1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/dmu.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dbuf.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */ 34 #include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */ 35 #include <sys/dsl_pool.h> 36 #include <sys/zap_impl.h> /* for fzap_default_block_shift */ 37 #include <sys/spa.h> 38 #include <sys/zfs_context.h> 39 40 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, 41 uint64_t arg1, uint64_t arg2); 42 43 44 dmu_tx_t * 45 dmu_tx_create_dd(dsl_dir_t *dd) 46 { 47 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); 48 tx->tx_dir = dd; 49 if (dd) 50 tx->tx_pool = dd->dd_pool; 51 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), 52 offsetof(dmu_tx_hold_t, txh_node)); 53 #ifdef ZFS_DEBUG 54 refcount_create(&tx->tx_space_written); 55 refcount_create(&tx->tx_space_freed); 56 #endif 57 return (tx); 58 } 59 60 dmu_tx_t * 61 dmu_tx_create(objset_t *os) 62 { 63 dmu_tx_t *tx = dmu_tx_create_dd(os->os->os_dsl_dataset->ds_dir); 64 tx->tx_objset = os; 65 tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os->os_dsl_dataset); 66 return (tx); 67 } 68 69 dmu_tx_t * 70 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) 71 { 72 dmu_tx_t *tx = dmu_tx_create_dd(NULL); 73 74 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); 75 tx->tx_pool = dp; 76 tx->tx_txg = txg; 77 tx->tx_anyobj = TRUE; 78 79 return (tx); 80 } 81 82 int 83 dmu_tx_is_syncing(dmu_tx_t *tx) 84 { 85 return (tx->tx_anyobj); 86 } 87 88 int 89 dmu_tx_private_ok(dmu_tx_t *tx) 90 { 91 return (tx->tx_anyobj); 92 } 93 94 static dmu_tx_hold_t * 95 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, 96 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) 97 { 98 dmu_tx_hold_t *txh; 99 dnode_t *dn = NULL; 100 int err; 101 102 if (object != DMU_NEW_OBJECT) { 103 err = dnode_hold(os->os, object, tx, &dn); 104 if (err) { 105 tx->tx_err = err; 106 return (NULL); 107 } 108 109 if (err == 0 && tx->tx_txg != 0) { 110 mutex_enter(&dn->dn_mtx); 111 /* 112 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a 113 * problem, but there's no way for it to happen (for 114 * now, at least). 115 */ 116 ASSERT(dn->dn_assigned_txg == 0); 117 dn->dn_assigned_txg = tx->tx_txg; 118 (void) refcount_add(&dn->dn_tx_holds, tx); 119 mutex_exit(&dn->dn_mtx); 120 } 121 } 122 123 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); 124 txh->txh_tx = tx; 125 txh->txh_dnode = dn; 126 #ifdef ZFS_DEBUG 127 txh->txh_type = type; 128 txh->txh_arg1 = arg1; 129 txh->txh_arg2 = arg2; 130 #endif 131 list_insert_tail(&tx->tx_holds, txh); 132 133 return (txh); 134 } 135 136 void 137 dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object) 138 { 139 /* 140 * If we're syncing, they can manipulate any object anyhow, and 141 * the hold on the dnode_t can cause problems. 142 */ 143 if (!dmu_tx_is_syncing(tx)) { 144 (void) dmu_tx_hold_object_impl(tx, os, 145 object, THT_NEWOBJECT, 0, 0); 146 } 147 } 148 149 static int 150 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) 151 { 152 int err; 153 dmu_buf_impl_t *db; 154 155 rw_enter(&dn->dn_struct_rwlock, RW_READER); 156 db = dbuf_hold_level(dn, level, blkid, FTAG); 157 rw_exit(&dn->dn_struct_rwlock); 158 if (db == NULL) 159 return (EIO); 160 err = dbuf_read(db, zio, DB_RF_CANFAIL); 161 dbuf_rele(db, FTAG); 162 return (err); 163 } 164 165 /* ARGSUSED */ 166 static void 167 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 168 { 169 dnode_t *dn = txh->txh_dnode; 170 uint64_t start, end, i; 171 int min_bs, max_bs, min_ibs, max_ibs, epbs, bits; 172 int err = 0; 173 174 if (len == 0) 175 return; 176 177 min_bs = SPA_MINBLOCKSHIFT; 178 max_bs = SPA_MAXBLOCKSHIFT; 179 min_ibs = DN_MIN_INDBLKSHIFT; 180 max_ibs = DN_MAX_INDBLKSHIFT; 181 182 183 /* 184 * For i/o error checking, read the first and last level-0 185 * blocks (if they are not aligned), and all the level-1 blocks. 186 */ 187 188 if (dn) { 189 if (dn->dn_maxblkid == 0) { 190 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 191 if (err) 192 goto out; 193 } else { 194 zio_t *zio = zio_root(dn->dn_objset->os_spa, 195 NULL, NULL, ZIO_FLAG_CANFAIL); 196 197 /* first level-0 block */ 198 start = off >> dn->dn_datablkshift; 199 if (P2PHASE(off, dn->dn_datablksz) || 200 len < dn->dn_datablksz) { 201 err = dmu_tx_check_ioerr(zio, dn, 0, start); 202 if (err) 203 goto out; 204 } 205 206 /* last level-0 block */ 207 end = (off+len-1) >> dn->dn_datablkshift; 208 if (end != start && 209 P2PHASE(off+len, dn->dn_datablksz)) { 210 err = dmu_tx_check_ioerr(zio, dn, 0, end); 211 if (err) 212 goto out; 213 } 214 215 /* level-1 blocks */ 216 if (dn->dn_nlevels > 1) { 217 start >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT; 218 end >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT; 219 for (i = start+1; i < end; i++) { 220 err = dmu_tx_check_ioerr(zio, dn, 1, i); 221 if (err) 222 goto out; 223 } 224 } 225 226 err = zio_wait(zio); 227 if (err) 228 goto out; 229 } 230 } 231 232 /* 233 * If there's more than one block, the blocksize can't change, 234 * so we can make a more precise estimate. Alternatively, 235 * if the dnode's ibs is larger than max_ibs, always use that. 236 * This ensures that if we reduce DN_MAX_INDBLKSHIFT, 237 * the code will still work correctly on existing pools. 238 */ 239 if (dn && (dn->dn_maxblkid != 0 || dn->dn_indblkshift > max_ibs)) { 240 min_ibs = max_ibs = dn->dn_indblkshift; 241 if (dn->dn_datablkshift != 0) 242 min_bs = max_bs = dn->dn_datablkshift; 243 } 244 245 /* 246 * 'end' is the last thing we will access, not one past. 247 * This way we won't overflow when accessing the last byte. 248 */ 249 start = P2ALIGN(off, 1ULL << max_bs); 250 end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1; 251 txh->txh_space_towrite += end - start + 1; 252 253 start >>= min_bs; 254 end >>= min_bs; 255 256 epbs = min_ibs - SPA_BLKPTRSHIFT; 257 258 /* 259 * The object contains at most 2^(64 - min_bs) blocks, 260 * and each indirect level maps 2^epbs. 261 */ 262 for (bits = 64 - min_bs; bits >= 0; bits -= epbs) { 263 start >>= epbs; 264 end >>= epbs; 265 /* 266 * If we increase the number of levels of indirection, 267 * we'll need new blkid=0 indirect blocks. If start == 0, 268 * we're already accounting for that blocks; and if end == 0, 269 * we can't increase the number of levels beyond that. 270 */ 271 if (start != 0 && end != 0) 272 txh->txh_space_towrite += 1ULL << max_ibs; 273 txh->txh_space_towrite += (end - start + 1) << max_ibs; 274 } 275 276 ASSERT(txh->txh_space_towrite < 2 * DMU_MAX_ACCESS); 277 278 out: 279 if (err) 280 txh->txh_tx->tx_err = err; 281 } 282 283 static void 284 dmu_tx_count_dnode(dmu_tx_hold_t *txh) 285 { 286 dnode_t *dn = txh->txh_dnode; 287 dnode_t *mdn = txh->txh_tx->tx_objset->os->os_meta_dnode; 288 uint64_t space = mdn->dn_datablksz + 289 ((mdn->dn_nlevels-1) << mdn->dn_indblkshift); 290 291 if (dn && dn->dn_dbuf->db_blkptr && 292 dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 293 dn->dn_dbuf->db_blkptr->blk_birth)) { 294 txh->txh_space_tooverwrite += space; 295 } else { 296 txh->txh_space_towrite += space; 297 } 298 } 299 300 void 301 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) 302 { 303 dmu_tx_hold_t *txh; 304 305 ASSERT(tx->tx_txg == 0); 306 ASSERT(len < DMU_MAX_ACCESS); 307 ASSERT(len == 0 || UINT64_MAX - off >= len - 1); 308 309 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 310 object, THT_WRITE, off, len); 311 if (txh == NULL) 312 return; 313 314 dmu_tx_count_write(txh, off, len); 315 dmu_tx_count_dnode(txh); 316 } 317 318 static void 319 dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 320 { 321 uint64_t blkid, nblks; 322 uint64_t space = 0; 323 dnode_t *dn = txh->txh_dnode; 324 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 325 spa_t *spa = txh->txh_tx->tx_pool->dp_spa; 326 int dirty; 327 328 /* 329 * We don't need to use any locking to check for dirtyness 330 * because it's OK if we get stale data -- the dnode may become 331 * dirty immediately after our check anyway. This is just a 332 * means to avoid the expensive count when we aren't sure we 333 * need it. We need to be able to deal with a dirty dnode. 334 */ 335 dirty = list_link_active(&dn->dn_dirty_link[0]) | 336 list_link_active(&dn->dn_dirty_link[1]) | 337 list_link_active(&dn->dn_dirty_link[2]) | 338 list_link_active(&dn->dn_dirty_link[3]); 339 if (dirty || dn->dn_assigned_txg || dn->dn_phys->dn_nlevels == 0) 340 return; 341 342 /* 343 * the struct_rwlock protects us against dn_phys->dn_nlevels 344 * changing, in case (against all odds) we manage to dirty & 345 * sync out the changes after we check for being dirty. 346 * also, dbuf_hold_impl() wants us to have the struct_rwlock. 347 * 348 * It's fine to use dn_datablkshift rather than the dn_phys 349 * equivalent because if it is changing, maxblkid==0 and we will 350 * bail. 351 */ 352 rw_enter(&dn->dn_struct_rwlock, RW_READER); 353 if (dn->dn_phys->dn_maxblkid == 0) { 354 if (off == 0 && len >= dn->dn_datablksz) { 355 blkid = 0; 356 nblks = 1; 357 } else { 358 rw_exit(&dn->dn_struct_rwlock); 359 return; 360 } 361 } else { 362 blkid = off >> dn->dn_datablkshift; 363 nblks = (off + len) >> dn->dn_datablkshift; 364 365 if (blkid >= dn->dn_phys->dn_maxblkid) { 366 rw_exit(&dn->dn_struct_rwlock); 367 return; 368 } 369 if (blkid + nblks > dn->dn_phys->dn_maxblkid) 370 nblks = dn->dn_phys->dn_maxblkid - blkid; 371 372 /* don't bother after 128,000 blocks */ 373 nblks = MIN(nblks, 128*1024); 374 } 375 376 if (dn->dn_phys->dn_nlevels == 1) { 377 int i; 378 for (i = 0; i < nblks; i++) { 379 blkptr_t *bp = dn->dn_phys->dn_blkptr; 380 ASSERT3U(blkid + i, <, dn->dn_phys->dn_nblkptr); 381 bp += blkid + i; 382 if (dsl_dataset_block_freeable(ds, bp->blk_birth)) { 383 dprintf_bp(bp, "can free old%s", ""); 384 space += bp_get_dasize(spa, bp); 385 } 386 } 387 nblks = 0; 388 } 389 390 while (nblks) { 391 dmu_buf_impl_t *dbuf; 392 int err, epbs, blkoff, tochk; 393 394 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 395 blkoff = P2PHASE(blkid, 1<<epbs); 396 tochk = MIN((1<<epbs) - blkoff, nblks); 397 398 err = dbuf_hold_impl(dn, 1, blkid >> epbs, TRUE, FTAG, &dbuf); 399 if (err == 0) { 400 int i; 401 blkptr_t *bp; 402 403 err = dbuf_read(dbuf, NULL, 404 DB_RF_HAVESTRUCT | DB_RF_CANFAIL); 405 if (err != 0) { 406 txh->txh_tx->tx_err = err; 407 dbuf_rele(dbuf, FTAG); 408 break; 409 } 410 411 bp = dbuf->db.db_data; 412 bp += blkoff; 413 414 for (i = 0; i < tochk; i++) { 415 if (dsl_dataset_block_freeable(ds, 416 bp[i].blk_birth)) { 417 dprintf_bp(&bp[i], 418 "can free old%s", ""); 419 space += bp_get_dasize(spa, &bp[i]); 420 } 421 } 422 dbuf_rele(dbuf, FTAG); 423 } 424 if (err && err != ENOENT) { 425 txh->txh_tx->tx_err = err; 426 break; 427 } 428 429 blkid += tochk; 430 nblks -= tochk; 431 } 432 rw_exit(&dn->dn_struct_rwlock); 433 434 txh->txh_space_tofree += space; 435 } 436 437 void 438 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) 439 { 440 dmu_tx_hold_t *txh; 441 dnode_t *dn; 442 uint64_t start, end, i; 443 int err, shift; 444 zio_t *zio; 445 446 ASSERT(tx->tx_txg == 0); 447 448 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 449 object, THT_FREE, off, len); 450 if (txh == NULL) 451 return; 452 dn = txh->txh_dnode; 453 454 /* first block */ 455 if (off != 0) 456 dmu_tx_count_write(txh, off, 1); 457 /* last block */ 458 if (len != DMU_OBJECT_END) 459 dmu_tx_count_write(txh, off+len, 1); 460 461 if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz) 462 return; 463 if (len == DMU_OBJECT_END) 464 len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off; 465 466 /* 467 * For i/o error checking, read the first and last level-0 468 * blocks, and all the level-1 blocks. The above count_write's 469 * will take care of the level-0 blocks. 470 */ 471 if (dn->dn_nlevels > 1) { 472 shift = dn->dn_datablkshift + dn->dn_indblkshift - 473 SPA_BLKPTRSHIFT; 474 start = off >> shift; 475 end = dn->dn_datablkshift ? ((off+len) >> shift) : 0; 476 477 zio = zio_root(tx->tx_pool->dp_spa, 478 NULL, NULL, ZIO_FLAG_CANFAIL); 479 for (i = start; i <= end; i++) { 480 uint64_t ibyte = i << shift; 481 err = dnode_next_offset(dn, FALSE, &ibyte, 2, 1, 0); 482 i = ibyte >> shift; 483 if (err == ESRCH) 484 break; 485 if (err) { 486 tx->tx_err = err; 487 return; 488 } 489 490 err = dmu_tx_check_ioerr(zio, dn, 1, i); 491 if (err) { 492 tx->tx_err = err; 493 return; 494 } 495 } 496 err = zio_wait(zio); 497 if (err) { 498 tx->tx_err = err; 499 return; 500 } 501 } 502 503 dmu_tx_count_dnode(txh); 504 dmu_tx_count_free(txh, off, len); 505 } 506 507 void 508 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, char *name) 509 { 510 dmu_tx_hold_t *txh; 511 dnode_t *dn; 512 uint64_t nblocks; 513 int epbs, err; 514 515 ASSERT(tx->tx_txg == 0); 516 517 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 518 object, THT_ZAP, add, (uintptr_t)name); 519 if (txh == NULL) 520 return; 521 dn = txh->txh_dnode; 522 523 dmu_tx_count_dnode(txh); 524 525 if (dn == NULL) { 526 /* 527 * We will be able to fit a new object's entries into one leaf 528 * block. So there will be at most 2 blocks total, 529 * including the header block. 530 */ 531 dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift); 532 return; 533 } 534 535 ASSERT3P(dmu_ot[dn->dn_type].ot_byteswap, ==, zap_byteswap); 536 537 if (dn->dn_maxblkid == 0 && !add) { 538 /* 539 * If there is only one block (i.e. this is a micro-zap) 540 * and we are not adding anything, the accounting is simple. 541 */ 542 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 543 if (err) { 544 tx->tx_err = err; 545 return; 546 } 547 548 /* 549 * Use max block size here, since we don't know how much 550 * the size will change between now and the dbuf dirty call. 551 */ 552 if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 553 dn->dn_phys->dn_blkptr[0].blk_birth)) 554 txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE; 555 else 556 txh->txh_space_towrite += SPA_MAXBLOCKSIZE; 557 return; 558 } 559 560 if (dn->dn_maxblkid > 0 && name) { 561 /* 562 * access the name in this fat-zap so that we'll check 563 * for i/o errors to the leaf blocks, etc. 564 */ 565 err = zap_lookup(&dn->dn_objset->os, dn->dn_object, name, 566 8, 0, NULL); 567 if (err == EIO) { 568 tx->tx_err = err; 569 return; 570 } 571 } 572 573 /* 574 * 3 blocks overwritten: target leaf, ptrtbl block, header block 575 * 3 new blocks written if adding: new split leaf, 2 grown ptrtbl blocks 576 */ 577 dmu_tx_count_write(txh, dn->dn_maxblkid * dn->dn_datablksz, 578 (3 + add ? 3 : 0) << dn->dn_datablkshift); 579 580 /* 581 * If the modified blocks are scattered to the four winds, 582 * we'll have to modify an indirect twig for each. 583 */ 584 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 585 for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs) 586 txh->txh_space_towrite += 3 << dn->dn_indblkshift; 587 } 588 589 void 590 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) 591 { 592 dmu_tx_hold_t *txh; 593 594 ASSERT(tx->tx_txg == 0); 595 596 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 597 object, THT_BONUS, 0, 0); 598 if (txh) 599 dmu_tx_count_dnode(txh); 600 } 601 602 void 603 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) 604 { 605 dmu_tx_hold_t *txh; 606 ASSERT(tx->tx_txg == 0); 607 608 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 609 DMU_NEW_OBJECT, THT_SPACE, space, 0); 610 611 txh->txh_space_towrite += space; 612 } 613 614 int 615 dmu_tx_holds(dmu_tx_t *tx, uint64_t object) 616 { 617 dmu_tx_hold_t *txh; 618 int holds = 0; 619 620 /* 621 * By asserting that the tx is assigned, we're counting the 622 * number of dn_tx_holds, which is the same as the number of 623 * dn_holds. Otherwise, we'd be counting dn_holds, but 624 * dn_tx_holds could be 0. 625 */ 626 ASSERT(tx->tx_txg != 0); 627 628 /* if (tx->tx_anyobj == TRUE) */ 629 /* return (0); */ 630 631 for (txh = list_head(&tx->tx_holds); txh; 632 txh = list_next(&tx->tx_holds, txh)) { 633 if (txh->txh_dnode && txh->txh_dnode->dn_object == object) 634 holds++; 635 } 636 637 return (holds); 638 } 639 640 #ifdef ZFS_DEBUG 641 void 642 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) 643 { 644 dmu_tx_hold_t *txh; 645 int match_object = FALSE, match_offset = FALSE; 646 dnode_t *dn = db->db_dnode; 647 648 ASSERT(tx->tx_txg != 0); 649 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset->os); 650 ASSERT3U(dn->dn_object, ==, db->db.db_object); 651 652 if (tx->tx_anyobj) 653 return; 654 655 /* XXX No checking on the meta dnode for now */ 656 if (db->db.db_object == DMU_META_DNODE_OBJECT) 657 return; 658 659 for (txh = list_head(&tx->tx_holds); txh; 660 txh = list_next(&tx->tx_holds, txh)) { 661 ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg); 662 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT) 663 match_object = TRUE; 664 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) { 665 int datablkshift = dn->dn_datablkshift ? 666 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; 667 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 668 int shift = datablkshift + epbs * db->db_level; 669 uint64_t beginblk = shift >= 64 ? 0 : 670 (txh->txh_arg1 >> shift); 671 uint64_t endblk = shift >= 64 ? 0 : 672 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift); 673 uint64_t blkid = db->db_blkid; 674 675 /* XXX txh_arg2 better not be zero... */ 676 677 dprintf("found txh type %x beginblk=%llx endblk=%llx\n", 678 txh->txh_type, beginblk, endblk); 679 680 switch (txh->txh_type) { 681 case THT_WRITE: 682 if (blkid >= beginblk && blkid <= endblk) 683 match_offset = TRUE; 684 /* 685 * We will let this hold work for the bonus 686 * buffer so that we don't need to hold it 687 * when creating a new object. 688 */ 689 if (blkid == DB_BONUS_BLKID) 690 match_offset = TRUE; 691 /* 692 * They might have to increase nlevels, 693 * thus dirtying the new TLIBs. Or the 694 * might have to change the block size, 695 * thus dirying the new lvl=0 blk=0. 696 */ 697 if (blkid == 0) 698 match_offset = TRUE; 699 break; 700 case THT_FREE: 701 if (blkid == beginblk && 702 (txh->txh_arg1 != 0 || 703 dn->dn_maxblkid == 0)) 704 match_offset = TRUE; 705 if (blkid == endblk && 706 txh->txh_arg2 != DMU_OBJECT_END) 707 match_offset = TRUE; 708 break; 709 case THT_BONUS: 710 if (blkid == DB_BONUS_BLKID) 711 match_offset = TRUE; 712 break; 713 case THT_ZAP: 714 match_offset = TRUE; 715 break; 716 case THT_NEWOBJECT: 717 match_object = TRUE; 718 break; 719 default: 720 ASSERT(!"bad txh_type"); 721 } 722 } 723 if (match_object && match_offset) 724 return; 725 } 726 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", 727 (u_longlong_t)db->db.db_object, db->db_level, 728 (u_longlong_t)db->db_blkid); 729 } 730 #endif 731 732 static int 733 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how) 734 { 735 dmu_tx_hold_t *txh; 736 uint64_t lsize, asize, fsize, towrite, tofree, tooverwrite; 737 spa_t *spa = tx->tx_pool->dp_spa; 738 739 ASSERT3U(tx->tx_txg, ==, 0); 740 741 if (tx->tx_err) 742 return (tx->tx_err); 743 744 if (spa_state(spa) == POOL_STATE_IO_FAILURE) { 745 /* 746 * If the user has indicated a blocking failure mode 747 * then return ERESTART which will block in dmu_tx_wait(). 748 * Otherwise, return EIO so that an error can get 749 * propagated back to the VOP calls. 750 * 751 * Note that we always honor the txg_how flag regardless 752 * of the failuremode setting. 753 */ 754 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE && 755 txg_how != TXG_WAIT) 756 return (EIO); 757 758 return (ERESTART); 759 } 760 761 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); 762 tx->tx_needassign_txh = NULL; 763 764 /* 765 * NB: No error returns are allowed after txg_hold_open, but 766 * before processing the dnode holds, due to the 767 * dmu_tx_unassign() logic. 768 */ 769 770 towrite = tofree = tooverwrite = 0; 771 for (txh = list_head(&tx->tx_holds); txh; 772 txh = list_next(&tx->tx_holds, txh)) { 773 dnode_t *dn = txh->txh_dnode; 774 if (dn != NULL) { 775 mutex_enter(&dn->dn_mtx); 776 if (dn->dn_assigned_txg == tx->tx_txg - 1) { 777 mutex_exit(&dn->dn_mtx); 778 tx->tx_needassign_txh = txh; 779 return (ERESTART); 780 } 781 if (dn->dn_assigned_txg == 0) 782 dn->dn_assigned_txg = tx->tx_txg; 783 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 784 (void) refcount_add(&dn->dn_tx_holds, tx); 785 mutex_exit(&dn->dn_mtx); 786 } 787 towrite += txh->txh_space_towrite; 788 tofree += txh->txh_space_tofree; 789 tooverwrite += txh->txh_space_tooverwrite; 790 } 791 792 /* 793 * NB: This check must be after we've held the dnodes, so that 794 * the dmu_tx_unassign() logic will work properly 795 */ 796 if (txg_how >= TXG_INITIAL && txg_how != tx->tx_txg) 797 return (ERESTART); 798 799 /* 800 * If a snapshot has been taken since we made our estimates, 801 * assume that we won't be able to free or overwrite anything. 802 */ 803 if (tx->tx_objset && 804 dsl_dataset_prev_snap_txg(tx->tx_objset->os->os_dsl_dataset) > 805 tx->tx_lastsnap_txg) { 806 towrite += tooverwrite; 807 tooverwrite = tofree = 0; 808 } 809 810 /* 811 * Convert logical size to worst-case allocated size. 812 */ 813 fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree; 814 lsize = towrite + tooverwrite; 815 asize = spa_get_asize(tx->tx_pool->dp_spa, lsize); 816 817 #ifdef ZFS_DEBUG 818 tx->tx_space_towrite = asize; 819 tx->tx_space_tofree = tofree; 820 tx->tx_space_tooverwrite = tooverwrite; 821 #endif 822 823 if (tx->tx_dir && asize != 0) { 824 int err = dsl_dir_tempreserve_space(tx->tx_dir, 825 lsize, asize, fsize, &tx->tx_tempreserve_cookie, tx); 826 if (err) 827 return (err); 828 } 829 830 return (0); 831 } 832 833 static void 834 dmu_tx_unassign(dmu_tx_t *tx) 835 { 836 dmu_tx_hold_t *txh; 837 838 if (tx->tx_txg == 0) 839 return; 840 841 txg_rele_to_quiesce(&tx->tx_txgh); 842 843 for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh; 844 txh = list_next(&tx->tx_holds, txh)) { 845 dnode_t *dn = txh->txh_dnode; 846 847 if (dn == NULL) 848 continue; 849 mutex_enter(&dn->dn_mtx); 850 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 851 852 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 853 dn->dn_assigned_txg = 0; 854 cv_broadcast(&dn->dn_notxholds); 855 } 856 mutex_exit(&dn->dn_mtx); 857 } 858 859 txg_rele_to_sync(&tx->tx_txgh); 860 861 tx->tx_lasttried_txg = tx->tx_txg; 862 tx->tx_txg = 0; 863 } 864 865 /* 866 * Assign tx to a transaction group. txg_how can be one of: 867 * 868 * (1) TXG_WAIT. If the current open txg is full, waits until there's 869 * a new one. This should be used when you're not holding locks. 870 * If will only fail if we're truly out of space (or over quota). 871 * 872 * (2) TXG_NOWAIT. If we can't assign into the current open txg without 873 * blocking, returns immediately with ERESTART. This should be used 874 * whenever you're holding locks. On an ERESTART error, the caller 875 * should drop locks, do a dmu_tx_wait(tx), and try again. 876 * 877 * (3) A specific txg. Use this if you need to ensure that multiple 878 * transactions all sync in the same txg. Like TXG_NOWAIT, it 879 * returns ERESTART if it can't assign you into the requested txg. 880 */ 881 int 882 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how) 883 { 884 int err; 885 886 ASSERT(tx->tx_txg == 0); 887 ASSERT(txg_how != 0); 888 ASSERT(!dsl_pool_sync_context(tx->tx_pool)); 889 890 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) { 891 dmu_tx_unassign(tx); 892 893 if (err != ERESTART || txg_how != TXG_WAIT) 894 return (err); 895 896 dmu_tx_wait(tx); 897 } 898 899 txg_rele_to_quiesce(&tx->tx_txgh); 900 901 return (0); 902 } 903 904 void 905 dmu_tx_wait(dmu_tx_t *tx) 906 { 907 spa_t *spa = tx->tx_pool->dp_spa; 908 909 ASSERT(tx->tx_txg == 0); 910 911 /* 912 * It's possible that the pool has become active after this thread 913 * has tried to obtain a tx. If that's the case then his 914 * tx_lasttried_txg would not have been assigned. 915 */ 916 if (spa_state(spa) == POOL_STATE_IO_FAILURE || 917 tx->tx_lasttried_txg == 0) { 918 txg_wait_synced(tx->tx_pool, spa_last_synced_txg(spa) + 1); 919 } else if (tx->tx_needassign_txh) { 920 dnode_t *dn = tx->tx_needassign_txh->txh_dnode; 921 922 mutex_enter(&dn->dn_mtx); 923 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1) 924 cv_wait(&dn->dn_notxholds, &dn->dn_mtx); 925 mutex_exit(&dn->dn_mtx); 926 tx->tx_needassign_txh = NULL; 927 } else { 928 txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1); 929 } 930 } 931 932 void 933 dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta) 934 { 935 #ifdef ZFS_DEBUG 936 if (tx->tx_dir == NULL || delta == 0) 937 return; 938 939 if (delta > 0) { 940 ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=, 941 tx->tx_space_towrite); 942 (void) refcount_add_many(&tx->tx_space_written, delta, NULL); 943 } else { 944 (void) refcount_add_many(&tx->tx_space_freed, -delta, NULL); 945 } 946 #endif 947 } 948 949 void 950 dmu_tx_commit(dmu_tx_t *tx) 951 { 952 dmu_tx_hold_t *txh; 953 954 ASSERT(tx->tx_txg != 0); 955 956 while (txh = list_head(&tx->tx_holds)) { 957 dnode_t *dn = txh->txh_dnode; 958 959 list_remove(&tx->tx_holds, txh); 960 kmem_free(txh, sizeof (dmu_tx_hold_t)); 961 if (dn == NULL) 962 continue; 963 mutex_enter(&dn->dn_mtx); 964 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 965 966 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 967 dn->dn_assigned_txg = 0; 968 cv_broadcast(&dn->dn_notxholds); 969 } 970 mutex_exit(&dn->dn_mtx); 971 dnode_rele(dn, tx); 972 } 973 974 if (tx->tx_tempreserve_cookie) 975 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); 976 977 if (tx->tx_anyobj == FALSE) 978 txg_rele_to_sync(&tx->tx_txgh); 979 #ifdef ZFS_DEBUG 980 dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n", 981 tx->tx_space_towrite, refcount_count(&tx->tx_space_written), 982 tx->tx_space_tofree, refcount_count(&tx->tx_space_freed)); 983 refcount_destroy_many(&tx->tx_space_written, 984 refcount_count(&tx->tx_space_written)); 985 refcount_destroy_many(&tx->tx_space_freed, 986 refcount_count(&tx->tx_space_freed)); 987 #endif 988 kmem_free(tx, sizeof (dmu_tx_t)); 989 } 990 991 void 992 dmu_tx_abort(dmu_tx_t *tx) 993 { 994 dmu_tx_hold_t *txh; 995 996 ASSERT(tx->tx_txg == 0); 997 998 while (txh = list_head(&tx->tx_holds)) { 999 dnode_t *dn = txh->txh_dnode; 1000 1001 list_remove(&tx->tx_holds, txh); 1002 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1003 if (dn != NULL) 1004 dnode_rele(dn, tx); 1005 } 1006 #ifdef ZFS_DEBUG 1007 refcount_destroy_many(&tx->tx_space_written, 1008 refcount_count(&tx->tx_space_written)); 1009 refcount_destroy_many(&tx->tx_space_freed, 1010 refcount_count(&tx->tx_space_freed)); 1011 #endif 1012 kmem_free(tx, sizeof (dmu_tx_t)); 1013 } 1014 1015 uint64_t 1016 dmu_tx_get_txg(dmu_tx_t *tx) 1017 { 1018 ASSERT(tx->tx_txg != 0); 1019 return (tx->tx_txg); 1020 } 1021