xref: /illumos-gate/usr/src/uts/common/fs/zfs/dnode.c (revision 8629b981ede6d47b0583ca2d3e62baeaa4f26e93)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/dbuf.h>
30 #include <sys/dnode.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/spa.h>
38 #include <sys/zio.h>
39 #include <sys/dmu_zfetch.h>
40 #include <sys/range_tree.h>
41 
42 static kmem_cache_t *dnode_cache;
43 /*
44  * Define DNODE_STATS to turn on statistic gathering. By default, it is only
45  * turned on when DEBUG is also defined.
46  */
47 #ifdef	DEBUG
48 #define	DNODE_STATS
49 #endif	/* DEBUG */
50 
51 #ifdef	DNODE_STATS
52 #define	DNODE_STAT_ADD(stat)			((stat)++)
53 #else
54 #define	DNODE_STAT_ADD(stat)			/* nothing */
55 #endif	/* DNODE_STATS */
56 
57 static dnode_phys_t dnode_phys_zero;
58 
59 int zfs_default_bs = SPA_MINBLOCKSHIFT;
60 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
61 
62 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
63 
64 static int
65 dbuf_compare(const void *x1, const void *x2)
66 {
67 	const dmu_buf_impl_t *d1 = x1;
68 	const dmu_buf_impl_t *d2 = x2;
69 
70 	if (d1->db_level < d2->db_level) {
71 		return (-1);
72 	}
73 	if (d1->db_level > d2->db_level) {
74 		return (1);
75 	}
76 
77 	if (d1->db_blkid < d2->db_blkid) {
78 		return (-1);
79 	}
80 	if (d1->db_blkid > d2->db_blkid) {
81 		return (1);
82 	}
83 
84 	if (d1->db_state == DB_SEARCH) {
85 		ASSERT3S(d2->db_state, !=, DB_SEARCH);
86 		return (-1);
87 	} else if (d2->db_state == DB_SEARCH) {
88 		ASSERT3S(d1->db_state, !=, DB_SEARCH);
89 		return (1);
90 	}
91 
92 	if ((uintptr_t)d1 < (uintptr_t)d2) {
93 		return (-1);
94 	}
95 	if ((uintptr_t)d1 > (uintptr_t)d2) {
96 		return (1);
97 	}
98 	return (0);
99 }
100 
101 /* ARGSUSED */
102 static int
103 dnode_cons(void *arg, void *unused, int kmflag)
104 {
105 	dnode_t *dn = arg;
106 	int i;
107 
108 	rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
109 	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
110 	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
111 	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
112 
113 	/*
114 	 * Every dbuf has a reference, and dropping a tracked reference is
115 	 * O(number of references), so don't track dn_holds.
116 	 */
117 	refcount_create_untracked(&dn->dn_holds);
118 	refcount_create(&dn->dn_tx_holds);
119 	list_link_init(&dn->dn_link);
120 
121 	bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
122 	bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
123 	bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
124 	bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
125 	bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
126 	bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
127 	bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
128 
129 	for (i = 0; i < TXG_SIZE; i++) {
130 		list_link_init(&dn->dn_dirty_link[i]);
131 		dn->dn_free_ranges[i] = NULL;
132 		list_create(&dn->dn_dirty_records[i],
133 		    sizeof (dbuf_dirty_record_t),
134 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
135 	}
136 
137 	dn->dn_allocated_txg = 0;
138 	dn->dn_free_txg = 0;
139 	dn->dn_assigned_txg = 0;
140 	dn->dn_dirtyctx = 0;
141 	dn->dn_dirtyctx_firstset = NULL;
142 	dn->dn_bonus = NULL;
143 	dn->dn_have_spill = B_FALSE;
144 	dn->dn_zio = NULL;
145 	dn->dn_oldused = 0;
146 	dn->dn_oldflags = 0;
147 	dn->dn_olduid = 0;
148 	dn->dn_oldgid = 0;
149 	dn->dn_newuid = 0;
150 	dn->dn_newgid = 0;
151 	dn->dn_id_flags = 0;
152 
153 	dn->dn_dbufs_count = 0;
154 	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
155 	    offsetof(dmu_buf_impl_t, db_link));
156 
157 	dn->dn_moved = 0;
158 	return (0);
159 }
160 
161 /* ARGSUSED */
162 static void
163 dnode_dest(void *arg, void *unused)
164 {
165 	int i;
166 	dnode_t *dn = arg;
167 
168 	rw_destroy(&dn->dn_struct_rwlock);
169 	mutex_destroy(&dn->dn_mtx);
170 	mutex_destroy(&dn->dn_dbufs_mtx);
171 	cv_destroy(&dn->dn_notxholds);
172 	refcount_destroy(&dn->dn_holds);
173 	refcount_destroy(&dn->dn_tx_holds);
174 	ASSERT(!list_link_active(&dn->dn_link));
175 
176 	for (i = 0; i < TXG_SIZE; i++) {
177 		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
178 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
179 		list_destroy(&dn->dn_dirty_records[i]);
180 		ASSERT0(dn->dn_next_nblkptr[i]);
181 		ASSERT0(dn->dn_next_nlevels[i]);
182 		ASSERT0(dn->dn_next_indblkshift[i]);
183 		ASSERT0(dn->dn_next_bonustype[i]);
184 		ASSERT0(dn->dn_rm_spillblk[i]);
185 		ASSERT0(dn->dn_next_bonuslen[i]);
186 		ASSERT0(dn->dn_next_blksz[i]);
187 	}
188 
189 	ASSERT0(dn->dn_allocated_txg);
190 	ASSERT0(dn->dn_free_txg);
191 	ASSERT0(dn->dn_assigned_txg);
192 	ASSERT0(dn->dn_dirtyctx);
193 	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
194 	ASSERT3P(dn->dn_bonus, ==, NULL);
195 	ASSERT(!dn->dn_have_spill);
196 	ASSERT3P(dn->dn_zio, ==, NULL);
197 	ASSERT0(dn->dn_oldused);
198 	ASSERT0(dn->dn_oldflags);
199 	ASSERT0(dn->dn_olduid);
200 	ASSERT0(dn->dn_oldgid);
201 	ASSERT0(dn->dn_newuid);
202 	ASSERT0(dn->dn_newgid);
203 	ASSERT0(dn->dn_id_flags);
204 
205 	ASSERT0(dn->dn_dbufs_count);
206 	avl_destroy(&dn->dn_dbufs);
207 }
208 
209 void
210 dnode_init(void)
211 {
212 	ASSERT(dnode_cache == NULL);
213 	dnode_cache = kmem_cache_create("dnode_t",
214 	    sizeof (dnode_t),
215 	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
216 	kmem_cache_set_move(dnode_cache, dnode_move);
217 }
218 
219 void
220 dnode_fini(void)
221 {
222 	kmem_cache_destroy(dnode_cache);
223 	dnode_cache = NULL;
224 }
225 
226 
227 #ifdef ZFS_DEBUG
228 void
229 dnode_verify(dnode_t *dn)
230 {
231 	int drop_struct_lock = FALSE;
232 
233 	ASSERT(dn->dn_phys);
234 	ASSERT(dn->dn_objset);
235 	ASSERT(dn->dn_handle->dnh_dnode == dn);
236 
237 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
238 
239 	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
240 		return;
241 
242 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
243 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
244 		drop_struct_lock = TRUE;
245 	}
246 	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
247 		int i;
248 		ASSERT3U(dn->dn_indblkshift, >=, 0);
249 		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
250 		if (dn->dn_datablkshift) {
251 			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
252 			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
253 			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
254 		}
255 		ASSERT3U(dn->dn_nlevels, <=, 30);
256 		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
257 		ASSERT3U(dn->dn_nblkptr, >=, 1);
258 		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
259 		ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
260 		ASSERT3U(dn->dn_datablksz, ==,
261 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
262 		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
263 		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
264 		    dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
265 		for (i = 0; i < TXG_SIZE; i++) {
266 			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
267 		}
268 	}
269 	if (dn->dn_phys->dn_type != DMU_OT_NONE)
270 		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
271 	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
272 	if (dn->dn_dbuf != NULL) {
273 		ASSERT3P(dn->dn_phys, ==,
274 		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
275 		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
276 	}
277 	if (drop_struct_lock)
278 		rw_exit(&dn->dn_struct_rwlock);
279 }
280 #endif
281 
282 void
283 dnode_byteswap(dnode_phys_t *dnp)
284 {
285 	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
286 	int i;
287 
288 	if (dnp->dn_type == DMU_OT_NONE) {
289 		bzero(dnp, sizeof (dnode_phys_t));
290 		return;
291 	}
292 
293 	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
294 	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
295 	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
296 	dnp->dn_used = BSWAP_64(dnp->dn_used);
297 
298 	/*
299 	 * dn_nblkptr is only one byte, so it's OK to read it in either
300 	 * byte order.  We can't read dn_bouslen.
301 	 */
302 	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
303 	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
304 	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
305 		buf64[i] = BSWAP_64(buf64[i]);
306 
307 	/*
308 	 * OK to check dn_bonuslen for zero, because it won't matter if
309 	 * we have the wrong byte order.  This is necessary because the
310 	 * dnode dnode is smaller than a regular dnode.
311 	 */
312 	if (dnp->dn_bonuslen != 0) {
313 		/*
314 		 * Note that the bonus length calculated here may be
315 		 * longer than the actual bonus buffer.  This is because
316 		 * we always put the bonus buffer after the last block
317 		 * pointer (instead of packing it against the end of the
318 		 * dnode buffer).
319 		 */
320 		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
321 		size_t len = DN_MAX_BONUSLEN - off;
322 		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
323 		dmu_object_byteswap_t byteswap =
324 		    DMU_OT_BYTESWAP(dnp->dn_bonustype);
325 		dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
326 	}
327 
328 	/* Swap SPILL block if we have one */
329 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
330 		byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
331 
332 }
333 
334 void
335 dnode_buf_byteswap(void *vbuf, size_t size)
336 {
337 	dnode_phys_t *buf = vbuf;
338 	int i;
339 
340 	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
341 	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
342 
343 	size >>= DNODE_SHIFT;
344 	for (i = 0; i < size; i++) {
345 		dnode_byteswap(buf);
346 		buf++;
347 	}
348 }
349 
350 void
351 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
352 {
353 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
354 
355 	dnode_setdirty(dn, tx);
356 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
357 	ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
358 	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
359 	dn->dn_bonuslen = newsize;
360 	if (newsize == 0)
361 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
362 	else
363 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
364 	rw_exit(&dn->dn_struct_rwlock);
365 }
366 
367 void
368 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
369 {
370 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
371 	dnode_setdirty(dn, tx);
372 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
373 	dn->dn_bonustype = newtype;
374 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
375 	rw_exit(&dn->dn_struct_rwlock);
376 }
377 
378 void
379 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
380 {
381 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
382 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
383 	dnode_setdirty(dn, tx);
384 	dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
385 	dn->dn_have_spill = B_FALSE;
386 }
387 
388 static void
389 dnode_setdblksz(dnode_t *dn, int size)
390 {
391 	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
392 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
393 	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
394 	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
395 	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
396 	dn->dn_datablksz = size;
397 	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
398 	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
399 }
400 
401 static dnode_t *
402 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
403     uint64_t object, dnode_handle_t *dnh)
404 {
405 	dnode_t *dn;
406 
407 	dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
408 	ASSERT(!POINTER_IS_VALID(dn->dn_objset));
409 	dn->dn_moved = 0;
410 
411 	/*
412 	 * Defer setting dn_objset until the dnode is ready to be a candidate
413 	 * for the dnode_move() callback.
414 	 */
415 	dn->dn_object = object;
416 	dn->dn_dbuf = db;
417 	dn->dn_handle = dnh;
418 	dn->dn_phys = dnp;
419 
420 	if (dnp->dn_datablkszsec) {
421 		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
422 	} else {
423 		dn->dn_datablksz = 0;
424 		dn->dn_datablkszsec = 0;
425 		dn->dn_datablkshift = 0;
426 	}
427 	dn->dn_indblkshift = dnp->dn_indblkshift;
428 	dn->dn_nlevels = dnp->dn_nlevels;
429 	dn->dn_type = dnp->dn_type;
430 	dn->dn_nblkptr = dnp->dn_nblkptr;
431 	dn->dn_checksum = dnp->dn_checksum;
432 	dn->dn_compress = dnp->dn_compress;
433 	dn->dn_bonustype = dnp->dn_bonustype;
434 	dn->dn_bonuslen = dnp->dn_bonuslen;
435 	dn->dn_maxblkid = dnp->dn_maxblkid;
436 	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
437 	dn->dn_id_flags = 0;
438 
439 	dmu_zfetch_init(&dn->dn_zfetch, dn);
440 
441 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
442 
443 	mutex_enter(&os->os_lock);
444 	if (dnh->dnh_dnode != NULL) {
445 		/* Lost the allocation race. */
446 		mutex_exit(&os->os_lock);
447 		kmem_cache_free(dnode_cache, dn);
448 		return (dnh->dnh_dnode);
449 	}
450 
451 	/*
452 	 * Exclude special dnodes from os_dnodes so an empty os_dnodes
453 	 * signifies that the special dnodes have no references from
454 	 * their children (the entries in os_dnodes).  This allows
455 	 * dnode_destroy() to easily determine if the last child has
456 	 * been removed and then complete eviction of the objset.
457 	 */
458 	if (!DMU_OBJECT_IS_SPECIAL(object))
459 		list_insert_head(&os->os_dnodes, dn);
460 	membar_producer();
461 
462 	/*
463 	 * Everything else must be valid before assigning dn_objset
464 	 * makes the dnode eligible for dnode_move().
465 	 */
466 	dn->dn_objset = os;
467 
468 	dnh->dnh_dnode = dn;
469 	mutex_exit(&os->os_lock);
470 
471 	arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
472 	return (dn);
473 }
474 
475 /*
476  * Caller must be holding the dnode handle, which is released upon return.
477  */
478 static void
479 dnode_destroy(dnode_t *dn)
480 {
481 	objset_t *os = dn->dn_objset;
482 	boolean_t complete_os_eviction = B_FALSE;
483 
484 	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
485 
486 	mutex_enter(&os->os_lock);
487 	POINTER_INVALIDATE(&dn->dn_objset);
488 	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
489 		list_remove(&os->os_dnodes, dn);
490 		complete_os_eviction =
491 		    list_is_empty(&os->os_dnodes) &&
492 		    list_link_active(&os->os_evicting_node);
493 	}
494 	mutex_exit(&os->os_lock);
495 
496 	/* the dnode can no longer move, so we can release the handle */
497 	zrl_remove(&dn->dn_handle->dnh_zrlock);
498 
499 	dn->dn_allocated_txg = 0;
500 	dn->dn_free_txg = 0;
501 	dn->dn_assigned_txg = 0;
502 
503 	dn->dn_dirtyctx = 0;
504 	if (dn->dn_dirtyctx_firstset != NULL) {
505 		kmem_free(dn->dn_dirtyctx_firstset, 1);
506 		dn->dn_dirtyctx_firstset = NULL;
507 	}
508 	if (dn->dn_bonus != NULL) {
509 		mutex_enter(&dn->dn_bonus->db_mtx);
510 		dbuf_destroy(dn->dn_bonus);
511 		dn->dn_bonus = NULL;
512 	}
513 	dn->dn_zio = NULL;
514 
515 	dn->dn_have_spill = B_FALSE;
516 	dn->dn_oldused = 0;
517 	dn->dn_oldflags = 0;
518 	dn->dn_olduid = 0;
519 	dn->dn_oldgid = 0;
520 	dn->dn_newuid = 0;
521 	dn->dn_newgid = 0;
522 	dn->dn_id_flags = 0;
523 
524 	dmu_zfetch_fini(&dn->dn_zfetch);
525 	kmem_cache_free(dnode_cache, dn);
526 	arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
527 
528 	if (complete_os_eviction)
529 		dmu_objset_evict_done(os);
530 }
531 
532 void
533 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
534     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
535 {
536 	int i;
537 
538 	ASSERT3U(blocksize, <=,
539 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
540 	if (blocksize == 0)
541 		blocksize = 1 << zfs_default_bs;
542 	else
543 		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
544 
545 	if (ibs == 0)
546 		ibs = zfs_default_ibs;
547 
548 	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
549 
550 	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
551 	    dn->dn_object, tx->tx_txg, blocksize, ibs);
552 
553 	ASSERT(dn->dn_type == DMU_OT_NONE);
554 	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
555 	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
556 	ASSERT(ot != DMU_OT_NONE);
557 	ASSERT(DMU_OT_IS_VALID(ot));
558 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
559 	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
560 	    (bonustype != DMU_OT_NONE && bonuslen != 0));
561 	ASSERT(DMU_OT_IS_VALID(bonustype));
562 	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
563 	ASSERT(dn->dn_type == DMU_OT_NONE);
564 	ASSERT0(dn->dn_maxblkid);
565 	ASSERT0(dn->dn_allocated_txg);
566 	ASSERT0(dn->dn_assigned_txg);
567 	ASSERT(refcount_is_zero(&dn->dn_tx_holds));
568 	ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
569 	ASSERT(avl_is_empty(&dn->dn_dbufs));
570 
571 	for (i = 0; i < TXG_SIZE; i++) {
572 		ASSERT0(dn->dn_next_nblkptr[i]);
573 		ASSERT0(dn->dn_next_nlevels[i]);
574 		ASSERT0(dn->dn_next_indblkshift[i]);
575 		ASSERT0(dn->dn_next_bonuslen[i]);
576 		ASSERT0(dn->dn_next_bonustype[i]);
577 		ASSERT0(dn->dn_rm_spillblk[i]);
578 		ASSERT0(dn->dn_next_blksz[i]);
579 		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
580 		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
581 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
582 	}
583 
584 	dn->dn_type = ot;
585 	dnode_setdblksz(dn, blocksize);
586 	dn->dn_indblkshift = ibs;
587 	dn->dn_nlevels = 1;
588 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
589 		dn->dn_nblkptr = 1;
590 	else
591 		dn->dn_nblkptr = 1 +
592 		    ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
593 	dn->dn_bonustype = bonustype;
594 	dn->dn_bonuslen = bonuslen;
595 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
596 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
597 	dn->dn_dirtyctx = 0;
598 
599 	dn->dn_free_txg = 0;
600 	if (dn->dn_dirtyctx_firstset) {
601 		kmem_free(dn->dn_dirtyctx_firstset, 1);
602 		dn->dn_dirtyctx_firstset = NULL;
603 	}
604 
605 	dn->dn_allocated_txg = tx->tx_txg;
606 	dn->dn_id_flags = 0;
607 
608 	dnode_setdirty(dn, tx);
609 	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
610 	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
611 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
612 	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
613 }
614 
615 void
616 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
617     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
618 {
619 	int nblkptr;
620 
621 	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
622 	ASSERT3U(blocksize, <=,
623 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
624 	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
625 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
626 	ASSERT(tx->tx_txg != 0);
627 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
628 	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
629 	    (bonustype == DMU_OT_SA && bonuslen == 0));
630 	ASSERT(DMU_OT_IS_VALID(bonustype));
631 	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
632 
633 	/* clean up any unreferenced dbufs */
634 	dnode_evict_dbufs(dn);
635 
636 	dn->dn_id_flags = 0;
637 
638 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
639 	dnode_setdirty(dn, tx);
640 	if (dn->dn_datablksz != blocksize) {
641 		/* change blocksize */
642 		ASSERT(dn->dn_maxblkid == 0 &&
643 		    (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
644 		    dnode_block_freed(dn, 0)));
645 		dnode_setdblksz(dn, blocksize);
646 		dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
647 	}
648 	if (dn->dn_bonuslen != bonuslen)
649 		dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
650 
651 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
652 		nblkptr = 1;
653 	else
654 		nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
655 	if (dn->dn_bonustype != bonustype)
656 		dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
657 	if (dn->dn_nblkptr != nblkptr)
658 		dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
659 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
660 		dbuf_rm_spill(dn, tx);
661 		dnode_rm_spill(dn, tx);
662 	}
663 	rw_exit(&dn->dn_struct_rwlock);
664 
665 	/* change type */
666 	dn->dn_type = ot;
667 
668 	/* change bonus size and type */
669 	mutex_enter(&dn->dn_mtx);
670 	dn->dn_bonustype = bonustype;
671 	dn->dn_bonuslen = bonuslen;
672 	dn->dn_nblkptr = nblkptr;
673 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
674 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
675 	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
676 
677 	/* fix up the bonus db_size */
678 	if (dn->dn_bonus) {
679 		dn->dn_bonus->db.db_size =
680 		    DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
681 		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
682 	}
683 
684 	dn->dn_allocated_txg = tx->tx_txg;
685 	mutex_exit(&dn->dn_mtx);
686 }
687 
688 #ifdef	DNODE_STATS
689 static struct {
690 	uint64_t dms_dnode_invalid;
691 	uint64_t dms_dnode_recheck1;
692 	uint64_t dms_dnode_recheck2;
693 	uint64_t dms_dnode_special;
694 	uint64_t dms_dnode_handle;
695 	uint64_t dms_dnode_rwlock;
696 	uint64_t dms_dnode_active;
697 } dnode_move_stats;
698 #endif	/* DNODE_STATS */
699 
700 static void
701 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
702 {
703 	int i;
704 
705 	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
706 	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
707 	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
708 	ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
709 
710 	/* Copy fields. */
711 	ndn->dn_objset = odn->dn_objset;
712 	ndn->dn_object = odn->dn_object;
713 	ndn->dn_dbuf = odn->dn_dbuf;
714 	ndn->dn_handle = odn->dn_handle;
715 	ndn->dn_phys = odn->dn_phys;
716 	ndn->dn_type = odn->dn_type;
717 	ndn->dn_bonuslen = odn->dn_bonuslen;
718 	ndn->dn_bonustype = odn->dn_bonustype;
719 	ndn->dn_nblkptr = odn->dn_nblkptr;
720 	ndn->dn_checksum = odn->dn_checksum;
721 	ndn->dn_compress = odn->dn_compress;
722 	ndn->dn_nlevels = odn->dn_nlevels;
723 	ndn->dn_indblkshift = odn->dn_indblkshift;
724 	ndn->dn_datablkshift = odn->dn_datablkshift;
725 	ndn->dn_datablkszsec = odn->dn_datablkszsec;
726 	ndn->dn_datablksz = odn->dn_datablksz;
727 	ndn->dn_maxblkid = odn->dn_maxblkid;
728 	bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
729 	    sizeof (odn->dn_next_nblkptr));
730 	bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
731 	    sizeof (odn->dn_next_nlevels));
732 	bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
733 	    sizeof (odn->dn_next_indblkshift));
734 	bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
735 	    sizeof (odn->dn_next_bonustype));
736 	bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
737 	    sizeof (odn->dn_rm_spillblk));
738 	bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
739 	    sizeof (odn->dn_next_bonuslen));
740 	bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
741 	    sizeof (odn->dn_next_blksz));
742 	for (i = 0; i < TXG_SIZE; i++) {
743 		list_move_tail(&ndn->dn_dirty_records[i],
744 		    &odn->dn_dirty_records[i]);
745 	}
746 	bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
747 	    sizeof (odn->dn_free_ranges));
748 	ndn->dn_allocated_txg = odn->dn_allocated_txg;
749 	ndn->dn_free_txg = odn->dn_free_txg;
750 	ndn->dn_assigned_txg = odn->dn_assigned_txg;
751 	ndn->dn_dirtyctx = odn->dn_dirtyctx;
752 	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
753 	ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
754 	refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
755 	ASSERT(avl_is_empty(&ndn->dn_dbufs));
756 	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
757 	ndn->dn_dbufs_count = odn->dn_dbufs_count;
758 	ndn->dn_bonus = odn->dn_bonus;
759 	ndn->dn_have_spill = odn->dn_have_spill;
760 	ndn->dn_zio = odn->dn_zio;
761 	ndn->dn_oldused = odn->dn_oldused;
762 	ndn->dn_oldflags = odn->dn_oldflags;
763 	ndn->dn_olduid = odn->dn_olduid;
764 	ndn->dn_oldgid = odn->dn_oldgid;
765 	ndn->dn_newuid = odn->dn_newuid;
766 	ndn->dn_newgid = odn->dn_newgid;
767 	ndn->dn_id_flags = odn->dn_id_flags;
768 	dmu_zfetch_init(&ndn->dn_zfetch, NULL);
769 	list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
770 	ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
771 
772 	/*
773 	 * Update back pointers. Updating the handle fixes the back pointer of
774 	 * every descendant dbuf as well as the bonus dbuf.
775 	 */
776 	ASSERT(ndn->dn_handle->dnh_dnode == odn);
777 	ndn->dn_handle->dnh_dnode = ndn;
778 	if (ndn->dn_zfetch.zf_dnode == odn) {
779 		ndn->dn_zfetch.zf_dnode = ndn;
780 	}
781 
782 	/*
783 	 * Invalidate the original dnode by clearing all of its back pointers.
784 	 */
785 	odn->dn_dbuf = NULL;
786 	odn->dn_handle = NULL;
787 	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
788 	    offsetof(dmu_buf_impl_t, db_link));
789 	odn->dn_dbufs_count = 0;
790 	odn->dn_bonus = NULL;
791 	odn->dn_zfetch.zf_dnode = NULL;
792 
793 	/*
794 	 * Set the low bit of the objset pointer to ensure that dnode_move()
795 	 * recognizes the dnode as invalid in any subsequent callback.
796 	 */
797 	POINTER_INVALIDATE(&odn->dn_objset);
798 
799 	/*
800 	 * Satisfy the destructor.
801 	 */
802 	for (i = 0; i < TXG_SIZE; i++) {
803 		list_create(&odn->dn_dirty_records[i],
804 		    sizeof (dbuf_dirty_record_t),
805 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
806 		odn->dn_free_ranges[i] = NULL;
807 		odn->dn_next_nlevels[i] = 0;
808 		odn->dn_next_indblkshift[i] = 0;
809 		odn->dn_next_bonustype[i] = 0;
810 		odn->dn_rm_spillblk[i] = 0;
811 		odn->dn_next_bonuslen[i] = 0;
812 		odn->dn_next_blksz[i] = 0;
813 	}
814 	odn->dn_allocated_txg = 0;
815 	odn->dn_free_txg = 0;
816 	odn->dn_assigned_txg = 0;
817 	odn->dn_dirtyctx = 0;
818 	odn->dn_dirtyctx_firstset = NULL;
819 	odn->dn_have_spill = B_FALSE;
820 	odn->dn_zio = NULL;
821 	odn->dn_oldused = 0;
822 	odn->dn_oldflags = 0;
823 	odn->dn_olduid = 0;
824 	odn->dn_oldgid = 0;
825 	odn->dn_newuid = 0;
826 	odn->dn_newgid = 0;
827 	odn->dn_id_flags = 0;
828 
829 	/*
830 	 * Mark the dnode.
831 	 */
832 	ndn->dn_moved = 1;
833 	odn->dn_moved = (uint8_t)-1;
834 }
835 
836 #ifdef	_KERNEL
837 /*ARGSUSED*/
838 static kmem_cbrc_t
839 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
840 {
841 	dnode_t *odn = buf, *ndn = newbuf;
842 	objset_t *os;
843 	int64_t refcount;
844 	uint32_t dbufs;
845 
846 	/*
847 	 * The dnode is on the objset's list of known dnodes if the objset
848 	 * pointer is valid. We set the low bit of the objset pointer when
849 	 * freeing the dnode to invalidate it, and the memory patterns written
850 	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
851 	 * A newly created dnode sets the objset pointer last of all to indicate
852 	 * that the dnode is known and in a valid state to be moved by this
853 	 * function.
854 	 */
855 	os = odn->dn_objset;
856 	if (!POINTER_IS_VALID(os)) {
857 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
858 		return (KMEM_CBRC_DONT_KNOW);
859 	}
860 
861 	/*
862 	 * Ensure that the objset does not go away during the move.
863 	 */
864 	rw_enter(&os_lock, RW_WRITER);
865 	if (os != odn->dn_objset) {
866 		rw_exit(&os_lock);
867 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
868 		return (KMEM_CBRC_DONT_KNOW);
869 	}
870 
871 	/*
872 	 * If the dnode is still valid, then so is the objset. We know that no
873 	 * valid objset can be freed while we hold os_lock, so we can safely
874 	 * ensure that the objset remains in use.
875 	 */
876 	mutex_enter(&os->os_lock);
877 
878 	/*
879 	 * Recheck the objset pointer in case the dnode was removed just before
880 	 * acquiring the lock.
881 	 */
882 	if (os != odn->dn_objset) {
883 		mutex_exit(&os->os_lock);
884 		rw_exit(&os_lock);
885 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
886 		return (KMEM_CBRC_DONT_KNOW);
887 	}
888 
889 	/*
890 	 * At this point we know that as long as we hold os->os_lock, the dnode
891 	 * cannot be freed and fields within the dnode can be safely accessed.
892 	 * The objset listing this dnode cannot go away as long as this dnode is
893 	 * on its list.
894 	 */
895 	rw_exit(&os_lock);
896 	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
897 		mutex_exit(&os->os_lock);
898 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
899 		return (KMEM_CBRC_NO);
900 	}
901 	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
902 
903 	/*
904 	 * Lock the dnode handle to prevent the dnode from obtaining any new
905 	 * holds. This also prevents the descendant dbufs and the bonus dbuf
906 	 * from accessing the dnode, so that we can discount their holds. The
907 	 * handle is safe to access because we know that while the dnode cannot
908 	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
909 	 * safely move any dnode referenced only by dbufs.
910 	 */
911 	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
912 		mutex_exit(&os->os_lock);
913 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
914 		return (KMEM_CBRC_LATER);
915 	}
916 
917 	/*
918 	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
919 	 * We need to guarantee that there is a hold for every dbuf in order to
920 	 * determine whether the dnode is actively referenced. Falsely matching
921 	 * a dbuf to an active hold would lead to an unsafe move. It's possible
922 	 * that a thread already having an active dnode hold is about to add a
923 	 * dbuf, and we can't compare hold and dbuf counts while the add is in
924 	 * progress.
925 	 */
926 	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
927 		zrl_exit(&odn->dn_handle->dnh_zrlock);
928 		mutex_exit(&os->os_lock);
929 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
930 		return (KMEM_CBRC_LATER);
931 	}
932 
933 	/*
934 	 * A dbuf may be removed (evicted) without an active dnode hold. In that
935 	 * case, the dbuf count is decremented under the handle lock before the
936 	 * dbuf's hold is released. This order ensures that if we count the hold
937 	 * after the dbuf is removed but before its hold is released, we will
938 	 * treat the unmatched hold as active and exit safely. If we count the
939 	 * hold before the dbuf is removed, the hold is discounted, and the
940 	 * removal is blocked until the move completes.
941 	 */
942 	refcount = refcount_count(&odn->dn_holds);
943 	ASSERT(refcount >= 0);
944 	dbufs = odn->dn_dbufs_count;
945 
946 	/* We can't have more dbufs than dnode holds. */
947 	ASSERT3U(dbufs, <=, refcount);
948 	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
949 	    uint32_t, dbufs);
950 
951 	if (refcount > dbufs) {
952 		rw_exit(&odn->dn_struct_rwlock);
953 		zrl_exit(&odn->dn_handle->dnh_zrlock);
954 		mutex_exit(&os->os_lock);
955 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
956 		return (KMEM_CBRC_LATER);
957 	}
958 
959 	rw_exit(&odn->dn_struct_rwlock);
960 
961 	/*
962 	 * At this point we know that anyone with a hold on the dnode is not
963 	 * actively referencing it. The dnode is known and in a valid state to
964 	 * move. We're holding the locks needed to execute the critical section.
965 	 */
966 	dnode_move_impl(odn, ndn);
967 
968 	list_link_replace(&odn->dn_link, &ndn->dn_link);
969 	/* If the dnode was safe to move, the refcount cannot have changed. */
970 	ASSERT(refcount == refcount_count(&ndn->dn_holds));
971 	ASSERT(dbufs == ndn->dn_dbufs_count);
972 	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
973 	mutex_exit(&os->os_lock);
974 
975 	return (KMEM_CBRC_YES);
976 }
977 #endif	/* _KERNEL */
978 
979 void
980 dnode_special_close(dnode_handle_t *dnh)
981 {
982 	dnode_t *dn = dnh->dnh_dnode;
983 
984 	/*
985 	 * Wait for final references to the dnode to clear.  This can
986 	 * only happen if the arc is asyncronously evicting state that
987 	 * has a hold on this dnode while we are trying to evict this
988 	 * dnode.
989 	 */
990 	while (refcount_count(&dn->dn_holds) > 0)
991 		delay(1);
992 	ASSERT(dn->dn_dbuf == NULL ||
993 	    dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
994 	zrl_add(&dnh->dnh_zrlock);
995 	dnode_destroy(dn); /* implicit zrl_remove() */
996 	zrl_destroy(&dnh->dnh_zrlock);
997 	dnh->dnh_dnode = NULL;
998 }
999 
1000 void
1001 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1002     dnode_handle_t *dnh)
1003 {
1004 	dnode_t *dn;
1005 
1006 	dn = dnode_create(os, dnp, NULL, object, dnh);
1007 	zrl_init(&dnh->dnh_zrlock);
1008 	DNODE_VERIFY(dn);
1009 }
1010 
1011 static void
1012 dnode_buf_evict_async(void *dbu)
1013 {
1014 	dnode_children_t *children_dnodes = dbu;
1015 	int i;
1016 
1017 	for (i = 0; i < children_dnodes->dnc_count; i++) {
1018 		dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
1019 		dnode_t *dn;
1020 
1021 		/*
1022 		 * The dnode handle lock guards against the dnode moving to
1023 		 * another valid address, so there is no need here to guard
1024 		 * against changes to or from NULL.
1025 		 */
1026 		if (dnh->dnh_dnode == NULL) {
1027 			zrl_destroy(&dnh->dnh_zrlock);
1028 			continue;
1029 		}
1030 
1031 		zrl_add(&dnh->dnh_zrlock);
1032 		dn = dnh->dnh_dnode;
1033 		/*
1034 		 * If there are holds on this dnode, then there should
1035 		 * be holds on the dnode's containing dbuf as well; thus
1036 		 * it wouldn't be eligible for eviction and this function
1037 		 * would not have been called.
1038 		 */
1039 		ASSERT(refcount_is_zero(&dn->dn_holds));
1040 		ASSERT(refcount_is_zero(&dn->dn_tx_holds));
1041 
1042 		dnode_destroy(dn); /* implicit zrl_remove() */
1043 		zrl_destroy(&dnh->dnh_zrlock);
1044 		dnh->dnh_dnode = NULL;
1045 	}
1046 	kmem_free(children_dnodes, sizeof (dnode_children_t) +
1047 	    children_dnodes->dnc_count * sizeof (dnode_handle_t));
1048 }
1049 
1050 /*
1051  * errors:
1052  * EINVAL - invalid object number.
1053  * EIO - i/o error.
1054  * succeeds even for free dnodes.
1055  */
1056 int
1057 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
1058     void *tag, dnode_t **dnp)
1059 {
1060 	int epb, idx, err;
1061 	int drop_struct_lock = FALSE;
1062 	int type;
1063 	uint64_t blk;
1064 	dnode_t *mdn, *dn;
1065 	dmu_buf_impl_t *db;
1066 	dnode_children_t *children_dnodes;
1067 	dnode_handle_t *dnh;
1068 
1069 	/*
1070 	 * If you are holding the spa config lock as writer, you shouldn't
1071 	 * be asking the DMU to do *anything* unless it's the root pool
1072 	 * which may require us to read from the root filesystem while
1073 	 * holding some (not all) of the locks as writer.
1074 	 */
1075 	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1076 	    (spa_is_root(os->os_spa) &&
1077 	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1078 
1079 	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1080 		dn = (object == DMU_USERUSED_OBJECT) ?
1081 		    DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1082 		if (dn == NULL)
1083 			return (SET_ERROR(ENOENT));
1084 		type = dn->dn_type;
1085 		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1086 			return (SET_ERROR(ENOENT));
1087 		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1088 			return (SET_ERROR(EEXIST));
1089 		DNODE_VERIFY(dn);
1090 		(void) refcount_add(&dn->dn_holds, tag);
1091 		*dnp = dn;
1092 		return (0);
1093 	}
1094 
1095 	if (object == 0 || object >= DN_MAX_OBJECT)
1096 		return (SET_ERROR(EINVAL));
1097 
1098 	mdn = DMU_META_DNODE(os);
1099 	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1100 
1101 	DNODE_VERIFY(mdn);
1102 
1103 	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1104 		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1105 		drop_struct_lock = TRUE;
1106 	}
1107 
1108 	blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1109 
1110 	db = dbuf_hold(mdn, blk, FTAG);
1111 	if (drop_struct_lock)
1112 		rw_exit(&mdn->dn_struct_rwlock);
1113 	if (db == NULL)
1114 		return (SET_ERROR(EIO));
1115 	err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1116 	if (err) {
1117 		dbuf_rele(db, FTAG);
1118 		return (err);
1119 	}
1120 
1121 	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1122 	epb = db->db.db_size >> DNODE_SHIFT;
1123 
1124 	idx = object & (epb-1);
1125 
1126 	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1127 	children_dnodes = dmu_buf_get_user(&db->db);
1128 	if (children_dnodes == NULL) {
1129 		int i;
1130 		dnode_children_t *winner;
1131 		children_dnodes = kmem_zalloc(sizeof (dnode_children_t) +
1132 		    epb * sizeof (dnode_handle_t), KM_SLEEP);
1133 		children_dnodes->dnc_count = epb;
1134 		dnh = &children_dnodes->dnc_children[0];
1135 		for (i = 0; i < epb; i++) {
1136 			zrl_init(&dnh[i].dnh_zrlock);
1137 		}
1138 		dmu_buf_init_user(&children_dnodes->dnc_dbu, NULL,
1139 		    dnode_buf_evict_async, NULL);
1140 		winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu);
1141 		if (winner != NULL) {
1142 
1143 			for (i = 0; i < epb; i++) {
1144 				zrl_destroy(&dnh[i].dnh_zrlock);
1145 			}
1146 
1147 			kmem_free(children_dnodes, sizeof (dnode_children_t) +
1148 			    epb * sizeof (dnode_handle_t));
1149 			children_dnodes = winner;
1150 		}
1151 	}
1152 	ASSERT(children_dnodes->dnc_count == epb);
1153 
1154 	dnh = &children_dnodes->dnc_children[idx];
1155 	zrl_add(&dnh->dnh_zrlock);
1156 	dn = dnh->dnh_dnode;
1157 	if (dn == NULL) {
1158 		dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1159 
1160 		dn = dnode_create(os, phys, db, object, dnh);
1161 	}
1162 
1163 	mutex_enter(&dn->dn_mtx);
1164 	type = dn->dn_type;
1165 	if (dn->dn_free_txg ||
1166 	    ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1167 	    ((flag & DNODE_MUST_BE_FREE) &&
1168 	    (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1169 		mutex_exit(&dn->dn_mtx);
1170 		zrl_remove(&dnh->dnh_zrlock);
1171 		dbuf_rele(db, FTAG);
1172 		return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1173 	}
1174 	if (refcount_add(&dn->dn_holds, tag) == 1)
1175 		dbuf_add_ref(db, dnh);
1176 	mutex_exit(&dn->dn_mtx);
1177 
1178 	/* Now we can rely on the hold to prevent the dnode from moving. */
1179 	zrl_remove(&dnh->dnh_zrlock);
1180 
1181 	DNODE_VERIFY(dn);
1182 	ASSERT3P(dn->dn_dbuf, ==, db);
1183 	ASSERT3U(dn->dn_object, ==, object);
1184 	dbuf_rele(db, FTAG);
1185 
1186 	*dnp = dn;
1187 	return (0);
1188 }
1189 
1190 /*
1191  * Return held dnode if the object is allocated, NULL if not.
1192  */
1193 int
1194 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1195 {
1196 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1197 }
1198 
1199 /*
1200  * Can only add a reference if there is already at least one
1201  * reference on the dnode.  Returns FALSE if unable to add a
1202  * new reference.
1203  */
1204 boolean_t
1205 dnode_add_ref(dnode_t *dn, void *tag)
1206 {
1207 	mutex_enter(&dn->dn_mtx);
1208 	if (refcount_is_zero(&dn->dn_holds)) {
1209 		mutex_exit(&dn->dn_mtx);
1210 		return (FALSE);
1211 	}
1212 	VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1213 	mutex_exit(&dn->dn_mtx);
1214 	return (TRUE);
1215 }
1216 
1217 void
1218 dnode_rele(dnode_t *dn, void *tag)
1219 {
1220 	mutex_enter(&dn->dn_mtx);
1221 	dnode_rele_and_unlock(dn, tag);
1222 }
1223 
1224 void
1225 dnode_rele_and_unlock(dnode_t *dn, void *tag)
1226 {
1227 	uint64_t refs;
1228 	/* Get while the hold prevents the dnode from moving. */
1229 	dmu_buf_impl_t *db = dn->dn_dbuf;
1230 	dnode_handle_t *dnh = dn->dn_handle;
1231 
1232 	refs = refcount_remove(&dn->dn_holds, tag);
1233 	mutex_exit(&dn->dn_mtx);
1234 
1235 	/*
1236 	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1237 	 * indirectly by dbuf_rele() while relying on the dnode handle to
1238 	 * prevent the dnode from moving, since releasing the last hold could
1239 	 * result in the dnode's parent dbuf evicting its dnode handles. For
1240 	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1241 	 * other direct or indirect hold on the dnode must first drop the dnode
1242 	 * handle.
1243 	 */
1244 	ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1245 
1246 	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1247 	if (refs == 0 && db != NULL) {
1248 		/*
1249 		 * Another thread could add a hold to the dnode handle in
1250 		 * dnode_hold_impl() while holding the parent dbuf. Since the
1251 		 * hold on the parent dbuf prevents the handle from being
1252 		 * destroyed, the hold on the handle is OK. We can't yet assert
1253 		 * that the handle has zero references, but that will be
1254 		 * asserted anyway when the handle gets destroyed.
1255 		 */
1256 		dbuf_rele(db, dnh);
1257 	}
1258 }
1259 
1260 void
1261 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1262 {
1263 	objset_t *os = dn->dn_objset;
1264 	uint64_t txg = tx->tx_txg;
1265 
1266 	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1267 		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1268 		return;
1269 	}
1270 
1271 	DNODE_VERIFY(dn);
1272 
1273 #ifdef ZFS_DEBUG
1274 	mutex_enter(&dn->dn_mtx);
1275 	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1276 	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1277 	mutex_exit(&dn->dn_mtx);
1278 #endif
1279 
1280 	/*
1281 	 * Determine old uid/gid when necessary
1282 	 */
1283 	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1284 
1285 	multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK];
1286 	multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1287 
1288 	/*
1289 	 * If we are already marked dirty, we're done.
1290 	 */
1291 	if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1292 		multilist_sublist_unlock(mls);
1293 		return;
1294 	}
1295 
1296 	ASSERT(!refcount_is_zero(&dn->dn_holds) ||
1297 	    !avl_is_empty(&dn->dn_dbufs));
1298 	ASSERT(dn->dn_datablksz != 0);
1299 	ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1300 	ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1301 	ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1302 
1303 	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1304 	    dn->dn_object, txg);
1305 
1306 	multilist_sublist_insert_head(mls, dn);
1307 
1308 	multilist_sublist_unlock(mls);
1309 
1310 	/*
1311 	 * The dnode maintains a hold on its containing dbuf as
1312 	 * long as there are holds on it.  Each instantiated child
1313 	 * dbuf maintains a hold on the dnode.  When the last child
1314 	 * drops its hold, the dnode will drop its hold on the
1315 	 * containing dbuf. We add a "dirty hold" here so that the
1316 	 * dnode will hang around after we finish processing its
1317 	 * children.
1318 	 */
1319 	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1320 
1321 	(void) dbuf_dirty(dn->dn_dbuf, tx);
1322 
1323 	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1324 }
1325 
1326 void
1327 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1328 {
1329 	mutex_enter(&dn->dn_mtx);
1330 	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1331 		mutex_exit(&dn->dn_mtx);
1332 		return;
1333 	}
1334 	dn->dn_free_txg = tx->tx_txg;
1335 	mutex_exit(&dn->dn_mtx);
1336 
1337 	dnode_setdirty(dn, tx);
1338 }
1339 
1340 /*
1341  * Try to change the block size for the indicated dnode.  This can only
1342  * succeed if there are no blocks allocated or dirty beyond first block
1343  */
1344 int
1345 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1346 {
1347 	dmu_buf_impl_t *db;
1348 	int err;
1349 
1350 	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1351 	if (size == 0)
1352 		size = SPA_MINBLOCKSIZE;
1353 	else
1354 		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1355 
1356 	if (ibs == dn->dn_indblkshift)
1357 		ibs = 0;
1358 
1359 	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1360 		return (0);
1361 
1362 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1363 
1364 	/* Check for any allocated blocks beyond the first */
1365 	if (dn->dn_maxblkid != 0)
1366 		goto fail;
1367 
1368 	mutex_enter(&dn->dn_dbufs_mtx);
1369 	for (db = avl_first(&dn->dn_dbufs); db != NULL;
1370 	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
1371 		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1372 		    db->db_blkid != DMU_SPILL_BLKID) {
1373 			mutex_exit(&dn->dn_dbufs_mtx);
1374 			goto fail;
1375 		}
1376 	}
1377 	mutex_exit(&dn->dn_dbufs_mtx);
1378 
1379 	if (ibs && dn->dn_nlevels != 1)
1380 		goto fail;
1381 
1382 	/* resize the old block */
1383 	err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1384 	if (err == 0)
1385 		dbuf_new_size(db, size, tx);
1386 	else if (err != ENOENT)
1387 		goto fail;
1388 
1389 	dnode_setdblksz(dn, size);
1390 	dnode_setdirty(dn, tx);
1391 	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1392 	if (ibs) {
1393 		dn->dn_indblkshift = ibs;
1394 		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1395 	}
1396 	/* rele after we have fixed the blocksize in the dnode */
1397 	if (db)
1398 		dbuf_rele(db, FTAG);
1399 
1400 	rw_exit(&dn->dn_struct_rwlock);
1401 	return (0);
1402 
1403 fail:
1404 	rw_exit(&dn->dn_struct_rwlock);
1405 	return (SET_ERROR(ENOTSUP));
1406 }
1407 
1408 /* read-holding callers must not rely on the lock being continuously held */
1409 void
1410 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1411 {
1412 	uint64_t txgoff = tx->tx_txg & TXG_MASK;
1413 	int epbs, new_nlevels;
1414 	uint64_t sz;
1415 
1416 	ASSERT(blkid != DMU_BONUS_BLKID);
1417 
1418 	ASSERT(have_read ?
1419 	    RW_READ_HELD(&dn->dn_struct_rwlock) :
1420 	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
1421 
1422 	/*
1423 	 * if we have a read-lock, check to see if we need to do any work
1424 	 * before upgrading to a write-lock.
1425 	 */
1426 	if (have_read) {
1427 		if (blkid <= dn->dn_maxblkid)
1428 			return;
1429 
1430 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1431 			rw_exit(&dn->dn_struct_rwlock);
1432 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1433 		}
1434 	}
1435 
1436 	if (blkid <= dn->dn_maxblkid)
1437 		goto out;
1438 
1439 	dn->dn_maxblkid = blkid;
1440 
1441 	/*
1442 	 * Compute the number of levels necessary to support the new maxblkid.
1443 	 */
1444 	new_nlevels = 1;
1445 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1446 	for (sz = dn->dn_nblkptr;
1447 	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1448 		new_nlevels++;
1449 
1450 	if (new_nlevels > dn->dn_nlevels) {
1451 		int old_nlevels = dn->dn_nlevels;
1452 		dmu_buf_impl_t *db;
1453 		list_t *list;
1454 		dbuf_dirty_record_t *new, *dr, *dr_next;
1455 
1456 		dn->dn_nlevels = new_nlevels;
1457 
1458 		ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1459 		dn->dn_next_nlevels[txgoff] = new_nlevels;
1460 
1461 		/* dirty the left indirects */
1462 		db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1463 		ASSERT(db != NULL);
1464 		new = dbuf_dirty(db, tx);
1465 		dbuf_rele(db, FTAG);
1466 
1467 		/* transfer the dirty records to the new indirect */
1468 		mutex_enter(&dn->dn_mtx);
1469 		mutex_enter(&new->dt.di.dr_mtx);
1470 		list = &dn->dn_dirty_records[txgoff];
1471 		for (dr = list_head(list); dr; dr = dr_next) {
1472 			dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1473 			if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1474 			    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1475 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1476 				ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1477 				list_remove(&dn->dn_dirty_records[txgoff], dr);
1478 				list_insert_tail(&new->dt.di.dr_children, dr);
1479 				dr->dr_parent = new;
1480 			}
1481 		}
1482 		mutex_exit(&new->dt.di.dr_mtx);
1483 		mutex_exit(&dn->dn_mtx);
1484 	}
1485 
1486 out:
1487 	if (have_read)
1488 		rw_downgrade(&dn->dn_struct_rwlock);
1489 }
1490 
1491 static void
1492 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1493 {
1494 	dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1495 	if (db != NULL) {
1496 		dmu_buf_will_dirty(&db->db, tx);
1497 		dbuf_rele(db, FTAG);
1498 	}
1499 }
1500 
1501 void
1502 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1503 {
1504 	dmu_buf_impl_t *db;
1505 	uint64_t blkoff, blkid, nblks;
1506 	int blksz, blkshift, head, tail;
1507 	int trunc = FALSE;
1508 	int epbs;
1509 
1510 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1511 	blksz = dn->dn_datablksz;
1512 	blkshift = dn->dn_datablkshift;
1513 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1514 
1515 	if (len == DMU_OBJECT_END) {
1516 		len = UINT64_MAX - off;
1517 		trunc = TRUE;
1518 	}
1519 
1520 	/*
1521 	 * First, block align the region to free:
1522 	 */
1523 	if (ISP2(blksz)) {
1524 		head = P2NPHASE(off, blksz);
1525 		blkoff = P2PHASE(off, blksz);
1526 		if ((off >> blkshift) > dn->dn_maxblkid)
1527 			goto out;
1528 	} else {
1529 		ASSERT(dn->dn_maxblkid == 0);
1530 		if (off == 0 && len >= blksz) {
1531 			/*
1532 			 * Freeing the whole block; fast-track this request.
1533 			 * Note that we won't dirty any indirect blocks,
1534 			 * which is fine because we will be freeing the entire
1535 			 * file and thus all indirect blocks will be freed
1536 			 * by free_children().
1537 			 */
1538 			blkid = 0;
1539 			nblks = 1;
1540 			goto done;
1541 		} else if (off >= blksz) {
1542 			/* Freeing past end-of-data */
1543 			goto out;
1544 		} else {
1545 			/* Freeing part of the block. */
1546 			head = blksz - off;
1547 			ASSERT3U(head, >, 0);
1548 		}
1549 		blkoff = off;
1550 	}
1551 	/* zero out any partial block data at the start of the range */
1552 	if (head) {
1553 		ASSERT3U(blkoff + head, ==, blksz);
1554 		if (len < head)
1555 			head = len;
1556 		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
1557 		    TRUE, FALSE, FTAG, &db) == 0) {
1558 			caddr_t data;
1559 
1560 			/* don't dirty if it isn't on disk and isn't dirty */
1561 			if (db->db_last_dirty ||
1562 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1563 				rw_exit(&dn->dn_struct_rwlock);
1564 				dmu_buf_will_dirty(&db->db, tx);
1565 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1566 				data = db->db.db_data;
1567 				bzero(data + blkoff, head);
1568 			}
1569 			dbuf_rele(db, FTAG);
1570 		}
1571 		off += head;
1572 		len -= head;
1573 	}
1574 
1575 	/* If the range was less than one block, we're done */
1576 	if (len == 0)
1577 		goto out;
1578 
1579 	/* If the remaining range is past end of file, we're done */
1580 	if ((off >> blkshift) > dn->dn_maxblkid)
1581 		goto out;
1582 
1583 	ASSERT(ISP2(blksz));
1584 	if (trunc)
1585 		tail = 0;
1586 	else
1587 		tail = P2PHASE(len, blksz);
1588 
1589 	ASSERT0(P2PHASE(off, blksz));
1590 	/* zero out any partial block data at the end of the range */
1591 	if (tail) {
1592 		if (len < tail)
1593 			tail = len;
1594 		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
1595 		    TRUE, FALSE, FTAG, &db) == 0) {
1596 			/* don't dirty if not on disk and not dirty */
1597 			if (db->db_last_dirty ||
1598 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1599 				rw_exit(&dn->dn_struct_rwlock);
1600 				dmu_buf_will_dirty(&db->db, tx);
1601 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1602 				bzero(db->db.db_data, tail);
1603 			}
1604 			dbuf_rele(db, FTAG);
1605 		}
1606 		len -= tail;
1607 	}
1608 
1609 	/* If the range did not include a full block, we are done */
1610 	if (len == 0)
1611 		goto out;
1612 
1613 	ASSERT(IS_P2ALIGNED(off, blksz));
1614 	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1615 	blkid = off >> blkshift;
1616 	nblks = len >> blkshift;
1617 	if (trunc)
1618 		nblks += 1;
1619 
1620 	/*
1621 	 * Dirty all the indirect blocks in this range.  Note that only
1622 	 * the first and last indirect blocks can actually be written
1623 	 * (if they were partially freed) -- they must be dirtied, even if
1624 	 * they do not exist on disk yet.  The interior blocks will
1625 	 * be freed by free_children(), so they will not actually be written.
1626 	 * Even though these interior blocks will not be written, we
1627 	 * dirty them for two reasons:
1628 	 *
1629 	 *  - It ensures that the indirect blocks remain in memory until
1630 	 *    syncing context.  (They have already been prefetched by
1631 	 *    dmu_tx_hold_free(), so we don't have to worry about reading
1632 	 *    them serially here.)
1633 	 *
1634 	 *  - The dirty space accounting will put pressure on the txg sync
1635 	 *    mechanism to begin syncing, and to delay transactions if there
1636 	 *    is a large amount of freeing.  Even though these indirect
1637 	 *    blocks will not be written, we could need to write the same
1638 	 *    amount of space if we copy the freed BPs into deadlists.
1639 	 */
1640 	if (dn->dn_nlevels > 1) {
1641 		uint64_t first, last;
1642 
1643 		first = blkid >> epbs;
1644 		dnode_dirty_l1(dn, first, tx);
1645 		if (trunc)
1646 			last = dn->dn_maxblkid >> epbs;
1647 		else
1648 			last = (blkid + nblks - 1) >> epbs;
1649 		if (last != first)
1650 			dnode_dirty_l1(dn, last, tx);
1651 
1652 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
1653 		    SPA_BLKPTRSHIFT;
1654 		for (uint64_t i = first + 1; i < last; i++) {
1655 			/*
1656 			 * Set i to the blockid of the next non-hole
1657 			 * level-1 indirect block at or after i.  Note
1658 			 * that dnode_next_offset() operates in terms of
1659 			 * level-0-equivalent bytes.
1660 			 */
1661 			uint64_t ibyte = i << shift;
1662 			int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1663 			    &ibyte, 2, 1, 0);
1664 			i = ibyte >> shift;
1665 			if (i >= last)
1666 				break;
1667 
1668 			/*
1669 			 * Normally we should not see an error, either
1670 			 * from dnode_next_offset() or dbuf_hold_level()
1671 			 * (except for ESRCH from dnode_next_offset).
1672 			 * If there is an i/o error, then when we read
1673 			 * this block in syncing context, it will use
1674 			 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
1675 			 * to the "failmode" property.  dnode_next_offset()
1676 			 * doesn't have a flag to indicate MUSTSUCCEED.
1677 			 */
1678 			if (err != 0)
1679 				break;
1680 
1681 			dnode_dirty_l1(dn, i, tx);
1682 		}
1683 	}
1684 
1685 done:
1686 	/*
1687 	 * Add this range to the dnode range list.
1688 	 * We will finish up this free operation in the syncing phase.
1689 	 */
1690 	mutex_enter(&dn->dn_mtx);
1691 	int txgoff = tx->tx_txg & TXG_MASK;
1692 	if (dn->dn_free_ranges[txgoff] == NULL) {
1693 		dn->dn_free_ranges[txgoff] =
1694 		    range_tree_create(NULL, NULL, &dn->dn_mtx);
1695 	}
1696 	range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
1697 	range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
1698 	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1699 	    blkid, nblks, tx->tx_txg);
1700 	mutex_exit(&dn->dn_mtx);
1701 
1702 	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1703 	dnode_setdirty(dn, tx);
1704 out:
1705 
1706 	rw_exit(&dn->dn_struct_rwlock);
1707 }
1708 
1709 static boolean_t
1710 dnode_spill_freed(dnode_t *dn)
1711 {
1712 	int i;
1713 
1714 	mutex_enter(&dn->dn_mtx);
1715 	for (i = 0; i < TXG_SIZE; i++) {
1716 		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1717 			break;
1718 	}
1719 	mutex_exit(&dn->dn_mtx);
1720 	return (i < TXG_SIZE);
1721 }
1722 
1723 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1724 uint64_t
1725 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1726 {
1727 	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1728 	int i;
1729 
1730 	if (blkid == DMU_BONUS_BLKID)
1731 		return (FALSE);
1732 
1733 	/*
1734 	 * If we're in the process of opening the pool, dp will not be
1735 	 * set yet, but there shouldn't be anything dirty.
1736 	 */
1737 	if (dp == NULL)
1738 		return (FALSE);
1739 
1740 	if (dn->dn_free_txg)
1741 		return (TRUE);
1742 
1743 	if (blkid == DMU_SPILL_BLKID)
1744 		return (dnode_spill_freed(dn));
1745 
1746 	mutex_enter(&dn->dn_mtx);
1747 	for (i = 0; i < TXG_SIZE; i++) {
1748 		if (dn->dn_free_ranges[i] != NULL &&
1749 		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
1750 			break;
1751 	}
1752 	mutex_exit(&dn->dn_mtx);
1753 	return (i < TXG_SIZE);
1754 }
1755 
1756 /* call from syncing context when we actually write/free space for this dnode */
1757 void
1758 dnode_diduse_space(dnode_t *dn, int64_t delta)
1759 {
1760 	uint64_t space;
1761 	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1762 	    dn, dn->dn_phys,
1763 	    (u_longlong_t)dn->dn_phys->dn_used,
1764 	    (longlong_t)delta);
1765 
1766 	mutex_enter(&dn->dn_mtx);
1767 	space = DN_USED_BYTES(dn->dn_phys);
1768 	if (delta > 0) {
1769 		ASSERT3U(space + delta, >=, space); /* no overflow */
1770 	} else {
1771 		ASSERT3U(space, >=, -delta); /* no underflow */
1772 	}
1773 	space += delta;
1774 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1775 		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1776 		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1777 		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1778 	} else {
1779 		dn->dn_phys->dn_used = space;
1780 		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1781 	}
1782 	mutex_exit(&dn->dn_mtx);
1783 }
1784 
1785 /*
1786  * Scans a block at the indicated "level" looking for a hole or data,
1787  * depending on 'flags'.
1788  *
1789  * If level > 0, then we are scanning an indirect block looking at its
1790  * pointers.  If level == 0, then we are looking at a block of dnodes.
1791  *
1792  * If we don't find what we are looking for in the block, we return ESRCH.
1793  * Otherwise, return with *offset pointing to the beginning (if searching
1794  * forwards) or end (if searching backwards) of the range covered by the
1795  * block pointer we matched on (or dnode).
1796  *
1797  * The basic search algorithm used below by dnode_next_offset() is to
1798  * use this function to search up the block tree (widen the search) until
1799  * we find something (i.e., we don't return ESRCH) and then search back
1800  * down the tree (narrow the search) until we reach our original search
1801  * level.
1802  */
1803 static int
1804 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1805     int lvl, uint64_t blkfill, uint64_t txg)
1806 {
1807 	dmu_buf_impl_t *db = NULL;
1808 	void *data = NULL;
1809 	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1810 	uint64_t epb = 1ULL << epbs;
1811 	uint64_t minfill, maxfill;
1812 	boolean_t hole;
1813 	int i, inc, error, span;
1814 
1815 	dprintf("probing object %llu offset %llx level %d of %u\n",
1816 	    dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1817 
1818 	hole = ((flags & DNODE_FIND_HOLE) != 0);
1819 	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1820 	ASSERT(txg == 0 || !hole);
1821 
1822 	if (lvl == dn->dn_phys->dn_nlevels) {
1823 		error = 0;
1824 		epb = dn->dn_phys->dn_nblkptr;
1825 		data = dn->dn_phys->dn_blkptr;
1826 	} else {
1827 		uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
1828 		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
1829 		if (error) {
1830 			if (error != ENOENT)
1831 				return (error);
1832 			if (hole)
1833 				return (0);
1834 			/*
1835 			 * This can only happen when we are searching up
1836 			 * the block tree for data.  We don't really need to
1837 			 * adjust the offset, as we will just end up looking
1838 			 * at the pointer to this block in its parent, and its
1839 			 * going to be unallocated, so we will skip over it.
1840 			 */
1841 			return (SET_ERROR(ESRCH));
1842 		}
1843 		error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1844 		if (error) {
1845 			dbuf_rele(db, FTAG);
1846 			return (error);
1847 		}
1848 		data = db->db.db_data;
1849 	}
1850 
1851 
1852 	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
1853 	    db->db_blkptr->blk_birth <= txg ||
1854 	    BP_IS_HOLE(db->db_blkptr))) {
1855 		/*
1856 		 * This can only happen when we are searching up the tree
1857 		 * and these conditions mean that we need to keep climbing.
1858 		 */
1859 		error = SET_ERROR(ESRCH);
1860 	} else if (lvl == 0) {
1861 		dnode_phys_t *dnp = data;
1862 		span = DNODE_SHIFT;
1863 		ASSERT(dn->dn_type == DMU_OT_DNODE);
1864 
1865 		for (i = (*offset >> span) & (blkfill - 1);
1866 		    i >= 0 && i < blkfill; i += inc) {
1867 			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1868 				break;
1869 			*offset += (1ULL << span) * inc;
1870 		}
1871 		if (i < 0 || i == blkfill)
1872 			error = SET_ERROR(ESRCH);
1873 	} else {
1874 		blkptr_t *bp = data;
1875 		uint64_t start = *offset;
1876 		span = (lvl - 1) * epbs + dn->dn_datablkshift;
1877 		minfill = 0;
1878 		maxfill = blkfill << ((lvl - 1) * epbs);
1879 
1880 		if (hole)
1881 			maxfill--;
1882 		else
1883 			minfill++;
1884 
1885 		*offset = *offset >> span;
1886 		for (i = BF64_GET(*offset, 0, epbs);
1887 		    i >= 0 && i < epb; i += inc) {
1888 			if (BP_GET_FILL(&bp[i]) >= minfill &&
1889 			    BP_GET_FILL(&bp[i]) <= maxfill &&
1890 			    (hole || bp[i].blk_birth > txg))
1891 				break;
1892 			if (inc > 0 || *offset > 0)
1893 				*offset += inc;
1894 		}
1895 		*offset = *offset << span;
1896 		if (inc < 0) {
1897 			/* traversing backwards; position offset at the end */
1898 			ASSERT3U(*offset, <=, start);
1899 			*offset = MIN(*offset + (1ULL << span) - 1, start);
1900 		} else if (*offset < start) {
1901 			*offset = start;
1902 		}
1903 		if (i < 0 || i >= epb)
1904 			error = SET_ERROR(ESRCH);
1905 	}
1906 
1907 	if (db)
1908 		dbuf_rele(db, FTAG);
1909 
1910 	return (error);
1911 }
1912 
1913 /*
1914  * Find the next hole, data, or sparse region at or after *offset.
1915  * The value 'blkfill' tells us how many items we expect to find
1916  * in an L0 data block; this value is 1 for normal objects,
1917  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1918  * DNODES_PER_BLOCK when searching for sparse regions thereof.
1919  *
1920  * Examples:
1921  *
1922  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1923  *	Finds the next/previous hole/data in a file.
1924  *	Used in dmu_offset_next().
1925  *
1926  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1927  *	Finds the next free/allocated dnode an objset's meta-dnode.
1928  *	Only finds objects that have new contents since txg (ie.
1929  *	bonus buffer changes and content removal are ignored).
1930  *	Used in dmu_object_next().
1931  *
1932  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1933  *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
1934  *	Used in dmu_object_alloc().
1935  */
1936 int
1937 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1938     int minlvl, uint64_t blkfill, uint64_t txg)
1939 {
1940 	uint64_t initial_offset = *offset;
1941 	int lvl, maxlvl;
1942 	int error = 0;
1943 
1944 	if (!(flags & DNODE_FIND_HAVELOCK))
1945 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1946 
1947 	if (dn->dn_phys->dn_nlevels == 0) {
1948 		error = SET_ERROR(ESRCH);
1949 		goto out;
1950 	}
1951 
1952 	if (dn->dn_datablkshift == 0) {
1953 		if (*offset < dn->dn_datablksz) {
1954 			if (flags & DNODE_FIND_HOLE)
1955 				*offset = dn->dn_datablksz;
1956 		} else {
1957 			error = SET_ERROR(ESRCH);
1958 		}
1959 		goto out;
1960 	}
1961 
1962 	maxlvl = dn->dn_phys->dn_nlevels;
1963 
1964 	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1965 		error = dnode_next_offset_level(dn,
1966 		    flags, offset, lvl, blkfill, txg);
1967 		if (error != ESRCH)
1968 			break;
1969 	}
1970 
1971 	while (error == 0 && --lvl >= minlvl) {
1972 		error = dnode_next_offset_level(dn,
1973 		    flags, offset, lvl, blkfill, txg);
1974 	}
1975 
1976 	/*
1977 	 * There's always a "virtual hole" at the end of the object, even
1978 	 * if all BP's which physically exist are non-holes.
1979 	 */
1980 	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
1981 	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
1982 		error = 0;
1983 	}
1984 
1985 	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1986 	    initial_offset < *offset : initial_offset > *offset))
1987 		error = SET_ERROR(ESRCH);
1988 out:
1989 	if (!(flags & DNODE_FIND_HAVELOCK))
1990 		rw_exit(&dn->dn_struct_rwlock);
1991 
1992 	return (error);
1993 }
1994