xref: /illumos-gate/usr/src/uts/common/fs/zfs/dmu_tx.c (revision 3e6960d70408b9f4e09714ed3341173673ed28b2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/dmu.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dbuf.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_pool.h>
36 #include <sys/zap_impl.h>
37 #include <sys/spa.h>
38 #include <sys/sa.h>
39 #include <sys/sa_impl.h>
40 #include <sys/zfs_context.h>
41 #include <sys/varargs.h>
42 
43 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
44     uint64_t arg1, uint64_t arg2);
45 
46 
47 dmu_tx_t *
48 dmu_tx_create_dd(dsl_dir_t *dd)
49 {
50 	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
51 	tx->tx_dir = dd;
52 	if (dd != NULL)
53 		tx->tx_pool = dd->dd_pool;
54 	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
55 	    offsetof(dmu_tx_hold_t, txh_node));
56 	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
57 	    offsetof(dmu_tx_callback_t, dcb_node));
58 	tx->tx_start = gethrtime();
59 	return (tx);
60 }
61 
62 dmu_tx_t *
63 dmu_tx_create(objset_t *os)
64 {
65 	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
66 	tx->tx_objset = os;
67 	return (tx);
68 }
69 
70 dmu_tx_t *
71 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
72 {
73 	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
74 
75 	ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
76 	tx->tx_pool = dp;
77 	tx->tx_txg = txg;
78 	tx->tx_anyobj = TRUE;
79 
80 	return (tx);
81 }
82 
83 int
84 dmu_tx_is_syncing(dmu_tx_t *tx)
85 {
86 	return (tx->tx_anyobj);
87 }
88 
89 int
90 dmu_tx_private_ok(dmu_tx_t *tx)
91 {
92 	return (tx->tx_anyobj);
93 }
94 
95 static dmu_tx_hold_t *
96 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
97     enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
98 {
99 	dmu_tx_hold_t *txh;
100 	dnode_t *dn = NULL;
101 	int err;
102 
103 	if (object != DMU_NEW_OBJECT) {
104 		err = dnode_hold(os, object, tx, &dn);
105 		if (err) {
106 			tx->tx_err = err;
107 			return (NULL);
108 		}
109 
110 		if (err == 0 && tx->tx_txg != 0) {
111 			mutex_enter(&dn->dn_mtx);
112 			/*
113 			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
114 			 * problem, but there's no way for it to happen (for
115 			 * now, at least).
116 			 */
117 			ASSERT(dn->dn_assigned_txg == 0);
118 			dn->dn_assigned_txg = tx->tx_txg;
119 			(void) refcount_add(&dn->dn_tx_holds, tx);
120 			mutex_exit(&dn->dn_mtx);
121 		}
122 	}
123 
124 	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
125 	txh->txh_tx = tx;
126 	txh->txh_dnode = dn;
127 	refcount_create(&txh->txh_space_towrite);
128 	refcount_create(&txh->txh_memory_tohold);
129 	txh->txh_type = type;
130 	txh->txh_arg1 = arg1;
131 	txh->txh_arg2 = arg2;
132 	list_insert_tail(&tx->tx_holds, txh);
133 
134 	return (txh);
135 }
136 
137 void
138 dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object)
139 {
140 	/*
141 	 * If we're syncing, they can manipulate any object anyhow, and
142 	 * the hold on the dnode_t can cause problems.
143 	 */
144 	if (!dmu_tx_is_syncing(tx)) {
145 		(void) dmu_tx_hold_object_impl(tx, os,
146 		    object, THT_NEWOBJECT, 0, 0);
147 	}
148 }
149 
150 /*
151  * This function reads specified data from disk.  The specified data will
152  * be needed to perform the transaction -- i.e, it will be read after
153  * we do dmu_tx_assign().  There are two reasons that we read the data now
154  * (before dmu_tx_assign()):
155  *
156  * 1. Reading it now has potentially better performance.  The transaction
157  * has not yet been assigned, so the TXG is not held open, and also the
158  * caller typically has less locks held when calling dmu_tx_hold_*() than
159  * after the transaction has been assigned.  This reduces the lock (and txg)
160  * hold times, thus reducing lock contention.
161  *
162  * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
163  * that are detected before they start making changes to the DMU state
164  * (i.e. now).  Once the transaction has been assigned, and some DMU
165  * state has been changed, it can be difficult to recover from an i/o
166  * error (e.g. to undo the changes already made in memory at the DMU
167  * layer).  Typically code to do so does not exist in the caller -- it
168  * assumes that the data has already been cached and thus i/o errors are
169  * not possible.
170  *
171  * It has been observed that the i/o initiated here can be a performance
172  * problem, and it appears to be optional, because we don't look at the
173  * data which is read.  However, removing this read would only serve to
174  * move the work elsewhere (after the dmu_tx_assign()), where it may
175  * have a greater impact on performance (in addition to the impact on
176  * fault tolerance noted above).
177  */
178 static int
179 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
180 {
181 	int err;
182 	dmu_buf_impl_t *db;
183 
184 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
185 	db = dbuf_hold_level(dn, level, blkid, FTAG);
186 	rw_exit(&dn->dn_struct_rwlock);
187 	if (db == NULL)
188 		return (SET_ERROR(EIO));
189 	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
190 	dbuf_rele(db, FTAG);
191 	return (err);
192 }
193 
194 /* ARGSUSED */
195 static void
196 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
197 {
198 	dnode_t *dn = txh->txh_dnode;
199 	int err = 0;
200 
201 	if (len == 0)
202 		return;
203 
204 	(void) refcount_add_many(&txh->txh_space_towrite, len, FTAG);
205 
206 	if (refcount_count(&txh->txh_space_towrite) > 2 * DMU_MAX_ACCESS)
207 		err = SET_ERROR(EFBIG);
208 
209 	if (dn == NULL)
210 		return;
211 
212 	/*
213 	 * For i/o error checking, read the blocks that will be needed
214 	 * to perform the write: the first and last level-0 blocks (if
215 	 * they are not aligned, i.e. if they are partial-block writes),
216 	 * and all the level-1 blocks.
217 	 */
218 	if (dn->dn_maxblkid == 0) {
219 		if (off < dn->dn_datablksz &&
220 		    (off > 0 || len < dn->dn_datablksz)) {
221 			err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
222 			if (err != 0) {
223 				txh->txh_tx->tx_err = err;
224 			}
225 		}
226 	} else {
227 		zio_t *zio = zio_root(dn->dn_objset->os_spa,
228 		    NULL, NULL, ZIO_FLAG_CANFAIL);
229 
230 		/* first level-0 block */
231 		uint64_t start = off >> dn->dn_datablkshift;
232 		if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
233 			err = dmu_tx_check_ioerr(zio, dn, 0, start);
234 			if (err != 0) {
235 				txh->txh_tx->tx_err = err;
236 			}
237 		}
238 
239 		/* last level-0 block */
240 		uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
241 		if (end != start && end <= dn->dn_maxblkid &&
242 		    P2PHASE(off + len, dn->dn_datablksz)) {
243 			err = dmu_tx_check_ioerr(zio, dn, 0, end);
244 			if (err != 0) {
245 				txh->txh_tx->tx_err = err;
246 			}
247 		}
248 
249 		/* level-1 blocks */
250 		if (dn->dn_nlevels > 1) {
251 			int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
252 			for (uint64_t i = (start >> shft) + 1;
253 			    i < end >> shft; i++) {
254 				err = dmu_tx_check_ioerr(zio, dn, 1, i);
255 				if (err != 0) {
256 					txh->txh_tx->tx_err = err;
257 				}
258 			}
259 		}
260 
261 		err = zio_wait(zio);
262 		if (err != 0) {
263 			txh->txh_tx->tx_err = err;
264 		}
265 	}
266 }
267 
268 static void
269 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
270 {
271 	(void) refcount_add_many(&txh->txh_space_towrite, DNODE_SIZE, FTAG);
272 }
273 
274 void
275 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
276 {
277 	dmu_tx_hold_t *txh;
278 
279 	ASSERT0(tx->tx_txg);
280 	ASSERT3U(len, <=, DMU_MAX_ACCESS);
281 	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
282 
283 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
284 	    object, THT_WRITE, off, len);
285 	if (txh == NULL)
286 		return;
287 
288 	dmu_tx_count_write(txh, off, len);
289 	dmu_tx_count_dnode(txh);
290 }
291 
292 /*
293  * This function marks the transaction as being a "net free".  The end
294  * result is that refquotas will be disabled for this transaction, and
295  * this transaction will be able to use half of the pool space overhead
296  * (see dsl_pool_adjustedsize()).  Therefore this function should only
297  * be called for transactions that we expect will not cause a net increase
298  * in the amount of space used (but it's OK if that is occasionally not true).
299  */
300 void
301 dmu_tx_mark_netfree(dmu_tx_t *tx)
302 {
303 	tx->tx_netfree = B_TRUE;
304 }
305 
306 void
307 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
308 {
309 	int err;
310 
311 	ASSERT(tx->tx_txg == 0);
312 
313 	dmu_tx_hold_t *txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
314 	    object, THT_FREE, off, len);
315 	if (txh == NULL)
316 		return;
317 	dnode_t *dn = txh->txh_dnode;
318 	dmu_tx_count_dnode(txh);
319 
320 	if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
321 		return;
322 	if (len == DMU_OBJECT_END)
323 		len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
324 
325 	/*
326 	 * For i/o error checking, we read the first and last level-0
327 	 * blocks if they are not aligned, and all the level-1 blocks.
328 	 *
329 	 * Note:  dbuf_free_range() assumes that we have not instantiated
330 	 * any level-0 dbufs that will be completely freed.  Therefore we must
331 	 * exercise care to not read or count the first and last blocks
332 	 * if they are blocksize-aligned.
333 	 */
334 	if (dn->dn_datablkshift == 0) {
335 		if (off != 0 || len < dn->dn_datablksz)
336 			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
337 	} else {
338 		/* first block will be modified if it is not aligned */
339 		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
340 			dmu_tx_count_write(txh, off, 1);
341 		/* last block will be modified if it is not aligned */
342 		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
343 			dmu_tx_count_write(txh, off + len, 1);
344 	}
345 
346 	/*
347 	 * Check level-1 blocks.
348 	 */
349 	if (dn->dn_nlevels > 1) {
350 		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
351 		    SPA_BLKPTRSHIFT;
352 		uint64_t start = off >> shift;
353 		uint64_t end = (off + len) >> shift;
354 
355 		ASSERT(dn->dn_indblkshift != 0);
356 
357 		/*
358 		 * dnode_reallocate() can result in an object with indirect
359 		 * blocks having an odd data block size.  In this case,
360 		 * just check the single block.
361 		 */
362 		if (dn->dn_datablkshift == 0)
363 			start = end = 0;
364 
365 		zio_t *zio = zio_root(tx->tx_pool->dp_spa,
366 		    NULL, NULL, ZIO_FLAG_CANFAIL);
367 		for (uint64_t i = start; i <= end; i++) {
368 			uint64_t ibyte = i << shift;
369 			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
370 			i = ibyte >> shift;
371 			if (err == ESRCH || i > end)
372 				break;
373 			if (err != 0) {
374 				tx->tx_err = err;
375 				(void) zio_wait(zio);
376 				return;
377 			}
378 
379 			(void) refcount_add_many(&txh->txh_memory_tohold,
380 			    1 << dn->dn_indblkshift, FTAG);
381 
382 			err = dmu_tx_check_ioerr(zio, dn, 1, i);
383 			if (err != 0) {
384 				tx->tx_err = err;
385 				(void) zio_wait(zio);
386 				return;
387 			}
388 		}
389 		err = zio_wait(zio);
390 		if (err != 0) {
391 			tx->tx_err = err;
392 			return;
393 		}
394 	}
395 }
396 
397 void
398 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
399 {
400 	int err;
401 
402 	ASSERT(tx->tx_txg == 0);
403 
404 	dmu_tx_hold_t *txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
405 	    object, THT_ZAP, add, (uintptr_t)name);
406 	if (txh == NULL)
407 		return;
408 	dnode_t *dn = txh->txh_dnode;
409 
410 	dmu_tx_count_dnode(txh);
411 
412 	/*
413 	 * Modifying a almost-full microzap is around the worst case (128KB)
414 	 *
415 	 * If it is a fat zap, the worst case would be 7*16KB=112KB:
416 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
417 	 * - 4 new blocks written if adding:
418 	 *    - 2 blocks for possibly split leaves,
419 	 *    - 2 grown ptrtbl blocks
420 	 */
421 	(void) refcount_add_many(&txh->txh_space_towrite,
422 	    MZAP_MAX_BLKSZ, FTAG);
423 
424 	if (dn == NULL)
425 		return;
426 
427 	ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
428 
429 	if (dn->dn_maxblkid == 0 || name == NULL) {
430 		/*
431 		 * This is a microzap (only one block), or we don't know
432 		 * the name.  Check the first block for i/o errors.
433 		 */
434 		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
435 		if (err != 0) {
436 			tx->tx_err = err;
437 		}
438 	} else {
439 		/*
440 		 * Access the name so that we'll check for i/o errors to
441 		 * the leaf blocks, etc.  We ignore ENOENT, as this name
442 		 * may not yet exist.
443 		 */
444 		err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
445 		if (err == EIO || err == ECKSUM || err == ENXIO) {
446 			tx->tx_err = err;
447 		}
448 	}
449 }
450 
451 void
452 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
453 {
454 	dmu_tx_hold_t *txh;
455 
456 	ASSERT(tx->tx_txg == 0);
457 
458 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
459 	    object, THT_BONUS, 0, 0);
460 	if (txh)
461 		dmu_tx_count_dnode(txh);
462 }
463 
464 void
465 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
466 {
467 	dmu_tx_hold_t *txh;
468 	ASSERT(tx->tx_txg == 0);
469 
470 	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
471 	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
472 
473 	(void) refcount_add_many(&txh->txh_space_towrite, space, FTAG);
474 }
475 
476 #ifdef ZFS_DEBUG
477 void
478 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
479 {
480 	boolean_t match_object = B_FALSE;
481 	boolean_t match_offset = B_FALSE;
482 
483 	DB_DNODE_ENTER(db);
484 	dnode_t *dn = DB_DNODE(db);
485 	ASSERT(tx->tx_txg != 0);
486 	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
487 	ASSERT3U(dn->dn_object, ==, db->db.db_object);
488 
489 	if (tx->tx_anyobj) {
490 		DB_DNODE_EXIT(db);
491 		return;
492 	}
493 
494 	/* XXX No checking on the meta dnode for now */
495 	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
496 		DB_DNODE_EXIT(db);
497 		return;
498 	}
499 
500 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
501 	    txh = list_next(&tx->tx_holds, txh)) {
502 		ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg);
503 		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
504 			match_object = TRUE;
505 		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
506 			int datablkshift = dn->dn_datablkshift ?
507 			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
508 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
509 			int shift = datablkshift + epbs * db->db_level;
510 			uint64_t beginblk = shift >= 64 ? 0 :
511 			    (txh->txh_arg1 >> shift);
512 			uint64_t endblk = shift >= 64 ? 0 :
513 			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
514 			uint64_t blkid = db->db_blkid;
515 
516 			/* XXX txh_arg2 better not be zero... */
517 
518 			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
519 			    txh->txh_type, beginblk, endblk);
520 
521 			switch (txh->txh_type) {
522 			case THT_WRITE:
523 				if (blkid >= beginblk && blkid <= endblk)
524 					match_offset = TRUE;
525 				/*
526 				 * We will let this hold work for the bonus
527 				 * or spill buffer so that we don't need to
528 				 * hold it when creating a new object.
529 				 */
530 				if (blkid == DMU_BONUS_BLKID ||
531 				    blkid == DMU_SPILL_BLKID)
532 					match_offset = TRUE;
533 				/*
534 				 * They might have to increase nlevels,
535 				 * thus dirtying the new TLIBs.  Or the
536 				 * might have to change the block size,
537 				 * thus dirying the new lvl=0 blk=0.
538 				 */
539 				if (blkid == 0)
540 					match_offset = TRUE;
541 				break;
542 			case THT_FREE:
543 				/*
544 				 * We will dirty all the level 1 blocks in
545 				 * the free range and perhaps the first and
546 				 * last level 0 block.
547 				 */
548 				if (blkid >= beginblk && (blkid <= endblk ||
549 				    txh->txh_arg2 == DMU_OBJECT_END))
550 					match_offset = TRUE;
551 				break;
552 			case THT_SPILL:
553 				if (blkid == DMU_SPILL_BLKID)
554 					match_offset = TRUE;
555 				break;
556 			case THT_BONUS:
557 				if (blkid == DMU_BONUS_BLKID)
558 					match_offset = TRUE;
559 				break;
560 			case THT_ZAP:
561 				match_offset = TRUE;
562 				break;
563 			case THT_NEWOBJECT:
564 				match_object = TRUE;
565 				break;
566 			default:
567 				ASSERT(!"bad txh_type");
568 			}
569 		}
570 		if (match_object && match_offset) {
571 			DB_DNODE_EXIT(db);
572 			return;
573 		}
574 	}
575 	DB_DNODE_EXIT(db);
576 	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
577 	    (u_longlong_t)db->db.db_object, db->db_level,
578 	    (u_longlong_t)db->db_blkid);
579 }
580 #endif
581 
582 /*
583  * If we can't do 10 iops, something is wrong.  Let us go ahead
584  * and hit zfs_dirty_data_max.
585  */
586 hrtime_t zfs_delay_max_ns = MSEC2NSEC(100);
587 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
588 
589 /*
590  * We delay transactions when we've determined that the backend storage
591  * isn't able to accommodate the rate of incoming writes.
592  *
593  * If there is already a transaction waiting, we delay relative to when
594  * that transaction finishes waiting.  This way the calculated min_time
595  * is independent of the number of threads concurrently executing
596  * transactions.
597  *
598  * If we are the only waiter, wait relative to when the transaction
599  * started, rather than the current time.  This credits the transaction for
600  * "time already served", e.g. reading indirect blocks.
601  *
602  * The minimum time for a transaction to take is calculated as:
603  *     min_time = scale * (dirty - min) / (max - dirty)
604  *     min_time is then capped at zfs_delay_max_ns.
605  *
606  * The delay has two degrees of freedom that can be adjusted via tunables.
607  * The percentage of dirty data at which we start to delay is defined by
608  * zfs_delay_min_dirty_percent. This should typically be at or above
609  * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
610  * delay after writing at full speed has failed to keep up with the incoming
611  * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
612  * speaking, this variable determines the amount of delay at the midpoint of
613  * the curve.
614  *
615  * delay
616  *  10ms +-------------------------------------------------------------*+
617  *       |                                                             *|
618  *   9ms +                                                             *+
619  *       |                                                             *|
620  *   8ms +                                                             *+
621  *       |                                                            * |
622  *   7ms +                                                            * +
623  *       |                                                            * |
624  *   6ms +                                                            * +
625  *       |                                                            * |
626  *   5ms +                                                           *  +
627  *       |                                                           *  |
628  *   4ms +                                                           *  +
629  *       |                                                           *  |
630  *   3ms +                                                          *   +
631  *       |                                                          *   |
632  *   2ms +                                              (midpoint) *    +
633  *       |                                                  |    **     |
634  *   1ms +                                                  v ***       +
635  *       |             zfs_delay_scale ---------->     ********         |
636  *     0 +-------------------------------------*********----------------+
637  *       0%                    <- zfs_dirty_data_max ->               100%
638  *
639  * Note that since the delay is added to the outstanding time remaining on the
640  * most recent transaction, the delay is effectively the inverse of IOPS.
641  * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
642  * was chosen such that small changes in the amount of accumulated dirty data
643  * in the first 3/4 of the curve yield relatively small differences in the
644  * amount of delay.
645  *
646  * The effects can be easier to understand when the amount of delay is
647  * represented on a log scale:
648  *
649  * delay
650  * 100ms +-------------------------------------------------------------++
651  *       +                                                              +
652  *       |                                                              |
653  *       +                                                             *+
654  *  10ms +                                                             *+
655  *       +                                                           ** +
656  *       |                                              (midpoint)  **  |
657  *       +                                                  |     **    +
658  *   1ms +                                                  v ****      +
659  *       +             zfs_delay_scale ---------->        *****         +
660  *       |                                             ****             |
661  *       +                                          ****                +
662  * 100us +                                        **                    +
663  *       +                                       *                      +
664  *       |                                      *                       |
665  *       +                                     *                        +
666  *  10us +                                     *                        +
667  *       +                                                              +
668  *       |                                                              |
669  *       +                                                              +
670  *       +--------------------------------------------------------------+
671  *       0%                    <- zfs_dirty_data_max ->               100%
672  *
673  * Note here that only as the amount of dirty data approaches its limit does
674  * the delay start to increase rapidly. The goal of a properly tuned system
675  * should be to keep the amount of dirty data out of that range by first
676  * ensuring that the appropriate limits are set for the I/O scheduler to reach
677  * optimal throughput on the backend storage, and then by changing the value
678  * of zfs_delay_scale to increase the steepness of the curve.
679  */
680 static void
681 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
682 {
683 	dsl_pool_t *dp = tx->tx_pool;
684 	uint64_t delay_min_bytes =
685 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
686 	hrtime_t wakeup, min_tx_time, now;
687 
688 	if (dirty <= delay_min_bytes)
689 		return;
690 
691 	/*
692 	 * The caller has already waited until we are under the max.
693 	 * We make them pass us the amount of dirty data so we don't
694 	 * have to handle the case of it being >= the max, which could
695 	 * cause a divide-by-zero if it's == the max.
696 	 */
697 	ASSERT3U(dirty, <, zfs_dirty_data_max);
698 
699 	now = gethrtime();
700 	min_tx_time = zfs_delay_scale *
701 	    (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
702 	if (now > tx->tx_start + min_tx_time)
703 		return;
704 
705 	min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
706 
707 	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
708 	    uint64_t, min_tx_time);
709 
710 	mutex_enter(&dp->dp_lock);
711 	wakeup = MAX(tx->tx_start + min_tx_time,
712 	    dp->dp_last_wakeup + min_tx_time);
713 	dp->dp_last_wakeup = wakeup;
714 	mutex_exit(&dp->dp_lock);
715 
716 #ifdef _KERNEL
717 	mutex_enter(&curthread->t_delay_lock);
718 	while (cv_timedwait_hires(&curthread->t_delay_cv,
719 	    &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns,
720 	    CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0)
721 		continue;
722 	mutex_exit(&curthread->t_delay_lock);
723 #else
724 	hrtime_t delta = wakeup - gethrtime();
725 	struct timespec ts;
726 	ts.tv_sec = delta / NANOSEC;
727 	ts.tv_nsec = delta % NANOSEC;
728 	(void) nanosleep(&ts, NULL);
729 #endif
730 }
731 
732 /*
733  * This routine attempts to assign the transaction to a transaction group.
734  * To do so, we must determine if there is sufficient free space on disk.
735  *
736  * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
737  * on it), then it is assumed that there is sufficient free space,
738  * unless there's insufficient slop space in the pool (see the comment
739  * above spa_slop_shift in spa_misc.c).
740  *
741  * If it is not a "netfree" transaction, then if the data already on disk
742  * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
743  * ENOSPC.  Otherwise, if the current rough estimate of pending changes,
744  * plus the rough estimate of this transaction's changes, may exceed the
745  * allowed usage, then this will fail with ERESTART, which will cause the
746  * caller to wait for the pending changes to be written to disk (by waiting
747  * for the next TXG to open), and then check the space usage again.
748  *
749  * The rough estimate of pending changes is comprised of the sum of:
750  *
751  *  - this transaction's holds' txh_space_towrite
752  *
753  *  - dd_tempreserved[], which is the sum of in-flight transactions'
754  *    holds' txh_space_towrite (i.e. those transactions that have called
755  *    dmu_tx_assign() but not yet called dmu_tx_commit()).
756  *
757  *  - dd_space_towrite[], which is the amount of dirtied dbufs.
758  *
759  * Note that all of these values are inflated by spa_get_worst_case_asize(),
760  * which means that we may get ERESTART well before we are actually in danger
761  * of running out of space, but this also mitigates any small inaccuracies
762  * in the rough estimate (e.g. txh_space_towrite doesn't take into account
763  * indirect blocks, and dd_space_towrite[] doesn't take into account changes
764  * to the MOS).
765  *
766  * Note that due to this algorithm, it is possible to exceed the allowed
767  * usage by one transaction.  Also, as we approach the allowed usage,
768  * we will allow a very limited amount of changes into each TXG, thus
769  * decreasing performance.
770  */
771 static int
772 dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how)
773 {
774 	spa_t *spa = tx->tx_pool->dp_spa;
775 
776 	ASSERT0(tx->tx_txg);
777 
778 	if (tx->tx_err)
779 		return (tx->tx_err);
780 
781 	if (spa_suspended(spa)) {
782 		/*
783 		 * If the user has indicated a blocking failure mode
784 		 * then return ERESTART which will block in dmu_tx_wait().
785 		 * Otherwise, return EIO so that an error can get
786 		 * propagated back to the VOP calls.
787 		 *
788 		 * Note that we always honor the txg_how flag regardless
789 		 * of the failuremode setting.
790 		 */
791 		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
792 		    txg_how != TXG_WAIT)
793 			return (SET_ERROR(EIO));
794 
795 		return (SET_ERROR(ERESTART));
796 	}
797 
798 	if (!tx->tx_waited &&
799 	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
800 		tx->tx_wait_dirty = B_TRUE;
801 		return (SET_ERROR(ERESTART));
802 	}
803 
804 	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
805 	tx->tx_needassign_txh = NULL;
806 
807 	/*
808 	 * NB: No error returns are allowed after txg_hold_open, but
809 	 * before processing the dnode holds, due to the
810 	 * dmu_tx_unassign() logic.
811 	 */
812 
813 	uint64_t towrite = 0;
814 	uint64_t tohold = 0;
815 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
816 	    txh = list_next(&tx->tx_holds, txh)) {
817 		dnode_t *dn = txh->txh_dnode;
818 		if (dn != NULL) {
819 			mutex_enter(&dn->dn_mtx);
820 			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
821 				mutex_exit(&dn->dn_mtx);
822 				tx->tx_needassign_txh = txh;
823 				return (SET_ERROR(ERESTART));
824 			}
825 			if (dn->dn_assigned_txg == 0)
826 				dn->dn_assigned_txg = tx->tx_txg;
827 			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
828 			(void) refcount_add(&dn->dn_tx_holds, tx);
829 			mutex_exit(&dn->dn_mtx);
830 		}
831 		towrite += refcount_count(&txh->txh_space_towrite);
832 		tohold += refcount_count(&txh->txh_memory_tohold);
833 	}
834 
835 	/* needed allocation: worst-case estimate of write space */
836 	uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
837 	/* calculate memory footprint estimate */
838 	uint64_t memory = towrite + tohold;
839 
840 	if (tx->tx_dir != NULL && asize != 0) {
841 		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
842 		    asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
843 		if (err != 0)
844 			return (err);
845 	}
846 
847 	return (0);
848 }
849 
850 static void
851 dmu_tx_unassign(dmu_tx_t *tx)
852 {
853 	if (tx->tx_txg == 0)
854 		return;
855 
856 	txg_rele_to_quiesce(&tx->tx_txgh);
857 
858 	/*
859 	 * Walk the transaction's hold list, removing the hold on the
860 	 * associated dnode, and notifying waiters if the refcount drops to 0.
861 	 */
862 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
863 	    txh != tx->tx_needassign_txh;
864 	    txh = list_next(&tx->tx_holds, txh)) {
865 		dnode_t *dn = txh->txh_dnode;
866 
867 		if (dn == NULL)
868 			continue;
869 		mutex_enter(&dn->dn_mtx);
870 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
871 
872 		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
873 			dn->dn_assigned_txg = 0;
874 			cv_broadcast(&dn->dn_notxholds);
875 		}
876 		mutex_exit(&dn->dn_mtx);
877 	}
878 
879 	txg_rele_to_sync(&tx->tx_txgh);
880 
881 	tx->tx_lasttried_txg = tx->tx_txg;
882 	tx->tx_txg = 0;
883 }
884 
885 /*
886  * Assign tx to a transaction group.  txg_how can be one of:
887  *
888  * (1)	TXG_WAIT.  If the current open txg is full, waits until there's
889  *	a new one.  This should be used when you're not holding locks.
890  *	It will only fail if we're truly out of space (or over quota).
891  *
892  * (2)	TXG_NOWAIT.  If we can't assign into the current open txg without
893  *	blocking, returns immediately with ERESTART.  This should be used
894  *	whenever you're holding locks.  On an ERESTART error, the caller
895  *	should drop locks, do a dmu_tx_wait(tx), and try again.
896  *
897  * (3)  TXG_WAITED.  Like TXG_NOWAIT, but indicates that dmu_tx_wait()
898  *      has already been called on behalf of this operation (though
899  *      most likely on a different tx).
900  */
901 int
902 dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how)
903 {
904 	int err;
905 
906 	ASSERT(tx->tx_txg == 0);
907 	ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT ||
908 	    txg_how == TXG_WAITED);
909 	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
910 
911 	/* If we might wait, we must not hold the config lock. */
912 	ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool));
913 
914 	if (txg_how == TXG_WAITED)
915 		tx->tx_waited = B_TRUE;
916 
917 	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
918 		dmu_tx_unassign(tx);
919 
920 		if (err != ERESTART || txg_how != TXG_WAIT)
921 			return (err);
922 
923 		dmu_tx_wait(tx);
924 	}
925 
926 	txg_rele_to_quiesce(&tx->tx_txgh);
927 
928 	return (0);
929 }
930 
931 void
932 dmu_tx_wait(dmu_tx_t *tx)
933 {
934 	spa_t *spa = tx->tx_pool->dp_spa;
935 	dsl_pool_t *dp = tx->tx_pool;
936 
937 	ASSERT(tx->tx_txg == 0);
938 	ASSERT(!dsl_pool_config_held(tx->tx_pool));
939 
940 	if (tx->tx_wait_dirty) {
941 		/*
942 		 * dmu_tx_try_assign() has determined that we need to wait
943 		 * because we've consumed much or all of the dirty buffer
944 		 * space.
945 		 */
946 		mutex_enter(&dp->dp_lock);
947 		while (dp->dp_dirty_total >= zfs_dirty_data_max)
948 			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
949 		uint64_t dirty = dp->dp_dirty_total;
950 		mutex_exit(&dp->dp_lock);
951 
952 		dmu_tx_delay(tx, dirty);
953 
954 		tx->tx_wait_dirty = B_FALSE;
955 
956 		/*
957 		 * Note: setting tx_waited only has effect if the caller
958 		 * used TX_WAIT.  Otherwise they are going to destroy
959 		 * this tx and try again.  The common case, zfs_write(),
960 		 * uses TX_WAIT.
961 		 */
962 		tx->tx_waited = B_TRUE;
963 	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
964 		/*
965 		 * If the pool is suspended we need to wait until it
966 		 * is resumed.  Note that it's possible that the pool
967 		 * has become active after this thread has tried to
968 		 * obtain a tx.  If that's the case then tx_lasttried_txg
969 		 * would not have been set.
970 		 */
971 		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
972 	} else if (tx->tx_needassign_txh) {
973 		/*
974 		 * A dnode is assigned to the quiescing txg.  Wait for its
975 		 * transaction to complete.
976 		 */
977 		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
978 
979 		mutex_enter(&dn->dn_mtx);
980 		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
981 			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
982 		mutex_exit(&dn->dn_mtx);
983 		tx->tx_needassign_txh = NULL;
984 	} else {
985 		txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
986 	}
987 }
988 
989 static void
990 dmu_tx_destroy(dmu_tx_t *tx)
991 {
992 	dmu_tx_hold_t *txh;
993 
994 	while ((txh = list_head(&tx->tx_holds)) != NULL) {
995 		dnode_t *dn = txh->txh_dnode;
996 
997 		list_remove(&tx->tx_holds, txh);
998 		refcount_destroy_many(&txh->txh_space_towrite,
999 		    refcount_count(&txh->txh_space_towrite));
1000 		refcount_destroy_many(&txh->txh_memory_tohold,
1001 		    refcount_count(&txh->txh_memory_tohold));
1002 		kmem_free(txh, sizeof (dmu_tx_hold_t));
1003 		if (dn != NULL)
1004 			dnode_rele(dn, tx);
1005 	}
1006 
1007 	list_destroy(&tx->tx_callbacks);
1008 	list_destroy(&tx->tx_holds);
1009 	kmem_free(tx, sizeof (dmu_tx_t));
1010 }
1011 
1012 void
1013 dmu_tx_commit(dmu_tx_t *tx)
1014 {
1015 	ASSERT(tx->tx_txg != 0);
1016 
1017 	/*
1018 	 * Go through the transaction's hold list and remove holds on
1019 	 * associated dnodes, notifying waiters if no holds remain.
1020 	 */
1021 	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1022 	    txh = list_next(&tx->tx_holds, txh)) {
1023 		dnode_t *dn = txh->txh_dnode;
1024 
1025 		if (dn == NULL)
1026 			continue;
1027 
1028 		mutex_enter(&dn->dn_mtx);
1029 		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1030 
1031 		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1032 			dn->dn_assigned_txg = 0;
1033 			cv_broadcast(&dn->dn_notxholds);
1034 		}
1035 		mutex_exit(&dn->dn_mtx);
1036 	}
1037 
1038 	if (tx->tx_tempreserve_cookie)
1039 		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1040 
1041 	if (!list_is_empty(&tx->tx_callbacks))
1042 		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1043 
1044 	if (tx->tx_anyobj == FALSE)
1045 		txg_rele_to_sync(&tx->tx_txgh);
1046 
1047 	dmu_tx_destroy(tx);
1048 }
1049 
1050 void
1051 dmu_tx_abort(dmu_tx_t *tx)
1052 {
1053 	ASSERT(tx->tx_txg == 0);
1054 
1055 	/*
1056 	 * Call any registered callbacks with an error code.
1057 	 */
1058 	if (!list_is_empty(&tx->tx_callbacks))
1059 		dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);
1060 
1061 	dmu_tx_destroy(tx);
1062 }
1063 
1064 uint64_t
1065 dmu_tx_get_txg(dmu_tx_t *tx)
1066 {
1067 	ASSERT(tx->tx_txg != 0);
1068 	return (tx->tx_txg);
1069 }
1070 
1071 dsl_pool_t *
1072 dmu_tx_pool(dmu_tx_t *tx)
1073 {
1074 	ASSERT(tx->tx_pool != NULL);
1075 	return (tx->tx_pool);
1076 }
1077 
1078 void
1079 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1080 {
1081 	dmu_tx_callback_t *dcb;
1082 
1083 	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1084 
1085 	dcb->dcb_func = func;
1086 	dcb->dcb_data = data;
1087 
1088 	list_insert_tail(&tx->tx_callbacks, dcb);
1089 }
1090 
1091 /*
1092  * Call all the commit callbacks on a list, with a given error code.
1093  */
1094 void
1095 dmu_tx_do_callbacks(list_t *cb_list, int error)
1096 {
1097 	dmu_tx_callback_t *dcb;
1098 
1099 	while ((dcb = list_head(cb_list)) != NULL) {
1100 		list_remove(cb_list, dcb);
1101 		dcb->dcb_func(dcb->dcb_data, error);
1102 		kmem_free(dcb, sizeof (dmu_tx_callback_t));
1103 	}
1104 }
1105 
1106 /*
1107  * Interface to hold a bunch of attributes.
1108  * used for creating new files.
1109  * attrsize is the total size of all attributes
1110  * to be added during object creation
1111  *
1112  * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1113  */
1114 
1115 /*
1116  * hold necessary attribute name for attribute registration.
1117  * should be a very rare case where this is needed.  If it does
1118  * happen it would only happen on the first write to the file system.
1119  */
1120 static void
1121 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1122 {
1123 	if (!sa->sa_need_attr_registration)
1124 		return;
1125 
1126 	for (int i = 0; i != sa->sa_num_attrs; i++) {
1127 		if (!sa->sa_attr_table[i].sa_registered) {
1128 			if (sa->sa_reg_attr_obj)
1129 				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1130 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1131 			else
1132 				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1133 				    B_TRUE, sa->sa_attr_table[i].sa_name);
1134 		}
1135 	}
1136 }
1137 
1138 void
1139 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1140 {
1141 	dmu_tx_hold_t *txh = dmu_tx_hold_object_impl(tx,
1142 	    tx->tx_objset, object, THT_SPILL, 0, 0);
1143 
1144 	(void) refcount_add_many(&txh->txh_space_towrite,
1145 	    SPA_OLD_MAXBLOCKSIZE, FTAG);
1146 }
1147 
1148 void
1149 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1150 {
1151 	sa_os_t *sa = tx->tx_objset->os_sa;
1152 
1153 	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1154 
1155 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1156 		return;
1157 
1158 	if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1159 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1160 	} else {
1161 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1162 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1163 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1164 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1165 	}
1166 
1167 	dmu_tx_sa_registration_hold(sa, tx);
1168 
1169 	if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill)
1170 		return;
1171 
1172 	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1173 	    THT_SPILL, 0, 0);
1174 }
1175 
1176 /*
1177  * Hold SA attribute
1178  *
1179  * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1180  *
1181  * variable_size is the total size of all variable sized attributes
1182  * passed to this function.  It is not the total size of all
1183  * variable size attributes that *may* exist on this object.
1184  */
1185 void
1186 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1187 {
1188 	uint64_t object;
1189 	sa_os_t *sa = tx->tx_objset->os_sa;
1190 
1191 	ASSERT(hdl != NULL);
1192 
1193 	object = sa_handle_object(hdl);
1194 
1195 	dmu_tx_hold_bonus(tx, object);
1196 
1197 	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1198 		return;
1199 
1200 	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1201 	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1202 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1203 		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1204 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1205 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1206 	}
1207 
1208 	dmu_tx_sa_registration_hold(sa, tx);
1209 
1210 	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1211 		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1212 
1213 	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1214 		ASSERT(tx->tx_txg == 0);
1215 		dmu_tx_hold_spill(tx, object);
1216 	} else {
1217 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1218 		dnode_t *dn;
1219 
1220 		DB_DNODE_ENTER(db);
1221 		dn = DB_DNODE(db);
1222 		if (dn->dn_have_spill) {
1223 			ASSERT(tx->tx_txg == 0);
1224 			dmu_tx_hold_spill(tx, object);
1225 		}
1226 		DB_DNODE_EXIT(db);
1227 	}
1228 }
1229