xref: /illumos-gate/usr/src/uts/common/fs/zfs/dmu_zfetch.c (revision 51396a8ee7fb52fe0ab33bfe7b4f495ad431904a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37 
38 /*
39  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
40  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
41  * prescient prefetch never issues i/os that end up not being needed,
42  * so it can't hurt performance.
43  */
44 boolean_t zfs_prefetch_disable = B_FALSE;
45 
46 /* max # of streams per zfetch */
47 uint32_t	zfetch_max_streams = 8;
48 /* min time before stream reclaim */
49 uint32_t	zfetch_min_sec_reap = 2;
50 /* max bytes to prefetch per stream (default 8MB) */
51 uint32_t	zfetch_max_distance = 8 * 1024 * 1024;
52 /* max bytes to prefetch indirects for per stream (default 64MB) */
53 uint32_t	zfetch_max_idistance = 64 * 1024 * 1024;
54 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
55 uint64_t	zfetch_array_rd_sz = 1024 * 1024;
56 
57 typedef struct zfetch_stats {
58 	kstat_named_t zfetchstat_hits;
59 	kstat_named_t zfetchstat_misses;
60 	kstat_named_t zfetchstat_max_streams;
61 } zfetch_stats_t;
62 
63 static zfetch_stats_t zfetch_stats = {
64 	{ "hits",			KSTAT_DATA_UINT64 },
65 	{ "misses",			KSTAT_DATA_UINT64 },
66 	{ "max_streams",		KSTAT_DATA_UINT64 },
67 };
68 
69 #define	ZFETCHSTAT_BUMP(stat) \
70 	atomic_inc_64(&zfetch_stats.stat.value.ui64);
71 
72 kstat_t		*zfetch_ksp;
73 
74 void
75 zfetch_init(void)
76 {
77 	zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
78 	    KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
79 	    KSTAT_FLAG_VIRTUAL);
80 
81 	if (zfetch_ksp != NULL) {
82 		zfetch_ksp->ks_data = &zfetch_stats;
83 		kstat_install(zfetch_ksp);
84 	}
85 }
86 
87 void
88 zfetch_fini(void)
89 {
90 	if (zfetch_ksp != NULL) {
91 		kstat_delete(zfetch_ksp);
92 		zfetch_ksp = NULL;
93 	}
94 }
95 
96 /*
97  * This takes a pointer to a zfetch structure and a dnode.  It performs the
98  * necessary setup for the zfetch structure, grokking data from the
99  * associated dnode.
100  */
101 void
102 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
103 {
104 	if (zf == NULL)
105 		return;
106 
107 	zf->zf_dnode = dno;
108 
109 	list_create(&zf->zf_stream, sizeof (zstream_t),
110 	    offsetof(zstream_t, zs_node));
111 
112 	rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
113 }
114 
115 static void
116 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
117 {
118 	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
119 	list_remove(&zf->zf_stream, zs);
120 	mutex_destroy(&zs->zs_lock);
121 	kmem_free(zs, sizeof (*zs));
122 }
123 
124 /*
125  * Clean-up state associated with a zfetch structure (e.g. destroy the
126  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
127  */
128 void
129 dmu_zfetch_fini(zfetch_t *zf)
130 {
131 	zstream_t *zs;
132 
133 	ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
134 
135 	rw_enter(&zf->zf_rwlock, RW_WRITER);
136 	while ((zs = list_head(&zf->zf_stream)) != NULL)
137 		dmu_zfetch_stream_remove(zf, zs);
138 	rw_exit(&zf->zf_rwlock);
139 	list_destroy(&zf->zf_stream);
140 	rw_destroy(&zf->zf_rwlock);
141 
142 	zf->zf_dnode = NULL;
143 }
144 
145 /*
146  * If there aren't too many streams already, create a new stream.
147  * The "blkid" argument is the next block that we expect this stream to access.
148  * While we're here, clean up old streams (which haven't been
149  * accessed for at least zfetch_min_sec_reap seconds).
150  */
151 static void
152 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
153 {
154 	zstream_t *zs_next;
155 	int numstreams = 0;
156 
157 	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
158 
159 	/*
160 	 * Clean up old streams.
161 	 */
162 	for (zstream_t *zs = list_head(&zf->zf_stream);
163 	    zs != NULL; zs = zs_next) {
164 		zs_next = list_next(&zf->zf_stream, zs);
165 		if (((gethrtime() - zs->zs_atime) / NANOSEC) >
166 		    zfetch_min_sec_reap)
167 			dmu_zfetch_stream_remove(zf, zs);
168 		else
169 			numstreams++;
170 	}
171 
172 	/*
173 	 * The maximum number of streams is normally zfetch_max_streams,
174 	 * but for small files we lower it such that it's at least possible
175 	 * for all the streams to be non-overlapping.
176 	 *
177 	 * If we are already at the maximum number of streams for this file,
178 	 * even after removing old streams, then don't create this stream.
179 	 */
180 	uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
181 	    zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
182 	    zfetch_max_distance));
183 	if (numstreams >= max_streams) {
184 		ZFETCHSTAT_BUMP(zfetchstat_max_streams);
185 		return;
186 	}
187 
188 	zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
189 	zs->zs_blkid = blkid;
190 	zs->zs_pf_blkid = blkid;
191 	zs->zs_ipf_blkid = blkid;
192 	zs->zs_atime = gethrtime();
193 	mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
194 
195 	list_insert_head(&zf->zf_stream, zs);
196 }
197 
198 /*
199  * This is the predictive prefetch entry point.  It associates dnode access
200  * specified with blkid and nblks arguments with prefetch stream, predicts
201  * further accesses based on that stats and initiates speculative prefetch.
202  * fetch_data argument specifies whether actual data blocks should be fetched:
203  *   FALSE -- prefetch only indirect blocks for predicted data blocks;
204  *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
205  */
206 void
207 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
208 {
209 	zstream_t *zs;
210 	int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
211 	int64_t pf_ahead_blks, max_blks;
212 	int epbs, max_dist_blks, pf_nblks, ipf_nblks;
213 	uint64_t end_of_access_blkid = blkid + nblks;
214 	spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
215 
216 	if (zfs_prefetch_disable)
217 		return;
218 
219 	/*
220 	 * If we haven't yet loaded the indirect vdevs' mappings, we
221 	 * can only read from blocks that we carefully ensure are on
222 	 * concrete vdevs (or previously-loaded indirect vdevs).  So we
223 	 * can't allow the predictive prefetcher to attempt reads of other
224 	 * blocks (e.g. of the MOS's dnode obejct).
225 	 */
226 	if (!spa_indirect_vdevs_loaded(spa))
227 		return;
228 
229 	/*
230 	 * As a fast path for small (single-block) files, ignore access
231 	 * to the first block.
232 	 */
233 	if (blkid == 0)
234 		return;
235 
236 	rw_enter(&zf->zf_rwlock, RW_READER);
237 
238 	/*
239 	 * Find matching prefetch stream.  Depending on whether the accesses
240 	 * are block-aligned, first block of the new access may either follow
241 	 * the last block of the previous access, or be equal to it.
242 	 */
243 	for (zs = list_head(&zf->zf_stream); zs != NULL;
244 	    zs = list_next(&zf->zf_stream, zs)) {
245 		if (blkid == zs->zs_blkid || blkid + 1 == zs->zs_blkid) {
246 			mutex_enter(&zs->zs_lock);
247 			/*
248 			 * zs_blkid could have changed before we
249 			 * acquired zs_lock; re-check them here.
250 			 */
251 			if (blkid == zs->zs_blkid) {
252 				break;
253 			} else if (blkid + 1 == zs->zs_blkid) {
254 				blkid++;
255 				nblks--;
256 				if (nblks == 0) {
257 					/* Already prefetched this before. */
258 					mutex_exit(&zs->zs_lock);
259 					rw_exit(&zf->zf_rwlock);
260 					return;
261 				}
262 				break;
263 			}
264 			mutex_exit(&zs->zs_lock);
265 		}
266 	}
267 
268 	if (zs == NULL) {
269 		/*
270 		 * This access is not part of any existing stream.  Create
271 		 * a new stream for it.
272 		 */
273 		ZFETCHSTAT_BUMP(zfetchstat_misses);
274 		if (rw_tryupgrade(&zf->zf_rwlock))
275 			dmu_zfetch_stream_create(zf, end_of_access_blkid);
276 		rw_exit(&zf->zf_rwlock);
277 		return;
278 	}
279 
280 	/*
281 	 * This access was to a block that we issued a prefetch for on
282 	 * behalf of this stream. Issue further prefetches for this stream.
283 	 *
284 	 * Normally, we start prefetching where we stopped
285 	 * prefetching last (zs_pf_blkid).  But when we get our first
286 	 * hit on this stream, zs_pf_blkid == zs_blkid, we don't
287 	 * want to prefetch the block we just accessed.  In this case,
288 	 * start just after the block we just accessed.
289 	 */
290 	pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
291 
292 	/*
293 	 * Double our amount of prefetched data, but don't let the
294 	 * prefetch get further ahead than zfetch_max_distance.
295 	 */
296 	if (fetch_data) {
297 		max_dist_blks =
298 		    zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
299 		/*
300 		 * Previously, we were (zs_pf_blkid - blkid) ahead.  We
301 		 * want to now be double that, so read that amount again,
302 		 * plus the amount we are catching up by (i.e. the amount
303 		 * read just now).
304 		 */
305 		pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
306 		max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
307 		pf_nblks = MIN(pf_ahead_blks, max_blks);
308 	} else {
309 		pf_nblks = 0;
310 	}
311 
312 	zs->zs_pf_blkid = pf_start + pf_nblks;
313 
314 	/*
315 	 * Do the same for indirects, starting from where we stopped last,
316 	 * or where we will stop reading data blocks (and the indirects
317 	 * that point to them).
318 	 */
319 	ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
320 	max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
321 	/*
322 	 * We want to double our distance ahead of the data prefetch
323 	 * (or reader, if we are not prefetching data).  Previously, we
324 	 * were (zs_ipf_blkid - blkid) ahead.  To double that, we read
325 	 * that amount again, plus the amount we are catching up by
326 	 * (i.e. the amount read now + the amount of data prefetched now).
327 	 */
328 	pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
329 	max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
330 	ipf_nblks = MIN(pf_ahead_blks, max_blks);
331 	zs->zs_ipf_blkid = ipf_start + ipf_nblks;
332 
333 	epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
334 	ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
335 	ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
336 
337 	zs->zs_atime = gethrtime();
338 	zs->zs_blkid = end_of_access_blkid;
339 	mutex_exit(&zs->zs_lock);
340 	rw_exit(&zf->zf_rwlock);
341 
342 	/*
343 	 * dbuf_prefetch() is asynchronous (even when it needs to read
344 	 * indirect blocks), but we still prefer to drop our locks before
345 	 * calling it to reduce the time we hold them.
346 	 */
347 
348 	for (int i = 0; i < pf_nblks; i++) {
349 		dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
350 		    ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
351 	}
352 	for (int64_t iblk = ipf_istart; iblk < ipf_iend; iblk++) {
353 		dbuf_prefetch(zf->zf_dnode, 1, iblk,
354 		    ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
355 	}
356 	ZFETCHSTAT_BUMP(zfetchstat_hits);
357 }
358