1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2013, 2017 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dmu_zfetch.h> 34 #include <sys/dmu.h> 35 #include <sys/dbuf.h> 36 #include <sys/kstat.h> 37 38 /* 39 * This tunable disables predictive prefetch. Note that it leaves "prescient" 40 * prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch, 41 * prescient prefetch never issues i/os that end up not being needed, 42 * so it can't hurt performance. 43 */ 44 boolean_t zfs_prefetch_disable = B_FALSE; 45 46 /* max # of streams per zfetch */ 47 uint32_t zfetch_max_streams = 8; 48 /* min time before stream reclaim */ 49 uint32_t zfetch_min_sec_reap = 2; 50 /* max bytes to prefetch per stream (default 8MB) */ 51 uint32_t zfetch_max_distance = 8 * 1024 * 1024; 52 /* max bytes to prefetch indirects for per stream (default 64MB) */ 53 uint32_t zfetch_max_idistance = 64 * 1024 * 1024; 54 /* max number of bytes in an array_read in which we allow prefetching (1MB) */ 55 uint64_t zfetch_array_rd_sz = 1024 * 1024; 56 57 typedef struct zfetch_stats { 58 kstat_named_t zfetchstat_hits; 59 kstat_named_t zfetchstat_misses; 60 kstat_named_t zfetchstat_max_streams; 61 kstat_named_t zfetchstat_max_completion_us; 62 kstat_named_t zfetchstat_last_completion_us; 63 kstat_named_t zfetchstat_io_issued; 64 } zfetch_stats_t; 65 66 static zfetch_stats_t zfetch_stats = { 67 { "hits", KSTAT_DATA_UINT64 }, 68 { "misses", KSTAT_DATA_UINT64 }, 69 { "max_streams", KSTAT_DATA_UINT64 }, 70 { "max_completion_us", KSTAT_DATA_UINT64 }, 71 { "last_completion_us", KSTAT_DATA_UINT64 }, 72 { "io_issued", KSTAT_DATA_UINT64 }, 73 }; 74 75 #define ZFETCHSTAT_BUMP(stat) \ 76 atomic_inc_64(&zfetch_stats.stat.value.ui64) 77 #define ZFETCHSTAT_ADD(stat, val) \ 78 atomic_add_64(&zfetch_stats.stat.value.ui64, val) 79 #define ZFETCHSTAT_SET(stat, val) \ 80 zfetch_stats.stat.value.ui64 = val 81 #define ZFETCHSTAT_GET(stat) \ 82 zfetch_stats.stat.value.ui64 83 84 85 kstat_t *zfetch_ksp; 86 87 void 88 zfetch_init(void) 89 { 90 zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc", 91 KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t), 92 KSTAT_FLAG_VIRTUAL); 93 94 if (zfetch_ksp != NULL) { 95 zfetch_ksp->ks_data = &zfetch_stats; 96 kstat_install(zfetch_ksp); 97 } 98 } 99 100 void 101 zfetch_fini(void) 102 { 103 if (zfetch_ksp != NULL) { 104 kstat_delete(zfetch_ksp); 105 zfetch_ksp = NULL; 106 } 107 } 108 109 /* 110 * This takes a pointer to a zfetch structure and a dnode. It performs the 111 * necessary setup for the zfetch structure, grokking data from the 112 * associated dnode. 113 */ 114 void 115 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno) 116 { 117 if (zf == NULL) 118 return; 119 zf->zf_dnode = dno; 120 zf->zf_numstreams = 0; 121 122 list_create(&zf->zf_stream, sizeof (zstream_t), 123 offsetof(zstream_t, zs_node)); 124 125 rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL); 126 } 127 128 static void 129 dmu_zfetch_stream_fini(zstream_t *zs) 130 { 131 mutex_destroy(&zs->zs_lock); 132 zfs_refcount_destroy(&zs->zs_blocks); 133 kmem_free(zs, sizeof (*zs)); 134 } 135 136 static void 137 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs) 138 { 139 ASSERT(RW_WRITE_HELD(&zf->zf_rwlock)); 140 list_remove(&zf->zf_stream, zs); 141 dmu_zfetch_stream_fini(zs); 142 zf->zf_numstreams--; 143 } 144 145 static void 146 dmu_zfetch_stream_orphan(zfetch_t *zf, zstream_t *zs) 147 { 148 ASSERT(RW_WRITE_HELD(&zf->zf_rwlock)); 149 list_remove(&zf->zf_stream, zs); 150 zs->zs_fetch = NULL; 151 zf->zf_numstreams--; 152 } 153 154 /* 155 * Clean-up state associated with a zfetch structure (e.g. destroy the 156 * streams). This doesn't free the zfetch_t itself, that's left to the caller. 157 */ 158 void 159 dmu_zfetch_fini(zfetch_t *zf) 160 { 161 zstream_t *zs; 162 163 ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock)); 164 165 rw_enter(&zf->zf_rwlock, RW_WRITER); 166 while ((zs = list_head(&zf->zf_stream)) != NULL) { 167 if (zfs_refcount_count(&zs->zs_blocks) != 0) 168 dmu_zfetch_stream_orphan(zf, zs); 169 else 170 dmu_zfetch_stream_remove(zf, zs); 171 } 172 rw_exit(&zf->zf_rwlock); 173 list_destroy(&zf->zf_stream); 174 rw_destroy(&zf->zf_rwlock); 175 176 zf->zf_dnode = NULL; 177 } 178 179 /* 180 * If there aren't too many streams already, create a new stream. 181 * The "blkid" argument is the next block that we expect this stream to access. 182 * While we're here, clean up old streams (which haven't been 183 * accessed for at least zfetch_min_sec_reap seconds). 184 */ 185 static void 186 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid) 187 { 188 zstream_t *zs_next; 189 hrtime_t now = gethrtime(); 190 191 ASSERT(RW_WRITE_HELD(&zf->zf_rwlock)); 192 193 /* 194 * Clean up old streams. 195 */ 196 for (zstream_t *zs = list_head(&zf->zf_stream); 197 zs != NULL; zs = zs_next) { 198 zs_next = list_next(&zf->zf_stream, zs); 199 /* 200 * Skip gethrtime() call if there are still references 201 */ 202 if (zfs_refcount_count(&zs->zs_blocks) != 0) 203 continue; 204 if (((now - zs->zs_atime) / NANOSEC) > 205 zfetch_min_sec_reap) 206 dmu_zfetch_stream_remove(zf, zs); 207 } 208 209 /* 210 * The maximum number of streams is normally zfetch_max_streams, 211 * but for small files we lower it such that it's at least possible 212 * for all the streams to be non-overlapping. 213 * 214 * If we are already at the maximum number of streams for this file, 215 * even after removing old streams, then don't create this stream. 216 */ 217 uint32_t max_streams = MAX(1, MIN(zfetch_max_streams, 218 zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz / 219 zfetch_max_distance)); 220 if (zf->zf_numstreams >= max_streams) { 221 ZFETCHSTAT_BUMP(zfetchstat_max_streams); 222 return; 223 } 224 225 zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP); 226 zs->zs_blkid = blkid; 227 zs->zs_pf_blkid = blkid; 228 zs->zs_ipf_blkid = blkid; 229 zs->zs_atime = now; 230 zs->zs_fetch = zf; 231 zfs_refcount_create(&zs->zs_blocks); 232 mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL); 233 zf->zf_numstreams++; 234 list_insert_head(&zf->zf_stream, zs); 235 } 236 237 static void 238 dmu_zfetch_stream_done(void *arg, boolean_t io_issued) 239 { 240 zstream_t *zs = arg; 241 242 if (zs->zs_start_time && io_issued) { 243 hrtime_t now = gethrtime(); 244 hrtime_t delta = NSEC2USEC(now - zs->zs_start_time); 245 246 zs->zs_start_time = 0; 247 ZFETCHSTAT_SET(zfetchstat_last_completion_us, delta); 248 if (delta > ZFETCHSTAT_GET(zfetchstat_max_completion_us)) 249 ZFETCHSTAT_SET(zfetchstat_max_completion_us, delta); 250 } 251 252 if (zfs_refcount_remove(&zs->zs_blocks, NULL) != 0) 253 return; 254 255 /* 256 * The parent fetch structure has gone away 257 */ 258 if (zs->zs_fetch == NULL) 259 dmu_zfetch_stream_fini(zs); 260 } 261 262 /* 263 * This is the predictive prefetch entry point. It associates dnode access 264 * specified with blkid and nblks arguments with prefetch stream, predicts 265 * further accesses based on that stats and initiates speculative prefetch. 266 * fetch_data argument specifies whether actual data blocks should be fetched: 267 * FALSE -- prefetch only indirect blocks for predicted data blocks; 268 * TRUE -- prefetch predicted data blocks plus following indirect blocks. 269 */ 270 void 271 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data, 272 boolean_t have_lock) 273 { 274 zstream_t *zs; 275 int64_t pf_start, ipf_start, ipf_istart, ipf_iend; 276 int64_t pf_ahead_blks, max_blks; 277 int epbs, max_dist_blks, pf_nblks, ipf_nblks, issued; 278 uint64_t end_of_access_blkid = blkid + nblks; 279 spa_t *spa = zf->zf_dnode->dn_objset->os_spa; 280 281 if (zfs_prefetch_disable) 282 return; 283 284 /* 285 * If we haven't yet loaded the indirect vdevs' mappings, we 286 * can only read from blocks that we carefully ensure are on 287 * concrete vdevs (or previously-loaded indirect vdevs). So we 288 * can't allow the predictive prefetcher to attempt reads of other 289 * blocks (e.g. of the MOS's dnode obejct). 290 */ 291 if (!spa_indirect_vdevs_loaded(spa)) 292 return; 293 294 /* 295 * As a fast path for small (single-block) files, ignore access 296 * to the first block. 297 */ 298 if (!have_lock && blkid == 0) 299 return; 300 301 if (!have_lock) 302 rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER); 303 304 305 /* 306 * A fast path for small files for which no prefetch will 307 * happen. 308 */ 309 if (zf->zf_dnode->dn_maxblkid < 2) { 310 if (!have_lock) 311 rw_exit(&zf->zf_dnode->dn_struct_rwlock); 312 return; 313 } 314 rw_enter(&zf->zf_rwlock, RW_READER); 315 316 /* 317 * Find matching prefetch stream. Depending on whether the accesses 318 * are block-aligned, first block of the new access may either follow 319 * the last block of the previous access, or be equal to it. 320 */ 321 for (zs = list_head(&zf->zf_stream); zs != NULL; 322 zs = list_next(&zf->zf_stream, zs)) { 323 if (blkid == zs->zs_blkid || blkid + 1 == zs->zs_blkid) { 324 mutex_enter(&zs->zs_lock); 325 /* 326 * zs_blkid could have changed before we 327 * acquired zs_lock; re-check them here. 328 */ 329 if (blkid == zs->zs_blkid) { 330 break; 331 } else if (blkid + 1 == zs->zs_blkid) { 332 blkid++; 333 nblks--; 334 if (nblks == 0) { 335 /* Already prefetched this before. */ 336 mutex_exit(&zs->zs_lock); 337 rw_exit(&zf->zf_rwlock); 338 if (!have_lock) { 339 rw_exit(&zf->zf_dnode-> 340 dn_struct_rwlock); 341 } 342 return; 343 } 344 break; 345 } 346 mutex_exit(&zs->zs_lock); 347 } 348 } 349 350 if (zs == NULL) { 351 /* 352 * This access is not part of any existing stream. Create 353 * a new stream for it. 354 */ 355 ZFETCHSTAT_BUMP(zfetchstat_misses); 356 if (rw_tryupgrade(&zf->zf_rwlock)) 357 dmu_zfetch_stream_create(zf, end_of_access_blkid); 358 rw_exit(&zf->zf_rwlock); 359 if (!have_lock) 360 rw_exit(&zf->zf_dnode->dn_struct_rwlock); 361 return; 362 } 363 364 /* 365 * This access was to a block that we issued a prefetch for on 366 * behalf of this stream. Issue further prefetches for this stream. 367 * 368 * Normally, we start prefetching where we stopped 369 * prefetching last (zs_pf_blkid). But when we get our first 370 * hit on this stream, zs_pf_blkid == zs_blkid, we don't 371 * want to prefetch the block we just accessed. In this case, 372 * start just after the block we just accessed. 373 */ 374 pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid); 375 376 /* 377 * Double our amount of prefetched data, but don't let the 378 * prefetch get further ahead than zfetch_max_distance. 379 */ 380 if (fetch_data) { 381 max_dist_blks = 382 zfetch_max_distance >> zf->zf_dnode->dn_datablkshift; 383 /* 384 * Previously, we were (zs_pf_blkid - blkid) ahead. We 385 * want to now be double that, so read that amount again, 386 * plus the amount we are catching up by (i.e. the amount 387 * read just now). 388 */ 389 pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks; 390 max_blks = max_dist_blks - (pf_start - end_of_access_blkid); 391 pf_nblks = MIN(pf_ahead_blks, max_blks); 392 } else { 393 pf_nblks = 0; 394 } 395 396 zs->zs_pf_blkid = pf_start + pf_nblks; 397 398 /* 399 * Do the same for indirects, starting from where we stopped last, 400 * or where we will stop reading data blocks (and the indirects 401 * that point to them). 402 */ 403 ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid); 404 max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift; 405 /* 406 * We want to double our distance ahead of the data prefetch 407 * (or reader, if we are not prefetching data). Previously, we 408 * were (zs_ipf_blkid - blkid) ahead. To double that, we read 409 * that amount again, plus the amount we are catching up by 410 * (i.e. the amount read now + the amount of data prefetched now). 411 */ 412 pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks; 413 max_blks = max_dist_blks - (ipf_start - end_of_access_blkid); 414 ipf_nblks = MIN(pf_ahead_blks, max_blks); 415 zs->zs_ipf_blkid = ipf_start + ipf_nblks; 416 417 epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 418 ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs; 419 ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs; 420 421 zs->zs_atime = gethrtime(); 422 /* no prior reads in progress */ 423 if (zfs_refcount_count(&zs->zs_blocks) == 0) 424 zs->zs_start_time = zs->zs_atime; 425 zs->zs_blkid = end_of_access_blkid; 426 zfs_refcount_add_few(&zs->zs_blocks, pf_nblks + ipf_iend - ipf_istart, 427 NULL); 428 mutex_exit(&zs->zs_lock); 429 rw_exit(&zf->zf_rwlock); 430 issued = 0; 431 432 /* 433 * dbuf_prefetch() is asynchronous (even when it needs to read 434 * indirect blocks), but we still prefer to drop our locks before 435 * calling it to reduce the time we hold them. 436 */ 437 438 for (int i = 0; i < pf_nblks; i++) { 439 issued += dbuf_prefetch_impl(zf->zf_dnode, 0, pf_start + i, 440 ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH, 441 dmu_zfetch_stream_done, zs); 442 } 443 for (int64_t iblk = ipf_istart; iblk < ipf_iend; iblk++) { 444 issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk, 445 ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH, 446 dmu_zfetch_stream_done, zs); 447 } 448 if (!have_lock) 449 rw_exit(&zf->zf_dnode->dn_struct_rwlock); 450 ZFETCHSTAT_BUMP(zfetchstat_hits); 451 452 if (issued) 453 ZFETCHSTAT_ADD(zfetchstat_io_issued, issued); 454 } 455