1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dbuf.h> 35 #include <sys/dnode.h> 36 #include <sys/zfs_context.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dmu_traverse.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/zfs_ioctl.h> 45 #include <sys/zap.h> 46 #include <sys/zio_checksum.h> 47 #include <sys/zfs_znode.h> 48 #include <zfs_fletcher.h> 49 #include <sys/avl.h> 50 #include <sys/ddt.h> 51 #include <sys/zfs_onexit.h> 52 #include <sys/dmu_send.h> 53 #include <sys/dsl_destroy.h> 54 #include <sys/blkptr.h> 55 #include <sys/dsl_bookmark.h> 56 #include <sys/zfeature.h> 57 #include <sys/bqueue.h> 58 59 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 60 int zfs_send_corrupt_data = B_FALSE; 61 int zfs_send_queue_length = 16 * 1024 * 1024; 62 int zfs_recv_queue_length = 16 * 1024 * 1024; 63 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */ 64 int zfs_send_set_freerecords_bit = B_TRUE; 65 66 static char *dmu_recv_tag = "dmu_recv_tag"; 67 const char *recv_clone_name = "%recv"; 68 69 /* 70 * Use this to override the recordsize calculation for fast zfs send estimates. 71 */ 72 uint64_t zfs_override_estimate_recordsize = 0; 73 74 #define BP_SPAN(datablkszsec, indblkshift, level) \ 75 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 76 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 77 78 static void byteswap_record(dmu_replay_record_t *drr); 79 80 struct send_thread_arg { 81 bqueue_t q; 82 dsl_dataset_t *ds; /* Dataset to traverse */ 83 uint64_t fromtxg; /* Traverse from this txg */ 84 int flags; /* flags to pass to traverse_dataset */ 85 int error_code; 86 boolean_t cancel; 87 zbookmark_phys_t resume; 88 }; 89 90 struct send_block_record { 91 boolean_t eos_marker; /* Marks the end of the stream */ 92 blkptr_t bp; 93 zbookmark_phys_t zb; 94 uint8_t indblkshift; 95 uint16_t datablkszsec; 96 bqueue_node_t ln; 97 }; 98 99 static int 100 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 101 { 102 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); 103 ssize_t resid; /* have to get resid to get detailed errno */ 104 105 /* 106 * The code does not rely on this (len being a multiple of 8). We keep 107 * this assertion because of the corresponding assertion in 108 * receive_read(). Keeping this assertion ensures that we do not 109 * inadvertently break backwards compatibility (causing the assertion 110 * in receive_read() to trigger on old software). 111 * 112 * Removing the assertions could be rolled into a new feature that uses 113 * data that isn't 8-byte aligned; if the assertions were removed, a 114 * feature flag would have to be added. 115 */ 116 117 ASSERT0(len % 8); 118 119 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 120 (caddr_t)buf, len, 121 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 122 123 mutex_enter(&ds->ds_sendstream_lock); 124 *dsp->dsa_off += len; 125 mutex_exit(&ds->ds_sendstream_lock); 126 127 return (dsp->dsa_err); 128 } 129 130 /* 131 * For all record types except BEGIN, fill in the checksum (overlaid in 132 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 133 * up to the start of the checksum itself. 134 */ 135 static int 136 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 137 { 138 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 139 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 140 (void) fletcher_4_incremental_native(dsp->dsa_drr, 141 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 142 &dsp->dsa_zc); 143 if (dsp->dsa_drr->drr_type == DRR_BEGIN) { 144 dsp->dsa_sent_begin = B_TRUE; 145 } else { 146 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 147 drr_checksum.drr_checksum)); 148 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 149 } 150 if (dsp->dsa_drr->drr_type == DRR_END) { 151 dsp->dsa_sent_end = B_TRUE; 152 } 153 (void) fletcher_4_incremental_native(&dsp->dsa_drr-> 154 drr_u.drr_checksum.drr_checksum, 155 sizeof (zio_cksum_t), &dsp->dsa_zc); 156 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 157 return (SET_ERROR(EINTR)); 158 if (payload_len != 0) { 159 (void) fletcher_4_incremental_native(payload, payload_len, 160 &dsp->dsa_zc); 161 if (dump_bytes(dsp, payload, payload_len) != 0) 162 return (SET_ERROR(EINTR)); 163 } 164 return (0); 165 } 166 167 /* 168 * Fill in the drr_free struct, or perform aggregation if the previous record is 169 * also a free record, and the two are adjacent. 170 * 171 * Note that we send free records even for a full send, because we want to be 172 * able to receive a full send as a clone, which requires a list of all the free 173 * and freeobject records that were generated on the source. 174 */ 175 static int 176 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 177 uint64_t length) 178 { 179 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 180 181 /* 182 * When we receive a free record, dbuf_free_range() assumes 183 * that the receiving system doesn't have any dbufs in the range 184 * being freed. This is always true because there is a one-record 185 * constraint: we only send one WRITE record for any given 186 * object,offset. We know that the one-record constraint is 187 * true because we always send data in increasing order by 188 * object,offset. 189 * 190 * If the increasing-order constraint ever changes, we should find 191 * another way to assert that the one-record constraint is still 192 * satisfied. 193 */ 194 ASSERT(object > dsp->dsa_last_data_object || 195 (object == dsp->dsa_last_data_object && 196 offset > dsp->dsa_last_data_offset)); 197 198 if (length != -1ULL && offset + length < offset) 199 length = -1ULL; 200 201 /* 202 * If there is a pending op, but it's not PENDING_FREE, push it out, 203 * since free block aggregation can only be done for blocks of the 204 * same type (i.e., DRR_FREE records can only be aggregated with 205 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 206 * aggregated with other DRR_FREEOBJECTS records. 207 */ 208 if (dsp->dsa_pending_op != PENDING_NONE && 209 dsp->dsa_pending_op != PENDING_FREE) { 210 if (dump_record(dsp, NULL, 0) != 0) 211 return (SET_ERROR(EINTR)); 212 dsp->dsa_pending_op = PENDING_NONE; 213 } 214 215 if (dsp->dsa_pending_op == PENDING_FREE) { 216 /* 217 * There should never be a PENDING_FREE if length is -1 218 * (because dump_dnode is the only place where this 219 * function is called with a -1, and only after flushing 220 * any pending record). 221 */ 222 ASSERT(length != -1ULL); 223 /* 224 * Check to see whether this free block can be aggregated 225 * with pending one. 226 */ 227 if (drrf->drr_object == object && drrf->drr_offset + 228 drrf->drr_length == offset) { 229 drrf->drr_length += length; 230 return (0); 231 } else { 232 /* not a continuation. Push out pending record */ 233 if (dump_record(dsp, NULL, 0) != 0) 234 return (SET_ERROR(EINTR)); 235 dsp->dsa_pending_op = PENDING_NONE; 236 } 237 } 238 /* create a FREE record and make it pending */ 239 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 240 dsp->dsa_drr->drr_type = DRR_FREE; 241 drrf->drr_object = object; 242 drrf->drr_offset = offset; 243 drrf->drr_length = length; 244 drrf->drr_toguid = dsp->dsa_toguid; 245 if (length == -1ULL) { 246 if (dump_record(dsp, NULL, 0) != 0) 247 return (SET_ERROR(EINTR)); 248 } else { 249 dsp->dsa_pending_op = PENDING_FREE; 250 } 251 252 return (0); 253 } 254 255 static int 256 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 257 uint64_t object, uint64_t offset, int lsize, int psize, const blkptr_t *bp, 258 void *data) 259 { 260 uint64_t payload_size; 261 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 262 263 /* 264 * We send data in increasing object, offset order. 265 * See comment in dump_free() for details. 266 */ 267 ASSERT(object > dsp->dsa_last_data_object || 268 (object == dsp->dsa_last_data_object && 269 offset > dsp->dsa_last_data_offset)); 270 dsp->dsa_last_data_object = object; 271 dsp->dsa_last_data_offset = offset + lsize - 1; 272 273 /* 274 * If there is any kind of pending aggregation (currently either 275 * a grouping of free objects or free blocks), push it out to 276 * the stream, since aggregation can't be done across operations 277 * of different types. 278 */ 279 if (dsp->dsa_pending_op != PENDING_NONE) { 280 if (dump_record(dsp, NULL, 0) != 0) 281 return (SET_ERROR(EINTR)); 282 dsp->dsa_pending_op = PENDING_NONE; 283 } 284 /* write a WRITE record */ 285 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 286 dsp->dsa_drr->drr_type = DRR_WRITE; 287 drrw->drr_object = object; 288 drrw->drr_type = type; 289 drrw->drr_offset = offset; 290 drrw->drr_toguid = dsp->dsa_toguid; 291 drrw->drr_logical_size = lsize; 292 293 /* only set the compression fields if the buf is compressed */ 294 if (lsize != psize) { 295 ASSERT(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED); 296 ASSERT(!BP_IS_EMBEDDED(bp)); 297 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 298 ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp))); 299 ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF); 300 ASSERT3S(psize, >, 0); 301 ASSERT3S(lsize, >=, psize); 302 303 drrw->drr_compressiontype = BP_GET_COMPRESS(bp); 304 drrw->drr_compressed_size = psize; 305 payload_size = drrw->drr_compressed_size; 306 } else { 307 payload_size = drrw->drr_logical_size; 308 } 309 310 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 311 /* 312 * There's no pre-computed checksum for partial-block 313 * writes or embedded BP's, so (like 314 * fletcher4-checkummed blocks) userland will have to 315 * compute a dedup-capable checksum itself. 316 */ 317 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 318 } else { 319 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 320 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 321 ZCHECKSUM_FLAG_DEDUP) 322 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 323 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 324 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 325 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 326 drrw->drr_key.ddk_cksum = bp->blk_cksum; 327 } 328 329 if (dump_record(dsp, data, payload_size) != 0) 330 return (SET_ERROR(EINTR)); 331 return (0); 332 } 333 334 static int 335 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 336 int blksz, const blkptr_t *bp) 337 { 338 char buf[BPE_PAYLOAD_SIZE]; 339 struct drr_write_embedded *drrw = 340 &(dsp->dsa_drr->drr_u.drr_write_embedded); 341 342 if (dsp->dsa_pending_op != PENDING_NONE) { 343 if (dump_record(dsp, NULL, 0) != 0) 344 return (EINTR); 345 dsp->dsa_pending_op = PENDING_NONE; 346 } 347 348 ASSERT(BP_IS_EMBEDDED(bp)); 349 350 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 351 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 352 drrw->drr_object = object; 353 drrw->drr_offset = offset; 354 drrw->drr_length = blksz; 355 drrw->drr_toguid = dsp->dsa_toguid; 356 drrw->drr_compression = BP_GET_COMPRESS(bp); 357 drrw->drr_etype = BPE_GET_ETYPE(bp); 358 drrw->drr_lsize = BPE_GET_LSIZE(bp); 359 drrw->drr_psize = BPE_GET_PSIZE(bp); 360 361 decode_embedded_bp_compressed(bp, buf); 362 363 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 364 return (EINTR); 365 return (0); 366 } 367 368 static int 369 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 370 { 371 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 372 373 if (dsp->dsa_pending_op != PENDING_NONE) { 374 if (dump_record(dsp, NULL, 0) != 0) 375 return (SET_ERROR(EINTR)); 376 dsp->dsa_pending_op = PENDING_NONE; 377 } 378 379 /* write a SPILL record */ 380 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 381 dsp->dsa_drr->drr_type = DRR_SPILL; 382 drrs->drr_object = object; 383 drrs->drr_length = blksz; 384 drrs->drr_toguid = dsp->dsa_toguid; 385 386 if (dump_record(dsp, data, blksz) != 0) 387 return (SET_ERROR(EINTR)); 388 return (0); 389 } 390 391 static int 392 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 393 { 394 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 395 396 /* 397 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 398 * push it out, since free block aggregation can only be done for 399 * blocks of the same type (i.e., DRR_FREE records can only be 400 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 401 * can only be aggregated with other DRR_FREEOBJECTS records. 402 */ 403 if (dsp->dsa_pending_op != PENDING_NONE && 404 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 405 if (dump_record(dsp, NULL, 0) != 0) 406 return (SET_ERROR(EINTR)); 407 dsp->dsa_pending_op = PENDING_NONE; 408 } 409 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 410 /* 411 * See whether this free object array can be aggregated 412 * with pending one 413 */ 414 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 415 drrfo->drr_numobjs += numobjs; 416 return (0); 417 } else { 418 /* can't be aggregated. Push out pending record */ 419 if (dump_record(dsp, NULL, 0) != 0) 420 return (SET_ERROR(EINTR)); 421 dsp->dsa_pending_op = PENDING_NONE; 422 } 423 } 424 425 /* write a FREEOBJECTS record */ 426 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 427 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 428 drrfo->drr_firstobj = firstobj; 429 drrfo->drr_numobjs = numobjs; 430 drrfo->drr_toguid = dsp->dsa_toguid; 431 432 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 433 434 return (0); 435 } 436 437 static int 438 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 439 { 440 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 441 442 if (object < dsp->dsa_resume_object) { 443 /* 444 * Note: when resuming, we will visit all the dnodes in 445 * the block of dnodes that we are resuming from. In 446 * this case it's unnecessary to send the dnodes prior to 447 * the one we are resuming from. We should be at most one 448 * block's worth of dnodes behind the resume point. 449 */ 450 ASSERT3U(dsp->dsa_resume_object - object, <, 451 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 452 return (0); 453 } 454 455 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 456 return (dump_freeobjects(dsp, object, 1)); 457 458 if (dsp->dsa_pending_op != PENDING_NONE) { 459 if (dump_record(dsp, NULL, 0) != 0) 460 return (SET_ERROR(EINTR)); 461 dsp->dsa_pending_op = PENDING_NONE; 462 } 463 464 /* write an OBJECT record */ 465 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 466 dsp->dsa_drr->drr_type = DRR_OBJECT; 467 drro->drr_object = object; 468 drro->drr_type = dnp->dn_type; 469 drro->drr_bonustype = dnp->dn_bonustype; 470 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 471 drro->drr_bonuslen = dnp->dn_bonuslen; 472 drro->drr_dn_slots = dnp->dn_extra_slots + 1; 473 drro->drr_checksumtype = dnp->dn_checksum; 474 drro->drr_compress = dnp->dn_compress; 475 drro->drr_toguid = dsp->dsa_toguid; 476 477 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 478 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 479 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 480 481 if (dump_record(dsp, DN_BONUS(dnp), 482 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 483 return (SET_ERROR(EINTR)); 484 } 485 486 /* Free anything past the end of the file. */ 487 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 488 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 489 return (SET_ERROR(EINTR)); 490 if (dsp->dsa_err != 0) 491 return (SET_ERROR(EINTR)); 492 return (0); 493 } 494 495 static boolean_t 496 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 497 { 498 if (!BP_IS_EMBEDDED(bp)) 499 return (B_FALSE); 500 501 /* 502 * Compression function must be legacy, or explicitly enabled. 503 */ 504 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 505 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LZ4))) 506 return (B_FALSE); 507 508 /* 509 * Embed type must be explicitly enabled. 510 */ 511 switch (BPE_GET_ETYPE(bp)) { 512 case BP_EMBEDDED_TYPE_DATA: 513 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 514 return (B_TRUE); 515 break; 516 default: 517 return (B_FALSE); 518 } 519 return (B_FALSE); 520 } 521 522 /* 523 * This is the callback function to traverse_dataset that acts as the worker 524 * thread for dmu_send_impl. 525 */ 526 /*ARGSUSED*/ 527 static int 528 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 529 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 530 { 531 struct send_thread_arg *sta = arg; 532 struct send_block_record *record; 533 uint64_t record_size; 534 int err = 0; 535 536 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 537 zb->zb_object >= sta->resume.zb_object); 538 539 if (sta->cancel) 540 return (SET_ERROR(EINTR)); 541 542 if (bp == NULL) { 543 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 544 return (0); 545 } else if (zb->zb_level < 0) { 546 return (0); 547 } 548 549 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 550 record->eos_marker = B_FALSE; 551 record->bp = *bp; 552 record->zb = *zb; 553 record->indblkshift = dnp->dn_indblkshift; 554 record->datablkszsec = dnp->dn_datablkszsec; 555 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 556 bqueue_enqueue(&sta->q, record, record_size); 557 558 return (err); 559 } 560 561 /* 562 * This function kicks off the traverse_dataset. It also handles setting the 563 * error code of the thread in case something goes wrong, and pushes the End of 564 * Stream record when the traverse_dataset call has finished. If there is no 565 * dataset to traverse, the thread immediately pushes End of Stream marker. 566 */ 567 static void 568 send_traverse_thread(void *arg) 569 { 570 struct send_thread_arg *st_arg = arg; 571 int err; 572 struct send_block_record *data; 573 574 if (st_arg->ds != NULL) { 575 err = traverse_dataset_resume(st_arg->ds, 576 st_arg->fromtxg, &st_arg->resume, 577 st_arg->flags, send_cb, st_arg); 578 579 if (err != EINTR) 580 st_arg->error_code = err; 581 } 582 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 583 data->eos_marker = B_TRUE; 584 bqueue_enqueue(&st_arg->q, data, 1); 585 thread_exit(); 586 } 587 588 /* 589 * This function actually handles figuring out what kind of record needs to be 590 * dumped, reading the data (which has hopefully been prefetched), and calling 591 * the appropriate helper function. 592 */ 593 static int 594 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 595 { 596 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 597 const blkptr_t *bp = &data->bp; 598 const zbookmark_phys_t *zb = &data->zb; 599 uint8_t indblkshift = data->indblkshift; 600 uint16_t dblkszsec = data->datablkszsec; 601 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 602 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 603 int err = 0; 604 605 ASSERT3U(zb->zb_level, >=, 0); 606 607 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 608 zb->zb_object >= dsa->dsa_resume_object); 609 610 if (zb->zb_object != DMU_META_DNODE_OBJECT && 611 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 612 return (0); 613 } else if (BP_IS_HOLE(bp) && 614 zb->zb_object == DMU_META_DNODE_OBJECT) { 615 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 616 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 617 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 618 } else if (BP_IS_HOLE(bp)) { 619 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 620 uint64_t offset = zb->zb_blkid * span; 621 err = dump_free(dsa, zb->zb_object, offset, span); 622 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 623 return (0); 624 } else if (type == DMU_OT_DNODE) { 625 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 626 arc_flags_t aflags = ARC_FLAG_WAIT; 627 arc_buf_t *abuf; 628 629 ASSERT0(zb->zb_level); 630 631 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 632 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 633 &aflags, zb) != 0) 634 return (SET_ERROR(EIO)); 635 636 dnode_phys_t *blk = abuf->b_data; 637 uint64_t dnobj = zb->zb_blkid * epb; 638 for (int i = 0; i < epb; i += blk[i].dn_extra_slots + 1) { 639 err = dump_dnode(dsa, dnobj + i, blk + i); 640 if (err != 0) 641 break; 642 } 643 arc_buf_destroy(abuf, &abuf); 644 } else if (type == DMU_OT_SA) { 645 arc_flags_t aflags = ARC_FLAG_WAIT; 646 arc_buf_t *abuf; 647 int blksz = BP_GET_LSIZE(bp); 648 649 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 650 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 651 &aflags, zb) != 0) 652 return (SET_ERROR(EIO)); 653 654 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 655 arc_buf_destroy(abuf, &abuf); 656 } else if (backup_do_embed(dsa, bp)) { 657 /* it's an embedded level-0 block of a regular object */ 658 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 659 ASSERT0(zb->zb_level); 660 err = dump_write_embedded(dsa, zb->zb_object, 661 zb->zb_blkid * blksz, blksz, bp); 662 } else { 663 /* it's a level-0 block of a regular object */ 664 arc_flags_t aflags = ARC_FLAG_WAIT; 665 arc_buf_t *abuf; 666 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 667 uint64_t offset; 668 669 /* 670 * If we have large blocks stored on disk but the send flags 671 * don't allow us to send large blocks, we split the data from 672 * the arc buf into chunks. 673 */ 674 boolean_t split_large_blocks = blksz > SPA_OLD_MAXBLOCKSIZE && 675 !(dsa->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS); 676 /* 677 * We should only request compressed data from the ARC if all 678 * the following are true: 679 * - stream compression was requested 680 * - we aren't splitting large blocks into smaller chunks 681 * - the data won't need to be byteswapped before sending 682 * - this isn't an embedded block 683 * - this isn't metadata (if receiving on a different endian 684 * system it can be byteswapped more easily) 685 */ 686 boolean_t request_compressed = 687 (dsa->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED) && 688 !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) && 689 !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp)); 690 691 ASSERT0(zb->zb_level); 692 ASSERT(zb->zb_object > dsa->dsa_resume_object || 693 (zb->zb_object == dsa->dsa_resume_object && 694 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 695 696 ASSERT0(zb->zb_level); 697 ASSERT(zb->zb_object > dsa->dsa_resume_object || 698 (zb->zb_object == dsa->dsa_resume_object && 699 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 700 701 ASSERT3U(blksz, ==, BP_GET_LSIZE(bp)); 702 703 enum zio_flag zioflags = ZIO_FLAG_CANFAIL; 704 if (request_compressed) 705 zioflags |= ZIO_FLAG_RAW; 706 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 707 ZIO_PRIORITY_ASYNC_READ, zioflags, &aflags, zb) != 0) { 708 if (zfs_send_corrupt_data) { 709 /* Send a block filled with 0x"zfs badd bloc" */ 710 abuf = arc_alloc_buf(spa, &abuf, ARC_BUFC_DATA, 711 blksz); 712 uint64_t *ptr; 713 for (ptr = abuf->b_data; 714 (char *)ptr < (char *)abuf->b_data + blksz; 715 ptr++) 716 *ptr = 0x2f5baddb10cULL; 717 } else { 718 return (SET_ERROR(EIO)); 719 } 720 } 721 722 offset = zb->zb_blkid * blksz; 723 724 if (split_large_blocks) { 725 ASSERT3U(arc_get_compression(abuf), ==, 726 ZIO_COMPRESS_OFF); 727 char *buf = abuf->b_data; 728 while (blksz > 0 && err == 0) { 729 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 730 err = dump_write(dsa, type, zb->zb_object, 731 offset, n, n, NULL, buf); 732 offset += n; 733 buf += n; 734 blksz -= n; 735 } 736 } else { 737 err = dump_write(dsa, type, zb->zb_object, offset, 738 blksz, arc_buf_size(abuf), bp, abuf->b_data); 739 } 740 arc_buf_destroy(abuf, &abuf); 741 } 742 743 ASSERT(err == 0 || err == EINTR); 744 return (err); 745 } 746 747 /* 748 * Pop the new data off the queue, and free the old data. 749 */ 750 static struct send_block_record * 751 get_next_record(bqueue_t *bq, struct send_block_record *data) 752 { 753 struct send_block_record *tmp = bqueue_dequeue(bq); 754 kmem_free(data, sizeof (*data)); 755 return (tmp); 756 } 757 758 /* 759 * Actually do the bulk of the work in a zfs send. 760 * 761 * Note: Releases dp using the specified tag. 762 */ 763 static int 764 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 765 zfs_bookmark_phys_t *ancestor_zb, boolean_t is_clone, 766 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok, 767 int outfd, uint64_t resumeobj, uint64_t resumeoff, 768 vnode_t *vp, offset_t *off) 769 { 770 objset_t *os; 771 dmu_replay_record_t *drr; 772 dmu_sendarg_t *dsp; 773 int err; 774 uint64_t fromtxg = 0; 775 uint64_t featureflags = 0; 776 struct send_thread_arg to_arg = { 0 }; 777 778 err = dmu_objset_from_ds(to_ds, &os); 779 if (err != 0) { 780 dsl_pool_rele(dp, tag); 781 return (err); 782 } 783 784 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 785 drr->drr_type = DRR_BEGIN; 786 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 787 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 788 DMU_SUBSTREAM); 789 790 #ifdef _KERNEL 791 if (dmu_objset_type(os) == DMU_OST_ZFS) { 792 uint64_t version; 793 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 794 kmem_free(drr, sizeof (dmu_replay_record_t)); 795 dsl_pool_rele(dp, tag); 796 return (SET_ERROR(EINVAL)); 797 } 798 if (version >= ZPL_VERSION_SA) { 799 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 800 } 801 } 802 #endif 803 804 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 805 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 806 if (to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_DNODE]) 807 featureflags |= DMU_BACKUP_FEATURE_LARGE_DNODE; 808 if (embedok && 809 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 810 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 811 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 812 featureflags |= DMU_BACKUP_FEATURE_LZ4; 813 } 814 if (compressok) { 815 featureflags |= DMU_BACKUP_FEATURE_COMPRESSED; 816 } 817 if ((featureflags & 818 (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED)) != 819 0 && spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) { 820 featureflags |= DMU_BACKUP_FEATURE_LZ4; 821 } 822 823 if (resumeobj != 0 || resumeoff != 0) { 824 featureflags |= DMU_BACKUP_FEATURE_RESUMING; 825 } 826 827 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 828 featureflags); 829 830 drr->drr_u.drr_begin.drr_creation_time = 831 dsl_dataset_phys(to_ds)->ds_creation_time; 832 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 833 if (is_clone) 834 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 835 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 836 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 837 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 838 if (zfs_send_set_freerecords_bit) 839 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS; 840 841 if (ancestor_zb != NULL) { 842 drr->drr_u.drr_begin.drr_fromguid = 843 ancestor_zb->zbm_guid; 844 fromtxg = ancestor_zb->zbm_creation_txg; 845 } 846 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 847 if (!to_ds->ds_is_snapshot) { 848 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 849 sizeof (drr->drr_u.drr_begin.drr_toname)); 850 } 851 852 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 853 854 dsp->dsa_drr = drr; 855 dsp->dsa_vp = vp; 856 dsp->dsa_outfd = outfd; 857 dsp->dsa_proc = curproc; 858 dsp->dsa_os = os; 859 dsp->dsa_off = off; 860 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 861 dsp->dsa_pending_op = PENDING_NONE; 862 dsp->dsa_featureflags = featureflags; 863 dsp->dsa_resume_object = resumeobj; 864 dsp->dsa_resume_offset = resumeoff; 865 866 mutex_enter(&to_ds->ds_sendstream_lock); 867 list_insert_head(&to_ds->ds_sendstreams, dsp); 868 mutex_exit(&to_ds->ds_sendstream_lock); 869 870 dsl_dataset_long_hold(to_ds, FTAG); 871 dsl_pool_rele(dp, tag); 872 873 void *payload = NULL; 874 size_t payload_len = 0; 875 if (resumeobj != 0 || resumeoff != 0) { 876 dmu_object_info_t to_doi; 877 err = dmu_object_info(os, resumeobj, &to_doi); 878 if (err != 0) 879 goto out; 880 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, 881 resumeoff / to_doi.doi_data_block_size); 882 883 nvlist_t *nvl = fnvlist_alloc(); 884 fnvlist_add_uint64(nvl, "resume_object", resumeobj); 885 fnvlist_add_uint64(nvl, "resume_offset", resumeoff); 886 payload = fnvlist_pack(nvl, &payload_len); 887 drr->drr_payloadlen = payload_len; 888 fnvlist_free(nvl); 889 } 890 891 err = dump_record(dsp, payload, payload_len); 892 fnvlist_pack_free(payload, payload_len); 893 if (err != 0) { 894 err = dsp->dsa_err; 895 goto out; 896 } 897 898 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 899 offsetof(struct send_block_record, ln)); 900 to_arg.error_code = 0; 901 to_arg.cancel = B_FALSE; 902 to_arg.ds = to_ds; 903 to_arg.fromtxg = fromtxg; 904 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 905 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 906 TS_RUN, minclsyspri); 907 908 struct send_block_record *to_data; 909 to_data = bqueue_dequeue(&to_arg.q); 910 911 while (!to_data->eos_marker && err == 0) { 912 err = do_dump(dsp, to_data); 913 to_data = get_next_record(&to_arg.q, to_data); 914 if (issig(JUSTLOOKING) && issig(FORREAL)) 915 err = EINTR; 916 } 917 918 if (err != 0) { 919 to_arg.cancel = B_TRUE; 920 while (!to_data->eos_marker) { 921 to_data = get_next_record(&to_arg.q, to_data); 922 } 923 } 924 kmem_free(to_data, sizeof (*to_data)); 925 926 bqueue_destroy(&to_arg.q); 927 928 if (err == 0 && to_arg.error_code != 0) 929 err = to_arg.error_code; 930 931 if (err != 0) 932 goto out; 933 934 if (dsp->dsa_pending_op != PENDING_NONE) 935 if (dump_record(dsp, NULL, 0) != 0) 936 err = SET_ERROR(EINTR); 937 938 if (err != 0) { 939 if (err == EINTR && dsp->dsa_err != 0) 940 err = dsp->dsa_err; 941 goto out; 942 } 943 944 bzero(drr, sizeof (dmu_replay_record_t)); 945 drr->drr_type = DRR_END; 946 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 947 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 948 949 if (dump_record(dsp, NULL, 0) != 0) 950 err = dsp->dsa_err; 951 952 out: 953 mutex_enter(&to_ds->ds_sendstream_lock); 954 list_remove(&to_ds->ds_sendstreams, dsp); 955 mutex_exit(&to_ds->ds_sendstream_lock); 956 957 VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end)); 958 959 kmem_free(drr, sizeof (dmu_replay_record_t)); 960 kmem_free(dsp, sizeof (dmu_sendarg_t)); 961 962 dsl_dataset_long_rele(to_ds, FTAG); 963 964 return (err); 965 } 966 967 int 968 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 969 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok, 970 int outfd, vnode_t *vp, offset_t *off) 971 { 972 dsl_pool_t *dp; 973 dsl_dataset_t *ds; 974 dsl_dataset_t *fromds = NULL; 975 int err; 976 977 err = dsl_pool_hold(pool, FTAG, &dp); 978 if (err != 0) 979 return (err); 980 981 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 982 if (err != 0) { 983 dsl_pool_rele(dp, FTAG); 984 return (err); 985 } 986 987 if (fromsnap != 0) { 988 zfs_bookmark_phys_t zb; 989 boolean_t is_clone; 990 991 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 992 if (err != 0) { 993 dsl_dataset_rele(ds, FTAG); 994 dsl_pool_rele(dp, FTAG); 995 return (err); 996 } 997 if (!dsl_dataset_is_before(ds, fromds, 0)) 998 err = SET_ERROR(EXDEV); 999 zb.zbm_creation_time = 1000 dsl_dataset_phys(fromds)->ds_creation_time; 1001 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 1002 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 1003 is_clone = (fromds->ds_dir != ds->ds_dir); 1004 dsl_dataset_rele(fromds, FTAG); 1005 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 1006 embedok, large_block_ok, compressok, outfd, 0, 0, vp, off); 1007 } else { 1008 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1009 embedok, large_block_ok, compressok, outfd, 0, 0, vp, off); 1010 } 1011 dsl_dataset_rele(ds, FTAG); 1012 return (err); 1013 } 1014 1015 int 1016 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 1017 boolean_t large_block_ok, boolean_t compressok, int outfd, 1018 uint64_t resumeobj, uint64_t resumeoff, 1019 vnode_t *vp, offset_t *off) 1020 { 1021 dsl_pool_t *dp; 1022 dsl_dataset_t *ds; 1023 int err; 1024 boolean_t owned = B_FALSE; 1025 1026 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 1027 return (SET_ERROR(EINVAL)); 1028 1029 err = dsl_pool_hold(tosnap, FTAG, &dp); 1030 if (err != 0) 1031 return (err); 1032 1033 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 1034 /* 1035 * We are sending a filesystem or volume. Ensure 1036 * that it doesn't change by owning the dataset. 1037 */ 1038 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 1039 owned = B_TRUE; 1040 } else { 1041 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 1042 } 1043 if (err != 0) { 1044 dsl_pool_rele(dp, FTAG); 1045 return (err); 1046 } 1047 1048 if (fromsnap != NULL) { 1049 zfs_bookmark_phys_t zb; 1050 boolean_t is_clone = B_FALSE; 1051 int fsnamelen = strchr(tosnap, '@') - tosnap; 1052 1053 /* 1054 * If the fromsnap is in a different filesystem, then 1055 * mark the send stream as a clone. 1056 */ 1057 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 1058 (fromsnap[fsnamelen] != '@' && 1059 fromsnap[fsnamelen] != '#')) { 1060 is_clone = B_TRUE; 1061 } 1062 1063 if (strchr(fromsnap, '@')) { 1064 dsl_dataset_t *fromds; 1065 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 1066 if (err == 0) { 1067 if (!dsl_dataset_is_before(ds, fromds, 0)) 1068 err = SET_ERROR(EXDEV); 1069 zb.zbm_creation_time = 1070 dsl_dataset_phys(fromds)->ds_creation_time; 1071 zb.zbm_creation_txg = 1072 dsl_dataset_phys(fromds)->ds_creation_txg; 1073 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 1074 is_clone = (ds->ds_dir != fromds->ds_dir); 1075 dsl_dataset_rele(fromds, FTAG); 1076 } 1077 } else { 1078 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 1079 } 1080 if (err != 0) { 1081 dsl_dataset_rele(ds, FTAG); 1082 dsl_pool_rele(dp, FTAG); 1083 return (err); 1084 } 1085 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 1086 embedok, large_block_ok, compressok, 1087 outfd, resumeobj, resumeoff, vp, off); 1088 } else { 1089 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1090 embedok, large_block_ok, compressok, 1091 outfd, resumeobj, resumeoff, vp, off); 1092 } 1093 if (owned) 1094 dsl_dataset_disown(ds, FTAG); 1095 else 1096 dsl_dataset_rele(ds, FTAG); 1097 return (err); 1098 } 1099 1100 static int 1101 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed, 1102 uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep) 1103 { 1104 int err = 0; 1105 uint64_t size; 1106 /* 1107 * Assume that space (both on-disk and in-stream) is dominated by 1108 * data. We will adjust for indirect blocks and the copies property, 1109 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 1110 */ 1111 uint64_t recordsize; 1112 uint64_t record_count; 1113 objset_t *os; 1114 VERIFY0(dmu_objset_from_ds(ds, &os)); 1115 1116 /* Assume all (uncompressed) blocks are recordsize. */ 1117 if (zfs_override_estimate_recordsize != 0) { 1118 recordsize = zfs_override_estimate_recordsize; 1119 } else if (os->os_phys->os_type == DMU_OST_ZVOL) { 1120 err = dsl_prop_get_int_ds(ds, 1121 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize); 1122 } else { 1123 err = dsl_prop_get_int_ds(ds, 1124 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize); 1125 } 1126 if (err != 0) 1127 return (err); 1128 record_count = uncompressed / recordsize; 1129 1130 /* 1131 * If we're estimating a send size for a compressed stream, use the 1132 * compressed data size to estimate the stream size. Otherwise, use the 1133 * uncompressed data size. 1134 */ 1135 size = stream_compressed ? compressed : uncompressed; 1136 1137 /* 1138 * Subtract out approximate space used by indirect blocks. 1139 * Assume most space is used by data blocks (non-indirect, non-dnode). 1140 * Assume no ditto blocks or internal fragmentation. 1141 * 1142 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 1143 * block. 1144 */ 1145 size -= record_count * sizeof (blkptr_t); 1146 1147 /* Add in the space for the record associated with each block. */ 1148 size += record_count * sizeof (dmu_replay_record_t); 1149 1150 *sizep = size; 1151 1152 return (0); 1153 } 1154 1155 int 1156 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, 1157 boolean_t stream_compressed, uint64_t *sizep) 1158 { 1159 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1160 int err; 1161 uint64_t uncomp, comp; 1162 1163 ASSERT(dsl_pool_config_held(dp)); 1164 1165 /* tosnap must be a snapshot */ 1166 if (!ds->ds_is_snapshot) 1167 return (SET_ERROR(EINVAL)); 1168 1169 /* fromsnap, if provided, must be a snapshot */ 1170 if (fromds != NULL && !fromds->ds_is_snapshot) 1171 return (SET_ERROR(EINVAL)); 1172 1173 /* 1174 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1175 * or the origin's fs. 1176 */ 1177 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1178 return (SET_ERROR(EXDEV)); 1179 1180 /* Get compressed and uncompressed size estimates of changed data. */ 1181 if (fromds == NULL) { 1182 uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1183 comp = dsl_dataset_phys(ds)->ds_compressed_bytes; 1184 } else { 1185 uint64_t used; 1186 err = dsl_dataset_space_written(fromds, ds, 1187 &used, &comp, &uncomp); 1188 if (err != 0) 1189 return (err); 1190 } 1191 1192 err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp, 1193 stream_compressed, sizep); 1194 /* 1195 * Add the size of the BEGIN and END records to the estimate. 1196 */ 1197 *sizep += 2 * sizeof (dmu_replay_record_t); 1198 return (err); 1199 } 1200 1201 struct calculate_send_arg { 1202 uint64_t uncompressed; 1203 uint64_t compressed; 1204 }; 1205 1206 /* 1207 * Simple callback used to traverse the blocks of a snapshot and sum their 1208 * uncompressed and compressed sizes. 1209 */ 1210 /* ARGSUSED */ 1211 static int 1212 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1213 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1214 { 1215 struct calculate_send_arg *space = arg; 1216 if (bp != NULL && !BP_IS_HOLE(bp)) { 1217 space->uncompressed += BP_GET_UCSIZE(bp); 1218 space->compressed += BP_GET_PSIZE(bp); 1219 } 1220 return (0); 1221 } 1222 1223 /* 1224 * Given a desination snapshot and a TXG, calculate the approximate size of a 1225 * send stream sent from that TXG. from_txg may be zero, indicating that the 1226 * whole snapshot will be sent. 1227 */ 1228 int 1229 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1230 boolean_t stream_compressed, uint64_t *sizep) 1231 { 1232 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1233 int err; 1234 struct calculate_send_arg size = { 0 }; 1235 1236 ASSERT(dsl_pool_config_held(dp)); 1237 1238 /* tosnap must be a snapshot */ 1239 if (!ds->ds_is_snapshot) 1240 return (SET_ERROR(EINVAL)); 1241 1242 /* verify that from_txg is before the provided snapshot was taken */ 1243 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1244 return (SET_ERROR(EXDEV)); 1245 } 1246 1247 /* 1248 * traverse the blocks of the snapshot with birth times after 1249 * from_txg, summing their uncompressed size 1250 */ 1251 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1252 dmu_calculate_send_traversal, &size); 1253 if (err) 1254 return (err); 1255 1256 err = dmu_adjust_send_estimate_for_indirects(ds, size.uncompressed, 1257 size.compressed, stream_compressed, sizep); 1258 return (err); 1259 } 1260 1261 typedef struct dmu_recv_begin_arg { 1262 const char *drba_origin; 1263 dmu_recv_cookie_t *drba_cookie; 1264 cred_t *drba_cred; 1265 uint64_t drba_snapobj; 1266 } dmu_recv_begin_arg_t; 1267 1268 static int 1269 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1270 uint64_t fromguid) 1271 { 1272 uint64_t val; 1273 int error; 1274 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1275 1276 /* temporary clone name must not exist */ 1277 error = zap_lookup(dp->dp_meta_objset, 1278 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1279 8, 1, &val); 1280 if (error != ENOENT) 1281 return (error == 0 ? EBUSY : error); 1282 1283 /* new snapshot name must not exist */ 1284 error = zap_lookup(dp->dp_meta_objset, 1285 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1286 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1287 if (error != ENOENT) 1288 return (error == 0 ? EEXIST : error); 1289 1290 /* 1291 * Check snapshot limit before receiving. We'll recheck again at the 1292 * end, but might as well abort before receiving if we're already over 1293 * the limit. 1294 * 1295 * Note that we do not check the file system limit with 1296 * dsl_dir_fscount_check because the temporary %clones don't count 1297 * against that limit. 1298 */ 1299 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1300 NULL, drba->drba_cred); 1301 if (error != 0) 1302 return (error); 1303 1304 if (fromguid != 0) { 1305 dsl_dataset_t *snap; 1306 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1307 1308 /* Find snapshot in this dir that matches fromguid. */ 1309 while (obj != 0) { 1310 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1311 &snap); 1312 if (error != 0) 1313 return (SET_ERROR(ENODEV)); 1314 if (snap->ds_dir != ds->ds_dir) { 1315 dsl_dataset_rele(snap, FTAG); 1316 return (SET_ERROR(ENODEV)); 1317 } 1318 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1319 break; 1320 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1321 dsl_dataset_rele(snap, FTAG); 1322 } 1323 if (obj == 0) 1324 return (SET_ERROR(ENODEV)); 1325 1326 if (drba->drba_cookie->drc_force) { 1327 drba->drba_snapobj = obj; 1328 } else { 1329 /* 1330 * If we are not forcing, there must be no 1331 * changes since fromsnap. 1332 */ 1333 if (dsl_dataset_modified_since_snap(ds, snap)) { 1334 dsl_dataset_rele(snap, FTAG); 1335 return (SET_ERROR(ETXTBSY)); 1336 } 1337 drba->drba_snapobj = ds->ds_prev->ds_object; 1338 } 1339 1340 dsl_dataset_rele(snap, FTAG); 1341 } else { 1342 /* if full, then must be forced */ 1343 if (!drba->drba_cookie->drc_force) 1344 return (SET_ERROR(EEXIST)); 1345 /* start from $ORIGIN@$ORIGIN, if supported */ 1346 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1347 dp->dp_origin_snap->ds_object : 0; 1348 } 1349 1350 return (0); 1351 1352 } 1353 1354 static int 1355 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1356 { 1357 dmu_recv_begin_arg_t *drba = arg; 1358 dsl_pool_t *dp = dmu_tx_pool(tx); 1359 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1360 uint64_t fromguid = drrb->drr_fromguid; 1361 int flags = drrb->drr_flags; 1362 int error; 1363 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1364 dsl_dataset_t *ds; 1365 const char *tofs = drba->drba_cookie->drc_tofs; 1366 1367 /* already checked */ 1368 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1369 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 1370 1371 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1372 DMU_COMPOUNDSTREAM || 1373 drrb->drr_type >= DMU_OST_NUMTYPES || 1374 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1375 return (SET_ERROR(EINVAL)); 1376 1377 /* Verify pool version supports SA if SA_SPILL feature set */ 1378 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1379 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1380 return (SET_ERROR(ENOTSUP)); 1381 1382 if (drba->drba_cookie->drc_resumable && 1383 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 1384 return (SET_ERROR(ENOTSUP)); 1385 1386 /* 1387 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1388 * record to a plain WRITE record, so the pool must have the 1389 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1390 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1391 */ 1392 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1393 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1394 return (SET_ERROR(ENOTSUP)); 1395 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 1396 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1397 return (SET_ERROR(ENOTSUP)); 1398 1399 /* 1400 * The receiving code doesn't know how to translate large blocks 1401 * to smaller ones, so the pool must have the LARGE_BLOCKS 1402 * feature enabled if the stream has LARGE_BLOCKS. Same with 1403 * large dnodes. 1404 */ 1405 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1406 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1407 return (SET_ERROR(ENOTSUP)); 1408 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 1409 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) 1410 return (SET_ERROR(ENOTSUP)); 1411 1412 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1413 if (error == 0) { 1414 /* target fs already exists; recv into temp clone */ 1415 1416 /* Can't recv a clone into an existing fs */ 1417 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 1418 dsl_dataset_rele(ds, FTAG); 1419 return (SET_ERROR(EINVAL)); 1420 } 1421 1422 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1423 dsl_dataset_rele(ds, FTAG); 1424 } else if (error == ENOENT) { 1425 /* target fs does not exist; must be a full backup or clone */ 1426 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1427 1428 /* 1429 * If it's a non-clone incremental, we are missing the 1430 * target fs, so fail the recv. 1431 */ 1432 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1433 drba->drba_origin)) 1434 return (SET_ERROR(ENOENT)); 1435 1436 /* 1437 * If we're receiving a full send as a clone, and it doesn't 1438 * contain all the necessary free records and freeobject 1439 * records, reject it. 1440 */ 1441 if (fromguid == 0 && drba->drba_origin && 1442 !(flags & DRR_FLAG_FREERECORDS)) 1443 return (SET_ERROR(EINVAL)); 1444 1445 /* Open the parent of tofs */ 1446 ASSERT3U(strlen(tofs), <, sizeof (buf)); 1447 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1448 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1449 if (error != 0) 1450 return (error); 1451 1452 /* 1453 * Check filesystem and snapshot limits before receiving. We'll 1454 * recheck snapshot limits again at the end (we create the 1455 * filesystems and increment those counts during begin_sync). 1456 */ 1457 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1458 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1459 if (error != 0) { 1460 dsl_dataset_rele(ds, FTAG); 1461 return (error); 1462 } 1463 1464 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1465 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1466 if (error != 0) { 1467 dsl_dataset_rele(ds, FTAG); 1468 return (error); 1469 } 1470 1471 if (drba->drba_origin != NULL) { 1472 dsl_dataset_t *origin; 1473 error = dsl_dataset_hold(dp, drba->drba_origin, 1474 FTAG, &origin); 1475 if (error != 0) { 1476 dsl_dataset_rele(ds, FTAG); 1477 return (error); 1478 } 1479 if (!origin->ds_is_snapshot) { 1480 dsl_dataset_rele(origin, FTAG); 1481 dsl_dataset_rele(ds, FTAG); 1482 return (SET_ERROR(EINVAL)); 1483 } 1484 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 1485 fromguid != 0) { 1486 dsl_dataset_rele(origin, FTAG); 1487 dsl_dataset_rele(ds, FTAG); 1488 return (SET_ERROR(ENODEV)); 1489 } 1490 dsl_dataset_rele(origin, FTAG); 1491 } 1492 dsl_dataset_rele(ds, FTAG); 1493 error = 0; 1494 } 1495 return (error); 1496 } 1497 1498 static void 1499 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1500 { 1501 dmu_recv_begin_arg_t *drba = arg; 1502 dsl_pool_t *dp = dmu_tx_pool(tx); 1503 objset_t *mos = dp->dp_meta_objset; 1504 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1505 const char *tofs = drba->drba_cookie->drc_tofs; 1506 dsl_dataset_t *ds, *newds; 1507 uint64_t dsobj; 1508 int error; 1509 uint64_t crflags = 0; 1510 1511 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 1512 crflags |= DS_FLAG_CI_DATASET; 1513 1514 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1515 if (error == 0) { 1516 /* create temporary clone */ 1517 dsl_dataset_t *snap = NULL; 1518 if (drba->drba_snapobj != 0) { 1519 VERIFY0(dsl_dataset_hold_obj(dp, 1520 drba->drba_snapobj, FTAG, &snap)); 1521 } 1522 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1523 snap, crflags, drba->drba_cred, tx); 1524 if (drba->drba_snapobj != 0) 1525 dsl_dataset_rele(snap, FTAG); 1526 dsl_dataset_rele(ds, FTAG); 1527 } else { 1528 dsl_dir_t *dd; 1529 const char *tail; 1530 dsl_dataset_t *origin = NULL; 1531 1532 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1533 1534 if (drba->drba_origin != NULL) { 1535 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1536 FTAG, &origin)); 1537 } 1538 1539 /* Create new dataset. */ 1540 dsobj = dsl_dataset_create_sync(dd, 1541 strrchr(tofs, '/') + 1, 1542 origin, crflags, drba->drba_cred, tx); 1543 if (origin != NULL) 1544 dsl_dataset_rele(origin, FTAG); 1545 dsl_dir_rele(dd, FTAG); 1546 drba->drba_cookie->drc_newfs = B_TRUE; 1547 } 1548 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1549 1550 if (drba->drba_cookie->drc_resumable) { 1551 dsl_dataset_zapify(newds, tx); 1552 if (drrb->drr_fromguid != 0) { 1553 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 1554 8, 1, &drrb->drr_fromguid, tx)); 1555 } 1556 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 1557 8, 1, &drrb->drr_toguid, tx)); 1558 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1559 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 1560 uint64_t one = 1; 1561 uint64_t zero = 0; 1562 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 1563 8, 1, &one, tx)); 1564 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 1565 8, 1, &zero, tx)); 1566 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 1567 8, 1, &zero, tx)); 1568 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1569 DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 1570 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 1571 8, 1, &one, tx)); 1572 } 1573 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1574 DMU_BACKUP_FEATURE_EMBED_DATA) { 1575 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 1576 8, 1, &one, tx)); 1577 } 1578 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1579 DMU_BACKUP_FEATURE_COMPRESSED) { 1580 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 1581 8, 1, &one, tx)); 1582 } 1583 } 1584 1585 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1586 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1587 1588 /* 1589 * If we actually created a non-clone, we need to create the 1590 * objset in our new dataset. 1591 */ 1592 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 1593 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1594 (void) dmu_objset_create_impl(dp->dp_spa, 1595 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1596 } 1597 rrw_exit(&newds->ds_bp_rwlock, FTAG); 1598 1599 drba->drba_cookie->drc_ds = newds; 1600 1601 spa_history_log_internal_ds(newds, "receive", tx, ""); 1602 } 1603 1604 static int 1605 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1606 { 1607 dmu_recv_begin_arg_t *drba = arg; 1608 dsl_pool_t *dp = dmu_tx_pool(tx); 1609 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1610 int error; 1611 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1612 dsl_dataset_t *ds; 1613 const char *tofs = drba->drba_cookie->drc_tofs; 1614 1615 /* 6 extra bytes for /%recv */ 1616 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1617 1618 /* already checked */ 1619 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1620 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 1621 1622 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1623 DMU_COMPOUNDSTREAM || 1624 drrb->drr_type >= DMU_OST_NUMTYPES) 1625 return (SET_ERROR(EINVAL)); 1626 1627 /* Verify pool version supports SA if SA_SPILL feature set */ 1628 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1629 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1630 return (SET_ERROR(ENOTSUP)); 1631 1632 /* 1633 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1634 * record to a plain WRITE record, so the pool must have the 1635 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1636 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1637 */ 1638 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1639 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1640 return (SET_ERROR(ENOTSUP)); 1641 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 1642 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1643 return (SET_ERROR(ENOTSUP)); 1644 1645 /* 1646 * The receiving code doesn't know how to translate large blocks 1647 * to smaller ones, so the pool must have the LARGE_BLOCKS 1648 * feature enabled if the stream has LARGE_BLOCKS. Same with 1649 * large dnodes. 1650 */ 1651 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1652 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1653 return (SET_ERROR(ENOTSUP)); 1654 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 1655 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) 1656 return (SET_ERROR(ENOTSUP)); 1657 1658 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1659 tofs, recv_clone_name); 1660 1661 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1662 /* %recv does not exist; continue in tofs */ 1663 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1664 if (error != 0) 1665 return (error); 1666 } 1667 1668 /* check that ds is marked inconsistent */ 1669 if (!DS_IS_INCONSISTENT(ds)) { 1670 dsl_dataset_rele(ds, FTAG); 1671 return (SET_ERROR(EINVAL)); 1672 } 1673 1674 /* check that there is resuming data, and that the toguid matches */ 1675 if (!dsl_dataset_is_zapified(ds)) { 1676 dsl_dataset_rele(ds, FTAG); 1677 return (SET_ERROR(EINVAL)); 1678 } 1679 uint64_t val; 1680 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1681 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1682 if (error != 0 || drrb->drr_toguid != val) { 1683 dsl_dataset_rele(ds, FTAG); 1684 return (SET_ERROR(EINVAL)); 1685 } 1686 1687 /* 1688 * Check if the receive is still running. If so, it will be owned. 1689 * Note that nothing else can own the dataset (e.g. after the receive 1690 * fails) because it will be marked inconsistent. 1691 */ 1692 if (dsl_dataset_has_owner(ds)) { 1693 dsl_dataset_rele(ds, FTAG); 1694 return (SET_ERROR(EBUSY)); 1695 } 1696 1697 /* There should not be any snapshots of this fs yet. */ 1698 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1699 dsl_dataset_rele(ds, FTAG); 1700 return (SET_ERROR(EINVAL)); 1701 } 1702 1703 /* 1704 * Note: resume point will be checked when we process the first WRITE 1705 * record. 1706 */ 1707 1708 /* check that the origin matches */ 1709 val = 0; 1710 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1711 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1712 if (drrb->drr_fromguid != val) { 1713 dsl_dataset_rele(ds, FTAG); 1714 return (SET_ERROR(EINVAL)); 1715 } 1716 1717 dsl_dataset_rele(ds, FTAG); 1718 return (0); 1719 } 1720 1721 static void 1722 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1723 { 1724 dmu_recv_begin_arg_t *drba = arg; 1725 dsl_pool_t *dp = dmu_tx_pool(tx); 1726 const char *tofs = drba->drba_cookie->drc_tofs; 1727 dsl_dataset_t *ds; 1728 uint64_t dsobj; 1729 /* 6 extra bytes for /%recv */ 1730 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1731 1732 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1733 tofs, recv_clone_name); 1734 1735 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1736 /* %recv does not exist; continue in tofs */ 1737 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); 1738 drba->drba_cookie->drc_newfs = B_TRUE; 1739 } 1740 1741 /* clear the inconsistent flag so that we can own it */ 1742 ASSERT(DS_IS_INCONSISTENT(ds)); 1743 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1744 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 1745 dsobj = ds->ds_object; 1746 dsl_dataset_rele(ds, FTAG); 1747 1748 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); 1749 1750 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1751 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 1752 1753 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1754 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); 1755 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1756 1757 drba->drba_cookie->drc_ds = ds; 1758 1759 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 1760 } 1761 1762 /* 1763 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1764 * succeeds; otherwise we will leak the holds on the datasets. 1765 */ 1766 int 1767 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1768 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 1769 { 1770 dmu_recv_begin_arg_t drba = { 0 }; 1771 1772 bzero(drc, sizeof (dmu_recv_cookie_t)); 1773 drc->drc_drr_begin = drr_begin; 1774 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1775 drc->drc_tosnap = tosnap; 1776 drc->drc_tofs = tofs; 1777 drc->drc_force = force; 1778 drc->drc_resumable = resumable; 1779 drc->drc_cred = CRED(); 1780 drc->drc_clone = (origin != NULL); 1781 1782 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1783 drc->drc_byteswap = B_TRUE; 1784 (void) fletcher_4_incremental_byteswap(drr_begin, 1785 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1786 byteswap_record(drr_begin); 1787 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1788 (void) fletcher_4_incremental_native(drr_begin, 1789 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1790 } else { 1791 return (SET_ERROR(EINVAL)); 1792 } 1793 1794 drba.drba_origin = origin; 1795 drba.drba_cookie = drc; 1796 drba.drba_cred = CRED(); 1797 1798 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1799 DMU_BACKUP_FEATURE_RESUMING) { 1800 return (dsl_sync_task(tofs, 1801 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1802 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1803 } else { 1804 return (dsl_sync_task(tofs, 1805 dmu_recv_begin_check, dmu_recv_begin_sync, 1806 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1807 } 1808 } 1809 1810 struct receive_record_arg { 1811 dmu_replay_record_t header; 1812 void *payload; /* Pointer to a buffer containing the payload */ 1813 /* 1814 * If the record is a write, pointer to the arc_buf_t containing the 1815 * payload. 1816 */ 1817 arc_buf_t *write_buf; 1818 int payload_size; 1819 uint64_t bytes_read; /* bytes read from stream when record created */ 1820 boolean_t eos_marker; /* Marks the end of the stream */ 1821 bqueue_node_t node; 1822 }; 1823 1824 struct receive_writer_arg { 1825 objset_t *os; 1826 boolean_t byteswap; 1827 bqueue_t q; 1828 1829 /* 1830 * These three args are used to signal to the main thread that we're 1831 * done. 1832 */ 1833 kmutex_t mutex; 1834 kcondvar_t cv; 1835 boolean_t done; 1836 1837 int err; 1838 /* A map from guid to dataset to help handle dedup'd streams. */ 1839 avl_tree_t *guid_to_ds_map; 1840 boolean_t resumable; 1841 uint64_t last_object; 1842 uint64_t last_offset; 1843 uint64_t max_object; /* highest object ID referenced in stream */ 1844 uint64_t bytes_read; /* bytes read when current record created */ 1845 }; 1846 1847 struct objlist { 1848 list_t list; /* List of struct receive_objnode. */ 1849 /* 1850 * Last object looked up. Used to assert that objects are being looked 1851 * up in ascending order. 1852 */ 1853 uint64_t last_lookup; 1854 }; 1855 1856 struct receive_objnode { 1857 list_node_t node; 1858 uint64_t object; 1859 }; 1860 1861 struct receive_arg { 1862 objset_t *os; 1863 vnode_t *vp; /* The vnode to read the stream from */ 1864 uint64_t voff; /* The current offset in the stream */ 1865 uint64_t bytes_read; 1866 /* 1867 * A record that has had its payload read in, but hasn't yet been handed 1868 * off to the worker thread. 1869 */ 1870 struct receive_record_arg *rrd; 1871 /* A record that has had its header read in, but not its payload. */ 1872 struct receive_record_arg *next_rrd; 1873 zio_cksum_t cksum; 1874 zio_cksum_t prev_cksum; 1875 int err; 1876 boolean_t byteswap; 1877 /* Sorted list of objects not to issue prefetches for. */ 1878 struct objlist ignore_objlist; 1879 }; 1880 1881 typedef struct guid_map_entry { 1882 uint64_t guid; 1883 dsl_dataset_t *gme_ds; 1884 avl_node_t avlnode; 1885 } guid_map_entry_t; 1886 1887 static int 1888 guid_compare(const void *arg1, const void *arg2) 1889 { 1890 const guid_map_entry_t *gmep1 = arg1; 1891 const guid_map_entry_t *gmep2 = arg2; 1892 1893 if (gmep1->guid < gmep2->guid) 1894 return (-1); 1895 else if (gmep1->guid > gmep2->guid) 1896 return (1); 1897 return (0); 1898 } 1899 1900 static void 1901 free_guid_map_onexit(void *arg) 1902 { 1903 avl_tree_t *ca = arg; 1904 void *cookie = NULL; 1905 guid_map_entry_t *gmep; 1906 1907 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1908 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1909 dsl_dataset_rele(gmep->gme_ds, gmep); 1910 kmem_free(gmep, sizeof (guid_map_entry_t)); 1911 } 1912 avl_destroy(ca); 1913 kmem_free(ca, sizeof (avl_tree_t)); 1914 } 1915 1916 static int 1917 receive_read(struct receive_arg *ra, int len, void *buf) 1918 { 1919 int done = 0; 1920 1921 /* 1922 * The code doesn't rely on this (lengths being multiples of 8). See 1923 * comment in dump_bytes. 1924 */ 1925 ASSERT0(len % 8); 1926 1927 while (done < len) { 1928 ssize_t resid; 1929 1930 ra->err = vn_rdwr(UIO_READ, ra->vp, 1931 (char *)buf + done, len - done, 1932 ra->voff, UIO_SYSSPACE, FAPPEND, 1933 RLIM64_INFINITY, CRED(), &resid); 1934 1935 if (resid == len - done) { 1936 /* 1937 * Note: ECKSUM indicates that the receive 1938 * was interrupted and can potentially be resumed. 1939 */ 1940 ra->err = SET_ERROR(ECKSUM); 1941 } 1942 ra->voff += len - done - resid; 1943 done = len - resid; 1944 if (ra->err != 0) 1945 return (ra->err); 1946 } 1947 1948 ra->bytes_read += len; 1949 1950 ASSERT3U(done, ==, len); 1951 return (0); 1952 } 1953 1954 static void 1955 byteswap_record(dmu_replay_record_t *drr) 1956 { 1957 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1958 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1959 drr->drr_type = BSWAP_32(drr->drr_type); 1960 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1961 1962 switch (drr->drr_type) { 1963 case DRR_BEGIN: 1964 DO64(drr_begin.drr_magic); 1965 DO64(drr_begin.drr_versioninfo); 1966 DO64(drr_begin.drr_creation_time); 1967 DO32(drr_begin.drr_type); 1968 DO32(drr_begin.drr_flags); 1969 DO64(drr_begin.drr_toguid); 1970 DO64(drr_begin.drr_fromguid); 1971 break; 1972 case DRR_OBJECT: 1973 DO64(drr_object.drr_object); 1974 DO32(drr_object.drr_type); 1975 DO32(drr_object.drr_bonustype); 1976 DO32(drr_object.drr_blksz); 1977 DO32(drr_object.drr_bonuslen); 1978 DO64(drr_object.drr_toguid); 1979 break; 1980 case DRR_FREEOBJECTS: 1981 DO64(drr_freeobjects.drr_firstobj); 1982 DO64(drr_freeobjects.drr_numobjs); 1983 DO64(drr_freeobjects.drr_toguid); 1984 break; 1985 case DRR_WRITE: 1986 DO64(drr_write.drr_object); 1987 DO32(drr_write.drr_type); 1988 DO64(drr_write.drr_offset); 1989 DO64(drr_write.drr_logical_size); 1990 DO64(drr_write.drr_toguid); 1991 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1992 DO64(drr_write.drr_key.ddk_prop); 1993 DO64(drr_write.drr_compressed_size); 1994 break; 1995 case DRR_WRITE_BYREF: 1996 DO64(drr_write_byref.drr_object); 1997 DO64(drr_write_byref.drr_offset); 1998 DO64(drr_write_byref.drr_length); 1999 DO64(drr_write_byref.drr_toguid); 2000 DO64(drr_write_byref.drr_refguid); 2001 DO64(drr_write_byref.drr_refobject); 2002 DO64(drr_write_byref.drr_refoffset); 2003 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 2004 drr_key.ddk_cksum); 2005 DO64(drr_write_byref.drr_key.ddk_prop); 2006 break; 2007 case DRR_WRITE_EMBEDDED: 2008 DO64(drr_write_embedded.drr_object); 2009 DO64(drr_write_embedded.drr_offset); 2010 DO64(drr_write_embedded.drr_length); 2011 DO64(drr_write_embedded.drr_toguid); 2012 DO32(drr_write_embedded.drr_lsize); 2013 DO32(drr_write_embedded.drr_psize); 2014 break; 2015 case DRR_FREE: 2016 DO64(drr_free.drr_object); 2017 DO64(drr_free.drr_offset); 2018 DO64(drr_free.drr_length); 2019 DO64(drr_free.drr_toguid); 2020 break; 2021 case DRR_SPILL: 2022 DO64(drr_spill.drr_object); 2023 DO64(drr_spill.drr_length); 2024 DO64(drr_spill.drr_toguid); 2025 break; 2026 case DRR_END: 2027 DO64(drr_end.drr_toguid); 2028 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 2029 break; 2030 } 2031 2032 if (drr->drr_type != DRR_BEGIN) { 2033 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 2034 } 2035 2036 #undef DO64 2037 #undef DO32 2038 } 2039 2040 static inline uint8_t 2041 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 2042 { 2043 if (bonus_type == DMU_OT_SA) { 2044 return (1); 2045 } else { 2046 return (1 + 2047 ((DN_OLD_MAX_BONUSLEN - 2048 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 2049 } 2050 } 2051 2052 static void 2053 save_resume_state(struct receive_writer_arg *rwa, 2054 uint64_t object, uint64_t offset, dmu_tx_t *tx) 2055 { 2056 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 2057 2058 if (!rwa->resumable) 2059 return; 2060 2061 /* 2062 * We use ds_resume_bytes[] != 0 to indicate that we need to 2063 * update this on disk, so it must not be 0. 2064 */ 2065 ASSERT(rwa->bytes_read != 0); 2066 2067 /* 2068 * We only resume from write records, which have a valid 2069 * (non-meta-dnode) object number. 2070 */ 2071 ASSERT(object != 0); 2072 2073 /* 2074 * For resuming to work correctly, we must receive records in order, 2075 * sorted by object,offset. This is checked by the callers, but 2076 * assert it here for good measure. 2077 */ 2078 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 2079 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 2080 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 2081 ASSERT3U(rwa->bytes_read, >=, 2082 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 2083 2084 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 2085 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 2086 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 2087 } 2088 2089 static int 2090 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 2091 void *data) 2092 { 2093 dmu_object_info_t doi; 2094 dmu_tx_t *tx; 2095 uint64_t object; 2096 int err; 2097 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 2098 drro->drr_dn_slots : DNODE_MIN_SLOTS; 2099 2100 if (drro->drr_type == DMU_OT_NONE || 2101 !DMU_OT_IS_VALID(drro->drr_type) || 2102 !DMU_OT_IS_VALID(drro->drr_bonustype) || 2103 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 2104 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 2105 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 2106 drro->drr_blksz < SPA_MINBLOCKSIZE || 2107 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 2108 drro->drr_bonuslen > 2109 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 2110 dn_slots > 2111 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 2112 return (SET_ERROR(EINVAL)); 2113 } 2114 2115 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 2116 2117 if (err != 0 && err != ENOENT && err != EEXIST) 2118 return (SET_ERROR(EINVAL)); 2119 2120 if (drro->drr_object > rwa->max_object) 2121 rwa->max_object = drro->drr_object; 2122 2123 /* 2124 * If we are losing blkptrs or changing the block size this must 2125 * be a new file instance. We must clear out the previous file 2126 * contents before we can change this type of metadata in the dnode. 2127 */ 2128 if (err == 0) { 2129 int nblkptr; 2130 2131 object = drro->drr_object; 2132 2133 nblkptr = deduce_nblkptr(drro->drr_bonustype, 2134 drro->drr_bonuslen); 2135 2136 if (drro->drr_blksz != doi.doi_data_block_size || 2137 nblkptr < doi.doi_nblkptr || 2138 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) { 2139 err = dmu_free_long_range(rwa->os, drro->drr_object, 2140 0, DMU_OBJECT_END); 2141 if (err != 0) 2142 return (SET_ERROR(EINVAL)); 2143 } 2144 } else if (err == EEXIST) { 2145 /* 2146 * The object requested is currently an interior slot of a 2147 * multi-slot dnode. This will be resolved when the next txg 2148 * is synced out, since the send stream will have told us 2149 * to free this slot when we freed the associated dnode 2150 * earlier in the stream. 2151 */ 2152 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 2153 object = drro->drr_object; 2154 } else { 2155 /* object is free and we are about to allocate a new one */ 2156 object = DMU_NEW_OBJECT; 2157 } 2158 2159 /* 2160 * If this is a multi-slot dnode there is a chance that this 2161 * object will expand into a slot that is already used by 2162 * another object from the previous snapshot. We must free 2163 * these objects before we attempt to allocate the new dnode. 2164 */ 2165 if (dn_slots > 1) { 2166 boolean_t need_sync = B_FALSE; 2167 2168 for (uint64_t slot = drro->drr_object + 1; 2169 slot < drro->drr_object + dn_slots; 2170 slot++) { 2171 dmu_object_info_t slot_doi; 2172 2173 err = dmu_object_info(rwa->os, slot, &slot_doi); 2174 if (err == ENOENT || err == EEXIST) 2175 continue; 2176 else if (err != 0) 2177 return (err); 2178 2179 err = dmu_free_long_object(rwa->os, slot); 2180 2181 if (err != 0) 2182 return (err); 2183 2184 need_sync = B_TRUE; 2185 } 2186 2187 if (need_sync) 2188 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 2189 } 2190 2191 tx = dmu_tx_create(rwa->os); 2192 dmu_tx_hold_bonus(tx, object); 2193 err = dmu_tx_assign(tx, TXG_WAIT); 2194 if (err != 0) { 2195 dmu_tx_abort(tx); 2196 return (err); 2197 } 2198 2199 if (object == DMU_NEW_OBJECT) { 2200 /* currently free, want to be allocated */ 2201 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 2202 drro->drr_type, drro->drr_blksz, 2203 drro->drr_bonustype, drro->drr_bonuslen, 2204 dn_slots << DNODE_SHIFT, tx); 2205 } else if (drro->drr_type != doi.doi_type || 2206 drro->drr_blksz != doi.doi_data_block_size || 2207 drro->drr_bonustype != doi.doi_bonus_type || 2208 drro->drr_bonuslen != doi.doi_bonus_size || 2209 drro->drr_dn_slots != (doi.doi_dnodesize >> DNODE_SHIFT)) { 2210 /* currently allocated, but with different properties */ 2211 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 2212 drro->drr_type, drro->drr_blksz, 2213 drro->drr_bonustype, drro->drr_bonuslen, 2214 drro->drr_dn_slots << DNODE_SHIFT, tx); 2215 } 2216 if (err != 0) { 2217 dmu_tx_commit(tx); 2218 return (SET_ERROR(EINVAL)); 2219 } 2220 2221 dmu_object_set_checksum(rwa->os, drro->drr_object, 2222 drro->drr_checksumtype, tx); 2223 dmu_object_set_compress(rwa->os, drro->drr_object, 2224 drro->drr_compress, tx); 2225 2226 if (data != NULL) { 2227 dmu_buf_t *db; 2228 2229 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 2230 dmu_buf_will_dirty(db, tx); 2231 2232 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2233 bcopy(data, db->db_data, drro->drr_bonuslen); 2234 if (rwa->byteswap) { 2235 dmu_object_byteswap_t byteswap = 2236 DMU_OT_BYTESWAP(drro->drr_bonustype); 2237 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2238 drro->drr_bonuslen); 2239 } 2240 dmu_buf_rele(db, FTAG); 2241 } 2242 dmu_tx_commit(tx); 2243 2244 return (0); 2245 } 2246 2247 /* ARGSUSED */ 2248 static int 2249 receive_freeobjects(struct receive_writer_arg *rwa, 2250 struct drr_freeobjects *drrfo) 2251 { 2252 uint64_t obj; 2253 int next_err = 0; 2254 2255 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2256 return (SET_ERROR(EINVAL)); 2257 2258 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 2259 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 2260 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2261 int err; 2262 2263 err = dmu_object_info(rwa->os, obj, NULL); 2264 if (err == ENOENT) 2265 continue; 2266 else if (err != 0) 2267 return (err); 2268 2269 err = dmu_free_long_object(rwa->os, obj); 2270 if (err != 0) 2271 return (err); 2272 2273 if (obj > rwa->max_object) 2274 rwa->max_object = obj; 2275 } 2276 if (next_err != ESRCH) 2277 return (next_err); 2278 return (0); 2279 } 2280 2281 static int 2282 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 2283 arc_buf_t *abuf) 2284 { 2285 dmu_tx_t *tx; 2286 int err; 2287 2288 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 2289 !DMU_OT_IS_VALID(drrw->drr_type)) 2290 return (SET_ERROR(EINVAL)); 2291 2292 /* 2293 * For resuming to work, records must be in increasing order 2294 * by (object, offset). 2295 */ 2296 if (drrw->drr_object < rwa->last_object || 2297 (drrw->drr_object == rwa->last_object && 2298 drrw->drr_offset < rwa->last_offset)) { 2299 return (SET_ERROR(EINVAL)); 2300 } 2301 rwa->last_object = drrw->drr_object; 2302 rwa->last_offset = drrw->drr_offset; 2303 2304 if (rwa->last_object > rwa->max_object) 2305 rwa->max_object = rwa->last_object; 2306 2307 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 2308 return (SET_ERROR(EINVAL)); 2309 2310 tx = dmu_tx_create(rwa->os); 2311 2312 dmu_tx_hold_write(tx, drrw->drr_object, 2313 drrw->drr_offset, drrw->drr_logical_size); 2314 err = dmu_tx_assign(tx, TXG_WAIT); 2315 if (err != 0) { 2316 dmu_tx_abort(tx); 2317 return (err); 2318 } 2319 if (rwa->byteswap) { 2320 dmu_object_byteswap_t byteswap = 2321 DMU_OT_BYTESWAP(drrw->drr_type); 2322 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2323 DRR_WRITE_PAYLOAD_SIZE(drrw)); 2324 } 2325 2326 /* use the bonus buf to look up the dnode in dmu_assign_arcbuf */ 2327 dmu_buf_t *bonus; 2328 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 2329 return (SET_ERROR(EINVAL)); 2330 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 2331 2332 /* 2333 * Note: If the receive fails, we want the resume stream to start 2334 * with the same record that we last successfully received (as opposed 2335 * to the next record), so that we can verify that we are 2336 * resuming from the correct location. 2337 */ 2338 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2339 dmu_tx_commit(tx); 2340 dmu_buf_rele(bonus, FTAG); 2341 2342 return (0); 2343 } 2344 2345 /* 2346 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 2347 * streams to refer to a copy of the data that is already on the 2348 * system because it came in earlier in the stream. This function 2349 * finds the earlier copy of the data, and uses that copy instead of 2350 * data from the stream to fulfill this write. 2351 */ 2352 static int 2353 receive_write_byref(struct receive_writer_arg *rwa, 2354 struct drr_write_byref *drrwbr) 2355 { 2356 dmu_tx_t *tx; 2357 int err; 2358 guid_map_entry_t gmesrch; 2359 guid_map_entry_t *gmep; 2360 avl_index_t where; 2361 objset_t *ref_os = NULL; 2362 dmu_buf_t *dbp; 2363 2364 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 2365 return (SET_ERROR(EINVAL)); 2366 2367 /* 2368 * If the GUID of the referenced dataset is different from the 2369 * GUID of the target dataset, find the referenced dataset. 2370 */ 2371 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 2372 gmesrch.guid = drrwbr->drr_refguid; 2373 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 2374 &where)) == NULL) { 2375 return (SET_ERROR(EINVAL)); 2376 } 2377 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 2378 return (SET_ERROR(EINVAL)); 2379 } else { 2380 ref_os = rwa->os; 2381 } 2382 2383 if (drrwbr->drr_object > rwa->max_object) 2384 rwa->max_object = drrwbr->drr_object; 2385 2386 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 2387 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 2388 if (err != 0) 2389 return (err); 2390 2391 tx = dmu_tx_create(rwa->os); 2392 2393 dmu_tx_hold_write(tx, drrwbr->drr_object, 2394 drrwbr->drr_offset, drrwbr->drr_length); 2395 err = dmu_tx_assign(tx, TXG_WAIT); 2396 if (err != 0) { 2397 dmu_tx_abort(tx); 2398 return (err); 2399 } 2400 dmu_write(rwa->os, drrwbr->drr_object, 2401 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 2402 dmu_buf_rele(dbp, FTAG); 2403 2404 /* See comment in restore_write. */ 2405 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 2406 dmu_tx_commit(tx); 2407 return (0); 2408 } 2409 2410 static int 2411 receive_write_embedded(struct receive_writer_arg *rwa, 2412 struct drr_write_embedded *drrwe, void *data) 2413 { 2414 dmu_tx_t *tx; 2415 int err; 2416 2417 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2418 return (EINVAL); 2419 2420 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2421 return (EINVAL); 2422 2423 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2424 return (EINVAL); 2425 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2426 return (EINVAL); 2427 2428 if (drrwe->drr_object > rwa->max_object) 2429 rwa->max_object = drrwe->drr_object; 2430 2431 tx = dmu_tx_create(rwa->os); 2432 2433 dmu_tx_hold_write(tx, drrwe->drr_object, 2434 drrwe->drr_offset, drrwe->drr_length); 2435 err = dmu_tx_assign(tx, TXG_WAIT); 2436 if (err != 0) { 2437 dmu_tx_abort(tx); 2438 return (err); 2439 } 2440 2441 dmu_write_embedded(rwa->os, drrwe->drr_object, 2442 drrwe->drr_offset, data, drrwe->drr_etype, 2443 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2444 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2445 2446 /* See comment in restore_write. */ 2447 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2448 dmu_tx_commit(tx); 2449 return (0); 2450 } 2451 2452 static int 2453 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2454 void *data) 2455 { 2456 dmu_tx_t *tx; 2457 dmu_buf_t *db, *db_spill; 2458 int err; 2459 2460 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2461 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2462 return (SET_ERROR(EINVAL)); 2463 2464 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2465 return (SET_ERROR(EINVAL)); 2466 2467 if (drrs->drr_object > rwa->max_object) 2468 rwa->max_object = drrs->drr_object; 2469 2470 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2471 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 2472 dmu_buf_rele(db, FTAG); 2473 return (err); 2474 } 2475 2476 tx = dmu_tx_create(rwa->os); 2477 2478 dmu_tx_hold_spill(tx, db->db_object); 2479 2480 err = dmu_tx_assign(tx, TXG_WAIT); 2481 if (err != 0) { 2482 dmu_buf_rele(db, FTAG); 2483 dmu_buf_rele(db_spill, FTAG); 2484 dmu_tx_abort(tx); 2485 return (err); 2486 } 2487 dmu_buf_will_dirty(db_spill, tx); 2488 2489 if (db_spill->db_size < drrs->drr_length) 2490 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2491 drrs->drr_length, tx)); 2492 bcopy(data, db_spill->db_data, drrs->drr_length); 2493 2494 dmu_buf_rele(db, FTAG); 2495 dmu_buf_rele(db_spill, FTAG); 2496 2497 dmu_tx_commit(tx); 2498 return (0); 2499 } 2500 2501 /* ARGSUSED */ 2502 static int 2503 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2504 { 2505 int err; 2506 2507 if (drrf->drr_length != -1ULL && 2508 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2509 return (SET_ERROR(EINVAL)); 2510 2511 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2512 return (SET_ERROR(EINVAL)); 2513 2514 if (drrf->drr_object > rwa->max_object) 2515 rwa->max_object = drrf->drr_object; 2516 2517 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2518 drrf->drr_offset, drrf->drr_length); 2519 2520 return (err); 2521 } 2522 2523 /* used to destroy the drc_ds on error */ 2524 static void 2525 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2526 { 2527 if (drc->drc_resumable) { 2528 /* wait for our resume state to be written to disk */ 2529 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); 2530 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2531 } else { 2532 char name[ZFS_MAX_DATASET_NAME_LEN]; 2533 dsl_dataset_name(drc->drc_ds, name); 2534 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2535 (void) dsl_destroy_head(name); 2536 } 2537 } 2538 2539 static void 2540 receive_cksum(struct receive_arg *ra, int len, void *buf) 2541 { 2542 if (ra->byteswap) { 2543 (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 2544 } else { 2545 (void) fletcher_4_incremental_native(buf, len, &ra->cksum); 2546 } 2547 } 2548 2549 /* 2550 * Read the payload into a buffer of size len, and update the current record's 2551 * payload field. 2552 * Allocate ra->next_rrd and read the next record's header into 2553 * ra->next_rrd->header. 2554 * Verify checksum of payload and next record. 2555 */ 2556 static int 2557 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 2558 { 2559 int err; 2560 2561 if (len != 0) { 2562 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2563 err = receive_read(ra, len, buf); 2564 if (err != 0) 2565 return (err); 2566 receive_cksum(ra, len, buf); 2567 2568 /* note: rrd is NULL when reading the begin record's payload */ 2569 if (ra->rrd != NULL) { 2570 ra->rrd->payload = buf; 2571 ra->rrd->payload_size = len; 2572 ra->rrd->bytes_read = ra->bytes_read; 2573 } 2574 } 2575 2576 ra->prev_cksum = ra->cksum; 2577 2578 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2579 err = receive_read(ra, sizeof (ra->next_rrd->header), 2580 &ra->next_rrd->header); 2581 ra->next_rrd->bytes_read = ra->bytes_read; 2582 if (err != 0) { 2583 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2584 ra->next_rrd = NULL; 2585 return (err); 2586 } 2587 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2588 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2589 ra->next_rrd = NULL; 2590 return (SET_ERROR(EINVAL)); 2591 } 2592 2593 /* 2594 * Note: checksum is of everything up to but not including the 2595 * checksum itself. 2596 */ 2597 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2598 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2599 receive_cksum(ra, 2600 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2601 &ra->next_rrd->header); 2602 2603 zio_cksum_t cksum_orig = 2604 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2605 zio_cksum_t *cksump = 2606 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2607 2608 if (ra->byteswap) 2609 byteswap_record(&ra->next_rrd->header); 2610 2611 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2612 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2613 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2614 ra->next_rrd = NULL; 2615 return (SET_ERROR(ECKSUM)); 2616 } 2617 2618 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2619 2620 return (0); 2621 } 2622 2623 static void 2624 objlist_create(struct objlist *list) 2625 { 2626 list_create(&list->list, sizeof (struct receive_objnode), 2627 offsetof(struct receive_objnode, node)); 2628 list->last_lookup = 0; 2629 } 2630 2631 static void 2632 objlist_destroy(struct objlist *list) 2633 { 2634 for (struct receive_objnode *n = list_remove_head(&list->list); 2635 n != NULL; n = list_remove_head(&list->list)) { 2636 kmem_free(n, sizeof (*n)); 2637 } 2638 list_destroy(&list->list); 2639 } 2640 2641 /* 2642 * This function looks through the objlist to see if the specified object number 2643 * is contained in the objlist. In the process, it will remove all object 2644 * numbers in the list that are smaller than the specified object number. Thus, 2645 * any lookup of an object number smaller than a previously looked up object 2646 * number will always return false; therefore, all lookups should be done in 2647 * ascending order. 2648 */ 2649 static boolean_t 2650 objlist_exists(struct objlist *list, uint64_t object) 2651 { 2652 struct receive_objnode *node = list_head(&list->list); 2653 ASSERT3U(object, >=, list->last_lookup); 2654 list->last_lookup = object; 2655 while (node != NULL && node->object < object) { 2656 VERIFY3P(node, ==, list_remove_head(&list->list)); 2657 kmem_free(node, sizeof (*node)); 2658 node = list_head(&list->list); 2659 } 2660 return (node != NULL && node->object == object); 2661 } 2662 2663 /* 2664 * The objlist is a list of object numbers stored in ascending order. However, 2665 * the insertion of new object numbers does not seek out the correct location to 2666 * store a new object number; instead, it appends it to the list for simplicity. 2667 * Thus, any users must take care to only insert new object numbers in ascending 2668 * order. 2669 */ 2670 static void 2671 objlist_insert(struct objlist *list, uint64_t object) 2672 { 2673 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 2674 node->object = object; 2675 #ifdef ZFS_DEBUG 2676 struct receive_objnode *last_object = list_tail(&list->list); 2677 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 2678 ASSERT3U(node->object, >, last_objnum); 2679 #endif 2680 list_insert_tail(&list->list, node); 2681 } 2682 2683 /* 2684 * Issue the prefetch reads for any necessary indirect blocks. 2685 * 2686 * We use the object ignore list to tell us whether or not to issue prefetches 2687 * for a given object. We do this for both correctness (in case the blocksize 2688 * of an object has changed) and performance (if the object doesn't exist, don't 2689 * needlessly try to issue prefetches). We also trim the list as we go through 2690 * the stream to prevent it from growing to an unbounded size. 2691 * 2692 * The object numbers within will always be in sorted order, and any write 2693 * records we see will also be in sorted order, but they're not sorted with 2694 * respect to each other (i.e. we can get several object records before 2695 * receiving each object's write records). As a result, once we've reached a 2696 * given object number, we can safely remove any reference to lower object 2697 * numbers in the ignore list. In practice, we receive up to 32 object records 2698 * before receiving write records, so the list can have up to 32 nodes in it. 2699 */ 2700 /* ARGSUSED */ 2701 static void 2702 receive_read_prefetch(struct receive_arg *ra, 2703 uint64_t object, uint64_t offset, uint64_t length) 2704 { 2705 if (!objlist_exists(&ra->ignore_objlist, object)) { 2706 dmu_prefetch(ra->os, object, 1, offset, length, 2707 ZIO_PRIORITY_SYNC_READ); 2708 } 2709 } 2710 2711 /* 2712 * Read records off the stream, issuing any necessary prefetches. 2713 */ 2714 static int 2715 receive_read_record(struct receive_arg *ra) 2716 { 2717 int err; 2718 2719 switch (ra->rrd->header.drr_type) { 2720 case DRR_OBJECT: 2721 { 2722 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2723 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2724 void *buf = kmem_zalloc(size, KM_SLEEP); 2725 dmu_object_info_t doi; 2726 err = receive_read_payload_and_next_header(ra, size, buf); 2727 if (err != 0) { 2728 kmem_free(buf, size); 2729 return (err); 2730 } 2731 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2732 /* 2733 * See receive_read_prefetch for an explanation why we're 2734 * storing this object in the ignore_obj_list. 2735 */ 2736 if (err == ENOENT || 2737 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2738 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2739 err = 0; 2740 } 2741 return (err); 2742 } 2743 case DRR_FREEOBJECTS: 2744 { 2745 err = receive_read_payload_and_next_header(ra, 0, NULL); 2746 return (err); 2747 } 2748 case DRR_WRITE: 2749 { 2750 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2751 arc_buf_t *abuf; 2752 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type); 2753 if (DRR_WRITE_COMPRESSED(drrw)) { 2754 ASSERT3U(drrw->drr_compressed_size, >, 0); 2755 ASSERT3U(drrw->drr_logical_size, >=, 2756 drrw->drr_compressed_size); 2757 ASSERT(!is_meta); 2758 abuf = arc_loan_compressed_buf( 2759 dmu_objset_spa(ra->os), 2760 drrw->drr_compressed_size, drrw->drr_logical_size, 2761 drrw->drr_compressiontype); 2762 } else { 2763 abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2764 is_meta, drrw->drr_logical_size); 2765 } 2766 2767 err = receive_read_payload_and_next_header(ra, 2768 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data); 2769 if (err != 0) { 2770 dmu_return_arcbuf(abuf); 2771 return (err); 2772 } 2773 ra->rrd->write_buf = abuf; 2774 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2775 drrw->drr_logical_size); 2776 return (err); 2777 } 2778 case DRR_WRITE_BYREF: 2779 { 2780 struct drr_write_byref *drrwb = 2781 &ra->rrd->header.drr_u.drr_write_byref; 2782 err = receive_read_payload_and_next_header(ra, 0, NULL); 2783 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2784 drrwb->drr_length); 2785 return (err); 2786 } 2787 case DRR_WRITE_EMBEDDED: 2788 { 2789 struct drr_write_embedded *drrwe = 2790 &ra->rrd->header.drr_u.drr_write_embedded; 2791 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2792 void *buf = kmem_zalloc(size, KM_SLEEP); 2793 2794 err = receive_read_payload_and_next_header(ra, size, buf); 2795 if (err != 0) { 2796 kmem_free(buf, size); 2797 return (err); 2798 } 2799 2800 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2801 drrwe->drr_length); 2802 return (err); 2803 } 2804 case DRR_FREE: 2805 { 2806 /* 2807 * It might be beneficial to prefetch indirect blocks here, but 2808 * we don't really have the data to decide for sure. 2809 */ 2810 err = receive_read_payload_and_next_header(ra, 0, NULL); 2811 return (err); 2812 } 2813 case DRR_END: 2814 { 2815 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2816 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2817 return (SET_ERROR(ECKSUM)); 2818 return (0); 2819 } 2820 case DRR_SPILL: 2821 { 2822 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2823 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2824 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2825 buf); 2826 if (err != 0) 2827 kmem_free(buf, drrs->drr_length); 2828 return (err); 2829 } 2830 default: 2831 return (SET_ERROR(EINVAL)); 2832 } 2833 } 2834 2835 /* 2836 * Commit the records to the pool. 2837 */ 2838 static int 2839 receive_process_record(struct receive_writer_arg *rwa, 2840 struct receive_record_arg *rrd) 2841 { 2842 int err; 2843 2844 /* Processing in order, therefore bytes_read should be increasing. */ 2845 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2846 rwa->bytes_read = rrd->bytes_read; 2847 2848 switch (rrd->header.drr_type) { 2849 case DRR_OBJECT: 2850 { 2851 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2852 err = receive_object(rwa, drro, rrd->payload); 2853 kmem_free(rrd->payload, rrd->payload_size); 2854 rrd->payload = NULL; 2855 return (err); 2856 } 2857 case DRR_FREEOBJECTS: 2858 { 2859 struct drr_freeobjects *drrfo = 2860 &rrd->header.drr_u.drr_freeobjects; 2861 return (receive_freeobjects(rwa, drrfo)); 2862 } 2863 case DRR_WRITE: 2864 { 2865 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2866 err = receive_write(rwa, drrw, rrd->write_buf); 2867 /* if receive_write() is successful, it consumes the arc_buf */ 2868 if (err != 0) 2869 dmu_return_arcbuf(rrd->write_buf); 2870 rrd->write_buf = NULL; 2871 rrd->payload = NULL; 2872 return (err); 2873 } 2874 case DRR_WRITE_BYREF: 2875 { 2876 struct drr_write_byref *drrwbr = 2877 &rrd->header.drr_u.drr_write_byref; 2878 return (receive_write_byref(rwa, drrwbr)); 2879 } 2880 case DRR_WRITE_EMBEDDED: 2881 { 2882 struct drr_write_embedded *drrwe = 2883 &rrd->header.drr_u.drr_write_embedded; 2884 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2885 kmem_free(rrd->payload, rrd->payload_size); 2886 rrd->payload = NULL; 2887 return (err); 2888 } 2889 case DRR_FREE: 2890 { 2891 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2892 return (receive_free(rwa, drrf)); 2893 } 2894 case DRR_SPILL: 2895 { 2896 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2897 err = receive_spill(rwa, drrs, rrd->payload); 2898 kmem_free(rrd->payload, rrd->payload_size); 2899 rrd->payload = NULL; 2900 return (err); 2901 } 2902 default: 2903 return (SET_ERROR(EINVAL)); 2904 } 2905 } 2906 2907 /* 2908 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2909 * receive_process_record When we're done, signal the main thread and exit. 2910 */ 2911 static void 2912 receive_writer_thread(void *arg) 2913 { 2914 struct receive_writer_arg *rwa = arg; 2915 struct receive_record_arg *rrd; 2916 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2917 rrd = bqueue_dequeue(&rwa->q)) { 2918 /* 2919 * If there's an error, the main thread will stop putting things 2920 * on the queue, but we need to clear everything in it before we 2921 * can exit. 2922 */ 2923 if (rwa->err == 0) { 2924 rwa->err = receive_process_record(rwa, rrd); 2925 } else if (rrd->write_buf != NULL) { 2926 dmu_return_arcbuf(rrd->write_buf); 2927 rrd->write_buf = NULL; 2928 rrd->payload = NULL; 2929 } else if (rrd->payload != NULL) { 2930 kmem_free(rrd->payload, rrd->payload_size); 2931 rrd->payload = NULL; 2932 } 2933 kmem_free(rrd, sizeof (*rrd)); 2934 } 2935 kmem_free(rrd, sizeof (*rrd)); 2936 mutex_enter(&rwa->mutex); 2937 rwa->done = B_TRUE; 2938 cv_signal(&rwa->cv); 2939 mutex_exit(&rwa->mutex); 2940 thread_exit(); 2941 } 2942 2943 static int 2944 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2945 { 2946 uint64_t val; 2947 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2948 uint64_t dsobj = dmu_objset_id(ra->os); 2949 uint64_t resume_obj, resume_off; 2950 2951 if (nvlist_lookup_uint64(begin_nvl, 2952 "resume_object", &resume_obj) != 0 || 2953 nvlist_lookup_uint64(begin_nvl, 2954 "resume_offset", &resume_off) != 0) { 2955 return (SET_ERROR(EINVAL)); 2956 } 2957 VERIFY0(zap_lookup(mos, dsobj, 2958 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2959 if (resume_obj != val) 2960 return (SET_ERROR(EINVAL)); 2961 VERIFY0(zap_lookup(mos, dsobj, 2962 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2963 if (resume_off != val) 2964 return (SET_ERROR(EINVAL)); 2965 2966 return (0); 2967 } 2968 2969 /* 2970 * Read in the stream's records, one by one, and apply them to the pool. There 2971 * are two threads involved; the thread that calls this function will spin up a 2972 * worker thread, read the records off the stream one by one, and issue 2973 * prefetches for any necessary indirect blocks. It will then push the records 2974 * onto an internal blocking queue. The worker thread will pull the records off 2975 * the queue, and actually write the data into the DMU. This way, the worker 2976 * thread doesn't have to wait for reads to complete, since everything it needs 2977 * (the indirect blocks) will be prefetched. 2978 * 2979 * NB: callers *must* call dmu_recv_end() if this succeeds. 2980 */ 2981 int 2982 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2983 int cleanup_fd, uint64_t *action_handlep) 2984 { 2985 int err = 0; 2986 struct receive_arg ra = { 0 }; 2987 struct receive_writer_arg rwa = { 0 }; 2988 int featureflags; 2989 nvlist_t *begin_nvl = NULL; 2990 2991 ra.byteswap = drc->drc_byteswap; 2992 ra.cksum = drc->drc_cksum; 2993 ra.vp = vp; 2994 ra.voff = *voffp; 2995 2996 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2997 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2998 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2999 sizeof (ra.bytes_read), 1, &ra.bytes_read); 3000 } 3001 3002 objlist_create(&ra.ignore_objlist); 3003 3004 /* these were verified in dmu_recv_begin */ 3005 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 3006 DMU_SUBSTREAM); 3007 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 3008 3009 /* 3010 * Open the objset we are modifying. 3011 */ 3012 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 3013 3014 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 3015 3016 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 3017 3018 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 3019 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 3020 minor_t minor; 3021 3022 if (cleanup_fd == -1) { 3023 ra.err = SET_ERROR(EBADF); 3024 goto out; 3025 } 3026 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 3027 if (ra.err != 0) { 3028 cleanup_fd = -1; 3029 goto out; 3030 } 3031 3032 if (*action_handlep == 0) { 3033 rwa.guid_to_ds_map = 3034 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 3035 avl_create(rwa.guid_to_ds_map, guid_compare, 3036 sizeof (guid_map_entry_t), 3037 offsetof(guid_map_entry_t, avlnode)); 3038 err = zfs_onexit_add_cb(minor, 3039 free_guid_map_onexit, rwa.guid_to_ds_map, 3040 action_handlep); 3041 if (ra.err != 0) 3042 goto out; 3043 } else { 3044 err = zfs_onexit_cb_data(minor, *action_handlep, 3045 (void **)&rwa.guid_to_ds_map); 3046 if (ra.err != 0) 3047 goto out; 3048 } 3049 3050 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 3051 } 3052 3053 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 3054 void *payload = NULL; 3055 if (payloadlen != 0) 3056 payload = kmem_alloc(payloadlen, KM_SLEEP); 3057 3058 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 3059 if (err != 0) { 3060 if (payloadlen != 0) 3061 kmem_free(payload, payloadlen); 3062 goto out; 3063 } 3064 if (payloadlen != 0) { 3065 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 3066 kmem_free(payload, payloadlen); 3067 if (err != 0) 3068 goto out; 3069 } 3070 3071 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 3072 err = resume_check(&ra, begin_nvl); 3073 if (err != 0) 3074 goto out; 3075 } 3076 3077 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 3078 offsetof(struct receive_record_arg, node)); 3079 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 3080 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 3081 rwa.os = ra.os; 3082 rwa.byteswap = drc->drc_byteswap; 3083 rwa.resumable = drc->drc_resumable; 3084 3085 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 3086 TS_RUN, minclsyspri); 3087 /* 3088 * We're reading rwa.err without locks, which is safe since we are the 3089 * only reader, and the worker thread is the only writer. It's ok if we 3090 * miss a write for an iteration or two of the loop, since the writer 3091 * thread will keep freeing records we send it until we send it an eos 3092 * marker. 3093 * 3094 * We can leave this loop in 3 ways: First, if rwa.err is 3095 * non-zero. In that case, the writer thread will free the rrd we just 3096 * pushed. Second, if we're interrupted; in that case, either it's the 3097 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 3098 * has been handed off to the writer thread who will free it. Finally, 3099 * if receive_read_record fails or we're at the end of the stream, then 3100 * we free ra.rrd and exit. 3101 */ 3102 while (rwa.err == 0) { 3103 if (issig(JUSTLOOKING) && issig(FORREAL)) { 3104 err = SET_ERROR(EINTR); 3105 break; 3106 } 3107 3108 ASSERT3P(ra.rrd, ==, NULL); 3109 ra.rrd = ra.next_rrd; 3110 ra.next_rrd = NULL; 3111 /* Allocates and loads header into ra.next_rrd */ 3112 err = receive_read_record(&ra); 3113 3114 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 3115 kmem_free(ra.rrd, sizeof (*ra.rrd)); 3116 ra.rrd = NULL; 3117 break; 3118 } 3119 3120 bqueue_enqueue(&rwa.q, ra.rrd, 3121 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 3122 ra.rrd = NULL; 3123 } 3124 if (ra.next_rrd == NULL) 3125 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 3126 ra.next_rrd->eos_marker = B_TRUE; 3127 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 3128 3129 mutex_enter(&rwa.mutex); 3130 while (!rwa.done) { 3131 cv_wait(&rwa.cv, &rwa.mutex); 3132 } 3133 mutex_exit(&rwa.mutex); 3134 3135 /* 3136 * If we are receiving a full stream as a clone, all object IDs which 3137 * are greater than the maximum ID referenced in the stream are 3138 * by definition unused and must be freed. Note that it's possible that 3139 * we've resumed this send and the first record we received was the END 3140 * record. In that case, max_object would be 0, but we shouldn't start 3141 * freeing all objects from there; instead we should start from the 3142 * resumeobj. 3143 */ 3144 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 3145 uint64_t obj; 3146 if (nvlist_lookup_uint64(begin_nvl, "resume_object", &obj) != 0) 3147 obj = 0; 3148 if (rwa.max_object > obj) 3149 obj = rwa.max_object; 3150 obj++; 3151 int free_err = 0; 3152 int next_err = 0; 3153 3154 while (next_err == 0) { 3155 free_err = dmu_free_long_object(rwa.os, obj); 3156 if (free_err != 0 && free_err != ENOENT) 3157 break; 3158 3159 next_err = dmu_object_next(rwa.os, &obj, FALSE, 0); 3160 } 3161 3162 if (err == 0) { 3163 if (free_err != 0 && free_err != ENOENT) 3164 err = free_err; 3165 else if (next_err != ESRCH) 3166 err = next_err; 3167 } 3168 } 3169 3170 cv_destroy(&rwa.cv); 3171 mutex_destroy(&rwa.mutex); 3172 bqueue_destroy(&rwa.q); 3173 if (err == 0) 3174 err = rwa.err; 3175 3176 out: 3177 nvlist_free(begin_nvl); 3178 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 3179 zfs_onexit_fd_rele(cleanup_fd); 3180 3181 if (err != 0) { 3182 /* 3183 * Clean up references. If receive is not resumable, 3184 * destroy what we created, so we don't leave it in 3185 * the inconsistent state. 3186 */ 3187 dmu_recv_cleanup_ds(drc); 3188 } 3189 3190 *voffp = ra.voff; 3191 objlist_destroy(&ra.ignore_objlist); 3192 return (err); 3193 } 3194 3195 static int 3196 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 3197 { 3198 dmu_recv_cookie_t *drc = arg; 3199 dsl_pool_t *dp = dmu_tx_pool(tx); 3200 int error; 3201 3202 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 3203 3204 if (!drc->drc_newfs) { 3205 dsl_dataset_t *origin_head; 3206 3207 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 3208 if (error != 0) 3209 return (error); 3210 if (drc->drc_force) { 3211 /* 3212 * We will destroy any snapshots in tofs (i.e. before 3213 * origin_head) that are after the origin (which is 3214 * the snap before drc_ds, because drc_ds can not 3215 * have any snaps of its own). 3216 */ 3217 uint64_t obj; 3218 3219 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3220 while (obj != 3221 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3222 dsl_dataset_t *snap; 3223 error = dsl_dataset_hold_obj(dp, obj, FTAG, 3224 &snap); 3225 if (error != 0) 3226 break; 3227 if (snap->ds_dir != origin_head->ds_dir) 3228 error = SET_ERROR(EINVAL); 3229 if (error == 0) { 3230 error = dsl_destroy_snapshot_check_impl( 3231 snap, B_FALSE); 3232 } 3233 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3234 dsl_dataset_rele(snap, FTAG); 3235 if (error != 0) 3236 break; 3237 } 3238 if (error != 0) { 3239 dsl_dataset_rele(origin_head, FTAG); 3240 return (error); 3241 } 3242 } 3243 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 3244 origin_head, drc->drc_force, drc->drc_owner, tx); 3245 if (error != 0) { 3246 dsl_dataset_rele(origin_head, FTAG); 3247 return (error); 3248 } 3249 error = dsl_dataset_snapshot_check_impl(origin_head, 3250 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 3251 dsl_dataset_rele(origin_head, FTAG); 3252 if (error != 0) 3253 return (error); 3254 3255 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 3256 } else { 3257 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 3258 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 3259 } 3260 return (error); 3261 } 3262 3263 static void 3264 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3265 { 3266 dmu_recv_cookie_t *drc = arg; 3267 dsl_pool_t *dp = dmu_tx_pool(tx); 3268 3269 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3270 tx, "snap=%s", drc->drc_tosnap); 3271 3272 if (!drc->drc_newfs) { 3273 dsl_dataset_t *origin_head; 3274 3275 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3276 &origin_head)); 3277 3278 if (drc->drc_force) { 3279 /* 3280 * Destroy any snapshots of drc_tofs (origin_head) 3281 * after the origin (the snap before drc_ds). 3282 */ 3283 uint64_t obj; 3284 3285 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3286 while (obj != 3287 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3288 dsl_dataset_t *snap; 3289 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3290 &snap)); 3291 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3292 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3293 dsl_destroy_snapshot_sync_impl(snap, 3294 B_FALSE, tx); 3295 dsl_dataset_rele(snap, FTAG); 3296 } 3297 } 3298 VERIFY3P(drc->drc_ds->ds_prev, ==, 3299 origin_head->ds_prev); 3300 3301 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3302 origin_head, tx); 3303 dsl_dataset_snapshot_sync_impl(origin_head, 3304 drc->drc_tosnap, tx); 3305 3306 /* set snapshot's creation time and guid */ 3307 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3308 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3309 drc->drc_drrb->drr_creation_time; 3310 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3311 drc->drc_drrb->drr_toguid; 3312 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3313 ~DS_FLAG_INCONSISTENT; 3314 3315 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3316 dsl_dataset_phys(origin_head)->ds_flags &= 3317 ~DS_FLAG_INCONSISTENT; 3318 3319 drc->drc_newsnapobj = 3320 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3321 3322 dsl_dataset_rele(origin_head, FTAG); 3323 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3324 3325 if (drc->drc_owner != NULL) 3326 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3327 } else { 3328 dsl_dataset_t *ds = drc->drc_ds; 3329 3330 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3331 3332 /* set snapshot's creation time and guid */ 3333 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3334 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3335 drc->drc_drrb->drr_creation_time; 3336 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3337 drc->drc_drrb->drr_toguid; 3338 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3339 ~DS_FLAG_INCONSISTENT; 3340 3341 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3342 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3343 if (dsl_dataset_has_resume_receive_state(ds)) { 3344 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3345 DS_FIELD_RESUME_FROMGUID, tx); 3346 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3347 DS_FIELD_RESUME_OBJECT, tx); 3348 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3349 DS_FIELD_RESUME_OFFSET, tx); 3350 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3351 DS_FIELD_RESUME_BYTES, tx); 3352 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3353 DS_FIELD_RESUME_TOGUID, tx); 3354 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3355 DS_FIELD_RESUME_TONAME, tx); 3356 } 3357 drc->drc_newsnapobj = 3358 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3359 } 3360 /* 3361 * Release the hold from dmu_recv_begin. This must be done before 3362 * we return to open context, so that when we free the dataset's dnode, 3363 * we can evict its bonus buffer. 3364 */ 3365 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 3366 drc->drc_ds = NULL; 3367 } 3368 3369 static int 3370 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 3371 { 3372 dsl_pool_t *dp; 3373 dsl_dataset_t *snapds; 3374 guid_map_entry_t *gmep; 3375 int err; 3376 3377 ASSERT(guid_map != NULL); 3378 3379 err = dsl_pool_hold(name, FTAG, &dp); 3380 if (err != 0) 3381 return (err); 3382 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 3383 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 3384 if (err == 0) { 3385 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 3386 gmep->gme_ds = snapds; 3387 avl_add(guid_map, gmep); 3388 dsl_dataset_long_hold(snapds, gmep); 3389 } else { 3390 kmem_free(gmep, sizeof (*gmep)); 3391 } 3392 3393 dsl_pool_rele(dp, FTAG); 3394 return (err); 3395 } 3396 3397 static int dmu_recv_end_modified_blocks = 3; 3398 3399 static int 3400 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3401 { 3402 #ifdef _KERNEL 3403 /* 3404 * We will be destroying the ds; make sure its origin is unmounted if 3405 * necessary. 3406 */ 3407 char name[ZFS_MAX_DATASET_NAME_LEN]; 3408 dsl_dataset_name(drc->drc_ds, name); 3409 zfs_destroy_unmount_origin(name); 3410 #endif 3411 3412 return (dsl_sync_task(drc->drc_tofs, 3413 dmu_recv_end_check, dmu_recv_end_sync, drc, 3414 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3415 } 3416 3417 static int 3418 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3419 { 3420 return (dsl_sync_task(drc->drc_tofs, 3421 dmu_recv_end_check, dmu_recv_end_sync, drc, 3422 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3423 } 3424 3425 int 3426 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3427 { 3428 int error; 3429 3430 drc->drc_owner = owner; 3431 3432 if (drc->drc_newfs) 3433 error = dmu_recv_new_end(drc); 3434 else 3435 error = dmu_recv_existing_end(drc); 3436 3437 if (error != 0) { 3438 dmu_recv_cleanup_ds(drc); 3439 } else if (drc->drc_guid_to_ds_map != NULL) { 3440 (void) add_ds_to_guidmap(drc->drc_tofs, 3441 drc->drc_guid_to_ds_map, 3442 drc->drc_newsnapobj); 3443 } 3444 return (error); 3445 } 3446 3447 /* 3448 * Return TRUE if this objset is currently being received into. 3449 */ 3450 boolean_t 3451 dmu_objset_is_receiving(objset_t *os) 3452 { 3453 return (os->os_dsl_dataset != NULL && 3454 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3455 } 3456