xref: /illumos-gate/usr/src/uts/common/fs/zfs/dnode.c (revision 0a586cea3ceec7e5e50e7e54c745082a7a333ac2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/dbuf.h>
28 #include <sys/dnode.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/spa.h>
36 #include <sys/zio.h>
37 #include <sys/dmu_zfetch.h>
38 
39 static int free_range_compar(const void *node1, const void *node2);
40 
41 static kmem_cache_t *dnode_cache;
42 
43 static dnode_phys_t dnode_phys_zero;
44 
45 int zfs_default_bs = SPA_MINBLOCKSHIFT;
46 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
47 
48 /* ARGSUSED */
49 static int
50 dnode_cons(void *arg, void *unused, int kmflag)
51 {
52 	int i;
53 	dnode_t *dn = arg;
54 	bzero(dn, sizeof (dnode_t));
55 
56 	rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
57 	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
58 	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
59 	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
60 
61 	refcount_create(&dn->dn_holds);
62 	refcount_create(&dn->dn_tx_holds);
63 
64 	for (i = 0; i < TXG_SIZE; i++) {
65 		avl_create(&dn->dn_ranges[i], free_range_compar,
66 		    sizeof (free_range_t),
67 		    offsetof(struct free_range, fr_node));
68 		list_create(&dn->dn_dirty_records[i],
69 		    sizeof (dbuf_dirty_record_t),
70 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
71 	}
72 
73 	list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t),
74 	    offsetof(dmu_buf_impl_t, db_link));
75 
76 	return (0);
77 }
78 
79 /* ARGSUSED */
80 static void
81 dnode_dest(void *arg, void *unused)
82 {
83 	int i;
84 	dnode_t *dn = arg;
85 
86 	rw_destroy(&dn->dn_struct_rwlock);
87 	mutex_destroy(&dn->dn_mtx);
88 	mutex_destroy(&dn->dn_dbufs_mtx);
89 	cv_destroy(&dn->dn_notxholds);
90 	refcount_destroy(&dn->dn_holds);
91 	refcount_destroy(&dn->dn_tx_holds);
92 
93 	for (i = 0; i < TXG_SIZE; i++) {
94 		avl_destroy(&dn->dn_ranges[i]);
95 		list_destroy(&dn->dn_dirty_records[i]);
96 	}
97 
98 	list_destroy(&dn->dn_dbufs);
99 }
100 
101 void
102 dnode_init(void)
103 {
104 	dnode_cache = kmem_cache_create("dnode_t",
105 	    sizeof (dnode_t),
106 	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
107 }
108 
109 void
110 dnode_fini(void)
111 {
112 	kmem_cache_destroy(dnode_cache);
113 }
114 
115 
116 #ifdef ZFS_DEBUG
117 void
118 dnode_verify(dnode_t *dn)
119 {
120 	int drop_struct_lock = FALSE;
121 
122 	ASSERT(dn->dn_phys);
123 	ASSERT(dn->dn_objset);
124 
125 	ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES);
126 
127 	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
128 		return;
129 
130 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
131 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
132 		drop_struct_lock = TRUE;
133 	}
134 	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
135 		int i;
136 		ASSERT3U(dn->dn_indblkshift, >=, 0);
137 		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
138 		if (dn->dn_datablkshift) {
139 			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
140 			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
141 			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
142 		}
143 		ASSERT3U(dn->dn_nlevels, <=, 30);
144 		ASSERT3U(dn->dn_type, <=, DMU_OT_NUMTYPES);
145 		ASSERT3U(dn->dn_nblkptr, >=, 1);
146 		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
147 		ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
148 		ASSERT3U(dn->dn_datablksz, ==,
149 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
150 		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
151 		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
152 		    dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
153 		for (i = 0; i < TXG_SIZE; i++) {
154 			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
155 		}
156 	}
157 	if (dn->dn_phys->dn_type != DMU_OT_NONE)
158 		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
159 	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
160 	if (dn->dn_dbuf != NULL) {
161 		ASSERT3P(dn->dn_phys, ==,
162 		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
163 		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
164 	}
165 	if (drop_struct_lock)
166 		rw_exit(&dn->dn_struct_rwlock);
167 }
168 #endif
169 
170 void
171 dnode_byteswap(dnode_phys_t *dnp)
172 {
173 	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
174 	int i;
175 
176 	if (dnp->dn_type == DMU_OT_NONE) {
177 		bzero(dnp, sizeof (dnode_phys_t));
178 		return;
179 	}
180 
181 	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
182 	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
183 	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
184 	dnp->dn_used = BSWAP_64(dnp->dn_used);
185 
186 	/*
187 	 * dn_nblkptr is only one byte, so it's OK to read it in either
188 	 * byte order.  We can't read dn_bouslen.
189 	 */
190 	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
191 	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
192 	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
193 		buf64[i] = BSWAP_64(buf64[i]);
194 
195 	/*
196 	 * OK to check dn_bonuslen for zero, because it won't matter if
197 	 * we have the wrong byte order.  This is necessary because the
198 	 * dnode dnode is smaller than a regular dnode.
199 	 */
200 	if (dnp->dn_bonuslen != 0) {
201 		/*
202 		 * Note that the bonus length calculated here may be
203 		 * longer than the actual bonus buffer.  This is because
204 		 * we always put the bonus buffer after the last block
205 		 * pointer (instead of packing it against the end of the
206 		 * dnode buffer).
207 		 */
208 		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
209 		size_t len = DN_MAX_BONUSLEN - off;
210 		ASSERT3U(dnp->dn_bonustype, <, DMU_OT_NUMTYPES);
211 		dmu_ot[dnp->dn_bonustype].ot_byteswap(dnp->dn_bonus + off, len);
212 	}
213 
214 	/* Swap SPILL block if we have one */
215 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
216 		byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
217 
218 }
219 
220 void
221 dnode_buf_byteswap(void *vbuf, size_t size)
222 {
223 	dnode_phys_t *buf = vbuf;
224 	int i;
225 
226 	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
227 	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
228 
229 	size >>= DNODE_SHIFT;
230 	for (i = 0; i < size; i++) {
231 		dnode_byteswap(buf);
232 		buf++;
233 	}
234 }
235 
236 static int
237 free_range_compar(const void *node1, const void *node2)
238 {
239 	const free_range_t *rp1 = node1;
240 	const free_range_t *rp2 = node2;
241 
242 	if (rp1->fr_blkid < rp2->fr_blkid)
243 		return (-1);
244 	else if (rp1->fr_blkid > rp2->fr_blkid)
245 		return (1);
246 	else return (0);
247 }
248 
249 void
250 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
251 {
252 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
253 
254 	dnode_setdirty(dn, tx);
255 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
256 	ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
257 	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
258 	dn->dn_bonuslen = newsize;
259 	if (newsize == 0)
260 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
261 	else
262 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
263 	rw_exit(&dn->dn_struct_rwlock);
264 }
265 
266 void
267 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
268 {
269 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
270 	dnode_setdirty(dn, tx);
271 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
272 	dn->dn_bonustype = newtype;
273 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
274 	rw_exit(&dn->dn_struct_rwlock);
275 }
276 
277 void
278 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
279 {
280 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
281 	dnode_setdirty(dn, tx);
282 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
283 	dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
284 	dn->dn_have_spill = B_FALSE;
285 	rw_exit(&dn->dn_struct_rwlock);
286 }
287 
288 static void
289 dnode_setdblksz(dnode_t *dn, int size)
290 {
291 	ASSERT3U(P2PHASE(size, SPA_MINBLOCKSIZE), ==, 0);
292 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
293 	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
294 	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
295 	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
296 	dn->dn_datablksz = size;
297 	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
298 	dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0;
299 }
300 
301 static dnode_t *
302 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
303     uint64_t object)
304 {
305 	dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
306 	(void) dnode_cons(dn, NULL, 0); /* XXX */
307 
308 	dn->dn_objset = os;
309 	dn->dn_object = object;
310 	dn->dn_dbuf = db;
311 	dn->dn_phys = dnp;
312 
313 	if (dnp->dn_datablkszsec)
314 		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
315 	dn->dn_indblkshift = dnp->dn_indblkshift;
316 	dn->dn_nlevels = dnp->dn_nlevels;
317 	dn->dn_type = dnp->dn_type;
318 	dn->dn_nblkptr = dnp->dn_nblkptr;
319 	dn->dn_checksum = dnp->dn_checksum;
320 	dn->dn_compress = dnp->dn_compress;
321 	dn->dn_bonustype = dnp->dn_bonustype;
322 	dn->dn_bonuslen = dnp->dn_bonuslen;
323 	dn->dn_maxblkid = dnp->dn_maxblkid;
324 	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
325 
326 	dmu_zfetch_init(&dn->dn_zfetch, dn);
327 
328 	ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES);
329 	mutex_enter(&os->os_lock);
330 	list_insert_head(&os->os_dnodes, dn);
331 	mutex_exit(&os->os_lock);
332 
333 	arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
334 	return (dn);
335 }
336 
337 static void
338 dnode_destroy(dnode_t *dn)
339 {
340 	objset_t *os = dn->dn_objset;
341 
342 #ifdef ZFS_DEBUG
343 	int i;
344 
345 	for (i = 0; i < TXG_SIZE; i++) {
346 		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
347 		ASSERT(NULL == list_head(&dn->dn_dirty_records[i]));
348 		ASSERT(0 == avl_numnodes(&dn->dn_ranges[i]));
349 	}
350 	ASSERT(NULL == list_head(&dn->dn_dbufs));
351 #endif
352 	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
353 
354 	mutex_enter(&os->os_lock);
355 	list_remove(&os->os_dnodes, dn);
356 	mutex_exit(&os->os_lock);
357 
358 	if (dn->dn_dirtyctx_firstset) {
359 		kmem_free(dn->dn_dirtyctx_firstset, 1);
360 		dn->dn_dirtyctx_firstset = NULL;
361 	}
362 	dmu_zfetch_rele(&dn->dn_zfetch);
363 	if (dn->dn_bonus) {
364 		mutex_enter(&dn->dn_bonus->db_mtx);
365 		dbuf_evict(dn->dn_bonus);
366 		dn->dn_bonus = NULL;
367 	}
368 	kmem_cache_free(dnode_cache, dn);
369 	arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
370 }
371 
372 void
373 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
374     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
375 {
376 	int i;
377 
378 	if (blocksize == 0)
379 		blocksize = 1 << zfs_default_bs;
380 	else if (blocksize > SPA_MAXBLOCKSIZE)
381 		blocksize = SPA_MAXBLOCKSIZE;
382 	else
383 		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
384 
385 	if (ibs == 0)
386 		ibs = zfs_default_ibs;
387 
388 	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
389 
390 	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
391 	    dn->dn_object, tx->tx_txg, blocksize, ibs);
392 
393 	ASSERT(dn->dn_type == DMU_OT_NONE);
394 	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
395 	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
396 	ASSERT(ot != DMU_OT_NONE);
397 	ASSERT3U(ot, <, DMU_OT_NUMTYPES);
398 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
399 	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
400 	    (bonustype != DMU_OT_NONE && bonuslen != 0));
401 	ASSERT3U(bonustype, <, DMU_OT_NUMTYPES);
402 	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
403 	ASSERT(dn->dn_type == DMU_OT_NONE);
404 	ASSERT3U(dn->dn_maxblkid, ==, 0);
405 	ASSERT3U(dn->dn_allocated_txg, ==, 0);
406 	ASSERT3U(dn->dn_assigned_txg, ==, 0);
407 	ASSERT(refcount_is_zero(&dn->dn_tx_holds));
408 	ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
409 	ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL);
410 
411 	for (i = 0; i < TXG_SIZE; i++) {
412 		ASSERT3U(dn->dn_next_nlevels[i], ==, 0);
413 		ASSERT3U(dn->dn_next_indblkshift[i], ==, 0);
414 		ASSERT3U(dn->dn_next_bonuslen[i], ==, 0);
415 		ASSERT3U(dn->dn_next_bonustype[i], ==, 0);
416 		ASSERT3U(dn->dn_rm_spillblk[i], ==, 0);
417 		ASSERT3U(dn->dn_next_blksz[i], ==, 0);
418 		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
419 		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
420 		ASSERT3U(avl_numnodes(&dn->dn_ranges[i]), ==, 0);
421 	}
422 
423 	dn->dn_type = ot;
424 	dnode_setdblksz(dn, blocksize);
425 	dn->dn_indblkshift = ibs;
426 	dn->dn_nlevels = 1;
427 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
428 		dn->dn_nblkptr = 1;
429 	else
430 		dn->dn_nblkptr = 1 +
431 		    ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
432 	dn->dn_bonustype = bonustype;
433 	dn->dn_bonuslen = bonuslen;
434 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
435 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
436 	dn->dn_dirtyctx = 0;
437 
438 	dn->dn_free_txg = 0;
439 	if (dn->dn_dirtyctx_firstset) {
440 		kmem_free(dn->dn_dirtyctx_firstset, 1);
441 		dn->dn_dirtyctx_firstset = NULL;
442 	}
443 
444 	dn->dn_allocated_txg = tx->tx_txg;
445 	dn->dn_id_flags = 0;
446 
447 	dnode_setdirty(dn, tx);
448 	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
449 	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
450 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
451 	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
452 }
453 
454 void
455 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
456     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
457 {
458 	int nblkptr;
459 
460 	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
461 	ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE);
462 	ASSERT3U(blocksize % SPA_MINBLOCKSIZE, ==, 0);
463 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
464 	ASSERT(tx->tx_txg != 0);
465 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
466 	    (bonustype != DMU_OT_NONE && bonuslen != 0));
467 	ASSERT3U(bonustype, <, DMU_OT_NUMTYPES);
468 	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
469 
470 	/* clean up any unreferenced dbufs */
471 	dnode_evict_dbufs(dn);
472 
473 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
474 	dnode_setdirty(dn, tx);
475 	if (dn->dn_datablksz != blocksize) {
476 		/* change blocksize */
477 		ASSERT(dn->dn_maxblkid == 0 &&
478 		    (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
479 		    dnode_block_freed(dn, 0)));
480 		dnode_setdblksz(dn, blocksize);
481 		dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
482 	}
483 	if (dn->dn_bonuslen != bonuslen)
484 		dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
485 	nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
486 	if (dn->dn_bonustype != bonustype)
487 		dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
488 	if (dn->dn_nblkptr != nblkptr)
489 		dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
490 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
491 		dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
492 		dn->dn_have_spill = B_FALSE;
493 	}
494 	rw_exit(&dn->dn_struct_rwlock);
495 
496 	/* change type */
497 	dn->dn_type = ot;
498 
499 	/* change bonus size and type */
500 	mutex_enter(&dn->dn_mtx);
501 	dn->dn_bonustype = bonustype;
502 	dn->dn_bonuslen = bonuslen;
503 	dn->dn_nblkptr = nblkptr;
504 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
505 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
506 	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
507 
508 	/* fix up the bonus db_size */
509 	if (dn->dn_bonus) {
510 		dn->dn_bonus->db.db_size =
511 		    DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
512 		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
513 	}
514 
515 	dn->dn_allocated_txg = tx->tx_txg;
516 	mutex_exit(&dn->dn_mtx);
517 }
518 
519 void
520 dnode_special_close(dnode_t *dn)
521 {
522 	/*
523 	 * Wait for final references to the dnode to clear.  This can
524 	 * only happen if the arc is asyncronously evicting state that
525 	 * has a hold on this dnode while we are trying to evict this
526 	 * dnode.
527 	 */
528 	while (refcount_count(&dn->dn_holds) > 0)
529 		delay(1);
530 	dnode_destroy(dn);
531 }
532 
533 dnode_t *
534 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object)
535 {
536 	dnode_t *dn = dnode_create(os, dnp, NULL, object);
537 	DNODE_VERIFY(dn);
538 	return (dn);
539 }
540 
541 static void
542 dnode_buf_pageout(dmu_buf_t *db, void *arg)
543 {
544 	dnode_t **children_dnodes = arg;
545 	int i;
546 	int epb = db->db_size >> DNODE_SHIFT;
547 
548 	for (i = 0; i < epb; i++) {
549 		dnode_t *dn = children_dnodes[i];
550 		int n;
551 
552 		if (dn == NULL)
553 			continue;
554 #ifdef ZFS_DEBUG
555 		/*
556 		 * If there are holds on this dnode, then there should
557 		 * be holds on the dnode's containing dbuf as well; thus
558 		 * it wouldn't be eligable for eviction and this function
559 		 * would not have been called.
560 		 */
561 		ASSERT(refcount_is_zero(&dn->dn_holds));
562 		ASSERT(list_head(&dn->dn_dbufs) == NULL);
563 		ASSERT(refcount_is_zero(&dn->dn_tx_holds));
564 
565 		for (n = 0; n < TXG_SIZE; n++)
566 			ASSERT(!list_link_active(&dn->dn_dirty_link[n]));
567 #endif
568 		children_dnodes[i] = NULL;
569 		dnode_destroy(dn);
570 	}
571 	kmem_free(children_dnodes, epb * sizeof (dnode_t *));
572 }
573 
574 /*
575  * errors:
576  * EINVAL - invalid object number.
577  * EIO - i/o error.
578  * succeeds even for free dnodes.
579  */
580 int
581 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
582     void *tag, dnode_t **dnp)
583 {
584 	int epb, idx, err;
585 	int drop_struct_lock = FALSE;
586 	int type;
587 	uint64_t blk;
588 	dnode_t *mdn, *dn;
589 	dmu_buf_impl_t *db;
590 	dnode_t **children_dnodes;
591 
592 	/*
593 	 * If you are holding the spa config lock as writer, you shouldn't
594 	 * be asking the DMU to do *anything*.
595 	 */
596 	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0);
597 
598 	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
599 		dn = (object == DMU_USERUSED_OBJECT) ?
600 		    os->os_userused_dnode : os->os_groupused_dnode;
601 		if (dn == NULL)
602 			return (ENOENT);
603 		type = dn->dn_type;
604 		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
605 			return (ENOENT);
606 		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
607 			return (EEXIST);
608 		DNODE_VERIFY(dn);
609 		(void) refcount_add(&dn->dn_holds, tag);
610 		*dnp = dn;
611 		return (0);
612 	}
613 
614 	if (object == 0 || object >= DN_MAX_OBJECT)
615 		return (EINVAL);
616 
617 	mdn = os->os_meta_dnode;
618 
619 	DNODE_VERIFY(mdn);
620 
621 	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
622 		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
623 		drop_struct_lock = TRUE;
624 	}
625 
626 	blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
627 
628 	db = dbuf_hold(mdn, blk, FTAG);
629 	if (drop_struct_lock)
630 		rw_exit(&mdn->dn_struct_rwlock);
631 	if (db == NULL)
632 		return (EIO);
633 	err = dbuf_read(db, NULL, DB_RF_CANFAIL);
634 	if (err) {
635 		dbuf_rele(db, FTAG);
636 		return (err);
637 	}
638 
639 	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
640 	epb = db->db.db_size >> DNODE_SHIFT;
641 
642 	idx = object & (epb-1);
643 
644 	children_dnodes = dmu_buf_get_user(&db->db);
645 	if (children_dnodes == NULL) {
646 		dnode_t **winner;
647 		children_dnodes = kmem_zalloc(epb * sizeof (dnode_t *),
648 		    KM_SLEEP);
649 		if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL,
650 		    dnode_buf_pageout)) {
651 			kmem_free(children_dnodes, epb * sizeof (dnode_t *));
652 			children_dnodes = winner;
653 		}
654 	}
655 
656 	if ((dn = children_dnodes[idx]) == NULL) {
657 		dnode_phys_t *dnp = (dnode_phys_t *)db->db.db_data+idx;
658 		dnode_t *winner;
659 
660 		dn = dnode_create(os, dnp, db, object);
661 		winner = atomic_cas_ptr(&children_dnodes[idx], NULL, dn);
662 		if (winner != NULL) {
663 			dnode_destroy(dn);
664 			dn = winner;
665 		}
666 	}
667 
668 	mutex_enter(&dn->dn_mtx);
669 	type = dn->dn_type;
670 	if (dn->dn_free_txg ||
671 	    ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
672 	    ((flag & DNODE_MUST_BE_FREE) &&
673 	    (type != DMU_OT_NONE || (dn->dn_id_flags & DN_ID_SYNC)))) {
674 		mutex_exit(&dn->dn_mtx);
675 		dbuf_rele(db, FTAG);
676 		return (type == DMU_OT_NONE ? ENOENT : EEXIST);
677 	}
678 	if (flag & DNODE_MUST_BE_FREE) {
679 		ASSERT(refcount_is_zero(&dn->dn_holds));
680 		ASSERT(!(dn->dn_id_flags & DN_ID_SYNC));
681 	}
682 	mutex_exit(&dn->dn_mtx);
683 
684 	if (refcount_add(&dn->dn_holds, tag) == 1)
685 		dbuf_add_ref(db, dn);
686 
687 	DNODE_VERIFY(dn);
688 	ASSERT3P(dn->dn_dbuf, ==, db);
689 	ASSERT3U(dn->dn_object, ==, object);
690 	dbuf_rele(db, FTAG);
691 
692 	*dnp = dn;
693 	return (0);
694 }
695 
696 /*
697  * Return held dnode if the object is allocated, NULL if not.
698  */
699 int
700 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
701 {
702 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
703 }
704 
705 /*
706  * Can only add a reference if there is already at least one
707  * reference on the dnode.  Returns FALSE if unable to add a
708  * new reference.
709  */
710 boolean_t
711 dnode_add_ref(dnode_t *dn, void *tag)
712 {
713 	mutex_enter(&dn->dn_mtx);
714 	if (refcount_is_zero(&dn->dn_holds)) {
715 		mutex_exit(&dn->dn_mtx);
716 		return (FALSE);
717 	}
718 	VERIFY(1 < refcount_add(&dn->dn_holds, tag));
719 	mutex_exit(&dn->dn_mtx);
720 	return (TRUE);
721 }
722 
723 void
724 dnode_rele(dnode_t *dn, void *tag)
725 {
726 	uint64_t refs;
727 
728 	mutex_enter(&dn->dn_mtx);
729 	refs = refcount_remove(&dn->dn_holds, tag);
730 	mutex_exit(&dn->dn_mtx);
731 	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
732 	if (refs == 0 && dn->dn_dbuf)
733 		dbuf_rele(dn->dn_dbuf, dn);
734 }
735 
736 void
737 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
738 {
739 	objset_t *os = dn->dn_objset;
740 	uint64_t txg = tx->tx_txg;
741 
742 	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
743 		dsl_dataset_dirty(os->os_dsl_dataset, tx);
744 		return;
745 	}
746 
747 	DNODE_VERIFY(dn);
748 
749 #ifdef ZFS_DEBUG
750 	mutex_enter(&dn->dn_mtx);
751 	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
752 	/* ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); */
753 	mutex_exit(&dn->dn_mtx);
754 #endif
755 
756 	/*
757 	 * Determine old uid/gid when necessary
758 	 */
759 	dmu_objset_userquota_get_ids(dn, B_TRUE);
760 
761 	mutex_enter(&os->os_lock);
762 
763 	/*
764 	 * If we are already marked dirty, we're done.
765 	 */
766 	if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
767 		mutex_exit(&os->os_lock);
768 		return;
769 	}
770 
771 	ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs));
772 	ASSERT(dn->dn_datablksz != 0);
773 	ASSERT3U(dn->dn_next_bonuslen[txg&TXG_MASK], ==, 0);
774 	ASSERT3U(dn->dn_next_blksz[txg&TXG_MASK], ==, 0);
775 	ASSERT3U(dn->dn_next_bonustype[txg&TXG_MASK], ==, 0);
776 
777 	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
778 	    dn->dn_object, txg);
779 
780 	if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
781 		list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
782 	} else {
783 		list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
784 	}
785 
786 	mutex_exit(&os->os_lock);
787 
788 	/*
789 	 * The dnode maintains a hold on its containing dbuf as
790 	 * long as there are holds on it.  Each instantiated child
791 	 * dbuf maintaines a hold on the dnode.  When the last child
792 	 * drops its hold, the dnode will drop its hold on the
793 	 * containing dbuf. We add a "dirty hold" here so that the
794 	 * dnode will hang around after we finish processing its
795 	 * children.
796 	 */
797 	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
798 
799 	(void) dbuf_dirty(dn->dn_dbuf, tx);
800 
801 	dsl_dataset_dirty(os->os_dsl_dataset, tx);
802 }
803 
804 void
805 dnode_free(dnode_t *dn, dmu_tx_t *tx)
806 {
807 	int txgoff = tx->tx_txg & TXG_MASK;
808 
809 	dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
810 
811 	/* we should be the only holder... hopefully */
812 	/* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
813 
814 	mutex_enter(&dn->dn_mtx);
815 	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
816 		mutex_exit(&dn->dn_mtx);
817 		return;
818 	}
819 	dn->dn_free_txg = tx->tx_txg;
820 	mutex_exit(&dn->dn_mtx);
821 
822 	/*
823 	 * If the dnode is already dirty, it needs to be moved from
824 	 * the dirty list to the free list.
825 	 */
826 	mutex_enter(&dn->dn_objset->os_lock);
827 	if (list_link_active(&dn->dn_dirty_link[txgoff])) {
828 		list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
829 		list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
830 		mutex_exit(&dn->dn_objset->os_lock);
831 	} else {
832 		mutex_exit(&dn->dn_objset->os_lock);
833 		dnode_setdirty(dn, tx);
834 	}
835 }
836 
837 /*
838  * Try to change the block size for the indicated dnode.  This can only
839  * succeed if there are no blocks allocated or dirty beyond first block
840  */
841 int
842 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
843 {
844 	dmu_buf_impl_t *db, *db_next;
845 	int err;
846 
847 	if (size == 0)
848 		size = SPA_MINBLOCKSIZE;
849 	if (size > SPA_MAXBLOCKSIZE)
850 		size = SPA_MAXBLOCKSIZE;
851 	else
852 		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
853 
854 	if (ibs == dn->dn_indblkshift)
855 		ibs = 0;
856 
857 	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
858 		return (0);
859 
860 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
861 
862 	/* Check for any allocated blocks beyond the first */
863 	if (dn->dn_phys->dn_maxblkid != 0)
864 		goto fail;
865 
866 	mutex_enter(&dn->dn_dbufs_mtx);
867 	for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
868 		db_next = list_next(&dn->dn_dbufs, db);
869 
870 		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
871 		    db->db_blkid != DMU_SPILL_BLKID) {
872 			mutex_exit(&dn->dn_dbufs_mtx);
873 			goto fail;
874 		}
875 	}
876 	mutex_exit(&dn->dn_dbufs_mtx);
877 
878 	if (ibs && dn->dn_nlevels != 1)
879 		goto fail;
880 
881 	/* resize the old block */
882 	err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
883 	if (err == 0)
884 		dbuf_new_size(db, size, tx);
885 	else if (err != ENOENT)
886 		goto fail;
887 
888 	dnode_setdblksz(dn, size);
889 	dnode_setdirty(dn, tx);
890 	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
891 	if (ibs) {
892 		dn->dn_indblkshift = ibs;
893 		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
894 	}
895 	/* rele after we have fixed the blocksize in the dnode */
896 	if (db)
897 		dbuf_rele(db, FTAG);
898 
899 	rw_exit(&dn->dn_struct_rwlock);
900 	return (0);
901 
902 fail:
903 	rw_exit(&dn->dn_struct_rwlock);
904 	return (ENOTSUP);
905 }
906 
907 /* read-holding callers must not rely on the lock being continuously held */
908 void
909 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
910 {
911 	uint64_t txgoff = tx->tx_txg & TXG_MASK;
912 	int epbs, new_nlevels;
913 	uint64_t sz;
914 
915 	ASSERT(blkid != DMU_BONUS_BLKID);
916 
917 	ASSERT(have_read ?
918 	    RW_READ_HELD(&dn->dn_struct_rwlock) :
919 	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
920 
921 	/*
922 	 * if we have a read-lock, check to see if we need to do any work
923 	 * before upgrading to a write-lock.
924 	 */
925 	if (have_read) {
926 		if (blkid <= dn->dn_maxblkid)
927 			return;
928 
929 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
930 			rw_exit(&dn->dn_struct_rwlock);
931 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
932 		}
933 	}
934 
935 	if (blkid <= dn->dn_maxblkid)
936 		goto out;
937 
938 	dn->dn_maxblkid = blkid;
939 
940 	/*
941 	 * Compute the number of levels necessary to support the new maxblkid.
942 	 */
943 	new_nlevels = 1;
944 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
945 	for (sz = dn->dn_nblkptr;
946 	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
947 		new_nlevels++;
948 
949 	if (new_nlevels > dn->dn_nlevels) {
950 		int old_nlevels = dn->dn_nlevels;
951 		dmu_buf_impl_t *db;
952 		list_t *list;
953 		dbuf_dirty_record_t *new, *dr, *dr_next;
954 
955 		dn->dn_nlevels = new_nlevels;
956 
957 		ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
958 		dn->dn_next_nlevels[txgoff] = new_nlevels;
959 
960 		/* dirty the left indirects */
961 		db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
962 		new = dbuf_dirty(db, tx);
963 		dbuf_rele(db, FTAG);
964 
965 		/* transfer the dirty records to the new indirect */
966 		mutex_enter(&dn->dn_mtx);
967 		mutex_enter(&new->dt.di.dr_mtx);
968 		list = &dn->dn_dirty_records[txgoff];
969 		for (dr = list_head(list); dr; dr = dr_next) {
970 			dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
971 			if (dr->dr_dbuf->db_level != new_nlevels-1 &&
972 			    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
973 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
974 				ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
975 				list_remove(&dn->dn_dirty_records[txgoff], dr);
976 				list_insert_tail(&new->dt.di.dr_children, dr);
977 				dr->dr_parent = new;
978 			}
979 		}
980 		mutex_exit(&new->dt.di.dr_mtx);
981 		mutex_exit(&dn->dn_mtx);
982 	}
983 
984 out:
985 	if (have_read)
986 		rw_downgrade(&dn->dn_struct_rwlock);
987 }
988 
989 void
990 dnode_clear_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx)
991 {
992 	avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
993 	avl_index_t where;
994 	free_range_t *rp;
995 	free_range_t rp_tofind;
996 	uint64_t endblk = blkid + nblks;
997 
998 	ASSERT(MUTEX_HELD(&dn->dn_mtx));
999 	ASSERT(nblks <= UINT64_MAX - blkid); /* no overflow */
1000 
1001 	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1002 	    blkid, nblks, tx->tx_txg);
1003 	rp_tofind.fr_blkid = blkid;
1004 	rp = avl_find(tree, &rp_tofind, &where);
1005 	if (rp == NULL)
1006 		rp = avl_nearest(tree, where, AVL_BEFORE);
1007 	if (rp == NULL)
1008 		rp = avl_nearest(tree, where, AVL_AFTER);
1009 
1010 	while (rp && (rp->fr_blkid <= blkid + nblks)) {
1011 		uint64_t fr_endblk = rp->fr_blkid + rp->fr_nblks;
1012 		free_range_t *nrp = AVL_NEXT(tree, rp);
1013 
1014 		if (blkid <= rp->fr_blkid && endblk >= fr_endblk) {
1015 			/* clear this entire range */
1016 			avl_remove(tree, rp);
1017 			kmem_free(rp, sizeof (free_range_t));
1018 		} else if (blkid <= rp->fr_blkid &&
1019 		    endblk > rp->fr_blkid && endblk < fr_endblk) {
1020 			/* clear the beginning of this range */
1021 			rp->fr_blkid = endblk;
1022 			rp->fr_nblks = fr_endblk - endblk;
1023 		} else if (blkid > rp->fr_blkid && blkid < fr_endblk &&
1024 		    endblk >= fr_endblk) {
1025 			/* clear the end of this range */
1026 			rp->fr_nblks = blkid - rp->fr_blkid;
1027 		} else if (blkid > rp->fr_blkid && endblk < fr_endblk) {
1028 			/* clear a chunk out of this range */
1029 			free_range_t *new_rp =
1030 			    kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1031 
1032 			new_rp->fr_blkid = endblk;
1033 			new_rp->fr_nblks = fr_endblk - endblk;
1034 			avl_insert_here(tree, new_rp, rp, AVL_AFTER);
1035 			rp->fr_nblks = blkid - rp->fr_blkid;
1036 		}
1037 		/* there may be no overlap */
1038 		rp = nrp;
1039 	}
1040 }
1041 
1042 void
1043 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1044 {
1045 	dmu_buf_impl_t *db;
1046 	uint64_t blkoff, blkid, nblks;
1047 	int blksz, blkshift, head, tail;
1048 	int trunc = FALSE;
1049 	int epbs;
1050 
1051 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1052 	blksz = dn->dn_datablksz;
1053 	blkshift = dn->dn_datablkshift;
1054 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1055 
1056 	if (len == -1ULL) {
1057 		len = UINT64_MAX - off;
1058 		trunc = TRUE;
1059 	}
1060 
1061 	/*
1062 	 * First, block align the region to free:
1063 	 */
1064 	if (ISP2(blksz)) {
1065 		head = P2NPHASE(off, blksz);
1066 		blkoff = P2PHASE(off, blksz);
1067 		if ((off >> blkshift) > dn->dn_maxblkid)
1068 			goto out;
1069 	} else {
1070 		ASSERT(dn->dn_maxblkid == 0);
1071 		if (off == 0 && len >= blksz) {
1072 			/* Freeing the whole block; fast-track this request */
1073 			blkid = 0;
1074 			nblks = 1;
1075 			goto done;
1076 		} else if (off >= blksz) {
1077 			/* Freeing past end-of-data */
1078 			goto out;
1079 		} else {
1080 			/* Freeing part of the block. */
1081 			head = blksz - off;
1082 			ASSERT3U(head, >, 0);
1083 		}
1084 		blkoff = off;
1085 	}
1086 	/* zero out any partial block data at the start of the range */
1087 	if (head) {
1088 		ASSERT3U(blkoff + head, ==, blksz);
1089 		if (len < head)
1090 			head = len;
1091 		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1092 		    FTAG, &db) == 0) {
1093 			caddr_t data;
1094 
1095 			/* don't dirty if it isn't on disk and isn't dirty */
1096 			if (db->db_last_dirty ||
1097 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1098 				rw_exit(&dn->dn_struct_rwlock);
1099 				dbuf_will_dirty(db, tx);
1100 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1101 				data = db->db.db_data;
1102 				bzero(data + blkoff, head);
1103 			}
1104 			dbuf_rele(db, FTAG);
1105 		}
1106 		off += head;
1107 		len -= head;
1108 	}
1109 
1110 	/* If the range was less than one block, we're done */
1111 	if (len == 0)
1112 		goto out;
1113 
1114 	/* If the remaining range is past end of file, we're done */
1115 	if ((off >> blkshift) > dn->dn_maxblkid)
1116 		goto out;
1117 
1118 	ASSERT(ISP2(blksz));
1119 	if (trunc)
1120 		tail = 0;
1121 	else
1122 		tail = P2PHASE(len, blksz);
1123 
1124 	ASSERT3U(P2PHASE(off, blksz), ==, 0);
1125 	/* zero out any partial block data at the end of the range */
1126 	if (tail) {
1127 		if (len < tail)
1128 			tail = len;
1129 		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1130 		    TRUE, FTAG, &db) == 0) {
1131 			/* don't dirty if not on disk and not dirty */
1132 			if (db->db_last_dirty ||
1133 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1134 				rw_exit(&dn->dn_struct_rwlock);
1135 				dbuf_will_dirty(db, tx);
1136 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1137 				bzero(db->db.db_data, tail);
1138 			}
1139 			dbuf_rele(db, FTAG);
1140 		}
1141 		len -= tail;
1142 	}
1143 
1144 	/* If the range did not include a full block, we are done */
1145 	if (len == 0)
1146 		goto out;
1147 
1148 	ASSERT(IS_P2ALIGNED(off, blksz));
1149 	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1150 	blkid = off >> blkshift;
1151 	nblks = len >> blkshift;
1152 	if (trunc)
1153 		nblks += 1;
1154 
1155 	/*
1156 	 * Read in and mark all the level-1 indirects dirty,
1157 	 * so that they will stay in memory until syncing phase.
1158 	 * Always dirty the first and last indirect to make sure
1159 	 * we dirty all the partial indirects.
1160 	 */
1161 	if (dn->dn_nlevels > 1) {
1162 		uint64_t i, first, last;
1163 		int shift = epbs + dn->dn_datablkshift;
1164 
1165 		first = blkid >> epbs;
1166 		if (db = dbuf_hold_level(dn, 1, first, FTAG)) {
1167 			dbuf_will_dirty(db, tx);
1168 			dbuf_rele(db, FTAG);
1169 		}
1170 		if (trunc)
1171 			last = dn->dn_maxblkid >> epbs;
1172 		else
1173 			last = (blkid + nblks - 1) >> epbs;
1174 		if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1175 			dbuf_will_dirty(db, tx);
1176 			dbuf_rele(db, FTAG);
1177 		}
1178 		for (i = first + 1; i < last; i++) {
1179 			uint64_t ibyte = i << shift;
1180 			int err;
1181 
1182 			err = dnode_next_offset(dn,
1183 			    DNODE_FIND_HAVELOCK, &ibyte, 1, 1, 0);
1184 			i = ibyte >> shift;
1185 			if (err == ESRCH || i >= last)
1186 				break;
1187 			ASSERT(err == 0);
1188 			db = dbuf_hold_level(dn, 1, i, FTAG);
1189 			if (db) {
1190 				dbuf_will_dirty(db, tx);
1191 				dbuf_rele(db, FTAG);
1192 			}
1193 		}
1194 	}
1195 done:
1196 	/*
1197 	 * Add this range to the dnode range list.
1198 	 * We will finish up this free operation in the syncing phase.
1199 	 */
1200 	mutex_enter(&dn->dn_mtx);
1201 	dnode_clear_range(dn, blkid, nblks, tx);
1202 	{
1203 		free_range_t *rp, *found;
1204 		avl_index_t where;
1205 		avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
1206 
1207 		/* Add new range to dn_ranges */
1208 		rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1209 		rp->fr_blkid = blkid;
1210 		rp->fr_nblks = nblks;
1211 		found = avl_find(tree, rp, &where);
1212 		ASSERT(found == NULL);
1213 		avl_insert(tree, rp, where);
1214 		dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1215 		    blkid, nblks, tx->tx_txg);
1216 	}
1217 	mutex_exit(&dn->dn_mtx);
1218 
1219 	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1220 	dnode_setdirty(dn, tx);
1221 out:
1222 	if (trunc && dn->dn_maxblkid >= (off >> blkshift))
1223 		dn->dn_maxblkid = (off >> blkshift ? (off >> blkshift) - 1 : 0);
1224 
1225 	rw_exit(&dn->dn_struct_rwlock);
1226 }
1227 
1228 static boolean_t
1229 dnode_spill_freed(dnode_t *dn)
1230 {
1231 	int i;
1232 
1233 	mutex_enter(&dn->dn_mtx);
1234 	for (i = 0; i < TXG_SIZE; i++) {
1235 		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1236 			break;
1237 	}
1238 	mutex_exit(&dn->dn_mtx);
1239 	return (i < TXG_SIZE);
1240 }
1241 
1242 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1243 uint64_t
1244 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1245 {
1246 	free_range_t range_tofind;
1247 	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1248 	int i;
1249 
1250 	if (blkid == DMU_BONUS_BLKID)
1251 		return (FALSE);
1252 
1253 	/*
1254 	 * If we're in the process of opening the pool, dp will not be
1255 	 * set yet, but there shouldn't be anything dirty.
1256 	 */
1257 	if (dp == NULL)
1258 		return (FALSE);
1259 
1260 	if (dn->dn_free_txg)
1261 		return (TRUE);
1262 
1263 	if (blkid == DMU_SPILL_BLKID)
1264 		return (dnode_spill_freed(dn));
1265 
1266 	range_tofind.fr_blkid = blkid;
1267 	mutex_enter(&dn->dn_mtx);
1268 	for (i = 0; i < TXG_SIZE; i++) {
1269 		free_range_t *range_found;
1270 		avl_index_t idx;
1271 
1272 		range_found = avl_find(&dn->dn_ranges[i], &range_tofind, &idx);
1273 		if (range_found) {
1274 			ASSERT(range_found->fr_nblks > 0);
1275 			break;
1276 		}
1277 		range_found = avl_nearest(&dn->dn_ranges[i], idx, AVL_BEFORE);
1278 		if (range_found &&
1279 		    range_found->fr_blkid + range_found->fr_nblks > blkid)
1280 			break;
1281 	}
1282 	mutex_exit(&dn->dn_mtx);
1283 	return (i < TXG_SIZE);
1284 }
1285 
1286 /* call from syncing context when we actually write/free space for this dnode */
1287 void
1288 dnode_diduse_space(dnode_t *dn, int64_t delta)
1289 {
1290 	uint64_t space;
1291 	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1292 	    dn, dn->dn_phys,
1293 	    (u_longlong_t)dn->dn_phys->dn_used,
1294 	    (longlong_t)delta);
1295 
1296 	mutex_enter(&dn->dn_mtx);
1297 	space = DN_USED_BYTES(dn->dn_phys);
1298 	if (delta > 0) {
1299 		ASSERT3U(space + delta, >=, space); /* no overflow */
1300 	} else {
1301 		ASSERT3U(space, >=, -delta); /* no underflow */
1302 	}
1303 	space += delta;
1304 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1305 		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1306 		ASSERT3U(P2PHASE(space, 1<<DEV_BSHIFT), ==, 0);
1307 		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1308 	} else {
1309 		dn->dn_phys->dn_used = space;
1310 		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1311 	}
1312 	mutex_exit(&dn->dn_mtx);
1313 }
1314 
1315 /*
1316  * Call when we think we're going to write/free space in open context.
1317  * Be conservative (ie. OK to write less than this or free more than
1318  * this, but don't write more or free less).
1319  */
1320 void
1321 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1322 {
1323 	objset_t *os = dn->dn_objset;
1324 	dsl_dataset_t *ds = os->os_dsl_dataset;
1325 
1326 	if (space > 0)
1327 		space = spa_get_asize(os->os_spa, space);
1328 
1329 	if (ds)
1330 		dsl_dir_willuse_space(ds->ds_dir, space, tx);
1331 
1332 	dmu_tx_willuse_space(tx, space);
1333 }
1334 
1335 /*
1336  * This function scans a block at the indicated "level" looking for
1337  * a hole or data (depending on 'flags').  If level > 0, then we are
1338  * scanning an indirect block looking at its pointers.  If level == 0,
1339  * then we are looking at a block of dnodes.  If we don't find what we
1340  * are looking for in the block, we return ESRCH.  Otherwise, return
1341  * with *offset pointing to the beginning (if searching forwards) or
1342  * end (if searching backwards) of the range covered by the block
1343  * pointer we matched on (or dnode).
1344  *
1345  * The basic search algorithm used below by dnode_next_offset() is to
1346  * use this function to search up the block tree (widen the search) until
1347  * we find something (i.e., we don't return ESRCH) and then search back
1348  * down the tree (narrow the search) until we reach our original search
1349  * level.
1350  */
1351 static int
1352 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1353 	int lvl, uint64_t blkfill, uint64_t txg)
1354 {
1355 	dmu_buf_impl_t *db = NULL;
1356 	void *data = NULL;
1357 	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1358 	uint64_t epb = 1ULL << epbs;
1359 	uint64_t minfill, maxfill;
1360 	boolean_t hole;
1361 	int i, inc, error, span;
1362 
1363 	dprintf("probing object %llu offset %llx level %d of %u\n",
1364 	    dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1365 
1366 	hole = ((flags & DNODE_FIND_HOLE) != 0);
1367 	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1368 	ASSERT(txg == 0 || !hole);
1369 
1370 	if (lvl == dn->dn_phys->dn_nlevels) {
1371 		error = 0;
1372 		epb = dn->dn_phys->dn_nblkptr;
1373 		data = dn->dn_phys->dn_blkptr;
1374 	} else {
1375 		uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1376 		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1377 		if (error) {
1378 			if (error != ENOENT)
1379 				return (error);
1380 			if (hole)
1381 				return (0);
1382 			/*
1383 			 * This can only happen when we are searching up
1384 			 * the block tree for data.  We don't really need to
1385 			 * adjust the offset, as we will just end up looking
1386 			 * at the pointer to this block in its parent, and its
1387 			 * going to be unallocated, so we will skip over it.
1388 			 */
1389 			return (ESRCH);
1390 		}
1391 		error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1392 		if (error) {
1393 			dbuf_rele(db, FTAG);
1394 			return (error);
1395 		}
1396 		data = db->db.db_data;
1397 	}
1398 
1399 	if (db && txg &&
1400 	    (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg)) {
1401 		/*
1402 		 * This can only happen when we are searching up the tree
1403 		 * and these conditions mean that we need to keep climbing.
1404 		 */
1405 		error = ESRCH;
1406 	} else if (lvl == 0) {
1407 		dnode_phys_t *dnp = data;
1408 		span = DNODE_SHIFT;
1409 		ASSERT(dn->dn_type == DMU_OT_DNODE);
1410 
1411 		for (i = (*offset >> span) & (blkfill - 1);
1412 		    i >= 0 && i < blkfill; i += inc) {
1413 			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1414 				break;
1415 			*offset += (1ULL << span) * inc;
1416 		}
1417 		if (i < 0 || i == blkfill)
1418 			error = ESRCH;
1419 	} else {
1420 		blkptr_t *bp = data;
1421 		uint64_t start = *offset;
1422 		span = (lvl - 1) * epbs + dn->dn_datablkshift;
1423 		minfill = 0;
1424 		maxfill = blkfill << ((lvl - 1) * epbs);
1425 
1426 		if (hole)
1427 			maxfill--;
1428 		else
1429 			minfill++;
1430 
1431 		*offset = *offset >> span;
1432 		for (i = BF64_GET(*offset, 0, epbs);
1433 		    i >= 0 && i < epb; i += inc) {
1434 			if (bp[i].blk_fill >= minfill &&
1435 			    bp[i].blk_fill <= maxfill &&
1436 			    (hole || bp[i].blk_birth > txg))
1437 				break;
1438 			if (inc > 0 || *offset > 0)
1439 				*offset += inc;
1440 		}
1441 		*offset = *offset << span;
1442 		if (inc < 0) {
1443 			/* traversing backwards; position offset at the end */
1444 			ASSERT3U(*offset, <=, start);
1445 			*offset = MIN(*offset + (1ULL << span) - 1, start);
1446 		} else if (*offset < start) {
1447 			*offset = start;
1448 		}
1449 		if (i < 0 || i >= epb)
1450 			error = ESRCH;
1451 	}
1452 
1453 	if (db)
1454 		dbuf_rele(db, FTAG);
1455 
1456 	return (error);
1457 }
1458 
1459 /*
1460  * Find the next hole, data, or sparse region at or after *offset.
1461  * The value 'blkfill' tells us how many items we expect to find
1462  * in an L0 data block; this value is 1 for normal objects,
1463  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1464  * DNODES_PER_BLOCK when searching for sparse regions thereof.
1465  *
1466  * Examples:
1467  *
1468  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1469  *	Finds the next/previous hole/data in a file.
1470  *	Used in dmu_offset_next().
1471  *
1472  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1473  *	Finds the next free/allocated dnode an objset's meta-dnode.
1474  *	Only finds objects that have new contents since txg (ie.
1475  *	bonus buffer changes and content removal are ignored).
1476  *	Used in dmu_object_next().
1477  *
1478  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1479  *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
1480  *	Used in dmu_object_alloc().
1481  */
1482 int
1483 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1484     int minlvl, uint64_t blkfill, uint64_t txg)
1485 {
1486 	uint64_t initial_offset = *offset;
1487 	int lvl, maxlvl;
1488 	int error = 0;
1489 
1490 	if (!(flags & DNODE_FIND_HAVELOCK))
1491 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1492 
1493 	if (dn->dn_phys->dn_nlevels == 0) {
1494 		error = ESRCH;
1495 		goto out;
1496 	}
1497 
1498 	if (dn->dn_datablkshift == 0) {
1499 		if (*offset < dn->dn_datablksz) {
1500 			if (flags & DNODE_FIND_HOLE)
1501 				*offset = dn->dn_datablksz;
1502 		} else {
1503 			error = ESRCH;
1504 		}
1505 		goto out;
1506 	}
1507 
1508 	maxlvl = dn->dn_phys->dn_nlevels;
1509 
1510 	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1511 		error = dnode_next_offset_level(dn,
1512 		    flags, offset, lvl, blkfill, txg);
1513 		if (error != ESRCH)
1514 			break;
1515 	}
1516 
1517 	while (error == 0 && --lvl >= minlvl) {
1518 		error = dnode_next_offset_level(dn,
1519 		    flags, offset, lvl, blkfill, txg);
1520 	}
1521 
1522 	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1523 	    initial_offset < *offset : initial_offset > *offset))
1524 		error = ESRCH;
1525 out:
1526 	if (!(flags & DNODE_FIND_HAVELOCK))
1527 		rw_exit(&dn->dn_struct_rwlock);
1528 
1529 	return (error);
1530 }
1531