1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dbuf.h> 35 #include <sys/dnode.h> 36 #include <sys/zfs_context.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dmu_traverse.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/zfs_ioctl.h> 45 #include <sys/zap.h> 46 #include <sys/zio_checksum.h> 47 #include <sys/zfs_znode.h> 48 #include <zfs_fletcher.h> 49 #include <sys/avl.h> 50 #include <sys/ddt.h> 51 #include <sys/zfs_onexit.h> 52 #include <sys/dmu_send.h> 53 #include <sys/dsl_destroy.h> 54 #include <sys/blkptr.h> 55 #include <sys/dsl_bookmark.h> 56 #include <sys/zfeature.h> 57 #include <sys/bqueue.h> 58 59 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 60 int zfs_send_corrupt_data = B_FALSE; 61 int zfs_send_queue_length = 16 * 1024 * 1024; 62 int zfs_recv_queue_length = 16 * 1024 * 1024; 63 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */ 64 int zfs_send_set_freerecords_bit = B_TRUE; 65 66 static char *dmu_recv_tag = "dmu_recv_tag"; 67 const char *recv_clone_name = "%recv"; 68 69 #define BP_SPAN(datablkszsec, indblkshift, level) \ 70 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 71 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 72 73 static void byteswap_record(dmu_replay_record_t *drr); 74 75 struct send_thread_arg { 76 bqueue_t q; 77 dsl_dataset_t *ds; /* Dataset to traverse */ 78 uint64_t fromtxg; /* Traverse from this txg */ 79 int flags; /* flags to pass to traverse_dataset */ 80 int error_code; 81 boolean_t cancel; 82 zbookmark_phys_t resume; 83 }; 84 85 struct send_block_record { 86 boolean_t eos_marker; /* Marks the end of the stream */ 87 blkptr_t bp; 88 zbookmark_phys_t zb; 89 uint8_t indblkshift; 90 uint16_t datablkszsec; 91 bqueue_node_t ln; 92 }; 93 94 static int 95 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 96 { 97 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); 98 ssize_t resid; /* have to get resid to get detailed errno */ 99 100 /* 101 * The code does not rely on this (len being a multiple of 8). We keep 102 * this assertion because of the corresponding assertion in 103 * receive_read(). Keeping this assertion ensures that we do not 104 * inadvertently break backwards compatibility (causing the assertion 105 * in receive_read() to trigger on old software). 106 * 107 * Removing the assertions could be rolled into a new feature that uses 108 * data that isn't 8-byte aligned; if the assertions were removed, a 109 * feature flag would have to be added. 110 */ 111 112 ASSERT0(len % 8); 113 114 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 115 (caddr_t)buf, len, 116 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 117 118 mutex_enter(&ds->ds_sendstream_lock); 119 *dsp->dsa_off += len; 120 mutex_exit(&ds->ds_sendstream_lock); 121 122 return (dsp->dsa_err); 123 } 124 125 /* 126 * For all record types except BEGIN, fill in the checksum (overlaid in 127 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 128 * up to the start of the checksum itself. 129 */ 130 static int 131 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 132 { 133 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 134 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 135 (void) fletcher_4_incremental_native(dsp->dsa_drr, 136 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 137 &dsp->dsa_zc); 138 if (dsp->dsa_drr->drr_type == DRR_BEGIN) { 139 dsp->dsa_sent_begin = B_TRUE; 140 } else { 141 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 142 drr_checksum.drr_checksum)); 143 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 144 } 145 if (dsp->dsa_drr->drr_type == DRR_END) { 146 dsp->dsa_sent_end = B_TRUE; 147 } 148 (void) fletcher_4_incremental_native(&dsp->dsa_drr-> 149 drr_u.drr_checksum.drr_checksum, 150 sizeof (zio_cksum_t), &dsp->dsa_zc); 151 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 152 return (SET_ERROR(EINTR)); 153 if (payload_len != 0) { 154 (void) fletcher_4_incremental_native(payload, payload_len, 155 &dsp->dsa_zc); 156 if (dump_bytes(dsp, payload, payload_len) != 0) 157 return (SET_ERROR(EINTR)); 158 } 159 return (0); 160 } 161 162 /* 163 * Fill in the drr_free struct, or perform aggregation if the previous record is 164 * also a free record, and the two are adjacent. 165 * 166 * Note that we send free records even for a full send, because we want to be 167 * able to receive a full send as a clone, which requires a list of all the free 168 * and freeobject records that were generated on the source. 169 */ 170 static int 171 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 172 uint64_t length) 173 { 174 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 175 176 /* 177 * When we receive a free record, dbuf_free_range() assumes 178 * that the receiving system doesn't have any dbufs in the range 179 * being freed. This is always true because there is a one-record 180 * constraint: we only send one WRITE record for any given 181 * object,offset. We know that the one-record constraint is 182 * true because we always send data in increasing order by 183 * object,offset. 184 * 185 * If the increasing-order constraint ever changes, we should find 186 * another way to assert that the one-record constraint is still 187 * satisfied. 188 */ 189 ASSERT(object > dsp->dsa_last_data_object || 190 (object == dsp->dsa_last_data_object && 191 offset > dsp->dsa_last_data_offset)); 192 193 if (length != -1ULL && offset + length < offset) 194 length = -1ULL; 195 196 /* 197 * If there is a pending op, but it's not PENDING_FREE, push it out, 198 * since free block aggregation can only be done for blocks of the 199 * same type (i.e., DRR_FREE records can only be aggregated with 200 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 201 * aggregated with other DRR_FREEOBJECTS records. 202 */ 203 if (dsp->dsa_pending_op != PENDING_NONE && 204 dsp->dsa_pending_op != PENDING_FREE) { 205 if (dump_record(dsp, NULL, 0) != 0) 206 return (SET_ERROR(EINTR)); 207 dsp->dsa_pending_op = PENDING_NONE; 208 } 209 210 if (dsp->dsa_pending_op == PENDING_FREE) { 211 /* 212 * There should never be a PENDING_FREE if length is -1 213 * (because dump_dnode is the only place where this 214 * function is called with a -1, and only after flushing 215 * any pending record). 216 */ 217 ASSERT(length != -1ULL); 218 /* 219 * Check to see whether this free block can be aggregated 220 * with pending one. 221 */ 222 if (drrf->drr_object == object && drrf->drr_offset + 223 drrf->drr_length == offset) { 224 drrf->drr_length += length; 225 return (0); 226 } else { 227 /* not a continuation. Push out pending record */ 228 if (dump_record(dsp, NULL, 0) != 0) 229 return (SET_ERROR(EINTR)); 230 dsp->dsa_pending_op = PENDING_NONE; 231 } 232 } 233 /* create a FREE record and make it pending */ 234 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 235 dsp->dsa_drr->drr_type = DRR_FREE; 236 drrf->drr_object = object; 237 drrf->drr_offset = offset; 238 drrf->drr_length = length; 239 drrf->drr_toguid = dsp->dsa_toguid; 240 if (length == -1ULL) { 241 if (dump_record(dsp, NULL, 0) != 0) 242 return (SET_ERROR(EINTR)); 243 } else { 244 dsp->dsa_pending_op = PENDING_FREE; 245 } 246 247 return (0); 248 } 249 250 static int 251 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 252 uint64_t object, uint64_t offset, int lsize, int psize, const blkptr_t *bp, 253 void *data) 254 { 255 uint64_t payload_size; 256 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 257 258 /* 259 * We send data in increasing object, offset order. 260 * See comment in dump_free() for details. 261 */ 262 ASSERT(object > dsp->dsa_last_data_object || 263 (object == dsp->dsa_last_data_object && 264 offset > dsp->dsa_last_data_offset)); 265 dsp->dsa_last_data_object = object; 266 dsp->dsa_last_data_offset = offset + lsize - 1; 267 268 /* 269 * If there is any kind of pending aggregation (currently either 270 * a grouping of free objects or free blocks), push it out to 271 * the stream, since aggregation can't be done across operations 272 * of different types. 273 */ 274 if (dsp->dsa_pending_op != PENDING_NONE) { 275 if (dump_record(dsp, NULL, 0) != 0) 276 return (SET_ERROR(EINTR)); 277 dsp->dsa_pending_op = PENDING_NONE; 278 } 279 /* write a WRITE record */ 280 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 281 dsp->dsa_drr->drr_type = DRR_WRITE; 282 drrw->drr_object = object; 283 drrw->drr_type = type; 284 drrw->drr_offset = offset; 285 drrw->drr_toguid = dsp->dsa_toguid; 286 drrw->drr_logical_size = lsize; 287 288 /* only set the compression fields if the buf is compressed */ 289 if (lsize != psize) { 290 ASSERT(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED); 291 ASSERT(!BP_IS_EMBEDDED(bp)); 292 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 293 ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp))); 294 ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF); 295 ASSERT3S(psize, >, 0); 296 ASSERT3S(lsize, >=, psize); 297 298 drrw->drr_compressiontype = BP_GET_COMPRESS(bp); 299 drrw->drr_compressed_size = psize; 300 payload_size = drrw->drr_compressed_size; 301 } else { 302 payload_size = drrw->drr_logical_size; 303 } 304 305 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 306 /* 307 * There's no pre-computed checksum for partial-block 308 * writes or embedded BP's, so (like 309 * fletcher4-checkummed blocks) userland will have to 310 * compute a dedup-capable checksum itself. 311 */ 312 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 313 } else { 314 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 315 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 316 ZCHECKSUM_FLAG_DEDUP) 317 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 318 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 319 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 320 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 321 drrw->drr_key.ddk_cksum = bp->blk_cksum; 322 } 323 324 if (dump_record(dsp, data, payload_size) != 0) 325 return (SET_ERROR(EINTR)); 326 return (0); 327 } 328 329 static int 330 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 331 int blksz, const blkptr_t *bp) 332 { 333 char buf[BPE_PAYLOAD_SIZE]; 334 struct drr_write_embedded *drrw = 335 &(dsp->dsa_drr->drr_u.drr_write_embedded); 336 337 if (dsp->dsa_pending_op != PENDING_NONE) { 338 if (dump_record(dsp, NULL, 0) != 0) 339 return (EINTR); 340 dsp->dsa_pending_op = PENDING_NONE; 341 } 342 343 ASSERT(BP_IS_EMBEDDED(bp)); 344 345 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 346 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 347 drrw->drr_object = object; 348 drrw->drr_offset = offset; 349 drrw->drr_length = blksz; 350 drrw->drr_toguid = dsp->dsa_toguid; 351 drrw->drr_compression = BP_GET_COMPRESS(bp); 352 drrw->drr_etype = BPE_GET_ETYPE(bp); 353 drrw->drr_lsize = BPE_GET_LSIZE(bp); 354 drrw->drr_psize = BPE_GET_PSIZE(bp); 355 356 decode_embedded_bp_compressed(bp, buf); 357 358 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 359 return (EINTR); 360 return (0); 361 } 362 363 static int 364 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 365 { 366 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 367 368 if (dsp->dsa_pending_op != PENDING_NONE) { 369 if (dump_record(dsp, NULL, 0) != 0) 370 return (SET_ERROR(EINTR)); 371 dsp->dsa_pending_op = PENDING_NONE; 372 } 373 374 /* write a SPILL record */ 375 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 376 dsp->dsa_drr->drr_type = DRR_SPILL; 377 drrs->drr_object = object; 378 drrs->drr_length = blksz; 379 drrs->drr_toguid = dsp->dsa_toguid; 380 381 if (dump_record(dsp, data, blksz) != 0) 382 return (SET_ERROR(EINTR)); 383 return (0); 384 } 385 386 static int 387 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 388 { 389 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 390 391 /* 392 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 393 * push it out, since free block aggregation can only be done for 394 * blocks of the same type (i.e., DRR_FREE records can only be 395 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 396 * can only be aggregated with other DRR_FREEOBJECTS records. 397 */ 398 if (dsp->dsa_pending_op != PENDING_NONE && 399 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 400 if (dump_record(dsp, NULL, 0) != 0) 401 return (SET_ERROR(EINTR)); 402 dsp->dsa_pending_op = PENDING_NONE; 403 } 404 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 405 /* 406 * See whether this free object array can be aggregated 407 * with pending one 408 */ 409 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 410 drrfo->drr_numobjs += numobjs; 411 return (0); 412 } else { 413 /* can't be aggregated. Push out pending record */ 414 if (dump_record(dsp, NULL, 0) != 0) 415 return (SET_ERROR(EINTR)); 416 dsp->dsa_pending_op = PENDING_NONE; 417 } 418 } 419 420 /* write a FREEOBJECTS record */ 421 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 422 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 423 drrfo->drr_firstobj = firstobj; 424 drrfo->drr_numobjs = numobjs; 425 drrfo->drr_toguid = dsp->dsa_toguid; 426 427 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 428 429 return (0); 430 } 431 432 static int 433 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 434 { 435 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 436 437 if (object < dsp->dsa_resume_object) { 438 /* 439 * Note: when resuming, we will visit all the dnodes in 440 * the block of dnodes that we are resuming from. In 441 * this case it's unnecessary to send the dnodes prior to 442 * the one we are resuming from. We should be at most one 443 * block's worth of dnodes behind the resume point. 444 */ 445 ASSERT3U(dsp->dsa_resume_object - object, <, 446 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 447 return (0); 448 } 449 450 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 451 return (dump_freeobjects(dsp, object, 1)); 452 453 if (dsp->dsa_pending_op != PENDING_NONE) { 454 if (dump_record(dsp, NULL, 0) != 0) 455 return (SET_ERROR(EINTR)); 456 dsp->dsa_pending_op = PENDING_NONE; 457 } 458 459 /* write an OBJECT record */ 460 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 461 dsp->dsa_drr->drr_type = DRR_OBJECT; 462 drro->drr_object = object; 463 drro->drr_type = dnp->dn_type; 464 drro->drr_bonustype = dnp->dn_bonustype; 465 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 466 drro->drr_bonuslen = dnp->dn_bonuslen; 467 drro->drr_checksumtype = dnp->dn_checksum; 468 drro->drr_compress = dnp->dn_compress; 469 drro->drr_toguid = dsp->dsa_toguid; 470 471 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 472 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 473 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 474 475 if (dump_record(dsp, DN_BONUS(dnp), 476 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 477 return (SET_ERROR(EINTR)); 478 } 479 480 /* Free anything past the end of the file. */ 481 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 482 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 483 return (SET_ERROR(EINTR)); 484 if (dsp->dsa_err != 0) 485 return (SET_ERROR(EINTR)); 486 return (0); 487 } 488 489 static boolean_t 490 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 491 { 492 if (!BP_IS_EMBEDDED(bp)) 493 return (B_FALSE); 494 495 /* 496 * Compression function must be legacy, or explicitly enabled. 497 */ 498 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 499 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LZ4))) 500 return (B_FALSE); 501 502 /* 503 * Embed type must be explicitly enabled. 504 */ 505 switch (BPE_GET_ETYPE(bp)) { 506 case BP_EMBEDDED_TYPE_DATA: 507 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 508 return (B_TRUE); 509 break; 510 default: 511 return (B_FALSE); 512 } 513 return (B_FALSE); 514 } 515 516 /* 517 * This is the callback function to traverse_dataset that acts as the worker 518 * thread for dmu_send_impl. 519 */ 520 /*ARGSUSED*/ 521 static int 522 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 523 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 524 { 525 struct send_thread_arg *sta = arg; 526 struct send_block_record *record; 527 uint64_t record_size; 528 int err = 0; 529 530 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 531 zb->zb_object >= sta->resume.zb_object); 532 533 if (sta->cancel) 534 return (SET_ERROR(EINTR)); 535 536 if (bp == NULL) { 537 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 538 return (0); 539 } else if (zb->zb_level < 0) { 540 return (0); 541 } 542 543 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 544 record->eos_marker = B_FALSE; 545 record->bp = *bp; 546 record->zb = *zb; 547 record->indblkshift = dnp->dn_indblkshift; 548 record->datablkszsec = dnp->dn_datablkszsec; 549 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 550 bqueue_enqueue(&sta->q, record, record_size); 551 552 return (err); 553 } 554 555 /* 556 * This function kicks off the traverse_dataset. It also handles setting the 557 * error code of the thread in case something goes wrong, and pushes the End of 558 * Stream record when the traverse_dataset call has finished. If there is no 559 * dataset to traverse, the thread immediately pushes End of Stream marker. 560 */ 561 static void 562 send_traverse_thread(void *arg) 563 { 564 struct send_thread_arg *st_arg = arg; 565 int err; 566 struct send_block_record *data; 567 568 if (st_arg->ds != NULL) { 569 err = traverse_dataset_resume(st_arg->ds, 570 st_arg->fromtxg, &st_arg->resume, 571 st_arg->flags, send_cb, st_arg); 572 573 if (err != EINTR) 574 st_arg->error_code = err; 575 } 576 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 577 data->eos_marker = B_TRUE; 578 bqueue_enqueue(&st_arg->q, data, 1); 579 thread_exit(); 580 } 581 582 /* 583 * This function actually handles figuring out what kind of record needs to be 584 * dumped, reading the data (which has hopefully been prefetched), and calling 585 * the appropriate helper function. 586 */ 587 static int 588 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 589 { 590 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 591 const blkptr_t *bp = &data->bp; 592 const zbookmark_phys_t *zb = &data->zb; 593 uint8_t indblkshift = data->indblkshift; 594 uint16_t dblkszsec = data->datablkszsec; 595 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 596 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 597 int err = 0; 598 599 ASSERT3U(zb->zb_level, >=, 0); 600 601 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 602 zb->zb_object >= dsa->dsa_resume_object); 603 604 if (zb->zb_object != DMU_META_DNODE_OBJECT && 605 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 606 return (0); 607 } else if (BP_IS_HOLE(bp) && 608 zb->zb_object == DMU_META_DNODE_OBJECT) { 609 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 610 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 611 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 612 } else if (BP_IS_HOLE(bp)) { 613 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 614 uint64_t offset = zb->zb_blkid * span; 615 err = dump_free(dsa, zb->zb_object, offset, span); 616 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 617 return (0); 618 } else if (type == DMU_OT_DNODE) { 619 int blksz = BP_GET_LSIZE(bp); 620 arc_flags_t aflags = ARC_FLAG_WAIT; 621 arc_buf_t *abuf; 622 623 ASSERT0(zb->zb_level); 624 625 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 626 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 627 &aflags, zb) != 0) 628 return (SET_ERROR(EIO)); 629 630 dnode_phys_t *blk = abuf->b_data; 631 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 632 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 633 err = dump_dnode(dsa, dnobj + i, blk + i); 634 if (err != 0) 635 break; 636 } 637 arc_buf_destroy(abuf, &abuf); 638 } else if (type == DMU_OT_SA) { 639 arc_flags_t aflags = ARC_FLAG_WAIT; 640 arc_buf_t *abuf; 641 int blksz = BP_GET_LSIZE(bp); 642 643 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 644 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 645 &aflags, zb) != 0) 646 return (SET_ERROR(EIO)); 647 648 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 649 arc_buf_destroy(abuf, &abuf); 650 } else if (backup_do_embed(dsa, bp)) { 651 /* it's an embedded level-0 block of a regular object */ 652 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 653 ASSERT0(zb->zb_level); 654 err = dump_write_embedded(dsa, zb->zb_object, 655 zb->zb_blkid * blksz, blksz, bp); 656 } else { 657 /* it's a level-0 block of a regular object */ 658 arc_flags_t aflags = ARC_FLAG_WAIT; 659 arc_buf_t *abuf; 660 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 661 uint64_t offset; 662 663 /* 664 * If we have large blocks stored on disk but the send flags 665 * don't allow us to send large blocks, we split the data from 666 * the arc buf into chunks. 667 */ 668 boolean_t split_large_blocks = blksz > SPA_OLD_MAXBLOCKSIZE && 669 !(dsa->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS); 670 /* 671 * We should only request compressed data from the ARC if all 672 * the following are true: 673 * - stream compression was requested 674 * - we aren't splitting large blocks into smaller chunks 675 * - the data won't need to be byteswapped before sending 676 * - this isn't an embedded block 677 * - this isn't metadata (if receiving on a different endian 678 * system it can be byteswapped more easily) 679 */ 680 boolean_t request_compressed = 681 (dsa->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED) && 682 !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) && 683 !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp)); 684 685 ASSERT0(zb->zb_level); 686 ASSERT(zb->zb_object > dsa->dsa_resume_object || 687 (zb->zb_object == dsa->dsa_resume_object && 688 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 689 690 ASSERT0(zb->zb_level); 691 ASSERT(zb->zb_object > dsa->dsa_resume_object || 692 (zb->zb_object == dsa->dsa_resume_object && 693 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 694 695 ASSERT3U(blksz, ==, BP_GET_LSIZE(bp)); 696 697 enum zio_flag zioflags = ZIO_FLAG_CANFAIL; 698 if (request_compressed) 699 zioflags |= ZIO_FLAG_RAW; 700 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 701 ZIO_PRIORITY_ASYNC_READ, zioflags, &aflags, zb) != 0) { 702 if (zfs_send_corrupt_data) { 703 /* Send a block filled with 0x"zfs badd bloc" */ 704 abuf = arc_alloc_buf(spa, &abuf, ARC_BUFC_DATA, 705 blksz); 706 uint64_t *ptr; 707 for (ptr = abuf->b_data; 708 (char *)ptr < (char *)abuf->b_data + blksz; 709 ptr++) 710 *ptr = 0x2f5baddb10cULL; 711 } else { 712 return (SET_ERROR(EIO)); 713 } 714 } 715 716 offset = zb->zb_blkid * blksz; 717 718 if (split_large_blocks) { 719 ASSERT3U(arc_get_compression(abuf), ==, 720 ZIO_COMPRESS_OFF); 721 char *buf = abuf->b_data; 722 while (blksz > 0 && err == 0) { 723 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 724 err = dump_write(dsa, type, zb->zb_object, 725 offset, n, n, NULL, buf); 726 offset += n; 727 buf += n; 728 blksz -= n; 729 } 730 } else { 731 err = dump_write(dsa, type, zb->zb_object, offset, 732 blksz, arc_buf_size(abuf), bp, abuf->b_data); 733 } 734 arc_buf_destroy(abuf, &abuf); 735 } 736 737 ASSERT(err == 0 || err == EINTR); 738 return (err); 739 } 740 741 /* 742 * Pop the new data off the queue, and free the old data. 743 */ 744 static struct send_block_record * 745 get_next_record(bqueue_t *bq, struct send_block_record *data) 746 { 747 struct send_block_record *tmp = bqueue_dequeue(bq); 748 kmem_free(data, sizeof (*data)); 749 return (tmp); 750 } 751 752 /* 753 * Actually do the bulk of the work in a zfs send. 754 * 755 * Note: Releases dp using the specified tag. 756 */ 757 static int 758 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 759 zfs_bookmark_phys_t *ancestor_zb, boolean_t is_clone, 760 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok, 761 int outfd, uint64_t resumeobj, uint64_t resumeoff, 762 vnode_t *vp, offset_t *off) 763 { 764 objset_t *os; 765 dmu_replay_record_t *drr; 766 dmu_sendarg_t *dsp; 767 int err; 768 uint64_t fromtxg = 0; 769 uint64_t featureflags = 0; 770 struct send_thread_arg to_arg = { 0 }; 771 772 err = dmu_objset_from_ds(to_ds, &os); 773 if (err != 0) { 774 dsl_pool_rele(dp, tag); 775 return (err); 776 } 777 778 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 779 drr->drr_type = DRR_BEGIN; 780 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 781 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 782 DMU_SUBSTREAM); 783 784 #ifdef _KERNEL 785 if (dmu_objset_type(os) == DMU_OST_ZFS) { 786 uint64_t version; 787 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 788 kmem_free(drr, sizeof (dmu_replay_record_t)); 789 dsl_pool_rele(dp, tag); 790 return (SET_ERROR(EINVAL)); 791 } 792 if (version >= ZPL_VERSION_SA) { 793 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 794 } 795 } 796 #endif 797 798 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 799 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 800 if (embedok && 801 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 802 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 803 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 804 featureflags |= DMU_BACKUP_FEATURE_LZ4; 805 } 806 if (compressok) { 807 featureflags |= DMU_BACKUP_FEATURE_COMPRESSED; 808 } 809 if ((featureflags & 810 (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED)) != 811 0 && spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) { 812 featureflags |= DMU_BACKUP_FEATURE_LZ4; 813 } 814 815 if (resumeobj != 0 || resumeoff != 0) { 816 featureflags |= DMU_BACKUP_FEATURE_RESUMING; 817 } 818 819 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 820 featureflags); 821 822 drr->drr_u.drr_begin.drr_creation_time = 823 dsl_dataset_phys(to_ds)->ds_creation_time; 824 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 825 if (is_clone) 826 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 827 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 828 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 829 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 830 if (zfs_send_set_freerecords_bit) 831 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS; 832 833 if (ancestor_zb != NULL) { 834 drr->drr_u.drr_begin.drr_fromguid = 835 ancestor_zb->zbm_guid; 836 fromtxg = ancestor_zb->zbm_creation_txg; 837 } 838 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 839 if (!to_ds->ds_is_snapshot) { 840 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 841 sizeof (drr->drr_u.drr_begin.drr_toname)); 842 } 843 844 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 845 846 dsp->dsa_drr = drr; 847 dsp->dsa_vp = vp; 848 dsp->dsa_outfd = outfd; 849 dsp->dsa_proc = curproc; 850 dsp->dsa_os = os; 851 dsp->dsa_off = off; 852 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 853 dsp->dsa_pending_op = PENDING_NONE; 854 dsp->dsa_featureflags = featureflags; 855 dsp->dsa_resume_object = resumeobj; 856 dsp->dsa_resume_offset = resumeoff; 857 858 mutex_enter(&to_ds->ds_sendstream_lock); 859 list_insert_head(&to_ds->ds_sendstreams, dsp); 860 mutex_exit(&to_ds->ds_sendstream_lock); 861 862 dsl_dataset_long_hold(to_ds, FTAG); 863 dsl_pool_rele(dp, tag); 864 865 void *payload = NULL; 866 size_t payload_len = 0; 867 if (resumeobj != 0 || resumeoff != 0) { 868 dmu_object_info_t to_doi; 869 err = dmu_object_info(os, resumeobj, &to_doi); 870 if (err != 0) 871 goto out; 872 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, 873 resumeoff / to_doi.doi_data_block_size); 874 875 nvlist_t *nvl = fnvlist_alloc(); 876 fnvlist_add_uint64(nvl, "resume_object", resumeobj); 877 fnvlist_add_uint64(nvl, "resume_offset", resumeoff); 878 payload = fnvlist_pack(nvl, &payload_len); 879 drr->drr_payloadlen = payload_len; 880 fnvlist_free(nvl); 881 } 882 883 err = dump_record(dsp, payload, payload_len); 884 fnvlist_pack_free(payload, payload_len); 885 if (err != 0) { 886 err = dsp->dsa_err; 887 goto out; 888 } 889 890 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 891 offsetof(struct send_block_record, ln)); 892 to_arg.error_code = 0; 893 to_arg.cancel = B_FALSE; 894 to_arg.ds = to_ds; 895 to_arg.fromtxg = fromtxg; 896 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 897 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 898 TS_RUN, minclsyspri); 899 900 struct send_block_record *to_data; 901 to_data = bqueue_dequeue(&to_arg.q); 902 903 while (!to_data->eos_marker && err == 0) { 904 err = do_dump(dsp, to_data); 905 to_data = get_next_record(&to_arg.q, to_data); 906 if (issig(JUSTLOOKING) && issig(FORREAL)) 907 err = EINTR; 908 } 909 910 if (err != 0) { 911 to_arg.cancel = B_TRUE; 912 while (!to_data->eos_marker) { 913 to_data = get_next_record(&to_arg.q, to_data); 914 } 915 } 916 kmem_free(to_data, sizeof (*to_data)); 917 918 bqueue_destroy(&to_arg.q); 919 920 if (err == 0 && to_arg.error_code != 0) 921 err = to_arg.error_code; 922 923 if (err != 0) 924 goto out; 925 926 if (dsp->dsa_pending_op != PENDING_NONE) 927 if (dump_record(dsp, NULL, 0) != 0) 928 err = SET_ERROR(EINTR); 929 930 if (err != 0) { 931 if (err == EINTR && dsp->dsa_err != 0) 932 err = dsp->dsa_err; 933 goto out; 934 } 935 936 bzero(drr, sizeof (dmu_replay_record_t)); 937 drr->drr_type = DRR_END; 938 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 939 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 940 941 if (dump_record(dsp, NULL, 0) != 0) 942 err = dsp->dsa_err; 943 944 out: 945 mutex_enter(&to_ds->ds_sendstream_lock); 946 list_remove(&to_ds->ds_sendstreams, dsp); 947 mutex_exit(&to_ds->ds_sendstream_lock); 948 949 VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end)); 950 951 kmem_free(drr, sizeof (dmu_replay_record_t)); 952 kmem_free(dsp, sizeof (dmu_sendarg_t)); 953 954 dsl_dataset_long_rele(to_ds, FTAG); 955 956 return (err); 957 } 958 959 int 960 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 961 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok, 962 int outfd, vnode_t *vp, offset_t *off) 963 { 964 dsl_pool_t *dp; 965 dsl_dataset_t *ds; 966 dsl_dataset_t *fromds = NULL; 967 int err; 968 969 err = dsl_pool_hold(pool, FTAG, &dp); 970 if (err != 0) 971 return (err); 972 973 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 974 if (err != 0) { 975 dsl_pool_rele(dp, FTAG); 976 return (err); 977 } 978 979 if (fromsnap != 0) { 980 zfs_bookmark_phys_t zb; 981 boolean_t is_clone; 982 983 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 984 if (err != 0) { 985 dsl_dataset_rele(ds, FTAG); 986 dsl_pool_rele(dp, FTAG); 987 return (err); 988 } 989 if (!dsl_dataset_is_before(ds, fromds, 0)) 990 err = SET_ERROR(EXDEV); 991 zb.zbm_creation_time = 992 dsl_dataset_phys(fromds)->ds_creation_time; 993 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 994 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 995 is_clone = (fromds->ds_dir != ds->ds_dir); 996 dsl_dataset_rele(fromds, FTAG); 997 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 998 embedok, large_block_ok, compressok, outfd, 0, 0, vp, off); 999 } else { 1000 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1001 embedok, large_block_ok, compressok, outfd, 0, 0, vp, off); 1002 } 1003 dsl_dataset_rele(ds, FTAG); 1004 return (err); 1005 } 1006 1007 int 1008 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 1009 boolean_t large_block_ok, boolean_t compressok, int outfd, 1010 uint64_t resumeobj, uint64_t resumeoff, 1011 vnode_t *vp, offset_t *off) 1012 { 1013 dsl_pool_t *dp; 1014 dsl_dataset_t *ds; 1015 int err; 1016 boolean_t owned = B_FALSE; 1017 1018 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 1019 return (SET_ERROR(EINVAL)); 1020 1021 err = dsl_pool_hold(tosnap, FTAG, &dp); 1022 if (err != 0) 1023 return (err); 1024 1025 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 1026 /* 1027 * We are sending a filesystem or volume. Ensure 1028 * that it doesn't change by owning the dataset. 1029 */ 1030 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 1031 owned = B_TRUE; 1032 } else { 1033 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 1034 } 1035 if (err != 0) { 1036 dsl_pool_rele(dp, FTAG); 1037 return (err); 1038 } 1039 1040 if (fromsnap != NULL) { 1041 zfs_bookmark_phys_t zb; 1042 boolean_t is_clone = B_FALSE; 1043 int fsnamelen = strchr(tosnap, '@') - tosnap; 1044 1045 /* 1046 * If the fromsnap is in a different filesystem, then 1047 * mark the send stream as a clone. 1048 */ 1049 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 1050 (fromsnap[fsnamelen] != '@' && 1051 fromsnap[fsnamelen] != '#')) { 1052 is_clone = B_TRUE; 1053 } 1054 1055 if (strchr(fromsnap, '@')) { 1056 dsl_dataset_t *fromds; 1057 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 1058 if (err == 0) { 1059 if (!dsl_dataset_is_before(ds, fromds, 0)) 1060 err = SET_ERROR(EXDEV); 1061 zb.zbm_creation_time = 1062 dsl_dataset_phys(fromds)->ds_creation_time; 1063 zb.zbm_creation_txg = 1064 dsl_dataset_phys(fromds)->ds_creation_txg; 1065 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 1066 is_clone = (ds->ds_dir != fromds->ds_dir); 1067 dsl_dataset_rele(fromds, FTAG); 1068 } 1069 } else { 1070 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 1071 } 1072 if (err != 0) { 1073 dsl_dataset_rele(ds, FTAG); 1074 dsl_pool_rele(dp, FTAG); 1075 return (err); 1076 } 1077 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 1078 embedok, large_block_ok, compressok, 1079 outfd, resumeobj, resumeoff, vp, off); 1080 } else { 1081 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1082 embedok, large_block_ok, compressok, 1083 outfd, resumeobj, resumeoff, vp, off); 1084 } 1085 if (owned) 1086 dsl_dataset_disown(ds, FTAG); 1087 else 1088 dsl_dataset_rele(ds, FTAG); 1089 return (err); 1090 } 1091 1092 static int 1093 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed, 1094 uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep) 1095 { 1096 int err; 1097 uint64_t size; 1098 /* 1099 * Assume that space (both on-disk and in-stream) is dominated by 1100 * data. We will adjust for indirect blocks and the copies property, 1101 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 1102 */ 1103 uint64_t recordsize; 1104 uint64_t record_count; 1105 objset_t *os; 1106 VERIFY0(dmu_objset_from_ds(ds, &os)); 1107 1108 /* Assume all (uncompressed) blocks are recordsize. */ 1109 if (os->os_phys->os_type == DMU_OST_ZVOL) { 1110 err = dsl_prop_get_int_ds(ds, 1111 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize); 1112 } else { 1113 err = dsl_prop_get_int_ds(ds, 1114 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize); 1115 } 1116 if (err != 0) 1117 return (err); 1118 record_count = uncompressed / recordsize; 1119 1120 /* 1121 * If we're estimating a send size for a compressed stream, use the 1122 * compressed data size to estimate the stream size. Otherwise, use the 1123 * uncompressed data size. 1124 */ 1125 size = stream_compressed ? compressed : uncompressed; 1126 1127 /* 1128 * Subtract out approximate space used by indirect blocks. 1129 * Assume most space is used by data blocks (non-indirect, non-dnode). 1130 * Assume no ditto blocks or internal fragmentation. 1131 * 1132 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 1133 * block. 1134 */ 1135 size -= record_count * sizeof (blkptr_t); 1136 1137 /* Add in the space for the record associated with each block. */ 1138 size += record_count * sizeof (dmu_replay_record_t); 1139 1140 *sizep = size; 1141 1142 return (0); 1143 } 1144 1145 int 1146 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, 1147 boolean_t stream_compressed, uint64_t *sizep) 1148 { 1149 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1150 int err; 1151 uint64_t uncomp, comp; 1152 1153 ASSERT(dsl_pool_config_held(dp)); 1154 1155 /* tosnap must be a snapshot */ 1156 if (!ds->ds_is_snapshot) 1157 return (SET_ERROR(EINVAL)); 1158 1159 /* fromsnap, if provided, must be a snapshot */ 1160 if (fromds != NULL && !fromds->ds_is_snapshot) 1161 return (SET_ERROR(EINVAL)); 1162 1163 /* 1164 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1165 * or the origin's fs. 1166 */ 1167 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1168 return (SET_ERROR(EXDEV)); 1169 1170 /* Get compressed and uncompressed size estimates of changed data. */ 1171 if (fromds == NULL) { 1172 uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1173 comp = dsl_dataset_phys(ds)->ds_compressed_bytes; 1174 } else { 1175 uint64_t used; 1176 err = dsl_dataset_space_written(fromds, ds, 1177 &used, &comp, &uncomp); 1178 if (err != 0) 1179 return (err); 1180 } 1181 1182 err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp, 1183 stream_compressed, sizep); 1184 /* 1185 * Add the size of the BEGIN and END records to the estimate. 1186 */ 1187 *sizep += 2 * sizeof (dmu_replay_record_t); 1188 return (err); 1189 } 1190 1191 struct calculate_send_arg { 1192 uint64_t uncompressed; 1193 uint64_t compressed; 1194 }; 1195 1196 /* 1197 * Simple callback used to traverse the blocks of a snapshot and sum their 1198 * uncompressed and compressed sizes. 1199 */ 1200 /* ARGSUSED */ 1201 static int 1202 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1203 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1204 { 1205 struct calculate_send_arg *space = arg; 1206 if (bp != NULL && !BP_IS_HOLE(bp)) { 1207 space->uncompressed += BP_GET_UCSIZE(bp); 1208 space->compressed += BP_GET_PSIZE(bp); 1209 } 1210 return (0); 1211 } 1212 1213 /* 1214 * Given a desination snapshot and a TXG, calculate the approximate size of a 1215 * send stream sent from that TXG. from_txg may be zero, indicating that the 1216 * whole snapshot will be sent. 1217 */ 1218 int 1219 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1220 boolean_t stream_compressed, uint64_t *sizep) 1221 { 1222 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1223 int err; 1224 struct calculate_send_arg size = { 0 }; 1225 1226 ASSERT(dsl_pool_config_held(dp)); 1227 1228 /* tosnap must be a snapshot */ 1229 if (!ds->ds_is_snapshot) 1230 return (SET_ERROR(EINVAL)); 1231 1232 /* verify that from_txg is before the provided snapshot was taken */ 1233 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1234 return (SET_ERROR(EXDEV)); 1235 } 1236 1237 /* 1238 * traverse the blocks of the snapshot with birth times after 1239 * from_txg, summing their uncompressed size 1240 */ 1241 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1242 dmu_calculate_send_traversal, &size); 1243 if (err) 1244 return (err); 1245 1246 err = dmu_adjust_send_estimate_for_indirects(ds, size.uncompressed, 1247 size.compressed, stream_compressed, sizep); 1248 return (err); 1249 } 1250 1251 typedef struct dmu_recv_begin_arg { 1252 const char *drba_origin; 1253 dmu_recv_cookie_t *drba_cookie; 1254 cred_t *drba_cred; 1255 uint64_t drba_snapobj; 1256 } dmu_recv_begin_arg_t; 1257 1258 static int 1259 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1260 uint64_t fromguid) 1261 { 1262 uint64_t val; 1263 int error; 1264 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1265 1266 /* temporary clone name must not exist */ 1267 error = zap_lookup(dp->dp_meta_objset, 1268 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1269 8, 1, &val); 1270 if (error != ENOENT) 1271 return (error == 0 ? EBUSY : error); 1272 1273 /* new snapshot name must not exist */ 1274 error = zap_lookup(dp->dp_meta_objset, 1275 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1276 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1277 if (error != ENOENT) 1278 return (error == 0 ? EEXIST : error); 1279 1280 /* 1281 * Check snapshot limit before receiving. We'll recheck again at the 1282 * end, but might as well abort before receiving if we're already over 1283 * the limit. 1284 * 1285 * Note that we do not check the file system limit with 1286 * dsl_dir_fscount_check because the temporary %clones don't count 1287 * against that limit. 1288 */ 1289 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1290 NULL, drba->drba_cred); 1291 if (error != 0) 1292 return (error); 1293 1294 if (fromguid != 0) { 1295 dsl_dataset_t *snap; 1296 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1297 1298 /* Find snapshot in this dir that matches fromguid. */ 1299 while (obj != 0) { 1300 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1301 &snap); 1302 if (error != 0) 1303 return (SET_ERROR(ENODEV)); 1304 if (snap->ds_dir != ds->ds_dir) { 1305 dsl_dataset_rele(snap, FTAG); 1306 return (SET_ERROR(ENODEV)); 1307 } 1308 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1309 break; 1310 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1311 dsl_dataset_rele(snap, FTAG); 1312 } 1313 if (obj == 0) 1314 return (SET_ERROR(ENODEV)); 1315 1316 if (drba->drba_cookie->drc_force) { 1317 drba->drba_snapobj = obj; 1318 } else { 1319 /* 1320 * If we are not forcing, there must be no 1321 * changes since fromsnap. 1322 */ 1323 if (dsl_dataset_modified_since_snap(ds, snap)) { 1324 dsl_dataset_rele(snap, FTAG); 1325 return (SET_ERROR(ETXTBSY)); 1326 } 1327 drba->drba_snapobj = ds->ds_prev->ds_object; 1328 } 1329 1330 dsl_dataset_rele(snap, FTAG); 1331 } else { 1332 /* if full, then must be forced */ 1333 if (!drba->drba_cookie->drc_force) 1334 return (SET_ERROR(EEXIST)); 1335 /* start from $ORIGIN@$ORIGIN, if supported */ 1336 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1337 dp->dp_origin_snap->ds_object : 0; 1338 } 1339 1340 return (0); 1341 1342 } 1343 1344 static int 1345 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1346 { 1347 dmu_recv_begin_arg_t *drba = arg; 1348 dsl_pool_t *dp = dmu_tx_pool(tx); 1349 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1350 uint64_t fromguid = drrb->drr_fromguid; 1351 int flags = drrb->drr_flags; 1352 int error; 1353 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1354 dsl_dataset_t *ds; 1355 const char *tofs = drba->drba_cookie->drc_tofs; 1356 1357 /* already checked */ 1358 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1359 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 1360 1361 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1362 DMU_COMPOUNDSTREAM || 1363 drrb->drr_type >= DMU_OST_NUMTYPES || 1364 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1365 return (SET_ERROR(EINVAL)); 1366 1367 /* Verify pool version supports SA if SA_SPILL feature set */ 1368 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1369 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1370 return (SET_ERROR(ENOTSUP)); 1371 1372 if (drba->drba_cookie->drc_resumable && 1373 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 1374 return (SET_ERROR(ENOTSUP)); 1375 1376 /* 1377 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1378 * record to a plain WRITE record, so the pool must have the 1379 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1380 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1381 */ 1382 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1383 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1384 return (SET_ERROR(ENOTSUP)); 1385 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 1386 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1387 return (SET_ERROR(ENOTSUP)); 1388 1389 /* 1390 * The receiving code doesn't know how to translate large blocks 1391 * to smaller ones, so the pool must have the LARGE_BLOCKS 1392 * feature enabled if the stream has LARGE_BLOCKS. 1393 */ 1394 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1395 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1396 return (SET_ERROR(ENOTSUP)); 1397 1398 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1399 if (error == 0) { 1400 /* target fs already exists; recv into temp clone */ 1401 1402 /* Can't recv a clone into an existing fs */ 1403 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 1404 dsl_dataset_rele(ds, FTAG); 1405 return (SET_ERROR(EINVAL)); 1406 } 1407 1408 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1409 dsl_dataset_rele(ds, FTAG); 1410 } else if (error == ENOENT) { 1411 /* target fs does not exist; must be a full backup or clone */ 1412 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1413 1414 /* 1415 * If it's a non-clone incremental, we are missing the 1416 * target fs, so fail the recv. 1417 */ 1418 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1419 drba->drba_origin)) 1420 return (SET_ERROR(ENOENT)); 1421 1422 /* 1423 * If we're receiving a full send as a clone, and it doesn't 1424 * contain all the necessary free records and freeobject 1425 * records, reject it. 1426 */ 1427 if (fromguid == 0 && drba->drba_origin && 1428 !(flags & DRR_FLAG_FREERECORDS)) 1429 return (SET_ERROR(EINVAL)); 1430 1431 /* Open the parent of tofs */ 1432 ASSERT3U(strlen(tofs), <, sizeof (buf)); 1433 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1434 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1435 if (error != 0) 1436 return (error); 1437 1438 /* 1439 * Check filesystem and snapshot limits before receiving. We'll 1440 * recheck snapshot limits again at the end (we create the 1441 * filesystems and increment those counts during begin_sync). 1442 */ 1443 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1444 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1445 if (error != 0) { 1446 dsl_dataset_rele(ds, FTAG); 1447 return (error); 1448 } 1449 1450 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1451 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1452 if (error != 0) { 1453 dsl_dataset_rele(ds, FTAG); 1454 return (error); 1455 } 1456 1457 if (drba->drba_origin != NULL) { 1458 dsl_dataset_t *origin; 1459 error = dsl_dataset_hold(dp, drba->drba_origin, 1460 FTAG, &origin); 1461 if (error != 0) { 1462 dsl_dataset_rele(ds, FTAG); 1463 return (error); 1464 } 1465 if (!origin->ds_is_snapshot) { 1466 dsl_dataset_rele(origin, FTAG); 1467 dsl_dataset_rele(ds, FTAG); 1468 return (SET_ERROR(EINVAL)); 1469 } 1470 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 1471 fromguid != 0) { 1472 dsl_dataset_rele(origin, FTAG); 1473 dsl_dataset_rele(ds, FTAG); 1474 return (SET_ERROR(ENODEV)); 1475 } 1476 dsl_dataset_rele(origin, FTAG); 1477 } 1478 dsl_dataset_rele(ds, FTAG); 1479 error = 0; 1480 } 1481 return (error); 1482 } 1483 1484 static void 1485 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1486 { 1487 dmu_recv_begin_arg_t *drba = arg; 1488 dsl_pool_t *dp = dmu_tx_pool(tx); 1489 objset_t *mos = dp->dp_meta_objset; 1490 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1491 const char *tofs = drba->drba_cookie->drc_tofs; 1492 dsl_dataset_t *ds, *newds; 1493 uint64_t dsobj; 1494 int error; 1495 uint64_t crflags = 0; 1496 1497 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 1498 crflags |= DS_FLAG_CI_DATASET; 1499 1500 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1501 if (error == 0) { 1502 /* create temporary clone */ 1503 dsl_dataset_t *snap = NULL; 1504 if (drba->drba_snapobj != 0) { 1505 VERIFY0(dsl_dataset_hold_obj(dp, 1506 drba->drba_snapobj, FTAG, &snap)); 1507 } 1508 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1509 snap, crflags, drba->drba_cred, tx); 1510 if (drba->drba_snapobj != 0) 1511 dsl_dataset_rele(snap, FTAG); 1512 dsl_dataset_rele(ds, FTAG); 1513 } else { 1514 dsl_dir_t *dd; 1515 const char *tail; 1516 dsl_dataset_t *origin = NULL; 1517 1518 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1519 1520 if (drba->drba_origin != NULL) { 1521 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1522 FTAG, &origin)); 1523 } 1524 1525 /* Create new dataset. */ 1526 dsobj = dsl_dataset_create_sync(dd, 1527 strrchr(tofs, '/') + 1, 1528 origin, crflags, drba->drba_cred, tx); 1529 if (origin != NULL) 1530 dsl_dataset_rele(origin, FTAG); 1531 dsl_dir_rele(dd, FTAG); 1532 drba->drba_cookie->drc_newfs = B_TRUE; 1533 } 1534 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1535 1536 if (drba->drba_cookie->drc_resumable) { 1537 dsl_dataset_zapify(newds, tx); 1538 if (drrb->drr_fromguid != 0) { 1539 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 1540 8, 1, &drrb->drr_fromguid, tx)); 1541 } 1542 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 1543 8, 1, &drrb->drr_toguid, tx)); 1544 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1545 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 1546 uint64_t one = 1; 1547 uint64_t zero = 0; 1548 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 1549 8, 1, &one, tx)); 1550 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 1551 8, 1, &zero, tx)); 1552 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 1553 8, 1, &zero, tx)); 1554 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1555 DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 1556 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 1557 8, 1, &one, tx)); 1558 } 1559 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1560 DMU_BACKUP_FEATURE_EMBED_DATA) { 1561 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 1562 8, 1, &one, tx)); 1563 } 1564 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1565 DMU_BACKUP_FEATURE_COMPRESSED) { 1566 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 1567 8, 1, &one, tx)); 1568 } 1569 } 1570 1571 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1572 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1573 1574 /* 1575 * If we actually created a non-clone, we need to create the 1576 * objset in our new dataset. 1577 */ 1578 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 1579 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1580 (void) dmu_objset_create_impl(dp->dp_spa, 1581 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1582 } 1583 rrw_exit(&newds->ds_bp_rwlock, FTAG); 1584 1585 drba->drba_cookie->drc_ds = newds; 1586 1587 spa_history_log_internal_ds(newds, "receive", tx, ""); 1588 } 1589 1590 static int 1591 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1592 { 1593 dmu_recv_begin_arg_t *drba = arg; 1594 dsl_pool_t *dp = dmu_tx_pool(tx); 1595 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1596 int error; 1597 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1598 dsl_dataset_t *ds; 1599 const char *tofs = drba->drba_cookie->drc_tofs; 1600 1601 /* already checked */ 1602 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1603 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 1604 1605 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1606 DMU_COMPOUNDSTREAM || 1607 drrb->drr_type >= DMU_OST_NUMTYPES) 1608 return (SET_ERROR(EINVAL)); 1609 1610 /* Verify pool version supports SA if SA_SPILL feature set */ 1611 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1612 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1613 return (SET_ERROR(ENOTSUP)); 1614 1615 /* 1616 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1617 * record to a plain WRITE record, so the pool must have the 1618 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1619 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1620 */ 1621 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1622 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1623 return (SET_ERROR(ENOTSUP)); 1624 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 1625 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1626 return (SET_ERROR(ENOTSUP)); 1627 1628 /* 6 extra bytes for /%recv */ 1629 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1630 1631 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1632 tofs, recv_clone_name); 1633 1634 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1635 /* %recv does not exist; continue in tofs */ 1636 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1637 if (error != 0) 1638 return (error); 1639 } 1640 1641 /* check that ds is marked inconsistent */ 1642 if (!DS_IS_INCONSISTENT(ds)) { 1643 dsl_dataset_rele(ds, FTAG); 1644 return (SET_ERROR(EINVAL)); 1645 } 1646 1647 /* check that there is resuming data, and that the toguid matches */ 1648 if (!dsl_dataset_is_zapified(ds)) { 1649 dsl_dataset_rele(ds, FTAG); 1650 return (SET_ERROR(EINVAL)); 1651 } 1652 uint64_t val; 1653 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1654 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1655 if (error != 0 || drrb->drr_toguid != val) { 1656 dsl_dataset_rele(ds, FTAG); 1657 return (SET_ERROR(EINVAL)); 1658 } 1659 1660 /* 1661 * Check if the receive is still running. If so, it will be owned. 1662 * Note that nothing else can own the dataset (e.g. after the receive 1663 * fails) because it will be marked inconsistent. 1664 */ 1665 if (dsl_dataset_has_owner(ds)) { 1666 dsl_dataset_rele(ds, FTAG); 1667 return (SET_ERROR(EBUSY)); 1668 } 1669 1670 /* There should not be any snapshots of this fs yet. */ 1671 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1672 dsl_dataset_rele(ds, FTAG); 1673 return (SET_ERROR(EINVAL)); 1674 } 1675 1676 /* 1677 * Note: resume point will be checked when we process the first WRITE 1678 * record. 1679 */ 1680 1681 /* check that the origin matches */ 1682 val = 0; 1683 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1684 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1685 if (drrb->drr_fromguid != val) { 1686 dsl_dataset_rele(ds, FTAG); 1687 return (SET_ERROR(EINVAL)); 1688 } 1689 1690 dsl_dataset_rele(ds, FTAG); 1691 return (0); 1692 } 1693 1694 static void 1695 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1696 { 1697 dmu_recv_begin_arg_t *drba = arg; 1698 dsl_pool_t *dp = dmu_tx_pool(tx); 1699 const char *tofs = drba->drba_cookie->drc_tofs; 1700 dsl_dataset_t *ds; 1701 uint64_t dsobj; 1702 /* 6 extra bytes for /%recv */ 1703 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1704 1705 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1706 tofs, recv_clone_name); 1707 1708 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1709 /* %recv does not exist; continue in tofs */ 1710 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); 1711 drba->drba_cookie->drc_newfs = B_TRUE; 1712 } 1713 1714 /* clear the inconsistent flag so that we can own it */ 1715 ASSERT(DS_IS_INCONSISTENT(ds)); 1716 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1717 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 1718 dsobj = ds->ds_object; 1719 dsl_dataset_rele(ds, FTAG); 1720 1721 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); 1722 1723 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1724 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 1725 1726 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1727 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); 1728 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1729 1730 drba->drba_cookie->drc_ds = ds; 1731 1732 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 1733 } 1734 1735 /* 1736 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1737 * succeeds; otherwise we will leak the holds on the datasets. 1738 */ 1739 int 1740 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1741 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 1742 { 1743 dmu_recv_begin_arg_t drba = { 0 }; 1744 1745 bzero(drc, sizeof (dmu_recv_cookie_t)); 1746 drc->drc_drr_begin = drr_begin; 1747 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1748 drc->drc_tosnap = tosnap; 1749 drc->drc_tofs = tofs; 1750 drc->drc_force = force; 1751 drc->drc_resumable = resumable; 1752 drc->drc_cred = CRED(); 1753 1754 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1755 drc->drc_byteswap = B_TRUE; 1756 (void) fletcher_4_incremental_byteswap(drr_begin, 1757 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1758 byteswap_record(drr_begin); 1759 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1760 (void) fletcher_4_incremental_native(drr_begin, 1761 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1762 } else { 1763 return (SET_ERROR(EINVAL)); 1764 } 1765 1766 drba.drba_origin = origin; 1767 drba.drba_cookie = drc; 1768 drba.drba_cred = CRED(); 1769 1770 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1771 DMU_BACKUP_FEATURE_RESUMING) { 1772 return (dsl_sync_task(tofs, 1773 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1774 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1775 } else { 1776 return (dsl_sync_task(tofs, 1777 dmu_recv_begin_check, dmu_recv_begin_sync, 1778 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1779 } 1780 } 1781 1782 struct receive_record_arg { 1783 dmu_replay_record_t header; 1784 void *payload; /* Pointer to a buffer containing the payload */ 1785 /* 1786 * If the record is a write, pointer to the arc_buf_t containing the 1787 * payload. 1788 */ 1789 arc_buf_t *write_buf; 1790 int payload_size; 1791 uint64_t bytes_read; /* bytes read from stream when record created */ 1792 boolean_t eos_marker; /* Marks the end of the stream */ 1793 bqueue_node_t node; 1794 }; 1795 1796 struct receive_writer_arg { 1797 objset_t *os; 1798 boolean_t byteswap; 1799 bqueue_t q; 1800 1801 /* 1802 * These three args are used to signal to the main thread that we're 1803 * done. 1804 */ 1805 kmutex_t mutex; 1806 kcondvar_t cv; 1807 boolean_t done; 1808 1809 int err; 1810 /* A map from guid to dataset to help handle dedup'd streams. */ 1811 avl_tree_t *guid_to_ds_map; 1812 boolean_t resumable; 1813 uint64_t last_object, last_offset; 1814 uint64_t bytes_read; /* bytes read when current record created */ 1815 }; 1816 1817 struct objlist { 1818 list_t list; /* List of struct receive_objnode. */ 1819 /* 1820 * Last object looked up. Used to assert that objects are being looked 1821 * up in ascending order. 1822 */ 1823 uint64_t last_lookup; 1824 }; 1825 1826 struct receive_objnode { 1827 list_node_t node; 1828 uint64_t object; 1829 }; 1830 1831 struct receive_arg { 1832 objset_t *os; 1833 vnode_t *vp; /* The vnode to read the stream from */ 1834 uint64_t voff; /* The current offset in the stream */ 1835 uint64_t bytes_read; 1836 /* 1837 * A record that has had its payload read in, but hasn't yet been handed 1838 * off to the worker thread. 1839 */ 1840 struct receive_record_arg *rrd; 1841 /* A record that has had its header read in, but not its payload. */ 1842 struct receive_record_arg *next_rrd; 1843 zio_cksum_t cksum; 1844 zio_cksum_t prev_cksum; 1845 int err; 1846 boolean_t byteswap; 1847 /* Sorted list of objects not to issue prefetches for. */ 1848 struct objlist ignore_objlist; 1849 }; 1850 1851 typedef struct guid_map_entry { 1852 uint64_t guid; 1853 dsl_dataset_t *gme_ds; 1854 avl_node_t avlnode; 1855 } guid_map_entry_t; 1856 1857 static int 1858 guid_compare(const void *arg1, const void *arg2) 1859 { 1860 const guid_map_entry_t *gmep1 = arg1; 1861 const guid_map_entry_t *gmep2 = arg2; 1862 1863 if (gmep1->guid < gmep2->guid) 1864 return (-1); 1865 else if (gmep1->guid > gmep2->guid) 1866 return (1); 1867 return (0); 1868 } 1869 1870 static void 1871 free_guid_map_onexit(void *arg) 1872 { 1873 avl_tree_t *ca = arg; 1874 void *cookie = NULL; 1875 guid_map_entry_t *gmep; 1876 1877 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1878 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1879 dsl_dataset_rele(gmep->gme_ds, gmep); 1880 kmem_free(gmep, sizeof (guid_map_entry_t)); 1881 } 1882 avl_destroy(ca); 1883 kmem_free(ca, sizeof (avl_tree_t)); 1884 } 1885 1886 static int 1887 receive_read(struct receive_arg *ra, int len, void *buf) 1888 { 1889 int done = 0; 1890 1891 /* 1892 * The code doesn't rely on this (lengths being multiples of 8). See 1893 * comment in dump_bytes. 1894 */ 1895 ASSERT0(len % 8); 1896 1897 while (done < len) { 1898 ssize_t resid; 1899 1900 ra->err = vn_rdwr(UIO_READ, ra->vp, 1901 (char *)buf + done, len - done, 1902 ra->voff, UIO_SYSSPACE, FAPPEND, 1903 RLIM64_INFINITY, CRED(), &resid); 1904 1905 if (resid == len - done) { 1906 /* 1907 * Note: ECKSUM indicates that the receive 1908 * was interrupted and can potentially be resumed. 1909 */ 1910 ra->err = SET_ERROR(ECKSUM); 1911 } 1912 ra->voff += len - done - resid; 1913 done = len - resid; 1914 if (ra->err != 0) 1915 return (ra->err); 1916 } 1917 1918 ra->bytes_read += len; 1919 1920 ASSERT3U(done, ==, len); 1921 return (0); 1922 } 1923 1924 static void 1925 byteswap_record(dmu_replay_record_t *drr) 1926 { 1927 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1928 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1929 drr->drr_type = BSWAP_32(drr->drr_type); 1930 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1931 1932 switch (drr->drr_type) { 1933 case DRR_BEGIN: 1934 DO64(drr_begin.drr_magic); 1935 DO64(drr_begin.drr_versioninfo); 1936 DO64(drr_begin.drr_creation_time); 1937 DO32(drr_begin.drr_type); 1938 DO32(drr_begin.drr_flags); 1939 DO64(drr_begin.drr_toguid); 1940 DO64(drr_begin.drr_fromguid); 1941 break; 1942 case DRR_OBJECT: 1943 DO64(drr_object.drr_object); 1944 DO32(drr_object.drr_type); 1945 DO32(drr_object.drr_bonustype); 1946 DO32(drr_object.drr_blksz); 1947 DO32(drr_object.drr_bonuslen); 1948 DO64(drr_object.drr_toguid); 1949 break; 1950 case DRR_FREEOBJECTS: 1951 DO64(drr_freeobjects.drr_firstobj); 1952 DO64(drr_freeobjects.drr_numobjs); 1953 DO64(drr_freeobjects.drr_toguid); 1954 break; 1955 case DRR_WRITE: 1956 DO64(drr_write.drr_object); 1957 DO32(drr_write.drr_type); 1958 DO64(drr_write.drr_offset); 1959 DO64(drr_write.drr_logical_size); 1960 DO64(drr_write.drr_toguid); 1961 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1962 DO64(drr_write.drr_key.ddk_prop); 1963 DO64(drr_write.drr_compressed_size); 1964 break; 1965 case DRR_WRITE_BYREF: 1966 DO64(drr_write_byref.drr_object); 1967 DO64(drr_write_byref.drr_offset); 1968 DO64(drr_write_byref.drr_length); 1969 DO64(drr_write_byref.drr_toguid); 1970 DO64(drr_write_byref.drr_refguid); 1971 DO64(drr_write_byref.drr_refobject); 1972 DO64(drr_write_byref.drr_refoffset); 1973 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1974 drr_key.ddk_cksum); 1975 DO64(drr_write_byref.drr_key.ddk_prop); 1976 break; 1977 case DRR_WRITE_EMBEDDED: 1978 DO64(drr_write_embedded.drr_object); 1979 DO64(drr_write_embedded.drr_offset); 1980 DO64(drr_write_embedded.drr_length); 1981 DO64(drr_write_embedded.drr_toguid); 1982 DO32(drr_write_embedded.drr_lsize); 1983 DO32(drr_write_embedded.drr_psize); 1984 break; 1985 case DRR_FREE: 1986 DO64(drr_free.drr_object); 1987 DO64(drr_free.drr_offset); 1988 DO64(drr_free.drr_length); 1989 DO64(drr_free.drr_toguid); 1990 break; 1991 case DRR_SPILL: 1992 DO64(drr_spill.drr_object); 1993 DO64(drr_spill.drr_length); 1994 DO64(drr_spill.drr_toguid); 1995 break; 1996 case DRR_END: 1997 DO64(drr_end.drr_toguid); 1998 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1999 break; 2000 } 2001 2002 if (drr->drr_type != DRR_BEGIN) { 2003 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 2004 } 2005 2006 #undef DO64 2007 #undef DO32 2008 } 2009 2010 static inline uint8_t 2011 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 2012 { 2013 if (bonus_type == DMU_OT_SA) { 2014 return (1); 2015 } else { 2016 return (1 + 2017 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 2018 } 2019 } 2020 2021 static void 2022 save_resume_state(struct receive_writer_arg *rwa, 2023 uint64_t object, uint64_t offset, dmu_tx_t *tx) 2024 { 2025 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 2026 2027 if (!rwa->resumable) 2028 return; 2029 2030 /* 2031 * We use ds_resume_bytes[] != 0 to indicate that we need to 2032 * update this on disk, so it must not be 0. 2033 */ 2034 ASSERT(rwa->bytes_read != 0); 2035 2036 /* 2037 * We only resume from write records, which have a valid 2038 * (non-meta-dnode) object number. 2039 */ 2040 ASSERT(object != 0); 2041 2042 /* 2043 * For resuming to work correctly, we must receive records in order, 2044 * sorted by object,offset. This is checked by the callers, but 2045 * assert it here for good measure. 2046 */ 2047 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 2048 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 2049 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 2050 ASSERT3U(rwa->bytes_read, >=, 2051 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 2052 2053 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 2054 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 2055 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 2056 } 2057 2058 static int 2059 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 2060 void *data) 2061 { 2062 dmu_object_info_t doi; 2063 dmu_tx_t *tx; 2064 uint64_t object; 2065 int err; 2066 2067 if (drro->drr_type == DMU_OT_NONE || 2068 !DMU_OT_IS_VALID(drro->drr_type) || 2069 !DMU_OT_IS_VALID(drro->drr_bonustype) || 2070 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 2071 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 2072 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 2073 drro->drr_blksz < SPA_MINBLOCKSIZE || 2074 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 2075 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 2076 return (SET_ERROR(EINVAL)); 2077 } 2078 2079 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 2080 2081 if (err != 0 && err != ENOENT) 2082 return (SET_ERROR(EINVAL)); 2083 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 2084 2085 /* 2086 * If we are losing blkptrs or changing the block size this must 2087 * be a new file instance. We must clear out the previous file 2088 * contents before we can change this type of metadata in the dnode. 2089 */ 2090 if (err == 0) { 2091 int nblkptr; 2092 2093 nblkptr = deduce_nblkptr(drro->drr_bonustype, 2094 drro->drr_bonuslen); 2095 2096 if (drro->drr_blksz != doi.doi_data_block_size || 2097 nblkptr < doi.doi_nblkptr) { 2098 err = dmu_free_long_range(rwa->os, drro->drr_object, 2099 0, DMU_OBJECT_END); 2100 if (err != 0) 2101 return (SET_ERROR(EINVAL)); 2102 } 2103 } 2104 2105 tx = dmu_tx_create(rwa->os); 2106 dmu_tx_hold_bonus(tx, object); 2107 err = dmu_tx_assign(tx, TXG_WAIT); 2108 if (err != 0) { 2109 dmu_tx_abort(tx); 2110 return (err); 2111 } 2112 2113 if (object == DMU_NEW_OBJECT) { 2114 /* currently free, want to be allocated */ 2115 err = dmu_object_claim(rwa->os, drro->drr_object, 2116 drro->drr_type, drro->drr_blksz, 2117 drro->drr_bonustype, drro->drr_bonuslen, tx); 2118 } else if (drro->drr_type != doi.doi_type || 2119 drro->drr_blksz != doi.doi_data_block_size || 2120 drro->drr_bonustype != doi.doi_bonus_type || 2121 drro->drr_bonuslen != doi.doi_bonus_size) { 2122 /* currently allocated, but with different properties */ 2123 err = dmu_object_reclaim(rwa->os, drro->drr_object, 2124 drro->drr_type, drro->drr_blksz, 2125 drro->drr_bonustype, drro->drr_bonuslen, tx); 2126 } 2127 if (err != 0) { 2128 dmu_tx_commit(tx); 2129 return (SET_ERROR(EINVAL)); 2130 } 2131 2132 dmu_object_set_checksum(rwa->os, drro->drr_object, 2133 drro->drr_checksumtype, tx); 2134 dmu_object_set_compress(rwa->os, drro->drr_object, 2135 drro->drr_compress, tx); 2136 2137 if (data != NULL) { 2138 dmu_buf_t *db; 2139 2140 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 2141 dmu_buf_will_dirty(db, tx); 2142 2143 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2144 bcopy(data, db->db_data, drro->drr_bonuslen); 2145 if (rwa->byteswap) { 2146 dmu_object_byteswap_t byteswap = 2147 DMU_OT_BYTESWAP(drro->drr_bonustype); 2148 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2149 drro->drr_bonuslen); 2150 } 2151 dmu_buf_rele(db, FTAG); 2152 } 2153 dmu_tx_commit(tx); 2154 2155 return (0); 2156 } 2157 2158 /* ARGSUSED */ 2159 static int 2160 receive_freeobjects(struct receive_writer_arg *rwa, 2161 struct drr_freeobjects *drrfo) 2162 { 2163 uint64_t obj; 2164 int next_err = 0; 2165 2166 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2167 return (SET_ERROR(EINVAL)); 2168 2169 for (obj = drrfo->drr_firstobj; 2170 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 2171 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2172 int err; 2173 2174 if (dmu_object_info(rwa->os, obj, NULL) != 0) 2175 continue; 2176 2177 err = dmu_free_long_object(rwa->os, obj); 2178 if (err != 0) 2179 return (err); 2180 } 2181 if (next_err != ESRCH) 2182 return (next_err); 2183 return (0); 2184 } 2185 2186 static int 2187 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 2188 arc_buf_t *abuf) 2189 { 2190 dmu_tx_t *tx; 2191 int err; 2192 2193 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 2194 !DMU_OT_IS_VALID(drrw->drr_type)) 2195 return (SET_ERROR(EINVAL)); 2196 2197 /* 2198 * For resuming to work, records must be in increasing order 2199 * by (object, offset). 2200 */ 2201 if (drrw->drr_object < rwa->last_object || 2202 (drrw->drr_object == rwa->last_object && 2203 drrw->drr_offset < rwa->last_offset)) { 2204 return (SET_ERROR(EINVAL)); 2205 } 2206 rwa->last_object = drrw->drr_object; 2207 rwa->last_offset = drrw->drr_offset; 2208 2209 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 2210 return (SET_ERROR(EINVAL)); 2211 2212 tx = dmu_tx_create(rwa->os); 2213 2214 dmu_tx_hold_write(tx, drrw->drr_object, 2215 drrw->drr_offset, drrw->drr_logical_size); 2216 err = dmu_tx_assign(tx, TXG_WAIT); 2217 if (err != 0) { 2218 dmu_tx_abort(tx); 2219 return (err); 2220 } 2221 if (rwa->byteswap) { 2222 dmu_object_byteswap_t byteswap = 2223 DMU_OT_BYTESWAP(drrw->drr_type); 2224 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2225 DRR_WRITE_PAYLOAD_SIZE(drrw)); 2226 } 2227 2228 /* use the bonus buf to look up the dnode in dmu_assign_arcbuf */ 2229 dmu_buf_t *bonus; 2230 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 2231 return (SET_ERROR(EINVAL)); 2232 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 2233 2234 /* 2235 * Note: If the receive fails, we want the resume stream to start 2236 * with the same record that we last successfully received (as opposed 2237 * to the next record), so that we can verify that we are 2238 * resuming from the correct location. 2239 */ 2240 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2241 dmu_tx_commit(tx); 2242 dmu_buf_rele(bonus, FTAG); 2243 2244 return (0); 2245 } 2246 2247 /* 2248 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 2249 * streams to refer to a copy of the data that is already on the 2250 * system because it came in earlier in the stream. This function 2251 * finds the earlier copy of the data, and uses that copy instead of 2252 * data from the stream to fulfill this write. 2253 */ 2254 static int 2255 receive_write_byref(struct receive_writer_arg *rwa, 2256 struct drr_write_byref *drrwbr) 2257 { 2258 dmu_tx_t *tx; 2259 int err; 2260 guid_map_entry_t gmesrch; 2261 guid_map_entry_t *gmep; 2262 avl_index_t where; 2263 objset_t *ref_os = NULL; 2264 dmu_buf_t *dbp; 2265 2266 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 2267 return (SET_ERROR(EINVAL)); 2268 2269 /* 2270 * If the GUID of the referenced dataset is different from the 2271 * GUID of the target dataset, find the referenced dataset. 2272 */ 2273 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 2274 gmesrch.guid = drrwbr->drr_refguid; 2275 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 2276 &where)) == NULL) { 2277 return (SET_ERROR(EINVAL)); 2278 } 2279 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 2280 return (SET_ERROR(EINVAL)); 2281 } else { 2282 ref_os = rwa->os; 2283 } 2284 2285 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 2286 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 2287 if (err != 0) 2288 return (err); 2289 2290 tx = dmu_tx_create(rwa->os); 2291 2292 dmu_tx_hold_write(tx, drrwbr->drr_object, 2293 drrwbr->drr_offset, drrwbr->drr_length); 2294 err = dmu_tx_assign(tx, TXG_WAIT); 2295 if (err != 0) { 2296 dmu_tx_abort(tx); 2297 return (err); 2298 } 2299 dmu_write(rwa->os, drrwbr->drr_object, 2300 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 2301 dmu_buf_rele(dbp, FTAG); 2302 2303 /* See comment in restore_write. */ 2304 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 2305 dmu_tx_commit(tx); 2306 return (0); 2307 } 2308 2309 static int 2310 receive_write_embedded(struct receive_writer_arg *rwa, 2311 struct drr_write_embedded *drrwe, void *data) 2312 { 2313 dmu_tx_t *tx; 2314 int err; 2315 2316 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2317 return (EINVAL); 2318 2319 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2320 return (EINVAL); 2321 2322 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2323 return (EINVAL); 2324 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2325 return (EINVAL); 2326 2327 tx = dmu_tx_create(rwa->os); 2328 2329 dmu_tx_hold_write(tx, drrwe->drr_object, 2330 drrwe->drr_offset, drrwe->drr_length); 2331 err = dmu_tx_assign(tx, TXG_WAIT); 2332 if (err != 0) { 2333 dmu_tx_abort(tx); 2334 return (err); 2335 } 2336 2337 dmu_write_embedded(rwa->os, drrwe->drr_object, 2338 drrwe->drr_offset, data, drrwe->drr_etype, 2339 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2340 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2341 2342 /* See comment in restore_write. */ 2343 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2344 dmu_tx_commit(tx); 2345 return (0); 2346 } 2347 2348 static int 2349 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2350 void *data) 2351 { 2352 dmu_tx_t *tx; 2353 dmu_buf_t *db, *db_spill; 2354 int err; 2355 2356 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2357 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2358 return (SET_ERROR(EINVAL)); 2359 2360 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2361 return (SET_ERROR(EINVAL)); 2362 2363 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2364 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 2365 dmu_buf_rele(db, FTAG); 2366 return (err); 2367 } 2368 2369 tx = dmu_tx_create(rwa->os); 2370 2371 dmu_tx_hold_spill(tx, db->db_object); 2372 2373 err = dmu_tx_assign(tx, TXG_WAIT); 2374 if (err != 0) { 2375 dmu_buf_rele(db, FTAG); 2376 dmu_buf_rele(db_spill, FTAG); 2377 dmu_tx_abort(tx); 2378 return (err); 2379 } 2380 dmu_buf_will_dirty(db_spill, tx); 2381 2382 if (db_spill->db_size < drrs->drr_length) 2383 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2384 drrs->drr_length, tx)); 2385 bcopy(data, db_spill->db_data, drrs->drr_length); 2386 2387 dmu_buf_rele(db, FTAG); 2388 dmu_buf_rele(db_spill, FTAG); 2389 2390 dmu_tx_commit(tx); 2391 return (0); 2392 } 2393 2394 /* ARGSUSED */ 2395 static int 2396 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2397 { 2398 int err; 2399 2400 if (drrf->drr_length != -1ULL && 2401 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2402 return (SET_ERROR(EINVAL)); 2403 2404 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2405 return (SET_ERROR(EINVAL)); 2406 2407 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2408 drrf->drr_offset, drrf->drr_length); 2409 2410 return (err); 2411 } 2412 2413 /* used to destroy the drc_ds on error */ 2414 static void 2415 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2416 { 2417 if (drc->drc_resumable) { 2418 /* wait for our resume state to be written to disk */ 2419 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); 2420 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2421 } else { 2422 char name[ZFS_MAX_DATASET_NAME_LEN]; 2423 dsl_dataset_name(drc->drc_ds, name); 2424 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2425 (void) dsl_destroy_head(name); 2426 } 2427 } 2428 2429 static void 2430 receive_cksum(struct receive_arg *ra, int len, void *buf) 2431 { 2432 if (ra->byteswap) { 2433 (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 2434 } else { 2435 (void) fletcher_4_incremental_native(buf, len, &ra->cksum); 2436 } 2437 } 2438 2439 /* 2440 * Read the payload into a buffer of size len, and update the current record's 2441 * payload field. 2442 * Allocate ra->next_rrd and read the next record's header into 2443 * ra->next_rrd->header. 2444 * Verify checksum of payload and next record. 2445 */ 2446 static int 2447 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 2448 { 2449 int err; 2450 2451 if (len != 0) { 2452 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2453 err = receive_read(ra, len, buf); 2454 if (err != 0) 2455 return (err); 2456 receive_cksum(ra, len, buf); 2457 2458 /* note: rrd is NULL when reading the begin record's payload */ 2459 if (ra->rrd != NULL) { 2460 ra->rrd->payload = buf; 2461 ra->rrd->payload_size = len; 2462 ra->rrd->bytes_read = ra->bytes_read; 2463 } 2464 } 2465 2466 ra->prev_cksum = ra->cksum; 2467 2468 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2469 err = receive_read(ra, sizeof (ra->next_rrd->header), 2470 &ra->next_rrd->header); 2471 ra->next_rrd->bytes_read = ra->bytes_read; 2472 if (err != 0) { 2473 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2474 ra->next_rrd = NULL; 2475 return (err); 2476 } 2477 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2478 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2479 ra->next_rrd = NULL; 2480 return (SET_ERROR(EINVAL)); 2481 } 2482 2483 /* 2484 * Note: checksum is of everything up to but not including the 2485 * checksum itself. 2486 */ 2487 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2488 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2489 receive_cksum(ra, 2490 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2491 &ra->next_rrd->header); 2492 2493 zio_cksum_t cksum_orig = 2494 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2495 zio_cksum_t *cksump = 2496 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2497 2498 if (ra->byteswap) 2499 byteswap_record(&ra->next_rrd->header); 2500 2501 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2502 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2503 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2504 ra->next_rrd = NULL; 2505 return (SET_ERROR(ECKSUM)); 2506 } 2507 2508 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2509 2510 return (0); 2511 } 2512 2513 static void 2514 objlist_create(struct objlist *list) 2515 { 2516 list_create(&list->list, sizeof (struct receive_objnode), 2517 offsetof(struct receive_objnode, node)); 2518 list->last_lookup = 0; 2519 } 2520 2521 static void 2522 objlist_destroy(struct objlist *list) 2523 { 2524 for (struct receive_objnode *n = list_remove_head(&list->list); 2525 n != NULL; n = list_remove_head(&list->list)) { 2526 kmem_free(n, sizeof (*n)); 2527 } 2528 list_destroy(&list->list); 2529 } 2530 2531 /* 2532 * This function looks through the objlist to see if the specified object number 2533 * is contained in the objlist. In the process, it will remove all object 2534 * numbers in the list that are smaller than the specified object number. Thus, 2535 * any lookup of an object number smaller than a previously looked up object 2536 * number will always return false; therefore, all lookups should be done in 2537 * ascending order. 2538 */ 2539 static boolean_t 2540 objlist_exists(struct objlist *list, uint64_t object) 2541 { 2542 struct receive_objnode *node = list_head(&list->list); 2543 ASSERT3U(object, >=, list->last_lookup); 2544 list->last_lookup = object; 2545 while (node != NULL && node->object < object) { 2546 VERIFY3P(node, ==, list_remove_head(&list->list)); 2547 kmem_free(node, sizeof (*node)); 2548 node = list_head(&list->list); 2549 } 2550 return (node != NULL && node->object == object); 2551 } 2552 2553 /* 2554 * The objlist is a list of object numbers stored in ascending order. However, 2555 * the insertion of new object numbers does not seek out the correct location to 2556 * store a new object number; instead, it appends it to the list for simplicity. 2557 * Thus, any users must take care to only insert new object numbers in ascending 2558 * order. 2559 */ 2560 static void 2561 objlist_insert(struct objlist *list, uint64_t object) 2562 { 2563 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 2564 node->object = object; 2565 #ifdef ZFS_DEBUG 2566 struct receive_objnode *last_object = list_tail(&list->list); 2567 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 2568 ASSERT3U(node->object, >, last_objnum); 2569 #endif 2570 list_insert_tail(&list->list, node); 2571 } 2572 2573 /* 2574 * Issue the prefetch reads for any necessary indirect blocks. 2575 * 2576 * We use the object ignore list to tell us whether or not to issue prefetches 2577 * for a given object. We do this for both correctness (in case the blocksize 2578 * of an object has changed) and performance (if the object doesn't exist, don't 2579 * needlessly try to issue prefetches). We also trim the list as we go through 2580 * the stream to prevent it from growing to an unbounded size. 2581 * 2582 * The object numbers within will always be in sorted order, and any write 2583 * records we see will also be in sorted order, but they're not sorted with 2584 * respect to each other (i.e. we can get several object records before 2585 * receiving each object's write records). As a result, once we've reached a 2586 * given object number, we can safely remove any reference to lower object 2587 * numbers in the ignore list. In practice, we receive up to 32 object records 2588 * before receiving write records, so the list can have up to 32 nodes in it. 2589 */ 2590 /* ARGSUSED */ 2591 static void 2592 receive_read_prefetch(struct receive_arg *ra, 2593 uint64_t object, uint64_t offset, uint64_t length) 2594 { 2595 if (!objlist_exists(&ra->ignore_objlist, object)) { 2596 dmu_prefetch(ra->os, object, 1, offset, length, 2597 ZIO_PRIORITY_SYNC_READ); 2598 } 2599 } 2600 2601 /* 2602 * Read records off the stream, issuing any necessary prefetches. 2603 */ 2604 static int 2605 receive_read_record(struct receive_arg *ra) 2606 { 2607 int err; 2608 2609 switch (ra->rrd->header.drr_type) { 2610 case DRR_OBJECT: 2611 { 2612 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2613 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2614 void *buf = kmem_zalloc(size, KM_SLEEP); 2615 dmu_object_info_t doi; 2616 err = receive_read_payload_and_next_header(ra, size, buf); 2617 if (err != 0) { 2618 kmem_free(buf, size); 2619 return (err); 2620 } 2621 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2622 /* 2623 * See receive_read_prefetch for an explanation why we're 2624 * storing this object in the ignore_obj_list. 2625 */ 2626 if (err == ENOENT || 2627 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2628 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2629 err = 0; 2630 } 2631 return (err); 2632 } 2633 case DRR_FREEOBJECTS: 2634 { 2635 err = receive_read_payload_and_next_header(ra, 0, NULL); 2636 return (err); 2637 } 2638 case DRR_WRITE: 2639 { 2640 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2641 arc_buf_t *abuf; 2642 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type); 2643 if (DRR_WRITE_COMPRESSED(drrw)) { 2644 ASSERT3U(drrw->drr_compressed_size, >, 0); 2645 ASSERT3U(drrw->drr_logical_size, >=, 2646 drrw->drr_compressed_size); 2647 ASSERT(!is_meta); 2648 abuf = arc_loan_compressed_buf( 2649 dmu_objset_spa(ra->os), 2650 drrw->drr_compressed_size, drrw->drr_logical_size, 2651 drrw->drr_compressiontype); 2652 } else { 2653 abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2654 is_meta, drrw->drr_logical_size); 2655 } 2656 2657 err = receive_read_payload_and_next_header(ra, 2658 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data); 2659 if (err != 0) { 2660 dmu_return_arcbuf(abuf); 2661 return (err); 2662 } 2663 ra->rrd->write_buf = abuf; 2664 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2665 drrw->drr_logical_size); 2666 return (err); 2667 } 2668 case DRR_WRITE_BYREF: 2669 { 2670 struct drr_write_byref *drrwb = 2671 &ra->rrd->header.drr_u.drr_write_byref; 2672 err = receive_read_payload_and_next_header(ra, 0, NULL); 2673 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2674 drrwb->drr_length); 2675 return (err); 2676 } 2677 case DRR_WRITE_EMBEDDED: 2678 { 2679 struct drr_write_embedded *drrwe = 2680 &ra->rrd->header.drr_u.drr_write_embedded; 2681 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2682 void *buf = kmem_zalloc(size, KM_SLEEP); 2683 2684 err = receive_read_payload_and_next_header(ra, size, buf); 2685 if (err != 0) { 2686 kmem_free(buf, size); 2687 return (err); 2688 } 2689 2690 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2691 drrwe->drr_length); 2692 return (err); 2693 } 2694 case DRR_FREE: 2695 { 2696 /* 2697 * It might be beneficial to prefetch indirect blocks here, but 2698 * we don't really have the data to decide for sure. 2699 */ 2700 err = receive_read_payload_and_next_header(ra, 0, NULL); 2701 return (err); 2702 } 2703 case DRR_END: 2704 { 2705 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2706 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2707 return (SET_ERROR(ECKSUM)); 2708 return (0); 2709 } 2710 case DRR_SPILL: 2711 { 2712 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2713 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2714 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2715 buf); 2716 if (err != 0) 2717 kmem_free(buf, drrs->drr_length); 2718 return (err); 2719 } 2720 default: 2721 return (SET_ERROR(EINVAL)); 2722 } 2723 } 2724 2725 /* 2726 * Commit the records to the pool. 2727 */ 2728 static int 2729 receive_process_record(struct receive_writer_arg *rwa, 2730 struct receive_record_arg *rrd) 2731 { 2732 int err; 2733 2734 /* Processing in order, therefore bytes_read should be increasing. */ 2735 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2736 rwa->bytes_read = rrd->bytes_read; 2737 2738 switch (rrd->header.drr_type) { 2739 case DRR_OBJECT: 2740 { 2741 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2742 err = receive_object(rwa, drro, rrd->payload); 2743 kmem_free(rrd->payload, rrd->payload_size); 2744 rrd->payload = NULL; 2745 return (err); 2746 } 2747 case DRR_FREEOBJECTS: 2748 { 2749 struct drr_freeobjects *drrfo = 2750 &rrd->header.drr_u.drr_freeobjects; 2751 return (receive_freeobjects(rwa, drrfo)); 2752 } 2753 case DRR_WRITE: 2754 { 2755 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2756 err = receive_write(rwa, drrw, rrd->write_buf); 2757 /* if receive_write() is successful, it consumes the arc_buf */ 2758 if (err != 0) 2759 dmu_return_arcbuf(rrd->write_buf); 2760 rrd->write_buf = NULL; 2761 rrd->payload = NULL; 2762 return (err); 2763 } 2764 case DRR_WRITE_BYREF: 2765 { 2766 struct drr_write_byref *drrwbr = 2767 &rrd->header.drr_u.drr_write_byref; 2768 return (receive_write_byref(rwa, drrwbr)); 2769 } 2770 case DRR_WRITE_EMBEDDED: 2771 { 2772 struct drr_write_embedded *drrwe = 2773 &rrd->header.drr_u.drr_write_embedded; 2774 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2775 kmem_free(rrd->payload, rrd->payload_size); 2776 rrd->payload = NULL; 2777 return (err); 2778 } 2779 case DRR_FREE: 2780 { 2781 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2782 return (receive_free(rwa, drrf)); 2783 } 2784 case DRR_SPILL: 2785 { 2786 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2787 err = receive_spill(rwa, drrs, rrd->payload); 2788 kmem_free(rrd->payload, rrd->payload_size); 2789 rrd->payload = NULL; 2790 return (err); 2791 } 2792 default: 2793 return (SET_ERROR(EINVAL)); 2794 } 2795 } 2796 2797 /* 2798 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2799 * receive_process_record When we're done, signal the main thread and exit. 2800 */ 2801 static void 2802 receive_writer_thread(void *arg) 2803 { 2804 struct receive_writer_arg *rwa = arg; 2805 struct receive_record_arg *rrd; 2806 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2807 rrd = bqueue_dequeue(&rwa->q)) { 2808 /* 2809 * If there's an error, the main thread will stop putting things 2810 * on the queue, but we need to clear everything in it before we 2811 * can exit. 2812 */ 2813 if (rwa->err == 0) { 2814 rwa->err = receive_process_record(rwa, rrd); 2815 } else if (rrd->write_buf != NULL) { 2816 dmu_return_arcbuf(rrd->write_buf); 2817 rrd->write_buf = NULL; 2818 rrd->payload = NULL; 2819 } else if (rrd->payload != NULL) { 2820 kmem_free(rrd->payload, rrd->payload_size); 2821 rrd->payload = NULL; 2822 } 2823 kmem_free(rrd, sizeof (*rrd)); 2824 } 2825 kmem_free(rrd, sizeof (*rrd)); 2826 mutex_enter(&rwa->mutex); 2827 rwa->done = B_TRUE; 2828 cv_signal(&rwa->cv); 2829 mutex_exit(&rwa->mutex); 2830 thread_exit(); 2831 } 2832 2833 static int 2834 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2835 { 2836 uint64_t val; 2837 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2838 uint64_t dsobj = dmu_objset_id(ra->os); 2839 uint64_t resume_obj, resume_off; 2840 2841 if (nvlist_lookup_uint64(begin_nvl, 2842 "resume_object", &resume_obj) != 0 || 2843 nvlist_lookup_uint64(begin_nvl, 2844 "resume_offset", &resume_off) != 0) { 2845 return (SET_ERROR(EINVAL)); 2846 } 2847 VERIFY0(zap_lookup(mos, dsobj, 2848 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2849 if (resume_obj != val) 2850 return (SET_ERROR(EINVAL)); 2851 VERIFY0(zap_lookup(mos, dsobj, 2852 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2853 if (resume_off != val) 2854 return (SET_ERROR(EINVAL)); 2855 2856 return (0); 2857 } 2858 2859 /* 2860 * Read in the stream's records, one by one, and apply them to the pool. There 2861 * are two threads involved; the thread that calls this function will spin up a 2862 * worker thread, read the records off the stream one by one, and issue 2863 * prefetches for any necessary indirect blocks. It will then push the records 2864 * onto an internal blocking queue. The worker thread will pull the records off 2865 * the queue, and actually write the data into the DMU. This way, the worker 2866 * thread doesn't have to wait for reads to complete, since everything it needs 2867 * (the indirect blocks) will be prefetched. 2868 * 2869 * NB: callers *must* call dmu_recv_end() if this succeeds. 2870 */ 2871 int 2872 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2873 int cleanup_fd, uint64_t *action_handlep) 2874 { 2875 int err = 0; 2876 struct receive_arg ra = { 0 }; 2877 struct receive_writer_arg rwa = { 0 }; 2878 int featureflags; 2879 nvlist_t *begin_nvl = NULL; 2880 2881 ra.byteswap = drc->drc_byteswap; 2882 ra.cksum = drc->drc_cksum; 2883 ra.vp = vp; 2884 ra.voff = *voffp; 2885 2886 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2887 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2888 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2889 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2890 } 2891 2892 objlist_create(&ra.ignore_objlist); 2893 2894 /* these were verified in dmu_recv_begin */ 2895 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2896 DMU_SUBSTREAM); 2897 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2898 2899 /* 2900 * Open the objset we are modifying. 2901 */ 2902 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2903 2904 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2905 2906 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2907 2908 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2909 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2910 minor_t minor; 2911 2912 if (cleanup_fd == -1) { 2913 ra.err = SET_ERROR(EBADF); 2914 goto out; 2915 } 2916 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2917 if (ra.err != 0) { 2918 cleanup_fd = -1; 2919 goto out; 2920 } 2921 2922 if (*action_handlep == 0) { 2923 rwa.guid_to_ds_map = 2924 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2925 avl_create(rwa.guid_to_ds_map, guid_compare, 2926 sizeof (guid_map_entry_t), 2927 offsetof(guid_map_entry_t, avlnode)); 2928 err = zfs_onexit_add_cb(minor, 2929 free_guid_map_onexit, rwa.guid_to_ds_map, 2930 action_handlep); 2931 if (ra.err != 0) 2932 goto out; 2933 } else { 2934 err = zfs_onexit_cb_data(minor, *action_handlep, 2935 (void **)&rwa.guid_to_ds_map); 2936 if (ra.err != 0) 2937 goto out; 2938 } 2939 2940 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2941 } 2942 2943 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2944 void *payload = NULL; 2945 if (payloadlen != 0) 2946 payload = kmem_alloc(payloadlen, KM_SLEEP); 2947 2948 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2949 if (err != 0) { 2950 if (payloadlen != 0) 2951 kmem_free(payload, payloadlen); 2952 goto out; 2953 } 2954 if (payloadlen != 0) { 2955 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2956 kmem_free(payload, payloadlen); 2957 if (err != 0) 2958 goto out; 2959 } 2960 2961 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2962 err = resume_check(&ra, begin_nvl); 2963 if (err != 0) 2964 goto out; 2965 } 2966 2967 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2968 offsetof(struct receive_record_arg, node)); 2969 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2970 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2971 rwa.os = ra.os; 2972 rwa.byteswap = drc->drc_byteswap; 2973 rwa.resumable = drc->drc_resumable; 2974 2975 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2976 TS_RUN, minclsyspri); 2977 /* 2978 * We're reading rwa.err without locks, which is safe since we are the 2979 * only reader, and the worker thread is the only writer. It's ok if we 2980 * miss a write for an iteration or two of the loop, since the writer 2981 * thread will keep freeing records we send it until we send it an eos 2982 * marker. 2983 * 2984 * We can leave this loop in 3 ways: First, if rwa.err is 2985 * non-zero. In that case, the writer thread will free the rrd we just 2986 * pushed. Second, if we're interrupted; in that case, either it's the 2987 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2988 * has been handed off to the writer thread who will free it. Finally, 2989 * if receive_read_record fails or we're at the end of the stream, then 2990 * we free ra.rrd and exit. 2991 */ 2992 while (rwa.err == 0) { 2993 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2994 err = SET_ERROR(EINTR); 2995 break; 2996 } 2997 2998 ASSERT3P(ra.rrd, ==, NULL); 2999 ra.rrd = ra.next_rrd; 3000 ra.next_rrd = NULL; 3001 /* Allocates and loads header into ra.next_rrd */ 3002 err = receive_read_record(&ra); 3003 3004 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 3005 kmem_free(ra.rrd, sizeof (*ra.rrd)); 3006 ra.rrd = NULL; 3007 break; 3008 } 3009 3010 bqueue_enqueue(&rwa.q, ra.rrd, 3011 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 3012 ra.rrd = NULL; 3013 } 3014 if (ra.next_rrd == NULL) 3015 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 3016 ra.next_rrd->eos_marker = B_TRUE; 3017 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 3018 3019 mutex_enter(&rwa.mutex); 3020 while (!rwa.done) { 3021 cv_wait(&rwa.cv, &rwa.mutex); 3022 } 3023 mutex_exit(&rwa.mutex); 3024 3025 cv_destroy(&rwa.cv); 3026 mutex_destroy(&rwa.mutex); 3027 bqueue_destroy(&rwa.q); 3028 if (err == 0) 3029 err = rwa.err; 3030 3031 out: 3032 nvlist_free(begin_nvl); 3033 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 3034 zfs_onexit_fd_rele(cleanup_fd); 3035 3036 if (err != 0) { 3037 /* 3038 * Clean up references. If receive is not resumable, 3039 * destroy what we created, so we don't leave it in 3040 * the inconsistent state. 3041 */ 3042 dmu_recv_cleanup_ds(drc); 3043 } 3044 3045 *voffp = ra.voff; 3046 objlist_destroy(&ra.ignore_objlist); 3047 return (err); 3048 } 3049 3050 static int 3051 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 3052 { 3053 dmu_recv_cookie_t *drc = arg; 3054 dsl_pool_t *dp = dmu_tx_pool(tx); 3055 int error; 3056 3057 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 3058 3059 if (!drc->drc_newfs) { 3060 dsl_dataset_t *origin_head; 3061 3062 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 3063 if (error != 0) 3064 return (error); 3065 if (drc->drc_force) { 3066 /* 3067 * We will destroy any snapshots in tofs (i.e. before 3068 * origin_head) that are after the origin (which is 3069 * the snap before drc_ds, because drc_ds can not 3070 * have any snaps of its own). 3071 */ 3072 uint64_t obj; 3073 3074 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3075 while (obj != 3076 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3077 dsl_dataset_t *snap; 3078 error = dsl_dataset_hold_obj(dp, obj, FTAG, 3079 &snap); 3080 if (error != 0) 3081 break; 3082 if (snap->ds_dir != origin_head->ds_dir) 3083 error = SET_ERROR(EINVAL); 3084 if (error == 0) { 3085 error = dsl_destroy_snapshot_check_impl( 3086 snap, B_FALSE); 3087 } 3088 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3089 dsl_dataset_rele(snap, FTAG); 3090 if (error != 0) 3091 break; 3092 } 3093 if (error != 0) { 3094 dsl_dataset_rele(origin_head, FTAG); 3095 return (error); 3096 } 3097 } 3098 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 3099 origin_head, drc->drc_force, drc->drc_owner, tx); 3100 if (error != 0) { 3101 dsl_dataset_rele(origin_head, FTAG); 3102 return (error); 3103 } 3104 error = dsl_dataset_snapshot_check_impl(origin_head, 3105 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 3106 dsl_dataset_rele(origin_head, FTAG); 3107 if (error != 0) 3108 return (error); 3109 3110 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 3111 } else { 3112 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 3113 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 3114 } 3115 return (error); 3116 } 3117 3118 static void 3119 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3120 { 3121 dmu_recv_cookie_t *drc = arg; 3122 dsl_pool_t *dp = dmu_tx_pool(tx); 3123 3124 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3125 tx, "snap=%s", drc->drc_tosnap); 3126 3127 if (!drc->drc_newfs) { 3128 dsl_dataset_t *origin_head; 3129 3130 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3131 &origin_head)); 3132 3133 if (drc->drc_force) { 3134 /* 3135 * Destroy any snapshots of drc_tofs (origin_head) 3136 * after the origin (the snap before drc_ds). 3137 */ 3138 uint64_t obj; 3139 3140 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3141 while (obj != 3142 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3143 dsl_dataset_t *snap; 3144 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3145 &snap)); 3146 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3147 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3148 dsl_destroy_snapshot_sync_impl(snap, 3149 B_FALSE, tx); 3150 dsl_dataset_rele(snap, FTAG); 3151 } 3152 } 3153 VERIFY3P(drc->drc_ds->ds_prev, ==, 3154 origin_head->ds_prev); 3155 3156 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3157 origin_head, tx); 3158 dsl_dataset_snapshot_sync_impl(origin_head, 3159 drc->drc_tosnap, tx); 3160 3161 /* set snapshot's creation time and guid */ 3162 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3163 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3164 drc->drc_drrb->drr_creation_time; 3165 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3166 drc->drc_drrb->drr_toguid; 3167 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3168 ~DS_FLAG_INCONSISTENT; 3169 3170 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3171 dsl_dataset_phys(origin_head)->ds_flags &= 3172 ~DS_FLAG_INCONSISTENT; 3173 3174 drc->drc_newsnapobj = 3175 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3176 3177 dsl_dataset_rele(origin_head, FTAG); 3178 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3179 3180 if (drc->drc_owner != NULL) 3181 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3182 } else { 3183 dsl_dataset_t *ds = drc->drc_ds; 3184 3185 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3186 3187 /* set snapshot's creation time and guid */ 3188 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3189 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3190 drc->drc_drrb->drr_creation_time; 3191 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3192 drc->drc_drrb->drr_toguid; 3193 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3194 ~DS_FLAG_INCONSISTENT; 3195 3196 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3197 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3198 if (dsl_dataset_has_resume_receive_state(ds)) { 3199 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3200 DS_FIELD_RESUME_FROMGUID, tx); 3201 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3202 DS_FIELD_RESUME_OBJECT, tx); 3203 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3204 DS_FIELD_RESUME_OFFSET, tx); 3205 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3206 DS_FIELD_RESUME_BYTES, tx); 3207 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3208 DS_FIELD_RESUME_TOGUID, tx); 3209 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3210 DS_FIELD_RESUME_TONAME, tx); 3211 } 3212 drc->drc_newsnapobj = 3213 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3214 } 3215 /* 3216 * Release the hold from dmu_recv_begin. This must be done before 3217 * we return to open context, so that when we free the dataset's dnode, 3218 * we can evict its bonus buffer. 3219 */ 3220 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 3221 drc->drc_ds = NULL; 3222 } 3223 3224 static int 3225 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 3226 { 3227 dsl_pool_t *dp; 3228 dsl_dataset_t *snapds; 3229 guid_map_entry_t *gmep; 3230 int err; 3231 3232 ASSERT(guid_map != NULL); 3233 3234 err = dsl_pool_hold(name, FTAG, &dp); 3235 if (err != 0) 3236 return (err); 3237 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 3238 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 3239 if (err == 0) { 3240 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 3241 gmep->gme_ds = snapds; 3242 avl_add(guid_map, gmep); 3243 dsl_dataset_long_hold(snapds, gmep); 3244 } else { 3245 kmem_free(gmep, sizeof (*gmep)); 3246 } 3247 3248 dsl_pool_rele(dp, FTAG); 3249 return (err); 3250 } 3251 3252 static int dmu_recv_end_modified_blocks = 3; 3253 3254 static int 3255 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3256 { 3257 #ifdef _KERNEL 3258 /* 3259 * We will be destroying the ds; make sure its origin is unmounted if 3260 * necessary. 3261 */ 3262 char name[ZFS_MAX_DATASET_NAME_LEN]; 3263 dsl_dataset_name(drc->drc_ds, name); 3264 zfs_destroy_unmount_origin(name); 3265 #endif 3266 3267 return (dsl_sync_task(drc->drc_tofs, 3268 dmu_recv_end_check, dmu_recv_end_sync, drc, 3269 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3270 } 3271 3272 static int 3273 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3274 { 3275 return (dsl_sync_task(drc->drc_tofs, 3276 dmu_recv_end_check, dmu_recv_end_sync, drc, 3277 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3278 } 3279 3280 int 3281 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3282 { 3283 int error; 3284 3285 drc->drc_owner = owner; 3286 3287 if (drc->drc_newfs) 3288 error = dmu_recv_new_end(drc); 3289 else 3290 error = dmu_recv_existing_end(drc); 3291 3292 if (error != 0) { 3293 dmu_recv_cleanup_ds(drc); 3294 } else if (drc->drc_guid_to_ds_map != NULL) { 3295 (void) add_ds_to_guidmap(drc->drc_tofs, 3296 drc->drc_guid_to_ds_map, 3297 drc->drc_newsnapobj); 3298 } 3299 return (error); 3300 } 3301 3302 /* 3303 * Return TRUE if this objset is currently being received into. 3304 */ 3305 boolean_t 3306 dmu_objset_is_receiving(objset_t *os) 3307 { 3308 return (os->os_dsl_dataset != NULL && 3309 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3310 } 3311