1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2017 RackTop Systems. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dbuf.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dsl_dir.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/spa.h> 39 #include <sys/zio.h> 40 #include <sys/dmu_zfetch.h> 41 #include <sys/range_tree.h> 42 #include <sys/zfs_project.h> 43 44 dnode_stats_t dnode_stats = { 45 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, 46 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, 47 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, 48 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, 49 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, 50 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, 51 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, 52 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, 53 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, 54 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, 55 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, 56 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, 57 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, 58 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, 59 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, 60 { "dnode_allocate", KSTAT_DATA_UINT64 }, 61 { "dnode_reallocate", KSTAT_DATA_UINT64 }, 62 { "dnode_buf_evict", KSTAT_DATA_UINT64 }, 63 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, 64 { "dnode_alloc_race", KSTAT_DATA_UINT64 }, 65 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, 66 { "dnode_move_invalid", KSTAT_DATA_UINT64 }, 67 { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, 68 { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, 69 { "dnode_move_special", KSTAT_DATA_UINT64 }, 70 { "dnode_move_handle", KSTAT_DATA_UINT64 }, 71 { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, 72 { "dnode_move_active", KSTAT_DATA_UINT64 }, 73 }; 74 75 static kstat_t *dnode_ksp; 76 static kmem_cache_t *dnode_cache; 77 78 static dnode_phys_t dnode_phys_zero; 79 80 int zfs_default_bs = SPA_MINBLOCKSHIFT; 81 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 82 83 #ifdef _KERNEL 84 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 85 #endif /* _KERNEL */ 86 87 static int 88 dbuf_compare(const void *x1, const void *x2) 89 { 90 const dmu_buf_impl_t *d1 = x1; 91 const dmu_buf_impl_t *d2 = x2; 92 93 int cmp = TREE_CMP(d1->db_level, d2->db_level); 94 if (likely(cmp)) 95 return (cmp); 96 97 cmp = TREE_CMP(d1->db_blkid, d2->db_blkid); 98 if (likely(cmp)) 99 return (cmp); 100 101 if (d1->db_state == DB_SEARCH) { 102 ASSERT3S(d2->db_state, !=, DB_SEARCH); 103 return (-1); 104 } else if (d2->db_state == DB_SEARCH) { 105 ASSERT3S(d1->db_state, !=, DB_SEARCH); 106 return (1); 107 } 108 109 return (TREE_PCMP(d1, d2)); 110 } 111 112 /* ARGSUSED */ 113 static int 114 dnode_cons(void *arg, void *unused, int kmflag) 115 { 116 dnode_t *dn = arg; 117 int i; 118 119 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 120 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 121 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 122 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 123 cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL); 124 125 /* 126 * Every dbuf has a reference, and dropping a tracked reference is 127 * O(number of references), so don't track dn_holds. 128 */ 129 zfs_refcount_create_untracked(&dn->dn_holds); 130 zfs_refcount_create(&dn->dn_tx_holds); 131 list_link_init(&dn->dn_link); 132 133 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 134 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 135 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 136 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 137 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 138 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 139 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 140 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid)); 141 142 for (i = 0; i < TXG_SIZE; i++) { 143 multilist_link_init(&dn->dn_dirty_link[i]); 144 dn->dn_free_ranges[i] = NULL; 145 list_create(&dn->dn_dirty_records[i], 146 sizeof (dbuf_dirty_record_t), 147 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 148 } 149 150 dn->dn_allocated_txg = 0; 151 dn->dn_free_txg = 0; 152 dn->dn_assigned_txg = 0; 153 dn->dn_dirty_txg = 0; 154 dn->dn_dirtyctx = 0; 155 dn->dn_dirtyctx_firstset = NULL; 156 dn->dn_bonus = NULL; 157 dn->dn_have_spill = B_FALSE; 158 dn->dn_zio = NULL; 159 dn->dn_oldused = 0; 160 dn->dn_oldflags = 0; 161 dn->dn_olduid = 0; 162 dn->dn_oldgid = 0; 163 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 164 dn->dn_newuid = 0; 165 dn->dn_newgid = 0; 166 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 167 dn->dn_id_flags = 0; 168 169 dn->dn_dbufs_count = 0; 170 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 171 offsetof(dmu_buf_impl_t, db_link)); 172 173 dn->dn_moved = 0; 174 return (0); 175 } 176 177 /* ARGSUSED */ 178 static void 179 dnode_dest(void *arg, void *unused) 180 { 181 int i; 182 dnode_t *dn = arg; 183 184 rw_destroy(&dn->dn_struct_rwlock); 185 mutex_destroy(&dn->dn_mtx); 186 mutex_destroy(&dn->dn_dbufs_mtx); 187 cv_destroy(&dn->dn_notxholds); 188 cv_destroy(&dn->dn_nodnholds); 189 zfs_refcount_destroy(&dn->dn_holds); 190 zfs_refcount_destroy(&dn->dn_tx_holds); 191 ASSERT(!list_link_active(&dn->dn_link)); 192 193 for (i = 0; i < TXG_SIZE; i++) { 194 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 195 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 196 list_destroy(&dn->dn_dirty_records[i]); 197 ASSERT0(dn->dn_next_nblkptr[i]); 198 ASSERT0(dn->dn_next_nlevels[i]); 199 ASSERT0(dn->dn_next_indblkshift[i]); 200 ASSERT0(dn->dn_next_bonustype[i]); 201 ASSERT0(dn->dn_rm_spillblk[i]); 202 ASSERT0(dn->dn_next_bonuslen[i]); 203 ASSERT0(dn->dn_next_blksz[i]); 204 ASSERT0(dn->dn_next_maxblkid[i]); 205 } 206 207 ASSERT0(dn->dn_allocated_txg); 208 ASSERT0(dn->dn_free_txg); 209 ASSERT0(dn->dn_assigned_txg); 210 ASSERT0(dn->dn_dirty_txg); 211 ASSERT0(dn->dn_dirtyctx); 212 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 213 ASSERT3P(dn->dn_bonus, ==, NULL); 214 ASSERT(!dn->dn_have_spill); 215 ASSERT3P(dn->dn_zio, ==, NULL); 216 ASSERT0(dn->dn_oldused); 217 ASSERT0(dn->dn_oldflags); 218 ASSERT0(dn->dn_olduid); 219 ASSERT0(dn->dn_oldgid); 220 ASSERT0(dn->dn_oldprojid); 221 ASSERT0(dn->dn_newuid); 222 ASSERT0(dn->dn_newgid); 223 ASSERT0(dn->dn_newprojid); 224 ASSERT0(dn->dn_id_flags); 225 226 ASSERT0(dn->dn_dbufs_count); 227 avl_destroy(&dn->dn_dbufs); 228 } 229 230 void 231 dnode_init(void) 232 { 233 ASSERT(dnode_cache == NULL); 234 dnode_cache = kmem_cache_create("dnode_t", 235 sizeof (dnode_t), 236 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 237 #ifdef _KERNEL 238 kmem_cache_set_move(dnode_cache, dnode_move); 239 240 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", 241 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), 242 KSTAT_FLAG_VIRTUAL); 243 if (dnode_ksp != NULL) { 244 dnode_ksp->ks_data = &dnode_stats; 245 kstat_install(dnode_ksp); 246 } 247 #endif /* _KERNEL */ 248 } 249 250 void 251 dnode_fini(void) 252 { 253 if (dnode_ksp != NULL) { 254 kstat_delete(dnode_ksp); 255 dnode_ksp = NULL; 256 } 257 258 kmem_cache_destroy(dnode_cache); 259 dnode_cache = NULL; 260 } 261 262 263 #ifdef ZFS_DEBUG 264 void 265 dnode_verify(dnode_t *dn) 266 { 267 int drop_struct_lock = FALSE; 268 269 ASSERT(dn->dn_phys); 270 ASSERT(dn->dn_objset); 271 ASSERT(dn->dn_handle->dnh_dnode == dn); 272 273 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 274 275 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 276 return; 277 278 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 279 rw_enter(&dn->dn_struct_rwlock, RW_READER); 280 drop_struct_lock = TRUE; 281 } 282 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 283 int i; 284 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 285 ASSERT3U(dn->dn_indblkshift, >=, 0); 286 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 287 if (dn->dn_datablkshift) { 288 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 289 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 290 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 291 } 292 ASSERT3U(dn->dn_nlevels, <=, 30); 293 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 294 ASSERT3U(dn->dn_nblkptr, >=, 1); 295 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 296 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); 297 ASSERT3U(dn->dn_datablksz, ==, 298 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 299 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 300 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 301 dn->dn_bonuslen, <=, max_bonuslen); 302 for (i = 0; i < TXG_SIZE; i++) { 303 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 304 } 305 } 306 if (dn->dn_phys->dn_type != DMU_OT_NONE) 307 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 308 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 309 if (dn->dn_dbuf != NULL) { 310 ASSERT3P(dn->dn_phys, ==, 311 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 312 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 313 } 314 if (drop_struct_lock) 315 rw_exit(&dn->dn_struct_rwlock); 316 } 317 #endif 318 319 void 320 dnode_byteswap(dnode_phys_t *dnp) 321 { 322 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 323 int i; 324 325 if (dnp->dn_type == DMU_OT_NONE) { 326 bzero(dnp, sizeof (dnode_phys_t)); 327 return; 328 } 329 330 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 331 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 332 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); 333 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 334 dnp->dn_used = BSWAP_64(dnp->dn_used); 335 336 /* 337 * dn_nblkptr is only one byte, so it's OK to read it in either 338 * byte order. We can't read dn_bouslen. 339 */ 340 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 341 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 342 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 343 buf64[i] = BSWAP_64(buf64[i]); 344 345 /* 346 * OK to check dn_bonuslen for zero, because it won't matter if 347 * we have the wrong byte order. This is necessary because the 348 * dnode dnode is smaller than a regular dnode. 349 */ 350 if (dnp->dn_bonuslen != 0) { 351 /* 352 * Note that the bonus length calculated here may be 353 * longer than the actual bonus buffer. This is because 354 * we always put the bonus buffer after the last block 355 * pointer (instead of packing it against the end of the 356 * dnode buffer). 357 */ 358 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 359 int slots = dnp->dn_extra_slots + 1; 360 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off; 361 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 362 dmu_object_byteswap_t byteswap = 363 DMU_OT_BYTESWAP(dnp->dn_bonustype); 364 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 365 } 366 367 /* Swap SPILL block if we have one */ 368 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 369 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); 370 371 } 372 373 void 374 dnode_buf_byteswap(void *vbuf, size_t size) 375 { 376 int i = 0; 377 378 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 379 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 380 381 while (i < size) { 382 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i); 383 dnode_byteswap(dnp); 384 385 i += DNODE_MIN_SIZE; 386 if (dnp->dn_type != DMU_OT_NONE) 387 i += dnp->dn_extra_slots * DNODE_MIN_SIZE; 388 } 389 } 390 391 void 392 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 393 { 394 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 395 396 dnode_setdirty(dn, tx); 397 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 398 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 399 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 400 dn->dn_bonuslen = newsize; 401 if (newsize == 0) 402 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 403 else 404 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 405 rw_exit(&dn->dn_struct_rwlock); 406 } 407 408 void 409 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 410 { 411 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 412 dnode_setdirty(dn, tx); 413 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 414 dn->dn_bonustype = newtype; 415 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 416 rw_exit(&dn->dn_struct_rwlock); 417 } 418 419 void 420 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 421 { 422 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 423 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 424 dnode_setdirty(dn, tx); 425 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; 426 dn->dn_have_spill = B_FALSE; 427 } 428 429 static void 430 dnode_setdblksz(dnode_t *dn, int size) 431 { 432 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 433 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 434 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 435 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 436 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 437 dn->dn_datablksz = size; 438 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 439 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 440 } 441 442 static dnode_t * 443 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 444 uint64_t object, dnode_handle_t *dnh) 445 { 446 dnode_t *dn; 447 448 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 449 #ifdef _KERNEL 450 ASSERT(!POINTER_IS_VALID(dn->dn_objset)); 451 #endif /* _KERNEL */ 452 dn->dn_moved = 0; 453 454 /* 455 * Defer setting dn_objset until the dnode is ready to be a candidate 456 * for the dnode_move() callback. 457 */ 458 dn->dn_object = object; 459 dn->dn_dbuf = db; 460 dn->dn_handle = dnh; 461 dn->dn_phys = dnp; 462 463 if (dnp->dn_datablkszsec) { 464 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 465 } else { 466 dn->dn_datablksz = 0; 467 dn->dn_datablkszsec = 0; 468 dn->dn_datablkshift = 0; 469 } 470 dn->dn_indblkshift = dnp->dn_indblkshift; 471 dn->dn_nlevels = dnp->dn_nlevels; 472 dn->dn_type = dnp->dn_type; 473 dn->dn_nblkptr = dnp->dn_nblkptr; 474 dn->dn_checksum = dnp->dn_checksum; 475 dn->dn_compress = dnp->dn_compress; 476 dn->dn_bonustype = dnp->dn_bonustype; 477 dn->dn_bonuslen = dnp->dn_bonuslen; 478 dn->dn_num_slots = dnp->dn_extra_slots + 1; 479 dn->dn_maxblkid = dnp->dn_maxblkid; 480 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 481 dn->dn_id_flags = 0; 482 483 dmu_zfetch_init(&dn->dn_zfetch, dn); 484 485 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 486 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 487 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); 488 489 mutex_enter(&os->os_lock); 490 491 /* 492 * Exclude special dnodes from os_dnodes so an empty os_dnodes 493 * signifies that the special dnodes have no references from 494 * their children (the entries in os_dnodes). This allows 495 * dnode_destroy() to easily determine if the last child has 496 * been removed and then complete eviction of the objset. 497 */ 498 if (!DMU_OBJECT_IS_SPECIAL(object)) 499 list_insert_head(&os->os_dnodes, dn); 500 membar_producer(); 501 502 /* 503 * Everything else must be valid before assigning dn_objset 504 * makes the dnode eligible for dnode_move(). 505 */ 506 dn->dn_objset = os; 507 508 dnh->dnh_dnode = dn; 509 mutex_exit(&os->os_lock); 510 511 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); 512 513 return (dn); 514 } 515 516 /* 517 * Caller must be holding the dnode handle, which is released upon return. 518 */ 519 static void 520 dnode_destroy(dnode_t *dn) 521 { 522 objset_t *os = dn->dn_objset; 523 boolean_t complete_os_eviction = B_FALSE; 524 525 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 526 527 mutex_enter(&os->os_lock); 528 POINTER_INVALIDATE(&dn->dn_objset); 529 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 530 list_remove(&os->os_dnodes, dn); 531 complete_os_eviction = 532 list_is_empty(&os->os_dnodes) && 533 list_link_active(&os->os_evicting_node); 534 } 535 mutex_exit(&os->os_lock); 536 537 /* the dnode can no longer move, so we can release the handle */ 538 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) 539 zrl_remove(&dn->dn_handle->dnh_zrlock); 540 541 dn->dn_allocated_txg = 0; 542 dn->dn_free_txg = 0; 543 dn->dn_assigned_txg = 0; 544 dn->dn_dirty_txg = 0; 545 546 dn->dn_dirtyctx = 0; 547 if (dn->dn_dirtyctx_firstset != NULL) { 548 kmem_free(dn->dn_dirtyctx_firstset, 1); 549 dn->dn_dirtyctx_firstset = NULL; 550 } 551 if (dn->dn_bonus != NULL) { 552 mutex_enter(&dn->dn_bonus->db_mtx); 553 dbuf_destroy(dn->dn_bonus); 554 dn->dn_bonus = NULL; 555 } 556 dn->dn_zio = NULL; 557 558 dn->dn_have_spill = B_FALSE; 559 dn->dn_oldused = 0; 560 dn->dn_oldflags = 0; 561 dn->dn_olduid = 0; 562 dn->dn_oldgid = 0; 563 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 564 dn->dn_newuid = 0; 565 dn->dn_newgid = 0; 566 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 567 dn->dn_id_flags = 0; 568 569 dmu_zfetch_fini(&dn->dn_zfetch); 570 kmem_cache_free(dnode_cache, dn); 571 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); 572 573 if (complete_os_eviction) 574 dmu_objset_evict_done(os); 575 } 576 577 void 578 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 579 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) 580 { 581 int i; 582 583 ASSERT3U(dn_slots, >, 0); 584 ASSERT3U(dn_slots << DNODE_SHIFT, <=, 585 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); 586 ASSERT3U(blocksize, <=, 587 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 588 if (blocksize == 0) 589 blocksize = 1 << zfs_default_bs; 590 else 591 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 592 593 if (ibs == 0) 594 ibs = zfs_default_ibs; 595 596 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 597 598 dprintf("os=%p obj=%" PRIu64 " txg=%" PRIu64 599 " blocksize=%d ibs=%d dn_slots=%d\n", 600 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots); 601 DNODE_STAT_BUMP(dnode_allocate); 602 603 ASSERT(dn->dn_type == DMU_OT_NONE); 604 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 605 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 606 ASSERT(ot != DMU_OT_NONE); 607 ASSERT(DMU_OT_IS_VALID(ot)); 608 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 609 (bonustype == DMU_OT_SA && bonuslen == 0) || 610 (bonustype != DMU_OT_NONE && bonuslen != 0)); 611 ASSERT(DMU_OT_IS_VALID(bonustype)); 612 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); 613 ASSERT(dn->dn_type == DMU_OT_NONE); 614 ASSERT0(dn->dn_maxblkid); 615 ASSERT0(dn->dn_allocated_txg); 616 ASSERT0(dn->dn_dirty_txg); 617 ASSERT0(dn->dn_assigned_txg); 618 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 619 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1); 620 ASSERT(avl_is_empty(&dn->dn_dbufs)); 621 622 for (i = 0; i < TXG_SIZE; i++) { 623 ASSERT0(dn->dn_next_nblkptr[i]); 624 ASSERT0(dn->dn_next_nlevels[i]); 625 ASSERT0(dn->dn_next_indblkshift[i]); 626 ASSERT0(dn->dn_next_bonuslen[i]); 627 ASSERT0(dn->dn_next_bonustype[i]); 628 ASSERT0(dn->dn_rm_spillblk[i]); 629 ASSERT0(dn->dn_next_blksz[i]); 630 ASSERT0(dn->dn_next_maxblkid[i]); 631 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 632 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 633 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 634 } 635 636 dn->dn_type = ot; 637 dnode_setdblksz(dn, blocksize); 638 dn->dn_indblkshift = ibs; 639 dn->dn_nlevels = 1; 640 dn->dn_num_slots = dn_slots; 641 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 642 dn->dn_nblkptr = 1; 643 else { 644 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, 645 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 646 SPA_BLKPTRSHIFT)); 647 } 648 649 dn->dn_bonustype = bonustype; 650 dn->dn_bonuslen = bonuslen; 651 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 652 dn->dn_compress = ZIO_COMPRESS_INHERIT; 653 dn->dn_dirtyctx = 0; 654 655 dn->dn_free_txg = 0; 656 if (dn->dn_dirtyctx_firstset) { 657 kmem_free(dn->dn_dirtyctx_firstset, 1); 658 dn->dn_dirtyctx_firstset = NULL; 659 } 660 661 dn->dn_allocated_txg = tx->tx_txg; 662 dn->dn_id_flags = 0; 663 664 dnode_setdirty(dn, tx); 665 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 666 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 667 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 668 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 669 } 670 671 void 672 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 673 dmu_object_type_t bonustype, int bonuslen, int dn_slots, 674 boolean_t keep_spill, dmu_tx_t *tx) 675 { 676 int nblkptr; 677 678 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 679 ASSERT3U(blocksize, <=, 680 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 681 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 682 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 683 ASSERT(tx->tx_txg != 0); 684 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 685 (bonustype != DMU_OT_NONE && bonuslen != 0) || 686 (bonustype == DMU_OT_SA && bonuslen == 0)); 687 ASSERT(DMU_OT_IS_VALID(bonustype)); 688 ASSERT3U(bonuslen, <=, 689 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); 690 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT)); 691 692 dnode_free_interior_slots(dn); 693 DNODE_STAT_BUMP(dnode_reallocate); 694 695 /* clean up any unreferenced dbufs */ 696 dnode_evict_dbufs(dn); 697 698 dn->dn_id_flags = 0; 699 700 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 701 dnode_setdirty(dn, tx); 702 if (dn->dn_datablksz != blocksize) { 703 /* change blocksize */ 704 ASSERT(dn->dn_maxblkid == 0 && 705 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 706 dnode_block_freed(dn, 0))); 707 dnode_setdblksz(dn, blocksize); 708 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 709 } 710 if (dn->dn_bonuslen != bonuslen) 711 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 712 713 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 714 nblkptr = 1; 715 else 716 nblkptr = MIN(DN_MAX_NBLKPTR, 717 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 718 SPA_BLKPTRSHIFT)); 719 if (dn->dn_bonustype != bonustype) 720 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; 721 if (dn->dn_nblkptr != nblkptr) 722 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; 723 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) { 724 dbuf_rm_spill(dn, tx); 725 dnode_rm_spill(dn, tx); 726 } 727 rw_exit(&dn->dn_struct_rwlock); 728 729 /* change type */ 730 dn->dn_type = ot; 731 732 /* change bonus size and type */ 733 mutex_enter(&dn->dn_mtx); 734 dn->dn_bonustype = bonustype; 735 dn->dn_bonuslen = bonuslen; 736 dn->dn_num_slots = dn_slots; 737 dn->dn_nblkptr = nblkptr; 738 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 739 dn->dn_compress = ZIO_COMPRESS_INHERIT; 740 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 741 742 /* fix up the bonus db_size */ 743 if (dn->dn_bonus) { 744 dn->dn_bonus->db.db_size = 745 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 746 (dn->dn_nblkptr - 1) * sizeof (blkptr_t); 747 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 748 } 749 750 dn->dn_allocated_txg = tx->tx_txg; 751 mutex_exit(&dn->dn_mtx); 752 } 753 754 #ifdef _KERNEL 755 static void 756 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 757 { 758 int i; 759 760 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 761 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 762 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 763 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); 764 765 /* Copy fields. */ 766 ndn->dn_objset = odn->dn_objset; 767 ndn->dn_object = odn->dn_object; 768 ndn->dn_dbuf = odn->dn_dbuf; 769 ndn->dn_handle = odn->dn_handle; 770 ndn->dn_phys = odn->dn_phys; 771 ndn->dn_type = odn->dn_type; 772 ndn->dn_bonuslen = odn->dn_bonuslen; 773 ndn->dn_bonustype = odn->dn_bonustype; 774 ndn->dn_nblkptr = odn->dn_nblkptr; 775 ndn->dn_checksum = odn->dn_checksum; 776 ndn->dn_compress = odn->dn_compress; 777 ndn->dn_nlevels = odn->dn_nlevels; 778 ndn->dn_indblkshift = odn->dn_indblkshift; 779 ndn->dn_datablkshift = odn->dn_datablkshift; 780 ndn->dn_datablkszsec = odn->dn_datablkszsec; 781 ndn->dn_datablksz = odn->dn_datablksz; 782 ndn->dn_maxblkid = odn->dn_maxblkid; 783 ndn->dn_num_slots = odn->dn_num_slots; 784 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0], 785 sizeof (odn->dn_next_type)); 786 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 787 sizeof (odn->dn_next_nblkptr)); 788 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 789 sizeof (odn->dn_next_nlevels)); 790 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 791 sizeof (odn->dn_next_indblkshift)); 792 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 793 sizeof (odn->dn_next_bonustype)); 794 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 795 sizeof (odn->dn_rm_spillblk)); 796 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 797 sizeof (odn->dn_next_bonuslen)); 798 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 799 sizeof (odn->dn_next_blksz)); 800 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0], 801 sizeof (odn->dn_next_maxblkid)); 802 for (i = 0; i < TXG_SIZE; i++) { 803 list_move_tail(&ndn->dn_dirty_records[i], 804 &odn->dn_dirty_records[i]); 805 } 806 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 807 sizeof (odn->dn_free_ranges)); 808 ndn->dn_allocated_txg = odn->dn_allocated_txg; 809 ndn->dn_free_txg = odn->dn_free_txg; 810 ndn->dn_assigned_txg = odn->dn_assigned_txg; 811 ndn->dn_dirty_txg = odn->dn_dirty_txg; 812 ndn->dn_dirtyctx = odn->dn_dirtyctx; 813 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 814 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0); 815 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 816 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 817 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 818 ndn->dn_dbufs_count = odn->dn_dbufs_count; 819 ndn->dn_bonus = odn->dn_bonus; 820 ndn->dn_have_spill = odn->dn_have_spill; 821 ndn->dn_zio = odn->dn_zio; 822 ndn->dn_oldused = odn->dn_oldused; 823 ndn->dn_oldflags = odn->dn_oldflags; 824 ndn->dn_olduid = odn->dn_olduid; 825 ndn->dn_oldgid = odn->dn_oldgid; 826 ndn->dn_oldprojid = odn->dn_oldprojid; 827 ndn->dn_newuid = odn->dn_newuid; 828 ndn->dn_newgid = odn->dn_newgid; 829 ndn->dn_newprojid = odn->dn_newprojid; 830 ndn->dn_id_flags = odn->dn_id_flags; 831 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 832 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 833 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 834 835 /* 836 * Update back pointers. Updating the handle fixes the back pointer of 837 * every descendant dbuf as well as the bonus dbuf. 838 */ 839 ASSERT(ndn->dn_handle->dnh_dnode == odn); 840 ndn->dn_handle->dnh_dnode = ndn; 841 if (ndn->dn_zfetch.zf_dnode == odn) { 842 ndn->dn_zfetch.zf_dnode = ndn; 843 } 844 845 /* 846 * Invalidate the original dnode by clearing all of its back pointers. 847 */ 848 odn->dn_dbuf = NULL; 849 odn->dn_handle = NULL; 850 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 851 offsetof(dmu_buf_impl_t, db_link)); 852 odn->dn_dbufs_count = 0; 853 odn->dn_bonus = NULL; 854 odn->dn_zfetch.zf_dnode = NULL; 855 856 /* 857 * Set the low bit of the objset pointer to ensure that dnode_move() 858 * recognizes the dnode as invalid in any subsequent callback. 859 */ 860 POINTER_INVALIDATE(&odn->dn_objset); 861 862 /* 863 * Satisfy the destructor. 864 */ 865 for (i = 0; i < TXG_SIZE; i++) { 866 list_create(&odn->dn_dirty_records[i], 867 sizeof (dbuf_dirty_record_t), 868 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 869 odn->dn_free_ranges[i] = NULL; 870 odn->dn_next_nlevels[i] = 0; 871 odn->dn_next_indblkshift[i] = 0; 872 odn->dn_next_bonustype[i] = 0; 873 odn->dn_rm_spillblk[i] = 0; 874 odn->dn_next_bonuslen[i] = 0; 875 odn->dn_next_blksz[i] = 0; 876 } 877 odn->dn_allocated_txg = 0; 878 odn->dn_free_txg = 0; 879 odn->dn_assigned_txg = 0; 880 odn->dn_dirty_txg = 0; 881 odn->dn_dirtyctx = 0; 882 odn->dn_dirtyctx_firstset = NULL; 883 odn->dn_have_spill = B_FALSE; 884 odn->dn_zio = NULL; 885 odn->dn_oldused = 0; 886 odn->dn_oldflags = 0; 887 odn->dn_olduid = 0; 888 odn->dn_oldgid = 0; 889 odn->dn_oldprojid = ZFS_DEFAULT_PROJID; 890 odn->dn_newuid = 0; 891 odn->dn_newgid = 0; 892 odn->dn_newprojid = ZFS_DEFAULT_PROJID; 893 odn->dn_id_flags = 0; 894 895 /* 896 * Mark the dnode. 897 */ 898 ndn->dn_moved = 1; 899 odn->dn_moved = (uint8_t)-1; 900 } 901 902 /*ARGSUSED*/ 903 static kmem_cbrc_t 904 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 905 { 906 dnode_t *odn = buf, *ndn = newbuf; 907 objset_t *os; 908 int64_t refcount; 909 uint32_t dbufs; 910 911 /* 912 * The dnode is on the objset's list of known dnodes if the objset 913 * pointer is valid. We set the low bit of the objset pointer when 914 * freeing the dnode to invalidate it, and the memory patterns written 915 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 916 * A newly created dnode sets the objset pointer last of all to indicate 917 * that the dnode is known and in a valid state to be moved by this 918 * function. 919 */ 920 os = odn->dn_objset; 921 if (!POINTER_IS_VALID(os)) { 922 DNODE_STAT_BUMP(dnode_move_invalid); 923 return (KMEM_CBRC_DONT_KNOW); 924 } 925 926 /* 927 * Ensure that the objset does not go away during the move. 928 */ 929 rw_enter(&os_lock, RW_WRITER); 930 if (os != odn->dn_objset) { 931 rw_exit(&os_lock); 932 DNODE_STAT_BUMP(dnode_move_recheck1); 933 return (KMEM_CBRC_DONT_KNOW); 934 } 935 936 /* 937 * If the dnode is still valid, then so is the objset. We know that no 938 * valid objset can be freed while we hold os_lock, so we can safely 939 * ensure that the objset remains in use. 940 */ 941 mutex_enter(&os->os_lock); 942 943 /* 944 * Recheck the objset pointer in case the dnode was removed just before 945 * acquiring the lock. 946 */ 947 if (os != odn->dn_objset) { 948 mutex_exit(&os->os_lock); 949 rw_exit(&os_lock); 950 DNODE_STAT_BUMP(dnode_move_recheck2); 951 return (KMEM_CBRC_DONT_KNOW); 952 } 953 954 /* 955 * At this point we know that as long as we hold os->os_lock, the dnode 956 * cannot be freed and fields within the dnode can be safely accessed. 957 * The objset listing this dnode cannot go away as long as this dnode is 958 * on its list. 959 */ 960 rw_exit(&os_lock); 961 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 962 mutex_exit(&os->os_lock); 963 DNODE_STAT_BUMP(dnode_move_special); 964 return (KMEM_CBRC_NO); 965 } 966 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 967 968 /* 969 * Lock the dnode handle to prevent the dnode from obtaining any new 970 * holds. This also prevents the descendant dbufs and the bonus dbuf 971 * from accessing the dnode, so that we can discount their holds. The 972 * handle is safe to access because we know that while the dnode cannot 973 * go away, neither can its handle. Once we hold dnh_zrlock, we can 974 * safely move any dnode referenced only by dbufs. 975 */ 976 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 977 mutex_exit(&os->os_lock); 978 DNODE_STAT_BUMP(dnode_move_handle); 979 return (KMEM_CBRC_LATER); 980 } 981 982 /* 983 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 984 * We need to guarantee that there is a hold for every dbuf in order to 985 * determine whether the dnode is actively referenced. Falsely matching 986 * a dbuf to an active hold would lead to an unsafe move. It's possible 987 * that a thread already having an active dnode hold is about to add a 988 * dbuf, and we can't compare hold and dbuf counts while the add is in 989 * progress. 990 */ 991 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 992 zrl_exit(&odn->dn_handle->dnh_zrlock); 993 mutex_exit(&os->os_lock); 994 DNODE_STAT_BUMP(dnode_move_rwlock); 995 return (KMEM_CBRC_LATER); 996 } 997 998 /* 999 * A dbuf may be removed (evicted) without an active dnode hold. In that 1000 * case, the dbuf count is decremented under the handle lock before the 1001 * dbuf's hold is released. This order ensures that if we count the hold 1002 * after the dbuf is removed but before its hold is released, we will 1003 * treat the unmatched hold as active and exit safely. If we count the 1004 * hold before the dbuf is removed, the hold is discounted, and the 1005 * removal is blocked until the move completes. 1006 */ 1007 refcount = zfs_refcount_count(&odn->dn_holds); 1008 ASSERT(refcount >= 0); 1009 dbufs = odn->dn_dbufs_count; 1010 1011 /* We can't have more dbufs than dnode holds. */ 1012 ASSERT3U(dbufs, <=, refcount); 1013 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 1014 uint32_t, dbufs); 1015 1016 if (refcount > dbufs) { 1017 rw_exit(&odn->dn_struct_rwlock); 1018 zrl_exit(&odn->dn_handle->dnh_zrlock); 1019 mutex_exit(&os->os_lock); 1020 DNODE_STAT_BUMP(dnode_move_active); 1021 return (KMEM_CBRC_LATER); 1022 } 1023 1024 rw_exit(&odn->dn_struct_rwlock); 1025 1026 /* 1027 * At this point we know that anyone with a hold on the dnode is not 1028 * actively referencing it. The dnode is known and in a valid state to 1029 * move. We're holding the locks needed to execute the critical section. 1030 */ 1031 dnode_move_impl(odn, ndn); 1032 1033 list_link_replace(&odn->dn_link, &ndn->dn_link); 1034 /* If the dnode was safe to move, the refcount cannot have changed. */ 1035 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds)); 1036 ASSERT(dbufs == ndn->dn_dbufs_count); 1037 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 1038 mutex_exit(&os->os_lock); 1039 1040 return (KMEM_CBRC_YES); 1041 } 1042 #endif /* _KERNEL */ 1043 1044 static void 1045 dnode_slots_hold(dnode_children_t *children, int idx, int slots) 1046 { 1047 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1048 1049 for (int i = idx; i < idx + slots; i++) { 1050 dnode_handle_t *dnh = &children->dnc_children[i]; 1051 zrl_add(&dnh->dnh_zrlock); 1052 } 1053 } 1054 1055 static void 1056 dnode_slots_rele(dnode_children_t *children, int idx, int slots) 1057 { 1058 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1059 1060 for (int i = idx; i < idx + slots; i++) { 1061 dnode_handle_t *dnh = &children->dnc_children[i]; 1062 1063 if (zrl_is_locked(&dnh->dnh_zrlock)) 1064 zrl_exit(&dnh->dnh_zrlock); 1065 else 1066 zrl_remove(&dnh->dnh_zrlock); 1067 } 1068 } 1069 1070 static int 1071 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots) 1072 { 1073 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1074 1075 for (int i = idx; i < idx + slots; i++) { 1076 dnode_handle_t *dnh = &children->dnc_children[i]; 1077 1078 if (!zrl_tryenter(&dnh->dnh_zrlock)) { 1079 for (int j = idx; j < i; j++) { 1080 dnh = &children->dnc_children[j]; 1081 zrl_exit(&dnh->dnh_zrlock); 1082 } 1083 1084 return (0); 1085 } 1086 } 1087 1088 return (1); 1089 } 1090 1091 static void 1092 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) 1093 { 1094 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1095 1096 for (int i = idx; i < idx + slots; i++) { 1097 dnode_handle_t *dnh = &children->dnc_children[i]; 1098 dnh->dnh_dnode = ptr; 1099 } 1100 } 1101 1102 static boolean_t 1103 dnode_check_slots_free(dnode_children_t *children, int idx, int slots) 1104 { 1105 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1106 1107 /* 1108 * If all dnode slots are either already free or 1109 * evictable return B_TRUE. 1110 */ 1111 for (int i = idx; i < idx + slots; i++) { 1112 dnode_handle_t *dnh = &children->dnc_children[i]; 1113 dnode_t *dn = dnh->dnh_dnode; 1114 1115 if (dn == DN_SLOT_FREE) { 1116 continue; 1117 } else if (DN_SLOT_IS_PTR(dn)) { 1118 mutex_enter(&dn->dn_mtx); 1119 boolean_t can_free = (dn->dn_type == DMU_OT_NONE && 1120 zfs_refcount_is_zero(&dn->dn_holds) && 1121 !DNODE_IS_DIRTY(dn)); 1122 mutex_exit(&dn->dn_mtx); 1123 1124 if (!can_free) 1125 return (B_FALSE); 1126 else 1127 continue; 1128 } else { 1129 return (B_FALSE); 1130 } 1131 } 1132 1133 return (B_TRUE); 1134 } 1135 1136 static void 1137 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) 1138 { 1139 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1140 1141 for (int i = idx; i < idx + slots; i++) { 1142 dnode_handle_t *dnh = &children->dnc_children[i]; 1143 1144 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 1145 1146 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1147 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); 1148 dnode_destroy(dnh->dnh_dnode); 1149 dnh->dnh_dnode = DN_SLOT_FREE; 1150 } 1151 } 1152 } 1153 1154 void 1155 dnode_free_interior_slots(dnode_t *dn) 1156 { 1157 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); 1158 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; 1159 int idx = (dn->dn_object & (epb - 1)) + 1; 1160 int slots = dn->dn_num_slots - 1; 1161 1162 if (slots == 0) 1163 return; 1164 1165 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1166 1167 while (!dnode_slots_tryenter(children, idx, slots)) 1168 DNODE_STAT_BUMP(dnode_free_interior_lock_retry); 1169 1170 dnode_set_slots(children, idx, slots, DN_SLOT_FREE); 1171 dnode_slots_rele(children, idx, slots); 1172 } 1173 1174 void 1175 dnode_special_close(dnode_handle_t *dnh) 1176 { 1177 dnode_t *dn = dnh->dnh_dnode; 1178 1179 /* 1180 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final 1181 * zfs_refcount_remove() 1182 */ 1183 mutex_enter(&dn->dn_mtx); 1184 if (zfs_refcount_count(&dn->dn_holds) > 0) 1185 cv_wait(&dn->dn_nodnholds, &dn->dn_mtx); 1186 mutex_exit(&dn->dn_mtx); 1187 ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0); 1188 1189 ASSERT(dn->dn_dbuf == NULL || 1190 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1191 zrl_add(&dnh->dnh_zrlock); 1192 dnode_destroy(dn); /* implicit zrl_remove() */ 1193 zrl_destroy(&dnh->dnh_zrlock); 1194 dnh->dnh_dnode = NULL; 1195 } 1196 1197 void 1198 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1199 dnode_handle_t *dnh) 1200 { 1201 dnode_t *dn; 1202 1203 zrl_init(&dnh->dnh_zrlock); 1204 VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock)); 1205 1206 dn = dnode_create(os, dnp, NULL, object, dnh); 1207 DNODE_VERIFY(dn); 1208 1209 zrl_exit(&dnh->dnh_zrlock); 1210 } 1211 1212 static void 1213 dnode_buf_evict_async(void *dbu) 1214 { 1215 dnode_children_t *dnc = dbu; 1216 1217 DNODE_STAT_BUMP(dnode_buf_evict); 1218 1219 for (int i = 0; i < dnc->dnc_count; i++) { 1220 dnode_handle_t *dnh = &dnc->dnc_children[i]; 1221 dnode_t *dn; 1222 1223 /* 1224 * The dnode handle lock guards against the dnode moving to 1225 * another valid address, so there is no need here to guard 1226 * against changes to or from NULL. 1227 */ 1228 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1229 zrl_destroy(&dnh->dnh_zrlock); 1230 dnh->dnh_dnode = DN_SLOT_UNINIT; 1231 continue; 1232 } 1233 1234 zrl_add(&dnh->dnh_zrlock); 1235 dn = dnh->dnh_dnode; 1236 /* 1237 * If there are holds on this dnode, then there should 1238 * be holds on the dnode's containing dbuf as well; thus 1239 * it wouldn't be eligible for eviction and this function 1240 * would not have been called. 1241 */ 1242 ASSERT(zfs_refcount_is_zero(&dn->dn_holds)); 1243 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 1244 1245 dnode_destroy(dn); /* implicit zrl_remove() for first slot */ 1246 zrl_destroy(&dnh->dnh_zrlock); 1247 dnh->dnh_dnode = DN_SLOT_UNINIT; 1248 } 1249 kmem_free(dnc, sizeof (dnode_children_t) + 1250 dnc->dnc_count * sizeof (dnode_handle_t)); 1251 } 1252 1253 /* 1254 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used 1255 * to ensure the hole at the specified object offset is large enough to 1256 * hold the dnode being created. The slots parameter is also used to ensure 1257 * a dnode does not span multiple dnode blocks. In both of these cases, if 1258 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases 1259 * are only possible when using DNODE_MUST_BE_FREE. 1260 * 1261 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. 1262 * dnode_hold_impl() will check if the requested dnode is already consumed 1263 * as an extra dnode slot by an large dnode, in which case it returns 1264 * ENOENT. 1265 * 1266 * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just 1267 * return whether the hold would succeed or not. tag and dnp should set to 1268 * NULL in this case. 1269 * 1270 * errors: 1271 * EINVAL - invalid object number or flags. 1272 * ENOSPC - hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) 1273 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) 1274 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) 1275 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) 1276 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) 1277 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) 1278 * EIO - i/o error error when reading the meta dnode dbuf. 1279 * succeeds even for free dnodes. 1280 */ 1281 int 1282 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, 1283 void *tag, dnode_t **dnp) 1284 { 1285 int epb, idx, err; 1286 int drop_struct_lock = FALSE; 1287 int type; 1288 uint64_t blk; 1289 dnode_t *mdn, *dn; 1290 dmu_buf_impl_t *db; 1291 dnode_children_t *dnc; 1292 dnode_phys_t *dn_block; 1293 dnode_handle_t *dnh; 1294 1295 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); 1296 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); 1297 IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL)); 1298 1299 /* 1300 * If you are holding the spa config lock as writer, you shouldn't 1301 * be asking the DMU to do *anything* unless it's the root pool 1302 * which may require us to read from the root filesystem while 1303 * holding some (not all) of the locks as writer. 1304 */ 1305 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1306 (spa_is_root(os->os_spa) && 1307 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1308 1309 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1310 1311 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT || 1312 object == DMU_PROJECTUSED_OBJECT) { 1313 if (object == DMU_USERUSED_OBJECT) 1314 dn = DMU_USERUSED_DNODE(os); 1315 else if (object == DMU_GROUPUSED_OBJECT) 1316 dn = DMU_GROUPUSED_DNODE(os); 1317 else 1318 dn = DMU_PROJECTUSED_DNODE(os); 1319 if (dn == NULL) 1320 return (SET_ERROR(ENOENT)); 1321 type = dn->dn_type; 1322 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1323 return (SET_ERROR(ENOENT)); 1324 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1325 return (SET_ERROR(EEXIST)); 1326 DNODE_VERIFY(dn); 1327 /* Don't actually hold if dry run, just return 0 */ 1328 if (!(flag & DNODE_DRY_RUN)) { 1329 (void) zfs_refcount_add(&dn->dn_holds, tag); 1330 *dnp = dn; 1331 } 1332 return (0); 1333 } 1334 1335 if (object == 0 || object >= DN_MAX_OBJECT) 1336 return (SET_ERROR(EINVAL)); 1337 1338 mdn = DMU_META_DNODE(os); 1339 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1340 1341 DNODE_VERIFY(mdn); 1342 1343 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1344 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1345 drop_struct_lock = TRUE; 1346 } 1347 1348 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1349 db = dbuf_hold(mdn, blk, FTAG); 1350 if (drop_struct_lock) 1351 rw_exit(&mdn->dn_struct_rwlock); 1352 if (db == NULL) { 1353 DNODE_STAT_BUMP(dnode_hold_dbuf_hold); 1354 return (SET_ERROR(EIO)); 1355 } 1356 /* 1357 * We do not need to decrypt to read the dnode so it doesn't matter 1358 * if we get the encrypted or decrypted version. 1359 */ 1360 err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT); 1361 if (err) { 1362 DNODE_STAT_BUMP(dnode_hold_dbuf_read); 1363 dbuf_rele(db, FTAG); 1364 return (err); 1365 } 1366 1367 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1368 epb = db->db.db_size >> DNODE_SHIFT; 1369 1370 idx = object & (epb - 1); 1371 dn_block = (dnode_phys_t *)db->db.db_data; 1372 1373 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1374 dnc = dmu_buf_get_user(&db->db); 1375 dnh = NULL; 1376 if (dnc == NULL) { 1377 dnode_children_t *winner; 1378 int skip = 0; 1379 1380 dnc = kmem_zalloc(sizeof (dnode_children_t) + 1381 epb * sizeof (dnode_handle_t), KM_SLEEP); 1382 dnc->dnc_count = epb; 1383 dnh = &dnc->dnc_children[0]; 1384 1385 /* Initialize dnode slot status from dnode_phys_t */ 1386 for (int i = 0; i < epb; i++) { 1387 zrl_init(&dnh[i].dnh_zrlock); 1388 1389 if (skip) { 1390 skip--; 1391 continue; 1392 } 1393 1394 if (dn_block[i].dn_type != DMU_OT_NONE) { 1395 int interior = dn_block[i].dn_extra_slots; 1396 1397 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); 1398 dnode_set_slots(dnc, i + 1, interior, 1399 DN_SLOT_INTERIOR); 1400 skip = interior; 1401 } else { 1402 dnh[i].dnh_dnode = DN_SLOT_FREE; 1403 skip = 0; 1404 } 1405 } 1406 1407 dmu_buf_init_user(&dnc->dnc_dbu, NULL, 1408 dnode_buf_evict_async, NULL); 1409 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); 1410 if (winner != NULL) { 1411 1412 for (int i = 0; i < epb; i++) 1413 zrl_destroy(&dnh[i].dnh_zrlock); 1414 1415 kmem_free(dnc, sizeof (dnode_children_t) + 1416 epb * sizeof (dnode_handle_t)); 1417 dnc = winner; 1418 } 1419 } 1420 1421 ASSERT(dnc->dnc_count == epb); 1422 dn = DN_SLOT_UNINIT; 1423 1424 if (flag & DNODE_MUST_BE_ALLOCATED) { 1425 slots = 1; 1426 1427 while (dn == DN_SLOT_UNINIT) { 1428 dnode_slots_hold(dnc, idx, slots); 1429 dnh = &dnc->dnc_children[idx]; 1430 1431 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1432 dn = dnh->dnh_dnode; 1433 break; 1434 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { 1435 DNODE_STAT_BUMP(dnode_hold_alloc_interior); 1436 dnode_slots_rele(dnc, idx, slots); 1437 dbuf_rele(db, FTAG); 1438 return (SET_ERROR(EEXIST)); 1439 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { 1440 DNODE_STAT_BUMP(dnode_hold_alloc_misses); 1441 dnode_slots_rele(dnc, idx, slots); 1442 dbuf_rele(db, FTAG); 1443 return (SET_ERROR(ENOENT)); 1444 } 1445 1446 dnode_slots_rele(dnc, idx, slots); 1447 if (!dnode_slots_tryenter(dnc, idx, slots)) { 1448 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry); 1449 continue; 1450 } 1451 1452 /* 1453 * Someone else won the race and called dnode_create() 1454 * after we checked DN_SLOT_IS_PTR() above but before 1455 * we acquired the lock. 1456 */ 1457 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1458 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); 1459 dn = dnh->dnh_dnode; 1460 } else { 1461 dn = dnode_create(os, dn_block + idx, db, 1462 object, dnh); 1463 } 1464 } 1465 1466 mutex_enter(&dn->dn_mtx); 1467 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { 1468 DNODE_STAT_BUMP(dnode_hold_alloc_type_none); 1469 mutex_exit(&dn->dn_mtx); 1470 dnode_slots_rele(dnc, idx, slots); 1471 dbuf_rele(db, FTAG); 1472 return (SET_ERROR(ENOENT)); 1473 } 1474 1475 /* Don't actually hold if dry run, just return 0 */ 1476 if (flag & DNODE_DRY_RUN) { 1477 mutex_exit(&dn->dn_mtx); 1478 dnode_slots_rele(dnc, idx, slots); 1479 dbuf_rele(db, FTAG); 1480 return (0); 1481 } 1482 1483 DNODE_STAT_BUMP(dnode_hold_alloc_hits); 1484 } else if (flag & DNODE_MUST_BE_FREE) { 1485 1486 if (idx + slots - 1 >= DNODES_PER_BLOCK) { 1487 DNODE_STAT_BUMP(dnode_hold_free_overflow); 1488 dbuf_rele(db, FTAG); 1489 return (SET_ERROR(ENOSPC)); 1490 } 1491 1492 while (dn == DN_SLOT_UNINIT) { 1493 dnode_slots_hold(dnc, idx, slots); 1494 1495 if (!dnode_check_slots_free(dnc, idx, slots)) { 1496 DNODE_STAT_BUMP(dnode_hold_free_misses); 1497 dnode_slots_rele(dnc, idx, slots); 1498 dbuf_rele(db, FTAG); 1499 return (SET_ERROR(ENOSPC)); 1500 } 1501 1502 dnode_slots_rele(dnc, idx, slots); 1503 if (!dnode_slots_tryenter(dnc, idx, slots)) { 1504 DNODE_STAT_BUMP(dnode_hold_free_lock_retry); 1505 continue; 1506 } 1507 1508 if (!dnode_check_slots_free(dnc, idx, slots)) { 1509 DNODE_STAT_BUMP(dnode_hold_free_lock_misses); 1510 dnode_slots_rele(dnc, idx, slots); 1511 dbuf_rele(db, FTAG); 1512 return (SET_ERROR(ENOSPC)); 1513 } 1514 1515 /* 1516 * Allocated but otherwise free dnodes which would 1517 * be in the interior of a multi-slot dnodes need 1518 * to be freed. Single slot dnodes can be safely 1519 * re-purposed as a performance optimization. 1520 */ 1521 if (slots > 1) 1522 dnode_reclaim_slots(dnc, idx + 1, slots - 1); 1523 1524 dnh = &dnc->dnc_children[idx]; 1525 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1526 dn = dnh->dnh_dnode; 1527 } else { 1528 dn = dnode_create(os, dn_block + idx, db, 1529 object, dnh); 1530 } 1531 } 1532 1533 mutex_enter(&dn->dn_mtx); 1534 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { 1535 DNODE_STAT_BUMP(dnode_hold_free_refcount); 1536 mutex_exit(&dn->dn_mtx); 1537 dnode_slots_rele(dnc, idx, slots); 1538 dbuf_rele(db, FTAG); 1539 return (SET_ERROR(EEXIST)); 1540 } 1541 1542 /* Don't actually hold if dry run, just return 0 */ 1543 if (flag & DNODE_DRY_RUN) { 1544 mutex_exit(&dn->dn_mtx); 1545 dnode_slots_rele(dnc, idx, slots); 1546 dbuf_rele(db, FTAG); 1547 return (0); 1548 } 1549 1550 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); 1551 DNODE_STAT_BUMP(dnode_hold_free_hits); 1552 } else { 1553 dbuf_rele(db, FTAG); 1554 return (SET_ERROR(EINVAL)); 1555 } 1556 1557 ASSERT0(dn->dn_free_txg); 1558 1559 if (zfs_refcount_add(&dn->dn_holds, tag) == 1) 1560 dbuf_add_ref(db, dnh); 1561 1562 mutex_exit(&dn->dn_mtx); 1563 1564 /* Now we can rely on the hold to prevent the dnode from moving. */ 1565 dnode_slots_rele(dnc, idx, slots); 1566 1567 DNODE_VERIFY(dn); 1568 ASSERT3P(dn->dn_dbuf, ==, db); 1569 ASSERT3U(dn->dn_object, ==, object); 1570 dbuf_rele(db, FTAG); 1571 1572 *dnp = dn; 1573 return (0); 1574 } 1575 1576 /* 1577 * Return held dnode if the object is allocated, NULL if not. 1578 */ 1579 int 1580 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1581 { 1582 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, 1583 dnp)); 1584 } 1585 1586 /* 1587 * Can only add a reference if there is already at least one 1588 * reference on the dnode. Returns FALSE if unable to add a 1589 * new reference. 1590 */ 1591 boolean_t 1592 dnode_add_ref(dnode_t *dn, void *tag) 1593 { 1594 mutex_enter(&dn->dn_mtx); 1595 if (zfs_refcount_is_zero(&dn->dn_holds)) { 1596 mutex_exit(&dn->dn_mtx); 1597 return (FALSE); 1598 } 1599 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag)); 1600 mutex_exit(&dn->dn_mtx); 1601 return (TRUE); 1602 } 1603 1604 void 1605 dnode_rele(dnode_t *dn, void *tag) 1606 { 1607 mutex_enter(&dn->dn_mtx); 1608 dnode_rele_and_unlock(dn, tag, B_FALSE); 1609 } 1610 1611 void 1612 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting) 1613 { 1614 uint64_t refs; 1615 /* Get while the hold prevents the dnode from moving. */ 1616 dmu_buf_impl_t *db = dn->dn_dbuf; 1617 dnode_handle_t *dnh = dn->dn_handle; 1618 1619 refs = zfs_refcount_remove(&dn->dn_holds, tag); 1620 if (refs == 0) 1621 cv_broadcast(&dn->dn_nodnholds); 1622 mutex_exit(&dn->dn_mtx); 1623 /* dnode could get destroyed at this point, so don't use it anymore */ 1624 1625 /* 1626 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1627 * indirectly by dbuf_rele() while relying on the dnode handle to 1628 * prevent the dnode from moving, since releasing the last hold could 1629 * result in the dnode's parent dbuf evicting its dnode handles. For 1630 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1631 * other direct or indirect hold on the dnode must first drop the dnode 1632 * handle. 1633 */ 1634 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1635 1636 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1637 if (refs == 0 && db != NULL) { 1638 /* 1639 * Another thread could add a hold to the dnode handle in 1640 * dnode_hold_impl() while holding the parent dbuf. Since the 1641 * hold on the parent dbuf prevents the handle from being 1642 * destroyed, the hold on the handle is OK. We can't yet assert 1643 * that the handle has zero references, but that will be 1644 * asserted anyway when the handle gets destroyed. 1645 */ 1646 mutex_enter(&db->db_mtx); 1647 dbuf_rele_and_unlock(db, dnh, evicting); 1648 } 1649 } 1650 1651 /* 1652 * Test whether we can create a dnode at the specified location. 1653 */ 1654 int 1655 dnode_try_claim(objset_t *os, uint64_t object, int slots) 1656 { 1657 return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN, 1658 slots, NULL, NULL)); 1659 } 1660 1661 void 1662 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1663 { 1664 objset_t *os = dn->dn_objset; 1665 uint64_t txg = tx->tx_txg; 1666 1667 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1668 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1669 return; 1670 } 1671 1672 DNODE_VERIFY(dn); 1673 1674 #ifdef ZFS_DEBUG 1675 mutex_enter(&dn->dn_mtx); 1676 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1677 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1678 mutex_exit(&dn->dn_mtx); 1679 #endif 1680 1681 /* 1682 * Determine old uid/gid when necessary 1683 */ 1684 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1685 1686 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK]; 1687 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1688 1689 /* 1690 * If we are already marked dirty, we're done. 1691 */ 1692 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1693 multilist_sublist_unlock(mls); 1694 return; 1695 } 1696 1697 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) || 1698 !avl_is_empty(&dn->dn_dbufs)); 1699 ASSERT(dn->dn_datablksz != 0); 1700 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); 1701 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); 1702 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); 1703 1704 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1705 dn->dn_object, txg); 1706 1707 multilist_sublist_insert_head(mls, dn); 1708 1709 multilist_sublist_unlock(mls); 1710 1711 /* 1712 * The dnode maintains a hold on its containing dbuf as 1713 * long as there are holds on it. Each instantiated child 1714 * dbuf maintains a hold on the dnode. When the last child 1715 * drops its hold, the dnode will drop its hold on the 1716 * containing dbuf. We add a "dirty hold" here so that the 1717 * dnode will hang around after we finish processing its 1718 * children. 1719 */ 1720 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1721 1722 (void) dbuf_dirty(dn->dn_dbuf, tx); 1723 1724 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1725 } 1726 1727 void 1728 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1729 { 1730 mutex_enter(&dn->dn_mtx); 1731 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1732 mutex_exit(&dn->dn_mtx); 1733 return; 1734 } 1735 dn->dn_free_txg = tx->tx_txg; 1736 mutex_exit(&dn->dn_mtx); 1737 1738 dnode_setdirty(dn, tx); 1739 } 1740 1741 /* 1742 * Try to change the block size for the indicated dnode. This can only 1743 * succeed if there are no blocks allocated or dirty beyond first block 1744 */ 1745 int 1746 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1747 { 1748 dmu_buf_impl_t *db; 1749 int err; 1750 1751 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1752 if (size == 0) 1753 size = SPA_MINBLOCKSIZE; 1754 else 1755 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1756 1757 if (ibs == dn->dn_indblkshift) 1758 ibs = 0; 1759 1760 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1761 return (0); 1762 1763 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1764 1765 /* Check for any allocated blocks beyond the first */ 1766 if (dn->dn_maxblkid != 0) 1767 goto fail; 1768 1769 mutex_enter(&dn->dn_dbufs_mtx); 1770 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1771 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1772 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1773 db->db_blkid != DMU_SPILL_BLKID) { 1774 mutex_exit(&dn->dn_dbufs_mtx); 1775 goto fail; 1776 } 1777 } 1778 mutex_exit(&dn->dn_dbufs_mtx); 1779 1780 if (ibs && dn->dn_nlevels != 1) 1781 goto fail; 1782 1783 /* resize the old block */ 1784 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1785 if (err == 0) { 1786 dbuf_new_size(db, size, tx); 1787 } else if (err != ENOENT) { 1788 goto fail; 1789 } 1790 1791 dnode_setdblksz(dn, size); 1792 dnode_setdirty(dn, tx); 1793 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1794 if (ibs) { 1795 dn->dn_indblkshift = ibs; 1796 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1797 } 1798 /* rele after we have fixed the blocksize in the dnode */ 1799 if (db) 1800 dbuf_rele(db, FTAG); 1801 1802 rw_exit(&dn->dn_struct_rwlock); 1803 return (0); 1804 1805 fail: 1806 rw_exit(&dn->dn_struct_rwlock); 1807 return (SET_ERROR(ENOTSUP)); 1808 } 1809 1810 static void 1811 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx) 1812 { 1813 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1814 int old_nlevels = dn->dn_nlevels; 1815 dmu_buf_impl_t *db; 1816 list_t *list; 1817 dbuf_dirty_record_t *new, *dr, *dr_next; 1818 1819 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1820 1821 dn->dn_nlevels = new_nlevels; 1822 1823 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1824 dn->dn_next_nlevels[txgoff] = new_nlevels; 1825 1826 /* dirty the left indirects */ 1827 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1828 ASSERT(db != NULL); 1829 new = dbuf_dirty(db, tx); 1830 dbuf_rele(db, FTAG); 1831 1832 /* transfer the dirty records to the new indirect */ 1833 mutex_enter(&dn->dn_mtx); 1834 mutex_enter(&new->dt.di.dr_mtx); 1835 list = &dn->dn_dirty_records[txgoff]; 1836 for (dr = list_head(list); dr; dr = dr_next) { 1837 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1838 if (dr->dr_dbuf->db_level != new_nlevels-1 && 1839 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1840 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 1841 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 1842 list_remove(&dn->dn_dirty_records[txgoff], dr); 1843 list_insert_tail(&new->dt.di.dr_children, dr); 1844 dr->dr_parent = new; 1845 } 1846 } 1847 mutex_exit(&new->dt.di.dr_mtx); 1848 mutex_exit(&dn->dn_mtx); 1849 } 1850 1851 int 1852 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx) 1853 { 1854 int ret = 0; 1855 1856 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1857 1858 if (dn->dn_nlevels == nlevels) { 1859 ret = 0; 1860 goto out; 1861 } else if (nlevels < dn->dn_nlevels) { 1862 ret = SET_ERROR(EINVAL); 1863 goto out; 1864 } 1865 1866 dnode_set_nlevels_impl(dn, nlevels, tx); 1867 1868 out: 1869 rw_exit(&dn->dn_struct_rwlock); 1870 return (ret); 1871 } 1872 1873 /* read-holding callers must not rely on the lock being continuously held */ 1874 void 1875 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read, 1876 boolean_t force) 1877 { 1878 int epbs, new_nlevels; 1879 uint64_t sz; 1880 1881 ASSERT(blkid != DMU_BONUS_BLKID); 1882 1883 ASSERT(have_read ? 1884 RW_READ_HELD(&dn->dn_struct_rwlock) : 1885 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1886 1887 /* 1888 * if we have a read-lock, check to see if we need to do any work 1889 * before upgrading to a write-lock. 1890 */ 1891 if (have_read) { 1892 if (blkid <= dn->dn_maxblkid) 1893 return; 1894 1895 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1896 rw_exit(&dn->dn_struct_rwlock); 1897 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1898 } 1899 } 1900 1901 /* 1902 * Raw sends (indicated by the force flag) require that we take the 1903 * given blkid even if the value is lower than the current value. 1904 */ 1905 if (!force && blkid <= dn->dn_maxblkid) 1906 goto out; 1907 1908 /* 1909 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff] 1910 * to indicate that this field is set. This allows us to set the 1911 * maxblkid to 0 on an existing object in dnode_sync(). 1912 */ 1913 dn->dn_maxblkid = blkid; 1914 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] = 1915 blkid | DMU_NEXT_MAXBLKID_SET; 1916 1917 /* 1918 * Compute the number of levels necessary to support the new maxblkid. 1919 * Raw sends will ensure nlevels is set correctly for us. 1920 */ 1921 new_nlevels = 1; 1922 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1923 for (sz = dn->dn_nblkptr; 1924 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1925 new_nlevels++; 1926 1927 if (!force) { 1928 if (new_nlevels > dn->dn_nlevels) 1929 dnode_set_nlevels_impl(dn, new_nlevels, tx); 1930 } else { 1931 ASSERT3U(dn->dn_nlevels, >=, new_nlevels); 1932 } 1933 1934 out: 1935 if (have_read) 1936 rw_downgrade(&dn->dn_struct_rwlock); 1937 } 1938 1939 static void 1940 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1941 { 1942 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1943 if (db != NULL) { 1944 dmu_buf_will_dirty(&db->db, tx); 1945 dbuf_rele(db, FTAG); 1946 } 1947 } 1948 1949 /* 1950 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid 1951 * and end_blkid. 1952 */ 1953 static void 1954 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1955 dmu_tx_t *tx) 1956 { 1957 dmu_buf_impl_t db_search; 1958 dmu_buf_impl_t *db; 1959 avl_index_t where; 1960 1961 mutex_enter(&dn->dn_dbufs_mtx); 1962 1963 db_search.db_level = 1; 1964 db_search.db_blkid = start_blkid + 1; 1965 db_search.db_state = DB_SEARCH; 1966 for (;;) { 1967 1968 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1969 if (db == NULL) 1970 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1971 1972 if (db == NULL || db->db_level != 1 || 1973 db->db_blkid >= end_blkid) { 1974 break; 1975 } 1976 1977 /* 1978 * Setup the next blkid we want to search for. 1979 */ 1980 db_search.db_blkid = db->db_blkid + 1; 1981 ASSERT3U(db->db_blkid, >=, start_blkid); 1982 1983 /* 1984 * If the dbuf transitions to DB_EVICTING while we're trying 1985 * to dirty it, then we will be unable to discover it in 1986 * the dbuf hash table. This will result in a call to 1987 * dbuf_create() which needs to acquire the dn_dbufs_mtx 1988 * lock. To avoid a deadlock, we drop the lock before 1989 * dirtying the level-1 dbuf. 1990 */ 1991 mutex_exit(&dn->dn_dbufs_mtx); 1992 dnode_dirty_l1(dn, db->db_blkid, tx); 1993 mutex_enter(&dn->dn_dbufs_mtx); 1994 } 1995 1996 #ifdef ZFS_DEBUG 1997 /* 1998 * Walk all the in-core level-1 dbufs and verify they have been dirtied. 1999 */ 2000 db_search.db_level = 1; 2001 db_search.db_blkid = start_blkid + 1; 2002 db_search.db_state = DB_SEARCH; 2003 db = avl_find(&dn->dn_dbufs, &db_search, &where); 2004 if (db == NULL) 2005 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 2006 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { 2007 if (db->db_level != 1 || db->db_blkid >= end_blkid) 2008 break; 2009 ASSERT(db->db_dirtycnt > 0); 2010 } 2011 #endif 2012 mutex_exit(&dn->dn_dbufs_mtx); 2013 } 2014 2015 void 2016 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 2017 { 2018 dmu_buf_impl_t *db; 2019 uint64_t blkoff, blkid, nblks; 2020 int blksz, blkshift, head, tail; 2021 int trunc = FALSE; 2022 int epbs; 2023 2024 blksz = dn->dn_datablksz; 2025 blkshift = dn->dn_datablkshift; 2026 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2027 2028 if (len == DMU_OBJECT_END) { 2029 len = UINT64_MAX - off; 2030 trunc = TRUE; 2031 } 2032 2033 /* 2034 * First, block align the region to free: 2035 */ 2036 if (ISP2(blksz)) { 2037 head = P2NPHASE(off, blksz); 2038 blkoff = P2PHASE(off, blksz); 2039 if ((off >> blkshift) > dn->dn_maxblkid) 2040 return; 2041 } else { 2042 ASSERT(dn->dn_maxblkid == 0); 2043 if (off == 0 && len >= blksz) { 2044 /* 2045 * Freeing the whole block; fast-track this request. 2046 */ 2047 blkid = 0; 2048 nblks = 1; 2049 if (dn->dn_nlevels > 1) { 2050 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2051 dnode_dirty_l1(dn, 0, tx); 2052 rw_exit(&dn->dn_struct_rwlock); 2053 } 2054 goto done; 2055 } else if (off >= blksz) { 2056 /* Freeing past end-of-data */ 2057 return; 2058 } else { 2059 /* Freeing part of the block. */ 2060 head = blksz - off; 2061 ASSERT3U(head, >, 0); 2062 } 2063 blkoff = off; 2064 } 2065 /* zero out any partial block data at the start of the range */ 2066 if (head) { 2067 int res; 2068 ASSERT3U(blkoff + head, ==, blksz); 2069 if (len < head) 2070 head = len; 2071 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2072 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 2073 TRUE, FALSE, FTAG, &db); 2074 rw_exit(&dn->dn_struct_rwlock); 2075 if (res == 0) { 2076 caddr_t data; 2077 boolean_t dirty; 2078 2079 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, 2080 FTAG); 2081 /* don't dirty if it isn't on disk and isn't dirty */ 2082 dirty = db->db_last_dirty || 2083 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2084 dmu_buf_unlock_parent(db, dblt, FTAG); 2085 if (dirty) { 2086 dmu_buf_will_dirty(&db->db, tx); 2087 data = db->db.db_data; 2088 bzero(data + blkoff, head); 2089 } 2090 dbuf_rele(db, FTAG); 2091 } 2092 off += head; 2093 len -= head; 2094 } 2095 2096 /* If the range was less than one block, we're done */ 2097 if (len == 0) 2098 return; 2099 2100 /* If the remaining range is past end of file, we're done */ 2101 if ((off >> blkshift) > dn->dn_maxblkid) 2102 return; 2103 2104 ASSERT(ISP2(blksz)); 2105 if (trunc) 2106 tail = 0; 2107 else 2108 tail = P2PHASE(len, blksz); 2109 2110 ASSERT0(P2PHASE(off, blksz)); 2111 /* zero out any partial block data at the end of the range */ 2112 if (tail) { 2113 int res; 2114 if (len < tail) 2115 tail = len; 2116 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2117 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 2118 TRUE, FALSE, FTAG, &db); 2119 rw_exit(&dn->dn_struct_rwlock); 2120 if (res == 0) { 2121 boolean_t dirty; 2122 /* don't dirty if not on disk and not dirty */ 2123 db_lock_type_t type = dmu_buf_lock_parent(db, RW_READER, 2124 FTAG); 2125 dirty = db->db_last_dirty || 2126 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2127 dmu_buf_unlock_parent(db, type, FTAG); 2128 if (dirty) { 2129 dmu_buf_will_dirty(&db->db, tx); 2130 bzero(db->db.db_data, tail); 2131 } 2132 dbuf_rele(db, FTAG); 2133 } 2134 len -= tail; 2135 } 2136 2137 /* If the range did not include a full block, we are done */ 2138 if (len == 0) 2139 return; 2140 2141 ASSERT(IS_P2ALIGNED(off, blksz)); 2142 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 2143 blkid = off >> blkshift; 2144 nblks = len >> blkshift; 2145 if (trunc) 2146 nblks += 1; 2147 2148 /* 2149 * Dirty all the indirect blocks in this range. Note that only 2150 * the first and last indirect blocks can actually be written 2151 * (if they were partially freed) -- they must be dirtied, even if 2152 * they do not exist on disk yet. The interior blocks will 2153 * be freed by free_children(), so they will not actually be written. 2154 * Even though these interior blocks will not be written, we 2155 * dirty them for two reasons: 2156 * 2157 * - It ensures that the indirect blocks remain in memory until 2158 * syncing context. (They have already been prefetched by 2159 * dmu_tx_hold_free(), so we don't have to worry about reading 2160 * them serially here.) 2161 * 2162 * - The dirty space accounting will put pressure on the txg sync 2163 * mechanism to begin syncing, and to delay transactions if there 2164 * is a large amount of freeing. Even though these indirect 2165 * blocks will not be written, we could need to write the same 2166 * amount of space if we copy the freed BPs into deadlists. 2167 */ 2168 if (dn->dn_nlevels > 1) { 2169 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2170 uint64_t first, last; 2171 2172 first = blkid >> epbs; 2173 dnode_dirty_l1(dn, first, tx); 2174 if (trunc) 2175 last = dn->dn_maxblkid >> epbs; 2176 else 2177 last = (blkid + nblks - 1) >> epbs; 2178 if (last != first) 2179 dnode_dirty_l1(dn, last, tx); 2180 2181 dnode_dirty_l1range(dn, first, last, tx); 2182 2183 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 2184 SPA_BLKPTRSHIFT; 2185 for (uint64_t i = first + 1; i < last; i++) { 2186 /* 2187 * Set i to the blockid of the next non-hole 2188 * level-1 indirect block at or after i. Note 2189 * that dnode_next_offset() operates in terms of 2190 * level-0-equivalent bytes. 2191 */ 2192 uint64_t ibyte = i << shift; 2193 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 2194 &ibyte, 2, 1, 0); 2195 i = ibyte >> shift; 2196 if (i >= last) 2197 break; 2198 2199 /* 2200 * Normally we should not see an error, either 2201 * from dnode_next_offset() or dbuf_hold_level() 2202 * (except for ESRCH from dnode_next_offset). 2203 * If there is an i/o error, then when we read 2204 * this block in syncing context, it will use 2205 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 2206 * to the "failmode" property. dnode_next_offset() 2207 * doesn't have a flag to indicate MUSTSUCCEED. 2208 */ 2209 if (err != 0) 2210 break; 2211 2212 dnode_dirty_l1(dn, i, tx); 2213 } 2214 rw_exit(&dn->dn_struct_rwlock); 2215 } 2216 2217 done: 2218 /* 2219 * Add this range to the dnode range list. 2220 * We will finish up this free operation in the syncing phase. 2221 */ 2222 mutex_enter(&dn->dn_mtx); 2223 int txgoff = tx->tx_txg & TXG_MASK; 2224 if (dn->dn_free_ranges[txgoff] == NULL) { 2225 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, 2226 RANGE_SEG64, NULL, 0, 0); 2227 } 2228 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 2229 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 2230 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 2231 blkid, nblks, tx->tx_txg); 2232 mutex_exit(&dn->dn_mtx); 2233 2234 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 2235 dnode_setdirty(dn, tx); 2236 } 2237 2238 static boolean_t 2239 dnode_spill_freed(dnode_t *dn) 2240 { 2241 int i; 2242 2243 mutex_enter(&dn->dn_mtx); 2244 for (i = 0; i < TXG_SIZE; i++) { 2245 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 2246 break; 2247 } 2248 mutex_exit(&dn->dn_mtx); 2249 return (i < TXG_SIZE); 2250 } 2251 2252 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 2253 uint64_t 2254 dnode_block_freed(dnode_t *dn, uint64_t blkid) 2255 { 2256 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 2257 int i; 2258 2259 if (blkid == DMU_BONUS_BLKID) 2260 return (FALSE); 2261 2262 /* 2263 * If we're in the process of opening the pool, dp will not be 2264 * set yet, but there shouldn't be anything dirty. 2265 */ 2266 if (dp == NULL) 2267 return (FALSE); 2268 2269 if (dn->dn_free_txg) 2270 return (TRUE); 2271 2272 if (blkid == DMU_SPILL_BLKID) 2273 return (dnode_spill_freed(dn)); 2274 2275 mutex_enter(&dn->dn_mtx); 2276 for (i = 0; i < TXG_SIZE; i++) { 2277 if (dn->dn_free_ranges[i] != NULL && 2278 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 2279 break; 2280 } 2281 mutex_exit(&dn->dn_mtx); 2282 return (i < TXG_SIZE); 2283 } 2284 2285 /* call from syncing context when we actually write/free space for this dnode */ 2286 void 2287 dnode_diduse_space(dnode_t *dn, int64_t delta) 2288 { 2289 uint64_t space; 2290 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 2291 dn, dn->dn_phys, 2292 (u_longlong_t)dn->dn_phys->dn_used, 2293 (longlong_t)delta); 2294 2295 mutex_enter(&dn->dn_mtx); 2296 space = DN_USED_BYTES(dn->dn_phys); 2297 if (delta > 0) { 2298 ASSERT3U(space + delta, >=, space); /* no overflow */ 2299 } else { 2300 ASSERT3U(space, >=, -delta); /* no underflow */ 2301 } 2302 space += delta; 2303 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 2304 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 2305 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 2306 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 2307 } else { 2308 dn->dn_phys->dn_used = space; 2309 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 2310 } 2311 mutex_exit(&dn->dn_mtx); 2312 } 2313 2314 /* 2315 * Scans a block at the indicated "level" looking for a hole or data, 2316 * depending on 'flags'. 2317 * 2318 * If level > 0, then we are scanning an indirect block looking at its 2319 * pointers. If level == 0, then we are looking at a block of dnodes. 2320 * 2321 * If we don't find what we are looking for in the block, we return ESRCH. 2322 * Otherwise, return with *offset pointing to the beginning (if searching 2323 * forwards) or end (if searching backwards) of the range covered by the 2324 * block pointer we matched on (or dnode). 2325 * 2326 * The basic search algorithm used below by dnode_next_offset() is to 2327 * use this function to search up the block tree (widen the search) until 2328 * we find something (i.e., we don't return ESRCH) and then search back 2329 * down the tree (narrow the search) until we reach our original search 2330 * level. 2331 */ 2332 static int 2333 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 2334 int lvl, uint64_t blkfill, uint64_t txg) 2335 { 2336 dmu_buf_impl_t *db = NULL; 2337 void *data = NULL; 2338 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2339 uint64_t epb = 1ULL << epbs; 2340 uint64_t minfill, maxfill; 2341 boolean_t hole; 2342 int i, inc, error, span; 2343 2344 dprintf("probing object %llu offset %llx level %d of %u\n", 2345 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 2346 2347 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2348 2349 hole = ((flags & DNODE_FIND_HOLE) != 0); 2350 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 2351 ASSERT(txg == 0 || !hole); 2352 2353 if (lvl == dn->dn_phys->dn_nlevels) { 2354 error = 0; 2355 epb = dn->dn_phys->dn_nblkptr; 2356 data = dn->dn_phys->dn_blkptr; 2357 } else { 2358 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 2359 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 2360 if (error) { 2361 if (error != ENOENT) 2362 return (error); 2363 if (hole) 2364 return (0); 2365 /* 2366 * This can only happen when we are searching up 2367 * the block tree for data. We don't really need to 2368 * adjust the offset, as we will just end up looking 2369 * at the pointer to this block in its parent, and its 2370 * going to be unallocated, so we will skip over it. 2371 */ 2372 return (SET_ERROR(ESRCH)); 2373 } 2374 error = dbuf_read(db, NULL, 2375 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT); 2376 if (error) { 2377 dbuf_rele(db, FTAG); 2378 return (error); 2379 } 2380 data = db->db.db_data; 2381 rw_enter(&db->db_rwlock, RW_READER); 2382 } 2383 2384 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 2385 db->db_blkptr->blk_birth <= txg || 2386 BP_IS_HOLE(db->db_blkptr))) { 2387 /* 2388 * This can only happen when we are searching up the tree 2389 * and these conditions mean that we need to keep climbing. 2390 */ 2391 error = SET_ERROR(ESRCH); 2392 } else if (lvl == 0) { 2393 dnode_phys_t *dnp = data; 2394 2395 ASSERT(dn->dn_type == DMU_OT_DNODE); 2396 ASSERT(!(flags & DNODE_FIND_BACKWARDS)); 2397 2398 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); 2399 i < blkfill; i += dnp[i].dn_extra_slots + 1) { 2400 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 2401 break; 2402 } 2403 2404 if (i == blkfill) 2405 error = SET_ERROR(ESRCH); 2406 2407 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + 2408 (i << DNODE_SHIFT); 2409 } else { 2410 blkptr_t *bp = data; 2411 uint64_t start = *offset; 2412 span = (lvl - 1) * epbs + dn->dn_datablkshift; 2413 minfill = 0; 2414 maxfill = blkfill << ((lvl - 1) * epbs); 2415 2416 if (hole) 2417 maxfill--; 2418 else 2419 minfill++; 2420 2421 *offset = *offset >> span; 2422 for (i = BF64_GET(*offset, 0, epbs); 2423 i >= 0 && i < epb; i += inc) { 2424 if (BP_GET_FILL(&bp[i]) >= minfill && 2425 BP_GET_FILL(&bp[i]) <= maxfill && 2426 (hole || bp[i].blk_birth > txg)) 2427 break; 2428 if (inc > 0 || *offset > 0) 2429 *offset += inc; 2430 } 2431 *offset = *offset << span; 2432 if (inc < 0) { 2433 /* traversing backwards; position offset at the end */ 2434 ASSERT3U(*offset, <=, start); 2435 *offset = MIN(*offset + (1ULL << span) - 1, start); 2436 } else if (*offset < start) { 2437 *offset = start; 2438 } 2439 if (i < 0 || i >= epb) 2440 error = SET_ERROR(ESRCH); 2441 } 2442 2443 if (db != NULL) { 2444 rw_exit(&db->db_rwlock); 2445 dbuf_rele(db, FTAG); 2446 } 2447 2448 return (error); 2449 } 2450 2451 /* 2452 * Find the next hole, data, or sparse region at or after *offset. 2453 * The value 'blkfill' tells us how many items we expect to find 2454 * in an L0 data block; this value is 1 for normal objects, 2455 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 2456 * DNODES_PER_BLOCK when searching for sparse regions thereof. 2457 * 2458 * Examples: 2459 * 2460 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 2461 * Finds the next/previous hole/data in a file. 2462 * Used in dmu_offset_next(). 2463 * 2464 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 2465 * Finds the next free/allocated dnode an objset's meta-dnode. 2466 * Only finds objects that have new contents since txg (ie. 2467 * bonus buffer changes and content removal are ignored). 2468 * Used in dmu_object_next(). 2469 * 2470 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 2471 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 2472 * Used in dmu_object_alloc(). 2473 */ 2474 int 2475 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 2476 int minlvl, uint64_t blkfill, uint64_t txg) 2477 { 2478 uint64_t initial_offset = *offset; 2479 int lvl, maxlvl; 2480 int error = 0; 2481 2482 if (!(flags & DNODE_FIND_HAVELOCK)) 2483 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2484 2485 if (dn->dn_phys->dn_nlevels == 0) { 2486 error = SET_ERROR(ESRCH); 2487 goto out; 2488 } 2489 2490 if (dn->dn_datablkshift == 0) { 2491 if (*offset < dn->dn_datablksz) { 2492 if (flags & DNODE_FIND_HOLE) 2493 *offset = dn->dn_datablksz; 2494 } else { 2495 error = SET_ERROR(ESRCH); 2496 } 2497 goto out; 2498 } 2499 2500 maxlvl = dn->dn_phys->dn_nlevels; 2501 2502 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2503 error = dnode_next_offset_level(dn, 2504 flags, offset, lvl, blkfill, txg); 2505 if (error != ESRCH) 2506 break; 2507 } 2508 2509 while (error == 0 && --lvl >= minlvl) { 2510 error = dnode_next_offset_level(dn, 2511 flags, offset, lvl, blkfill, txg); 2512 } 2513 2514 /* 2515 * There's always a "virtual hole" at the end of the object, even 2516 * if all BP's which physically exist are non-holes. 2517 */ 2518 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2519 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2520 error = 0; 2521 } 2522 2523 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2524 initial_offset < *offset : initial_offset > *offset)) 2525 error = SET_ERROR(ESRCH); 2526 out: 2527 if (!(flags & DNODE_FIND_HAVELOCK)) 2528 rw_exit(&dn->dn_struct_rwlock); 2529 2530 return (error); 2531 } 2532