1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dbuf.h> 35 #include <sys/dnode.h> 36 #include <sys/zfs_context.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dmu_traverse.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/zfs_ioctl.h> 45 #include <sys/zap.h> 46 #include <sys/zio_checksum.h> 47 #include <sys/zfs_znode.h> 48 #include <zfs_fletcher.h> 49 #include <sys/avl.h> 50 #include <sys/ddt.h> 51 #include <sys/zfs_onexit.h> 52 #include <sys/dmu_send.h> 53 #include <sys/dsl_destroy.h> 54 #include <sys/blkptr.h> 55 #include <sys/dsl_bookmark.h> 56 #include <sys/zfeature.h> 57 #include <sys/bqueue.h> 58 59 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 60 int zfs_send_corrupt_data = B_FALSE; 61 int zfs_send_queue_length = 16 * 1024 * 1024; 62 int zfs_recv_queue_length = 16 * 1024 * 1024; 63 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */ 64 int zfs_send_set_freerecords_bit = B_TRUE; 65 66 static char *dmu_recv_tag = "dmu_recv_tag"; 67 const char *recv_clone_name = "%recv"; 68 69 /* 70 * Use this to override the recordsize calculation for fast zfs send estimates. 71 */ 72 uint64_t zfs_override_estimate_recordsize = 0; 73 74 #define BP_SPAN(datablkszsec, indblkshift, level) \ 75 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 76 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 77 78 static void byteswap_record(dmu_replay_record_t *drr); 79 80 struct send_thread_arg { 81 bqueue_t q; 82 dsl_dataset_t *ds; /* Dataset to traverse */ 83 uint64_t fromtxg; /* Traverse from this txg */ 84 int flags; /* flags to pass to traverse_dataset */ 85 int error_code; 86 boolean_t cancel; 87 zbookmark_phys_t resume; 88 }; 89 90 struct send_block_record { 91 boolean_t eos_marker; /* Marks the end of the stream */ 92 blkptr_t bp; 93 zbookmark_phys_t zb; 94 uint8_t indblkshift; 95 uint16_t datablkszsec; 96 bqueue_node_t ln; 97 }; 98 99 static int 100 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 101 { 102 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); 103 ssize_t resid; /* have to get resid to get detailed errno */ 104 105 /* 106 * The code does not rely on this (len being a multiple of 8). We keep 107 * this assertion because of the corresponding assertion in 108 * receive_read(). Keeping this assertion ensures that we do not 109 * inadvertently break backwards compatibility (causing the assertion 110 * in receive_read() to trigger on old software). 111 * 112 * Removing the assertions could be rolled into a new feature that uses 113 * data that isn't 8-byte aligned; if the assertions were removed, a 114 * feature flag would have to be added. 115 */ 116 117 ASSERT0(len % 8); 118 119 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 120 (caddr_t)buf, len, 121 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 122 123 mutex_enter(&ds->ds_sendstream_lock); 124 *dsp->dsa_off += len; 125 mutex_exit(&ds->ds_sendstream_lock); 126 127 return (dsp->dsa_err); 128 } 129 130 /* 131 * For all record types except BEGIN, fill in the checksum (overlaid in 132 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 133 * up to the start of the checksum itself. 134 */ 135 static int 136 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 137 { 138 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 139 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 140 (void) fletcher_4_incremental_native(dsp->dsa_drr, 141 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 142 &dsp->dsa_zc); 143 if (dsp->dsa_drr->drr_type == DRR_BEGIN) { 144 dsp->dsa_sent_begin = B_TRUE; 145 } else { 146 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 147 drr_checksum.drr_checksum)); 148 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 149 } 150 if (dsp->dsa_drr->drr_type == DRR_END) { 151 dsp->dsa_sent_end = B_TRUE; 152 } 153 (void) fletcher_4_incremental_native(&dsp->dsa_drr-> 154 drr_u.drr_checksum.drr_checksum, 155 sizeof (zio_cksum_t), &dsp->dsa_zc); 156 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 157 return (SET_ERROR(EINTR)); 158 if (payload_len != 0) { 159 (void) fletcher_4_incremental_native(payload, payload_len, 160 &dsp->dsa_zc); 161 if (dump_bytes(dsp, payload, payload_len) != 0) 162 return (SET_ERROR(EINTR)); 163 } 164 return (0); 165 } 166 167 /* 168 * Fill in the drr_free struct, or perform aggregation if the previous record is 169 * also a free record, and the two are adjacent. 170 * 171 * Note that we send free records even for a full send, because we want to be 172 * able to receive a full send as a clone, which requires a list of all the free 173 * and freeobject records that were generated on the source. 174 */ 175 static int 176 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 177 uint64_t length) 178 { 179 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 180 181 /* 182 * When we receive a free record, dbuf_free_range() assumes 183 * that the receiving system doesn't have any dbufs in the range 184 * being freed. This is always true because there is a one-record 185 * constraint: we only send one WRITE record for any given 186 * object,offset. We know that the one-record constraint is 187 * true because we always send data in increasing order by 188 * object,offset. 189 * 190 * If the increasing-order constraint ever changes, we should find 191 * another way to assert that the one-record constraint is still 192 * satisfied. 193 */ 194 ASSERT(object > dsp->dsa_last_data_object || 195 (object == dsp->dsa_last_data_object && 196 offset > dsp->dsa_last_data_offset)); 197 198 if (length != -1ULL && offset + length < offset) 199 length = -1ULL; 200 201 /* 202 * If there is a pending op, but it's not PENDING_FREE, push it out, 203 * since free block aggregation can only be done for blocks of the 204 * same type (i.e., DRR_FREE records can only be aggregated with 205 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 206 * aggregated with other DRR_FREEOBJECTS records. 207 */ 208 if (dsp->dsa_pending_op != PENDING_NONE && 209 dsp->dsa_pending_op != PENDING_FREE) { 210 if (dump_record(dsp, NULL, 0) != 0) 211 return (SET_ERROR(EINTR)); 212 dsp->dsa_pending_op = PENDING_NONE; 213 } 214 215 if (dsp->dsa_pending_op == PENDING_FREE) { 216 /* 217 * There should never be a PENDING_FREE if length is -1 218 * (because dump_dnode is the only place where this 219 * function is called with a -1, and only after flushing 220 * any pending record). 221 */ 222 ASSERT(length != -1ULL); 223 /* 224 * Check to see whether this free block can be aggregated 225 * with pending one. 226 */ 227 if (drrf->drr_object == object && drrf->drr_offset + 228 drrf->drr_length == offset) { 229 drrf->drr_length += length; 230 return (0); 231 } else { 232 /* not a continuation. Push out pending record */ 233 if (dump_record(dsp, NULL, 0) != 0) 234 return (SET_ERROR(EINTR)); 235 dsp->dsa_pending_op = PENDING_NONE; 236 } 237 } 238 /* create a FREE record and make it pending */ 239 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 240 dsp->dsa_drr->drr_type = DRR_FREE; 241 drrf->drr_object = object; 242 drrf->drr_offset = offset; 243 drrf->drr_length = length; 244 drrf->drr_toguid = dsp->dsa_toguid; 245 if (length == -1ULL) { 246 if (dump_record(dsp, NULL, 0) != 0) 247 return (SET_ERROR(EINTR)); 248 } else { 249 dsp->dsa_pending_op = PENDING_FREE; 250 } 251 252 return (0); 253 } 254 255 static int 256 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 257 uint64_t object, uint64_t offset, int lsize, int psize, const blkptr_t *bp, 258 void *data) 259 { 260 uint64_t payload_size; 261 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 262 263 /* 264 * We send data in increasing object, offset order. 265 * See comment in dump_free() for details. 266 */ 267 ASSERT(object > dsp->dsa_last_data_object || 268 (object == dsp->dsa_last_data_object && 269 offset > dsp->dsa_last_data_offset)); 270 dsp->dsa_last_data_object = object; 271 dsp->dsa_last_data_offset = offset + lsize - 1; 272 273 /* 274 * If there is any kind of pending aggregation (currently either 275 * a grouping of free objects or free blocks), push it out to 276 * the stream, since aggregation can't be done across operations 277 * of different types. 278 */ 279 if (dsp->dsa_pending_op != PENDING_NONE) { 280 if (dump_record(dsp, NULL, 0) != 0) 281 return (SET_ERROR(EINTR)); 282 dsp->dsa_pending_op = PENDING_NONE; 283 } 284 /* write a WRITE record */ 285 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 286 dsp->dsa_drr->drr_type = DRR_WRITE; 287 drrw->drr_object = object; 288 drrw->drr_type = type; 289 drrw->drr_offset = offset; 290 drrw->drr_toguid = dsp->dsa_toguid; 291 drrw->drr_logical_size = lsize; 292 293 /* only set the compression fields if the buf is compressed */ 294 if (lsize != psize) { 295 ASSERT(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED); 296 ASSERT(!BP_IS_EMBEDDED(bp)); 297 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 298 ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp))); 299 ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF); 300 ASSERT3S(psize, >, 0); 301 ASSERT3S(lsize, >=, psize); 302 303 drrw->drr_compressiontype = BP_GET_COMPRESS(bp); 304 drrw->drr_compressed_size = psize; 305 payload_size = drrw->drr_compressed_size; 306 } else { 307 payload_size = drrw->drr_logical_size; 308 } 309 310 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 311 /* 312 * There's no pre-computed checksum for partial-block 313 * writes or embedded BP's, so (like 314 * fletcher4-checkummed blocks) userland will have to 315 * compute a dedup-capable checksum itself. 316 */ 317 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 318 } else { 319 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 320 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 321 ZCHECKSUM_FLAG_DEDUP) 322 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 323 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 324 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 325 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 326 drrw->drr_key.ddk_cksum = bp->blk_cksum; 327 } 328 329 if (dump_record(dsp, data, payload_size) != 0) 330 return (SET_ERROR(EINTR)); 331 return (0); 332 } 333 334 static int 335 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 336 int blksz, const blkptr_t *bp) 337 { 338 char buf[BPE_PAYLOAD_SIZE]; 339 struct drr_write_embedded *drrw = 340 &(dsp->dsa_drr->drr_u.drr_write_embedded); 341 342 if (dsp->dsa_pending_op != PENDING_NONE) { 343 if (dump_record(dsp, NULL, 0) != 0) 344 return (EINTR); 345 dsp->dsa_pending_op = PENDING_NONE; 346 } 347 348 ASSERT(BP_IS_EMBEDDED(bp)); 349 350 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 351 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 352 drrw->drr_object = object; 353 drrw->drr_offset = offset; 354 drrw->drr_length = blksz; 355 drrw->drr_toguid = dsp->dsa_toguid; 356 drrw->drr_compression = BP_GET_COMPRESS(bp); 357 drrw->drr_etype = BPE_GET_ETYPE(bp); 358 drrw->drr_lsize = BPE_GET_LSIZE(bp); 359 drrw->drr_psize = BPE_GET_PSIZE(bp); 360 361 decode_embedded_bp_compressed(bp, buf); 362 363 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 364 return (EINTR); 365 return (0); 366 } 367 368 static int 369 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 370 { 371 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 372 373 if (dsp->dsa_pending_op != PENDING_NONE) { 374 if (dump_record(dsp, NULL, 0) != 0) 375 return (SET_ERROR(EINTR)); 376 dsp->dsa_pending_op = PENDING_NONE; 377 } 378 379 /* write a SPILL record */ 380 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 381 dsp->dsa_drr->drr_type = DRR_SPILL; 382 drrs->drr_object = object; 383 drrs->drr_length = blksz; 384 drrs->drr_toguid = dsp->dsa_toguid; 385 386 if (dump_record(dsp, data, blksz) != 0) 387 return (SET_ERROR(EINTR)); 388 return (0); 389 } 390 391 static int 392 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 393 { 394 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 395 396 /* 397 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 398 * push it out, since free block aggregation can only be done for 399 * blocks of the same type (i.e., DRR_FREE records can only be 400 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 401 * can only be aggregated with other DRR_FREEOBJECTS records. 402 */ 403 if (dsp->dsa_pending_op != PENDING_NONE && 404 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 405 if (dump_record(dsp, NULL, 0) != 0) 406 return (SET_ERROR(EINTR)); 407 dsp->dsa_pending_op = PENDING_NONE; 408 } 409 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 410 /* 411 * See whether this free object array can be aggregated 412 * with pending one 413 */ 414 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 415 drrfo->drr_numobjs += numobjs; 416 return (0); 417 } else { 418 /* can't be aggregated. Push out pending record */ 419 if (dump_record(dsp, NULL, 0) != 0) 420 return (SET_ERROR(EINTR)); 421 dsp->dsa_pending_op = PENDING_NONE; 422 } 423 } 424 425 /* write a FREEOBJECTS record */ 426 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 427 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 428 drrfo->drr_firstobj = firstobj; 429 drrfo->drr_numobjs = numobjs; 430 drrfo->drr_toguid = dsp->dsa_toguid; 431 432 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 433 434 return (0); 435 } 436 437 static int 438 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 439 { 440 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 441 442 if (object < dsp->dsa_resume_object) { 443 /* 444 * Note: when resuming, we will visit all the dnodes in 445 * the block of dnodes that we are resuming from. In 446 * this case it's unnecessary to send the dnodes prior to 447 * the one we are resuming from. We should be at most one 448 * block's worth of dnodes behind the resume point. 449 */ 450 ASSERT3U(dsp->dsa_resume_object - object, <, 451 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 452 return (0); 453 } 454 455 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 456 return (dump_freeobjects(dsp, object, 1)); 457 458 if (dsp->dsa_pending_op != PENDING_NONE) { 459 if (dump_record(dsp, NULL, 0) != 0) 460 return (SET_ERROR(EINTR)); 461 dsp->dsa_pending_op = PENDING_NONE; 462 } 463 464 /* write an OBJECT record */ 465 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 466 dsp->dsa_drr->drr_type = DRR_OBJECT; 467 drro->drr_object = object; 468 drro->drr_type = dnp->dn_type; 469 drro->drr_bonustype = dnp->dn_bonustype; 470 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 471 drro->drr_bonuslen = dnp->dn_bonuslen; 472 drro->drr_checksumtype = dnp->dn_checksum; 473 drro->drr_compress = dnp->dn_compress; 474 drro->drr_toguid = dsp->dsa_toguid; 475 476 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 477 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 478 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 479 480 if (dump_record(dsp, DN_BONUS(dnp), 481 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 482 return (SET_ERROR(EINTR)); 483 } 484 485 /* Free anything past the end of the file. */ 486 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 487 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 488 return (SET_ERROR(EINTR)); 489 if (dsp->dsa_err != 0) 490 return (SET_ERROR(EINTR)); 491 return (0); 492 } 493 494 static boolean_t 495 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 496 { 497 if (!BP_IS_EMBEDDED(bp)) 498 return (B_FALSE); 499 500 /* 501 * Compression function must be legacy, or explicitly enabled. 502 */ 503 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 504 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LZ4))) 505 return (B_FALSE); 506 507 /* 508 * Embed type must be explicitly enabled. 509 */ 510 switch (BPE_GET_ETYPE(bp)) { 511 case BP_EMBEDDED_TYPE_DATA: 512 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 513 return (B_TRUE); 514 break; 515 default: 516 return (B_FALSE); 517 } 518 return (B_FALSE); 519 } 520 521 /* 522 * This is the callback function to traverse_dataset that acts as the worker 523 * thread for dmu_send_impl. 524 */ 525 /*ARGSUSED*/ 526 static int 527 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 528 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 529 { 530 struct send_thread_arg *sta = arg; 531 struct send_block_record *record; 532 uint64_t record_size; 533 int err = 0; 534 535 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 536 zb->zb_object >= sta->resume.zb_object); 537 538 if (sta->cancel) 539 return (SET_ERROR(EINTR)); 540 541 if (bp == NULL) { 542 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 543 return (0); 544 } else if (zb->zb_level < 0) { 545 return (0); 546 } 547 548 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 549 record->eos_marker = B_FALSE; 550 record->bp = *bp; 551 record->zb = *zb; 552 record->indblkshift = dnp->dn_indblkshift; 553 record->datablkszsec = dnp->dn_datablkszsec; 554 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 555 bqueue_enqueue(&sta->q, record, record_size); 556 557 return (err); 558 } 559 560 /* 561 * This function kicks off the traverse_dataset. It also handles setting the 562 * error code of the thread in case something goes wrong, and pushes the End of 563 * Stream record when the traverse_dataset call has finished. If there is no 564 * dataset to traverse, the thread immediately pushes End of Stream marker. 565 */ 566 static void 567 send_traverse_thread(void *arg) 568 { 569 struct send_thread_arg *st_arg = arg; 570 int err; 571 struct send_block_record *data; 572 573 if (st_arg->ds != NULL) { 574 err = traverse_dataset_resume(st_arg->ds, 575 st_arg->fromtxg, &st_arg->resume, 576 st_arg->flags, send_cb, st_arg); 577 578 if (err != EINTR) 579 st_arg->error_code = err; 580 } 581 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 582 data->eos_marker = B_TRUE; 583 bqueue_enqueue(&st_arg->q, data, 1); 584 thread_exit(); 585 } 586 587 /* 588 * This function actually handles figuring out what kind of record needs to be 589 * dumped, reading the data (which has hopefully been prefetched), and calling 590 * the appropriate helper function. 591 */ 592 static int 593 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 594 { 595 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 596 const blkptr_t *bp = &data->bp; 597 const zbookmark_phys_t *zb = &data->zb; 598 uint8_t indblkshift = data->indblkshift; 599 uint16_t dblkszsec = data->datablkszsec; 600 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 601 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 602 int err = 0; 603 604 ASSERT3U(zb->zb_level, >=, 0); 605 606 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 607 zb->zb_object >= dsa->dsa_resume_object); 608 609 if (zb->zb_object != DMU_META_DNODE_OBJECT && 610 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 611 return (0); 612 } else if (BP_IS_HOLE(bp) && 613 zb->zb_object == DMU_META_DNODE_OBJECT) { 614 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 615 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 616 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 617 } else if (BP_IS_HOLE(bp)) { 618 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 619 uint64_t offset = zb->zb_blkid * span; 620 err = dump_free(dsa, zb->zb_object, offset, span); 621 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 622 return (0); 623 } else if (type == DMU_OT_DNODE) { 624 int blksz = BP_GET_LSIZE(bp); 625 arc_flags_t aflags = ARC_FLAG_WAIT; 626 arc_buf_t *abuf; 627 628 ASSERT0(zb->zb_level); 629 630 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 631 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 632 &aflags, zb) != 0) 633 return (SET_ERROR(EIO)); 634 635 dnode_phys_t *blk = abuf->b_data; 636 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 637 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 638 err = dump_dnode(dsa, dnobj + i, blk + i); 639 if (err != 0) 640 break; 641 } 642 arc_buf_destroy(abuf, &abuf); 643 } else if (type == DMU_OT_SA) { 644 arc_flags_t aflags = ARC_FLAG_WAIT; 645 arc_buf_t *abuf; 646 int blksz = BP_GET_LSIZE(bp); 647 648 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 649 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 650 &aflags, zb) != 0) 651 return (SET_ERROR(EIO)); 652 653 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 654 arc_buf_destroy(abuf, &abuf); 655 } else if (backup_do_embed(dsa, bp)) { 656 /* it's an embedded level-0 block of a regular object */ 657 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 658 ASSERT0(zb->zb_level); 659 err = dump_write_embedded(dsa, zb->zb_object, 660 zb->zb_blkid * blksz, blksz, bp); 661 } else { 662 /* it's a level-0 block of a regular object */ 663 arc_flags_t aflags = ARC_FLAG_WAIT; 664 arc_buf_t *abuf; 665 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 666 uint64_t offset; 667 668 /* 669 * If we have large blocks stored on disk but the send flags 670 * don't allow us to send large blocks, we split the data from 671 * the arc buf into chunks. 672 */ 673 boolean_t split_large_blocks = blksz > SPA_OLD_MAXBLOCKSIZE && 674 !(dsa->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS); 675 /* 676 * We should only request compressed data from the ARC if all 677 * the following are true: 678 * - stream compression was requested 679 * - we aren't splitting large blocks into smaller chunks 680 * - the data won't need to be byteswapped before sending 681 * - this isn't an embedded block 682 * - this isn't metadata (if receiving on a different endian 683 * system it can be byteswapped more easily) 684 */ 685 boolean_t request_compressed = 686 (dsa->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED) && 687 !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) && 688 !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp)); 689 690 ASSERT0(zb->zb_level); 691 ASSERT(zb->zb_object > dsa->dsa_resume_object || 692 (zb->zb_object == dsa->dsa_resume_object && 693 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 694 695 ASSERT0(zb->zb_level); 696 ASSERT(zb->zb_object > dsa->dsa_resume_object || 697 (zb->zb_object == dsa->dsa_resume_object && 698 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 699 700 ASSERT3U(blksz, ==, BP_GET_LSIZE(bp)); 701 702 enum zio_flag zioflags = ZIO_FLAG_CANFAIL; 703 if (request_compressed) 704 zioflags |= ZIO_FLAG_RAW; 705 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 706 ZIO_PRIORITY_ASYNC_READ, zioflags, &aflags, zb) != 0) { 707 if (zfs_send_corrupt_data) { 708 /* Send a block filled with 0x"zfs badd bloc" */ 709 abuf = arc_alloc_buf(spa, &abuf, ARC_BUFC_DATA, 710 blksz); 711 uint64_t *ptr; 712 for (ptr = abuf->b_data; 713 (char *)ptr < (char *)abuf->b_data + blksz; 714 ptr++) 715 *ptr = 0x2f5baddb10cULL; 716 } else { 717 return (SET_ERROR(EIO)); 718 } 719 } 720 721 offset = zb->zb_blkid * blksz; 722 723 if (split_large_blocks) { 724 ASSERT3U(arc_get_compression(abuf), ==, 725 ZIO_COMPRESS_OFF); 726 char *buf = abuf->b_data; 727 while (blksz > 0 && err == 0) { 728 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 729 err = dump_write(dsa, type, zb->zb_object, 730 offset, n, n, NULL, buf); 731 offset += n; 732 buf += n; 733 blksz -= n; 734 } 735 } else { 736 err = dump_write(dsa, type, zb->zb_object, offset, 737 blksz, arc_buf_size(abuf), bp, abuf->b_data); 738 } 739 arc_buf_destroy(abuf, &abuf); 740 } 741 742 ASSERT(err == 0 || err == EINTR); 743 return (err); 744 } 745 746 /* 747 * Pop the new data off the queue, and free the old data. 748 */ 749 static struct send_block_record * 750 get_next_record(bqueue_t *bq, struct send_block_record *data) 751 { 752 struct send_block_record *tmp = bqueue_dequeue(bq); 753 kmem_free(data, sizeof (*data)); 754 return (tmp); 755 } 756 757 /* 758 * Actually do the bulk of the work in a zfs send. 759 * 760 * Note: Releases dp using the specified tag. 761 */ 762 static int 763 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 764 zfs_bookmark_phys_t *ancestor_zb, boolean_t is_clone, 765 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok, 766 int outfd, uint64_t resumeobj, uint64_t resumeoff, 767 vnode_t *vp, offset_t *off) 768 { 769 objset_t *os; 770 dmu_replay_record_t *drr; 771 dmu_sendarg_t *dsp; 772 int err; 773 uint64_t fromtxg = 0; 774 uint64_t featureflags = 0; 775 struct send_thread_arg to_arg = { 0 }; 776 777 err = dmu_objset_from_ds(to_ds, &os); 778 if (err != 0) { 779 dsl_pool_rele(dp, tag); 780 return (err); 781 } 782 783 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 784 drr->drr_type = DRR_BEGIN; 785 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 786 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 787 DMU_SUBSTREAM); 788 789 #ifdef _KERNEL 790 if (dmu_objset_type(os) == DMU_OST_ZFS) { 791 uint64_t version; 792 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 793 kmem_free(drr, sizeof (dmu_replay_record_t)); 794 dsl_pool_rele(dp, tag); 795 return (SET_ERROR(EINVAL)); 796 } 797 if (version >= ZPL_VERSION_SA) { 798 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 799 } 800 } 801 #endif 802 803 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 804 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 805 if (embedok && 806 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 807 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 808 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 809 featureflags |= DMU_BACKUP_FEATURE_LZ4; 810 } 811 if (compressok) { 812 featureflags |= DMU_BACKUP_FEATURE_COMPRESSED; 813 } 814 if ((featureflags & 815 (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED)) != 816 0 && spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) { 817 featureflags |= DMU_BACKUP_FEATURE_LZ4; 818 } 819 820 if (resumeobj != 0 || resumeoff != 0) { 821 featureflags |= DMU_BACKUP_FEATURE_RESUMING; 822 } 823 824 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 825 featureflags); 826 827 drr->drr_u.drr_begin.drr_creation_time = 828 dsl_dataset_phys(to_ds)->ds_creation_time; 829 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 830 if (is_clone) 831 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 832 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 833 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 834 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 835 if (zfs_send_set_freerecords_bit) 836 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS; 837 838 if (ancestor_zb != NULL) { 839 drr->drr_u.drr_begin.drr_fromguid = 840 ancestor_zb->zbm_guid; 841 fromtxg = ancestor_zb->zbm_creation_txg; 842 } 843 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 844 if (!to_ds->ds_is_snapshot) { 845 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 846 sizeof (drr->drr_u.drr_begin.drr_toname)); 847 } 848 849 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 850 851 dsp->dsa_drr = drr; 852 dsp->dsa_vp = vp; 853 dsp->dsa_outfd = outfd; 854 dsp->dsa_proc = curproc; 855 dsp->dsa_os = os; 856 dsp->dsa_off = off; 857 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 858 dsp->dsa_pending_op = PENDING_NONE; 859 dsp->dsa_featureflags = featureflags; 860 dsp->dsa_resume_object = resumeobj; 861 dsp->dsa_resume_offset = resumeoff; 862 863 mutex_enter(&to_ds->ds_sendstream_lock); 864 list_insert_head(&to_ds->ds_sendstreams, dsp); 865 mutex_exit(&to_ds->ds_sendstream_lock); 866 867 dsl_dataset_long_hold(to_ds, FTAG); 868 dsl_pool_rele(dp, tag); 869 870 void *payload = NULL; 871 size_t payload_len = 0; 872 if (resumeobj != 0 || resumeoff != 0) { 873 dmu_object_info_t to_doi; 874 err = dmu_object_info(os, resumeobj, &to_doi); 875 if (err != 0) 876 goto out; 877 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, 878 resumeoff / to_doi.doi_data_block_size); 879 880 nvlist_t *nvl = fnvlist_alloc(); 881 fnvlist_add_uint64(nvl, "resume_object", resumeobj); 882 fnvlist_add_uint64(nvl, "resume_offset", resumeoff); 883 payload = fnvlist_pack(nvl, &payload_len); 884 drr->drr_payloadlen = payload_len; 885 fnvlist_free(nvl); 886 } 887 888 err = dump_record(dsp, payload, payload_len); 889 fnvlist_pack_free(payload, payload_len); 890 if (err != 0) { 891 err = dsp->dsa_err; 892 goto out; 893 } 894 895 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 896 offsetof(struct send_block_record, ln)); 897 to_arg.error_code = 0; 898 to_arg.cancel = B_FALSE; 899 to_arg.ds = to_ds; 900 to_arg.fromtxg = fromtxg; 901 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 902 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 903 TS_RUN, minclsyspri); 904 905 struct send_block_record *to_data; 906 to_data = bqueue_dequeue(&to_arg.q); 907 908 while (!to_data->eos_marker && err == 0) { 909 err = do_dump(dsp, to_data); 910 to_data = get_next_record(&to_arg.q, to_data); 911 if (issig(JUSTLOOKING) && issig(FORREAL)) 912 err = EINTR; 913 } 914 915 if (err != 0) { 916 to_arg.cancel = B_TRUE; 917 while (!to_data->eos_marker) { 918 to_data = get_next_record(&to_arg.q, to_data); 919 } 920 } 921 kmem_free(to_data, sizeof (*to_data)); 922 923 bqueue_destroy(&to_arg.q); 924 925 if (err == 0 && to_arg.error_code != 0) 926 err = to_arg.error_code; 927 928 if (err != 0) 929 goto out; 930 931 if (dsp->dsa_pending_op != PENDING_NONE) 932 if (dump_record(dsp, NULL, 0) != 0) 933 err = SET_ERROR(EINTR); 934 935 if (err != 0) { 936 if (err == EINTR && dsp->dsa_err != 0) 937 err = dsp->dsa_err; 938 goto out; 939 } 940 941 bzero(drr, sizeof (dmu_replay_record_t)); 942 drr->drr_type = DRR_END; 943 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 944 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 945 946 if (dump_record(dsp, NULL, 0) != 0) 947 err = dsp->dsa_err; 948 949 out: 950 mutex_enter(&to_ds->ds_sendstream_lock); 951 list_remove(&to_ds->ds_sendstreams, dsp); 952 mutex_exit(&to_ds->ds_sendstream_lock); 953 954 VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end)); 955 956 kmem_free(drr, sizeof (dmu_replay_record_t)); 957 kmem_free(dsp, sizeof (dmu_sendarg_t)); 958 959 dsl_dataset_long_rele(to_ds, FTAG); 960 961 return (err); 962 } 963 964 int 965 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 966 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok, 967 int outfd, vnode_t *vp, offset_t *off) 968 { 969 dsl_pool_t *dp; 970 dsl_dataset_t *ds; 971 dsl_dataset_t *fromds = NULL; 972 int err; 973 974 err = dsl_pool_hold(pool, FTAG, &dp); 975 if (err != 0) 976 return (err); 977 978 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 979 if (err != 0) { 980 dsl_pool_rele(dp, FTAG); 981 return (err); 982 } 983 984 if (fromsnap != 0) { 985 zfs_bookmark_phys_t zb; 986 boolean_t is_clone; 987 988 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 989 if (err != 0) { 990 dsl_dataset_rele(ds, FTAG); 991 dsl_pool_rele(dp, FTAG); 992 return (err); 993 } 994 if (!dsl_dataset_is_before(ds, fromds, 0)) 995 err = SET_ERROR(EXDEV); 996 zb.zbm_creation_time = 997 dsl_dataset_phys(fromds)->ds_creation_time; 998 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 999 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 1000 is_clone = (fromds->ds_dir != ds->ds_dir); 1001 dsl_dataset_rele(fromds, FTAG); 1002 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 1003 embedok, large_block_ok, compressok, outfd, 0, 0, vp, off); 1004 } else { 1005 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1006 embedok, large_block_ok, compressok, outfd, 0, 0, vp, off); 1007 } 1008 dsl_dataset_rele(ds, FTAG); 1009 return (err); 1010 } 1011 1012 int 1013 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 1014 boolean_t large_block_ok, boolean_t compressok, int outfd, 1015 uint64_t resumeobj, uint64_t resumeoff, 1016 vnode_t *vp, offset_t *off) 1017 { 1018 dsl_pool_t *dp; 1019 dsl_dataset_t *ds; 1020 int err; 1021 boolean_t owned = B_FALSE; 1022 1023 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 1024 return (SET_ERROR(EINVAL)); 1025 1026 err = dsl_pool_hold(tosnap, FTAG, &dp); 1027 if (err != 0) 1028 return (err); 1029 1030 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 1031 /* 1032 * We are sending a filesystem or volume. Ensure 1033 * that it doesn't change by owning the dataset. 1034 */ 1035 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 1036 owned = B_TRUE; 1037 } else { 1038 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 1039 } 1040 if (err != 0) { 1041 dsl_pool_rele(dp, FTAG); 1042 return (err); 1043 } 1044 1045 if (fromsnap != NULL) { 1046 zfs_bookmark_phys_t zb; 1047 boolean_t is_clone = B_FALSE; 1048 int fsnamelen = strchr(tosnap, '@') - tosnap; 1049 1050 /* 1051 * If the fromsnap is in a different filesystem, then 1052 * mark the send stream as a clone. 1053 */ 1054 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 1055 (fromsnap[fsnamelen] != '@' && 1056 fromsnap[fsnamelen] != '#')) { 1057 is_clone = B_TRUE; 1058 } 1059 1060 if (strchr(fromsnap, '@')) { 1061 dsl_dataset_t *fromds; 1062 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 1063 if (err == 0) { 1064 if (!dsl_dataset_is_before(ds, fromds, 0)) 1065 err = SET_ERROR(EXDEV); 1066 zb.zbm_creation_time = 1067 dsl_dataset_phys(fromds)->ds_creation_time; 1068 zb.zbm_creation_txg = 1069 dsl_dataset_phys(fromds)->ds_creation_txg; 1070 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 1071 is_clone = (ds->ds_dir != fromds->ds_dir); 1072 dsl_dataset_rele(fromds, FTAG); 1073 } 1074 } else { 1075 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 1076 } 1077 if (err != 0) { 1078 dsl_dataset_rele(ds, FTAG); 1079 dsl_pool_rele(dp, FTAG); 1080 return (err); 1081 } 1082 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 1083 embedok, large_block_ok, compressok, 1084 outfd, resumeobj, resumeoff, vp, off); 1085 } else { 1086 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1087 embedok, large_block_ok, compressok, 1088 outfd, resumeobj, resumeoff, vp, off); 1089 } 1090 if (owned) 1091 dsl_dataset_disown(ds, FTAG); 1092 else 1093 dsl_dataset_rele(ds, FTAG); 1094 return (err); 1095 } 1096 1097 static int 1098 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed, 1099 uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep) 1100 { 1101 int err = 0; 1102 uint64_t size; 1103 /* 1104 * Assume that space (both on-disk and in-stream) is dominated by 1105 * data. We will adjust for indirect blocks and the copies property, 1106 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 1107 */ 1108 uint64_t recordsize; 1109 uint64_t record_count; 1110 objset_t *os; 1111 VERIFY0(dmu_objset_from_ds(ds, &os)); 1112 1113 /* Assume all (uncompressed) blocks are recordsize. */ 1114 if (zfs_override_estimate_recordsize != 0) { 1115 recordsize = zfs_override_estimate_recordsize; 1116 } else if (os->os_phys->os_type == DMU_OST_ZVOL) { 1117 err = dsl_prop_get_int_ds(ds, 1118 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize); 1119 } else { 1120 err = dsl_prop_get_int_ds(ds, 1121 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize); 1122 } 1123 if (err != 0) 1124 return (err); 1125 record_count = uncompressed / recordsize; 1126 1127 /* 1128 * If we're estimating a send size for a compressed stream, use the 1129 * compressed data size to estimate the stream size. Otherwise, use the 1130 * uncompressed data size. 1131 */ 1132 size = stream_compressed ? compressed : uncompressed; 1133 1134 /* 1135 * Subtract out approximate space used by indirect blocks. 1136 * Assume most space is used by data blocks (non-indirect, non-dnode). 1137 * Assume no ditto blocks or internal fragmentation. 1138 * 1139 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 1140 * block. 1141 */ 1142 size -= record_count * sizeof (blkptr_t); 1143 1144 /* Add in the space for the record associated with each block. */ 1145 size += record_count * sizeof (dmu_replay_record_t); 1146 1147 *sizep = size; 1148 1149 return (0); 1150 } 1151 1152 int 1153 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, 1154 boolean_t stream_compressed, uint64_t *sizep) 1155 { 1156 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1157 int err; 1158 uint64_t uncomp, comp; 1159 1160 ASSERT(dsl_pool_config_held(dp)); 1161 1162 /* tosnap must be a snapshot */ 1163 if (!ds->ds_is_snapshot) 1164 return (SET_ERROR(EINVAL)); 1165 1166 /* fromsnap, if provided, must be a snapshot */ 1167 if (fromds != NULL && !fromds->ds_is_snapshot) 1168 return (SET_ERROR(EINVAL)); 1169 1170 /* 1171 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1172 * or the origin's fs. 1173 */ 1174 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1175 return (SET_ERROR(EXDEV)); 1176 1177 /* Get compressed and uncompressed size estimates of changed data. */ 1178 if (fromds == NULL) { 1179 uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1180 comp = dsl_dataset_phys(ds)->ds_compressed_bytes; 1181 } else { 1182 uint64_t used; 1183 err = dsl_dataset_space_written(fromds, ds, 1184 &used, &comp, &uncomp); 1185 if (err != 0) 1186 return (err); 1187 } 1188 1189 err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp, 1190 stream_compressed, sizep); 1191 /* 1192 * Add the size of the BEGIN and END records to the estimate. 1193 */ 1194 *sizep += 2 * sizeof (dmu_replay_record_t); 1195 return (err); 1196 } 1197 1198 struct calculate_send_arg { 1199 uint64_t uncompressed; 1200 uint64_t compressed; 1201 }; 1202 1203 /* 1204 * Simple callback used to traverse the blocks of a snapshot and sum their 1205 * uncompressed and compressed sizes. 1206 */ 1207 /* ARGSUSED */ 1208 static int 1209 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1210 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1211 { 1212 struct calculate_send_arg *space = arg; 1213 if (bp != NULL && !BP_IS_HOLE(bp)) { 1214 space->uncompressed += BP_GET_UCSIZE(bp); 1215 space->compressed += BP_GET_PSIZE(bp); 1216 } 1217 return (0); 1218 } 1219 1220 /* 1221 * Given a desination snapshot and a TXG, calculate the approximate size of a 1222 * send stream sent from that TXG. from_txg may be zero, indicating that the 1223 * whole snapshot will be sent. 1224 */ 1225 int 1226 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1227 boolean_t stream_compressed, uint64_t *sizep) 1228 { 1229 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1230 int err; 1231 struct calculate_send_arg size = { 0 }; 1232 1233 ASSERT(dsl_pool_config_held(dp)); 1234 1235 /* tosnap must be a snapshot */ 1236 if (!ds->ds_is_snapshot) 1237 return (SET_ERROR(EINVAL)); 1238 1239 /* verify that from_txg is before the provided snapshot was taken */ 1240 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1241 return (SET_ERROR(EXDEV)); 1242 } 1243 1244 /* 1245 * traverse the blocks of the snapshot with birth times after 1246 * from_txg, summing their uncompressed size 1247 */ 1248 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1249 dmu_calculate_send_traversal, &size); 1250 if (err) 1251 return (err); 1252 1253 err = dmu_adjust_send_estimate_for_indirects(ds, size.uncompressed, 1254 size.compressed, stream_compressed, sizep); 1255 return (err); 1256 } 1257 1258 typedef struct dmu_recv_begin_arg { 1259 const char *drba_origin; 1260 dmu_recv_cookie_t *drba_cookie; 1261 cred_t *drba_cred; 1262 uint64_t drba_snapobj; 1263 } dmu_recv_begin_arg_t; 1264 1265 static int 1266 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1267 uint64_t fromguid) 1268 { 1269 uint64_t val; 1270 int error; 1271 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1272 1273 /* temporary clone name must not exist */ 1274 error = zap_lookup(dp->dp_meta_objset, 1275 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1276 8, 1, &val); 1277 if (error != ENOENT) 1278 return (error == 0 ? EBUSY : error); 1279 1280 /* new snapshot name must not exist */ 1281 error = zap_lookup(dp->dp_meta_objset, 1282 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1283 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1284 if (error != ENOENT) 1285 return (error == 0 ? EEXIST : error); 1286 1287 /* 1288 * Check snapshot limit before receiving. We'll recheck again at the 1289 * end, but might as well abort before receiving if we're already over 1290 * the limit. 1291 * 1292 * Note that we do not check the file system limit with 1293 * dsl_dir_fscount_check because the temporary %clones don't count 1294 * against that limit. 1295 */ 1296 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1297 NULL, drba->drba_cred); 1298 if (error != 0) 1299 return (error); 1300 1301 if (fromguid != 0) { 1302 dsl_dataset_t *snap; 1303 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1304 1305 /* Find snapshot in this dir that matches fromguid. */ 1306 while (obj != 0) { 1307 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1308 &snap); 1309 if (error != 0) 1310 return (SET_ERROR(ENODEV)); 1311 if (snap->ds_dir != ds->ds_dir) { 1312 dsl_dataset_rele(snap, FTAG); 1313 return (SET_ERROR(ENODEV)); 1314 } 1315 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1316 break; 1317 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1318 dsl_dataset_rele(snap, FTAG); 1319 } 1320 if (obj == 0) 1321 return (SET_ERROR(ENODEV)); 1322 1323 if (drba->drba_cookie->drc_force) { 1324 drba->drba_snapobj = obj; 1325 } else { 1326 /* 1327 * If we are not forcing, there must be no 1328 * changes since fromsnap. 1329 */ 1330 if (dsl_dataset_modified_since_snap(ds, snap)) { 1331 dsl_dataset_rele(snap, FTAG); 1332 return (SET_ERROR(ETXTBSY)); 1333 } 1334 drba->drba_snapobj = ds->ds_prev->ds_object; 1335 } 1336 1337 dsl_dataset_rele(snap, FTAG); 1338 } else { 1339 /* if full, then must be forced */ 1340 if (!drba->drba_cookie->drc_force) 1341 return (SET_ERROR(EEXIST)); 1342 /* start from $ORIGIN@$ORIGIN, if supported */ 1343 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1344 dp->dp_origin_snap->ds_object : 0; 1345 } 1346 1347 return (0); 1348 1349 } 1350 1351 static int 1352 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1353 { 1354 dmu_recv_begin_arg_t *drba = arg; 1355 dsl_pool_t *dp = dmu_tx_pool(tx); 1356 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1357 uint64_t fromguid = drrb->drr_fromguid; 1358 int flags = drrb->drr_flags; 1359 int error; 1360 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1361 dsl_dataset_t *ds; 1362 const char *tofs = drba->drba_cookie->drc_tofs; 1363 1364 /* already checked */ 1365 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1366 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 1367 1368 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1369 DMU_COMPOUNDSTREAM || 1370 drrb->drr_type >= DMU_OST_NUMTYPES || 1371 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1372 return (SET_ERROR(EINVAL)); 1373 1374 /* Verify pool version supports SA if SA_SPILL feature set */ 1375 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1376 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1377 return (SET_ERROR(ENOTSUP)); 1378 1379 if (drba->drba_cookie->drc_resumable && 1380 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 1381 return (SET_ERROR(ENOTSUP)); 1382 1383 /* 1384 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1385 * record to a plain WRITE record, so the pool must have the 1386 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1387 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1388 */ 1389 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1390 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1391 return (SET_ERROR(ENOTSUP)); 1392 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 1393 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1394 return (SET_ERROR(ENOTSUP)); 1395 1396 /* 1397 * The receiving code doesn't know how to translate large blocks 1398 * to smaller ones, so the pool must have the LARGE_BLOCKS 1399 * feature enabled if the stream has LARGE_BLOCKS. 1400 */ 1401 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1402 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1403 return (SET_ERROR(ENOTSUP)); 1404 1405 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1406 if (error == 0) { 1407 /* target fs already exists; recv into temp clone */ 1408 1409 /* Can't recv a clone into an existing fs */ 1410 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 1411 dsl_dataset_rele(ds, FTAG); 1412 return (SET_ERROR(EINVAL)); 1413 } 1414 1415 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1416 dsl_dataset_rele(ds, FTAG); 1417 } else if (error == ENOENT) { 1418 /* target fs does not exist; must be a full backup or clone */ 1419 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1420 1421 /* 1422 * If it's a non-clone incremental, we are missing the 1423 * target fs, so fail the recv. 1424 */ 1425 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1426 drba->drba_origin)) 1427 return (SET_ERROR(ENOENT)); 1428 1429 /* 1430 * If we're receiving a full send as a clone, and it doesn't 1431 * contain all the necessary free records and freeobject 1432 * records, reject it. 1433 */ 1434 if (fromguid == 0 && drba->drba_origin && 1435 !(flags & DRR_FLAG_FREERECORDS)) 1436 return (SET_ERROR(EINVAL)); 1437 1438 /* Open the parent of tofs */ 1439 ASSERT3U(strlen(tofs), <, sizeof (buf)); 1440 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1441 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1442 if (error != 0) 1443 return (error); 1444 1445 /* 1446 * Check filesystem and snapshot limits before receiving. We'll 1447 * recheck snapshot limits again at the end (we create the 1448 * filesystems and increment those counts during begin_sync). 1449 */ 1450 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1451 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1452 if (error != 0) { 1453 dsl_dataset_rele(ds, FTAG); 1454 return (error); 1455 } 1456 1457 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1458 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1459 if (error != 0) { 1460 dsl_dataset_rele(ds, FTAG); 1461 return (error); 1462 } 1463 1464 if (drba->drba_origin != NULL) { 1465 dsl_dataset_t *origin; 1466 error = dsl_dataset_hold(dp, drba->drba_origin, 1467 FTAG, &origin); 1468 if (error != 0) { 1469 dsl_dataset_rele(ds, FTAG); 1470 return (error); 1471 } 1472 if (!origin->ds_is_snapshot) { 1473 dsl_dataset_rele(origin, FTAG); 1474 dsl_dataset_rele(ds, FTAG); 1475 return (SET_ERROR(EINVAL)); 1476 } 1477 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 1478 fromguid != 0) { 1479 dsl_dataset_rele(origin, FTAG); 1480 dsl_dataset_rele(ds, FTAG); 1481 return (SET_ERROR(ENODEV)); 1482 } 1483 dsl_dataset_rele(origin, FTAG); 1484 } 1485 dsl_dataset_rele(ds, FTAG); 1486 error = 0; 1487 } 1488 return (error); 1489 } 1490 1491 static void 1492 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1493 { 1494 dmu_recv_begin_arg_t *drba = arg; 1495 dsl_pool_t *dp = dmu_tx_pool(tx); 1496 objset_t *mos = dp->dp_meta_objset; 1497 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1498 const char *tofs = drba->drba_cookie->drc_tofs; 1499 dsl_dataset_t *ds, *newds; 1500 uint64_t dsobj; 1501 int error; 1502 uint64_t crflags = 0; 1503 1504 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 1505 crflags |= DS_FLAG_CI_DATASET; 1506 1507 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1508 if (error == 0) { 1509 /* create temporary clone */ 1510 dsl_dataset_t *snap = NULL; 1511 if (drba->drba_snapobj != 0) { 1512 VERIFY0(dsl_dataset_hold_obj(dp, 1513 drba->drba_snapobj, FTAG, &snap)); 1514 } 1515 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1516 snap, crflags, drba->drba_cred, tx); 1517 if (drba->drba_snapobj != 0) 1518 dsl_dataset_rele(snap, FTAG); 1519 dsl_dataset_rele(ds, FTAG); 1520 } else { 1521 dsl_dir_t *dd; 1522 const char *tail; 1523 dsl_dataset_t *origin = NULL; 1524 1525 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1526 1527 if (drba->drba_origin != NULL) { 1528 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1529 FTAG, &origin)); 1530 } 1531 1532 /* Create new dataset. */ 1533 dsobj = dsl_dataset_create_sync(dd, 1534 strrchr(tofs, '/') + 1, 1535 origin, crflags, drba->drba_cred, tx); 1536 if (origin != NULL) 1537 dsl_dataset_rele(origin, FTAG); 1538 dsl_dir_rele(dd, FTAG); 1539 drba->drba_cookie->drc_newfs = B_TRUE; 1540 } 1541 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1542 1543 if (drba->drba_cookie->drc_resumable) { 1544 dsl_dataset_zapify(newds, tx); 1545 if (drrb->drr_fromguid != 0) { 1546 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 1547 8, 1, &drrb->drr_fromguid, tx)); 1548 } 1549 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 1550 8, 1, &drrb->drr_toguid, tx)); 1551 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1552 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 1553 uint64_t one = 1; 1554 uint64_t zero = 0; 1555 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 1556 8, 1, &one, tx)); 1557 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 1558 8, 1, &zero, tx)); 1559 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 1560 8, 1, &zero, tx)); 1561 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1562 DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 1563 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 1564 8, 1, &one, tx)); 1565 } 1566 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1567 DMU_BACKUP_FEATURE_EMBED_DATA) { 1568 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 1569 8, 1, &one, tx)); 1570 } 1571 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1572 DMU_BACKUP_FEATURE_COMPRESSED) { 1573 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 1574 8, 1, &one, tx)); 1575 } 1576 } 1577 1578 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1579 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1580 1581 /* 1582 * If we actually created a non-clone, we need to create the 1583 * objset in our new dataset. 1584 */ 1585 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 1586 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1587 (void) dmu_objset_create_impl(dp->dp_spa, 1588 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1589 } 1590 rrw_exit(&newds->ds_bp_rwlock, FTAG); 1591 1592 drba->drba_cookie->drc_ds = newds; 1593 1594 spa_history_log_internal_ds(newds, "receive", tx, ""); 1595 } 1596 1597 static int 1598 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1599 { 1600 dmu_recv_begin_arg_t *drba = arg; 1601 dsl_pool_t *dp = dmu_tx_pool(tx); 1602 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1603 int error; 1604 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1605 dsl_dataset_t *ds; 1606 const char *tofs = drba->drba_cookie->drc_tofs; 1607 1608 /* already checked */ 1609 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1610 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 1611 1612 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1613 DMU_COMPOUNDSTREAM || 1614 drrb->drr_type >= DMU_OST_NUMTYPES) 1615 return (SET_ERROR(EINVAL)); 1616 1617 /* Verify pool version supports SA if SA_SPILL feature set */ 1618 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1619 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1620 return (SET_ERROR(ENOTSUP)); 1621 1622 /* 1623 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1624 * record to a plain WRITE record, so the pool must have the 1625 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1626 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1627 */ 1628 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1629 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1630 return (SET_ERROR(ENOTSUP)); 1631 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 1632 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1633 return (SET_ERROR(ENOTSUP)); 1634 1635 /* 6 extra bytes for /%recv */ 1636 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1637 1638 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1639 tofs, recv_clone_name); 1640 1641 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1642 /* %recv does not exist; continue in tofs */ 1643 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1644 if (error != 0) 1645 return (error); 1646 } 1647 1648 /* check that ds is marked inconsistent */ 1649 if (!DS_IS_INCONSISTENT(ds)) { 1650 dsl_dataset_rele(ds, FTAG); 1651 return (SET_ERROR(EINVAL)); 1652 } 1653 1654 /* check that there is resuming data, and that the toguid matches */ 1655 if (!dsl_dataset_is_zapified(ds)) { 1656 dsl_dataset_rele(ds, FTAG); 1657 return (SET_ERROR(EINVAL)); 1658 } 1659 uint64_t val; 1660 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1661 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1662 if (error != 0 || drrb->drr_toguid != val) { 1663 dsl_dataset_rele(ds, FTAG); 1664 return (SET_ERROR(EINVAL)); 1665 } 1666 1667 /* 1668 * Check if the receive is still running. If so, it will be owned. 1669 * Note that nothing else can own the dataset (e.g. after the receive 1670 * fails) because it will be marked inconsistent. 1671 */ 1672 if (dsl_dataset_has_owner(ds)) { 1673 dsl_dataset_rele(ds, FTAG); 1674 return (SET_ERROR(EBUSY)); 1675 } 1676 1677 /* There should not be any snapshots of this fs yet. */ 1678 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1679 dsl_dataset_rele(ds, FTAG); 1680 return (SET_ERROR(EINVAL)); 1681 } 1682 1683 /* 1684 * Note: resume point will be checked when we process the first WRITE 1685 * record. 1686 */ 1687 1688 /* check that the origin matches */ 1689 val = 0; 1690 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1691 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1692 if (drrb->drr_fromguid != val) { 1693 dsl_dataset_rele(ds, FTAG); 1694 return (SET_ERROR(EINVAL)); 1695 } 1696 1697 dsl_dataset_rele(ds, FTAG); 1698 return (0); 1699 } 1700 1701 static void 1702 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1703 { 1704 dmu_recv_begin_arg_t *drba = arg; 1705 dsl_pool_t *dp = dmu_tx_pool(tx); 1706 const char *tofs = drba->drba_cookie->drc_tofs; 1707 dsl_dataset_t *ds; 1708 uint64_t dsobj; 1709 /* 6 extra bytes for /%recv */ 1710 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1711 1712 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1713 tofs, recv_clone_name); 1714 1715 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1716 /* %recv does not exist; continue in tofs */ 1717 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); 1718 drba->drba_cookie->drc_newfs = B_TRUE; 1719 } 1720 1721 /* clear the inconsistent flag so that we can own it */ 1722 ASSERT(DS_IS_INCONSISTENT(ds)); 1723 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1724 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 1725 dsobj = ds->ds_object; 1726 dsl_dataset_rele(ds, FTAG); 1727 1728 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); 1729 1730 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1731 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 1732 1733 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1734 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); 1735 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1736 1737 drba->drba_cookie->drc_ds = ds; 1738 1739 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 1740 } 1741 1742 /* 1743 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1744 * succeeds; otherwise we will leak the holds on the datasets. 1745 */ 1746 int 1747 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1748 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 1749 { 1750 dmu_recv_begin_arg_t drba = { 0 }; 1751 1752 bzero(drc, sizeof (dmu_recv_cookie_t)); 1753 drc->drc_drr_begin = drr_begin; 1754 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1755 drc->drc_tosnap = tosnap; 1756 drc->drc_tofs = tofs; 1757 drc->drc_force = force; 1758 drc->drc_resumable = resumable; 1759 drc->drc_cred = CRED(); 1760 drc->drc_clone = (origin != NULL); 1761 1762 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1763 drc->drc_byteswap = B_TRUE; 1764 (void) fletcher_4_incremental_byteswap(drr_begin, 1765 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1766 byteswap_record(drr_begin); 1767 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1768 (void) fletcher_4_incremental_native(drr_begin, 1769 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1770 } else { 1771 return (SET_ERROR(EINVAL)); 1772 } 1773 1774 drba.drba_origin = origin; 1775 drba.drba_cookie = drc; 1776 drba.drba_cred = CRED(); 1777 1778 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1779 DMU_BACKUP_FEATURE_RESUMING) { 1780 return (dsl_sync_task(tofs, 1781 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1782 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1783 } else { 1784 return (dsl_sync_task(tofs, 1785 dmu_recv_begin_check, dmu_recv_begin_sync, 1786 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1787 } 1788 } 1789 1790 struct receive_record_arg { 1791 dmu_replay_record_t header; 1792 void *payload; /* Pointer to a buffer containing the payload */ 1793 /* 1794 * If the record is a write, pointer to the arc_buf_t containing the 1795 * payload. 1796 */ 1797 arc_buf_t *write_buf; 1798 int payload_size; 1799 uint64_t bytes_read; /* bytes read from stream when record created */ 1800 boolean_t eos_marker; /* Marks the end of the stream */ 1801 bqueue_node_t node; 1802 }; 1803 1804 struct receive_writer_arg { 1805 objset_t *os; 1806 boolean_t byteswap; 1807 bqueue_t q; 1808 1809 /* 1810 * These three args are used to signal to the main thread that we're 1811 * done. 1812 */ 1813 kmutex_t mutex; 1814 kcondvar_t cv; 1815 boolean_t done; 1816 1817 int err; 1818 /* A map from guid to dataset to help handle dedup'd streams. */ 1819 avl_tree_t *guid_to_ds_map; 1820 boolean_t resumable; 1821 uint64_t last_object; 1822 uint64_t last_offset; 1823 uint64_t max_object; /* highest object ID referenced in stream */ 1824 uint64_t bytes_read; /* bytes read when current record created */ 1825 }; 1826 1827 struct objlist { 1828 list_t list; /* List of struct receive_objnode. */ 1829 /* 1830 * Last object looked up. Used to assert that objects are being looked 1831 * up in ascending order. 1832 */ 1833 uint64_t last_lookup; 1834 }; 1835 1836 struct receive_objnode { 1837 list_node_t node; 1838 uint64_t object; 1839 }; 1840 1841 struct receive_arg { 1842 objset_t *os; 1843 vnode_t *vp; /* The vnode to read the stream from */ 1844 uint64_t voff; /* The current offset in the stream */ 1845 uint64_t bytes_read; 1846 /* 1847 * A record that has had its payload read in, but hasn't yet been handed 1848 * off to the worker thread. 1849 */ 1850 struct receive_record_arg *rrd; 1851 /* A record that has had its header read in, but not its payload. */ 1852 struct receive_record_arg *next_rrd; 1853 zio_cksum_t cksum; 1854 zio_cksum_t prev_cksum; 1855 int err; 1856 boolean_t byteswap; 1857 /* Sorted list of objects not to issue prefetches for. */ 1858 struct objlist ignore_objlist; 1859 }; 1860 1861 typedef struct guid_map_entry { 1862 uint64_t guid; 1863 dsl_dataset_t *gme_ds; 1864 avl_node_t avlnode; 1865 } guid_map_entry_t; 1866 1867 static int 1868 guid_compare(const void *arg1, const void *arg2) 1869 { 1870 const guid_map_entry_t *gmep1 = arg1; 1871 const guid_map_entry_t *gmep2 = arg2; 1872 1873 if (gmep1->guid < gmep2->guid) 1874 return (-1); 1875 else if (gmep1->guid > gmep2->guid) 1876 return (1); 1877 return (0); 1878 } 1879 1880 static void 1881 free_guid_map_onexit(void *arg) 1882 { 1883 avl_tree_t *ca = arg; 1884 void *cookie = NULL; 1885 guid_map_entry_t *gmep; 1886 1887 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1888 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1889 dsl_dataset_rele(gmep->gme_ds, gmep); 1890 kmem_free(gmep, sizeof (guid_map_entry_t)); 1891 } 1892 avl_destroy(ca); 1893 kmem_free(ca, sizeof (avl_tree_t)); 1894 } 1895 1896 static int 1897 receive_read(struct receive_arg *ra, int len, void *buf) 1898 { 1899 int done = 0; 1900 1901 /* 1902 * The code doesn't rely on this (lengths being multiples of 8). See 1903 * comment in dump_bytes. 1904 */ 1905 ASSERT0(len % 8); 1906 1907 while (done < len) { 1908 ssize_t resid; 1909 1910 ra->err = vn_rdwr(UIO_READ, ra->vp, 1911 (char *)buf + done, len - done, 1912 ra->voff, UIO_SYSSPACE, FAPPEND, 1913 RLIM64_INFINITY, CRED(), &resid); 1914 1915 if (resid == len - done) { 1916 /* 1917 * Note: ECKSUM indicates that the receive 1918 * was interrupted and can potentially be resumed. 1919 */ 1920 ra->err = SET_ERROR(ECKSUM); 1921 } 1922 ra->voff += len - done - resid; 1923 done = len - resid; 1924 if (ra->err != 0) 1925 return (ra->err); 1926 } 1927 1928 ra->bytes_read += len; 1929 1930 ASSERT3U(done, ==, len); 1931 return (0); 1932 } 1933 1934 static void 1935 byteswap_record(dmu_replay_record_t *drr) 1936 { 1937 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1938 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1939 drr->drr_type = BSWAP_32(drr->drr_type); 1940 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1941 1942 switch (drr->drr_type) { 1943 case DRR_BEGIN: 1944 DO64(drr_begin.drr_magic); 1945 DO64(drr_begin.drr_versioninfo); 1946 DO64(drr_begin.drr_creation_time); 1947 DO32(drr_begin.drr_type); 1948 DO32(drr_begin.drr_flags); 1949 DO64(drr_begin.drr_toguid); 1950 DO64(drr_begin.drr_fromguid); 1951 break; 1952 case DRR_OBJECT: 1953 DO64(drr_object.drr_object); 1954 DO32(drr_object.drr_type); 1955 DO32(drr_object.drr_bonustype); 1956 DO32(drr_object.drr_blksz); 1957 DO32(drr_object.drr_bonuslen); 1958 DO64(drr_object.drr_toguid); 1959 break; 1960 case DRR_FREEOBJECTS: 1961 DO64(drr_freeobjects.drr_firstobj); 1962 DO64(drr_freeobjects.drr_numobjs); 1963 DO64(drr_freeobjects.drr_toguid); 1964 break; 1965 case DRR_WRITE: 1966 DO64(drr_write.drr_object); 1967 DO32(drr_write.drr_type); 1968 DO64(drr_write.drr_offset); 1969 DO64(drr_write.drr_logical_size); 1970 DO64(drr_write.drr_toguid); 1971 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1972 DO64(drr_write.drr_key.ddk_prop); 1973 DO64(drr_write.drr_compressed_size); 1974 break; 1975 case DRR_WRITE_BYREF: 1976 DO64(drr_write_byref.drr_object); 1977 DO64(drr_write_byref.drr_offset); 1978 DO64(drr_write_byref.drr_length); 1979 DO64(drr_write_byref.drr_toguid); 1980 DO64(drr_write_byref.drr_refguid); 1981 DO64(drr_write_byref.drr_refobject); 1982 DO64(drr_write_byref.drr_refoffset); 1983 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1984 drr_key.ddk_cksum); 1985 DO64(drr_write_byref.drr_key.ddk_prop); 1986 break; 1987 case DRR_WRITE_EMBEDDED: 1988 DO64(drr_write_embedded.drr_object); 1989 DO64(drr_write_embedded.drr_offset); 1990 DO64(drr_write_embedded.drr_length); 1991 DO64(drr_write_embedded.drr_toguid); 1992 DO32(drr_write_embedded.drr_lsize); 1993 DO32(drr_write_embedded.drr_psize); 1994 break; 1995 case DRR_FREE: 1996 DO64(drr_free.drr_object); 1997 DO64(drr_free.drr_offset); 1998 DO64(drr_free.drr_length); 1999 DO64(drr_free.drr_toguid); 2000 break; 2001 case DRR_SPILL: 2002 DO64(drr_spill.drr_object); 2003 DO64(drr_spill.drr_length); 2004 DO64(drr_spill.drr_toguid); 2005 break; 2006 case DRR_END: 2007 DO64(drr_end.drr_toguid); 2008 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 2009 break; 2010 } 2011 2012 if (drr->drr_type != DRR_BEGIN) { 2013 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 2014 } 2015 2016 #undef DO64 2017 #undef DO32 2018 } 2019 2020 static inline uint8_t 2021 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 2022 { 2023 if (bonus_type == DMU_OT_SA) { 2024 return (1); 2025 } else { 2026 return (1 + 2027 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 2028 } 2029 } 2030 2031 static void 2032 save_resume_state(struct receive_writer_arg *rwa, 2033 uint64_t object, uint64_t offset, dmu_tx_t *tx) 2034 { 2035 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 2036 2037 if (!rwa->resumable) 2038 return; 2039 2040 /* 2041 * We use ds_resume_bytes[] != 0 to indicate that we need to 2042 * update this on disk, so it must not be 0. 2043 */ 2044 ASSERT(rwa->bytes_read != 0); 2045 2046 /* 2047 * We only resume from write records, which have a valid 2048 * (non-meta-dnode) object number. 2049 */ 2050 ASSERT(object != 0); 2051 2052 /* 2053 * For resuming to work correctly, we must receive records in order, 2054 * sorted by object,offset. This is checked by the callers, but 2055 * assert it here for good measure. 2056 */ 2057 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 2058 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 2059 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 2060 ASSERT3U(rwa->bytes_read, >=, 2061 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 2062 2063 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 2064 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 2065 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 2066 } 2067 2068 static int 2069 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 2070 void *data) 2071 { 2072 dmu_object_info_t doi; 2073 dmu_tx_t *tx; 2074 uint64_t object; 2075 int err; 2076 2077 if (drro->drr_type == DMU_OT_NONE || 2078 !DMU_OT_IS_VALID(drro->drr_type) || 2079 !DMU_OT_IS_VALID(drro->drr_bonustype) || 2080 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 2081 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 2082 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 2083 drro->drr_blksz < SPA_MINBLOCKSIZE || 2084 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 2085 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 2086 return (SET_ERROR(EINVAL)); 2087 } 2088 2089 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 2090 2091 if (err != 0 && err != ENOENT) 2092 return (SET_ERROR(EINVAL)); 2093 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 2094 2095 if (drro->drr_object > rwa->max_object) 2096 rwa->max_object = drro->drr_object; 2097 2098 /* 2099 * If we are losing blkptrs or changing the block size this must 2100 * be a new file instance. We must clear out the previous file 2101 * contents before we can change this type of metadata in the dnode. 2102 */ 2103 if (err == 0) { 2104 int nblkptr; 2105 2106 nblkptr = deduce_nblkptr(drro->drr_bonustype, 2107 drro->drr_bonuslen); 2108 2109 if (drro->drr_blksz != doi.doi_data_block_size || 2110 nblkptr < doi.doi_nblkptr) { 2111 err = dmu_free_long_range(rwa->os, drro->drr_object, 2112 0, DMU_OBJECT_END); 2113 if (err != 0) 2114 return (SET_ERROR(EINVAL)); 2115 } 2116 } 2117 2118 tx = dmu_tx_create(rwa->os); 2119 dmu_tx_hold_bonus(tx, object); 2120 err = dmu_tx_assign(tx, TXG_WAIT); 2121 if (err != 0) { 2122 dmu_tx_abort(tx); 2123 return (err); 2124 } 2125 2126 if (object == DMU_NEW_OBJECT) { 2127 /* currently free, want to be allocated */ 2128 err = dmu_object_claim(rwa->os, drro->drr_object, 2129 drro->drr_type, drro->drr_blksz, 2130 drro->drr_bonustype, drro->drr_bonuslen, tx); 2131 } else if (drro->drr_type != doi.doi_type || 2132 drro->drr_blksz != doi.doi_data_block_size || 2133 drro->drr_bonustype != doi.doi_bonus_type || 2134 drro->drr_bonuslen != doi.doi_bonus_size) { 2135 /* currently allocated, but with different properties */ 2136 err = dmu_object_reclaim(rwa->os, drro->drr_object, 2137 drro->drr_type, drro->drr_blksz, 2138 drro->drr_bonustype, drro->drr_bonuslen, tx); 2139 } 2140 if (err != 0) { 2141 dmu_tx_commit(tx); 2142 return (SET_ERROR(EINVAL)); 2143 } 2144 2145 dmu_object_set_checksum(rwa->os, drro->drr_object, 2146 drro->drr_checksumtype, tx); 2147 dmu_object_set_compress(rwa->os, drro->drr_object, 2148 drro->drr_compress, tx); 2149 2150 if (data != NULL) { 2151 dmu_buf_t *db; 2152 2153 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 2154 dmu_buf_will_dirty(db, tx); 2155 2156 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2157 bcopy(data, db->db_data, drro->drr_bonuslen); 2158 if (rwa->byteswap) { 2159 dmu_object_byteswap_t byteswap = 2160 DMU_OT_BYTESWAP(drro->drr_bonustype); 2161 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2162 drro->drr_bonuslen); 2163 } 2164 dmu_buf_rele(db, FTAG); 2165 } 2166 dmu_tx_commit(tx); 2167 2168 return (0); 2169 } 2170 2171 /* ARGSUSED */ 2172 static int 2173 receive_freeobjects(struct receive_writer_arg *rwa, 2174 struct drr_freeobjects *drrfo) 2175 { 2176 uint64_t obj; 2177 int next_err = 0; 2178 2179 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2180 return (SET_ERROR(EINVAL)); 2181 2182 for (obj = drrfo->drr_firstobj; 2183 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 2184 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2185 int err; 2186 2187 if (dmu_object_info(rwa->os, obj, NULL) != 0) 2188 continue; 2189 2190 err = dmu_free_long_object(rwa->os, obj); 2191 if (err != 0) 2192 return (err); 2193 2194 if (obj > rwa->max_object) 2195 rwa->max_object = obj; 2196 } 2197 if (next_err != ESRCH) 2198 return (next_err); 2199 return (0); 2200 } 2201 2202 static int 2203 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 2204 arc_buf_t *abuf) 2205 { 2206 dmu_tx_t *tx; 2207 int err; 2208 2209 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 2210 !DMU_OT_IS_VALID(drrw->drr_type)) 2211 return (SET_ERROR(EINVAL)); 2212 2213 /* 2214 * For resuming to work, records must be in increasing order 2215 * by (object, offset). 2216 */ 2217 if (drrw->drr_object < rwa->last_object || 2218 (drrw->drr_object == rwa->last_object && 2219 drrw->drr_offset < rwa->last_offset)) { 2220 return (SET_ERROR(EINVAL)); 2221 } 2222 rwa->last_object = drrw->drr_object; 2223 rwa->last_offset = drrw->drr_offset; 2224 2225 if (rwa->last_object > rwa->max_object) 2226 rwa->max_object = rwa->last_object; 2227 2228 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 2229 return (SET_ERROR(EINVAL)); 2230 2231 tx = dmu_tx_create(rwa->os); 2232 2233 dmu_tx_hold_write(tx, drrw->drr_object, 2234 drrw->drr_offset, drrw->drr_logical_size); 2235 err = dmu_tx_assign(tx, TXG_WAIT); 2236 if (err != 0) { 2237 dmu_tx_abort(tx); 2238 return (err); 2239 } 2240 if (rwa->byteswap) { 2241 dmu_object_byteswap_t byteswap = 2242 DMU_OT_BYTESWAP(drrw->drr_type); 2243 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2244 DRR_WRITE_PAYLOAD_SIZE(drrw)); 2245 } 2246 2247 /* use the bonus buf to look up the dnode in dmu_assign_arcbuf */ 2248 dmu_buf_t *bonus; 2249 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 2250 return (SET_ERROR(EINVAL)); 2251 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 2252 2253 /* 2254 * Note: If the receive fails, we want the resume stream to start 2255 * with the same record that we last successfully received (as opposed 2256 * to the next record), so that we can verify that we are 2257 * resuming from the correct location. 2258 */ 2259 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2260 dmu_tx_commit(tx); 2261 dmu_buf_rele(bonus, FTAG); 2262 2263 return (0); 2264 } 2265 2266 /* 2267 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 2268 * streams to refer to a copy of the data that is already on the 2269 * system because it came in earlier in the stream. This function 2270 * finds the earlier copy of the data, and uses that copy instead of 2271 * data from the stream to fulfill this write. 2272 */ 2273 static int 2274 receive_write_byref(struct receive_writer_arg *rwa, 2275 struct drr_write_byref *drrwbr) 2276 { 2277 dmu_tx_t *tx; 2278 int err; 2279 guid_map_entry_t gmesrch; 2280 guid_map_entry_t *gmep; 2281 avl_index_t where; 2282 objset_t *ref_os = NULL; 2283 dmu_buf_t *dbp; 2284 2285 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 2286 return (SET_ERROR(EINVAL)); 2287 2288 /* 2289 * If the GUID of the referenced dataset is different from the 2290 * GUID of the target dataset, find the referenced dataset. 2291 */ 2292 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 2293 gmesrch.guid = drrwbr->drr_refguid; 2294 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 2295 &where)) == NULL) { 2296 return (SET_ERROR(EINVAL)); 2297 } 2298 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 2299 return (SET_ERROR(EINVAL)); 2300 } else { 2301 ref_os = rwa->os; 2302 } 2303 2304 if (drrwbr->drr_object > rwa->max_object) 2305 rwa->max_object = drrwbr->drr_object; 2306 2307 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 2308 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 2309 if (err != 0) 2310 return (err); 2311 2312 tx = dmu_tx_create(rwa->os); 2313 2314 dmu_tx_hold_write(tx, drrwbr->drr_object, 2315 drrwbr->drr_offset, drrwbr->drr_length); 2316 err = dmu_tx_assign(tx, TXG_WAIT); 2317 if (err != 0) { 2318 dmu_tx_abort(tx); 2319 return (err); 2320 } 2321 dmu_write(rwa->os, drrwbr->drr_object, 2322 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 2323 dmu_buf_rele(dbp, FTAG); 2324 2325 /* See comment in restore_write. */ 2326 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 2327 dmu_tx_commit(tx); 2328 return (0); 2329 } 2330 2331 static int 2332 receive_write_embedded(struct receive_writer_arg *rwa, 2333 struct drr_write_embedded *drrwe, void *data) 2334 { 2335 dmu_tx_t *tx; 2336 int err; 2337 2338 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2339 return (EINVAL); 2340 2341 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2342 return (EINVAL); 2343 2344 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2345 return (EINVAL); 2346 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2347 return (EINVAL); 2348 2349 if (drrwe->drr_object > rwa->max_object) 2350 rwa->max_object = drrwe->drr_object; 2351 2352 tx = dmu_tx_create(rwa->os); 2353 2354 dmu_tx_hold_write(tx, drrwe->drr_object, 2355 drrwe->drr_offset, drrwe->drr_length); 2356 err = dmu_tx_assign(tx, TXG_WAIT); 2357 if (err != 0) { 2358 dmu_tx_abort(tx); 2359 return (err); 2360 } 2361 2362 dmu_write_embedded(rwa->os, drrwe->drr_object, 2363 drrwe->drr_offset, data, drrwe->drr_etype, 2364 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2365 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2366 2367 /* See comment in restore_write. */ 2368 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2369 dmu_tx_commit(tx); 2370 return (0); 2371 } 2372 2373 static int 2374 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2375 void *data) 2376 { 2377 dmu_tx_t *tx; 2378 dmu_buf_t *db, *db_spill; 2379 int err; 2380 2381 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2382 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2383 return (SET_ERROR(EINVAL)); 2384 2385 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2386 return (SET_ERROR(EINVAL)); 2387 2388 if (drrs->drr_object > rwa->max_object) 2389 rwa->max_object = drrs->drr_object; 2390 2391 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2392 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 2393 dmu_buf_rele(db, FTAG); 2394 return (err); 2395 } 2396 2397 tx = dmu_tx_create(rwa->os); 2398 2399 dmu_tx_hold_spill(tx, db->db_object); 2400 2401 err = dmu_tx_assign(tx, TXG_WAIT); 2402 if (err != 0) { 2403 dmu_buf_rele(db, FTAG); 2404 dmu_buf_rele(db_spill, FTAG); 2405 dmu_tx_abort(tx); 2406 return (err); 2407 } 2408 dmu_buf_will_dirty(db_spill, tx); 2409 2410 if (db_spill->db_size < drrs->drr_length) 2411 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2412 drrs->drr_length, tx)); 2413 bcopy(data, db_spill->db_data, drrs->drr_length); 2414 2415 dmu_buf_rele(db, FTAG); 2416 dmu_buf_rele(db_spill, FTAG); 2417 2418 dmu_tx_commit(tx); 2419 return (0); 2420 } 2421 2422 /* ARGSUSED */ 2423 static int 2424 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2425 { 2426 int err; 2427 2428 if (drrf->drr_length != -1ULL && 2429 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2430 return (SET_ERROR(EINVAL)); 2431 2432 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2433 return (SET_ERROR(EINVAL)); 2434 2435 if (drrf->drr_object > rwa->max_object) 2436 rwa->max_object = drrf->drr_object; 2437 2438 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2439 drrf->drr_offset, drrf->drr_length); 2440 2441 return (err); 2442 } 2443 2444 /* used to destroy the drc_ds on error */ 2445 static void 2446 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2447 { 2448 if (drc->drc_resumable) { 2449 /* wait for our resume state to be written to disk */ 2450 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); 2451 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2452 } else { 2453 char name[ZFS_MAX_DATASET_NAME_LEN]; 2454 dsl_dataset_name(drc->drc_ds, name); 2455 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2456 (void) dsl_destroy_head(name); 2457 } 2458 } 2459 2460 static void 2461 receive_cksum(struct receive_arg *ra, int len, void *buf) 2462 { 2463 if (ra->byteswap) { 2464 (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 2465 } else { 2466 (void) fletcher_4_incremental_native(buf, len, &ra->cksum); 2467 } 2468 } 2469 2470 /* 2471 * Read the payload into a buffer of size len, and update the current record's 2472 * payload field. 2473 * Allocate ra->next_rrd and read the next record's header into 2474 * ra->next_rrd->header. 2475 * Verify checksum of payload and next record. 2476 */ 2477 static int 2478 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 2479 { 2480 int err; 2481 2482 if (len != 0) { 2483 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2484 err = receive_read(ra, len, buf); 2485 if (err != 0) 2486 return (err); 2487 receive_cksum(ra, len, buf); 2488 2489 /* note: rrd is NULL when reading the begin record's payload */ 2490 if (ra->rrd != NULL) { 2491 ra->rrd->payload = buf; 2492 ra->rrd->payload_size = len; 2493 ra->rrd->bytes_read = ra->bytes_read; 2494 } 2495 } 2496 2497 ra->prev_cksum = ra->cksum; 2498 2499 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2500 err = receive_read(ra, sizeof (ra->next_rrd->header), 2501 &ra->next_rrd->header); 2502 ra->next_rrd->bytes_read = ra->bytes_read; 2503 if (err != 0) { 2504 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2505 ra->next_rrd = NULL; 2506 return (err); 2507 } 2508 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2509 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2510 ra->next_rrd = NULL; 2511 return (SET_ERROR(EINVAL)); 2512 } 2513 2514 /* 2515 * Note: checksum is of everything up to but not including the 2516 * checksum itself. 2517 */ 2518 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2519 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2520 receive_cksum(ra, 2521 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2522 &ra->next_rrd->header); 2523 2524 zio_cksum_t cksum_orig = 2525 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2526 zio_cksum_t *cksump = 2527 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2528 2529 if (ra->byteswap) 2530 byteswap_record(&ra->next_rrd->header); 2531 2532 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2533 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2534 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2535 ra->next_rrd = NULL; 2536 return (SET_ERROR(ECKSUM)); 2537 } 2538 2539 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2540 2541 return (0); 2542 } 2543 2544 static void 2545 objlist_create(struct objlist *list) 2546 { 2547 list_create(&list->list, sizeof (struct receive_objnode), 2548 offsetof(struct receive_objnode, node)); 2549 list->last_lookup = 0; 2550 } 2551 2552 static void 2553 objlist_destroy(struct objlist *list) 2554 { 2555 for (struct receive_objnode *n = list_remove_head(&list->list); 2556 n != NULL; n = list_remove_head(&list->list)) { 2557 kmem_free(n, sizeof (*n)); 2558 } 2559 list_destroy(&list->list); 2560 } 2561 2562 /* 2563 * This function looks through the objlist to see if the specified object number 2564 * is contained in the objlist. In the process, it will remove all object 2565 * numbers in the list that are smaller than the specified object number. Thus, 2566 * any lookup of an object number smaller than a previously looked up object 2567 * number will always return false; therefore, all lookups should be done in 2568 * ascending order. 2569 */ 2570 static boolean_t 2571 objlist_exists(struct objlist *list, uint64_t object) 2572 { 2573 struct receive_objnode *node = list_head(&list->list); 2574 ASSERT3U(object, >=, list->last_lookup); 2575 list->last_lookup = object; 2576 while (node != NULL && node->object < object) { 2577 VERIFY3P(node, ==, list_remove_head(&list->list)); 2578 kmem_free(node, sizeof (*node)); 2579 node = list_head(&list->list); 2580 } 2581 return (node != NULL && node->object == object); 2582 } 2583 2584 /* 2585 * The objlist is a list of object numbers stored in ascending order. However, 2586 * the insertion of new object numbers does not seek out the correct location to 2587 * store a new object number; instead, it appends it to the list for simplicity. 2588 * Thus, any users must take care to only insert new object numbers in ascending 2589 * order. 2590 */ 2591 static void 2592 objlist_insert(struct objlist *list, uint64_t object) 2593 { 2594 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 2595 node->object = object; 2596 #ifdef ZFS_DEBUG 2597 struct receive_objnode *last_object = list_tail(&list->list); 2598 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 2599 ASSERT3U(node->object, >, last_objnum); 2600 #endif 2601 list_insert_tail(&list->list, node); 2602 } 2603 2604 /* 2605 * Issue the prefetch reads for any necessary indirect blocks. 2606 * 2607 * We use the object ignore list to tell us whether or not to issue prefetches 2608 * for a given object. We do this for both correctness (in case the blocksize 2609 * of an object has changed) and performance (if the object doesn't exist, don't 2610 * needlessly try to issue prefetches). We also trim the list as we go through 2611 * the stream to prevent it from growing to an unbounded size. 2612 * 2613 * The object numbers within will always be in sorted order, and any write 2614 * records we see will also be in sorted order, but they're not sorted with 2615 * respect to each other (i.e. we can get several object records before 2616 * receiving each object's write records). As a result, once we've reached a 2617 * given object number, we can safely remove any reference to lower object 2618 * numbers in the ignore list. In practice, we receive up to 32 object records 2619 * before receiving write records, so the list can have up to 32 nodes in it. 2620 */ 2621 /* ARGSUSED */ 2622 static void 2623 receive_read_prefetch(struct receive_arg *ra, 2624 uint64_t object, uint64_t offset, uint64_t length) 2625 { 2626 if (!objlist_exists(&ra->ignore_objlist, object)) { 2627 dmu_prefetch(ra->os, object, 1, offset, length, 2628 ZIO_PRIORITY_SYNC_READ); 2629 } 2630 } 2631 2632 /* 2633 * Read records off the stream, issuing any necessary prefetches. 2634 */ 2635 static int 2636 receive_read_record(struct receive_arg *ra) 2637 { 2638 int err; 2639 2640 switch (ra->rrd->header.drr_type) { 2641 case DRR_OBJECT: 2642 { 2643 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2644 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2645 void *buf = kmem_zalloc(size, KM_SLEEP); 2646 dmu_object_info_t doi; 2647 err = receive_read_payload_and_next_header(ra, size, buf); 2648 if (err != 0) { 2649 kmem_free(buf, size); 2650 return (err); 2651 } 2652 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2653 /* 2654 * See receive_read_prefetch for an explanation why we're 2655 * storing this object in the ignore_obj_list. 2656 */ 2657 if (err == ENOENT || 2658 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2659 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2660 err = 0; 2661 } 2662 return (err); 2663 } 2664 case DRR_FREEOBJECTS: 2665 { 2666 err = receive_read_payload_and_next_header(ra, 0, NULL); 2667 return (err); 2668 } 2669 case DRR_WRITE: 2670 { 2671 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2672 arc_buf_t *abuf; 2673 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type); 2674 if (DRR_WRITE_COMPRESSED(drrw)) { 2675 ASSERT3U(drrw->drr_compressed_size, >, 0); 2676 ASSERT3U(drrw->drr_logical_size, >=, 2677 drrw->drr_compressed_size); 2678 ASSERT(!is_meta); 2679 abuf = arc_loan_compressed_buf( 2680 dmu_objset_spa(ra->os), 2681 drrw->drr_compressed_size, drrw->drr_logical_size, 2682 drrw->drr_compressiontype); 2683 } else { 2684 abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2685 is_meta, drrw->drr_logical_size); 2686 } 2687 2688 err = receive_read_payload_and_next_header(ra, 2689 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data); 2690 if (err != 0) { 2691 dmu_return_arcbuf(abuf); 2692 return (err); 2693 } 2694 ra->rrd->write_buf = abuf; 2695 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2696 drrw->drr_logical_size); 2697 return (err); 2698 } 2699 case DRR_WRITE_BYREF: 2700 { 2701 struct drr_write_byref *drrwb = 2702 &ra->rrd->header.drr_u.drr_write_byref; 2703 err = receive_read_payload_and_next_header(ra, 0, NULL); 2704 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2705 drrwb->drr_length); 2706 return (err); 2707 } 2708 case DRR_WRITE_EMBEDDED: 2709 { 2710 struct drr_write_embedded *drrwe = 2711 &ra->rrd->header.drr_u.drr_write_embedded; 2712 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2713 void *buf = kmem_zalloc(size, KM_SLEEP); 2714 2715 err = receive_read_payload_and_next_header(ra, size, buf); 2716 if (err != 0) { 2717 kmem_free(buf, size); 2718 return (err); 2719 } 2720 2721 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2722 drrwe->drr_length); 2723 return (err); 2724 } 2725 case DRR_FREE: 2726 { 2727 /* 2728 * It might be beneficial to prefetch indirect blocks here, but 2729 * we don't really have the data to decide for sure. 2730 */ 2731 err = receive_read_payload_and_next_header(ra, 0, NULL); 2732 return (err); 2733 } 2734 case DRR_END: 2735 { 2736 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2737 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2738 return (SET_ERROR(ECKSUM)); 2739 return (0); 2740 } 2741 case DRR_SPILL: 2742 { 2743 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2744 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2745 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2746 buf); 2747 if (err != 0) 2748 kmem_free(buf, drrs->drr_length); 2749 return (err); 2750 } 2751 default: 2752 return (SET_ERROR(EINVAL)); 2753 } 2754 } 2755 2756 /* 2757 * Commit the records to the pool. 2758 */ 2759 static int 2760 receive_process_record(struct receive_writer_arg *rwa, 2761 struct receive_record_arg *rrd) 2762 { 2763 int err; 2764 2765 /* Processing in order, therefore bytes_read should be increasing. */ 2766 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2767 rwa->bytes_read = rrd->bytes_read; 2768 2769 switch (rrd->header.drr_type) { 2770 case DRR_OBJECT: 2771 { 2772 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2773 err = receive_object(rwa, drro, rrd->payload); 2774 kmem_free(rrd->payload, rrd->payload_size); 2775 rrd->payload = NULL; 2776 return (err); 2777 } 2778 case DRR_FREEOBJECTS: 2779 { 2780 struct drr_freeobjects *drrfo = 2781 &rrd->header.drr_u.drr_freeobjects; 2782 return (receive_freeobjects(rwa, drrfo)); 2783 } 2784 case DRR_WRITE: 2785 { 2786 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2787 err = receive_write(rwa, drrw, rrd->write_buf); 2788 /* if receive_write() is successful, it consumes the arc_buf */ 2789 if (err != 0) 2790 dmu_return_arcbuf(rrd->write_buf); 2791 rrd->write_buf = NULL; 2792 rrd->payload = NULL; 2793 return (err); 2794 } 2795 case DRR_WRITE_BYREF: 2796 { 2797 struct drr_write_byref *drrwbr = 2798 &rrd->header.drr_u.drr_write_byref; 2799 return (receive_write_byref(rwa, drrwbr)); 2800 } 2801 case DRR_WRITE_EMBEDDED: 2802 { 2803 struct drr_write_embedded *drrwe = 2804 &rrd->header.drr_u.drr_write_embedded; 2805 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2806 kmem_free(rrd->payload, rrd->payload_size); 2807 rrd->payload = NULL; 2808 return (err); 2809 } 2810 case DRR_FREE: 2811 { 2812 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2813 return (receive_free(rwa, drrf)); 2814 } 2815 case DRR_SPILL: 2816 { 2817 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2818 err = receive_spill(rwa, drrs, rrd->payload); 2819 kmem_free(rrd->payload, rrd->payload_size); 2820 rrd->payload = NULL; 2821 return (err); 2822 } 2823 default: 2824 return (SET_ERROR(EINVAL)); 2825 } 2826 } 2827 2828 /* 2829 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2830 * receive_process_record When we're done, signal the main thread and exit. 2831 */ 2832 static void 2833 receive_writer_thread(void *arg) 2834 { 2835 struct receive_writer_arg *rwa = arg; 2836 struct receive_record_arg *rrd; 2837 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2838 rrd = bqueue_dequeue(&rwa->q)) { 2839 /* 2840 * If there's an error, the main thread will stop putting things 2841 * on the queue, but we need to clear everything in it before we 2842 * can exit. 2843 */ 2844 if (rwa->err == 0) { 2845 rwa->err = receive_process_record(rwa, rrd); 2846 } else if (rrd->write_buf != NULL) { 2847 dmu_return_arcbuf(rrd->write_buf); 2848 rrd->write_buf = NULL; 2849 rrd->payload = NULL; 2850 } else if (rrd->payload != NULL) { 2851 kmem_free(rrd->payload, rrd->payload_size); 2852 rrd->payload = NULL; 2853 } 2854 kmem_free(rrd, sizeof (*rrd)); 2855 } 2856 kmem_free(rrd, sizeof (*rrd)); 2857 mutex_enter(&rwa->mutex); 2858 rwa->done = B_TRUE; 2859 cv_signal(&rwa->cv); 2860 mutex_exit(&rwa->mutex); 2861 thread_exit(); 2862 } 2863 2864 static int 2865 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2866 { 2867 uint64_t val; 2868 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2869 uint64_t dsobj = dmu_objset_id(ra->os); 2870 uint64_t resume_obj, resume_off; 2871 2872 if (nvlist_lookup_uint64(begin_nvl, 2873 "resume_object", &resume_obj) != 0 || 2874 nvlist_lookup_uint64(begin_nvl, 2875 "resume_offset", &resume_off) != 0) { 2876 return (SET_ERROR(EINVAL)); 2877 } 2878 VERIFY0(zap_lookup(mos, dsobj, 2879 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2880 if (resume_obj != val) 2881 return (SET_ERROR(EINVAL)); 2882 VERIFY0(zap_lookup(mos, dsobj, 2883 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2884 if (resume_off != val) 2885 return (SET_ERROR(EINVAL)); 2886 2887 return (0); 2888 } 2889 2890 /* 2891 * Read in the stream's records, one by one, and apply them to the pool. There 2892 * are two threads involved; the thread that calls this function will spin up a 2893 * worker thread, read the records off the stream one by one, and issue 2894 * prefetches for any necessary indirect blocks. It will then push the records 2895 * onto an internal blocking queue. The worker thread will pull the records off 2896 * the queue, and actually write the data into the DMU. This way, the worker 2897 * thread doesn't have to wait for reads to complete, since everything it needs 2898 * (the indirect blocks) will be prefetched. 2899 * 2900 * NB: callers *must* call dmu_recv_end() if this succeeds. 2901 */ 2902 int 2903 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2904 int cleanup_fd, uint64_t *action_handlep) 2905 { 2906 int err = 0; 2907 struct receive_arg ra = { 0 }; 2908 struct receive_writer_arg rwa = { 0 }; 2909 int featureflags; 2910 nvlist_t *begin_nvl = NULL; 2911 2912 ra.byteswap = drc->drc_byteswap; 2913 ra.cksum = drc->drc_cksum; 2914 ra.vp = vp; 2915 ra.voff = *voffp; 2916 2917 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2918 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2919 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2920 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2921 } 2922 2923 objlist_create(&ra.ignore_objlist); 2924 2925 /* these were verified in dmu_recv_begin */ 2926 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2927 DMU_SUBSTREAM); 2928 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2929 2930 /* 2931 * Open the objset we are modifying. 2932 */ 2933 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2934 2935 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2936 2937 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2938 2939 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2940 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2941 minor_t minor; 2942 2943 if (cleanup_fd == -1) { 2944 ra.err = SET_ERROR(EBADF); 2945 goto out; 2946 } 2947 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2948 if (ra.err != 0) { 2949 cleanup_fd = -1; 2950 goto out; 2951 } 2952 2953 if (*action_handlep == 0) { 2954 rwa.guid_to_ds_map = 2955 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2956 avl_create(rwa.guid_to_ds_map, guid_compare, 2957 sizeof (guid_map_entry_t), 2958 offsetof(guid_map_entry_t, avlnode)); 2959 err = zfs_onexit_add_cb(minor, 2960 free_guid_map_onexit, rwa.guid_to_ds_map, 2961 action_handlep); 2962 if (ra.err != 0) 2963 goto out; 2964 } else { 2965 err = zfs_onexit_cb_data(minor, *action_handlep, 2966 (void **)&rwa.guid_to_ds_map); 2967 if (ra.err != 0) 2968 goto out; 2969 } 2970 2971 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2972 } 2973 2974 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2975 void *payload = NULL; 2976 if (payloadlen != 0) 2977 payload = kmem_alloc(payloadlen, KM_SLEEP); 2978 2979 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2980 if (err != 0) { 2981 if (payloadlen != 0) 2982 kmem_free(payload, payloadlen); 2983 goto out; 2984 } 2985 if (payloadlen != 0) { 2986 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2987 kmem_free(payload, payloadlen); 2988 if (err != 0) 2989 goto out; 2990 } 2991 2992 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2993 err = resume_check(&ra, begin_nvl); 2994 if (err != 0) 2995 goto out; 2996 } 2997 2998 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2999 offsetof(struct receive_record_arg, node)); 3000 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 3001 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 3002 rwa.os = ra.os; 3003 rwa.byteswap = drc->drc_byteswap; 3004 rwa.resumable = drc->drc_resumable; 3005 3006 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 3007 TS_RUN, minclsyspri); 3008 /* 3009 * We're reading rwa.err without locks, which is safe since we are the 3010 * only reader, and the worker thread is the only writer. It's ok if we 3011 * miss a write for an iteration or two of the loop, since the writer 3012 * thread will keep freeing records we send it until we send it an eos 3013 * marker. 3014 * 3015 * We can leave this loop in 3 ways: First, if rwa.err is 3016 * non-zero. In that case, the writer thread will free the rrd we just 3017 * pushed. Second, if we're interrupted; in that case, either it's the 3018 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 3019 * has been handed off to the writer thread who will free it. Finally, 3020 * if receive_read_record fails or we're at the end of the stream, then 3021 * we free ra.rrd and exit. 3022 */ 3023 while (rwa.err == 0) { 3024 if (issig(JUSTLOOKING) && issig(FORREAL)) { 3025 err = SET_ERROR(EINTR); 3026 break; 3027 } 3028 3029 ASSERT3P(ra.rrd, ==, NULL); 3030 ra.rrd = ra.next_rrd; 3031 ra.next_rrd = NULL; 3032 /* Allocates and loads header into ra.next_rrd */ 3033 err = receive_read_record(&ra); 3034 3035 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 3036 kmem_free(ra.rrd, sizeof (*ra.rrd)); 3037 ra.rrd = NULL; 3038 break; 3039 } 3040 3041 bqueue_enqueue(&rwa.q, ra.rrd, 3042 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 3043 ra.rrd = NULL; 3044 } 3045 if (ra.next_rrd == NULL) 3046 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 3047 ra.next_rrd->eos_marker = B_TRUE; 3048 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 3049 3050 mutex_enter(&rwa.mutex); 3051 while (!rwa.done) { 3052 cv_wait(&rwa.cv, &rwa.mutex); 3053 } 3054 mutex_exit(&rwa.mutex); 3055 3056 /* 3057 * If we are receiving a full stream as a clone, all object IDs which 3058 * are greater than the maximum ID referenced in the stream are 3059 * by definition unused and must be freed. Note that it's possible that 3060 * we've resumed this send and the first record we received was the END 3061 * record. In that case, max_object would be 0, but we shouldn't start 3062 * freeing all objects from there; instead we should start from the 3063 * resumeobj. 3064 */ 3065 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 3066 uint64_t obj; 3067 if (nvlist_lookup_uint64(begin_nvl, "resume_object", &obj) != 0) 3068 obj = 0; 3069 if (rwa.max_object > obj) 3070 obj = rwa.max_object; 3071 obj++; 3072 int free_err = 0; 3073 int next_err = 0; 3074 3075 while (next_err == 0) { 3076 free_err = dmu_free_long_object(rwa.os, obj); 3077 if (free_err != 0 && free_err != ENOENT) 3078 break; 3079 3080 next_err = dmu_object_next(rwa.os, &obj, FALSE, 0); 3081 } 3082 3083 if (err == 0) { 3084 if (free_err != 0 && free_err != ENOENT) 3085 err = free_err; 3086 else if (next_err != ESRCH) 3087 err = next_err; 3088 } 3089 } 3090 3091 cv_destroy(&rwa.cv); 3092 mutex_destroy(&rwa.mutex); 3093 bqueue_destroy(&rwa.q); 3094 if (err == 0) 3095 err = rwa.err; 3096 3097 out: 3098 nvlist_free(begin_nvl); 3099 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 3100 zfs_onexit_fd_rele(cleanup_fd); 3101 3102 if (err != 0) { 3103 /* 3104 * Clean up references. If receive is not resumable, 3105 * destroy what we created, so we don't leave it in 3106 * the inconsistent state. 3107 */ 3108 dmu_recv_cleanup_ds(drc); 3109 } 3110 3111 *voffp = ra.voff; 3112 objlist_destroy(&ra.ignore_objlist); 3113 return (err); 3114 } 3115 3116 static int 3117 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 3118 { 3119 dmu_recv_cookie_t *drc = arg; 3120 dsl_pool_t *dp = dmu_tx_pool(tx); 3121 int error; 3122 3123 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 3124 3125 if (!drc->drc_newfs) { 3126 dsl_dataset_t *origin_head; 3127 3128 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 3129 if (error != 0) 3130 return (error); 3131 if (drc->drc_force) { 3132 /* 3133 * We will destroy any snapshots in tofs (i.e. before 3134 * origin_head) that are after the origin (which is 3135 * the snap before drc_ds, because drc_ds can not 3136 * have any snaps of its own). 3137 */ 3138 uint64_t obj; 3139 3140 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3141 while (obj != 3142 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3143 dsl_dataset_t *snap; 3144 error = dsl_dataset_hold_obj(dp, obj, FTAG, 3145 &snap); 3146 if (error != 0) 3147 break; 3148 if (snap->ds_dir != origin_head->ds_dir) 3149 error = SET_ERROR(EINVAL); 3150 if (error == 0) { 3151 error = dsl_destroy_snapshot_check_impl( 3152 snap, B_FALSE); 3153 } 3154 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3155 dsl_dataset_rele(snap, FTAG); 3156 if (error != 0) 3157 break; 3158 } 3159 if (error != 0) { 3160 dsl_dataset_rele(origin_head, FTAG); 3161 return (error); 3162 } 3163 } 3164 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 3165 origin_head, drc->drc_force, drc->drc_owner, tx); 3166 if (error != 0) { 3167 dsl_dataset_rele(origin_head, FTAG); 3168 return (error); 3169 } 3170 error = dsl_dataset_snapshot_check_impl(origin_head, 3171 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 3172 dsl_dataset_rele(origin_head, FTAG); 3173 if (error != 0) 3174 return (error); 3175 3176 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 3177 } else { 3178 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 3179 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 3180 } 3181 return (error); 3182 } 3183 3184 static void 3185 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3186 { 3187 dmu_recv_cookie_t *drc = arg; 3188 dsl_pool_t *dp = dmu_tx_pool(tx); 3189 3190 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3191 tx, "snap=%s", drc->drc_tosnap); 3192 3193 if (!drc->drc_newfs) { 3194 dsl_dataset_t *origin_head; 3195 3196 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3197 &origin_head)); 3198 3199 if (drc->drc_force) { 3200 /* 3201 * Destroy any snapshots of drc_tofs (origin_head) 3202 * after the origin (the snap before drc_ds). 3203 */ 3204 uint64_t obj; 3205 3206 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3207 while (obj != 3208 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3209 dsl_dataset_t *snap; 3210 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3211 &snap)); 3212 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3213 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3214 dsl_destroy_snapshot_sync_impl(snap, 3215 B_FALSE, tx); 3216 dsl_dataset_rele(snap, FTAG); 3217 } 3218 } 3219 VERIFY3P(drc->drc_ds->ds_prev, ==, 3220 origin_head->ds_prev); 3221 3222 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3223 origin_head, tx); 3224 dsl_dataset_snapshot_sync_impl(origin_head, 3225 drc->drc_tosnap, tx); 3226 3227 /* set snapshot's creation time and guid */ 3228 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3229 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3230 drc->drc_drrb->drr_creation_time; 3231 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3232 drc->drc_drrb->drr_toguid; 3233 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3234 ~DS_FLAG_INCONSISTENT; 3235 3236 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3237 dsl_dataset_phys(origin_head)->ds_flags &= 3238 ~DS_FLAG_INCONSISTENT; 3239 3240 drc->drc_newsnapobj = 3241 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3242 3243 dsl_dataset_rele(origin_head, FTAG); 3244 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3245 3246 if (drc->drc_owner != NULL) 3247 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3248 } else { 3249 dsl_dataset_t *ds = drc->drc_ds; 3250 3251 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3252 3253 /* set snapshot's creation time and guid */ 3254 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3255 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3256 drc->drc_drrb->drr_creation_time; 3257 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3258 drc->drc_drrb->drr_toguid; 3259 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3260 ~DS_FLAG_INCONSISTENT; 3261 3262 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3263 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3264 if (dsl_dataset_has_resume_receive_state(ds)) { 3265 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3266 DS_FIELD_RESUME_FROMGUID, tx); 3267 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3268 DS_FIELD_RESUME_OBJECT, tx); 3269 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3270 DS_FIELD_RESUME_OFFSET, tx); 3271 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3272 DS_FIELD_RESUME_BYTES, tx); 3273 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3274 DS_FIELD_RESUME_TOGUID, tx); 3275 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3276 DS_FIELD_RESUME_TONAME, tx); 3277 } 3278 drc->drc_newsnapobj = 3279 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3280 } 3281 /* 3282 * Release the hold from dmu_recv_begin. This must be done before 3283 * we return to open context, so that when we free the dataset's dnode, 3284 * we can evict its bonus buffer. 3285 */ 3286 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 3287 drc->drc_ds = NULL; 3288 } 3289 3290 static int 3291 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 3292 { 3293 dsl_pool_t *dp; 3294 dsl_dataset_t *snapds; 3295 guid_map_entry_t *gmep; 3296 int err; 3297 3298 ASSERT(guid_map != NULL); 3299 3300 err = dsl_pool_hold(name, FTAG, &dp); 3301 if (err != 0) 3302 return (err); 3303 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 3304 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 3305 if (err == 0) { 3306 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 3307 gmep->gme_ds = snapds; 3308 avl_add(guid_map, gmep); 3309 dsl_dataset_long_hold(snapds, gmep); 3310 } else { 3311 kmem_free(gmep, sizeof (*gmep)); 3312 } 3313 3314 dsl_pool_rele(dp, FTAG); 3315 return (err); 3316 } 3317 3318 static int dmu_recv_end_modified_blocks = 3; 3319 3320 static int 3321 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3322 { 3323 #ifdef _KERNEL 3324 /* 3325 * We will be destroying the ds; make sure its origin is unmounted if 3326 * necessary. 3327 */ 3328 char name[ZFS_MAX_DATASET_NAME_LEN]; 3329 dsl_dataset_name(drc->drc_ds, name); 3330 zfs_destroy_unmount_origin(name); 3331 #endif 3332 3333 return (dsl_sync_task(drc->drc_tofs, 3334 dmu_recv_end_check, dmu_recv_end_sync, drc, 3335 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3336 } 3337 3338 static int 3339 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3340 { 3341 return (dsl_sync_task(drc->drc_tofs, 3342 dmu_recv_end_check, dmu_recv_end_sync, drc, 3343 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3344 } 3345 3346 int 3347 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3348 { 3349 int error; 3350 3351 drc->drc_owner = owner; 3352 3353 if (drc->drc_newfs) 3354 error = dmu_recv_new_end(drc); 3355 else 3356 error = dmu_recv_existing_end(drc); 3357 3358 if (error != 0) { 3359 dmu_recv_cleanup_ds(drc); 3360 } else if (drc->drc_guid_to_ds_map != NULL) { 3361 (void) add_ds_to_guidmap(drc->drc_tofs, 3362 drc->drc_guid_to_ds_map, 3363 drc->drc_newsnapobj); 3364 } 3365 return (error); 3366 } 3367 3368 /* 3369 * Return TRUE if this objset is currently being received into. 3370 */ 3371 boolean_t 3372 dmu_objset_is_receiving(objset_t *os) 3373 { 3374 return (os->os_dsl_dataset != NULL && 3375 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3376 } 3377