1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2017 RackTop Systems. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dbuf.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dsl_dir.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/spa.h> 39 #include <sys/zio.h> 40 #include <sys/dmu_zfetch.h> 41 #include <sys/range_tree.h> 42 #include <sys/zfs_project.h> 43 44 dnode_stats_t dnode_stats = { 45 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, 46 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, 47 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, 48 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, 49 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, 50 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, 51 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, 52 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, 53 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, 54 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, 55 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, 56 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, 57 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, 58 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, 59 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, 60 { "dnode_allocate", KSTAT_DATA_UINT64 }, 61 { "dnode_reallocate", KSTAT_DATA_UINT64 }, 62 { "dnode_buf_evict", KSTAT_DATA_UINT64 }, 63 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, 64 { "dnode_alloc_race", KSTAT_DATA_UINT64 }, 65 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, 66 { "dnode_move_invalid", KSTAT_DATA_UINT64 }, 67 { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, 68 { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, 69 { "dnode_move_special", KSTAT_DATA_UINT64 }, 70 { "dnode_move_handle", KSTAT_DATA_UINT64 }, 71 { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, 72 { "dnode_move_active", KSTAT_DATA_UINT64 }, 73 }; 74 75 static kstat_t *dnode_ksp; 76 static kmem_cache_t *dnode_cache; 77 78 static dnode_phys_t dnode_phys_zero; 79 80 int zfs_default_bs = SPA_MINBLOCKSHIFT; 81 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 82 83 #ifdef _KERNEL 84 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 85 #endif /* _KERNEL */ 86 87 static int 88 dbuf_compare(const void *x1, const void *x2) 89 { 90 const dmu_buf_impl_t *d1 = x1; 91 const dmu_buf_impl_t *d2 = x2; 92 93 int cmp = TREE_CMP(d1->db_level, d2->db_level); 94 if (likely(cmp)) 95 return (cmp); 96 97 cmp = TREE_CMP(d1->db_blkid, d2->db_blkid); 98 if (likely(cmp)) 99 return (cmp); 100 101 if (d1->db_state == DB_SEARCH) { 102 ASSERT3S(d2->db_state, !=, DB_SEARCH); 103 return (-1); 104 } else if (d2->db_state == DB_SEARCH) { 105 ASSERT3S(d1->db_state, !=, DB_SEARCH); 106 return (1); 107 } 108 109 return (TREE_PCMP(d1, d2)); 110 } 111 112 /* ARGSUSED */ 113 static int 114 dnode_cons(void *arg, void *unused, int kmflag) 115 { 116 dnode_t *dn = arg; 117 int i; 118 119 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 120 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 121 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 122 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 123 124 /* 125 * Every dbuf has a reference, and dropping a tracked reference is 126 * O(number of references), so don't track dn_holds. 127 */ 128 zfs_refcount_create_untracked(&dn->dn_holds); 129 zfs_refcount_create(&dn->dn_tx_holds); 130 list_link_init(&dn->dn_link); 131 132 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 133 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 134 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 135 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 136 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 137 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 138 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 139 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid)); 140 141 for (i = 0; i < TXG_SIZE; i++) { 142 multilist_link_init(&dn->dn_dirty_link[i]); 143 dn->dn_free_ranges[i] = NULL; 144 list_create(&dn->dn_dirty_records[i], 145 sizeof (dbuf_dirty_record_t), 146 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 147 } 148 149 dn->dn_allocated_txg = 0; 150 dn->dn_free_txg = 0; 151 dn->dn_assigned_txg = 0; 152 dn->dn_dirty_txg = 0; 153 dn->dn_dirtyctx = 0; 154 dn->dn_dirtyctx_firstset = NULL; 155 dn->dn_bonus = NULL; 156 dn->dn_have_spill = B_FALSE; 157 dn->dn_zio = NULL; 158 dn->dn_oldused = 0; 159 dn->dn_oldflags = 0; 160 dn->dn_olduid = 0; 161 dn->dn_oldgid = 0; 162 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 163 dn->dn_newuid = 0; 164 dn->dn_newgid = 0; 165 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 166 dn->dn_id_flags = 0; 167 168 dn->dn_dbufs_count = 0; 169 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 170 offsetof(dmu_buf_impl_t, db_link)); 171 172 dn->dn_moved = 0; 173 return (0); 174 } 175 176 /* ARGSUSED */ 177 static void 178 dnode_dest(void *arg, void *unused) 179 { 180 int i; 181 dnode_t *dn = arg; 182 183 rw_destroy(&dn->dn_struct_rwlock); 184 mutex_destroy(&dn->dn_mtx); 185 mutex_destroy(&dn->dn_dbufs_mtx); 186 cv_destroy(&dn->dn_notxholds); 187 zfs_refcount_destroy(&dn->dn_holds); 188 zfs_refcount_destroy(&dn->dn_tx_holds); 189 ASSERT(!list_link_active(&dn->dn_link)); 190 191 for (i = 0; i < TXG_SIZE; i++) { 192 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 193 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 194 list_destroy(&dn->dn_dirty_records[i]); 195 ASSERT0(dn->dn_next_nblkptr[i]); 196 ASSERT0(dn->dn_next_nlevels[i]); 197 ASSERT0(dn->dn_next_indblkshift[i]); 198 ASSERT0(dn->dn_next_bonustype[i]); 199 ASSERT0(dn->dn_rm_spillblk[i]); 200 ASSERT0(dn->dn_next_bonuslen[i]); 201 ASSERT0(dn->dn_next_blksz[i]); 202 ASSERT0(dn->dn_next_maxblkid[i]); 203 } 204 205 ASSERT0(dn->dn_allocated_txg); 206 ASSERT0(dn->dn_free_txg); 207 ASSERT0(dn->dn_assigned_txg); 208 ASSERT0(dn->dn_dirty_txg); 209 ASSERT0(dn->dn_dirtyctx); 210 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 211 ASSERT3P(dn->dn_bonus, ==, NULL); 212 ASSERT(!dn->dn_have_spill); 213 ASSERT3P(dn->dn_zio, ==, NULL); 214 ASSERT0(dn->dn_oldused); 215 ASSERT0(dn->dn_oldflags); 216 ASSERT0(dn->dn_olduid); 217 ASSERT0(dn->dn_oldgid); 218 ASSERT0(dn->dn_oldprojid); 219 ASSERT0(dn->dn_newuid); 220 ASSERT0(dn->dn_newgid); 221 ASSERT0(dn->dn_newprojid); 222 ASSERT0(dn->dn_id_flags); 223 224 ASSERT0(dn->dn_dbufs_count); 225 avl_destroy(&dn->dn_dbufs); 226 } 227 228 void 229 dnode_init(void) 230 { 231 ASSERT(dnode_cache == NULL); 232 dnode_cache = kmem_cache_create("dnode_t", 233 sizeof (dnode_t), 234 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 235 #ifdef _KERNEL 236 kmem_cache_set_move(dnode_cache, dnode_move); 237 238 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", 239 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), 240 KSTAT_FLAG_VIRTUAL); 241 if (dnode_ksp != NULL) { 242 dnode_ksp->ks_data = &dnode_stats; 243 kstat_install(dnode_ksp); 244 } 245 #endif /* _KERNEL */ 246 } 247 248 void 249 dnode_fini(void) 250 { 251 if (dnode_ksp != NULL) { 252 kstat_delete(dnode_ksp); 253 dnode_ksp = NULL; 254 } 255 256 kmem_cache_destroy(dnode_cache); 257 dnode_cache = NULL; 258 } 259 260 261 #ifdef ZFS_DEBUG 262 void 263 dnode_verify(dnode_t *dn) 264 { 265 int drop_struct_lock = FALSE; 266 267 ASSERT(dn->dn_phys); 268 ASSERT(dn->dn_objset); 269 ASSERT(dn->dn_handle->dnh_dnode == dn); 270 271 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 272 273 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 274 return; 275 276 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 277 rw_enter(&dn->dn_struct_rwlock, RW_READER); 278 drop_struct_lock = TRUE; 279 } 280 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 281 int i; 282 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 283 ASSERT3U(dn->dn_indblkshift, >=, 0); 284 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 285 if (dn->dn_datablkshift) { 286 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 287 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 288 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 289 } 290 ASSERT3U(dn->dn_nlevels, <=, 30); 291 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 292 ASSERT3U(dn->dn_nblkptr, >=, 1); 293 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 294 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); 295 ASSERT3U(dn->dn_datablksz, ==, 296 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 297 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 298 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 299 dn->dn_bonuslen, <=, max_bonuslen); 300 for (i = 0; i < TXG_SIZE; i++) { 301 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 302 } 303 } 304 if (dn->dn_phys->dn_type != DMU_OT_NONE) 305 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 306 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 307 if (dn->dn_dbuf != NULL) { 308 ASSERT3P(dn->dn_phys, ==, 309 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 310 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 311 } 312 if (drop_struct_lock) 313 rw_exit(&dn->dn_struct_rwlock); 314 } 315 #endif 316 317 void 318 dnode_byteswap(dnode_phys_t *dnp) 319 { 320 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 321 int i; 322 323 if (dnp->dn_type == DMU_OT_NONE) { 324 bzero(dnp, sizeof (dnode_phys_t)); 325 return; 326 } 327 328 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 329 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 330 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); 331 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 332 dnp->dn_used = BSWAP_64(dnp->dn_used); 333 334 /* 335 * dn_nblkptr is only one byte, so it's OK to read it in either 336 * byte order. We can't read dn_bouslen. 337 */ 338 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 339 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 340 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 341 buf64[i] = BSWAP_64(buf64[i]); 342 343 /* 344 * OK to check dn_bonuslen for zero, because it won't matter if 345 * we have the wrong byte order. This is necessary because the 346 * dnode dnode is smaller than a regular dnode. 347 */ 348 if (dnp->dn_bonuslen != 0) { 349 /* 350 * Note that the bonus length calculated here may be 351 * longer than the actual bonus buffer. This is because 352 * we always put the bonus buffer after the last block 353 * pointer (instead of packing it against the end of the 354 * dnode buffer). 355 */ 356 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 357 int slots = dnp->dn_extra_slots + 1; 358 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off; 359 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 360 dmu_object_byteswap_t byteswap = 361 DMU_OT_BYTESWAP(dnp->dn_bonustype); 362 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 363 } 364 365 /* Swap SPILL block if we have one */ 366 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 367 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); 368 369 } 370 371 void 372 dnode_buf_byteswap(void *vbuf, size_t size) 373 { 374 int i = 0; 375 376 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 377 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 378 379 while (i < size) { 380 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i); 381 dnode_byteswap(dnp); 382 383 i += DNODE_MIN_SIZE; 384 if (dnp->dn_type != DMU_OT_NONE) 385 i += dnp->dn_extra_slots * DNODE_MIN_SIZE; 386 } 387 } 388 389 void 390 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 391 { 392 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 393 394 dnode_setdirty(dn, tx); 395 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 396 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 397 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 398 dn->dn_bonuslen = newsize; 399 if (newsize == 0) 400 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 401 else 402 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 403 rw_exit(&dn->dn_struct_rwlock); 404 } 405 406 void 407 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 408 { 409 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 410 dnode_setdirty(dn, tx); 411 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 412 dn->dn_bonustype = newtype; 413 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 414 rw_exit(&dn->dn_struct_rwlock); 415 } 416 417 void 418 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 419 { 420 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 421 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 422 dnode_setdirty(dn, tx); 423 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; 424 dn->dn_have_spill = B_FALSE; 425 } 426 427 static void 428 dnode_setdblksz(dnode_t *dn, int size) 429 { 430 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 431 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 432 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 433 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 434 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 435 dn->dn_datablksz = size; 436 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 437 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 438 } 439 440 static dnode_t * 441 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 442 uint64_t object, dnode_handle_t *dnh) 443 { 444 dnode_t *dn; 445 446 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 447 #ifdef _KERNEL 448 ASSERT(!POINTER_IS_VALID(dn->dn_objset)); 449 #endif /* _KERNEL */ 450 dn->dn_moved = 0; 451 452 /* 453 * Defer setting dn_objset until the dnode is ready to be a candidate 454 * for the dnode_move() callback. 455 */ 456 dn->dn_object = object; 457 dn->dn_dbuf = db; 458 dn->dn_handle = dnh; 459 dn->dn_phys = dnp; 460 461 if (dnp->dn_datablkszsec) { 462 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 463 } else { 464 dn->dn_datablksz = 0; 465 dn->dn_datablkszsec = 0; 466 dn->dn_datablkshift = 0; 467 } 468 dn->dn_indblkshift = dnp->dn_indblkshift; 469 dn->dn_nlevels = dnp->dn_nlevels; 470 dn->dn_type = dnp->dn_type; 471 dn->dn_nblkptr = dnp->dn_nblkptr; 472 dn->dn_checksum = dnp->dn_checksum; 473 dn->dn_compress = dnp->dn_compress; 474 dn->dn_bonustype = dnp->dn_bonustype; 475 dn->dn_bonuslen = dnp->dn_bonuslen; 476 dn->dn_num_slots = dnp->dn_extra_slots + 1; 477 dn->dn_maxblkid = dnp->dn_maxblkid; 478 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 479 dn->dn_id_flags = 0; 480 481 dmu_zfetch_init(&dn->dn_zfetch, dn); 482 483 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 484 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 485 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); 486 487 mutex_enter(&os->os_lock); 488 489 /* 490 * Exclude special dnodes from os_dnodes so an empty os_dnodes 491 * signifies that the special dnodes have no references from 492 * their children (the entries in os_dnodes). This allows 493 * dnode_destroy() to easily determine if the last child has 494 * been removed and then complete eviction of the objset. 495 */ 496 if (!DMU_OBJECT_IS_SPECIAL(object)) 497 list_insert_head(&os->os_dnodes, dn); 498 membar_producer(); 499 500 /* 501 * Everything else must be valid before assigning dn_objset 502 * makes the dnode eligible for dnode_move(). 503 */ 504 dn->dn_objset = os; 505 506 dnh->dnh_dnode = dn; 507 mutex_exit(&os->os_lock); 508 509 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); 510 511 return (dn); 512 } 513 514 /* 515 * Caller must be holding the dnode handle, which is released upon return. 516 */ 517 static void 518 dnode_destroy(dnode_t *dn) 519 { 520 objset_t *os = dn->dn_objset; 521 boolean_t complete_os_eviction = B_FALSE; 522 523 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 524 525 mutex_enter(&os->os_lock); 526 POINTER_INVALIDATE(&dn->dn_objset); 527 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 528 list_remove(&os->os_dnodes, dn); 529 complete_os_eviction = 530 list_is_empty(&os->os_dnodes) && 531 list_link_active(&os->os_evicting_node); 532 } 533 mutex_exit(&os->os_lock); 534 535 /* the dnode can no longer move, so we can release the handle */ 536 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) 537 zrl_remove(&dn->dn_handle->dnh_zrlock); 538 539 dn->dn_allocated_txg = 0; 540 dn->dn_free_txg = 0; 541 dn->dn_assigned_txg = 0; 542 dn->dn_dirty_txg = 0; 543 544 dn->dn_dirtyctx = 0; 545 if (dn->dn_dirtyctx_firstset != NULL) { 546 kmem_free(dn->dn_dirtyctx_firstset, 1); 547 dn->dn_dirtyctx_firstset = NULL; 548 } 549 if (dn->dn_bonus != NULL) { 550 mutex_enter(&dn->dn_bonus->db_mtx); 551 dbuf_destroy(dn->dn_bonus); 552 dn->dn_bonus = NULL; 553 } 554 dn->dn_zio = NULL; 555 556 dn->dn_have_spill = B_FALSE; 557 dn->dn_oldused = 0; 558 dn->dn_oldflags = 0; 559 dn->dn_olduid = 0; 560 dn->dn_oldgid = 0; 561 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 562 dn->dn_newuid = 0; 563 dn->dn_newgid = 0; 564 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 565 dn->dn_id_flags = 0; 566 567 dmu_zfetch_fini(&dn->dn_zfetch); 568 kmem_cache_free(dnode_cache, dn); 569 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); 570 571 if (complete_os_eviction) 572 dmu_objset_evict_done(os); 573 } 574 575 void 576 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 577 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) 578 { 579 int i; 580 581 ASSERT3U(dn_slots, >, 0); 582 ASSERT3U(dn_slots << DNODE_SHIFT, <=, 583 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); 584 ASSERT3U(blocksize, <=, 585 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 586 if (blocksize == 0) 587 blocksize = 1 << zfs_default_bs; 588 else 589 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 590 591 if (ibs == 0) 592 ibs = zfs_default_ibs; 593 594 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 595 596 dprintf("os=%p obj=%" PRIu64 " txg=%" PRIu64 597 " blocksize=%d ibs=%d dn_slots=%d\n", 598 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots); 599 DNODE_STAT_BUMP(dnode_allocate); 600 601 ASSERT(dn->dn_type == DMU_OT_NONE); 602 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 603 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 604 ASSERT(ot != DMU_OT_NONE); 605 ASSERT(DMU_OT_IS_VALID(ot)); 606 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 607 (bonustype == DMU_OT_SA && bonuslen == 0) || 608 (bonustype != DMU_OT_NONE && bonuslen != 0)); 609 ASSERT(DMU_OT_IS_VALID(bonustype)); 610 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); 611 ASSERT(dn->dn_type == DMU_OT_NONE); 612 ASSERT0(dn->dn_maxblkid); 613 ASSERT0(dn->dn_allocated_txg); 614 ASSERT0(dn->dn_dirty_txg); 615 ASSERT0(dn->dn_assigned_txg); 616 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 617 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1); 618 ASSERT(avl_is_empty(&dn->dn_dbufs)); 619 620 for (i = 0; i < TXG_SIZE; i++) { 621 ASSERT0(dn->dn_next_nblkptr[i]); 622 ASSERT0(dn->dn_next_nlevels[i]); 623 ASSERT0(dn->dn_next_indblkshift[i]); 624 ASSERT0(dn->dn_next_bonuslen[i]); 625 ASSERT0(dn->dn_next_bonustype[i]); 626 ASSERT0(dn->dn_rm_spillblk[i]); 627 ASSERT0(dn->dn_next_blksz[i]); 628 ASSERT0(dn->dn_next_maxblkid[i]); 629 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 630 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 631 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 632 } 633 634 dn->dn_type = ot; 635 dnode_setdblksz(dn, blocksize); 636 dn->dn_indblkshift = ibs; 637 dn->dn_nlevels = 1; 638 dn->dn_num_slots = dn_slots; 639 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 640 dn->dn_nblkptr = 1; 641 else { 642 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, 643 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 644 SPA_BLKPTRSHIFT)); 645 } 646 647 dn->dn_bonustype = bonustype; 648 dn->dn_bonuslen = bonuslen; 649 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 650 dn->dn_compress = ZIO_COMPRESS_INHERIT; 651 dn->dn_dirtyctx = 0; 652 653 dn->dn_free_txg = 0; 654 if (dn->dn_dirtyctx_firstset) { 655 kmem_free(dn->dn_dirtyctx_firstset, 1); 656 dn->dn_dirtyctx_firstset = NULL; 657 } 658 659 dn->dn_allocated_txg = tx->tx_txg; 660 dn->dn_id_flags = 0; 661 662 dnode_setdirty(dn, tx); 663 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 664 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 665 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 666 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 667 } 668 669 void 670 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 671 dmu_object_type_t bonustype, int bonuslen, int dn_slots, 672 boolean_t keep_spill, dmu_tx_t *tx) 673 { 674 int nblkptr; 675 676 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 677 ASSERT3U(blocksize, <=, 678 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 679 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 680 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 681 ASSERT(tx->tx_txg != 0); 682 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 683 (bonustype != DMU_OT_NONE && bonuslen != 0) || 684 (bonustype == DMU_OT_SA && bonuslen == 0)); 685 ASSERT(DMU_OT_IS_VALID(bonustype)); 686 ASSERT3U(bonuslen, <=, 687 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); 688 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT)); 689 690 dnode_free_interior_slots(dn); 691 DNODE_STAT_BUMP(dnode_reallocate); 692 693 /* clean up any unreferenced dbufs */ 694 dnode_evict_dbufs(dn); 695 696 dn->dn_id_flags = 0; 697 698 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 699 dnode_setdirty(dn, tx); 700 if (dn->dn_datablksz != blocksize) { 701 /* change blocksize */ 702 ASSERT(dn->dn_maxblkid == 0 && 703 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 704 dnode_block_freed(dn, 0))); 705 dnode_setdblksz(dn, blocksize); 706 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 707 } 708 if (dn->dn_bonuslen != bonuslen) 709 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 710 711 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 712 nblkptr = 1; 713 else 714 nblkptr = MIN(DN_MAX_NBLKPTR, 715 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 716 SPA_BLKPTRSHIFT)); 717 if (dn->dn_bonustype != bonustype) 718 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; 719 if (dn->dn_nblkptr != nblkptr) 720 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; 721 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) { 722 dbuf_rm_spill(dn, tx); 723 dnode_rm_spill(dn, tx); 724 } 725 rw_exit(&dn->dn_struct_rwlock); 726 727 /* change type */ 728 dn->dn_type = ot; 729 730 /* change bonus size and type */ 731 mutex_enter(&dn->dn_mtx); 732 dn->dn_bonustype = bonustype; 733 dn->dn_bonuslen = bonuslen; 734 dn->dn_num_slots = dn_slots; 735 dn->dn_nblkptr = nblkptr; 736 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 737 dn->dn_compress = ZIO_COMPRESS_INHERIT; 738 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 739 740 /* fix up the bonus db_size */ 741 if (dn->dn_bonus) { 742 dn->dn_bonus->db.db_size = 743 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 744 (dn->dn_nblkptr - 1) * sizeof (blkptr_t); 745 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 746 } 747 748 dn->dn_allocated_txg = tx->tx_txg; 749 mutex_exit(&dn->dn_mtx); 750 } 751 752 #ifdef _KERNEL 753 static void 754 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 755 { 756 int i; 757 758 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 759 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 760 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 761 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); 762 763 /* Copy fields. */ 764 ndn->dn_objset = odn->dn_objset; 765 ndn->dn_object = odn->dn_object; 766 ndn->dn_dbuf = odn->dn_dbuf; 767 ndn->dn_handle = odn->dn_handle; 768 ndn->dn_phys = odn->dn_phys; 769 ndn->dn_type = odn->dn_type; 770 ndn->dn_bonuslen = odn->dn_bonuslen; 771 ndn->dn_bonustype = odn->dn_bonustype; 772 ndn->dn_nblkptr = odn->dn_nblkptr; 773 ndn->dn_checksum = odn->dn_checksum; 774 ndn->dn_compress = odn->dn_compress; 775 ndn->dn_nlevels = odn->dn_nlevels; 776 ndn->dn_indblkshift = odn->dn_indblkshift; 777 ndn->dn_datablkshift = odn->dn_datablkshift; 778 ndn->dn_datablkszsec = odn->dn_datablkszsec; 779 ndn->dn_datablksz = odn->dn_datablksz; 780 ndn->dn_maxblkid = odn->dn_maxblkid; 781 ndn->dn_num_slots = odn->dn_num_slots; 782 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0], 783 sizeof (odn->dn_next_type)); 784 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 785 sizeof (odn->dn_next_nblkptr)); 786 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 787 sizeof (odn->dn_next_nlevels)); 788 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 789 sizeof (odn->dn_next_indblkshift)); 790 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 791 sizeof (odn->dn_next_bonustype)); 792 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 793 sizeof (odn->dn_rm_spillblk)); 794 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 795 sizeof (odn->dn_next_bonuslen)); 796 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 797 sizeof (odn->dn_next_blksz)); 798 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0], 799 sizeof (odn->dn_next_maxblkid)); 800 for (i = 0; i < TXG_SIZE; i++) { 801 list_move_tail(&ndn->dn_dirty_records[i], 802 &odn->dn_dirty_records[i]); 803 } 804 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 805 sizeof (odn->dn_free_ranges)); 806 ndn->dn_allocated_txg = odn->dn_allocated_txg; 807 ndn->dn_free_txg = odn->dn_free_txg; 808 ndn->dn_assigned_txg = odn->dn_assigned_txg; 809 ndn->dn_dirty_txg = odn->dn_dirty_txg; 810 ndn->dn_dirtyctx = odn->dn_dirtyctx; 811 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 812 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0); 813 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 814 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 815 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 816 ndn->dn_dbufs_count = odn->dn_dbufs_count; 817 ndn->dn_bonus = odn->dn_bonus; 818 ndn->dn_have_spill = odn->dn_have_spill; 819 ndn->dn_zio = odn->dn_zio; 820 ndn->dn_oldused = odn->dn_oldused; 821 ndn->dn_oldflags = odn->dn_oldflags; 822 ndn->dn_olduid = odn->dn_olduid; 823 ndn->dn_oldgid = odn->dn_oldgid; 824 ndn->dn_oldprojid = odn->dn_oldprojid; 825 ndn->dn_newuid = odn->dn_newuid; 826 ndn->dn_newgid = odn->dn_newgid; 827 ndn->dn_newprojid = odn->dn_newprojid; 828 ndn->dn_id_flags = odn->dn_id_flags; 829 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 830 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 831 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 832 833 /* 834 * Update back pointers. Updating the handle fixes the back pointer of 835 * every descendant dbuf as well as the bonus dbuf. 836 */ 837 ASSERT(ndn->dn_handle->dnh_dnode == odn); 838 ndn->dn_handle->dnh_dnode = ndn; 839 if (ndn->dn_zfetch.zf_dnode == odn) { 840 ndn->dn_zfetch.zf_dnode = ndn; 841 } 842 843 /* 844 * Invalidate the original dnode by clearing all of its back pointers. 845 */ 846 odn->dn_dbuf = NULL; 847 odn->dn_handle = NULL; 848 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 849 offsetof(dmu_buf_impl_t, db_link)); 850 odn->dn_dbufs_count = 0; 851 odn->dn_bonus = NULL; 852 odn->dn_zfetch.zf_dnode = NULL; 853 854 /* 855 * Set the low bit of the objset pointer to ensure that dnode_move() 856 * recognizes the dnode as invalid in any subsequent callback. 857 */ 858 POINTER_INVALIDATE(&odn->dn_objset); 859 860 /* 861 * Satisfy the destructor. 862 */ 863 for (i = 0; i < TXG_SIZE; i++) { 864 list_create(&odn->dn_dirty_records[i], 865 sizeof (dbuf_dirty_record_t), 866 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 867 odn->dn_free_ranges[i] = NULL; 868 odn->dn_next_nlevels[i] = 0; 869 odn->dn_next_indblkshift[i] = 0; 870 odn->dn_next_bonustype[i] = 0; 871 odn->dn_rm_spillblk[i] = 0; 872 odn->dn_next_bonuslen[i] = 0; 873 odn->dn_next_blksz[i] = 0; 874 } 875 odn->dn_allocated_txg = 0; 876 odn->dn_free_txg = 0; 877 odn->dn_assigned_txg = 0; 878 odn->dn_dirty_txg = 0; 879 odn->dn_dirtyctx = 0; 880 odn->dn_dirtyctx_firstset = NULL; 881 odn->dn_have_spill = B_FALSE; 882 odn->dn_zio = NULL; 883 odn->dn_oldused = 0; 884 odn->dn_oldflags = 0; 885 odn->dn_olduid = 0; 886 odn->dn_oldgid = 0; 887 odn->dn_oldprojid = ZFS_DEFAULT_PROJID; 888 odn->dn_newuid = 0; 889 odn->dn_newgid = 0; 890 odn->dn_newprojid = ZFS_DEFAULT_PROJID; 891 odn->dn_id_flags = 0; 892 893 /* 894 * Mark the dnode. 895 */ 896 ndn->dn_moved = 1; 897 odn->dn_moved = (uint8_t)-1; 898 } 899 900 /*ARGSUSED*/ 901 static kmem_cbrc_t 902 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 903 { 904 dnode_t *odn = buf, *ndn = newbuf; 905 objset_t *os; 906 int64_t refcount; 907 uint32_t dbufs; 908 909 /* 910 * The dnode is on the objset's list of known dnodes if the objset 911 * pointer is valid. We set the low bit of the objset pointer when 912 * freeing the dnode to invalidate it, and the memory patterns written 913 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 914 * A newly created dnode sets the objset pointer last of all to indicate 915 * that the dnode is known and in a valid state to be moved by this 916 * function. 917 */ 918 os = odn->dn_objset; 919 if (!POINTER_IS_VALID(os)) { 920 DNODE_STAT_BUMP(dnode_move_invalid); 921 return (KMEM_CBRC_DONT_KNOW); 922 } 923 924 /* 925 * Ensure that the objset does not go away during the move. 926 */ 927 rw_enter(&os_lock, RW_WRITER); 928 if (os != odn->dn_objset) { 929 rw_exit(&os_lock); 930 DNODE_STAT_BUMP(dnode_move_recheck1); 931 return (KMEM_CBRC_DONT_KNOW); 932 } 933 934 /* 935 * If the dnode is still valid, then so is the objset. We know that no 936 * valid objset can be freed while we hold os_lock, so we can safely 937 * ensure that the objset remains in use. 938 */ 939 mutex_enter(&os->os_lock); 940 941 /* 942 * Recheck the objset pointer in case the dnode was removed just before 943 * acquiring the lock. 944 */ 945 if (os != odn->dn_objset) { 946 mutex_exit(&os->os_lock); 947 rw_exit(&os_lock); 948 DNODE_STAT_BUMP(dnode_move_recheck2); 949 return (KMEM_CBRC_DONT_KNOW); 950 } 951 952 /* 953 * At this point we know that as long as we hold os->os_lock, the dnode 954 * cannot be freed and fields within the dnode can be safely accessed. 955 * The objset listing this dnode cannot go away as long as this dnode is 956 * on its list. 957 */ 958 rw_exit(&os_lock); 959 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 960 mutex_exit(&os->os_lock); 961 DNODE_STAT_BUMP(dnode_move_special); 962 return (KMEM_CBRC_NO); 963 } 964 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 965 966 /* 967 * Lock the dnode handle to prevent the dnode from obtaining any new 968 * holds. This also prevents the descendant dbufs and the bonus dbuf 969 * from accessing the dnode, so that we can discount their holds. The 970 * handle is safe to access because we know that while the dnode cannot 971 * go away, neither can its handle. Once we hold dnh_zrlock, we can 972 * safely move any dnode referenced only by dbufs. 973 */ 974 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 975 mutex_exit(&os->os_lock); 976 DNODE_STAT_BUMP(dnode_move_handle); 977 return (KMEM_CBRC_LATER); 978 } 979 980 /* 981 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 982 * We need to guarantee that there is a hold for every dbuf in order to 983 * determine whether the dnode is actively referenced. Falsely matching 984 * a dbuf to an active hold would lead to an unsafe move. It's possible 985 * that a thread already having an active dnode hold is about to add a 986 * dbuf, and we can't compare hold and dbuf counts while the add is in 987 * progress. 988 */ 989 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 990 zrl_exit(&odn->dn_handle->dnh_zrlock); 991 mutex_exit(&os->os_lock); 992 DNODE_STAT_BUMP(dnode_move_rwlock); 993 return (KMEM_CBRC_LATER); 994 } 995 996 /* 997 * A dbuf may be removed (evicted) without an active dnode hold. In that 998 * case, the dbuf count is decremented under the handle lock before the 999 * dbuf's hold is released. This order ensures that if we count the hold 1000 * after the dbuf is removed but before its hold is released, we will 1001 * treat the unmatched hold as active and exit safely. If we count the 1002 * hold before the dbuf is removed, the hold is discounted, and the 1003 * removal is blocked until the move completes. 1004 */ 1005 refcount = zfs_refcount_count(&odn->dn_holds); 1006 ASSERT(refcount >= 0); 1007 dbufs = odn->dn_dbufs_count; 1008 1009 /* We can't have more dbufs than dnode holds. */ 1010 ASSERT3U(dbufs, <=, refcount); 1011 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 1012 uint32_t, dbufs); 1013 1014 if (refcount > dbufs) { 1015 rw_exit(&odn->dn_struct_rwlock); 1016 zrl_exit(&odn->dn_handle->dnh_zrlock); 1017 mutex_exit(&os->os_lock); 1018 DNODE_STAT_BUMP(dnode_move_active); 1019 return (KMEM_CBRC_LATER); 1020 } 1021 1022 rw_exit(&odn->dn_struct_rwlock); 1023 1024 /* 1025 * At this point we know that anyone with a hold on the dnode is not 1026 * actively referencing it. The dnode is known and in a valid state to 1027 * move. We're holding the locks needed to execute the critical section. 1028 */ 1029 dnode_move_impl(odn, ndn); 1030 1031 list_link_replace(&odn->dn_link, &ndn->dn_link); 1032 /* If the dnode was safe to move, the refcount cannot have changed. */ 1033 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds)); 1034 ASSERT(dbufs == ndn->dn_dbufs_count); 1035 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 1036 mutex_exit(&os->os_lock); 1037 1038 return (KMEM_CBRC_YES); 1039 } 1040 #endif /* _KERNEL */ 1041 1042 static void 1043 dnode_slots_hold(dnode_children_t *children, int idx, int slots) 1044 { 1045 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1046 1047 for (int i = idx; i < idx + slots; i++) { 1048 dnode_handle_t *dnh = &children->dnc_children[i]; 1049 zrl_add(&dnh->dnh_zrlock); 1050 } 1051 } 1052 1053 static void 1054 dnode_slots_rele(dnode_children_t *children, int idx, int slots) 1055 { 1056 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1057 1058 for (int i = idx; i < idx + slots; i++) { 1059 dnode_handle_t *dnh = &children->dnc_children[i]; 1060 1061 if (zrl_is_locked(&dnh->dnh_zrlock)) 1062 zrl_exit(&dnh->dnh_zrlock); 1063 else 1064 zrl_remove(&dnh->dnh_zrlock); 1065 } 1066 } 1067 1068 static int 1069 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots) 1070 { 1071 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1072 1073 for (int i = idx; i < idx + slots; i++) { 1074 dnode_handle_t *dnh = &children->dnc_children[i]; 1075 1076 if (!zrl_tryenter(&dnh->dnh_zrlock)) { 1077 for (int j = idx; j < i; j++) { 1078 dnh = &children->dnc_children[j]; 1079 zrl_exit(&dnh->dnh_zrlock); 1080 } 1081 1082 return (0); 1083 } 1084 } 1085 1086 return (1); 1087 } 1088 1089 static void 1090 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) 1091 { 1092 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1093 1094 for (int i = idx; i < idx + slots; i++) { 1095 dnode_handle_t *dnh = &children->dnc_children[i]; 1096 dnh->dnh_dnode = ptr; 1097 } 1098 } 1099 1100 static boolean_t 1101 dnode_check_slots_free(dnode_children_t *children, int idx, int slots) 1102 { 1103 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1104 1105 /* 1106 * If all dnode slots are either already free or 1107 * evictable return B_TRUE. 1108 */ 1109 for (int i = idx; i < idx + slots; i++) { 1110 dnode_handle_t *dnh = &children->dnc_children[i]; 1111 dnode_t *dn = dnh->dnh_dnode; 1112 1113 if (dn == DN_SLOT_FREE) { 1114 continue; 1115 } else if (DN_SLOT_IS_PTR(dn)) { 1116 mutex_enter(&dn->dn_mtx); 1117 boolean_t can_free = (dn->dn_type == DMU_OT_NONE && 1118 zfs_refcount_is_zero(&dn->dn_holds) && 1119 !DNODE_IS_DIRTY(dn)); 1120 mutex_exit(&dn->dn_mtx); 1121 1122 if (!can_free) 1123 return (B_FALSE); 1124 else 1125 continue; 1126 } else { 1127 return (B_FALSE); 1128 } 1129 } 1130 1131 return (B_TRUE); 1132 } 1133 1134 static void 1135 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) 1136 { 1137 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1138 1139 for (int i = idx; i < idx + slots; i++) { 1140 dnode_handle_t *dnh = &children->dnc_children[i]; 1141 1142 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 1143 1144 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1145 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); 1146 dnode_destroy(dnh->dnh_dnode); 1147 dnh->dnh_dnode = DN_SLOT_FREE; 1148 } 1149 } 1150 } 1151 1152 void 1153 dnode_free_interior_slots(dnode_t *dn) 1154 { 1155 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); 1156 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; 1157 int idx = (dn->dn_object & (epb - 1)) + 1; 1158 int slots = dn->dn_num_slots - 1; 1159 1160 if (slots == 0) 1161 return; 1162 1163 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1164 1165 while (!dnode_slots_tryenter(children, idx, slots)) 1166 DNODE_STAT_BUMP(dnode_free_interior_lock_retry); 1167 1168 dnode_set_slots(children, idx, slots, DN_SLOT_FREE); 1169 dnode_slots_rele(children, idx, slots); 1170 } 1171 1172 void 1173 dnode_special_close(dnode_handle_t *dnh) 1174 { 1175 dnode_t *dn = dnh->dnh_dnode; 1176 1177 /* 1178 * Wait for final references to the dnode to clear. This can 1179 * only happen if the arc is asynchronously evicting state that 1180 * has a hold on this dnode while we are trying to evict this 1181 * dnode. 1182 */ 1183 while (zfs_refcount_count(&dn->dn_holds) > 0) 1184 delay(1); 1185 ASSERT(dn->dn_dbuf == NULL || 1186 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1187 zrl_add(&dnh->dnh_zrlock); 1188 dnode_destroy(dn); /* implicit zrl_remove() */ 1189 zrl_destroy(&dnh->dnh_zrlock); 1190 dnh->dnh_dnode = NULL; 1191 } 1192 1193 void 1194 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1195 dnode_handle_t *dnh) 1196 { 1197 dnode_t *dn; 1198 1199 zrl_init(&dnh->dnh_zrlock); 1200 zrl_tryenter(&dnh->dnh_zrlock); 1201 1202 dn = dnode_create(os, dnp, NULL, object, dnh); 1203 DNODE_VERIFY(dn); 1204 1205 zrl_exit(&dnh->dnh_zrlock); 1206 } 1207 1208 static void 1209 dnode_buf_evict_async(void *dbu) 1210 { 1211 dnode_children_t *dnc = dbu; 1212 1213 DNODE_STAT_BUMP(dnode_buf_evict); 1214 1215 for (int i = 0; i < dnc->dnc_count; i++) { 1216 dnode_handle_t *dnh = &dnc->dnc_children[i]; 1217 dnode_t *dn; 1218 1219 /* 1220 * The dnode handle lock guards against the dnode moving to 1221 * another valid address, so there is no need here to guard 1222 * against changes to or from NULL. 1223 */ 1224 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1225 zrl_destroy(&dnh->dnh_zrlock); 1226 dnh->dnh_dnode = DN_SLOT_UNINIT; 1227 continue; 1228 } 1229 1230 zrl_add(&dnh->dnh_zrlock); 1231 dn = dnh->dnh_dnode; 1232 /* 1233 * If there are holds on this dnode, then there should 1234 * be holds on the dnode's containing dbuf as well; thus 1235 * it wouldn't be eligible for eviction and this function 1236 * would not have been called. 1237 */ 1238 ASSERT(zfs_refcount_is_zero(&dn->dn_holds)); 1239 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 1240 1241 dnode_destroy(dn); /* implicit zrl_remove() for first slot */ 1242 zrl_destroy(&dnh->dnh_zrlock); 1243 dnh->dnh_dnode = DN_SLOT_UNINIT; 1244 } 1245 kmem_free(dnc, sizeof (dnode_children_t) + 1246 dnc->dnc_count * sizeof (dnode_handle_t)); 1247 } 1248 1249 /* 1250 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used 1251 * to ensure the hole at the specified object offset is large enough to 1252 * hold the dnode being created. The slots parameter is also used to ensure 1253 * a dnode does not span multiple dnode blocks. In both of these cases, if 1254 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases 1255 * are only possible when using DNODE_MUST_BE_FREE. 1256 * 1257 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. 1258 * dnode_hold_impl() will check if the requested dnode is already consumed 1259 * as an extra dnode slot by an large dnode, in which case it returns 1260 * ENOENT. 1261 * 1262 * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just 1263 * return whether the hold would succeed or not. tag and dnp should set to 1264 * NULL in this case. 1265 * 1266 * errors: 1267 * EINVAL - invalid object number or flags. 1268 * ENOSPC - hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) 1269 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) 1270 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) 1271 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) 1272 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) 1273 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) 1274 * EIO - i/o error error when reading the meta dnode dbuf. 1275 * succeeds even for free dnodes. 1276 */ 1277 int 1278 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, 1279 void *tag, dnode_t **dnp) 1280 { 1281 int epb, idx, err; 1282 int drop_struct_lock = FALSE; 1283 int type; 1284 uint64_t blk; 1285 dnode_t *mdn, *dn; 1286 dmu_buf_impl_t *db; 1287 dnode_children_t *dnc; 1288 dnode_phys_t *dn_block; 1289 dnode_handle_t *dnh; 1290 1291 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); 1292 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); 1293 IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL)); 1294 1295 /* 1296 * If you are holding the spa config lock as writer, you shouldn't 1297 * be asking the DMU to do *anything* unless it's the root pool 1298 * which may require us to read from the root filesystem while 1299 * holding some (not all) of the locks as writer. 1300 */ 1301 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1302 (spa_is_root(os->os_spa) && 1303 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1304 1305 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1306 1307 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT || 1308 object == DMU_PROJECTUSED_OBJECT) { 1309 if (object == DMU_USERUSED_OBJECT) 1310 dn = DMU_USERUSED_DNODE(os); 1311 else if (object == DMU_GROUPUSED_OBJECT) 1312 dn = DMU_GROUPUSED_DNODE(os); 1313 else 1314 dn = DMU_PROJECTUSED_DNODE(os); 1315 if (dn == NULL) 1316 return (SET_ERROR(ENOENT)); 1317 type = dn->dn_type; 1318 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1319 return (SET_ERROR(ENOENT)); 1320 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1321 return (SET_ERROR(EEXIST)); 1322 DNODE_VERIFY(dn); 1323 /* Don't actually hold if dry run, just return 0 */ 1324 if (!(flag & DNODE_DRY_RUN)) { 1325 (void) zfs_refcount_add(&dn->dn_holds, tag); 1326 *dnp = dn; 1327 } 1328 return (0); 1329 } 1330 1331 if (object == 0 || object >= DN_MAX_OBJECT) 1332 return (SET_ERROR(EINVAL)); 1333 1334 mdn = DMU_META_DNODE(os); 1335 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1336 1337 DNODE_VERIFY(mdn); 1338 1339 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1340 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1341 drop_struct_lock = TRUE; 1342 } 1343 1344 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1345 1346 db = dbuf_hold(mdn, blk, FTAG); 1347 if (drop_struct_lock) 1348 rw_exit(&mdn->dn_struct_rwlock); 1349 if (db == NULL) { 1350 DNODE_STAT_BUMP(dnode_hold_dbuf_hold); 1351 return (SET_ERROR(EIO)); 1352 } 1353 /* 1354 * We do not need to decrypt to read the dnode so it doesn't matter 1355 * if we get the encrypted or decrypted version. 1356 */ 1357 err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT); 1358 if (err) { 1359 DNODE_STAT_BUMP(dnode_hold_dbuf_read); 1360 dbuf_rele(db, FTAG); 1361 return (err); 1362 } 1363 1364 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1365 epb = db->db.db_size >> DNODE_SHIFT; 1366 1367 idx = object & (epb - 1); 1368 dn_block = (dnode_phys_t *)db->db.db_data; 1369 1370 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1371 dnc = dmu_buf_get_user(&db->db); 1372 dnh = NULL; 1373 if (dnc == NULL) { 1374 dnode_children_t *winner; 1375 int skip = 0; 1376 1377 dnc = kmem_zalloc(sizeof (dnode_children_t) + 1378 epb * sizeof (dnode_handle_t), KM_SLEEP); 1379 dnc->dnc_count = epb; 1380 dnh = &dnc->dnc_children[0]; 1381 1382 /* Initialize dnode slot status from dnode_phys_t */ 1383 for (int i = 0; i < epb; i++) { 1384 zrl_init(&dnh[i].dnh_zrlock); 1385 1386 if (skip) { 1387 skip--; 1388 continue; 1389 } 1390 1391 if (dn_block[i].dn_type != DMU_OT_NONE) { 1392 int interior = dn_block[i].dn_extra_slots; 1393 1394 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); 1395 dnode_set_slots(dnc, i + 1, interior, 1396 DN_SLOT_INTERIOR); 1397 skip = interior; 1398 } else { 1399 dnh[i].dnh_dnode = DN_SLOT_FREE; 1400 skip = 0; 1401 } 1402 } 1403 1404 dmu_buf_init_user(&dnc->dnc_dbu, NULL, 1405 dnode_buf_evict_async, NULL); 1406 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); 1407 if (winner != NULL) { 1408 1409 for (int i = 0; i < epb; i++) 1410 zrl_destroy(&dnh[i].dnh_zrlock); 1411 1412 kmem_free(dnc, sizeof (dnode_children_t) + 1413 epb * sizeof (dnode_handle_t)); 1414 dnc = winner; 1415 } 1416 } 1417 1418 ASSERT(dnc->dnc_count == epb); 1419 dn = DN_SLOT_UNINIT; 1420 1421 if (flag & DNODE_MUST_BE_ALLOCATED) { 1422 slots = 1; 1423 1424 while (dn == DN_SLOT_UNINIT) { 1425 dnode_slots_hold(dnc, idx, slots); 1426 dnh = &dnc->dnc_children[idx]; 1427 1428 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1429 dn = dnh->dnh_dnode; 1430 break; 1431 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { 1432 DNODE_STAT_BUMP(dnode_hold_alloc_interior); 1433 dnode_slots_rele(dnc, idx, slots); 1434 dbuf_rele(db, FTAG); 1435 return (SET_ERROR(EEXIST)); 1436 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { 1437 DNODE_STAT_BUMP(dnode_hold_alloc_misses); 1438 dnode_slots_rele(dnc, idx, slots); 1439 dbuf_rele(db, FTAG); 1440 return (SET_ERROR(ENOENT)); 1441 } 1442 1443 dnode_slots_rele(dnc, idx, slots); 1444 if (!dnode_slots_tryenter(dnc, idx, slots)) { 1445 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry); 1446 continue; 1447 } 1448 1449 /* 1450 * Someone else won the race and called dnode_create() 1451 * after we checked DN_SLOT_IS_PTR() above but before 1452 * we acquired the lock. 1453 */ 1454 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1455 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); 1456 dn = dnh->dnh_dnode; 1457 } else { 1458 dn = dnode_create(os, dn_block + idx, db, 1459 object, dnh); 1460 } 1461 } 1462 1463 mutex_enter(&dn->dn_mtx); 1464 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { 1465 DNODE_STAT_BUMP(dnode_hold_alloc_type_none); 1466 mutex_exit(&dn->dn_mtx); 1467 dnode_slots_rele(dnc, idx, slots); 1468 dbuf_rele(db, FTAG); 1469 return (SET_ERROR(ENOENT)); 1470 } 1471 1472 /* Don't actually hold if dry run, just return 0 */ 1473 if (flag & DNODE_DRY_RUN) { 1474 mutex_exit(&dn->dn_mtx); 1475 dnode_slots_rele(dnc, idx, slots); 1476 dbuf_rele(db, FTAG); 1477 return (0); 1478 } 1479 1480 DNODE_STAT_BUMP(dnode_hold_alloc_hits); 1481 } else if (flag & DNODE_MUST_BE_FREE) { 1482 1483 if (idx + slots - 1 >= DNODES_PER_BLOCK) { 1484 DNODE_STAT_BUMP(dnode_hold_free_overflow); 1485 dbuf_rele(db, FTAG); 1486 return (SET_ERROR(ENOSPC)); 1487 } 1488 1489 while (dn == DN_SLOT_UNINIT) { 1490 dnode_slots_hold(dnc, idx, slots); 1491 1492 if (!dnode_check_slots_free(dnc, idx, slots)) { 1493 DNODE_STAT_BUMP(dnode_hold_free_misses); 1494 dnode_slots_rele(dnc, idx, slots); 1495 dbuf_rele(db, FTAG); 1496 return (SET_ERROR(ENOSPC)); 1497 } 1498 1499 dnode_slots_rele(dnc, idx, slots); 1500 if (!dnode_slots_tryenter(dnc, idx, slots)) { 1501 DNODE_STAT_BUMP(dnode_hold_free_lock_retry); 1502 continue; 1503 } 1504 1505 if (!dnode_check_slots_free(dnc, idx, slots)) { 1506 DNODE_STAT_BUMP(dnode_hold_free_lock_misses); 1507 dnode_slots_rele(dnc, idx, slots); 1508 dbuf_rele(db, FTAG); 1509 return (SET_ERROR(ENOSPC)); 1510 } 1511 1512 /* 1513 * Allocated but otherwise free dnodes which would 1514 * be in the interior of a multi-slot dnodes need 1515 * to be freed. Single slot dnodes can be safely 1516 * re-purposed as a performance optimization. 1517 */ 1518 if (slots > 1) 1519 dnode_reclaim_slots(dnc, idx + 1, slots - 1); 1520 1521 dnh = &dnc->dnc_children[idx]; 1522 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1523 dn = dnh->dnh_dnode; 1524 } else { 1525 dn = dnode_create(os, dn_block + idx, db, 1526 object, dnh); 1527 } 1528 } 1529 1530 mutex_enter(&dn->dn_mtx); 1531 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { 1532 DNODE_STAT_BUMP(dnode_hold_free_refcount); 1533 mutex_exit(&dn->dn_mtx); 1534 dnode_slots_rele(dnc, idx, slots); 1535 dbuf_rele(db, FTAG); 1536 return (SET_ERROR(EEXIST)); 1537 } 1538 1539 /* Don't actually hold if dry run, just return 0 */ 1540 if (flag & DNODE_DRY_RUN) { 1541 mutex_exit(&dn->dn_mtx); 1542 dnode_slots_rele(dnc, idx, slots); 1543 dbuf_rele(db, FTAG); 1544 return (0); 1545 } 1546 1547 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); 1548 DNODE_STAT_BUMP(dnode_hold_free_hits); 1549 } else { 1550 dbuf_rele(db, FTAG); 1551 return (SET_ERROR(EINVAL)); 1552 } 1553 1554 ASSERT0(dn->dn_free_txg); 1555 1556 if (zfs_refcount_add(&dn->dn_holds, tag) == 1) 1557 dbuf_add_ref(db, dnh); 1558 1559 mutex_exit(&dn->dn_mtx); 1560 1561 /* Now we can rely on the hold to prevent the dnode from moving. */ 1562 dnode_slots_rele(dnc, idx, slots); 1563 1564 DNODE_VERIFY(dn); 1565 ASSERT3P(dn->dn_dbuf, ==, db); 1566 ASSERT3U(dn->dn_object, ==, object); 1567 dbuf_rele(db, FTAG); 1568 1569 *dnp = dn; 1570 return (0); 1571 } 1572 1573 /* 1574 * Return held dnode if the object is allocated, NULL if not. 1575 */ 1576 int 1577 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1578 { 1579 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, 1580 dnp)); 1581 } 1582 1583 /* 1584 * Can only add a reference if there is already at least one 1585 * reference on the dnode. Returns FALSE if unable to add a 1586 * new reference. 1587 */ 1588 boolean_t 1589 dnode_add_ref(dnode_t *dn, void *tag) 1590 { 1591 mutex_enter(&dn->dn_mtx); 1592 if (zfs_refcount_is_zero(&dn->dn_holds)) { 1593 mutex_exit(&dn->dn_mtx); 1594 return (FALSE); 1595 } 1596 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag)); 1597 mutex_exit(&dn->dn_mtx); 1598 return (TRUE); 1599 } 1600 1601 void 1602 dnode_rele(dnode_t *dn, void *tag) 1603 { 1604 mutex_enter(&dn->dn_mtx); 1605 dnode_rele_and_unlock(dn, tag, B_FALSE); 1606 } 1607 1608 void 1609 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting) 1610 { 1611 uint64_t refs; 1612 /* Get while the hold prevents the dnode from moving. */ 1613 dmu_buf_impl_t *db = dn->dn_dbuf; 1614 dnode_handle_t *dnh = dn->dn_handle; 1615 1616 refs = zfs_refcount_remove(&dn->dn_holds, tag); 1617 mutex_exit(&dn->dn_mtx); 1618 1619 /* 1620 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1621 * indirectly by dbuf_rele() while relying on the dnode handle to 1622 * prevent the dnode from moving, since releasing the last hold could 1623 * result in the dnode's parent dbuf evicting its dnode handles. For 1624 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1625 * other direct or indirect hold on the dnode must first drop the dnode 1626 * handle. 1627 */ 1628 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1629 1630 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1631 if (refs == 0 && db != NULL) { 1632 /* 1633 * Another thread could add a hold to the dnode handle in 1634 * dnode_hold_impl() while holding the parent dbuf. Since the 1635 * hold on the parent dbuf prevents the handle from being 1636 * destroyed, the hold on the handle is OK. We can't yet assert 1637 * that the handle has zero references, but that will be 1638 * asserted anyway when the handle gets destroyed. 1639 */ 1640 mutex_enter(&db->db_mtx); 1641 dbuf_rele_and_unlock(db, dnh, evicting); 1642 } 1643 } 1644 1645 /* 1646 * Test whether we can create a dnode at the specified location. 1647 */ 1648 int 1649 dnode_try_claim(objset_t *os, uint64_t object, int slots) 1650 { 1651 return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN, 1652 slots, NULL, NULL)); 1653 } 1654 1655 void 1656 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1657 { 1658 objset_t *os = dn->dn_objset; 1659 uint64_t txg = tx->tx_txg; 1660 1661 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1662 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1663 return; 1664 } 1665 1666 DNODE_VERIFY(dn); 1667 1668 #ifdef ZFS_DEBUG 1669 mutex_enter(&dn->dn_mtx); 1670 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1671 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1672 mutex_exit(&dn->dn_mtx); 1673 #endif 1674 1675 /* 1676 * Determine old uid/gid when necessary 1677 */ 1678 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1679 1680 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK]; 1681 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1682 1683 /* 1684 * If we are already marked dirty, we're done. 1685 */ 1686 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1687 multilist_sublist_unlock(mls); 1688 return; 1689 } 1690 1691 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) || 1692 !avl_is_empty(&dn->dn_dbufs)); 1693 ASSERT(dn->dn_datablksz != 0); 1694 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); 1695 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); 1696 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); 1697 1698 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1699 dn->dn_object, txg); 1700 1701 multilist_sublist_insert_head(mls, dn); 1702 1703 multilist_sublist_unlock(mls); 1704 1705 /* 1706 * The dnode maintains a hold on its containing dbuf as 1707 * long as there are holds on it. Each instantiated child 1708 * dbuf maintains a hold on the dnode. When the last child 1709 * drops its hold, the dnode will drop its hold on the 1710 * containing dbuf. We add a "dirty hold" here so that the 1711 * dnode will hang around after we finish processing its 1712 * children. 1713 */ 1714 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1715 1716 (void) dbuf_dirty(dn->dn_dbuf, tx); 1717 1718 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1719 } 1720 1721 void 1722 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1723 { 1724 mutex_enter(&dn->dn_mtx); 1725 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1726 mutex_exit(&dn->dn_mtx); 1727 return; 1728 } 1729 dn->dn_free_txg = tx->tx_txg; 1730 mutex_exit(&dn->dn_mtx); 1731 1732 dnode_setdirty(dn, tx); 1733 } 1734 1735 /* 1736 * Try to change the block size for the indicated dnode. This can only 1737 * succeed if there are no blocks allocated or dirty beyond first block 1738 */ 1739 int 1740 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1741 { 1742 dmu_buf_impl_t *db; 1743 int err; 1744 1745 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1746 if (size == 0) 1747 size = SPA_MINBLOCKSIZE; 1748 else 1749 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1750 1751 if (ibs == dn->dn_indblkshift) 1752 ibs = 0; 1753 1754 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1755 return (0); 1756 1757 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1758 1759 /* Check for any allocated blocks beyond the first */ 1760 if (dn->dn_maxblkid != 0) 1761 goto fail; 1762 1763 mutex_enter(&dn->dn_dbufs_mtx); 1764 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1765 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1766 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1767 db->db_blkid != DMU_SPILL_BLKID) { 1768 mutex_exit(&dn->dn_dbufs_mtx); 1769 goto fail; 1770 } 1771 } 1772 mutex_exit(&dn->dn_dbufs_mtx); 1773 1774 if (ibs && dn->dn_nlevels != 1) 1775 goto fail; 1776 1777 /* resize the old block */ 1778 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1779 if (err == 0) 1780 dbuf_new_size(db, size, tx); 1781 else if (err != ENOENT) 1782 goto fail; 1783 1784 dnode_setdblksz(dn, size); 1785 dnode_setdirty(dn, tx); 1786 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1787 if (ibs) { 1788 dn->dn_indblkshift = ibs; 1789 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1790 } 1791 /* rele after we have fixed the blocksize in the dnode */ 1792 if (db) 1793 dbuf_rele(db, FTAG); 1794 1795 rw_exit(&dn->dn_struct_rwlock); 1796 return (0); 1797 1798 fail: 1799 rw_exit(&dn->dn_struct_rwlock); 1800 return (SET_ERROR(ENOTSUP)); 1801 } 1802 1803 static void 1804 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx) 1805 { 1806 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1807 int old_nlevels = dn->dn_nlevels; 1808 dmu_buf_impl_t *db; 1809 list_t *list; 1810 dbuf_dirty_record_t *new, *dr, *dr_next; 1811 1812 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1813 1814 dn->dn_nlevels = new_nlevels; 1815 1816 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1817 dn->dn_next_nlevels[txgoff] = new_nlevels; 1818 1819 /* dirty the left indirects */ 1820 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1821 ASSERT(db != NULL); 1822 new = dbuf_dirty(db, tx); 1823 dbuf_rele(db, FTAG); 1824 1825 /* transfer the dirty records to the new indirect */ 1826 mutex_enter(&dn->dn_mtx); 1827 mutex_enter(&new->dt.di.dr_mtx); 1828 list = &dn->dn_dirty_records[txgoff]; 1829 for (dr = list_head(list); dr; dr = dr_next) { 1830 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1831 if (dr->dr_dbuf->db_level != new_nlevels-1 && 1832 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1833 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 1834 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 1835 list_remove(&dn->dn_dirty_records[txgoff], dr); 1836 list_insert_tail(&new->dt.di.dr_children, dr); 1837 dr->dr_parent = new; 1838 } 1839 } 1840 mutex_exit(&new->dt.di.dr_mtx); 1841 mutex_exit(&dn->dn_mtx); 1842 } 1843 1844 int 1845 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx) 1846 { 1847 int ret = 0; 1848 1849 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1850 1851 if (dn->dn_nlevels == nlevels) { 1852 ret = 0; 1853 goto out; 1854 } else if (nlevels < dn->dn_nlevels) { 1855 ret = SET_ERROR(EINVAL); 1856 goto out; 1857 } 1858 1859 dnode_set_nlevels_impl(dn, nlevels, tx); 1860 1861 out: 1862 rw_exit(&dn->dn_struct_rwlock); 1863 return (ret); 1864 } 1865 1866 /* read-holding callers must not rely on the lock being continuously held */ 1867 void 1868 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read, 1869 boolean_t force) 1870 { 1871 int epbs, new_nlevels; 1872 uint64_t sz; 1873 1874 ASSERT(blkid != DMU_BONUS_BLKID); 1875 1876 ASSERT(have_read ? 1877 RW_READ_HELD(&dn->dn_struct_rwlock) : 1878 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1879 1880 /* 1881 * if we have a read-lock, check to see if we need to do any work 1882 * before upgrading to a write-lock. 1883 */ 1884 if (have_read) { 1885 if (blkid <= dn->dn_maxblkid) 1886 return; 1887 1888 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1889 rw_exit(&dn->dn_struct_rwlock); 1890 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1891 } 1892 } 1893 1894 /* 1895 * Raw sends (indicated by the force flag) require that we take the 1896 * given blkid even if the value is lower than the current value. 1897 */ 1898 if (!force && blkid <= dn->dn_maxblkid) 1899 goto out; 1900 1901 /* 1902 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff] 1903 * to indicate that this field is set. This allows us to set the 1904 * maxblkid to 0 on an existing object in dnode_sync(). 1905 */ 1906 dn->dn_maxblkid = blkid; 1907 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] = 1908 blkid | DMU_NEXT_MAXBLKID_SET; 1909 1910 /* 1911 * Compute the number of levels necessary to support the new maxblkid. 1912 * Raw sends will ensure nlevels is set correctly for us. 1913 */ 1914 new_nlevels = 1; 1915 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1916 for (sz = dn->dn_nblkptr; 1917 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1918 new_nlevels++; 1919 1920 if (!force) { 1921 if (new_nlevels > dn->dn_nlevels) 1922 dnode_set_nlevels_impl(dn, new_nlevels, tx); 1923 } else { 1924 ASSERT3U(dn->dn_nlevels, >=, new_nlevels); 1925 } 1926 1927 out: 1928 if (have_read) 1929 rw_downgrade(&dn->dn_struct_rwlock); 1930 } 1931 1932 static void 1933 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1934 { 1935 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1936 if (db != NULL) { 1937 dmu_buf_will_dirty(&db->db, tx); 1938 dbuf_rele(db, FTAG); 1939 } 1940 } 1941 1942 /* 1943 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid 1944 * and end_blkid. 1945 */ 1946 static void 1947 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1948 dmu_tx_t *tx) 1949 { 1950 dmu_buf_impl_t db_search; 1951 dmu_buf_impl_t *db; 1952 avl_index_t where; 1953 1954 mutex_enter(&dn->dn_dbufs_mtx); 1955 1956 db_search.db_level = 1; 1957 db_search.db_blkid = start_blkid + 1; 1958 db_search.db_state = DB_SEARCH; 1959 for (;;) { 1960 1961 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1962 if (db == NULL) 1963 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1964 1965 if (db == NULL || db->db_level != 1 || 1966 db->db_blkid >= end_blkid) { 1967 break; 1968 } 1969 1970 /* 1971 * Setup the next blkid we want to search for. 1972 */ 1973 db_search.db_blkid = db->db_blkid + 1; 1974 ASSERT3U(db->db_blkid, >=, start_blkid); 1975 1976 /* 1977 * If the dbuf transitions to DB_EVICTING while we're trying 1978 * to dirty it, then we will be unable to discover it in 1979 * the dbuf hash table. This will result in a call to 1980 * dbuf_create() which needs to acquire the dn_dbufs_mtx 1981 * lock. To avoid a deadlock, we drop the lock before 1982 * dirtying the level-1 dbuf. 1983 */ 1984 mutex_exit(&dn->dn_dbufs_mtx); 1985 dnode_dirty_l1(dn, db->db_blkid, tx); 1986 mutex_enter(&dn->dn_dbufs_mtx); 1987 } 1988 1989 #ifdef ZFS_DEBUG 1990 /* 1991 * Walk all the in-core level-1 dbufs and verify they have been dirtied. 1992 */ 1993 db_search.db_level = 1; 1994 db_search.db_blkid = start_blkid + 1; 1995 db_search.db_state = DB_SEARCH; 1996 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1997 if (db == NULL) 1998 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1999 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { 2000 if (db->db_level != 1 || db->db_blkid >= end_blkid) 2001 break; 2002 ASSERT(db->db_dirtycnt > 0); 2003 } 2004 #endif 2005 mutex_exit(&dn->dn_dbufs_mtx); 2006 } 2007 2008 void 2009 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 2010 { 2011 dmu_buf_impl_t *db; 2012 uint64_t blkoff, blkid, nblks; 2013 int blksz, blkshift, head, tail; 2014 int trunc = FALSE; 2015 int epbs; 2016 2017 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2018 blksz = dn->dn_datablksz; 2019 blkshift = dn->dn_datablkshift; 2020 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2021 2022 if (len == DMU_OBJECT_END) { 2023 len = UINT64_MAX - off; 2024 trunc = TRUE; 2025 } 2026 2027 /* 2028 * First, block align the region to free: 2029 */ 2030 if (ISP2(blksz)) { 2031 head = P2NPHASE(off, blksz); 2032 blkoff = P2PHASE(off, blksz); 2033 if ((off >> blkshift) > dn->dn_maxblkid) 2034 goto out; 2035 } else { 2036 ASSERT(dn->dn_maxblkid == 0); 2037 if (off == 0 && len >= blksz) { 2038 /* 2039 * Freeing the whole block; fast-track this request. 2040 */ 2041 blkid = 0; 2042 nblks = 1; 2043 if (dn->dn_nlevels > 1) 2044 dnode_dirty_l1(dn, 0, tx); 2045 goto done; 2046 } else if (off >= blksz) { 2047 /* Freeing past end-of-data */ 2048 goto out; 2049 } else { 2050 /* Freeing part of the block. */ 2051 head = blksz - off; 2052 ASSERT3U(head, >, 0); 2053 } 2054 blkoff = off; 2055 } 2056 /* zero out any partial block data at the start of the range */ 2057 if (head) { 2058 ASSERT3U(blkoff + head, ==, blksz); 2059 if (len < head) 2060 head = len; 2061 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 2062 TRUE, FALSE, FTAG, &db) == 0) { 2063 caddr_t data; 2064 2065 /* don't dirty if it isn't on disk and isn't dirty */ 2066 if (db->db_last_dirty || 2067 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 2068 rw_exit(&dn->dn_struct_rwlock); 2069 dmu_buf_will_dirty(&db->db, tx); 2070 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2071 data = db->db.db_data; 2072 bzero(data + blkoff, head); 2073 } 2074 dbuf_rele(db, FTAG); 2075 } 2076 off += head; 2077 len -= head; 2078 } 2079 2080 /* If the range was less than one block, we're done */ 2081 if (len == 0) 2082 goto out; 2083 2084 /* If the remaining range is past end of file, we're done */ 2085 if ((off >> blkshift) > dn->dn_maxblkid) 2086 goto out; 2087 2088 ASSERT(ISP2(blksz)); 2089 if (trunc) 2090 tail = 0; 2091 else 2092 tail = P2PHASE(len, blksz); 2093 2094 ASSERT0(P2PHASE(off, blksz)); 2095 /* zero out any partial block data at the end of the range */ 2096 if (tail) { 2097 if (len < tail) 2098 tail = len; 2099 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 2100 TRUE, FALSE, FTAG, &db) == 0) { 2101 /* don't dirty if not on disk and not dirty */ 2102 if (db->db_last_dirty || 2103 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 2104 rw_exit(&dn->dn_struct_rwlock); 2105 dmu_buf_will_dirty(&db->db, tx); 2106 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2107 bzero(db->db.db_data, tail); 2108 } 2109 dbuf_rele(db, FTAG); 2110 } 2111 len -= tail; 2112 } 2113 2114 /* If the range did not include a full block, we are done */ 2115 if (len == 0) 2116 goto out; 2117 2118 ASSERT(IS_P2ALIGNED(off, blksz)); 2119 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 2120 blkid = off >> blkshift; 2121 nblks = len >> blkshift; 2122 if (trunc) 2123 nblks += 1; 2124 2125 /* 2126 * Dirty all the indirect blocks in this range. Note that only 2127 * the first and last indirect blocks can actually be written 2128 * (if they were partially freed) -- they must be dirtied, even if 2129 * they do not exist on disk yet. The interior blocks will 2130 * be freed by free_children(), so they will not actually be written. 2131 * Even though these interior blocks will not be written, we 2132 * dirty them for two reasons: 2133 * 2134 * - It ensures that the indirect blocks remain in memory until 2135 * syncing context. (They have already been prefetched by 2136 * dmu_tx_hold_free(), so we don't have to worry about reading 2137 * them serially here.) 2138 * 2139 * - The dirty space accounting will put pressure on the txg sync 2140 * mechanism to begin syncing, and to delay transactions if there 2141 * is a large amount of freeing. Even though these indirect 2142 * blocks will not be written, we could need to write the same 2143 * amount of space if we copy the freed BPs into deadlists. 2144 */ 2145 if (dn->dn_nlevels > 1) { 2146 uint64_t first, last; 2147 2148 first = blkid >> epbs; 2149 dnode_dirty_l1(dn, first, tx); 2150 if (trunc) 2151 last = dn->dn_maxblkid >> epbs; 2152 else 2153 last = (blkid + nblks - 1) >> epbs; 2154 if (last != first) 2155 dnode_dirty_l1(dn, last, tx); 2156 2157 dnode_dirty_l1range(dn, first, last, tx); 2158 2159 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 2160 SPA_BLKPTRSHIFT; 2161 for (uint64_t i = first + 1; i < last; i++) { 2162 /* 2163 * Set i to the blockid of the next non-hole 2164 * level-1 indirect block at or after i. Note 2165 * that dnode_next_offset() operates in terms of 2166 * level-0-equivalent bytes. 2167 */ 2168 uint64_t ibyte = i << shift; 2169 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 2170 &ibyte, 2, 1, 0); 2171 i = ibyte >> shift; 2172 if (i >= last) 2173 break; 2174 2175 /* 2176 * Normally we should not see an error, either 2177 * from dnode_next_offset() or dbuf_hold_level() 2178 * (except for ESRCH from dnode_next_offset). 2179 * If there is an i/o error, then when we read 2180 * this block in syncing context, it will use 2181 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 2182 * to the "failmode" property. dnode_next_offset() 2183 * doesn't have a flag to indicate MUSTSUCCEED. 2184 */ 2185 if (err != 0) 2186 break; 2187 2188 dnode_dirty_l1(dn, i, tx); 2189 } 2190 } 2191 2192 done: 2193 /* 2194 * Add this range to the dnode range list. 2195 * We will finish up this free operation in the syncing phase. 2196 */ 2197 mutex_enter(&dn->dn_mtx); 2198 int txgoff = tx->tx_txg & TXG_MASK; 2199 if (dn->dn_free_ranges[txgoff] == NULL) { 2200 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, 2201 RANGE_SEG64, NULL, 0, 0); 2202 } 2203 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 2204 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 2205 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 2206 blkid, nblks, tx->tx_txg); 2207 mutex_exit(&dn->dn_mtx); 2208 2209 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 2210 dnode_setdirty(dn, tx); 2211 out: 2212 2213 rw_exit(&dn->dn_struct_rwlock); 2214 } 2215 2216 static boolean_t 2217 dnode_spill_freed(dnode_t *dn) 2218 { 2219 int i; 2220 2221 mutex_enter(&dn->dn_mtx); 2222 for (i = 0; i < TXG_SIZE; i++) { 2223 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 2224 break; 2225 } 2226 mutex_exit(&dn->dn_mtx); 2227 return (i < TXG_SIZE); 2228 } 2229 2230 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 2231 uint64_t 2232 dnode_block_freed(dnode_t *dn, uint64_t blkid) 2233 { 2234 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 2235 int i; 2236 2237 if (blkid == DMU_BONUS_BLKID) 2238 return (FALSE); 2239 2240 /* 2241 * If we're in the process of opening the pool, dp will not be 2242 * set yet, but there shouldn't be anything dirty. 2243 */ 2244 if (dp == NULL) 2245 return (FALSE); 2246 2247 if (dn->dn_free_txg) 2248 return (TRUE); 2249 2250 if (blkid == DMU_SPILL_BLKID) 2251 return (dnode_spill_freed(dn)); 2252 2253 mutex_enter(&dn->dn_mtx); 2254 for (i = 0; i < TXG_SIZE; i++) { 2255 if (dn->dn_free_ranges[i] != NULL && 2256 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 2257 break; 2258 } 2259 mutex_exit(&dn->dn_mtx); 2260 return (i < TXG_SIZE); 2261 } 2262 2263 /* call from syncing context when we actually write/free space for this dnode */ 2264 void 2265 dnode_diduse_space(dnode_t *dn, int64_t delta) 2266 { 2267 uint64_t space; 2268 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 2269 dn, dn->dn_phys, 2270 (u_longlong_t)dn->dn_phys->dn_used, 2271 (longlong_t)delta); 2272 2273 mutex_enter(&dn->dn_mtx); 2274 space = DN_USED_BYTES(dn->dn_phys); 2275 if (delta > 0) { 2276 ASSERT3U(space + delta, >=, space); /* no overflow */ 2277 } else { 2278 ASSERT3U(space, >=, -delta); /* no underflow */ 2279 } 2280 space += delta; 2281 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 2282 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 2283 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 2284 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 2285 } else { 2286 dn->dn_phys->dn_used = space; 2287 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 2288 } 2289 mutex_exit(&dn->dn_mtx); 2290 } 2291 2292 /* 2293 * Scans a block at the indicated "level" looking for a hole or data, 2294 * depending on 'flags'. 2295 * 2296 * If level > 0, then we are scanning an indirect block looking at its 2297 * pointers. If level == 0, then we are looking at a block of dnodes. 2298 * 2299 * If we don't find what we are looking for in the block, we return ESRCH. 2300 * Otherwise, return with *offset pointing to the beginning (if searching 2301 * forwards) or end (if searching backwards) of the range covered by the 2302 * block pointer we matched on (or dnode). 2303 * 2304 * The basic search algorithm used below by dnode_next_offset() is to 2305 * use this function to search up the block tree (widen the search) until 2306 * we find something (i.e., we don't return ESRCH) and then search back 2307 * down the tree (narrow the search) until we reach our original search 2308 * level. 2309 */ 2310 static int 2311 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 2312 int lvl, uint64_t blkfill, uint64_t txg) 2313 { 2314 dmu_buf_impl_t *db = NULL; 2315 void *data = NULL; 2316 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2317 uint64_t epb = 1ULL << epbs; 2318 uint64_t minfill, maxfill; 2319 boolean_t hole; 2320 int i, inc, error, span; 2321 2322 dprintf("probing object %llu offset %llx level %d of %u\n", 2323 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 2324 2325 hole = ((flags & DNODE_FIND_HOLE) != 0); 2326 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 2327 ASSERT(txg == 0 || !hole); 2328 2329 if (lvl == dn->dn_phys->dn_nlevels) { 2330 error = 0; 2331 epb = dn->dn_phys->dn_nblkptr; 2332 data = dn->dn_phys->dn_blkptr; 2333 } else { 2334 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 2335 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 2336 if (error) { 2337 if (error != ENOENT) 2338 return (error); 2339 if (hole) 2340 return (0); 2341 /* 2342 * This can only happen when we are searching up 2343 * the block tree for data. We don't really need to 2344 * adjust the offset, as we will just end up looking 2345 * at the pointer to this block in its parent, and its 2346 * going to be unallocated, so we will skip over it. 2347 */ 2348 return (SET_ERROR(ESRCH)); 2349 } 2350 error = dbuf_read(db, NULL, 2351 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT); 2352 if (error) { 2353 dbuf_rele(db, FTAG); 2354 return (error); 2355 } 2356 data = db->db.db_data; 2357 } 2358 2359 2360 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 2361 db->db_blkptr->blk_birth <= txg || 2362 BP_IS_HOLE(db->db_blkptr))) { 2363 /* 2364 * This can only happen when we are searching up the tree 2365 * and these conditions mean that we need to keep climbing. 2366 */ 2367 error = SET_ERROR(ESRCH); 2368 } else if (lvl == 0) { 2369 dnode_phys_t *dnp = data; 2370 2371 ASSERT(dn->dn_type == DMU_OT_DNODE); 2372 ASSERT(!(flags & DNODE_FIND_BACKWARDS)); 2373 2374 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); 2375 i < blkfill; i += dnp[i].dn_extra_slots + 1) { 2376 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 2377 break; 2378 } 2379 2380 if (i == blkfill) 2381 error = SET_ERROR(ESRCH); 2382 2383 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + 2384 (i << DNODE_SHIFT); 2385 } else { 2386 blkptr_t *bp = data; 2387 uint64_t start = *offset; 2388 span = (lvl - 1) * epbs + dn->dn_datablkshift; 2389 minfill = 0; 2390 maxfill = blkfill << ((lvl - 1) * epbs); 2391 2392 if (hole) 2393 maxfill--; 2394 else 2395 minfill++; 2396 2397 *offset = *offset >> span; 2398 for (i = BF64_GET(*offset, 0, epbs); 2399 i >= 0 && i < epb; i += inc) { 2400 if (BP_GET_FILL(&bp[i]) >= minfill && 2401 BP_GET_FILL(&bp[i]) <= maxfill && 2402 (hole || bp[i].blk_birth > txg)) 2403 break; 2404 if (inc > 0 || *offset > 0) 2405 *offset += inc; 2406 } 2407 *offset = *offset << span; 2408 if (inc < 0) { 2409 /* traversing backwards; position offset at the end */ 2410 ASSERT3U(*offset, <=, start); 2411 *offset = MIN(*offset + (1ULL << span) - 1, start); 2412 } else if (*offset < start) { 2413 *offset = start; 2414 } 2415 if (i < 0 || i >= epb) 2416 error = SET_ERROR(ESRCH); 2417 } 2418 2419 if (db) 2420 dbuf_rele(db, FTAG); 2421 2422 return (error); 2423 } 2424 2425 /* 2426 * Find the next hole, data, or sparse region at or after *offset. 2427 * The value 'blkfill' tells us how many items we expect to find 2428 * in an L0 data block; this value is 1 for normal objects, 2429 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 2430 * DNODES_PER_BLOCK when searching for sparse regions thereof. 2431 * 2432 * Examples: 2433 * 2434 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 2435 * Finds the next/previous hole/data in a file. 2436 * Used in dmu_offset_next(). 2437 * 2438 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 2439 * Finds the next free/allocated dnode an objset's meta-dnode. 2440 * Only finds objects that have new contents since txg (ie. 2441 * bonus buffer changes and content removal are ignored). 2442 * Used in dmu_object_next(). 2443 * 2444 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 2445 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 2446 * Used in dmu_object_alloc(). 2447 */ 2448 int 2449 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 2450 int minlvl, uint64_t blkfill, uint64_t txg) 2451 { 2452 uint64_t initial_offset = *offset; 2453 int lvl, maxlvl; 2454 int error = 0; 2455 2456 if (!(flags & DNODE_FIND_HAVELOCK)) 2457 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2458 2459 if (dn->dn_phys->dn_nlevels == 0) { 2460 error = SET_ERROR(ESRCH); 2461 goto out; 2462 } 2463 2464 if (dn->dn_datablkshift == 0) { 2465 if (*offset < dn->dn_datablksz) { 2466 if (flags & DNODE_FIND_HOLE) 2467 *offset = dn->dn_datablksz; 2468 } else { 2469 error = SET_ERROR(ESRCH); 2470 } 2471 goto out; 2472 } 2473 2474 maxlvl = dn->dn_phys->dn_nlevels; 2475 2476 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2477 error = dnode_next_offset_level(dn, 2478 flags, offset, lvl, blkfill, txg); 2479 if (error != ESRCH) 2480 break; 2481 } 2482 2483 while (error == 0 && --lvl >= minlvl) { 2484 error = dnode_next_offset_level(dn, 2485 flags, offset, lvl, blkfill, txg); 2486 } 2487 2488 /* 2489 * There's always a "virtual hole" at the end of the object, even 2490 * if all BP's which physically exist are non-holes. 2491 */ 2492 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2493 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2494 error = 0; 2495 } 2496 2497 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2498 initial_offset < *offset : initial_offset > *offset)) 2499 error = SET_ERROR(ESRCH); 2500 out: 2501 if (!(flags & DNODE_FIND_HAVELOCK)) 2502 rw_exit(&dn->dn_struct_rwlock); 2503 2504 return (error); 2505 } 2506