 249 drop_struct_lock = TRUE; 250 } 251 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 252 int i; 253 ASSERT3U(dn->dn_indblkshift, >=, 0); 254 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 255 if (dn->dn_datablkshift) { 256 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 257 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 258 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 259 } 260 ASSERT3U(dn->dn_nlevels, <=, 30); 261 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 262 ASSERT3U(dn->dn_nblkptr, >=, 1); 263 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 264 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 265 ASSERT3U(dn->dn_datablksz, ==, 266 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 267 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 268 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 269 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 270 for (i = 0; i < TXG_SIZE; i++) { 271 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 272 } 273 } 274 if (dn->dn_phys->dn_type != DMU_OT_NONE) 275 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 276 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 277 if (dn->dn_dbuf != NULL) { 278 ASSERT3P(dn->dn_phys, ==, 279 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 280 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 281 } 282 if (drop_struct_lock) 283 rw_exit(&dn->dn_struct_rwlock); 284 } 285 #endif 286 287 void 288 dnode_byteswap(dnode_phys_t *dnp) 289 { 290 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 291 int i; 292 293 if (dnp->dn_type == DMU_OT_NONE) { 294 bzero(dnp, sizeof (dnode_phys_t)); 295 return; 296 } 297 298 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 299 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 300 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 301 dnp->dn_used = BSWAP_64(dnp->dn_used); 302 303 /* 304 * dn_nblkptr is only one byte, so it's OK to read it in either 305 * byte order. We can't read dn_bouslen. 306 */ 307 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 308 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 309 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 310 buf64[i] = BSWAP_64(buf64[i]); 311 312 /* 313 * OK to check dn_bonuslen for zero, because it won't matter if 314 * we have the wrong byte order. This is necessary because the 315 * dnode dnode is smaller than a regular dnode. 316 */ 317 if (dnp->dn_bonuslen != 0) { 318 /* 319 * Note that the bonus length calculated here may be 320 * longer than the actual bonus buffer. This is because 321 * we always put the bonus buffer after the last block 322 * pointer (instead of packing it against the end of the 323 * dnode buffer). 324 */ 325 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 326 size_t len = DN_MAX_BONUSLEN - off; 327 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 328 dmu_object_byteswap_t byteswap = 329 DMU_OT_BYTESWAP(dnp->dn_bonustype); 330 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 331 } 332 333 /* Swap SPILL block if we have one */ 334 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 335 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t)); 336 337 } 338 339 void 340 dnode_buf_byteswap(void *vbuf, size_t size) 341 { 342 dnode_phys_t *buf = vbuf; 343 int i; 344 345 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 346 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 347 348 size >>= DNODE_SHIFT; 349 for (i = 0; i < size; i++) { 350 dnode_byteswap(buf); 351 buf++; 352 } 353 } 354 355 void 356 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 357 { 358 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 359 360 dnode_setdirty(dn, tx); 361 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 362 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN - 363 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 364 dn->dn_bonuslen = newsize; 365 if (newsize == 0) 366 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 367 else 368 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 369 rw_exit(&dn->dn_struct_rwlock); 370 } 371 372 void 373 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 374 { 375 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 376 dnode_setdirty(dn, tx); 377 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 378 dn->dn_bonustype = newtype; 379 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 380 rw_exit(&dn->dn_struct_rwlock); 381 } 382 383 void 384 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 385 { 386 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 387 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 388 dnode_setdirty(dn, tx); 389 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; 390 dn->dn_have_spill = B_FALSE; 391 } 392 393 static void 394 dnode_setdblksz(dnode_t *dn, int size) 395 { 396 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 397 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 398 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 399 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 400 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 401 dn->dn_datablksz = size; 402 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 403 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 404 } 405 406 static dnode_t * 407 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 408 uint64_t object, dnode_handle_t *dnh) 409 { 410 dnode_t *dn; 411 412 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 413 #ifdef _KERNEL 414 ASSERT(!POINTER_IS_VALID(dn->dn_objset)); 415 #endif /* _KERNEL */ 416 dn->dn_moved = 0; 417 418 /* 419 * Defer setting dn_objset until the dnode is ready to be a candidate 420 * for the dnode_move() callback. 421 */ 422 dn->dn_object = object; 423 dn->dn_dbuf = db; 424 dn->dn_handle = dnh; 425 dn->dn_phys = dnp; 426 427 if (dnp->dn_datablkszsec) { 428 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 429 } else { 430 dn->dn_datablksz = 0; 431 dn->dn_datablkszsec = 0; 432 dn->dn_datablkshift = 0; 433 } 434 dn->dn_indblkshift = dnp->dn_indblkshift; 435 dn->dn_nlevels = dnp->dn_nlevels; 436 dn->dn_type = dnp->dn_type; 437 dn->dn_nblkptr = dnp->dn_nblkptr; 438 dn->dn_checksum = dnp->dn_checksum; 439 dn->dn_compress = dnp->dn_compress; 440 dn->dn_bonustype = dnp->dn_bonustype; 441 dn->dn_bonuslen = dnp->dn_bonuslen; 442 dn->dn_maxblkid = dnp->dn_maxblkid; 443 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 444 dn->dn_id_flags = 0; 445 446 dmu_zfetch_init(&dn->dn_zfetch, dn); 447 448 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 449 450 mutex_enter(&os->os_lock); 451 if (dnh->dnh_dnode != NULL) { 452 /* Lost the allocation race. */ 453 mutex_exit(&os->os_lock); 454 kmem_cache_free(dnode_cache, dn); 455 return (dnh->dnh_dnode); 456 } 457 458 /* 459 * Exclude special dnodes from os_dnodes so an empty os_dnodes 460 * signifies that the special dnodes have no references from 461 * their children (the entries in os_dnodes). This allows 462 * dnode_destroy() to easily determine if the last child has 463 * been removed and then complete eviction of the objset. 464 */ 465 if (!DMU_OBJECT_IS_SPECIAL(object)) 466 list_insert_head(&os->os_dnodes, dn); 467 membar_producer(); 468 469 /* 470 * Everything else must be valid before assigning dn_objset 471 * makes the dnode eligible for dnode_move(). 472 */ 473 dn->dn_objset = os; 474 475 dnh->dnh_dnode = dn; 476 mutex_exit(&os->os_lock); 477 478 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); 479 return (dn); 480 } 481 482 /* 483 * Caller must be holding the dnode handle, which is released upon return. 484 */ 485 static void 486 dnode_destroy(dnode_t *dn) 487 { 488 objset_t *os = dn->dn_objset; 489 boolean_t complete_os_eviction = B_FALSE; 490 491 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 492 493 mutex_enter(&os->os_lock); 494 POINTER_INVALIDATE(&dn->dn_objset); 495 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 496 list_remove(&os->os_dnodes, dn); 497 complete_os_eviction = 498 list_is_empty(&os->os_dnodes) && 499 list_link_active(&os->os_evicting_node); 500 } 501 mutex_exit(&os->os_lock); 502 503 /* the dnode can no longer move, so we can release the handle */ 504 zrl_remove(&dn->dn_handle->dnh_zrlock); 505 506 dn->dn_allocated_txg = 0; 507 dn->dn_free_txg = 0; 508 dn->dn_assigned_txg = 0; 509 510 dn->dn_dirtyctx = 0; 511 if (dn->dn_dirtyctx_firstset != NULL) { 512 kmem_free(dn->dn_dirtyctx_firstset, 1); 513 dn->dn_dirtyctx_firstset = NULL; 514 } 515 if (dn->dn_bonus != NULL) { 516 mutex_enter(&dn->dn_bonus->db_mtx); 517 dbuf_destroy(dn->dn_bonus); 518 dn->dn_bonus = NULL; 519 } 520 dn->dn_zio = NULL; 521 522 dn->dn_have_spill = B_FALSE; 523 dn->dn_oldused = 0; 524 dn->dn_oldflags = 0; 525 dn->dn_olduid = 0; 526 dn->dn_oldgid = 0; 527 dn->dn_newuid = 0; 528 dn->dn_newgid = 0; 529 dn->dn_id_flags = 0; 530 531 dmu_zfetch_fini(&dn->dn_zfetch); 532 kmem_cache_free(dnode_cache, dn); 533 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); 534 535 if (complete_os_eviction) 536 dmu_objset_evict_done(os); 537 } 538 539 void 540 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 541 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 542 { 543 int i; 544 545 ASSERT3U(blocksize, <=, 546 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 547 if (blocksize == 0) 548 blocksize = 1 << zfs_default_bs; 549 else 550 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 551 552 if (ibs == 0) 553 ibs = zfs_default_ibs; 554 555 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 556 557 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset, 558 dn->dn_object, tx->tx_txg, blocksize, ibs); 559 560 ASSERT(dn->dn_type == DMU_OT_NONE); 561 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 562 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 563 ASSERT(ot != DMU_OT_NONE); 564 ASSERT(DMU_OT_IS_VALID(ot)); 565 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 566 (bonustype == DMU_OT_SA && bonuslen == 0) || 567 (bonustype != DMU_OT_NONE && bonuslen != 0)); 568 ASSERT(DMU_OT_IS_VALID(bonustype)); 569 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 570 ASSERT(dn->dn_type == DMU_OT_NONE); 571 ASSERT0(dn->dn_maxblkid); 572 ASSERT0(dn->dn_allocated_txg); 573 ASSERT0(dn->dn_assigned_txg); 574 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 575 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1); 576 ASSERT(avl_is_empty(&dn->dn_dbufs)); 577 578 for (i = 0; i < TXG_SIZE; i++) { 579 ASSERT0(dn->dn_next_nblkptr[i]); 580 ASSERT0(dn->dn_next_nlevels[i]); 581 ASSERT0(dn->dn_next_indblkshift[i]); 582 ASSERT0(dn->dn_next_bonuslen[i]); 583 ASSERT0(dn->dn_next_bonustype[i]); 584 ASSERT0(dn->dn_rm_spillblk[i]); 585 ASSERT0(dn->dn_next_blksz[i]); 586 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 587 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 588 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 589 } 590 591 dn->dn_type = ot; 592 dnode_setdblksz(dn, blocksize); 593 dn->dn_indblkshift = ibs; 594 dn->dn_nlevels = 1; 595 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 596 dn->dn_nblkptr = 1; 597 else 598 dn->dn_nblkptr = 1 + 599 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 600 dn->dn_bonustype = bonustype; 601 dn->dn_bonuslen = bonuslen; 602 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 603 dn->dn_compress = ZIO_COMPRESS_INHERIT; 604 dn->dn_dirtyctx = 0; 605 606 dn->dn_free_txg = 0; 607 if (dn->dn_dirtyctx_firstset) { 608 kmem_free(dn->dn_dirtyctx_firstset, 1); 609 dn->dn_dirtyctx_firstset = NULL; 610 } 611 612 dn->dn_allocated_txg = tx->tx_txg; 613 dn->dn_id_flags = 0; 614 615 dnode_setdirty(dn, tx); 616 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 617 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 618 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 619 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 620 } 621 622 void 623 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 624 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 625 { 626 int nblkptr; 627 628 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 629 ASSERT3U(blocksize, <=, 630 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 631 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 632 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 633 ASSERT(tx->tx_txg != 0); 634 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 635 (bonustype != DMU_OT_NONE && bonuslen != 0) || 636 (bonustype == DMU_OT_SA && bonuslen == 0)); 637 ASSERT(DMU_OT_IS_VALID(bonustype)); 638 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 639 640 /* clean up any unreferenced dbufs */ 641 dnode_evict_dbufs(dn); 642 643 dn->dn_id_flags = 0; 644 645 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 646 dnode_setdirty(dn, tx); 647 if (dn->dn_datablksz != blocksize) { 648 /* change blocksize */ 649 ASSERT(dn->dn_maxblkid == 0 && 650 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 651 dnode_block_freed(dn, 0))); 652 dnode_setdblksz(dn, blocksize); 653 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 654 } 655 if (dn->dn_bonuslen != bonuslen) 656 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 657 658 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 659 nblkptr = 1; 660 else 661 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 662 if (dn->dn_bonustype != bonustype) 663 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; 664 if (dn->dn_nblkptr != nblkptr) 665 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; 666 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 667 dbuf_rm_spill(dn, tx); 668 dnode_rm_spill(dn, tx); 669 } 670 rw_exit(&dn->dn_struct_rwlock); 671 672 /* change type */ 673 dn->dn_type = ot; 674 675 /* change bonus size and type */ 676 mutex_enter(&dn->dn_mtx); 677 dn->dn_bonustype = bonustype; 678 dn->dn_bonuslen = bonuslen; 679 dn->dn_nblkptr = nblkptr; 680 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 681 dn->dn_compress = ZIO_COMPRESS_INHERIT; 682 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 683 684 /* fix up the bonus db_size */ 685 if (dn->dn_bonus) { 686 dn->dn_bonus->db.db_size = 687 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t); 688 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 689 } 690 691 dn->dn_allocated_txg = tx->tx_txg; 692 mutex_exit(&dn->dn_mtx); 693 } 694 695 #ifdef DNODE_STATS 696 static struct { 697 uint64_t dms_dnode_invalid; 698 uint64_t dms_dnode_recheck1; 699 uint64_t dms_dnode_recheck2; 700 uint64_t dms_dnode_special; 701 uint64_t dms_dnode_handle; 702 uint64_t dms_dnode_rwlock; 703 uint64_t dms_dnode_active; 704 } dnode_move_stats; 705 #endif /* DNODE_STATS */ 706 707 #ifdef _KERNEL 708 static void 709 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 710 { 711 int i; 712 713 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 714 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 715 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 716 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); 717 718 /* Copy fields. */ 719 ndn->dn_objset = odn->dn_objset; 720 ndn->dn_object = odn->dn_object; 721 ndn->dn_dbuf = odn->dn_dbuf; 722 ndn->dn_handle = odn->dn_handle; 723 ndn->dn_phys = odn->dn_phys; 724 ndn->dn_type = odn->dn_type; 725 ndn->dn_bonuslen = odn->dn_bonuslen; 726 ndn->dn_bonustype = odn->dn_bonustype; 727 ndn->dn_nblkptr = odn->dn_nblkptr; 728 ndn->dn_checksum = odn->dn_checksum; 729 ndn->dn_compress = odn->dn_compress; 730 ndn->dn_nlevels = odn->dn_nlevels; 731 ndn->dn_indblkshift = odn->dn_indblkshift; 732 ndn->dn_datablkshift = odn->dn_datablkshift; 733 ndn->dn_datablkszsec = odn->dn_datablkszsec; 734 ndn->dn_datablksz = odn->dn_datablksz; 735 ndn->dn_maxblkid = odn->dn_maxblkid; 736 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0], 737 sizeof (odn->dn_next_type)); 738 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 739 sizeof (odn->dn_next_nblkptr)); 740 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 741 sizeof (odn->dn_next_nlevels)); 742 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 743 sizeof (odn->dn_next_indblkshift)); 744 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 745 sizeof (odn->dn_next_bonustype)); 746 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 747 sizeof (odn->dn_rm_spillblk)); 748 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 749 sizeof (odn->dn_next_bonuslen)); 750 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 751 sizeof (odn->dn_next_blksz)); 752 for (i = 0; i < TXG_SIZE; i++) { 753 list_move_tail(&ndn->dn_dirty_records[i], 754 &odn->dn_dirty_records[i]); 755 } 756 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 757 sizeof (odn->dn_free_ranges)); 758 ndn->dn_allocated_txg = odn->dn_allocated_txg; 759 ndn->dn_free_txg = odn->dn_free_txg; 760 ndn->dn_assigned_txg = odn->dn_assigned_txg; 761 ndn->dn_dirtyctx = odn->dn_dirtyctx; 762 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 763 ASSERT(refcount_count(&odn->dn_tx_holds) == 0); 764 refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 765 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 766 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 767 ndn->dn_dbufs_count = odn->dn_dbufs_count; 768 ndn->dn_bonus = odn->dn_bonus; 769 ndn->dn_have_spill = odn->dn_have_spill; 770 ndn->dn_zio = odn->dn_zio; 771 ndn->dn_oldused = odn->dn_oldused; 772 ndn->dn_oldflags = odn->dn_oldflags; 773 ndn->dn_olduid = odn->dn_olduid; 774 ndn->dn_oldgid = odn->dn_oldgid; 775 ndn->dn_newuid = odn->dn_newuid; 776 ndn->dn_newgid = odn->dn_newgid; 777 ndn->dn_id_flags = odn->dn_id_flags; 778 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 779 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 780 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 781 782 /* 783 * Update back pointers. Updating the handle fixes the back pointer of 784 * every descendant dbuf as well as the bonus dbuf. 785 */ 786 ASSERT(ndn->dn_handle->dnh_dnode == odn); 787 ndn->dn_handle->dnh_dnode = ndn; 788 if (ndn->dn_zfetch.zf_dnode == odn) { 789 ndn->dn_zfetch.zf_dnode = ndn; 790 } 791 792 /* 793 * Invalidate the original dnode by clearing all of its back pointers. 794 */ 795 odn->dn_dbuf = NULL; 796 odn->dn_handle = NULL; 797 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 798 offsetof(dmu_buf_impl_t, db_link)); 799 odn->dn_dbufs_count = 0; 800 odn->dn_bonus = NULL; 801 odn->dn_zfetch.zf_dnode = NULL; 802 803 /* 804 * Set the low bit of the objset pointer to ensure that dnode_move() 805 * recognizes the dnode as invalid in any subsequent callback. 806 */ 807 POINTER_INVALIDATE(&odn->dn_objset); 808 809 /* 810 * Satisfy the destructor. 811 */ 812 for (i = 0; i < TXG_SIZE; i++) { 813 list_create(&odn->dn_dirty_records[i], 814 sizeof (dbuf_dirty_record_t), 815 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 816 odn->dn_free_ranges[i] = NULL; 817 odn->dn_next_nlevels[i] = 0; 818 odn->dn_next_indblkshift[i] = 0; 819 odn->dn_next_bonustype[i] = 0; 820 odn->dn_rm_spillblk[i] = 0; 821 odn->dn_next_bonuslen[i] = 0; 822 odn->dn_next_blksz[i] = 0; 823 } 824 odn->dn_allocated_txg = 0; 825 odn->dn_free_txg = 0; 826 odn->dn_assigned_txg = 0; 827 odn->dn_dirtyctx = 0; 828 odn->dn_dirtyctx_firstset = NULL; 829 odn->dn_have_spill = B_FALSE; 830 odn->dn_zio = NULL; 831 odn->dn_oldused = 0; 832 odn->dn_oldflags = 0; 833 odn->dn_olduid = 0; 834 odn->dn_oldgid = 0; 835 odn->dn_newuid = 0; 836 odn->dn_newgid = 0; 837 odn->dn_id_flags = 0; 838 839 /* 840 * Mark the dnode. 841 */ 842 ndn->dn_moved = 1; 843 odn->dn_moved = (uint8_t)-1; 844 } 845 846 /*ARGSUSED*/ 847 static kmem_cbrc_t 848 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 849 { 850 dnode_t *odn = buf, *ndn = newbuf; 851 objset_t *os; 852 int64_t refcount; 853 uint32_t dbufs; 854 855 /* 856 * The dnode is on the objset's list of known dnodes if the objset 857 * pointer is valid. We set the low bit of the objset pointer when 858 * freeing the dnode to invalidate it, and the memory patterns written 859 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 860 * A newly created dnode sets the objset pointer last of all to indicate 861 * that the dnode is known and in a valid state to be moved by this 862 * function. 863 */ 864 os = odn->dn_objset; 865 if (!POINTER_IS_VALID(os)) { 866 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid); 867 return (KMEM_CBRC_DONT_KNOW); 868 } 869 870 /* 871 * Ensure that the objset does not go away during the move. 872 */ 873 rw_enter(&os_lock, RW_WRITER); 874 if (os != odn->dn_objset) { 875 rw_exit(&os_lock); 876 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1); 877 return (KMEM_CBRC_DONT_KNOW); 878 } 879 880 /* 881 * If the dnode is still valid, then so is the objset. We know that no 882 * valid objset can be freed while we hold os_lock, so we can safely 883 * ensure that the objset remains in use. 884 */ 885 mutex_enter(&os->os_lock); 886 887 /* 888 * Recheck the objset pointer in case the dnode was removed just before 889 * acquiring the lock. 890 */ 891 if (os != odn->dn_objset) { 892 mutex_exit(&os->os_lock); 893 rw_exit(&os_lock); 894 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2); 895 return (KMEM_CBRC_DONT_KNOW); 896 } 897 898 /* 899 * At this point we know that as long as we hold os->os_lock, the dnode 900 * cannot be freed and fields within the dnode can be safely accessed. 901 * The objset listing this dnode cannot go away as long as this dnode is 902 * on its list. 903 */ 904 rw_exit(&os_lock); 905 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 906 mutex_exit(&os->os_lock); 907 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special); 908 return (KMEM_CBRC_NO); 909 } 910 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 911 912 /* 913 * Lock the dnode handle to prevent the dnode from obtaining any new 914 * holds. This also prevents the descendant dbufs and the bonus dbuf 915 * from accessing the dnode, so that we can discount their holds. The 916 * handle is safe to access because we know that while the dnode cannot 917 * go away, neither can its handle. Once we hold dnh_zrlock, we can 918 * safely move any dnode referenced only by dbufs. 919 */ 920 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 921 mutex_exit(&os->os_lock); 922 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle); 923 return (KMEM_CBRC_LATER); 924 } 925 926 /* 927 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 928 * We need to guarantee that there is a hold for every dbuf in order to 929 * determine whether the dnode is actively referenced. Falsely matching 930 * a dbuf to an active hold would lead to an unsafe move. It's possible 931 * that a thread already having an active dnode hold is about to add a 932 * dbuf, and we can't compare hold and dbuf counts while the add is in 933 * progress. 934 */ 935 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 936 zrl_exit(&odn->dn_handle->dnh_zrlock); 937 mutex_exit(&os->os_lock); 938 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock); 939 return (KMEM_CBRC_LATER); 940 } 941 942 /* 943 * A dbuf may be removed (evicted) without an active dnode hold. In that 944 * case, the dbuf count is decremented under the handle lock before the 945 * dbuf's hold is released. This order ensures that if we count the hold 946 * after the dbuf is removed but before its hold is released, we will 947 * treat the unmatched hold as active and exit safely. If we count the 948 * hold before the dbuf is removed, the hold is discounted, and the 949 * removal is blocked until the move completes. 950 */ 951 refcount = refcount_count(&odn->dn_holds); 952 ASSERT(refcount >= 0); 953 dbufs = odn->dn_dbufs_count; 954 955 /* We can't have more dbufs than dnode holds. */ 956 ASSERT3U(dbufs, <=, refcount); 957 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 958 uint32_t, dbufs); 959 960 if (refcount > dbufs) { 961 rw_exit(&odn->dn_struct_rwlock); 962 zrl_exit(&odn->dn_handle->dnh_zrlock); 963 mutex_exit(&os->os_lock); 964 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active); 965 return (KMEM_CBRC_LATER); 966 } 967 968 rw_exit(&odn->dn_struct_rwlock); 969 970 /* 971 * At this point we know that anyone with a hold on the dnode is not 972 * actively referencing it. The dnode is known and in a valid state to 973 * move. We're holding the locks needed to execute the critical section. 974 */ 975 dnode_move_impl(odn, ndn); 976 977 list_link_replace(&odn->dn_link, &ndn->dn_link); 978 /* If the dnode was safe to move, the refcount cannot have changed. */ 979 ASSERT(refcount == refcount_count(&ndn->dn_holds)); 980 ASSERT(dbufs == ndn->dn_dbufs_count); 981 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 982 mutex_exit(&os->os_lock); 983 984 return (KMEM_CBRC_YES); 985 } 986 #endif /* _KERNEL */ 987 988 void 989 dnode_special_close(dnode_handle_t *dnh) 990 { 991 dnode_t *dn = dnh->dnh_dnode; 992 993 /* 994 * Wait for final references to the dnode to clear. This can 995 * only happen if the arc is asyncronously evicting state that 996 * has a hold on this dnode while we are trying to evict this 997 * dnode. 998 */ 999 while (refcount_count(&dn->dn_holds) > 0) 1000 delay(1); 1001 ASSERT(dn->dn_dbuf == NULL || 1002 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1003 zrl_add(&dnh->dnh_zrlock); 1004 dnode_destroy(dn); /* implicit zrl_remove() */ 1005 zrl_destroy(&dnh->dnh_zrlock); 1006 dnh->dnh_dnode = NULL; 1007 } 1008 1009 void 1010 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1011 dnode_handle_t *dnh) 1012 { 1013 dnode_t *dn; 1014 1015 dn = dnode_create(os, dnp, NULL, object, dnh); 1016 zrl_init(&dnh->dnh_zrlock); 1017 DNODE_VERIFY(dn); 1018 } 1019 1020 static void 1021 dnode_buf_evict_async(void *dbu) 1022 { 1023 dnode_children_t *children_dnodes = dbu; 1024 int i; 1025 1026 for (i = 0; i < children_dnodes->dnc_count; i++) { 1027 dnode_handle_t *dnh = &children_dnodes->dnc_children[i]; 1028 dnode_t *dn; 1029 1030 /* 1031 * The dnode handle lock guards against the dnode moving to 1032 * another valid address, so there is no need here to guard 1033 * against changes to or from NULL. 1034 */ 1035 if (dnh->dnh_dnode == NULL) { 1036 zrl_destroy(&dnh->dnh_zrlock); 1037 continue; 1038 } 1039 1040 zrl_add(&dnh->dnh_zrlock); 1041 dn = dnh->dnh_dnode; 1042 /* 1043 * If there are holds on this dnode, then there should 1044 * be holds on the dnode's containing dbuf as well; thus 1045 * it wouldn't be eligible for eviction and this function 1046 * would not have been called. 1047 */ 1048 ASSERT(refcount_is_zero(&dn->dn_holds)); 1049 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 1050 1051 dnode_destroy(dn); /* implicit zrl_remove() */ 1052 zrl_destroy(&dnh->dnh_zrlock); 1053 dnh->dnh_dnode = NULL; 1054 } 1055 kmem_free(children_dnodes, sizeof (dnode_children_t) + 1056 children_dnodes->dnc_count * sizeof (dnode_handle_t)); 1057 } 1058 1059 /* 1060 * errors: 1061 * EINVAL - invalid object number. 1062 * EIO - i/o error. 1063 * succeeds even for free dnodes. 1064 */ 1065 int 1066 dnode_hold_impl(objset_t *os, uint64_t object, int flag, 1067 void *tag, dnode_t **dnp) 1068 { 1069 int epb, idx, err; 1070 int drop_struct_lock = FALSE; 1071 int type; 1072 uint64_t blk; 1073 dnode_t *mdn, *dn; 1074 dmu_buf_impl_t *db; 1075 dnode_children_t *children_dnodes; 1076 dnode_handle_t *dnh; 1077 1078 /* 1079 * If you are holding the spa config lock as writer, you shouldn't 1080 * be asking the DMU to do *anything* unless it's the root pool 1081 * which may require us to read from the root filesystem while 1082 * holding some (not all) of the locks as writer. 1083 */ 1084 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1085 (spa_is_root(os->os_spa) && 1086 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1087 1088 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1089 1090 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) { 1091 dn = (object == DMU_USERUSED_OBJECT) ? 1092 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os); 1093 if (dn == NULL) 1094 return (SET_ERROR(ENOENT)); 1095 type = dn->dn_type; 1096 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1097 return (SET_ERROR(ENOENT)); 1098 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1099 return (SET_ERROR(EEXIST)); 1100 DNODE_VERIFY(dn); 1101 (void) refcount_add(&dn->dn_holds, tag); 1102 *dnp = dn; 1103 return (0); 1104 } 1105 1106 if (object == 0 || object >= DN_MAX_OBJECT) 1107 return (SET_ERROR(EINVAL)); 1108 1109 mdn = DMU_META_DNODE(os); 1110 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1111 1112 DNODE_VERIFY(mdn); 1113 1114 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1115 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1116 drop_struct_lock = TRUE; 1117 } 1118 1119 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1120 1121 db = dbuf_hold(mdn, blk, FTAG); 1122 if (drop_struct_lock) 1123 rw_exit(&mdn->dn_struct_rwlock); 1124 if (db == NULL) 1125 return (SET_ERROR(EIO)); 1126 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 1127 if (err) { 1128 dbuf_rele(db, FTAG); 1129 return (err); 1130 } 1131 1132 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1133 epb = db->db.db_size >> DNODE_SHIFT; 1134 1135 idx = object & (epb-1); 1136 1137 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1138 children_dnodes = dmu_buf_get_user(&db->db); 1139 if (children_dnodes == NULL) { 1140 int i; 1141 dnode_children_t *winner; 1142 children_dnodes = kmem_zalloc(sizeof (dnode_children_t) + 1143 epb * sizeof (dnode_handle_t), KM_SLEEP); 1144 children_dnodes->dnc_count = epb; 1145 dnh = &children_dnodes->dnc_children[0]; 1146 for (i = 0; i < epb; i++) { 1147 zrl_init(&dnh[i].dnh_zrlock); 1148 } 1149 dmu_buf_init_user(&children_dnodes->dnc_dbu, NULL, 1150 dnode_buf_evict_async, NULL); 1151 winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu); 1152 if (winner != NULL) { 1153 1154 for (i = 0; i < epb; i++) { 1155 zrl_destroy(&dnh[i].dnh_zrlock); 1156 } 1157 1158 kmem_free(children_dnodes, sizeof (dnode_children_t) + 1159 epb * sizeof (dnode_handle_t)); 1160 children_dnodes = winner; 1161 } 1162 } 1163 ASSERT(children_dnodes->dnc_count == epb); 1164 1165 dnh = &children_dnodes->dnc_children[idx]; 1166 zrl_add(&dnh->dnh_zrlock); 1167 dn = dnh->dnh_dnode; 1168 if (dn == NULL) { 1169 dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx; 1170 1171 dn = dnode_create(os, phys, db, object, dnh); 1172 } 1173 1174 mutex_enter(&dn->dn_mtx); 1175 type = dn->dn_type; 1176 if (dn->dn_free_txg || 1177 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) || 1178 ((flag & DNODE_MUST_BE_FREE) && 1179 (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) { 1180 mutex_exit(&dn->dn_mtx); 1181 zrl_remove(&dnh->dnh_zrlock); 1182 dbuf_rele(db, FTAG); 1183 return ((flag & DNODE_MUST_BE_ALLOCATED) ? ENOENT : EEXIST); 1184 } 1185 if (refcount_add(&dn->dn_holds, tag) == 1) 1186 dbuf_add_ref(db, dnh); 1187 mutex_exit(&dn->dn_mtx); 1188 1189 /* Now we can rely on the hold to prevent the dnode from moving. */ 1190 zrl_remove(&dnh->dnh_zrlock); 1191 1192 DNODE_VERIFY(dn); 1193 ASSERT3P(dn->dn_dbuf, ==, db); 1194 ASSERT3U(dn->dn_object, ==, object); 1195 dbuf_rele(db, FTAG); 1196 1197 *dnp = dn; 1198 return (0); 1199 } 1200 1201 /* 1202 * Return held dnode if the object is allocated, NULL if not. 1203 */ 1204 int 1205 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1206 { 1207 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp)); 1208 } 1209 1210 /* 1211 * Can only add a reference if there is already at least one 1212 * reference on the dnode. Returns FALSE if unable to add a 1213 * new reference. 1214 */ 1215 boolean_t 1216 dnode_add_ref(dnode_t *dn, void *tag) 1217 { 1218 mutex_enter(&dn->dn_mtx); 1219 if (refcount_is_zero(&dn->dn_holds)) { 1220 mutex_exit(&dn->dn_mtx); 1221 return (FALSE); 1222 } 1223 VERIFY(1 < refcount_add(&dn->dn_holds, tag)); 1224 mutex_exit(&dn->dn_mtx); 1225 return (TRUE); 1226 } 1227 1228 void 1229 dnode_rele(dnode_t *dn, void *tag) 1230 { 1231 mutex_enter(&dn->dn_mtx); 1232 dnode_rele_and_unlock(dn, tag, B_FALSE); 1233 } 1234 1235 void 1236 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting) 1237 { 1238 uint64_t refs; 1239 /* Get while the hold prevents the dnode from moving. */ 1240 dmu_buf_impl_t *db = dn->dn_dbuf; 1241 dnode_handle_t *dnh = dn->dn_handle; 1242 1243 refs = refcount_remove(&dn->dn_holds, tag); 1244 mutex_exit(&dn->dn_mtx); 1245 1246 /* 1247 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1248 * indirectly by dbuf_rele() while relying on the dnode handle to 1249 * prevent the dnode from moving, since releasing the last hold could 1250 * result in the dnode's parent dbuf evicting its dnode handles. For 1251 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1252 * other direct or indirect hold on the dnode must first drop the dnode 1253 * handle. 1254 */ 1255 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1256 1257 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1258 if (refs == 0 && db != NULL) { 1259 /* 1260 * Another thread could add a hold to the dnode handle in 1261 * dnode_hold_impl() while holding the parent dbuf. Since the 1262 * hold on the parent dbuf prevents the handle from being 1263 * destroyed, the hold on the handle is OK. We can't yet assert 1264 * that the handle has zero references, but that will be 1265 * asserted anyway when the handle gets destroyed. 1266 */ 1267 mutex_enter(&db->db_mtx); 1268 dbuf_rele_and_unlock(db, dnh, evicting); 1269 } 1270 } 1271 1272 void 1273 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1274 { 1275 objset_t *os = dn->dn_objset; 1276 uint64_t txg = tx->tx_txg; 1277 1278 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1279 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1280 return; 1281 } 1282 1283 DNODE_VERIFY(dn); 1284 1285 #ifdef ZFS_DEBUG 1286 mutex_enter(&dn->dn_mtx); 1287 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1288 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1289 mutex_exit(&dn->dn_mtx); 1290 #endif 1291 1292 /* 1293 * Determine old uid/gid when necessary 1294 */ 1295 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1296 1297 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK]; 1298 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1299 1300 /* 1301 * If we are already marked dirty, we're done. 1302 */ 1303 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1304 multilist_sublist_unlock(mls); 1305 return; 1306 } 1307 1308 ASSERT(!refcount_is_zero(&dn->dn_holds) || 1309 !avl_is_empty(&dn->dn_dbufs)); 1310 ASSERT(dn->dn_datablksz != 0); 1311 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); 1312 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); 1313 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); 1314 1315 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1316 dn->dn_object, txg); 1317 1318 multilist_sublist_insert_head(mls, dn); 1319 1320 multilist_sublist_unlock(mls); 1321 1322 /* 1323 * The dnode maintains a hold on its containing dbuf as 1324 * long as there are holds on it. Each instantiated child 1325 * dbuf maintains a hold on the dnode. When the last child 1326 * drops its hold, the dnode will drop its hold on the 1327 * containing dbuf. We add a "dirty hold" here so that the 1328 * dnode will hang around after we finish processing its 1329 * children. 1330 */ 1331 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1332 1333 (void) dbuf_dirty(dn->dn_dbuf, tx); 1334 1335 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1336 } 1337 1338 void 1339 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1340 { 1341 mutex_enter(&dn->dn_mtx); 1342 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1343 mutex_exit(&dn->dn_mtx); 1344 return; 1345 } 1346 dn->dn_free_txg = tx->tx_txg; 1347 mutex_exit(&dn->dn_mtx); 1348 1349 dnode_setdirty(dn, tx); 1350 } 1351 1352 /* 1353 * Try to change the block size for the indicated dnode. This can only 1354 * succeed if there are no blocks allocated or dirty beyond first block 1355 */ 1356 int 1357 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1358 { 1359 dmu_buf_impl_t *db; 1360 int err; 1361 1362 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1363 if (size == 0) 1364 size = SPA_MINBLOCKSIZE; 1365 else 1366 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1367 1368 if (ibs == dn->dn_indblkshift) 1369 ibs = 0; 1370 1371 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1372 return (0); 1373 1374 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1375 1376 /* Check for any allocated blocks beyond the first */ 1377 if (dn->dn_maxblkid != 0) 1378 goto fail; 1379 1380 mutex_enter(&dn->dn_dbufs_mtx); 1381 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1382 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1383 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1384 db->db_blkid != DMU_SPILL_BLKID) { 1385 mutex_exit(&dn->dn_dbufs_mtx); 1386 goto fail; 1387 } 1388 } 1389 mutex_exit(&dn->dn_dbufs_mtx); 1390 1391 if (ibs && dn->dn_nlevels != 1) 1392 goto fail; 1393 1394 /* resize the old block */ 1395 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1396 if (err == 0) 1397 dbuf_new_size(db, size, tx); 1398 else if (err != ENOENT) 1399 goto fail; 1400 1401 dnode_setdblksz(dn, size); 1402 dnode_setdirty(dn, tx); 1403 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1404 if (ibs) { 1405 dn->dn_indblkshift = ibs; 1406 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1407 } 1408 /* rele after we have fixed the blocksize in the dnode */ 1409 if (db) 1410 dbuf_rele(db, FTAG); 1411 1412 rw_exit(&dn->dn_struct_rwlock); 1413 return (0); 1414 1415 fail: 1416 rw_exit(&dn->dn_struct_rwlock); 1417 return (SET_ERROR(ENOTSUP)); 1418 } 1419 1420 /* read-holding callers must not rely on the lock being continuously held */ 1421 void 1422 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read) 1423 { 1424 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1425 int epbs, new_nlevels; 1426 uint64_t sz; 1427 1428 ASSERT(blkid != DMU_BONUS_BLKID); 1429 1430 ASSERT(have_read ? 1431 RW_READ_HELD(&dn->dn_struct_rwlock) : 1432 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1433 1434 /* 1435 * if we have a read-lock, check to see if we need to do any work 1436 * before upgrading to a write-lock. 1437 */ 1438 if (have_read) { 1439 if (blkid <= dn->dn_maxblkid) 1440 return; 1441 1442 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1443 rw_exit(&dn->dn_struct_rwlock); 1444 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1445 } 1446 } 1447 1448 if (blkid <= dn->dn_maxblkid) 1449 goto out; 1450 1451 dn->dn_maxblkid = blkid; 1452 1453 /* 1454 * Compute the number of levels necessary to support the new maxblkid. 1455 */ 1456 new_nlevels = 1; 1457 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1458 for (sz = dn->dn_nblkptr; 1459 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1460 new_nlevels++; 1461 1462 if (new_nlevels > dn->dn_nlevels) { 1463 int old_nlevels = dn->dn_nlevels; 1464 dmu_buf_impl_t *db; 1465 list_t *list; 1466 dbuf_dirty_record_t *new, *dr, *dr_next; 1467 1468 dn->dn_nlevels = new_nlevels; 1469 1470 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1471 dn->dn_next_nlevels[txgoff] = new_nlevels; 1472 1473 /* dirty the left indirects */ 1474 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1475 ASSERT(db != NULL); 1476 new = dbuf_dirty(db, tx); 1477 dbuf_rele(db, FTAG); 1478 1479 /* transfer the dirty records to the new indirect */ 1480 mutex_enter(&dn->dn_mtx); 1481 mutex_enter(&new->dt.di.dr_mtx); 1482 list = &dn->dn_dirty_records[txgoff]; 1483 for (dr = list_head(list); dr; dr = dr_next) { 1484 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1485 if (dr->dr_dbuf->db_level != new_nlevels-1 && 1486 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1487 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 1488 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 1489 list_remove(&dn->dn_dirty_records[txgoff], dr); 1490 list_insert_tail(&new->dt.di.dr_children, dr); 1491 dr->dr_parent = new; 1492 } 1493 } 1494 mutex_exit(&new->dt.di.dr_mtx); 1495 mutex_exit(&dn->dn_mtx); 1496 } 1497 1498 out: 1499 if (have_read) 1500 rw_downgrade(&dn->dn_struct_rwlock); 1501 } 1502 1503 static void 1504 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1505 { 1506 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1507 if (db != NULL) { 1508 dmu_buf_will_dirty(&db->db, tx); 1509 dbuf_rele(db, FTAG); 1510 } 1511 } 1512 1513 /* 1514 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid 1515 * and end_blkid. 1516 */ 1517 static void 1518 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1519 dmu_tx_t *tx) 1520 { 1521 dmu_buf_impl_t db_search; 1522 dmu_buf_impl_t *db; 1523 avl_index_t where; 1524 1525 mutex_enter(&dn->dn_dbufs_mtx); 1526 1527 db_search.db_level = 1; 1528 db_search.db_blkid = start_blkid + 1; 1529 db_search.db_state = DB_SEARCH; 1530 for (;;) { 1531 1532 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1533 if (db == NULL) 1534 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1535 1536 if (db == NULL || db->db_level != 1 || 1537 db->db_blkid >= end_blkid) { 1538 break; 1539 } 1540 1541 /* 1542 * Setup the next blkid we want to search for. 1543 */ 1544 db_search.db_blkid = db->db_blkid + 1; 1545 ASSERT3U(db->db_blkid, >=, start_blkid); 1546 1547 /* 1548 * If the dbuf transitions to DB_EVICTING while we're trying 1549 * to dirty it, then we will be unable to discover it in 1550 * the dbuf hash table. This will result in a call to 1551 * dbuf_create() which needs to acquire the dn_dbufs_mtx 1552 * lock. To avoid a deadlock, we drop the lock before 1553 * dirtying the level-1 dbuf. 1554 */ 1555 mutex_exit(&dn->dn_dbufs_mtx); 1556 dnode_dirty_l1(dn, db->db_blkid, tx); 1557 mutex_enter(&dn->dn_dbufs_mtx); 1558 } 1559 1560 #ifdef ZFS_DEBUG 1561 /* 1562 * Walk all the in-core level-1 dbufs and verify they have been dirtied. 1563 */ 1564 db_search.db_level = 1; 1565 db_search.db_blkid = start_blkid + 1; 1566 db_search.db_state = DB_SEARCH; 1567 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1568 if (db == NULL) 1569 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1570 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { 1571 if (db->db_level != 1 || db->db_blkid >= end_blkid) 1572 break; 1573 ASSERT(db->db_dirtycnt > 0); 1574 } 1575 #endif 1576 mutex_exit(&dn->dn_dbufs_mtx); 1577 } 1578 1579 void 1580 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 1581 { 1582 dmu_buf_impl_t *db; 1583 uint64_t blkoff, blkid, nblks; 1584 int blksz, blkshift, head, tail; 1585 int trunc = FALSE; 1586 int epbs; 1587 1588 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1589 blksz = dn->dn_datablksz; 1590 blkshift = dn->dn_datablkshift; 1591 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1592 1593 if (len == DMU_OBJECT_END) { 1594 len = UINT64_MAX - off; 1595 trunc = TRUE; 1596 } 1597 1598 /* 1599 * First, block align the region to free: 1600 */ 1601 if (ISP2(blksz)) { 1602 head = P2NPHASE(off, blksz); 1603 blkoff = P2PHASE(off, blksz); 1604 if ((off >> blkshift) > dn->dn_maxblkid) 1605 goto out; 1606 } else { 1607 ASSERT(dn->dn_maxblkid == 0); 1608 if (off == 0 && len >= blksz) { 1609 /* 1610 * Freeing the whole block; fast-track this request. 1611 */ 1612 blkid = 0; 1613 nblks = 1; 1614 if (dn->dn_nlevels > 1) 1615 dnode_dirty_l1(dn, 0, tx); 1616 goto done; 1617 } else if (off >= blksz) { 1618 /* Freeing past end-of-data */ 1619 goto out; 1620 } else { 1621 /* Freeing part of the block. */ 1622 head = blksz - off; 1623 ASSERT3U(head, >, 0); 1624 } 1625 blkoff = off; 1626 } 1627 /* zero out any partial block data at the start of the range */ 1628 if (head) { 1629 ASSERT3U(blkoff + head, ==, blksz); 1630 if (len < head) 1631 head = len; 1632 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 1633 TRUE, FALSE, FTAG, &db) == 0) { 1634 caddr_t data; 1635 1636 /* don't dirty if it isn't on disk and isn't dirty */ 1637 if (db->db_last_dirty || 1638 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1639 rw_exit(&dn->dn_struct_rwlock); 1640 dmu_buf_will_dirty(&db->db, tx); 1641 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1642 data = db->db.db_data; 1643 bzero(data + blkoff, head); 1644 } 1645 dbuf_rele(db, FTAG); 1646 } 1647 off += head; 1648 len -= head; 1649 } 1650 1651 /* If the range was less than one block, we're done */ 1652 if (len == 0) 1653 goto out; 1654 1655 /* If the remaining range is past end of file, we're done */ 1656 if ((off >> blkshift) > dn->dn_maxblkid) 1657 goto out; 1658 1659 ASSERT(ISP2(blksz)); 1660 if (trunc) 1661 tail = 0; 1662 else 1663 tail = P2PHASE(len, blksz); 1664 1665 ASSERT0(P2PHASE(off, blksz)); 1666 /* zero out any partial block data at the end of the range */ 1667 if (tail) { 1668 if (len < tail) 1669 tail = len; 1670 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 1671 TRUE, FALSE, FTAG, &db) == 0) { 1672 /* don't dirty if not on disk and not dirty */ 1673 if (db->db_last_dirty || 1674 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1675 rw_exit(&dn->dn_struct_rwlock); 1676 dmu_buf_will_dirty(&db->db, tx); 1677 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1678 bzero(db->db.db_data, tail); 1679 } 1680 dbuf_rele(db, FTAG); 1681 } 1682 len -= tail; 1683 } 1684 1685 /* If the range did not include a full block, we are done */ 1686 if (len == 0) 1687 goto out; 1688 1689 ASSERT(IS_P2ALIGNED(off, blksz)); 1690 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 1691 blkid = off >> blkshift; 1692 nblks = len >> blkshift; 1693 if (trunc) 1694 nblks += 1; 1695 1696 /* 1697 * Dirty all the indirect blocks in this range. Note that only 1698 * the first and last indirect blocks can actually be written 1699 * (if they were partially freed) -- they must be dirtied, even if 1700 * they do not exist on disk yet. The interior blocks will 1701 * be freed by free_children(), so they will not actually be written. 1702 * Even though these interior blocks will not be written, we 1703 * dirty them for two reasons: 1704 * 1705 * - It ensures that the indirect blocks remain in memory until 1706 * syncing context. (They have already been prefetched by 1707 * dmu_tx_hold_free(), so we don't have to worry about reading 1708 * them serially here.) 1709 * 1710 * - The dirty space accounting will put pressure on the txg sync 1711 * mechanism to begin syncing, and to delay transactions if there 1712 * is a large amount of freeing. Even though these indirect 1713 * blocks will not be written, we could need to write the same 1714 * amount of space if we copy the freed BPs into deadlists. 1715 */ 1716 if (dn->dn_nlevels > 1) { 1717 uint64_t first, last; 1718 1719 first = blkid >> epbs; 1720 dnode_dirty_l1(dn, first, tx); 1721 if (trunc) 1722 last = dn->dn_maxblkid >> epbs; 1723 else 1724 last = (blkid + nblks - 1) >> epbs; 1725 if (last != first) 1726 dnode_dirty_l1(dn, last, tx); 1727 1728 dnode_dirty_l1range(dn, first, last, tx); 1729 1730 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 1731 SPA_BLKPTRSHIFT; 1732 for (uint64_t i = first + 1; i < last; i++) { 1733 /* 1734 * Set i to the blockid of the next non-hole 1735 * level-1 indirect block at or after i. Note 1736 * that dnode_next_offset() operates in terms of 1737 * level-0-equivalent bytes. 1738 */ 1739 uint64_t ibyte = i << shift; 1740 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 1741 &ibyte, 2, 1, 0); 1742 i = ibyte >> shift; 1743 if (i >= last) 1744 break; 1745 1746 /* 1747 * Normally we should not see an error, either 1748 * from dnode_next_offset() or dbuf_hold_level() 1749 * (except for ESRCH from dnode_next_offset). 1750 * If there is an i/o error, then when we read 1751 * this block in syncing context, it will use 1752 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 1753 * to the "failmode" property. dnode_next_offset() 1754 * doesn't have a flag to indicate MUSTSUCCEED. 1755 */ 1756 if (err != 0) 1757 break; 1758 1759 dnode_dirty_l1(dn, i, tx); 1760 } 1761 } 1762 1763 done: 1764 /* 1765 * Add this range to the dnode range list. 1766 * We will finish up this free operation in the syncing phase. 1767 */ 1768 mutex_enter(&dn->dn_mtx); 1769 int txgoff = tx->tx_txg & TXG_MASK; 1770 if (dn->dn_free_ranges[txgoff] == NULL) { 1771 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL); 1772 } 1773 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 1774 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 1775 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 1776 blkid, nblks, tx->tx_txg); 1777 mutex_exit(&dn->dn_mtx); 1778 1779 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 1780 dnode_setdirty(dn, tx); 1781 out: 1782 1783 rw_exit(&dn->dn_struct_rwlock); 1784 } 1785 1786 static boolean_t 1787 dnode_spill_freed(dnode_t *dn) 1788 { 1789 int i; 1790 1791 mutex_enter(&dn->dn_mtx); 1792 for (i = 0; i < TXG_SIZE; i++) { 1793 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 1794 break; 1795 } 1796 mutex_exit(&dn->dn_mtx); 1797 return (i < TXG_SIZE); 1798 } 1799 1800 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 1801 uint64_t 1802 dnode_block_freed(dnode_t *dn, uint64_t blkid) 1803 { 1804 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 1805 int i; 1806 1807 if (blkid == DMU_BONUS_BLKID) 1808 return (FALSE); 1809 1810 /* 1811 * If we're in the process of opening the pool, dp will not be 1812 * set yet, but there shouldn't be anything dirty. 1813 */ 1814 if (dp == NULL) 1815 return (FALSE); 1816 1817 if (dn->dn_free_txg) 1818 return (TRUE); 1819 1820 if (blkid == DMU_SPILL_BLKID) 1821 return (dnode_spill_freed(dn)); 1822 1823 mutex_enter(&dn->dn_mtx); 1824 for (i = 0; i < TXG_SIZE; i++) { 1825 if (dn->dn_free_ranges[i] != NULL && 1826 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 1827 break; 1828 } 1829 mutex_exit(&dn->dn_mtx); 1830 return (i < TXG_SIZE); 1831 } 1832 1833 /* call from syncing context when we actually write/free space for this dnode */ 1834 void 1835 dnode_diduse_space(dnode_t *dn, int64_t delta) 1836 { 1837 uint64_t space; 1838 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 1839 dn, dn->dn_phys, 1840 (u_longlong_t)dn->dn_phys->dn_used, 1841 (longlong_t)delta); 1842 1843 mutex_enter(&dn->dn_mtx); 1844 space = DN_USED_BYTES(dn->dn_phys); 1845 if (delta > 0) { 1846 ASSERT3U(space + delta, >=, space); /* no overflow */ 1847 } else { 1848 ASSERT3U(space, >=, -delta); /* no underflow */ 1849 } 1850 space += delta; 1851 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 1852 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 1853 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 1854 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 1855 } else { 1856 dn->dn_phys->dn_used = space; 1857 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 1858 } 1859 mutex_exit(&dn->dn_mtx); 1860 } 1861 1862 /* 1863 * Scans a block at the indicated "level" looking for a hole or data, 1864 * depending on 'flags'. 1865 * 1866 * If level > 0, then we are scanning an indirect block looking at its 1867 * pointers. If level == 0, then we are looking at a block of dnodes. 1868 * 1869 * If we don't find what we are looking for in the block, we return ESRCH. 1870 * Otherwise, return with *offset pointing to the beginning (if searching 1871 * forwards) or end (if searching backwards) of the range covered by the 1872 * block pointer we matched on (or dnode). 1873 * 1874 * The basic search algorithm used below by dnode_next_offset() is to 1875 * use this function to search up the block tree (widen the search) until 1876 * we find something (i.e., we don't return ESRCH) and then search back 1877 * down the tree (narrow the search) until we reach our original search 1878 * level. 1879 */ 1880 static int 1881 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 1882 int lvl, uint64_t blkfill, uint64_t txg) 1883 { 1884 dmu_buf_impl_t *db = NULL; 1885 void *data = NULL; 1886 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 1887 uint64_t epb = 1ULL << epbs; 1888 uint64_t minfill, maxfill; 1889 boolean_t hole; 1890 int i, inc, error, span; 1891 1892 dprintf("probing object %llu offset %llx level %d of %u\n", 1893 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 1894 1895 hole = ((flags & DNODE_FIND_HOLE) != 0); 1896 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 1897 ASSERT(txg == 0 || !hole); 1898 1899 if (lvl == dn->dn_phys->dn_nlevels) { 1900 error = 0; 1901 epb = dn->dn_phys->dn_nblkptr; 1902 data = dn->dn_phys->dn_blkptr; 1903 } else { 1904 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 1905 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 1906 if (error) { 1907 if (error != ENOENT) 1908 return (error); 1909 if (hole) 1910 return (0); 1911 /* 1912 * This can only happen when we are searching up 1913 * the block tree for data. We don't really need to 1914 * adjust the offset, as we will just end up looking 1915 * at the pointer to this block in its parent, and its 1916 * going to be unallocated, so we will skip over it. 1917 */ 1918 return (SET_ERROR(ESRCH)); 1919 } 1920 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT); 1921 if (error) { 1922 dbuf_rele(db, FTAG); 1923 return (error); 1924 } 1925 data = db->db.db_data; 1926 } 1927 1928 1929 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 1930 db->db_blkptr->blk_birth <= txg || 1931 BP_IS_HOLE(db->db_blkptr))) { 1932 /* 1933 * This can only happen when we are searching up the tree 1934 * and these conditions mean that we need to keep climbing. 1935 */ 1936 error = SET_ERROR(ESRCH); 1937 } else if (lvl == 0) { 1938 dnode_phys_t *dnp = data; 1939 span = DNODE_SHIFT; 1940 ASSERT(dn->dn_type == DMU_OT_DNODE); 1941 1942 for (i = (*offset >> span) & (blkfill - 1); 1943 i >= 0 && i < blkfill; i += inc) { 1944 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 1945 break; 1946 *offset += (1ULL << span) * inc; 1947 } 1948 if (i < 0 || i == blkfill) 1949 error = SET_ERROR(ESRCH); 1950 } else { 1951 blkptr_t *bp = data; 1952 uint64_t start = *offset; 1953 span = (lvl - 1) * epbs + dn->dn_datablkshift; 1954 minfill = 0; 1955 maxfill = blkfill << ((lvl - 1) * epbs); 1956 1957 if (hole) 1958 maxfill--; 1959 else 1960 minfill++; 1961 1962 *offset = *offset >> span; 1963 for (i = BF64_GET(*offset, 0, epbs); 1964 i >= 0 && i < epb; i += inc) { 1965 if (BP_GET_FILL(&bp[i]) >= minfill && 1966 BP_GET_FILL(&bp[i]) <= maxfill && 1967 (hole || bp[i].blk_birth > txg)) 1968 break; 1969 if (inc > 0 || *offset > 0) 1970 *offset += inc; 1971 } 1972 *offset = *offset << span; 1973 if (inc < 0) { 1974 /* traversing backwards; position offset at the end */ 1975 ASSERT3U(*offset, <=, start); 1976 *offset = MIN(*offset + (1ULL << span) - 1, start); 1977 } else if (*offset < start) { 1978 *offset = start; 1979 } 1980 if (i < 0 || i >= epb) 1981 error = SET_ERROR(ESRCH); 1982 } 1983 1984 if (db) 1985 dbuf_rele(db, FTAG); 1986 1987 return (error); 1988 } 1989 1990 /* 1991 * Find the next hole, data, or sparse region at or after *offset. 1992 * The value 'blkfill' tells us how many items we expect to find 1993 * in an L0 data block; this value is 1 for normal objects, 1994 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 1995 * DNODES_PER_BLOCK when searching for sparse regions thereof. 1996 * 1997 * Examples: 1998 * 1999 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 2000 * Finds the next/previous hole/data in a file. 2001 * Used in dmu_offset_next(). 2002 * 2003 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 2004 * Finds the next free/allocated dnode an objset's meta-dnode. 2005 * Only finds objects that have new contents since txg (ie. 2006 * bonus buffer changes and content removal are ignored). 2007 * Used in dmu_object_next(). 2008 * 2009 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 2010 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 2011 * Used in dmu_object_alloc(). 2012 */ 2013 int 2014 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 2015 int minlvl, uint64_t blkfill, uint64_t txg) 2016 { 2017 uint64_t initial_offset = *offset; 2018 int lvl, maxlvl; 2019 int error = 0; 2020 2021 if (!(flags & DNODE_FIND_HAVELOCK)) 2022 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2023 2024 if (dn->dn_phys->dn_nlevels == 0) { 2025 error = SET_ERROR(ESRCH); 2026 goto out; 2027 } 2028 2029 if (dn->dn_datablkshift == 0) { 2030 if (*offset < dn->dn_datablksz) { 2031 if (flags & DNODE_FIND_HOLE) 2032 *offset = dn->dn_datablksz; 2033 } else { 2034 error = SET_ERROR(ESRCH); 2035 } 2036 goto out; 2037 } 2038 2039 maxlvl = dn->dn_phys->dn_nlevels; 2040 2041 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2042 error = dnode_next_offset_level(dn, 2043 flags, offset, lvl, blkfill, txg); 2044 if (error != ESRCH) 2045 break; 2046 } 2047 2048 while (error == 0 && --lvl >= minlvl) { 2049 error = dnode_next_offset_level(dn, 2050 flags, offset, lvl, blkfill, txg); 2051 } 2052 2053 /* 2054 * There's always a "virtual hole" at the end of the object, even 2055 * if all BP's which physically exist are non-holes. 2056 */ 2057 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2058 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2059 error = 0; 2060 } 2061 2062 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2063 initial_offset < *offset : initial_offset > *offset)) 2064 error = SET_ERROR(ESRCH); 2065 out: 2066 if (!(flags & DNODE_FIND_HAVELOCK)) 2067 rw_exit(&dn->dn_struct_rwlock); 2068 2069 return (error); 2070 } 2071