1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/dmu.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dbuf.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */ 34 #include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */ 35 #include <sys/dsl_pool.h> 36 #include <sys/zap_impl.h> /* for fzap_default_block_shift */ 37 #include <sys/spa.h> 38 #include <sys/zfs_context.h> 39 40 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, 41 uint64_t arg1, uint64_t arg2); 42 43 44 dmu_tx_t * 45 dmu_tx_create_dd(dsl_dir_t *dd) 46 { 47 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); 48 tx->tx_dir = dd; 49 if (dd) 50 tx->tx_pool = dd->dd_pool; 51 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), 52 offsetof(dmu_tx_hold_t, txh_node)); 53 #ifdef ZFS_DEBUG 54 refcount_create(&tx->tx_space_written); 55 refcount_create(&tx->tx_space_freed); 56 #endif 57 return (tx); 58 } 59 60 dmu_tx_t * 61 dmu_tx_create(objset_t *os) 62 { 63 dmu_tx_t *tx = dmu_tx_create_dd(os->os->os_dsl_dataset->ds_dir); 64 tx->tx_objset = os; 65 tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os->os_dsl_dataset); 66 return (tx); 67 } 68 69 dmu_tx_t * 70 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) 71 { 72 dmu_tx_t *tx = dmu_tx_create_dd(NULL); 73 74 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); 75 tx->tx_pool = dp; 76 tx->tx_txg = txg; 77 tx->tx_anyobj = TRUE; 78 79 return (tx); 80 } 81 82 int 83 dmu_tx_is_syncing(dmu_tx_t *tx) 84 { 85 return (tx->tx_anyobj); 86 } 87 88 int 89 dmu_tx_private_ok(dmu_tx_t *tx) 90 { 91 return (tx->tx_anyobj); 92 } 93 94 static dmu_tx_hold_t * 95 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, 96 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) 97 { 98 dmu_tx_hold_t *txh; 99 dnode_t *dn = NULL; 100 int err; 101 102 if (object != DMU_NEW_OBJECT) { 103 err = dnode_hold(os->os, object, tx, &dn); 104 if (err) { 105 tx->tx_err = err; 106 return (NULL); 107 } 108 109 if (err == 0 && tx->tx_txg != 0) { 110 mutex_enter(&dn->dn_mtx); 111 /* 112 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a 113 * problem, but there's no way for it to happen (for 114 * now, at least). 115 */ 116 ASSERT(dn->dn_assigned_txg == 0); 117 dn->dn_assigned_txg = tx->tx_txg; 118 (void) refcount_add(&dn->dn_tx_holds, tx); 119 mutex_exit(&dn->dn_mtx); 120 } 121 } 122 123 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); 124 txh->txh_tx = tx; 125 txh->txh_dnode = dn; 126 #ifdef ZFS_DEBUG 127 txh->txh_type = type; 128 txh->txh_arg1 = arg1; 129 txh->txh_arg2 = arg2; 130 #endif 131 list_insert_tail(&tx->tx_holds, txh); 132 133 return (txh); 134 } 135 136 void 137 dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object) 138 { 139 /* 140 * If we're syncing, they can manipulate any object anyhow, and 141 * the hold on the dnode_t can cause problems. 142 */ 143 if (!dmu_tx_is_syncing(tx)) { 144 (void) dmu_tx_hold_object_impl(tx, os, 145 object, THT_NEWOBJECT, 0, 0); 146 } 147 } 148 149 static int 150 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) 151 { 152 int err; 153 dmu_buf_impl_t *db; 154 155 rw_enter(&dn->dn_struct_rwlock, RW_READER); 156 db = dbuf_hold_level(dn, level, blkid, FTAG); 157 rw_exit(&dn->dn_struct_rwlock); 158 if (db == NULL) 159 return (EIO); 160 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH); 161 dbuf_rele(db, FTAG); 162 return (err); 163 } 164 165 /* ARGSUSED */ 166 static void 167 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 168 { 169 dnode_t *dn = txh->txh_dnode; 170 uint64_t start, end, i; 171 int min_bs, max_bs, min_ibs, max_ibs, epbs, bits; 172 int err = 0; 173 174 if (len == 0) 175 return; 176 177 min_bs = SPA_MINBLOCKSHIFT; 178 max_bs = SPA_MAXBLOCKSHIFT; 179 min_ibs = DN_MIN_INDBLKSHIFT; 180 max_ibs = DN_MAX_INDBLKSHIFT; 181 182 183 /* 184 * For i/o error checking, read the first and last level-0 185 * blocks (if they are not aligned), and all the level-1 blocks. 186 */ 187 188 if (dn) { 189 if (dn->dn_maxblkid == 0) { 190 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 191 if (err) 192 goto out; 193 } else { 194 zio_t *zio = zio_root(dn->dn_objset->os_spa, 195 NULL, NULL, ZIO_FLAG_CANFAIL); 196 197 /* first level-0 block */ 198 start = off >> dn->dn_datablkshift; 199 if (P2PHASE(off, dn->dn_datablksz) || 200 len < dn->dn_datablksz) { 201 err = dmu_tx_check_ioerr(zio, dn, 0, start); 202 if (err) 203 goto out; 204 } 205 206 /* last level-0 block */ 207 end = (off+len-1) >> dn->dn_datablkshift; 208 if (end != start && 209 P2PHASE(off+len, dn->dn_datablksz)) { 210 err = dmu_tx_check_ioerr(zio, dn, 0, end); 211 if (err) 212 goto out; 213 } 214 215 /* level-1 blocks */ 216 if (dn->dn_nlevels > 1) { 217 start >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT; 218 end >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT; 219 for (i = start+1; i < end; i++) { 220 err = dmu_tx_check_ioerr(zio, dn, 1, i); 221 if (err) 222 goto out; 223 } 224 } 225 226 err = zio_wait(zio); 227 if (err) 228 goto out; 229 } 230 } 231 232 /* 233 * If there's more than one block, the blocksize can't change, 234 * so we can make a more precise estimate. Alternatively, 235 * if the dnode's ibs is larger than max_ibs, always use that. 236 * This ensures that if we reduce DN_MAX_INDBLKSHIFT, 237 * the code will still work correctly on existing pools. 238 */ 239 if (dn && (dn->dn_maxblkid != 0 || dn->dn_indblkshift > max_ibs)) { 240 min_ibs = max_ibs = dn->dn_indblkshift; 241 if (dn->dn_datablkshift != 0) 242 min_bs = max_bs = dn->dn_datablkshift; 243 } 244 245 /* 246 * 'end' is the last thing we will access, not one past. 247 * This way we won't overflow when accessing the last byte. 248 */ 249 start = P2ALIGN(off, 1ULL << max_bs); 250 end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1; 251 txh->txh_space_towrite += end - start + 1; 252 253 start >>= min_bs; 254 end >>= min_bs; 255 256 epbs = min_ibs - SPA_BLKPTRSHIFT; 257 258 /* 259 * The object contains at most 2^(64 - min_bs) blocks, 260 * and each indirect level maps 2^epbs. 261 */ 262 for (bits = 64 - min_bs; bits >= 0; bits -= epbs) { 263 start >>= epbs; 264 end >>= epbs; 265 /* 266 * If we increase the number of levels of indirection, 267 * we'll need new blkid=0 indirect blocks. If start == 0, 268 * we're already accounting for that blocks; and if end == 0, 269 * we can't increase the number of levels beyond that. 270 */ 271 if (start != 0 && end != 0) 272 txh->txh_space_towrite += 1ULL << max_ibs; 273 txh->txh_space_towrite += (end - start + 1) << max_ibs; 274 } 275 276 ASSERT(txh->txh_space_towrite < 2 * DMU_MAX_ACCESS); 277 278 out: 279 if (err) 280 txh->txh_tx->tx_err = err; 281 } 282 283 static void 284 dmu_tx_count_dnode(dmu_tx_hold_t *txh) 285 { 286 dnode_t *dn = txh->txh_dnode; 287 dnode_t *mdn = txh->txh_tx->tx_objset->os->os_meta_dnode; 288 uint64_t space = mdn->dn_datablksz + 289 ((mdn->dn_nlevels-1) << mdn->dn_indblkshift); 290 291 if (dn && dn->dn_dbuf->db_blkptr && 292 dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 293 dn->dn_dbuf->db_blkptr->blk_birth)) { 294 txh->txh_space_tooverwrite += space; 295 } else { 296 txh->txh_space_towrite += space; 297 if (dn && dn->dn_dbuf->db_blkptr) 298 txh->txh_space_tounref += space; 299 } 300 } 301 302 void 303 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) 304 { 305 dmu_tx_hold_t *txh; 306 307 ASSERT(tx->tx_txg == 0); 308 ASSERT(len < DMU_MAX_ACCESS); 309 ASSERT(len == 0 || UINT64_MAX - off >= len - 1); 310 311 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 312 object, THT_WRITE, off, len); 313 if (txh == NULL) 314 return; 315 316 dmu_tx_count_write(txh, off, len); 317 dmu_tx_count_dnode(txh); 318 } 319 320 static void 321 dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 322 { 323 uint64_t blkid, nblks, lastblk; 324 uint64_t space = 0, unref = 0, skipped = 0; 325 dnode_t *dn = txh->txh_dnode; 326 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 327 spa_t *spa = txh->txh_tx->tx_pool->dp_spa; 328 int epbs; 329 330 if (dn->dn_nlevels == 0) 331 return; 332 333 /* 334 * The struct_rwlock protects us against dn_nlevels 335 * changing, in case (against all odds) we manage to dirty & 336 * sync out the changes after we check for being dirty. 337 * Also, dbuf_hold_level() wants us to have the struct_rwlock. 338 */ 339 rw_enter(&dn->dn_struct_rwlock, RW_READER); 340 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 341 if (dn->dn_maxblkid == 0) { 342 if (off == 0 && len >= dn->dn_datablksz) { 343 blkid = 0; 344 nblks = 1; 345 } else { 346 rw_exit(&dn->dn_struct_rwlock); 347 return; 348 } 349 } else { 350 blkid = off >> dn->dn_datablkshift; 351 nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift; 352 353 if (blkid >= dn->dn_maxblkid) { 354 rw_exit(&dn->dn_struct_rwlock); 355 return; 356 } 357 if (blkid + nblks > dn->dn_maxblkid) 358 nblks = dn->dn_maxblkid - blkid; 359 360 } 361 if (dn->dn_nlevels == 1) { 362 int i; 363 for (i = 0; i < nblks; i++) { 364 blkptr_t *bp = dn->dn_phys->dn_blkptr; 365 ASSERT3U(blkid + i, <, dn->dn_nblkptr); 366 bp += blkid + i; 367 if (dsl_dataset_block_freeable(ds, bp->blk_birth)) { 368 dprintf_bp(bp, "can free old%s", ""); 369 space += bp_get_dasize(spa, bp); 370 } 371 unref += BP_GET_ASIZE(bp); 372 } 373 nblks = 0; 374 } 375 376 /* 377 * Add in memory requirements of higher-level indirects. 378 * This assumes a worst-possible scenario for dn_nlevels. 379 */ 380 { 381 uint64_t blkcnt = 1 + ((nblks >> epbs) >> epbs); 382 int level = dn->dn_nlevels > 1 ? 2 : 1; 383 384 while (level++ < DN_MAX_LEVELS) { 385 txh->txh_memory_tohold += blkcnt << dn->dn_indblkshift; 386 blkcnt = 1 + (blkcnt >> epbs); 387 } 388 ASSERT(blkcnt <= dn->dn_nblkptr); 389 } 390 391 lastblk = blkid + nblks - 1; 392 while (nblks) { 393 dmu_buf_impl_t *dbuf; 394 uint64_t ibyte, new_blkid; 395 int epb = 1 << epbs; 396 int err, i, blkoff, tochk; 397 blkptr_t *bp; 398 399 ibyte = blkid << dn->dn_datablkshift; 400 err = dnode_next_offset(dn, 401 DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0); 402 new_blkid = ibyte >> dn->dn_datablkshift; 403 if (err == ESRCH) 404 break; 405 if (err) { 406 txh->txh_tx->tx_err = err; 407 break; 408 } 409 if (new_blkid > lastblk) 410 break; 411 412 if (new_blkid > blkid) { 413 skipped += new_blkid - blkid - 1; 414 nblks -= new_blkid - blkid; 415 blkid = new_blkid; 416 } 417 blkoff = P2PHASE(blkid, epb); 418 tochk = MIN(epb - blkoff, nblks); 419 420 dbuf = dbuf_hold_level(dn, 1, blkid >> epbs, FTAG); 421 422 txh->txh_memory_tohold += dbuf->db.db_size; 423 if (txh->txh_memory_tohold > DMU_MAX_ACCESS) { 424 txh->txh_tx->tx_err = E2BIG; 425 dbuf_rele(dbuf, FTAG); 426 break; 427 } 428 err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL); 429 if (err != 0) { 430 txh->txh_tx->tx_err = err; 431 dbuf_rele(dbuf, FTAG); 432 break; 433 } 434 435 bp = dbuf->db.db_data; 436 bp += blkoff; 437 438 for (i = 0; i < tochk; i++) { 439 if (dsl_dataset_block_freeable(ds, bp[i].blk_birth)) { 440 dprintf_bp(&bp[i], "can free old%s", ""); 441 space += bp_get_dasize(spa, &bp[i]); 442 } 443 unref += BP_GET_ASIZE(bp); 444 } 445 dbuf_rele(dbuf, FTAG); 446 447 blkid += tochk; 448 nblks -= tochk; 449 } 450 rw_exit(&dn->dn_struct_rwlock); 451 452 /* account for new level 1 indirect blocks that might show up */ 453 if (skipped) { 454 txh->txh_fudge += skipped << dn->dn_indblkshift; 455 skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs); 456 txh->txh_memory_tohold += skipped << dn->dn_indblkshift; 457 } 458 txh->txh_space_tofree += space; 459 txh->txh_space_tounref += unref; 460 } 461 462 void 463 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) 464 { 465 dmu_tx_hold_t *txh; 466 dnode_t *dn; 467 uint64_t start, end, i; 468 int err, shift; 469 zio_t *zio; 470 471 ASSERT(tx->tx_txg == 0); 472 473 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 474 object, THT_FREE, off, len); 475 if (txh == NULL) 476 return; 477 dn = txh->txh_dnode; 478 479 /* first block */ 480 if (off != 0) 481 dmu_tx_count_write(txh, off, 1); 482 /* last block */ 483 if (len != DMU_OBJECT_END) 484 dmu_tx_count_write(txh, off+len, 1); 485 486 if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz) 487 return; 488 if (len == DMU_OBJECT_END) 489 len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off; 490 491 /* 492 * For i/o error checking, read the first and last level-0 493 * blocks, and all the level-1 blocks. The above count_write's 494 * have already taken care of the level-0 blocks. 495 */ 496 if (dn->dn_nlevels > 1) { 497 shift = dn->dn_datablkshift + dn->dn_indblkshift - 498 SPA_BLKPTRSHIFT; 499 start = off >> shift; 500 end = dn->dn_datablkshift ? ((off+len) >> shift) : 0; 501 502 zio = zio_root(tx->tx_pool->dp_spa, 503 NULL, NULL, ZIO_FLAG_CANFAIL); 504 for (i = start; i <= end; i++) { 505 uint64_t ibyte = i << shift; 506 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0); 507 i = ibyte >> shift; 508 if (err == ESRCH) 509 break; 510 if (err) { 511 tx->tx_err = err; 512 return; 513 } 514 515 err = dmu_tx_check_ioerr(zio, dn, 1, i); 516 if (err) { 517 tx->tx_err = err; 518 return; 519 } 520 } 521 err = zio_wait(zio); 522 if (err) { 523 tx->tx_err = err; 524 return; 525 } 526 } 527 528 dmu_tx_count_dnode(txh); 529 dmu_tx_count_free(txh, off, len); 530 } 531 532 void 533 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, char *name) 534 { 535 dmu_tx_hold_t *txh; 536 dnode_t *dn; 537 uint64_t nblocks; 538 int epbs, err; 539 540 ASSERT(tx->tx_txg == 0); 541 542 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 543 object, THT_ZAP, add, (uintptr_t)name); 544 if (txh == NULL) 545 return; 546 dn = txh->txh_dnode; 547 548 dmu_tx_count_dnode(txh); 549 550 if (dn == NULL) { 551 /* 552 * We will be able to fit a new object's entries into one leaf 553 * block. So there will be at most 2 blocks total, 554 * including the header block. 555 */ 556 dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift); 557 return; 558 } 559 560 ASSERT3P(dmu_ot[dn->dn_type].ot_byteswap, ==, zap_byteswap); 561 562 if (dn->dn_maxblkid == 0 && !add) { 563 /* 564 * If there is only one block (i.e. this is a micro-zap) 565 * and we are not adding anything, the accounting is simple. 566 */ 567 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 568 if (err) { 569 tx->tx_err = err; 570 return; 571 } 572 573 /* 574 * Use max block size here, since we don't know how much 575 * the size will change between now and the dbuf dirty call. 576 */ 577 if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 578 dn->dn_phys->dn_blkptr[0].blk_birth)) { 579 txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE; 580 } else { 581 txh->txh_space_towrite += SPA_MAXBLOCKSIZE; 582 txh->txh_space_tounref += 583 BP_GET_ASIZE(dn->dn_phys->dn_blkptr); 584 } 585 return; 586 } 587 588 if (dn->dn_maxblkid > 0 && name) { 589 /* 590 * access the name in this fat-zap so that we'll check 591 * for i/o errors to the leaf blocks, etc. 592 */ 593 err = zap_lookup(&dn->dn_objset->os, dn->dn_object, name, 594 8, 0, NULL); 595 if (err == EIO) { 596 tx->tx_err = err; 597 return; 598 } 599 } 600 601 /* 602 * 3 blocks overwritten: target leaf, ptrtbl block, header block 603 * 3 new blocks written if adding: new split leaf, 2 grown ptrtbl blocks 604 */ 605 dmu_tx_count_write(txh, dn->dn_maxblkid * dn->dn_datablksz, 606 (3 + add ? 3 : 0) << dn->dn_datablkshift); 607 608 /* 609 * If the modified blocks are scattered to the four winds, 610 * we'll have to modify an indirect twig for each. 611 */ 612 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 613 for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs) 614 txh->txh_space_towrite += 3 << dn->dn_indblkshift; 615 } 616 617 void 618 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) 619 { 620 dmu_tx_hold_t *txh; 621 622 ASSERT(tx->tx_txg == 0); 623 624 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 625 object, THT_BONUS, 0, 0); 626 if (txh) 627 dmu_tx_count_dnode(txh); 628 } 629 630 void 631 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) 632 { 633 dmu_tx_hold_t *txh; 634 ASSERT(tx->tx_txg == 0); 635 636 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 637 DMU_NEW_OBJECT, THT_SPACE, space, 0); 638 639 txh->txh_space_towrite += space; 640 } 641 642 int 643 dmu_tx_holds(dmu_tx_t *tx, uint64_t object) 644 { 645 dmu_tx_hold_t *txh; 646 int holds = 0; 647 648 /* 649 * By asserting that the tx is assigned, we're counting the 650 * number of dn_tx_holds, which is the same as the number of 651 * dn_holds. Otherwise, we'd be counting dn_holds, but 652 * dn_tx_holds could be 0. 653 */ 654 ASSERT(tx->tx_txg != 0); 655 656 /* if (tx->tx_anyobj == TRUE) */ 657 /* return (0); */ 658 659 for (txh = list_head(&tx->tx_holds); txh; 660 txh = list_next(&tx->tx_holds, txh)) { 661 if (txh->txh_dnode && txh->txh_dnode->dn_object == object) 662 holds++; 663 } 664 665 return (holds); 666 } 667 668 #ifdef ZFS_DEBUG 669 void 670 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) 671 { 672 dmu_tx_hold_t *txh; 673 int match_object = FALSE, match_offset = FALSE; 674 dnode_t *dn = db->db_dnode; 675 676 ASSERT(tx->tx_txg != 0); 677 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset->os); 678 ASSERT3U(dn->dn_object, ==, db->db.db_object); 679 680 if (tx->tx_anyobj) 681 return; 682 683 /* XXX No checking on the meta dnode for now */ 684 if (db->db.db_object == DMU_META_DNODE_OBJECT) 685 return; 686 687 for (txh = list_head(&tx->tx_holds); txh; 688 txh = list_next(&tx->tx_holds, txh)) { 689 ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg); 690 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT) 691 match_object = TRUE; 692 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) { 693 int datablkshift = dn->dn_datablkshift ? 694 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; 695 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 696 int shift = datablkshift + epbs * db->db_level; 697 uint64_t beginblk = shift >= 64 ? 0 : 698 (txh->txh_arg1 >> shift); 699 uint64_t endblk = shift >= 64 ? 0 : 700 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift); 701 uint64_t blkid = db->db_blkid; 702 703 /* XXX txh_arg2 better not be zero... */ 704 705 dprintf("found txh type %x beginblk=%llx endblk=%llx\n", 706 txh->txh_type, beginblk, endblk); 707 708 switch (txh->txh_type) { 709 case THT_WRITE: 710 if (blkid >= beginblk && blkid <= endblk) 711 match_offset = TRUE; 712 /* 713 * We will let this hold work for the bonus 714 * buffer so that we don't need to hold it 715 * when creating a new object. 716 */ 717 if (blkid == DB_BONUS_BLKID) 718 match_offset = TRUE; 719 /* 720 * They might have to increase nlevels, 721 * thus dirtying the new TLIBs. Or the 722 * might have to change the block size, 723 * thus dirying the new lvl=0 blk=0. 724 */ 725 if (blkid == 0) 726 match_offset = TRUE; 727 break; 728 case THT_FREE: 729 /* 730 * We will dirty all the level 1 blocks in 731 * the free range and perhaps the first and 732 * last level 0 block. 733 */ 734 if (blkid >= beginblk && (blkid <= endblk || 735 txh->txh_arg2 == DMU_OBJECT_END)) 736 match_offset = TRUE; 737 break; 738 case THT_BONUS: 739 if (blkid == DB_BONUS_BLKID) 740 match_offset = TRUE; 741 break; 742 case THT_ZAP: 743 match_offset = TRUE; 744 break; 745 case THT_NEWOBJECT: 746 match_object = TRUE; 747 break; 748 default: 749 ASSERT(!"bad txh_type"); 750 } 751 } 752 if (match_object && match_offset) 753 return; 754 } 755 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", 756 (u_longlong_t)db->db.db_object, db->db_level, 757 (u_longlong_t)db->db_blkid); 758 } 759 #endif 760 761 static int 762 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how) 763 { 764 dmu_tx_hold_t *txh; 765 spa_t *spa = tx->tx_pool->dp_spa; 766 uint64_t memory, asize, fsize, usize; 767 uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge; 768 769 ASSERT3U(tx->tx_txg, ==, 0); 770 771 if (tx->tx_err) 772 return (tx->tx_err); 773 774 if (spa_state(spa) == POOL_STATE_IO_FAILURE) { 775 /* 776 * If the user has indicated a blocking failure mode 777 * then return ERESTART which will block in dmu_tx_wait(). 778 * Otherwise, return EIO so that an error can get 779 * propagated back to the VOP calls. 780 * 781 * Note that we always honor the txg_how flag regardless 782 * of the failuremode setting. 783 */ 784 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE && 785 txg_how != TXG_WAIT) 786 return (EIO); 787 788 return (ERESTART); 789 } 790 791 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); 792 tx->tx_needassign_txh = NULL; 793 794 /* 795 * NB: No error returns are allowed after txg_hold_open, but 796 * before processing the dnode holds, due to the 797 * dmu_tx_unassign() logic. 798 */ 799 800 towrite = tofree = tooverwrite = tounref = tohold = fudge = 0; 801 for (txh = list_head(&tx->tx_holds); txh; 802 txh = list_next(&tx->tx_holds, txh)) { 803 dnode_t *dn = txh->txh_dnode; 804 if (dn != NULL) { 805 mutex_enter(&dn->dn_mtx); 806 if (dn->dn_assigned_txg == tx->tx_txg - 1) { 807 mutex_exit(&dn->dn_mtx); 808 tx->tx_needassign_txh = txh; 809 return (ERESTART); 810 } 811 if (dn->dn_assigned_txg == 0) 812 dn->dn_assigned_txg = tx->tx_txg; 813 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 814 (void) refcount_add(&dn->dn_tx_holds, tx); 815 mutex_exit(&dn->dn_mtx); 816 } 817 towrite += txh->txh_space_towrite; 818 tofree += txh->txh_space_tofree; 819 tooverwrite += txh->txh_space_tooverwrite; 820 tounref += txh->txh_space_tounref; 821 tohold += txh->txh_memory_tohold; 822 fudge += txh->txh_fudge; 823 } 824 825 /* 826 * NB: This check must be after we've held the dnodes, so that 827 * the dmu_tx_unassign() logic will work properly 828 */ 829 if (txg_how >= TXG_INITIAL && txg_how != tx->tx_txg) 830 return (ERESTART); 831 832 /* 833 * If a snapshot has been taken since we made our estimates, 834 * assume that we won't be able to free or overwrite anything. 835 */ 836 if (tx->tx_objset && 837 dsl_dataset_prev_snap_txg(tx->tx_objset->os->os_dsl_dataset) > 838 tx->tx_lastsnap_txg) { 839 towrite += tooverwrite; 840 tooverwrite = tofree = 0; 841 } 842 843 /* needed allocation: worst-case estimate of write space */ 844 asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite); 845 /* freed space estimate: worst-case overwrite + free estimate */ 846 fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree; 847 /* convert unrefd space to worst-case estimate */ 848 usize = spa_get_asize(tx->tx_pool->dp_spa, tounref); 849 /* calculate memory footprint estimate */ 850 memory = towrite + tooverwrite + tohold; 851 852 #ifdef ZFS_DEBUG 853 /* 854 * Add in 'tohold' to account for our dirty holds on this memory 855 * XXX - the "fudge" factor is to account for skipped blocks that 856 * we missed because dnode_next_offset() misses in-core-only blocks. 857 */ 858 tx->tx_space_towrite = asize + 859 spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge); 860 tx->tx_space_tofree = tofree; 861 tx->tx_space_tooverwrite = tooverwrite; 862 tx->tx_space_tounref = tounref; 863 #endif 864 865 if (tx->tx_dir && asize != 0) { 866 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory, 867 asize, fsize, usize, &tx->tx_tempreserve_cookie, tx); 868 if (err) 869 return (err); 870 } 871 872 return (0); 873 } 874 875 static void 876 dmu_tx_unassign(dmu_tx_t *tx) 877 { 878 dmu_tx_hold_t *txh; 879 880 if (tx->tx_txg == 0) 881 return; 882 883 txg_rele_to_quiesce(&tx->tx_txgh); 884 885 for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh; 886 txh = list_next(&tx->tx_holds, txh)) { 887 dnode_t *dn = txh->txh_dnode; 888 889 if (dn == NULL) 890 continue; 891 mutex_enter(&dn->dn_mtx); 892 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 893 894 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 895 dn->dn_assigned_txg = 0; 896 cv_broadcast(&dn->dn_notxholds); 897 } 898 mutex_exit(&dn->dn_mtx); 899 } 900 901 txg_rele_to_sync(&tx->tx_txgh); 902 903 tx->tx_lasttried_txg = tx->tx_txg; 904 tx->tx_txg = 0; 905 } 906 907 /* 908 * Assign tx to a transaction group. txg_how can be one of: 909 * 910 * (1) TXG_WAIT. If the current open txg is full, waits until there's 911 * a new one. This should be used when you're not holding locks. 912 * If will only fail if we're truly out of space (or over quota). 913 * 914 * (2) TXG_NOWAIT. If we can't assign into the current open txg without 915 * blocking, returns immediately with ERESTART. This should be used 916 * whenever you're holding locks. On an ERESTART error, the caller 917 * should drop locks, do a dmu_tx_wait(tx), and try again. 918 * 919 * (3) A specific txg. Use this if you need to ensure that multiple 920 * transactions all sync in the same txg. Like TXG_NOWAIT, it 921 * returns ERESTART if it can't assign you into the requested txg. 922 */ 923 int 924 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how) 925 { 926 int err; 927 928 ASSERT(tx->tx_txg == 0); 929 ASSERT(txg_how != 0); 930 ASSERT(!dsl_pool_sync_context(tx->tx_pool)); 931 932 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) { 933 dmu_tx_unassign(tx); 934 935 if (err != ERESTART || txg_how != TXG_WAIT) 936 return (err); 937 938 dmu_tx_wait(tx); 939 } 940 941 txg_rele_to_quiesce(&tx->tx_txgh); 942 943 return (0); 944 } 945 946 void 947 dmu_tx_wait(dmu_tx_t *tx) 948 { 949 spa_t *spa = tx->tx_pool->dp_spa; 950 951 ASSERT(tx->tx_txg == 0); 952 953 /* 954 * It's possible that the pool has become active after this thread 955 * has tried to obtain a tx. If that's the case then his 956 * tx_lasttried_txg would not have been assigned. 957 */ 958 if (spa_state(spa) == POOL_STATE_IO_FAILURE || 959 tx->tx_lasttried_txg == 0) { 960 txg_wait_synced(tx->tx_pool, spa_last_synced_txg(spa) + 1); 961 } else if (tx->tx_needassign_txh) { 962 dnode_t *dn = tx->tx_needassign_txh->txh_dnode; 963 964 mutex_enter(&dn->dn_mtx); 965 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1) 966 cv_wait(&dn->dn_notxholds, &dn->dn_mtx); 967 mutex_exit(&dn->dn_mtx); 968 tx->tx_needassign_txh = NULL; 969 } else { 970 txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1); 971 } 972 } 973 974 void 975 dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta) 976 { 977 #ifdef ZFS_DEBUG 978 if (tx->tx_dir == NULL || delta == 0) 979 return; 980 981 if (delta > 0) { 982 ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=, 983 tx->tx_space_towrite); 984 (void) refcount_add_many(&tx->tx_space_written, delta, NULL); 985 } else { 986 (void) refcount_add_many(&tx->tx_space_freed, -delta, NULL); 987 } 988 #endif 989 } 990 991 void 992 dmu_tx_commit(dmu_tx_t *tx) 993 { 994 dmu_tx_hold_t *txh; 995 996 ASSERT(tx->tx_txg != 0); 997 998 while (txh = list_head(&tx->tx_holds)) { 999 dnode_t *dn = txh->txh_dnode; 1000 1001 list_remove(&tx->tx_holds, txh); 1002 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1003 if (dn == NULL) 1004 continue; 1005 mutex_enter(&dn->dn_mtx); 1006 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1007 1008 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1009 dn->dn_assigned_txg = 0; 1010 cv_broadcast(&dn->dn_notxholds); 1011 } 1012 mutex_exit(&dn->dn_mtx); 1013 dnode_rele(dn, tx); 1014 } 1015 1016 if (tx->tx_tempreserve_cookie) 1017 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); 1018 1019 if (tx->tx_anyobj == FALSE) 1020 txg_rele_to_sync(&tx->tx_txgh); 1021 list_destroy(&tx->tx_holds); 1022 #ifdef ZFS_DEBUG 1023 dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n", 1024 tx->tx_space_towrite, refcount_count(&tx->tx_space_written), 1025 tx->tx_space_tofree, refcount_count(&tx->tx_space_freed)); 1026 refcount_destroy_many(&tx->tx_space_written, 1027 refcount_count(&tx->tx_space_written)); 1028 refcount_destroy_many(&tx->tx_space_freed, 1029 refcount_count(&tx->tx_space_freed)); 1030 #endif 1031 kmem_free(tx, sizeof (dmu_tx_t)); 1032 } 1033 1034 void 1035 dmu_tx_abort(dmu_tx_t *tx) 1036 { 1037 dmu_tx_hold_t *txh; 1038 1039 ASSERT(tx->tx_txg == 0); 1040 1041 while (txh = list_head(&tx->tx_holds)) { 1042 dnode_t *dn = txh->txh_dnode; 1043 1044 list_remove(&tx->tx_holds, txh); 1045 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1046 if (dn != NULL) 1047 dnode_rele(dn, tx); 1048 } 1049 list_destroy(&tx->tx_holds); 1050 #ifdef ZFS_DEBUG 1051 refcount_destroy_many(&tx->tx_space_written, 1052 refcount_count(&tx->tx_space_written)); 1053 refcount_destroy_many(&tx->tx_space_freed, 1054 refcount_count(&tx->tx_space_freed)); 1055 #endif 1056 kmem_free(tx, sizeof (dmu_tx_t)); 1057 } 1058 1059 uint64_t 1060 dmu_tx_get_txg(dmu_tx_t *tx) 1061 { 1062 ASSERT(tx->tx_txg != 0); 1063 return (tx->tx_txg); 1064 } 1065