1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dbuf.h> 35 #include <sys/dnode.h> 36 #include <sys/zfs_context.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dmu_traverse.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/zfs_ioctl.h> 45 #include <sys/zap.h> 46 #include <sys/zio_checksum.h> 47 #include <sys/zfs_znode.h> 48 #include <zfs_fletcher.h> 49 #include <sys/avl.h> 50 #include <sys/ddt.h> 51 #include <sys/zfs_onexit.h> 52 #include <sys/dmu_send.h> 53 #include <sys/dsl_destroy.h> 54 #include <sys/blkptr.h> 55 #include <sys/dsl_bookmark.h> 56 #include <sys/zfeature.h> 57 #include <sys/bqueue.h> 58 59 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 60 int zfs_send_corrupt_data = B_FALSE; 61 int zfs_send_queue_length = 16 * 1024 * 1024; 62 int zfs_recv_queue_length = 16 * 1024 * 1024; 63 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */ 64 int zfs_send_set_freerecords_bit = B_TRUE; 65 66 static char *dmu_recv_tag = "dmu_recv_tag"; 67 const char *recv_clone_name = "%recv"; 68 69 #define BP_SPAN(datablkszsec, indblkshift, level) \ 70 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 71 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 72 73 static void byteswap_record(dmu_replay_record_t *drr); 74 75 struct send_thread_arg { 76 bqueue_t q; 77 dsl_dataset_t *ds; /* Dataset to traverse */ 78 uint64_t fromtxg; /* Traverse from this txg */ 79 int flags; /* flags to pass to traverse_dataset */ 80 int error_code; 81 boolean_t cancel; 82 zbookmark_phys_t resume; 83 }; 84 85 struct send_block_record { 86 boolean_t eos_marker; /* Marks the end of the stream */ 87 blkptr_t bp; 88 zbookmark_phys_t zb; 89 uint8_t indblkshift; 90 uint16_t datablkszsec; 91 bqueue_node_t ln; 92 }; 93 94 static int 95 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 96 { 97 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); 98 ssize_t resid; /* have to get resid to get detailed errno */ 99 100 /* 101 * The code does not rely on this (len being a multiple of 8). We keep 102 * this assertion because of the corresponding assertion in 103 * receive_read(). Keeping this assertion ensures that we do not 104 * inadvertently break backwards compatibility (causing the assertion 105 * in receive_read() to trigger on old software). 106 * 107 * Removing the assertions could be rolled into a new feature that uses 108 * data that isn't 8-byte aligned; if the assertions were removed, a 109 * feature flag would have to be added. 110 */ 111 112 ASSERT0(len % 8); 113 114 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 115 (caddr_t)buf, len, 116 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 117 118 mutex_enter(&ds->ds_sendstream_lock); 119 *dsp->dsa_off += len; 120 mutex_exit(&ds->ds_sendstream_lock); 121 122 return (dsp->dsa_err); 123 } 124 125 /* 126 * For all record types except BEGIN, fill in the checksum (overlaid in 127 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 128 * up to the start of the checksum itself. 129 */ 130 static int 131 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 132 { 133 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 134 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 135 fletcher_4_incremental_native(dsp->dsa_drr, 136 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 137 &dsp->dsa_zc); 138 if (dsp->dsa_drr->drr_type == DRR_BEGIN) { 139 dsp->dsa_sent_begin = B_TRUE; 140 } else { 141 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 142 drr_checksum.drr_checksum)); 143 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 144 } 145 if (dsp->dsa_drr->drr_type == DRR_END) { 146 dsp->dsa_sent_end = B_TRUE; 147 } 148 fletcher_4_incremental_native(&dsp->dsa_drr-> 149 drr_u.drr_checksum.drr_checksum, 150 sizeof (zio_cksum_t), &dsp->dsa_zc); 151 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 152 return (SET_ERROR(EINTR)); 153 if (payload_len != 0) { 154 fletcher_4_incremental_native(payload, payload_len, 155 &dsp->dsa_zc); 156 if (dump_bytes(dsp, payload, payload_len) != 0) 157 return (SET_ERROR(EINTR)); 158 } 159 return (0); 160 } 161 162 /* 163 * Fill in the drr_free struct, or perform aggregation if the previous record is 164 * also a free record, and the two are adjacent. 165 * 166 * Note that we send free records even for a full send, because we want to be 167 * able to receive a full send as a clone, which requires a list of all the free 168 * and freeobject records that were generated on the source. 169 */ 170 static int 171 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 172 uint64_t length) 173 { 174 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 175 176 /* 177 * When we receive a free record, dbuf_free_range() assumes 178 * that the receiving system doesn't have any dbufs in the range 179 * being freed. This is always true because there is a one-record 180 * constraint: we only send one WRITE record for any given 181 * object,offset. We know that the one-record constraint is 182 * true because we always send data in increasing order by 183 * object,offset. 184 * 185 * If the increasing-order constraint ever changes, we should find 186 * another way to assert that the one-record constraint is still 187 * satisfied. 188 */ 189 ASSERT(object > dsp->dsa_last_data_object || 190 (object == dsp->dsa_last_data_object && 191 offset > dsp->dsa_last_data_offset)); 192 193 if (length != -1ULL && offset + length < offset) 194 length = -1ULL; 195 196 /* 197 * If there is a pending op, but it's not PENDING_FREE, push it out, 198 * since free block aggregation can only be done for blocks of the 199 * same type (i.e., DRR_FREE records can only be aggregated with 200 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 201 * aggregated with other DRR_FREEOBJECTS records. 202 */ 203 if (dsp->dsa_pending_op != PENDING_NONE && 204 dsp->dsa_pending_op != PENDING_FREE) { 205 if (dump_record(dsp, NULL, 0) != 0) 206 return (SET_ERROR(EINTR)); 207 dsp->dsa_pending_op = PENDING_NONE; 208 } 209 210 if (dsp->dsa_pending_op == PENDING_FREE) { 211 /* 212 * There should never be a PENDING_FREE if length is -1 213 * (because dump_dnode is the only place where this 214 * function is called with a -1, and only after flushing 215 * any pending record). 216 */ 217 ASSERT(length != -1ULL); 218 /* 219 * Check to see whether this free block can be aggregated 220 * with pending one. 221 */ 222 if (drrf->drr_object == object && drrf->drr_offset + 223 drrf->drr_length == offset) { 224 drrf->drr_length += length; 225 return (0); 226 } else { 227 /* not a continuation. Push out pending record */ 228 if (dump_record(dsp, NULL, 0) != 0) 229 return (SET_ERROR(EINTR)); 230 dsp->dsa_pending_op = PENDING_NONE; 231 } 232 } 233 /* create a FREE record and make it pending */ 234 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 235 dsp->dsa_drr->drr_type = DRR_FREE; 236 drrf->drr_object = object; 237 drrf->drr_offset = offset; 238 drrf->drr_length = length; 239 drrf->drr_toguid = dsp->dsa_toguid; 240 if (length == -1ULL) { 241 if (dump_record(dsp, NULL, 0) != 0) 242 return (SET_ERROR(EINTR)); 243 } else { 244 dsp->dsa_pending_op = PENDING_FREE; 245 } 246 247 return (0); 248 } 249 250 static int 251 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 252 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) 253 { 254 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 255 256 /* 257 * We send data in increasing object, offset order. 258 * See comment in dump_free() for details. 259 */ 260 ASSERT(object > dsp->dsa_last_data_object || 261 (object == dsp->dsa_last_data_object && 262 offset > dsp->dsa_last_data_offset)); 263 dsp->dsa_last_data_object = object; 264 dsp->dsa_last_data_offset = offset + blksz - 1; 265 266 /* 267 * If there is any kind of pending aggregation (currently either 268 * a grouping of free objects or free blocks), push it out to 269 * the stream, since aggregation can't be done across operations 270 * of different types. 271 */ 272 if (dsp->dsa_pending_op != PENDING_NONE) { 273 if (dump_record(dsp, NULL, 0) != 0) 274 return (SET_ERROR(EINTR)); 275 dsp->dsa_pending_op = PENDING_NONE; 276 } 277 /* write a WRITE record */ 278 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 279 dsp->dsa_drr->drr_type = DRR_WRITE; 280 drrw->drr_object = object; 281 drrw->drr_type = type; 282 drrw->drr_offset = offset; 283 drrw->drr_length = blksz; 284 drrw->drr_toguid = dsp->dsa_toguid; 285 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 286 /* 287 * There's no pre-computed checksum for partial-block 288 * writes or embedded BP's, so (like 289 * fletcher4-checkummed blocks) userland will have to 290 * compute a dedup-capable checksum itself. 291 */ 292 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 293 } else { 294 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 295 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 296 ZCHECKSUM_FLAG_DEDUP) 297 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 298 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 299 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 300 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 301 drrw->drr_key.ddk_cksum = bp->blk_cksum; 302 } 303 304 if (dump_record(dsp, data, blksz) != 0) 305 return (SET_ERROR(EINTR)); 306 return (0); 307 } 308 309 static int 310 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 311 int blksz, const blkptr_t *bp) 312 { 313 char buf[BPE_PAYLOAD_SIZE]; 314 struct drr_write_embedded *drrw = 315 &(dsp->dsa_drr->drr_u.drr_write_embedded); 316 317 if (dsp->dsa_pending_op != PENDING_NONE) { 318 if (dump_record(dsp, NULL, 0) != 0) 319 return (EINTR); 320 dsp->dsa_pending_op = PENDING_NONE; 321 } 322 323 ASSERT(BP_IS_EMBEDDED(bp)); 324 325 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 326 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 327 drrw->drr_object = object; 328 drrw->drr_offset = offset; 329 drrw->drr_length = blksz; 330 drrw->drr_toguid = dsp->dsa_toguid; 331 drrw->drr_compression = BP_GET_COMPRESS(bp); 332 drrw->drr_etype = BPE_GET_ETYPE(bp); 333 drrw->drr_lsize = BPE_GET_LSIZE(bp); 334 drrw->drr_psize = BPE_GET_PSIZE(bp); 335 336 decode_embedded_bp_compressed(bp, buf); 337 338 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 339 return (EINTR); 340 return (0); 341 } 342 343 static int 344 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 345 { 346 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 347 348 if (dsp->dsa_pending_op != PENDING_NONE) { 349 if (dump_record(dsp, NULL, 0) != 0) 350 return (SET_ERROR(EINTR)); 351 dsp->dsa_pending_op = PENDING_NONE; 352 } 353 354 /* write a SPILL record */ 355 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 356 dsp->dsa_drr->drr_type = DRR_SPILL; 357 drrs->drr_object = object; 358 drrs->drr_length = blksz; 359 drrs->drr_toguid = dsp->dsa_toguid; 360 361 if (dump_record(dsp, data, blksz) != 0) 362 return (SET_ERROR(EINTR)); 363 return (0); 364 } 365 366 static int 367 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 368 { 369 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 370 371 /* 372 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 373 * push it out, since free block aggregation can only be done for 374 * blocks of the same type (i.e., DRR_FREE records can only be 375 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 376 * can only be aggregated with other DRR_FREEOBJECTS records. 377 */ 378 if (dsp->dsa_pending_op != PENDING_NONE && 379 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 380 if (dump_record(dsp, NULL, 0) != 0) 381 return (SET_ERROR(EINTR)); 382 dsp->dsa_pending_op = PENDING_NONE; 383 } 384 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 385 /* 386 * See whether this free object array can be aggregated 387 * with pending one 388 */ 389 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 390 drrfo->drr_numobjs += numobjs; 391 return (0); 392 } else { 393 /* can't be aggregated. Push out pending record */ 394 if (dump_record(dsp, NULL, 0) != 0) 395 return (SET_ERROR(EINTR)); 396 dsp->dsa_pending_op = PENDING_NONE; 397 } 398 } 399 400 /* write a FREEOBJECTS record */ 401 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 402 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 403 drrfo->drr_firstobj = firstobj; 404 drrfo->drr_numobjs = numobjs; 405 drrfo->drr_toguid = dsp->dsa_toguid; 406 407 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 408 409 return (0); 410 } 411 412 static int 413 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 414 { 415 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 416 417 if (object < dsp->dsa_resume_object) { 418 /* 419 * Note: when resuming, we will visit all the dnodes in 420 * the block of dnodes that we are resuming from. In 421 * this case it's unnecessary to send the dnodes prior to 422 * the one we are resuming from. We should be at most one 423 * block's worth of dnodes behind the resume point. 424 */ 425 ASSERT3U(dsp->dsa_resume_object - object, <, 426 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 427 return (0); 428 } 429 430 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 431 return (dump_freeobjects(dsp, object, 1)); 432 433 if (dsp->dsa_pending_op != PENDING_NONE) { 434 if (dump_record(dsp, NULL, 0) != 0) 435 return (SET_ERROR(EINTR)); 436 dsp->dsa_pending_op = PENDING_NONE; 437 } 438 439 /* write an OBJECT record */ 440 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 441 dsp->dsa_drr->drr_type = DRR_OBJECT; 442 drro->drr_object = object; 443 drro->drr_type = dnp->dn_type; 444 drro->drr_bonustype = dnp->dn_bonustype; 445 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 446 drro->drr_bonuslen = dnp->dn_bonuslen; 447 drro->drr_checksumtype = dnp->dn_checksum; 448 drro->drr_compress = dnp->dn_compress; 449 drro->drr_toguid = dsp->dsa_toguid; 450 451 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 452 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 453 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 454 455 if (dump_record(dsp, DN_BONUS(dnp), 456 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 457 return (SET_ERROR(EINTR)); 458 } 459 460 /* Free anything past the end of the file. */ 461 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 462 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 463 return (SET_ERROR(EINTR)); 464 if (dsp->dsa_err != 0) 465 return (SET_ERROR(EINTR)); 466 return (0); 467 } 468 469 static boolean_t 470 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 471 { 472 if (!BP_IS_EMBEDDED(bp)) 473 return (B_FALSE); 474 475 /* 476 * Compression function must be legacy, or explicitly enabled. 477 */ 478 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 479 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) 480 return (B_FALSE); 481 482 /* 483 * Embed type must be explicitly enabled. 484 */ 485 switch (BPE_GET_ETYPE(bp)) { 486 case BP_EMBEDDED_TYPE_DATA: 487 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 488 return (B_TRUE); 489 break; 490 default: 491 return (B_FALSE); 492 } 493 return (B_FALSE); 494 } 495 496 /* 497 * This is the callback function to traverse_dataset that acts as the worker 498 * thread for dmu_send_impl. 499 */ 500 /*ARGSUSED*/ 501 static int 502 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 503 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 504 { 505 struct send_thread_arg *sta = arg; 506 struct send_block_record *record; 507 uint64_t record_size; 508 int err = 0; 509 510 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 511 zb->zb_object >= sta->resume.zb_object); 512 513 if (sta->cancel) 514 return (SET_ERROR(EINTR)); 515 516 if (bp == NULL) { 517 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 518 return (0); 519 } else if (zb->zb_level < 0) { 520 return (0); 521 } 522 523 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 524 record->eos_marker = B_FALSE; 525 record->bp = *bp; 526 record->zb = *zb; 527 record->indblkshift = dnp->dn_indblkshift; 528 record->datablkszsec = dnp->dn_datablkszsec; 529 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 530 bqueue_enqueue(&sta->q, record, record_size); 531 532 return (err); 533 } 534 535 /* 536 * This function kicks off the traverse_dataset. It also handles setting the 537 * error code of the thread in case something goes wrong, and pushes the End of 538 * Stream record when the traverse_dataset call has finished. If there is no 539 * dataset to traverse, the thread immediately pushes End of Stream marker. 540 */ 541 static void 542 send_traverse_thread(void *arg) 543 { 544 struct send_thread_arg *st_arg = arg; 545 int err; 546 struct send_block_record *data; 547 548 if (st_arg->ds != NULL) { 549 err = traverse_dataset_resume(st_arg->ds, 550 st_arg->fromtxg, &st_arg->resume, 551 st_arg->flags, send_cb, st_arg); 552 553 if (err != EINTR) 554 st_arg->error_code = err; 555 } 556 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 557 data->eos_marker = B_TRUE; 558 bqueue_enqueue(&st_arg->q, data, 1); 559 } 560 561 /* 562 * This function actually handles figuring out what kind of record needs to be 563 * dumped, reading the data (which has hopefully been prefetched), and calling 564 * the appropriate helper function. 565 */ 566 static int 567 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 568 { 569 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 570 const blkptr_t *bp = &data->bp; 571 const zbookmark_phys_t *zb = &data->zb; 572 uint8_t indblkshift = data->indblkshift; 573 uint16_t dblkszsec = data->datablkszsec; 574 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 575 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 576 int err = 0; 577 578 ASSERT3U(zb->zb_level, >=, 0); 579 580 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 581 zb->zb_object >= dsa->dsa_resume_object); 582 583 if (zb->zb_object != DMU_META_DNODE_OBJECT && 584 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 585 return (0); 586 } else if (BP_IS_HOLE(bp) && 587 zb->zb_object == DMU_META_DNODE_OBJECT) { 588 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 589 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 590 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 591 } else if (BP_IS_HOLE(bp)) { 592 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 593 uint64_t offset = zb->zb_blkid * span; 594 err = dump_free(dsa, zb->zb_object, offset, span); 595 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 596 return (0); 597 } else if (type == DMU_OT_DNODE) { 598 int blksz = BP_GET_LSIZE(bp); 599 arc_flags_t aflags = ARC_FLAG_WAIT; 600 arc_buf_t *abuf; 601 602 ASSERT0(zb->zb_level); 603 604 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 605 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 606 &aflags, zb) != 0) 607 return (SET_ERROR(EIO)); 608 609 dnode_phys_t *blk = abuf->b_data; 610 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 611 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 612 err = dump_dnode(dsa, dnobj + i, blk + i); 613 if (err != 0) 614 break; 615 } 616 arc_buf_destroy(abuf, &abuf); 617 } else if (type == DMU_OT_SA) { 618 arc_flags_t aflags = ARC_FLAG_WAIT; 619 arc_buf_t *abuf; 620 int blksz = BP_GET_LSIZE(bp); 621 622 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 623 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 624 &aflags, zb) != 0) 625 return (SET_ERROR(EIO)); 626 627 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 628 arc_buf_destroy(abuf, &abuf); 629 } else if (backup_do_embed(dsa, bp)) { 630 /* it's an embedded level-0 block of a regular object */ 631 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 632 ASSERT0(zb->zb_level); 633 err = dump_write_embedded(dsa, zb->zb_object, 634 zb->zb_blkid * blksz, blksz, bp); 635 } else { 636 /* it's a level-0 block of a regular object */ 637 arc_flags_t aflags = ARC_FLAG_WAIT; 638 arc_buf_t *abuf; 639 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 640 uint64_t offset; 641 642 ASSERT0(zb->zb_level); 643 ASSERT(zb->zb_object > dsa->dsa_resume_object || 644 (zb->zb_object == dsa->dsa_resume_object && 645 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 646 647 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 648 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 649 &aflags, zb) != 0) { 650 if (zfs_send_corrupt_data) { 651 /* Send a block filled with 0x"zfs badd bloc" */ 652 abuf = arc_alloc_buf(spa, blksz, &abuf, 653 ARC_BUFC_DATA); 654 uint64_t *ptr; 655 for (ptr = abuf->b_data; 656 (char *)ptr < (char *)abuf->b_data + blksz; 657 ptr++) 658 *ptr = 0x2f5baddb10cULL; 659 } else { 660 return (SET_ERROR(EIO)); 661 } 662 } 663 664 offset = zb->zb_blkid * blksz; 665 666 if (!(dsa->dsa_featureflags & 667 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 668 blksz > SPA_OLD_MAXBLOCKSIZE) { 669 char *buf = abuf->b_data; 670 while (blksz > 0 && err == 0) { 671 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 672 err = dump_write(dsa, type, zb->zb_object, 673 offset, n, NULL, buf); 674 offset += n; 675 buf += n; 676 blksz -= n; 677 } 678 } else { 679 err = dump_write(dsa, type, zb->zb_object, 680 offset, blksz, bp, abuf->b_data); 681 } 682 arc_buf_destroy(abuf, &abuf); 683 } 684 685 ASSERT(err == 0 || err == EINTR); 686 return (err); 687 } 688 689 /* 690 * Pop the new data off the queue, and free the old data. 691 */ 692 static struct send_block_record * 693 get_next_record(bqueue_t *bq, struct send_block_record *data) 694 { 695 struct send_block_record *tmp = bqueue_dequeue(bq); 696 kmem_free(data, sizeof (*data)); 697 return (tmp); 698 } 699 700 /* 701 * Actually do the bulk of the work in a zfs send. 702 * 703 * Note: Releases dp using the specified tag. 704 */ 705 static int 706 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 707 zfs_bookmark_phys_t *ancestor_zb, 708 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd, 709 uint64_t resumeobj, uint64_t resumeoff, 710 vnode_t *vp, offset_t *off) 711 { 712 objset_t *os; 713 dmu_replay_record_t *drr; 714 dmu_sendarg_t *dsp; 715 int err; 716 uint64_t fromtxg = 0; 717 uint64_t featureflags = 0; 718 struct send_thread_arg to_arg = { 0 }; 719 720 err = dmu_objset_from_ds(to_ds, &os); 721 if (err != 0) { 722 dsl_pool_rele(dp, tag); 723 return (err); 724 } 725 726 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 727 drr->drr_type = DRR_BEGIN; 728 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 729 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 730 DMU_SUBSTREAM); 731 732 #ifdef _KERNEL 733 if (dmu_objset_type(os) == DMU_OST_ZFS) { 734 uint64_t version; 735 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 736 kmem_free(drr, sizeof (dmu_replay_record_t)); 737 dsl_pool_rele(dp, tag); 738 return (SET_ERROR(EINVAL)); 739 } 740 if (version >= ZPL_VERSION_SA) { 741 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 742 } 743 } 744 #endif 745 746 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 747 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 748 if (embedok && 749 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 750 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 751 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 752 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; 753 } 754 755 if (resumeobj != 0 || resumeoff != 0) { 756 featureflags |= DMU_BACKUP_FEATURE_RESUMING; 757 } 758 759 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 760 featureflags); 761 762 drr->drr_u.drr_begin.drr_creation_time = 763 dsl_dataset_phys(to_ds)->ds_creation_time; 764 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 765 if (is_clone) 766 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 767 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 768 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 769 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 770 if (zfs_send_set_freerecords_bit) 771 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS; 772 773 if (ancestor_zb != NULL) { 774 drr->drr_u.drr_begin.drr_fromguid = 775 ancestor_zb->zbm_guid; 776 fromtxg = ancestor_zb->zbm_creation_txg; 777 } 778 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 779 if (!to_ds->ds_is_snapshot) { 780 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 781 sizeof (drr->drr_u.drr_begin.drr_toname)); 782 } 783 784 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 785 786 dsp->dsa_drr = drr; 787 dsp->dsa_vp = vp; 788 dsp->dsa_outfd = outfd; 789 dsp->dsa_proc = curproc; 790 dsp->dsa_os = os; 791 dsp->dsa_off = off; 792 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 793 dsp->dsa_pending_op = PENDING_NONE; 794 dsp->dsa_featureflags = featureflags; 795 dsp->dsa_resume_object = resumeobj; 796 dsp->dsa_resume_offset = resumeoff; 797 798 mutex_enter(&to_ds->ds_sendstream_lock); 799 list_insert_head(&to_ds->ds_sendstreams, dsp); 800 mutex_exit(&to_ds->ds_sendstream_lock); 801 802 dsl_dataset_long_hold(to_ds, FTAG); 803 dsl_pool_rele(dp, tag); 804 805 void *payload = NULL; 806 size_t payload_len = 0; 807 if (resumeobj != 0 || resumeoff != 0) { 808 dmu_object_info_t to_doi; 809 err = dmu_object_info(os, resumeobj, &to_doi); 810 if (err != 0) 811 goto out; 812 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, 813 resumeoff / to_doi.doi_data_block_size); 814 815 nvlist_t *nvl = fnvlist_alloc(); 816 fnvlist_add_uint64(nvl, "resume_object", resumeobj); 817 fnvlist_add_uint64(nvl, "resume_offset", resumeoff); 818 payload = fnvlist_pack(nvl, &payload_len); 819 drr->drr_payloadlen = payload_len; 820 fnvlist_free(nvl); 821 } 822 823 err = dump_record(dsp, payload, payload_len); 824 fnvlist_pack_free(payload, payload_len); 825 if (err != 0) { 826 err = dsp->dsa_err; 827 goto out; 828 } 829 830 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 831 offsetof(struct send_block_record, ln)); 832 to_arg.error_code = 0; 833 to_arg.cancel = B_FALSE; 834 to_arg.ds = to_ds; 835 to_arg.fromtxg = fromtxg; 836 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 837 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 838 TS_RUN, minclsyspri); 839 840 struct send_block_record *to_data; 841 to_data = bqueue_dequeue(&to_arg.q); 842 843 while (!to_data->eos_marker && err == 0) { 844 err = do_dump(dsp, to_data); 845 to_data = get_next_record(&to_arg.q, to_data); 846 if (issig(JUSTLOOKING) && issig(FORREAL)) 847 err = EINTR; 848 } 849 850 if (err != 0) { 851 to_arg.cancel = B_TRUE; 852 while (!to_data->eos_marker) { 853 to_data = get_next_record(&to_arg.q, to_data); 854 } 855 } 856 kmem_free(to_data, sizeof (*to_data)); 857 858 bqueue_destroy(&to_arg.q); 859 860 if (err == 0 && to_arg.error_code != 0) 861 err = to_arg.error_code; 862 863 if (err != 0) 864 goto out; 865 866 if (dsp->dsa_pending_op != PENDING_NONE) 867 if (dump_record(dsp, NULL, 0) != 0) 868 err = SET_ERROR(EINTR); 869 870 if (err != 0) { 871 if (err == EINTR && dsp->dsa_err != 0) 872 err = dsp->dsa_err; 873 goto out; 874 } 875 876 bzero(drr, sizeof (dmu_replay_record_t)); 877 drr->drr_type = DRR_END; 878 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 879 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 880 881 if (dump_record(dsp, NULL, 0) != 0) 882 err = dsp->dsa_err; 883 884 out: 885 mutex_enter(&to_ds->ds_sendstream_lock); 886 list_remove(&to_ds->ds_sendstreams, dsp); 887 mutex_exit(&to_ds->ds_sendstream_lock); 888 889 VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end)); 890 891 kmem_free(drr, sizeof (dmu_replay_record_t)); 892 kmem_free(dsp, sizeof (dmu_sendarg_t)); 893 894 dsl_dataset_long_rele(to_ds, FTAG); 895 896 return (err); 897 } 898 899 int 900 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 901 boolean_t embedok, boolean_t large_block_ok, 902 int outfd, vnode_t *vp, offset_t *off) 903 { 904 dsl_pool_t *dp; 905 dsl_dataset_t *ds; 906 dsl_dataset_t *fromds = NULL; 907 int err; 908 909 err = dsl_pool_hold(pool, FTAG, &dp); 910 if (err != 0) 911 return (err); 912 913 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 914 if (err != 0) { 915 dsl_pool_rele(dp, FTAG); 916 return (err); 917 } 918 919 if (fromsnap != 0) { 920 zfs_bookmark_phys_t zb; 921 boolean_t is_clone; 922 923 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 924 if (err != 0) { 925 dsl_dataset_rele(ds, FTAG); 926 dsl_pool_rele(dp, FTAG); 927 return (err); 928 } 929 if (!dsl_dataset_is_before(ds, fromds, 0)) 930 err = SET_ERROR(EXDEV); 931 zb.zbm_creation_time = 932 dsl_dataset_phys(fromds)->ds_creation_time; 933 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 934 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 935 is_clone = (fromds->ds_dir != ds->ds_dir); 936 dsl_dataset_rele(fromds, FTAG); 937 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 938 embedok, large_block_ok, outfd, 0, 0, vp, off); 939 } else { 940 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 941 embedok, large_block_ok, outfd, 0, 0, vp, off); 942 } 943 dsl_dataset_rele(ds, FTAG); 944 return (err); 945 } 946 947 int 948 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 949 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff, 950 vnode_t *vp, offset_t *off) 951 { 952 dsl_pool_t *dp; 953 dsl_dataset_t *ds; 954 int err; 955 boolean_t owned = B_FALSE; 956 957 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 958 return (SET_ERROR(EINVAL)); 959 960 err = dsl_pool_hold(tosnap, FTAG, &dp); 961 if (err != 0) 962 return (err); 963 964 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 965 /* 966 * We are sending a filesystem or volume. Ensure 967 * that it doesn't change by owning the dataset. 968 */ 969 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 970 owned = B_TRUE; 971 } else { 972 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 973 } 974 if (err != 0) { 975 dsl_pool_rele(dp, FTAG); 976 return (err); 977 } 978 979 if (fromsnap != NULL) { 980 zfs_bookmark_phys_t zb; 981 boolean_t is_clone = B_FALSE; 982 int fsnamelen = strchr(tosnap, '@') - tosnap; 983 984 /* 985 * If the fromsnap is in a different filesystem, then 986 * mark the send stream as a clone. 987 */ 988 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 989 (fromsnap[fsnamelen] != '@' && 990 fromsnap[fsnamelen] != '#')) { 991 is_clone = B_TRUE; 992 } 993 994 if (strchr(fromsnap, '@')) { 995 dsl_dataset_t *fromds; 996 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 997 if (err == 0) { 998 if (!dsl_dataset_is_before(ds, fromds, 0)) 999 err = SET_ERROR(EXDEV); 1000 zb.zbm_creation_time = 1001 dsl_dataset_phys(fromds)->ds_creation_time; 1002 zb.zbm_creation_txg = 1003 dsl_dataset_phys(fromds)->ds_creation_txg; 1004 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 1005 is_clone = (ds->ds_dir != fromds->ds_dir); 1006 dsl_dataset_rele(fromds, FTAG); 1007 } 1008 } else { 1009 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 1010 } 1011 if (err != 0) { 1012 dsl_dataset_rele(ds, FTAG); 1013 dsl_pool_rele(dp, FTAG); 1014 return (err); 1015 } 1016 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 1017 embedok, large_block_ok, 1018 outfd, resumeobj, resumeoff, vp, off); 1019 } else { 1020 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1021 embedok, large_block_ok, 1022 outfd, resumeobj, resumeoff, vp, off); 1023 } 1024 if (owned) 1025 dsl_dataset_disown(ds, FTAG); 1026 else 1027 dsl_dataset_rele(ds, FTAG); 1028 return (err); 1029 } 1030 1031 static int 1032 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size, 1033 uint64_t *sizep) 1034 { 1035 int err; 1036 /* 1037 * Assume that space (both on-disk and in-stream) is dominated by 1038 * data. We will adjust for indirect blocks and the copies property, 1039 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 1040 */ 1041 1042 /* 1043 * Subtract out approximate space used by indirect blocks. 1044 * Assume most space is used by data blocks (non-indirect, non-dnode). 1045 * Assume all blocks are recordsize. Assume ditto blocks and 1046 * internal fragmentation counter out compression. 1047 * 1048 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 1049 * block, which we observe in practice. 1050 */ 1051 uint64_t recordsize; 1052 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); 1053 if (err != 0) 1054 return (err); 1055 size -= size / recordsize * sizeof (blkptr_t); 1056 1057 /* Add in the space for the record associated with each block. */ 1058 size += size / recordsize * sizeof (dmu_replay_record_t); 1059 1060 *sizep = size; 1061 1062 return (0); 1063 } 1064 1065 int 1066 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) 1067 { 1068 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1069 int err; 1070 uint64_t size; 1071 1072 ASSERT(dsl_pool_config_held(dp)); 1073 1074 /* tosnap must be a snapshot */ 1075 if (!ds->ds_is_snapshot) 1076 return (SET_ERROR(EINVAL)); 1077 1078 /* fromsnap, if provided, must be a snapshot */ 1079 if (fromds != NULL && !fromds->ds_is_snapshot) 1080 return (SET_ERROR(EINVAL)); 1081 1082 /* 1083 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1084 * or the origin's fs. 1085 */ 1086 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1087 return (SET_ERROR(EXDEV)); 1088 1089 /* Get uncompressed size estimate of changed data. */ 1090 if (fromds == NULL) { 1091 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1092 } else { 1093 uint64_t used, comp; 1094 err = dsl_dataset_space_written(fromds, ds, 1095 &used, &comp, &size); 1096 if (err != 0) 1097 return (err); 1098 } 1099 1100 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1101 return (err); 1102 } 1103 1104 /* 1105 * Simple callback used to traverse the blocks of a snapshot and sum their 1106 * uncompressed size 1107 */ 1108 /* ARGSUSED */ 1109 static int 1110 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1111 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1112 { 1113 uint64_t *spaceptr = arg; 1114 if (bp != NULL && !BP_IS_HOLE(bp)) { 1115 *spaceptr += BP_GET_UCSIZE(bp); 1116 } 1117 return (0); 1118 } 1119 1120 /* 1121 * Given a desination snapshot and a TXG, calculate the approximate size of a 1122 * send stream sent from that TXG. from_txg may be zero, indicating that the 1123 * whole snapshot will be sent. 1124 */ 1125 int 1126 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1127 uint64_t *sizep) 1128 { 1129 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1130 int err; 1131 uint64_t size = 0; 1132 1133 ASSERT(dsl_pool_config_held(dp)); 1134 1135 /* tosnap must be a snapshot */ 1136 if (!dsl_dataset_is_snapshot(ds)) 1137 return (SET_ERROR(EINVAL)); 1138 1139 /* verify that from_txg is before the provided snapshot was taken */ 1140 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1141 return (SET_ERROR(EXDEV)); 1142 } 1143 1144 /* 1145 * traverse the blocks of the snapshot with birth times after 1146 * from_txg, summing their uncompressed size 1147 */ 1148 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1149 dmu_calculate_send_traversal, &size); 1150 if (err) 1151 return (err); 1152 1153 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1154 return (err); 1155 } 1156 1157 typedef struct dmu_recv_begin_arg { 1158 const char *drba_origin; 1159 dmu_recv_cookie_t *drba_cookie; 1160 cred_t *drba_cred; 1161 uint64_t drba_snapobj; 1162 } dmu_recv_begin_arg_t; 1163 1164 static int 1165 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1166 uint64_t fromguid) 1167 { 1168 uint64_t val; 1169 int error; 1170 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1171 1172 /* temporary clone name must not exist */ 1173 error = zap_lookup(dp->dp_meta_objset, 1174 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1175 8, 1, &val); 1176 if (error != ENOENT) 1177 return (error == 0 ? EBUSY : error); 1178 1179 /* new snapshot name must not exist */ 1180 error = zap_lookup(dp->dp_meta_objset, 1181 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1182 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1183 if (error != ENOENT) 1184 return (error == 0 ? EEXIST : error); 1185 1186 /* 1187 * Check snapshot limit before receiving. We'll recheck again at the 1188 * end, but might as well abort before receiving if we're already over 1189 * the limit. 1190 * 1191 * Note that we do not check the file system limit with 1192 * dsl_dir_fscount_check because the temporary %clones don't count 1193 * against that limit. 1194 */ 1195 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1196 NULL, drba->drba_cred); 1197 if (error != 0) 1198 return (error); 1199 1200 if (fromguid != 0) { 1201 dsl_dataset_t *snap; 1202 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1203 1204 /* Find snapshot in this dir that matches fromguid. */ 1205 while (obj != 0) { 1206 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1207 &snap); 1208 if (error != 0) 1209 return (SET_ERROR(ENODEV)); 1210 if (snap->ds_dir != ds->ds_dir) { 1211 dsl_dataset_rele(snap, FTAG); 1212 return (SET_ERROR(ENODEV)); 1213 } 1214 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1215 break; 1216 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1217 dsl_dataset_rele(snap, FTAG); 1218 } 1219 if (obj == 0) 1220 return (SET_ERROR(ENODEV)); 1221 1222 if (drba->drba_cookie->drc_force) { 1223 drba->drba_snapobj = obj; 1224 } else { 1225 /* 1226 * If we are not forcing, there must be no 1227 * changes since fromsnap. 1228 */ 1229 if (dsl_dataset_modified_since_snap(ds, snap)) { 1230 dsl_dataset_rele(snap, FTAG); 1231 return (SET_ERROR(ETXTBSY)); 1232 } 1233 drba->drba_snapobj = ds->ds_prev->ds_object; 1234 } 1235 1236 dsl_dataset_rele(snap, FTAG); 1237 } else { 1238 /* if full, then must be forced */ 1239 if (!drba->drba_cookie->drc_force) 1240 return (SET_ERROR(EEXIST)); 1241 /* start from $ORIGIN@$ORIGIN, if supported */ 1242 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1243 dp->dp_origin_snap->ds_object : 0; 1244 } 1245 1246 return (0); 1247 1248 } 1249 1250 static int 1251 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1252 { 1253 dmu_recv_begin_arg_t *drba = arg; 1254 dsl_pool_t *dp = dmu_tx_pool(tx); 1255 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1256 uint64_t fromguid = drrb->drr_fromguid; 1257 int flags = drrb->drr_flags; 1258 int error; 1259 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1260 dsl_dataset_t *ds; 1261 const char *tofs = drba->drba_cookie->drc_tofs; 1262 1263 /* already checked */ 1264 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1265 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 1266 1267 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1268 DMU_COMPOUNDSTREAM || 1269 drrb->drr_type >= DMU_OST_NUMTYPES || 1270 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1271 return (SET_ERROR(EINVAL)); 1272 1273 /* Verify pool version supports SA if SA_SPILL feature set */ 1274 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1275 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1276 return (SET_ERROR(ENOTSUP)); 1277 1278 if (drba->drba_cookie->drc_resumable && 1279 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 1280 return (SET_ERROR(ENOTSUP)); 1281 1282 /* 1283 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1284 * record to a plan WRITE record, so the pool must have the 1285 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1286 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1287 */ 1288 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1289 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1290 return (SET_ERROR(ENOTSUP)); 1291 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1292 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1293 return (SET_ERROR(ENOTSUP)); 1294 1295 /* 1296 * The receiving code doesn't know how to translate large blocks 1297 * to smaller ones, so the pool must have the LARGE_BLOCKS 1298 * feature enabled if the stream has LARGE_BLOCKS. 1299 */ 1300 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1301 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1302 return (SET_ERROR(ENOTSUP)); 1303 1304 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1305 if (error == 0) { 1306 /* target fs already exists; recv into temp clone */ 1307 1308 /* Can't recv a clone into an existing fs */ 1309 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 1310 dsl_dataset_rele(ds, FTAG); 1311 return (SET_ERROR(EINVAL)); 1312 } 1313 1314 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1315 dsl_dataset_rele(ds, FTAG); 1316 } else if (error == ENOENT) { 1317 /* target fs does not exist; must be a full backup or clone */ 1318 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1319 1320 /* 1321 * If it's a non-clone incremental, we are missing the 1322 * target fs, so fail the recv. 1323 */ 1324 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1325 drba->drba_origin)) 1326 return (SET_ERROR(ENOENT)); 1327 1328 /* 1329 * If we're receiving a full send as a clone, and it doesn't 1330 * contain all the necessary free records and freeobject 1331 * records, reject it. 1332 */ 1333 if (fromguid == 0 && drba->drba_origin && 1334 !(flags & DRR_FLAG_FREERECORDS)) 1335 return (SET_ERROR(EINVAL)); 1336 1337 /* Open the parent of tofs */ 1338 ASSERT3U(strlen(tofs), <, sizeof (buf)); 1339 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1340 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1341 if (error != 0) 1342 return (error); 1343 1344 /* 1345 * Check filesystem and snapshot limits before receiving. We'll 1346 * recheck snapshot limits again at the end (we create the 1347 * filesystems and increment those counts during begin_sync). 1348 */ 1349 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1350 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1351 if (error != 0) { 1352 dsl_dataset_rele(ds, FTAG); 1353 return (error); 1354 } 1355 1356 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1357 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1358 if (error != 0) { 1359 dsl_dataset_rele(ds, FTAG); 1360 return (error); 1361 } 1362 1363 if (drba->drba_origin != NULL) { 1364 dsl_dataset_t *origin; 1365 error = dsl_dataset_hold(dp, drba->drba_origin, 1366 FTAG, &origin); 1367 if (error != 0) { 1368 dsl_dataset_rele(ds, FTAG); 1369 return (error); 1370 } 1371 if (!origin->ds_is_snapshot) { 1372 dsl_dataset_rele(origin, FTAG); 1373 dsl_dataset_rele(ds, FTAG); 1374 return (SET_ERROR(EINVAL)); 1375 } 1376 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 1377 fromguid != 0) { 1378 dsl_dataset_rele(origin, FTAG); 1379 dsl_dataset_rele(ds, FTAG); 1380 return (SET_ERROR(ENODEV)); 1381 } 1382 dsl_dataset_rele(origin, FTAG); 1383 } 1384 dsl_dataset_rele(ds, FTAG); 1385 error = 0; 1386 } 1387 return (error); 1388 } 1389 1390 static void 1391 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1392 { 1393 dmu_recv_begin_arg_t *drba = arg; 1394 dsl_pool_t *dp = dmu_tx_pool(tx); 1395 objset_t *mos = dp->dp_meta_objset; 1396 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1397 const char *tofs = drba->drba_cookie->drc_tofs; 1398 dsl_dataset_t *ds, *newds; 1399 uint64_t dsobj; 1400 int error; 1401 uint64_t crflags = 0; 1402 1403 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 1404 crflags |= DS_FLAG_CI_DATASET; 1405 1406 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1407 if (error == 0) { 1408 /* create temporary clone */ 1409 dsl_dataset_t *snap = NULL; 1410 if (drba->drba_snapobj != 0) { 1411 VERIFY0(dsl_dataset_hold_obj(dp, 1412 drba->drba_snapobj, FTAG, &snap)); 1413 } 1414 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1415 snap, crflags, drba->drba_cred, tx); 1416 if (drba->drba_snapobj != 0) 1417 dsl_dataset_rele(snap, FTAG); 1418 dsl_dataset_rele(ds, FTAG); 1419 } else { 1420 dsl_dir_t *dd; 1421 const char *tail; 1422 dsl_dataset_t *origin = NULL; 1423 1424 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1425 1426 if (drba->drba_origin != NULL) { 1427 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1428 FTAG, &origin)); 1429 } 1430 1431 /* Create new dataset. */ 1432 dsobj = dsl_dataset_create_sync(dd, 1433 strrchr(tofs, '/') + 1, 1434 origin, crflags, drba->drba_cred, tx); 1435 if (origin != NULL) 1436 dsl_dataset_rele(origin, FTAG); 1437 dsl_dir_rele(dd, FTAG); 1438 drba->drba_cookie->drc_newfs = B_TRUE; 1439 } 1440 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1441 1442 if (drba->drba_cookie->drc_resumable) { 1443 dsl_dataset_zapify(newds, tx); 1444 if (drrb->drr_fromguid != 0) { 1445 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 1446 8, 1, &drrb->drr_fromguid, tx)); 1447 } 1448 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 1449 8, 1, &drrb->drr_toguid, tx)); 1450 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1451 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 1452 uint64_t one = 1; 1453 uint64_t zero = 0; 1454 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 1455 8, 1, &one, tx)); 1456 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 1457 8, 1, &zero, tx)); 1458 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 1459 8, 1, &zero, tx)); 1460 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1461 DMU_BACKUP_FEATURE_EMBED_DATA) { 1462 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 1463 8, 1, &one, tx)); 1464 } 1465 } 1466 1467 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1468 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1469 1470 /* 1471 * If we actually created a non-clone, we need to create the 1472 * objset in our new dataset. 1473 */ 1474 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1475 (void) dmu_objset_create_impl(dp->dp_spa, 1476 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1477 } 1478 1479 drba->drba_cookie->drc_ds = newds; 1480 1481 spa_history_log_internal_ds(newds, "receive", tx, ""); 1482 } 1483 1484 static int 1485 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1486 { 1487 dmu_recv_begin_arg_t *drba = arg; 1488 dsl_pool_t *dp = dmu_tx_pool(tx); 1489 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1490 int error; 1491 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1492 dsl_dataset_t *ds; 1493 const char *tofs = drba->drba_cookie->drc_tofs; 1494 1495 /* already checked */ 1496 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1497 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 1498 1499 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1500 DMU_COMPOUNDSTREAM || 1501 drrb->drr_type >= DMU_OST_NUMTYPES) 1502 return (SET_ERROR(EINVAL)); 1503 1504 /* Verify pool version supports SA if SA_SPILL feature set */ 1505 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1506 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1507 return (SET_ERROR(ENOTSUP)); 1508 1509 /* 1510 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1511 * record to a plain WRITE record, so the pool must have the 1512 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1513 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1514 */ 1515 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1516 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1517 return (SET_ERROR(ENOTSUP)); 1518 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1519 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1520 return (SET_ERROR(ENOTSUP)); 1521 1522 /* 6 extra bytes for /%recv */ 1523 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1524 1525 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1526 tofs, recv_clone_name); 1527 1528 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1529 /* %recv does not exist; continue in tofs */ 1530 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1531 if (error != 0) 1532 return (error); 1533 } 1534 1535 /* check that ds is marked inconsistent */ 1536 if (!DS_IS_INCONSISTENT(ds)) { 1537 dsl_dataset_rele(ds, FTAG); 1538 return (SET_ERROR(EINVAL)); 1539 } 1540 1541 /* check that there is resuming data, and that the toguid matches */ 1542 if (!dsl_dataset_is_zapified(ds)) { 1543 dsl_dataset_rele(ds, FTAG); 1544 return (SET_ERROR(EINVAL)); 1545 } 1546 uint64_t val; 1547 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1548 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1549 if (error != 0 || drrb->drr_toguid != val) { 1550 dsl_dataset_rele(ds, FTAG); 1551 return (SET_ERROR(EINVAL)); 1552 } 1553 1554 /* 1555 * Check if the receive is still running. If so, it will be owned. 1556 * Note that nothing else can own the dataset (e.g. after the receive 1557 * fails) because it will be marked inconsistent. 1558 */ 1559 if (dsl_dataset_has_owner(ds)) { 1560 dsl_dataset_rele(ds, FTAG); 1561 return (SET_ERROR(EBUSY)); 1562 } 1563 1564 /* There should not be any snapshots of this fs yet. */ 1565 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1566 dsl_dataset_rele(ds, FTAG); 1567 return (SET_ERROR(EINVAL)); 1568 } 1569 1570 /* 1571 * Note: resume point will be checked when we process the first WRITE 1572 * record. 1573 */ 1574 1575 /* check that the origin matches */ 1576 val = 0; 1577 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1578 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1579 if (drrb->drr_fromguid != val) { 1580 dsl_dataset_rele(ds, FTAG); 1581 return (SET_ERROR(EINVAL)); 1582 } 1583 1584 dsl_dataset_rele(ds, FTAG); 1585 return (0); 1586 } 1587 1588 static void 1589 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1590 { 1591 dmu_recv_begin_arg_t *drba = arg; 1592 dsl_pool_t *dp = dmu_tx_pool(tx); 1593 const char *tofs = drba->drba_cookie->drc_tofs; 1594 dsl_dataset_t *ds; 1595 uint64_t dsobj; 1596 /* 6 extra bytes for /%recv */ 1597 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1598 1599 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1600 tofs, recv_clone_name); 1601 1602 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1603 /* %recv does not exist; continue in tofs */ 1604 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); 1605 drba->drba_cookie->drc_newfs = B_TRUE; 1606 } 1607 1608 /* clear the inconsistent flag so that we can own it */ 1609 ASSERT(DS_IS_INCONSISTENT(ds)); 1610 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1611 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 1612 dsobj = ds->ds_object; 1613 dsl_dataset_rele(ds, FTAG); 1614 1615 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); 1616 1617 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1618 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 1619 1620 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); 1621 1622 drba->drba_cookie->drc_ds = ds; 1623 1624 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 1625 } 1626 1627 /* 1628 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1629 * succeeds; otherwise we will leak the holds on the datasets. 1630 */ 1631 int 1632 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1633 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 1634 { 1635 dmu_recv_begin_arg_t drba = { 0 }; 1636 1637 bzero(drc, sizeof (dmu_recv_cookie_t)); 1638 drc->drc_drr_begin = drr_begin; 1639 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1640 drc->drc_tosnap = tosnap; 1641 drc->drc_tofs = tofs; 1642 drc->drc_force = force; 1643 drc->drc_resumable = resumable; 1644 drc->drc_cred = CRED(); 1645 1646 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1647 drc->drc_byteswap = B_TRUE; 1648 fletcher_4_incremental_byteswap(drr_begin, 1649 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1650 byteswap_record(drr_begin); 1651 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1652 fletcher_4_incremental_native(drr_begin, 1653 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1654 } else { 1655 return (SET_ERROR(EINVAL)); 1656 } 1657 1658 drba.drba_origin = origin; 1659 drba.drba_cookie = drc; 1660 drba.drba_cred = CRED(); 1661 1662 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1663 DMU_BACKUP_FEATURE_RESUMING) { 1664 return (dsl_sync_task(tofs, 1665 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1666 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1667 } else { 1668 return (dsl_sync_task(tofs, 1669 dmu_recv_begin_check, dmu_recv_begin_sync, 1670 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1671 } 1672 } 1673 1674 struct receive_record_arg { 1675 dmu_replay_record_t header; 1676 void *payload; /* Pointer to a buffer containing the payload */ 1677 /* 1678 * If the record is a write, pointer to the arc_buf_t containing the 1679 * payload. 1680 */ 1681 arc_buf_t *write_buf; 1682 int payload_size; 1683 uint64_t bytes_read; /* bytes read from stream when record created */ 1684 boolean_t eos_marker; /* Marks the end of the stream */ 1685 bqueue_node_t node; 1686 }; 1687 1688 struct receive_writer_arg { 1689 objset_t *os; 1690 boolean_t byteswap; 1691 bqueue_t q; 1692 1693 /* 1694 * These three args are used to signal to the main thread that we're 1695 * done. 1696 */ 1697 kmutex_t mutex; 1698 kcondvar_t cv; 1699 boolean_t done; 1700 1701 int err; 1702 /* A map from guid to dataset to help handle dedup'd streams. */ 1703 avl_tree_t *guid_to_ds_map; 1704 boolean_t resumable; 1705 uint64_t last_object, last_offset; 1706 uint64_t bytes_read; /* bytes read when current record created */ 1707 }; 1708 1709 struct objlist { 1710 list_t list; /* List of struct receive_objnode. */ 1711 /* 1712 * Last object looked up. Used to assert that objects are being looked 1713 * up in ascending order. 1714 */ 1715 uint64_t last_lookup; 1716 }; 1717 1718 struct receive_objnode { 1719 list_node_t node; 1720 uint64_t object; 1721 }; 1722 1723 struct receive_arg { 1724 objset_t *os; 1725 vnode_t *vp; /* The vnode to read the stream from */ 1726 uint64_t voff; /* The current offset in the stream */ 1727 uint64_t bytes_read; 1728 /* 1729 * A record that has had its payload read in, but hasn't yet been handed 1730 * off to the worker thread. 1731 */ 1732 struct receive_record_arg *rrd; 1733 /* A record that has had its header read in, but not its payload. */ 1734 struct receive_record_arg *next_rrd; 1735 zio_cksum_t cksum; 1736 zio_cksum_t prev_cksum; 1737 int err; 1738 boolean_t byteswap; 1739 /* Sorted list of objects not to issue prefetches for. */ 1740 struct objlist ignore_objlist; 1741 }; 1742 1743 typedef struct guid_map_entry { 1744 uint64_t guid; 1745 dsl_dataset_t *gme_ds; 1746 avl_node_t avlnode; 1747 } guid_map_entry_t; 1748 1749 static int 1750 guid_compare(const void *arg1, const void *arg2) 1751 { 1752 const guid_map_entry_t *gmep1 = arg1; 1753 const guid_map_entry_t *gmep2 = arg2; 1754 1755 if (gmep1->guid < gmep2->guid) 1756 return (-1); 1757 else if (gmep1->guid > gmep2->guid) 1758 return (1); 1759 return (0); 1760 } 1761 1762 static void 1763 free_guid_map_onexit(void *arg) 1764 { 1765 avl_tree_t *ca = arg; 1766 void *cookie = NULL; 1767 guid_map_entry_t *gmep; 1768 1769 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1770 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1771 dsl_dataset_rele(gmep->gme_ds, gmep); 1772 kmem_free(gmep, sizeof (guid_map_entry_t)); 1773 } 1774 avl_destroy(ca); 1775 kmem_free(ca, sizeof (avl_tree_t)); 1776 } 1777 1778 static int 1779 receive_read(struct receive_arg *ra, int len, void *buf) 1780 { 1781 int done = 0; 1782 1783 /* 1784 * The code doesn't rely on this (lengths being multiples of 8). See 1785 * comment in dump_bytes. 1786 */ 1787 ASSERT0(len % 8); 1788 1789 while (done < len) { 1790 ssize_t resid; 1791 1792 ra->err = vn_rdwr(UIO_READ, ra->vp, 1793 (char *)buf + done, len - done, 1794 ra->voff, UIO_SYSSPACE, FAPPEND, 1795 RLIM64_INFINITY, CRED(), &resid); 1796 1797 if (resid == len - done) { 1798 /* 1799 * Note: ECKSUM indicates that the receive 1800 * was interrupted and can potentially be resumed. 1801 */ 1802 ra->err = SET_ERROR(ECKSUM); 1803 } 1804 ra->voff += len - done - resid; 1805 done = len - resid; 1806 if (ra->err != 0) 1807 return (ra->err); 1808 } 1809 1810 ra->bytes_read += len; 1811 1812 ASSERT3U(done, ==, len); 1813 return (0); 1814 } 1815 1816 static void 1817 byteswap_record(dmu_replay_record_t *drr) 1818 { 1819 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1820 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1821 drr->drr_type = BSWAP_32(drr->drr_type); 1822 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1823 1824 switch (drr->drr_type) { 1825 case DRR_BEGIN: 1826 DO64(drr_begin.drr_magic); 1827 DO64(drr_begin.drr_versioninfo); 1828 DO64(drr_begin.drr_creation_time); 1829 DO32(drr_begin.drr_type); 1830 DO32(drr_begin.drr_flags); 1831 DO64(drr_begin.drr_toguid); 1832 DO64(drr_begin.drr_fromguid); 1833 break; 1834 case DRR_OBJECT: 1835 DO64(drr_object.drr_object); 1836 DO32(drr_object.drr_type); 1837 DO32(drr_object.drr_bonustype); 1838 DO32(drr_object.drr_blksz); 1839 DO32(drr_object.drr_bonuslen); 1840 DO64(drr_object.drr_toguid); 1841 break; 1842 case DRR_FREEOBJECTS: 1843 DO64(drr_freeobjects.drr_firstobj); 1844 DO64(drr_freeobjects.drr_numobjs); 1845 DO64(drr_freeobjects.drr_toguid); 1846 break; 1847 case DRR_WRITE: 1848 DO64(drr_write.drr_object); 1849 DO32(drr_write.drr_type); 1850 DO64(drr_write.drr_offset); 1851 DO64(drr_write.drr_length); 1852 DO64(drr_write.drr_toguid); 1853 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1854 DO64(drr_write.drr_key.ddk_prop); 1855 break; 1856 case DRR_WRITE_BYREF: 1857 DO64(drr_write_byref.drr_object); 1858 DO64(drr_write_byref.drr_offset); 1859 DO64(drr_write_byref.drr_length); 1860 DO64(drr_write_byref.drr_toguid); 1861 DO64(drr_write_byref.drr_refguid); 1862 DO64(drr_write_byref.drr_refobject); 1863 DO64(drr_write_byref.drr_refoffset); 1864 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1865 drr_key.ddk_cksum); 1866 DO64(drr_write_byref.drr_key.ddk_prop); 1867 break; 1868 case DRR_WRITE_EMBEDDED: 1869 DO64(drr_write_embedded.drr_object); 1870 DO64(drr_write_embedded.drr_offset); 1871 DO64(drr_write_embedded.drr_length); 1872 DO64(drr_write_embedded.drr_toguid); 1873 DO32(drr_write_embedded.drr_lsize); 1874 DO32(drr_write_embedded.drr_psize); 1875 break; 1876 case DRR_FREE: 1877 DO64(drr_free.drr_object); 1878 DO64(drr_free.drr_offset); 1879 DO64(drr_free.drr_length); 1880 DO64(drr_free.drr_toguid); 1881 break; 1882 case DRR_SPILL: 1883 DO64(drr_spill.drr_object); 1884 DO64(drr_spill.drr_length); 1885 DO64(drr_spill.drr_toguid); 1886 break; 1887 case DRR_END: 1888 DO64(drr_end.drr_toguid); 1889 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1890 break; 1891 } 1892 1893 if (drr->drr_type != DRR_BEGIN) { 1894 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1895 } 1896 1897 #undef DO64 1898 #undef DO32 1899 } 1900 1901 static inline uint8_t 1902 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1903 { 1904 if (bonus_type == DMU_OT_SA) { 1905 return (1); 1906 } else { 1907 return (1 + 1908 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 1909 } 1910 } 1911 1912 static void 1913 save_resume_state(struct receive_writer_arg *rwa, 1914 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1915 { 1916 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1917 1918 if (!rwa->resumable) 1919 return; 1920 1921 /* 1922 * We use ds_resume_bytes[] != 0 to indicate that we need to 1923 * update this on disk, so it must not be 0. 1924 */ 1925 ASSERT(rwa->bytes_read != 0); 1926 1927 /* 1928 * We only resume from write records, which have a valid 1929 * (non-meta-dnode) object number. 1930 */ 1931 ASSERT(object != 0); 1932 1933 /* 1934 * For resuming to work correctly, we must receive records in order, 1935 * sorted by object,offset. This is checked by the callers, but 1936 * assert it here for good measure. 1937 */ 1938 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1939 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1940 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1941 ASSERT3U(rwa->bytes_read, >=, 1942 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1943 1944 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1945 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1946 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1947 } 1948 1949 static int 1950 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1951 void *data) 1952 { 1953 dmu_object_info_t doi; 1954 dmu_tx_t *tx; 1955 uint64_t object; 1956 int err; 1957 1958 if (drro->drr_type == DMU_OT_NONE || 1959 !DMU_OT_IS_VALID(drro->drr_type) || 1960 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1961 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1962 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1963 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1964 drro->drr_blksz < SPA_MINBLOCKSIZE || 1965 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1966 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 1967 return (SET_ERROR(EINVAL)); 1968 } 1969 1970 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1971 1972 if (err != 0 && err != ENOENT) 1973 return (SET_ERROR(EINVAL)); 1974 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 1975 1976 /* 1977 * If we are losing blkptrs or changing the block size this must 1978 * be a new file instance. We must clear out the previous file 1979 * contents before we can change this type of metadata in the dnode. 1980 */ 1981 if (err == 0) { 1982 int nblkptr; 1983 1984 nblkptr = deduce_nblkptr(drro->drr_bonustype, 1985 drro->drr_bonuslen); 1986 1987 if (drro->drr_blksz != doi.doi_data_block_size || 1988 nblkptr < doi.doi_nblkptr) { 1989 err = dmu_free_long_range(rwa->os, drro->drr_object, 1990 0, DMU_OBJECT_END); 1991 if (err != 0) 1992 return (SET_ERROR(EINVAL)); 1993 } 1994 } 1995 1996 tx = dmu_tx_create(rwa->os); 1997 dmu_tx_hold_bonus(tx, object); 1998 err = dmu_tx_assign(tx, TXG_WAIT); 1999 if (err != 0) { 2000 dmu_tx_abort(tx); 2001 return (err); 2002 } 2003 2004 if (object == DMU_NEW_OBJECT) { 2005 /* currently free, want to be allocated */ 2006 err = dmu_object_claim(rwa->os, drro->drr_object, 2007 drro->drr_type, drro->drr_blksz, 2008 drro->drr_bonustype, drro->drr_bonuslen, tx); 2009 } else if (drro->drr_type != doi.doi_type || 2010 drro->drr_blksz != doi.doi_data_block_size || 2011 drro->drr_bonustype != doi.doi_bonus_type || 2012 drro->drr_bonuslen != doi.doi_bonus_size) { 2013 /* currently allocated, but with different properties */ 2014 err = dmu_object_reclaim(rwa->os, drro->drr_object, 2015 drro->drr_type, drro->drr_blksz, 2016 drro->drr_bonustype, drro->drr_bonuslen, tx); 2017 } 2018 if (err != 0) { 2019 dmu_tx_commit(tx); 2020 return (SET_ERROR(EINVAL)); 2021 } 2022 2023 dmu_object_set_checksum(rwa->os, drro->drr_object, 2024 drro->drr_checksumtype, tx); 2025 dmu_object_set_compress(rwa->os, drro->drr_object, 2026 drro->drr_compress, tx); 2027 2028 if (data != NULL) { 2029 dmu_buf_t *db; 2030 2031 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 2032 dmu_buf_will_dirty(db, tx); 2033 2034 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2035 bcopy(data, db->db_data, drro->drr_bonuslen); 2036 if (rwa->byteswap) { 2037 dmu_object_byteswap_t byteswap = 2038 DMU_OT_BYTESWAP(drro->drr_bonustype); 2039 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2040 drro->drr_bonuslen); 2041 } 2042 dmu_buf_rele(db, FTAG); 2043 } 2044 dmu_tx_commit(tx); 2045 2046 return (0); 2047 } 2048 2049 /* ARGSUSED */ 2050 static int 2051 receive_freeobjects(struct receive_writer_arg *rwa, 2052 struct drr_freeobjects *drrfo) 2053 { 2054 uint64_t obj; 2055 int next_err = 0; 2056 2057 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2058 return (SET_ERROR(EINVAL)); 2059 2060 for (obj = drrfo->drr_firstobj; 2061 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 2062 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2063 int err; 2064 2065 if (dmu_object_info(rwa->os, obj, NULL) != 0) 2066 continue; 2067 2068 err = dmu_free_long_object(rwa->os, obj); 2069 if (err != 0) 2070 return (err); 2071 } 2072 if (next_err != ESRCH) 2073 return (next_err); 2074 return (0); 2075 } 2076 2077 static int 2078 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 2079 arc_buf_t *abuf) 2080 { 2081 dmu_tx_t *tx; 2082 int err; 2083 2084 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || 2085 !DMU_OT_IS_VALID(drrw->drr_type)) 2086 return (SET_ERROR(EINVAL)); 2087 2088 /* 2089 * For resuming to work, records must be in increasing order 2090 * by (object, offset). 2091 */ 2092 if (drrw->drr_object < rwa->last_object || 2093 (drrw->drr_object == rwa->last_object && 2094 drrw->drr_offset < rwa->last_offset)) { 2095 return (SET_ERROR(EINVAL)); 2096 } 2097 rwa->last_object = drrw->drr_object; 2098 rwa->last_offset = drrw->drr_offset; 2099 2100 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 2101 return (SET_ERROR(EINVAL)); 2102 2103 tx = dmu_tx_create(rwa->os); 2104 2105 dmu_tx_hold_write(tx, drrw->drr_object, 2106 drrw->drr_offset, drrw->drr_length); 2107 err = dmu_tx_assign(tx, TXG_WAIT); 2108 if (err != 0) { 2109 dmu_tx_abort(tx); 2110 return (err); 2111 } 2112 if (rwa->byteswap) { 2113 dmu_object_byteswap_t byteswap = 2114 DMU_OT_BYTESWAP(drrw->drr_type); 2115 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2116 drrw->drr_length); 2117 } 2118 2119 dmu_buf_t *bonus; 2120 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 2121 return (SET_ERROR(EINVAL)); 2122 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 2123 2124 /* 2125 * Note: If the receive fails, we want the resume stream to start 2126 * with the same record that we last successfully received (as opposed 2127 * to the next record), so that we can verify that we are 2128 * resuming from the correct location. 2129 */ 2130 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2131 dmu_tx_commit(tx); 2132 dmu_buf_rele(bonus, FTAG); 2133 2134 return (0); 2135 } 2136 2137 /* 2138 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 2139 * streams to refer to a copy of the data that is already on the 2140 * system because it came in earlier in the stream. This function 2141 * finds the earlier copy of the data, and uses that copy instead of 2142 * data from the stream to fulfill this write. 2143 */ 2144 static int 2145 receive_write_byref(struct receive_writer_arg *rwa, 2146 struct drr_write_byref *drrwbr) 2147 { 2148 dmu_tx_t *tx; 2149 int err; 2150 guid_map_entry_t gmesrch; 2151 guid_map_entry_t *gmep; 2152 avl_index_t where; 2153 objset_t *ref_os = NULL; 2154 dmu_buf_t *dbp; 2155 2156 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 2157 return (SET_ERROR(EINVAL)); 2158 2159 /* 2160 * If the GUID of the referenced dataset is different from the 2161 * GUID of the target dataset, find the referenced dataset. 2162 */ 2163 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 2164 gmesrch.guid = drrwbr->drr_refguid; 2165 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 2166 &where)) == NULL) { 2167 return (SET_ERROR(EINVAL)); 2168 } 2169 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 2170 return (SET_ERROR(EINVAL)); 2171 } else { 2172 ref_os = rwa->os; 2173 } 2174 2175 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 2176 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 2177 if (err != 0) 2178 return (err); 2179 2180 tx = dmu_tx_create(rwa->os); 2181 2182 dmu_tx_hold_write(tx, drrwbr->drr_object, 2183 drrwbr->drr_offset, drrwbr->drr_length); 2184 err = dmu_tx_assign(tx, TXG_WAIT); 2185 if (err != 0) { 2186 dmu_tx_abort(tx); 2187 return (err); 2188 } 2189 dmu_write(rwa->os, drrwbr->drr_object, 2190 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 2191 dmu_buf_rele(dbp, FTAG); 2192 2193 /* See comment in restore_write. */ 2194 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 2195 dmu_tx_commit(tx); 2196 return (0); 2197 } 2198 2199 static int 2200 receive_write_embedded(struct receive_writer_arg *rwa, 2201 struct drr_write_embedded *drrwe, void *data) 2202 { 2203 dmu_tx_t *tx; 2204 int err; 2205 2206 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2207 return (EINVAL); 2208 2209 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2210 return (EINVAL); 2211 2212 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2213 return (EINVAL); 2214 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2215 return (EINVAL); 2216 2217 tx = dmu_tx_create(rwa->os); 2218 2219 dmu_tx_hold_write(tx, drrwe->drr_object, 2220 drrwe->drr_offset, drrwe->drr_length); 2221 err = dmu_tx_assign(tx, TXG_WAIT); 2222 if (err != 0) { 2223 dmu_tx_abort(tx); 2224 return (err); 2225 } 2226 2227 dmu_write_embedded(rwa->os, drrwe->drr_object, 2228 drrwe->drr_offset, data, drrwe->drr_etype, 2229 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2230 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2231 2232 /* See comment in restore_write. */ 2233 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2234 dmu_tx_commit(tx); 2235 return (0); 2236 } 2237 2238 static int 2239 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2240 void *data) 2241 { 2242 dmu_tx_t *tx; 2243 dmu_buf_t *db, *db_spill; 2244 int err; 2245 2246 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2247 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2248 return (SET_ERROR(EINVAL)); 2249 2250 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2251 return (SET_ERROR(EINVAL)); 2252 2253 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2254 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 2255 dmu_buf_rele(db, FTAG); 2256 return (err); 2257 } 2258 2259 tx = dmu_tx_create(rwa->os); 2260 2261 dmu_tx_hold_spill(tx, db->db_object); 2262 2263 err = dmu_tx_assign(tx, TXG_WAIT); 2264 if (err != 0) { 2265 dmu_buf_rele(db, FTAG); 2266 dmu_buf_rele(db_spill, FTAG); 2267 dmu_tx_abort(tx); 2268 return (err); 2269 } 2270 dmu_buf_will_dirty(db_spill, tx); 2271 2272 if (db_spill->db_size < drrs->drr_length) 2273 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2274 drrs->drr_length, tx)); 2275 bcopy(data, db_spill->db_data, drrs->drr_length); 2276 2277 dmu_buf_rele(db, FTAG); 2278 dmu_buf_rele(db_spill, FTAG); 2279 2280 dmu_tx_commit(tx); 2281 return (0); 2282 } 2283 2284 /* ARGSUSED */ 2285 static int 2286 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2287 { 2288 int err; 2289 2290 if (drrf->drr_length != -1ULL && 2291 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2292 return (SET_ERROR(EINVAL)); 2293 2294 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2295 return (SET_ERROR(EINVAL)); 2296 2297 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2298 drrf->drr_offset, drrf->drr_length); 2299 2300 return (err); 2301 } 2302 2303 /* used to destroy the drc_ds on error */ 2304 static void 2305 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2306 { 2307 if (drc->drc_resumable) { 2308 /* wait for our resume state to be written to disk */ 2309 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); 2310 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2311 } else { 2312 char name[ZFS_MAX_DATASET_NAME_LEN]; 2313 dsl_dataset_name(drc->drc_ds, name); 2314 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2315 (void) dsl_destroy_head(name); 2316 } 2317 } 2318 2319 static void 2320 receive_cksum(struct receive_arg *ra, int len, void *buf) 2321 { 2322 if (ra->byteswap) { 2323 fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 2324 } else { 2325 fletcher_4_incremental_native(buf, len, &ra->cksum); 2326 } 2327 } 2328 2329 /* 2330 * Read the payload into a buffer of size len, and update the current record's 2331 * payload field. 2332 * Allocate ra->next_rrd and read the next record's header into 2333 * ra->next_rrd->header. 2334 * Verify checksum of payload and next record. 2335 */ 2336 static int 2337 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 2338 { 2339 int err; 2340 2341 if (len != 0) { 2342 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2343 err = receive_read(ra, len, buf); 2344 if (err != 0) 2345 return (err); 2346 receive_cksum(ra, len, buf); 2347 2348 /* note: rrd is NULL when reading the begin record's payload */ 2349 if (ra->rrd != NULL) { 2350 ra->rrd->payload = buf; 2351 ra->rrd->payload_size = len; 2352 ra->rrd->bytes_read = ra->bytes_read; 2353 } 2354 } 2355 2356 ra->prev_cksum = ra->cksum; 2357 2358 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2359 err = receive_read(ra, sizeof (ra->next_rrd->header), 2360 &ra->next_rrd->header); 2361 ra->next_rrd->bytes_read = ra->bytes_read; 2362 if (err != 0) { 2363 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2364 ra->next_rrd = NULL; 2365 return (err); 2366 } 2367 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2368 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2369 ra->next_rrd = NULL; 2370 return (SET_ERROR(EINVAL)); 2371 } 2372 2373 /* 2374 * Note: checksum is of everything up to but not including the 2375 * checksum itself. 2376 */ 2377 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2378 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2379 receive_cksum(ra, 2380 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2381 &ra->next_rrd->header); 2382 2383 zio_cksum_t cksum_orig = 2384 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2385 zio_cksum_t *cksump = 2386 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2387 2388 if (ra->byteswap) 2389 byteswap_record(&ra->next_rrd->header); 2390 2391 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2392 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2393 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2394 ra->next_rrd = NULL; 2395 return (SET_ERROR(ECKSUM)); 2396 } 2397 2398 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2399 2400 return (0); 2401 } 2402 2403 static void 2404 objlist_create(struct objlist *list) 2405 { 2406 list_create(&list->list, sizeof (struct receive_objnode), 2407 offsetof(struct receive_objnode, node)); 2408 list->last_lookup = 0; 2409 } 2410 2411 static void 2412 objlist_destroy(struct objlist *list) 2413 { 2414 for (struct receive_objnode *n = list_remove_head(&list->list); 2415 n != NULL; n = list_remove_head(&list->list)) { 2416 kmem_free(n, sizeof (*n)); 2417 } 2418 list_destroy(&list->list); 2419 } 2420 2421 /* 2422 * This function looks through the objlist to see if the specified object number 2423 * is contained in the objlist. In the process, it will remove all object 2424 * numbers in the list that are smaller than the specified object number. Thus, 2425 * any lookup of an object number smaller than a previously looked up object 2426 * number will always return false; therefore, all lookups should be done in 2427 * ascending order. 2428 */ 2429 static boolean_t 2430 objlist_exists(struct objlist *list, uint64_t object) 2431 { 2432 struct receive_objnode *node = list_head(&list->list); 2433 ASSERT3U(object, >=, list->last_lookup); 2434 list->last_lookup = object; 2435 while (node != NULL && node->object < object) { 2436 VERIFY3P(node, ==, list_remove_head(&list->list)); 2437 kmem_free(node, sizeof (*node)); 2438 node = list_head(&list->list); 2439 } 2440 return (node != NULL && node->object == object); 2441 } 2442 2443 /* 2444 * The objlist is a list of object numbers stored in ascending order. However, 2445 * the insertion of new object numbers does not seek out the correct location to 2446 * store a new object number; instead, it appends it to the list for simplicity. 2447 * Thus, any users must take care to only insert new object numbers in ascending 2448 * order. 2449 */ 2450 static void 2451 objlist_insert(struct objlist *list, uint64_t object) 2452 { 2453 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 2454 node->object = object; 2455 #ifdef ZFS_DEBUG 2456 struct receive_objnode *last_object = list_tail(&list->list); 2457 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 2458 ASSERT3U(node->object, >, last_objnum); 2459 #endif 2460 list_insert_tail(&list->list, node); 2461 } 2462 2463 /* 2464 * Issue the prefetch reads for any necessary indirect blocks. 2465 * 2466 * We use the object ignore list to tell us whether or not to issue prefetches 2467 * for a given object. We do this for both correctness (in case the blocksize 2468 * of an object has changed) and performance (if the object doesn't exist, don't 2469 * needlessly try to issue prefetches). We also trim the list as we go through 2470 * the stream to prevent it from growing to an unbounded size. 2471 * 2472 * The object numbers within will always be in sorted order, and any write 2473 * records we see will also be in sorted order, but they're not sorted with 2474 * respect to each other (i.e. we can get several object records before 2475 * receiving each object's write records). As a result, once we've reached a 2476 * given object number, we can safely remove any reference to lower object 2477 * numbers in the ignore list. In practice, we receive up to 32 object records 2478 * before receiving write records, so the list can have up to 32 nodes in it. 2479 */ 2480 /* ARGSUSED */ 2481 static void 2482 receive_read_prefetch(struct receive_arg *ra, 2483 uint64_t object, uint64_t offset, uint64_t length) 2484 { 2485 if (!objlist_exists(&ra->ignore_objlist, object)) { 2486 dmu_prefetch(ra->os, object, 1, offset, length, 2487 ZIO_PRIORITY_SYNC_READ); 2488 } 2489 } 2490 2491 /* 2492 * Read records off the stream, issuing any necessary prefetches. 2493 */ 2494 static int 2495 receive_read_record(struct receive_arg *ra) 2496 { 2497 int err; 2498 2499 switch (ra->rrd->header.drr_type) { 2500 case DRR_OBJECT: 2501 { 2502 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2503 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2504 void *buf = kmem_zalloc(size, KM_SLEEP); 2505 dmu_object_info_t doi; 2506 err = receive_read_payload_and_next_header(ra, size, buf); 2507 if (err != 0) { 2508 kmem_free(buf, size); 2509 return (err); 2510 } 2511 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2512 /* 2513 * See receive_read_prefetch for an explanation why we're 2514 * storing this object in the ignore_obj_list. 2515 */ 2516 if (err == ENOENT || 2517 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2518 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2519 err = 0; 2520 } 2521 return (err); 2522 } 2523 case DRR_FREEOBJECTS: 2524 { 2525 err = receive_read_payload_and_next_header(ra, 0, NULL); 2526 return (err); 2527 } 2528 case DRR_WRITE: 2529 { 2530 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2531 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2532 drrw->drr_length); 2533 2534 err = receive_read_payload_and_next_header(ra, 2535 drrw->drr_length, abuf->b_data); 2536 if (err != 0) { 2537 dmu_return_arcbuf(abuf); 2538 return (err); 2539 } 2540 ra->rrd->write_buf = abuf; 2541 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2542 drrw->drr_length); 2543 return (err); 2544 } 2545 case DRR_WRITE_BYREF: 2546 { 2547 struct drr_write_byref *drrwb = 2548 &ra->rrd->header.drr_u.drr_write_byref; 2549 err = receive_read_payload_and_next_header(ra, 0, NULL); 2550 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2551 drrwb->drr_length); 2552 return (err); 2553 } 2554 case DRR_WRITE_EMBEDDED: 2555 { 2556 struct drr_write_embedded *drrwe = 2557 &ra->rrd->header.drr_u.drr_write_embedded; 2558 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2559 void *buf = kmem_zalloc(size, KM_SLEEP); 2560 2561 err = receive_read_payload_and_next_header(ra, size, buf); 2562 if (err != 0) { 2563 kmem_free(buf, size); 2564 return (err); 2565 } 2566 2567 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2568 drrwe->drr_length); 2569 return (err); 2570 } 2571 case DRR_FREE: 2572 { 2573 /* 2574 * It might be beneficial to prefetch indirect blocks here, but 2575 * we don't really have the data to decide for sure. 2576 */ 2577 err = receive_read_payload_and_next_header(ra, 0, NULL); 2578 return (err); 2579 } 2580 case DRR_END: 2581 { 2582 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2583 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2584 return (SET_ERROR(ECKSUM)); 2585 return (0); 2586 } 2587 case DRR_SPILL: 2588 { 2589 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2590 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2591 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2592 buf); 2593 if (err != 0) 2594 kmem_free(buf, drrs->drr_length); 2595 return (err); 2596 } 2597 default: 2598 return (SET_ERROR(EINVAL)); 2599 } 2600 } 2601 2602 /* 2603 * Commit the records to the pool. 2604 */ 2605 static int 2606 receive_process_record(struct receive_writer_arg *rwa, 2607 struct receive_record_arg *rrd) 2608 { 2609 int err; 2610 2611 /* Processing in order, therefore bytes_read should be increasing. */ 2612 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2613 rwa->bytes_read = rrd->bytes_read; 2614 2615 switch (rrd->header.drr_type) { 2616 case DRR_OBJECT: 2617 { 2618 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2619 err = receive_object(rwa, drro, rrd->payload); 2620 kmem_free(rrd->payload, rrd->payload_size); 2621 rrd->payload = NULL; 2622 return (err); 2623 } 2624 case DRR_FREEOBJECTS: 2625 { 2626 struct drr_freeobjects *drrfo = 2627 &rrd->header.drr_u.drr_freeobjects; 2628 return (receive_freeobjects(rwa, drrfo)); 2629 } 2630 case DRR_WRITE: 2631 { 2632 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2633 err = receive_write(rwa, drrw, rrd->write_buf); 2634 /* if receive_write() is successful, it consumes the arc_buf */ 2635 if (err != 0) 2636 dmu_return_arcbuf(rrd->write_buf); 2637 rrd->write_buf = NULL; 2638 rrd->payload = NULL; 2639 return (err); 2640 } 2641 case DRR_WRITE_BYREF: 2642 { 2643 struct drr_write_byref *drrwbr = 2644 &rrd->header.drr_u.drr_write_byref; 2645 return (receive_write_byref(rwa, drrwbr)); 2646 } 2647 case DRR_WRITE_EMBEDDED: 2648 { 2649 struct drr_write_embedded *drrwe = 2650 &rrd->header.drr_u.drr_write_embedded; 2651 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2652 kmem_free(rrd->payload, rrd->payload_size); 2653 rrd->payload = NULL; 2654 return (err); 2655 } 2656 case DRR_FREE: 2657 { 2658 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2659 return (receive_free(rwa, drrf)); 2660 } 2661 case DRR_SPILL: 2662 { 2663 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2664 err = receive_spill(rwa, drrs, rrd->payload); 2665 kmem_free(rrd->payload, rrd->payload_size); 2666 rrd->payload = NULL; 2667 return (err); 2668 } 2669 default: 2670 return (SET_ERROR(EINVAL)); 2671 } 2672 } 2673 2674 /* 2675 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2676 * receive_process_record When we're done, signal the main thread and exit. 2677 */ 2678 static void 2679 receive_writer_thread(void *arg) 2680 { 2681 struct receive_writer_arg *rwa = arg; 2682 struct receive_record_arg *rrd; 2683 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2684 rrd = bqueue_dequeue(&rwa->q)) { 2685 /* 2686 * If there's an error, the main thread will stop putting things 2687 * on the queue, but we need to clear everything in it before we 2688 * can exit. 2689 */ 2690 if (rwa->err == 0) { 2691 rwa->err = receive_process_record(rwa, rrd); 2692 } else if (rrd->write_buf != NULL) { 2693 dmu_return_arcbuf(rrd->write_buf); 2694 rrd->write_buf = NULL; 2695 rrd->payload = NULL; 2696 } else if (rrd->payload != NULL) { 2697 kmem_free(rrd->payload, rrd->payload_size); 2698 rrd->payload = NULL; 2699 } 2700 kmem_free(rrd, sizeof (*rrd)); 2701 } 2702 kmem_free(rrd, sizeof (*rrd)); 2703 mutex_enter(&rwa->mutex); 2704 rwa->done = B_TRUE; 2705 cv_signal(&rwa->cv); 2706 mutex_exit(&rwa->mutex); 2707 } 2708 2709 static int 2710 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2711 { 2712 uint64_t val; 2713 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2714 uint64_t dsobj = dmu_objset_id(ra->os); 2715 uint64_t resume_obj, resume_off; 2716 2717 if (nvlist_lookup_uint64(begin_nvl, 2718 "resume_object", &resume_obj) != 0 || 2719 nvlist_lookup_uint64(begin_nvl, 2720 "resume_offset", &resume_off) != 0) { 2721 return (SET_ERROR(EINVAL)); 2722 } 2723 VERIFY0(zap_lookup(mos, dsobj, 2724 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2725 if (resume_obj != val) 2726 return (SET_ERROR(EINVAL)); 2727 VERIFY0(zap_lookup(mos, dsobj, 2728 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2729 if (resume_off != val) 2730 return (SET_ERROR(EINVAL)); 2731 2732 return (0); 2733 } 2734 2735 /* 2736 * Read in the stream's records, one by one, and apply them to the pool. There 2737 * are two threads involved; the thread that calls this function will spin up a 2738 * worker thread, read the records off the stream one by one, and issue 2739 * prefetches for any necessary indirect blocks. It will then push the records 2740 * onto an internal blocking queue. The worker thread will pull the records off 2741 * the queue, and actually write the data into the DMU. This way, the worker 2742 * thread doesn't have to wait for reads to complete, since everything it needs 2743 * (the indirect blocks) will be prefetched. 2744 * 2745 * NB: callers *must* call dmu_recv_end() if this succeeds. 2746 */ 2747 int 2748 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2749 int cleanup_fd, uint64_t *action_handlep) 2750 { 2751 int err = 0; 2752 struct receive_arg ra = { 0 }; 2753 struct receive_writer_arg rwa = { 0 }; 2754 int featureflags; 2755 nvlist_t *begin_nvl = NULL; 2756 2757 ra.byteswap = drc->drc_byteswap; 2758 ra.cksum = drc->drc_cksum; 2759 ra.vp = vp; 2760 ra.voff = *voffp; 2761 2762 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2763 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2764 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2765 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2766 } 2767 2768 objlist_create(&ra.ignore_objlist); 2769 2770 /* these were verified in dmu_recv_begin */ 2771 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2772 DMU_SUBSTREAM); 2773 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2774 2775 /* 2776 * Open the objset we are modifying. 2777 */ 2778 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2779 2780 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2781 2782 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2783 2784 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2785 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2786 minor_t minor; 2787 2788 if (cleanup_fd == -1) { 2789 ra.err = SET_ERROR(EBADF); 2790 goto out; 2791 } 2792 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2793 if (ra.err != 0) { 2794 cleanup_fd = -1; 2795 goto out; 2796 } 2797 2798 if (*action_handlep == 0) { 2799 rwa.guid_to_ds_map = 2800 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2801 avl_create(rwa.guid_to_ds_map, guid_compare, 2802 sizeof (guid_map_entry_t), 2803 offsetof(guid_map_entry_t, avlnode)); 2804 err = zfs_onexit_add_cb(minor, 2805 free_guid_map_onexit, rwa.guid_to_ds_map, 2806 action_handlep); 2807 if (ra.err != 0) 2808 goto out; 2809 } else { 2810 err = zfs_onexit_cb_data(minor, *action_handlep, 2811 (void **)&rwa.guid_to_ds_map); 2812 if (ra.err != 0) 2813 goto out; 2814 } 2815 2816 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2817 } 2818 2819 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2820 void *payload = NULL; 2821 if (payloadlen != 0) 2822 payload = kmem_alloc(payloadlen, KM_SLEEP); 2823 2824 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2825 if (err != 0) { 2826 if (payloadlen != 0) 2827 kmem_free(payload, payloadlen); 2828 goto out; 2829 } 2830 if (payloadlen != 0) { 2831 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2832 kmem_free(payload, payloadlen); 2833 if (err != 0) 2834 goto out; 2835 } 2836 2837 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2838 err = resume_check(&ra, begin_nvl); 2839 if (err != 0) 2840 goto out; 2841 } 2842 2843 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2844 offsetof(struct receive_record_arg, node)); 2845 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2846 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2847 rwa.os = ra.os; 2848 rwa.byteswap = drc->drc_byteswap; 2849 rwa.resumable = drc->drc_resumable; 2850 2851 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2852 TS_RUN, minclsyspri); 2853 /* 2854 * We're reading rwa.err without locks, which is safe since we are the 2855 * only reader, and the worker thread is the only writer. It's ok if we 2856 * miss a write for an iteration or two of the loop, since the writer 2857 * thread will keep freeing records we send it until we send it an eos 2858 * marker. 2859 * 2860 * We can leave this loop in 3 ways: First, if rwa.err is 2861 * non-zero. In that case, the writer thread will free the rrd we just 2862 * pushed. Second, if we're interrupted; in that case, either it's the 2863 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2864 * has been handed off to the writer thread who will free it. Finally, 2865 * if receive_read_record fails or we're at the end of the stream, then 2866 * we free ra.rrd and exit. 2867 */ 2868 while (rwa.err == 0) { 2869 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2870 err = SET_ERROR(EINTR); 2871 break; 2872 } 2873 2874 ASSERT3P(ra.rrd, ==, NULL); 2875 ra.rrd = ra.next_rrd; 2876 ra.next_rrd = NULL; 2877 /* Allocates and loads header into ra.next_rrd */ 2878 err = receive_read_record(&ra); 2879 2880 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2881 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2882 ra.rrd = NULL; 2883 break; 2884 } 2885 2886 bqueue_enqueue(&rwa.q, ra.rrd, 2887 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2888 ra.rrd = NULL; 2889 } 2890 if (ra.next_rrd == NULL) 2891 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 2892 ra.next_rrd->eos_marker = B_TRUE; 2893 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 2894 2895 mutex_enter(&rwa.mutex); 2896 while (!rwa.done) { 2897 cv_wait(&rwa.cv, &rwa.mutex); 2898 } 2899 mutex_exit(&rwa.mutex); 2900 2901 cv_destroy(&rwa.cv); 2902 mutex_destroy(&rwa.mutex); 2903 bqueue_destroy(&rwa.q); 2904 if (err == 0) 2905 err = rwa.err; 2906 2907 out: 2908 nvlist_free(begin_nvl); 2909 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2910 zfs_onexit_fd_rele(cleanup_fd); 2911 2912 if (err != 0) { 2913 /* 2914 * Clean up references. If receive is not resumable, 2915 * destroy what we created, so we don't leave it in 2916 * the inconsistent state. 2917 */ 2918 dmu_recv_cleanup_ds(drc); 2919 } 2920 2921 *voffp = ra.voff; 2922 objlist_destroy(&ra.ignore_objlist); 2923 return (err); 2924 } 2925 2926 static int 2927 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2928 { 2929 dmu_recv_cookie_t *drc = arg; 2930 dsl_pool_t *dp = dmu_tx_pool(tx); 2931 int error; 2932 2933 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2934 2935 if (!drc->drc_newfs) { 2936 dsl_dataset_t *origin_head; 2937 2938 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2939 if (error != 0) 2940 return (error); 2941 if (drc->drc_force) { 2942 /* 2943 * We will destroy any snapshots in tofs (i.e. before 2944 * origin_head) that are after the origin (which is 2945 * the snap before drc_ds, because drc_ds can not 2946 * have any snaps of its own). 2947 */ 2948 uint64_t obj; 2949 2950 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2951 while (obj != 2952 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2953 dsl_dataset_t *snap; 2954 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2955 &snap); 2956 if (error != 0) 2957 break; 2958 if (snap->ds_dir != origin_head->ds_dir) 2959 error = SET_ERROR(EINVAL); 2960 if (error == 0) { 2961 error = dsl_destroy_snapshot_check_impl( 2962 snap, B_FALSE); 2963 } 2964 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2965 dsl_dataset_rele(snap, FTAG); 2966 if (error != 0) 2967 break; 2968 } 2969 if (error != 0) { 2970 dsl_dataset_rele(origin_head, FTAG); 2971 return (error); 2972 } 2973 } 2974 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2975 origin_head, drc->drc_force, drc->drc_owner, tx); 2976 if (error != 0) { 2977 dsl_dataset_rele(origin_head, FTAG); 2978 return (error); 2979 } 2980 error = dsl_dataset_snapshot_check_impl(origin_head, 2981 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2982 dsl_dataset_rele(origin_head, FTAG); 2983 if (error != 0) 2984 return (error); 2985 2986 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2987 } else { 2988 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2989 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2990 } 2991 return (error); 2992 } 2993 2994 static void 2995 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2996 { 2997 dmu_recv_cookie_t *drc = arg; 2998 dsl_pool_t *dp = dmu_tx_pool(tx); 2999 3000 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3001 tx, "snap=%s", drc->drc_tosnap); 3002 3003 if (!drc->drc_newfs) { 3004 dsl_dataset_t *origin_head; 3005 3006 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3007 &origin_head)); 3008 3009 if (drc->drc_force) { 3010 /* 3011 * Destroy any snapshots of drc_tofs (origin_head) 3012 * after the origin (the snap before drc_ds). 3013 */ 3014 uint64_t obj; 3015 3016 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3017 while (obj != 3018 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3019 dsl_dataset_t *snap; 3020 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3021 &snap)); 3022 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3023 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3024 dsl_destroy_snapshot_sync_impl(snap, 3025 B_FALSE, tx); 3026 dsl_dataset_rele(snap, FTAG); 3027 } 3028 } 3029 VERIFY3P(drc->drc_ds->ds_prev, ==, 3030 origin_head->ds_prev); 3031 3032 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3033 origin_head, tx); 3034 dsl_dataset_snapshot_sync_impl(origin_head, 3035 drc->drc_tosnap, tx); 3036 3037 /* set snapshot's creation time and guid */ 3038 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3039 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3040 drc->drc_drrb->drr_creation_time; 3041 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3042 drc->drc_drrb->drr_toguid; 3043 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3044 ~DS_FLAG_INCONSISTENT; 3045 3046 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3047 dsl_dataset_phys(origin_head)->ds_flags &= 3048 ~DS_FLAG_INCONSISTENT; 3049 3050 drc->drc_newsnapobj = 3051 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3052 3053 dsl_dataset_rele(origin_head, FTAG); 3054 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3055 3056 if (drc->drc_owner != NULL) 3057 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3058 } else { 3059 dsl_dataset_t *ds = drc->drc_ds; 3060 3061 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3062 3063 /* set snapshot's creation time and guid */ 3064 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3065 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3066 drc->drc_drrb->drr_creation_time; 3067 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3068 drc->drc_drrb->drr_toguid; 3069 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3070 ~DS_FLAG_INCONSISTENT; 3071 3072 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3073 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3074 if (dsl_dataset_has_resume_receive_state(ds)) { 3075 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3076 DS_FIELD_RESUME_FROMGUID, tx); 3077 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3078 DS_FIELD_RESUME_OBJECT, tx); 3079 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3080 DS_FIELD_RESUME_OFFSET, tx); 3081 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3082 DS_FIELD_RESUME_BYTES, tx); 3083 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3084 DS_FIELD_RESUME_TOGUID, tx); 3085 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3086 DS_FIELD_RESUME_TONAME, tx); 3087 } 3088 drc->drc_newsnapobj = 3089 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3090 } 3091 /* 3092 * Release the hold from dmu_recv_begin. This must be done before 3093 * we return to open context, so that when we free the dataset's dnode, 3094 * we can evict its bonus buffer. 3095 */ 3096 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 3097 drc->drc_ds = NULL; 3098 } 3099 3100 static int 3101 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 3102 { 3103 dsl_pool_t *dp; 3104 dsl_dataset_t *snapds; 3105 guid_map_entry_t *gmep; 3106 int err; 3107 3108 ASSERT(guid_map != NULL); 3109 3110 err = dsl_pool_hold(name, FTAG, &dp); 3111 if (err != 0) 3112 return (err); 3113 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 3114 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 3115 if (err == 0) { 3116 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 3117 gmep->gme_ds = snapds; 3118 avl_add(guid_map, gmep); 3119 dsl_dataset_long_hold(snapds, gmep); 3120 } else { 3121 kmem_free(gmep, sizeof (*gmep)); 3122 } 3123 3124 dsl_pool_rele(dp, FTAG); 3125 return (err); 3126 } 3127 3128 static int dmu_recv_end_modified_blocks = 3; 3129 3130 static int 3131 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3132 { 3133 #ifdef _KERNEL 3134 /* 3135 * We will be destroying the ds; make sure its origin is unmounted if 3136 * necessary. 3137 */ 3138 char name[ZFS_MAX_DATASET_NAME_LEN]; 3139 dsl_dataset_name(drc->drc_ds, name); 3140 zfs_destroy_unmount_origin(name); 3141 #endif 3142 3143 return (dsl_sync_task(drc->drc_tofs, 3144 dmu_recv_end_check, dmu_recv_end_sync, drc, 3145 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3146 } 3147 3148 static int 3149 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3150 { 3151 return (dsl_sync_task(drc->drc_tofs, 3152 dmu_recv_end_check, dmu_recv_end_sync, drc, 3153 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3154 } 3155 3156 int 3157 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3158 { 3159 int error; 3160 3161 drc->drc_owner = owner; 3162 3163 if (drc->drc_newfs) 3164 error = dmu_recv_new_end(drc); 3165 else 3166 error = dmu_recv_existing_end(drc); 3167 3168 if (error != 0) { 3169 dmu_recv_cleanup_ds(drc); 3170 } else if (drc->drc_guid_to_ds_map != NULL) { 3171 (void) add_ds_to_guidmap(drc->drc_tofs, 3172 drc->drc_guid_to_ds_map, 3173 drc->drc_newsnapobj); 3174 } 3175 return (error); 3176 } 3177 3178 /* 3179 * Return TRUE if this objset is currently being received into. 3180 */ 3181 boolean_t 3182 dmu_objset_is_receiving(objset_t *os) 3183 { 3184 return (os->os_dsl_dataset != NULL && 3185 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3186 } 3187