xref: /illumos-gate/usr/src/uts/common/fs/zfs/dmu_send.c (revision 7d0b359ca572cd04474eb1f2ceec5a8ff39e36c9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright 2016 RackTop Systems.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/dmu.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dbuf.h>
35 #include <sys/dnode.h>
36 #include <sys/zfs_context.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dmu_traverse.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_synctask.h>
44 #include <sys/zfs_ioctl.h>
45 #include <sys/zap.h>
46 #include <sys/zio_checksum.h>
47 #include <sys/zfs_znode.h>
48 #include <zfs_fletcher.h>
49 #include <sys/avl.h>
50 #include <sys/ddt.h>
51 #include <sys/zfs_onexit.h>
52 #include <sys/dmu_send.h>
53 #include <sys/dsl_destroy.h>
54 #include <sys/blkptr.h>
55 #include <sys/dsl_bookmark.h>
56 #include <sys/zfeature.h>
57 #include <sys/bqueue.h>
58 
59 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
60 int zfs_send_corrupt_data = B_FALSE;
61 int zfs_send_queue_length = 16 * 1024 * 1024;
62 int zfs_recv_queue_length = 16 * 1024 * 1024;
63 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
64 int zfs_send_set_freerecords_bit = B_TRUE;
65 
66 static char *dmu_recv_tag = "dmu_recv_tag";
67 const char *recv_clone_name = "%recv";
68 
69 #define	BP_SPAN(datablkszsec, indblkshift, level) \
70 	(((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
71 	(level) * (indblkshift - SPA_BLKPTRSHIFT)))
72 
73 static void byteswap_record(dmu_replay_record_t *drr);
74 
75 struct send_thread_arg {
76 	bqueue_t	q;
77 	dsl_dataset_t	*ds;		/* Dataset to traverse */
78 	uint64_t	fromtxg;	/* Traverse from this txg */
79 	int		flags;		/* flags to pass to traverse_dataset */
80 	int		error_code;
81 	boolean_t	cancel;
82 	zbookmark_phys_t resume;
83 };
84 
85 struct send_block_record {
86 	boolean_t		eos_marker; /* Marks the end of the stream */
87 	blkptr_t		bp;
88 	zbookmark_phys_t	zb;
89 	uint8_t			indblkshift;
90 	uint16_t		datablkszsec;
91 	bqueue_node_t		ln;
92 };
93 
94 static int
95 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
96 {
97 	dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
98 	ssize_t resid; /* have to get resid to get detailed errno */
99 
100 	/*
101 	 * The code does not rely on this (len being a multiple of 8).  We keep
102 	 * this assertion because of the corresponding assertion in
103 	 * receive_read().  Keeping this assertion ensures that we do not
104 	 * inadvertently break backwards compatibility (causing the assertion
105 	 * in receive_read() to trigger on old software).
106 	 *
107 	 * Removing the assertions could be rolled into a new feature that uses
108 	 * data that isn't 8-byte aligned; if the assertions were removed, a
109 	 * feature flag would have to be added.
110 	 */
111 
112 	ASSERT0(len % 8);
113 
114 	dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp,
115 	    (caddr_t)buf, len,
116 	    0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid);
117 
118 	mutex_enter(&ds->ds_sendstream_lock);
119 	*dsp->dsa_off += len;
120 	mutex_exit(&ds->ds_sendstream_lock);
121 
122 	return (dsp->dsa_err);
123 }
124 
125 /*
126  * For all record types except BEGIN, fill in the checksum (overlaid in
127  * drr_u.drr_checksum.drr_checksum).  The checksum verifies everything
128  * up to the start of the checksum itself.
129  */
130 static int
131 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
132 {
133 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
134 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
135 	(void) fletcher_4_incremental_native(dsp->dsa_drr,
136 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
137 	    &dsp->dsa_zc);
138 	if (dsp->dsa_drr->drr_type == DRR_BEGIN) {
139 		dsp->dsa_sent_begin = B_TRUE;
140 	} else {
141 		ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
142 		    drr_checksum.drr_checksum));
143 		dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
144 	}
145 	if (dsp->dsa_drr->drr_type == DRR_END) {
146 		dsp->dsa_sent_end = B_TRUE;
147 	}
148 	(void) fletcher_4_incremental_native(&dsp->dsa_drr->
149 	    drr_u.drr_checksum.drr_checksum,
150 	    sizeof (zio_cksum_t), &dsp->dsa_zc);
151 	if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
152 		return (SET_ERROR(EINTR));
153 	if (payload_len != 0) {
154 		(void) fletcher_4_incremental_native(payload, payload_len,
155 		    &dsp->dsa_zc);
156 		if (dump_bytes(dsp, payload, payload_len) != 0)
157 			return (SET_ERROR(EINTR));
158 	}
159 	return (0);
160 }
161 
162 /*
163  * Fill in the drr_free struct, or perform aggregation if the previous record is
164  * also a free record, and the two are adjacent.
165  *
166  * Note that we send free records even for a full send, because we want to be
167  * able to receive a full send as a clone, which requires a list of all the free
168  * and freeobject records that were generated on the source.
169  */
170 static int
171 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
172     uint64_t length)
173 {
174 	struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
175 
176 	/*
177 	 * When we receive a free record, dbuf_free_range() assumes
178 	 * that the receiving system doesn't have any dbufs in the range
179 	 * being freed.  This is always true because there is a one-record
180 	 * constraint: we only send one WRITE record for any given
181 	 * object,offset.  We know that the one-record constraint is
182 	 * true because we always send data in increasing order by
183 	 * object,offset.
184 	 *
185 	 * If the increasing-order constraint ever changes, we should find
186 	 * another way to assert that the one-record constraint is still
187 	 * satisfied.
188 	 */
189 	ASSERT(object > dsp->dsa_last_data_object ||
190 	    (object == dsp->dsa_last_data_object &&
191 	    offset > dsp->dsa_last_data_offset));
192 
193 	if (length != -1ULL && offset + length < offset)
194 		length = -1ULL;
195 
196 	/*
197 	 * If there is a pending op, but it's not PENDING_FREE, push it out,
198 	 * since free block aggregation can only be done for blocks of the
199 	 * same type (i.e., DRR_FREE records can only be aggregated with
200 	 * other DRR_FREE records.  DRR_FREEOBJECTS records can only be
201 	 * aggregated with other DRR_FREEOBJECTS records.
202 	 */
203 	if (dsp->dsa_pending_op != PENDING_NONE &&
204 	    dsp->dsa_pending_op != PENDING_FREE) {
205 		if (dump_record(dsp, NULL, 0) != 0)
206 			return (SET_ERROR(EINTR));
207 		dsp->dsa_pending_op = PENDING_NONE;
208 	}
209 
210 	if (dsp->dsa_pending_op == PENDING_FREE) {
211 		/*
212 		 * There should never be a PENDING_FREE if length is -1
213 		 * (because dump_dnode is the only place where this
214 		 * function is called with a -1, and only after flushing
215 		 * any pending record).
216 		 */
217 		ASSERT(length != -1ULL);
218 		/*
219 		 * Check to see whether this free block can be aggregated
220 		 * with pending one.
221 		 */
222 		if (drrf->drr_object == object && drrf->drr_offset +
223 		    drrf->drr_length == offset) {
224 			drrf->drr_length += length;
225 			return (0);
226 		} else {
227 			/* not a continuation.  Push out pending record */
228 			if (dump_record(dsp, NULL, 0) != 0)
229 				return (SET_ERROR(EINTR));
230 			dsp->dsa_pending_op = PENDING_NONE;
231 		}
232 	}
233 	/* create a FREE record and make it pending */
234 	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
235 	dsp->dsa_drr->drr_type = DRR_FREE;
236 	drrf->drr_object = object;
237 	drrf->drr_offset = offset;
238 	drrf->drr_length = length;
239 	drrf->drr_toguid = dsp->dsa_toguid;
240 	if (length == -1ULL) {
241 		if (dump_record(dsp, NULL, 0) != 0)
242 			return (SET_ERROR(EINTR));
243 	} else {
244 		dsp->dsa_pending_op = PENDING_FREE;
245 	}
246 
247 	return (0);
248 }
249 
250 static int
251 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
252     uint64_t object, uint64_t offset, int lsize, int psize, const blkptr_t *bp,
253     void *data)
254 {
255 	uint64_t payload_size;
256 	struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
257 
258 	/*
259 	 * We send data in increasing object, offset order.
260 	 * See comment in dump_free() for details.
261 	 */
262 	ASSERT(object > dsp->dsa_last_data_object ||
263 	    (object == dsp->dsa_last_data_object &&
264 	    offset > dsp->dsa_last_data_offset));
265 	dsp->dsa_last_data_object = object;
266 	dsp->dsa_last_data_offset = offset + lsize - 1;
267 
268 	/*
269 	 * If there is any kind of pending aggregation (currently either
270 	 * a grouping of free objects or free blocks), push it out to
271 	 * the stream, since aggregation can't be done across operations
272 	 * of different types.
273 	 */
274 	if (dsp->dsa_pending_op != PENDING_NONE) {
275 		if (dump_record(dsp, NULL, 0) != 0)
276 			return (SET_ERROR(EINTR));
277 		dsp->dsa_pending_op = PENDING_NONE;
278 	}
279 	/* write a WRITE record */
280 	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
281 	dsp->dsa_drr->drr_type = DRR_WRITE;
282 	drrw->drr_object = object;
283 	drrw->drr_type = type;
284 	drrw->drr_offset = offset;
285 	drrw->drr_toguid = dsp->dsa_toguid;
286 	drrw->drr_logical_size = lsize;
287 
288 	/* only set the compression fields if the buf is compressed */
289 	if (lsize != psize) {
290 		ASSERT(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED);
291 		ASSERT(!BP_IS_EMBEDDED(bp));
292 		ASSERT(!BP_SHOULD_BYTESWAP(bp));
293 		ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
294 		ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
295 		ASSERT3S(psize, >, 0);
296 		ASSERT3S(lsize, >=, psize);
297 
298 		drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
299 		drrw->drr_compressed_size = psize;
300 		payload_size = drrw->drr_compressed_size;
301 	} else {
302 		payload_size = drrw->drr_logical_size;
303 	}
304 
305 	if (bp == NULL || BP_IS_EMBEDDED(bp)) {
306 		/*
307 		 * There's no pre-computed checksum for partial-block
308 		 * writes or embedded BP's, so (like
309 		 * fletcher4-checkummed blocks) userland will have to
310 		 * compute a dedup-capable checksum itself.
311 		 */
312 		drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
313 	} else {
314 		drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
315 		if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
316 		    ZCHECKSUM_FLAG_DEDUP)
317 			drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
318 		DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
319 		DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
320 		DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
321 		drrw->drr_key.ddk_cksum = bp->blk_cksum;
322 	}
323 
324 	if (dump_record(dsp, data, payload_size) != 0)
325 		return (SET_ERROR(EINTR));
326 	return (0);
327 }
328 
329 static int
330 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
331     int blksz, const blkptr_t *bp)
332 {
333 	char buf[BPE_PAYLOAD_SIZE];
334 	struct drr_write_embedded *drrw =
335 	    &(dsp->dsa_drr->drr_u.drr_write_embedded);
336 
337 	if (dsp->dsa_pending_op != PENDING_NONE) {
338 		if (dump_record(dsp, NULL, 0) != 0)
339 			return (EINTR);
340 		dsp->dsa_pending_op = PENDING_NONE;
341 	}
342 
343 	ASSERT(BP_IS_EMBEDDED(bp));
344 
345 	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
346 	dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
347 	drrw->drr_object = object;
348 	drrw->drr_offset = offset;
349 	drrw->drr_length = blksz;
350 	drrw->drr_toguid = dsp->dsa_toguid;
351 	drrw->drr_compression = BP_GET_COMPRESS(bp);
352 	drrw->drr_etype = BPE_GET_ETYPE(bp);
353 	drrw->drr_lsize = BPE_GET_LSIZE(bp);
354 	drrw->drr_psize = BPE_GET_PSIZE(bp);
355 
356 	decode_embedded_bp_compressed(bp, buf);
357 
358 	if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
359 		return (EINTR);
360 	return (0);
361 }
362 
363 static int
364 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
365 {
366 	struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
367 
368 	if (dsp->dsa_pending_op != PENDING_NONE) {
369 		if (dump_record(dsp, NULL, 0) != 0)
370 			return (SET_ERROR(EINTR));
371 		dsp->dsa_pending_op = PENDING_NONE;
372 	}
373 
374 	/* write a SPILL record */
375 	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
376 	dsp->dsa_drr->drr_type = DRR_SPILL;
377 	drrs->drr_object = object;
378 	drrs->drr_length = blksz;
379 	drrs->drr_toguid = dsp->dsa_toguid;
380 
381 	if (dump_record(dsp, data, blksz) != 0)
382 		return (SET_ERROR(EINTR));
383 	return (0);
384 }
385 
386 static int
387 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
388 {
389 	struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
390 
391 	/*
392 	 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
393 	 * push it out, since free block aggregation can only be done for
394 	 * blocks of the same type (i.e., DRR_FREE records can only be
395 	 * aggregated with other DRR_FREE records.  DRR_FREEOBJECTS records
396 	 * can only be aggregated with other DRR_FREEOBJECTS records.
397 	 */
398 	if (dsp->dsa_pending_op != PENDING_NONE &&
399 	    dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
400 		if (dump_record(dsp, NULL, 0) != 0)
401 			return (SET_ERROR(EINTR));
402 		dsp->dsa_pending_op = PENDING_NONE;
403 	}
404 	if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
405 		/*
406 		 * See whether this free object array can be aggregated
407 		 * with pending one
408 		 */
409 		if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
410 			drrfo->drr_numobjs += numobjs;
411 			return (0);
412 		} else {
413 			/* can't be aggregated.  Push out pending record */
414 			if (dump_record(dsp, NULL, 0) != 0)
415 				return (SET_ERROR(EINTR));
416 			dsp->dsa_pending_op = PENDING_NONE;
417 		}
418 	}
419 
420 	/* write a FREEOBJECTS record */
421 	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
422 	dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
423 	drrfo->drr_firstobj = firstobj;
424 	drrfo->drr_numobjs = numobjs;
425 	drrfo->drr_toguid = dsp->dsa_toguid;
426 
427 	dsp->dsa_pending_op = PENDING_FREEOBJECTS;
428 
429 	return (0);
430 }
431 
432 static int
433 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
434 {
435 	struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
436 
437 	if (object < dsp->dsa_resume_object) {
438 		/*
439 		 * Note: when resuming, we will visit all the dnodes in
440 		 * the block of dnodes that we are resuming from.  In
441 		 * this case it's unnecessary to send the dnodes prior to
442 		 * the one we are resuming from.  We should be at most one
443 		 * block's worth of dnodes behind the resume point.
444 		 */
445 		ASSERT3U(dsp->dsa_resume_object - object, <,
446 		    1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
447 		return (0);
448 	}
449 
450 	if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
451 		return (dump_freeobjects(dsp, object, 1));
452 
453 	if (dsp->dsa_pending_op != PENDING_NONE) {
454 		if (dump_record(dsp, NULL, 0) != 0)
455 			return (SET_ERROR(EINTR));
456 		dsp->dsa_pending_op = PENDING_NONE;
457 	}
458 
459 	/* write an OBJECT record */
460 	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
461 	dsp->dsa_drr->drr_type = DRR_OBJECT;
462 	drro->drr_object = object;
463 	drro->drr_type = dnp->dn_type;
464 	drro->drr_bonustype = dnp->dn_bonustype;
465 	drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
466 	drro->drr_bonuslen = dnp->dn_bonuslen;
467 	drro->drr_checksumtype = dnp->dn_checksum;
468 	drro->drr_compress = dnp->dn_compress;
469 	drro->drr_toguid = dsp->dsa_toguid;
470 
471 	if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
472 	    drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
473 		drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
474 
475 	if (dump_record(dsp, DN_BONUS(dnp),
476 	    P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
477 		return (SET_ERROR(EINTR));
478 	}
479 
480 	/* Free anything past the end of the file. */
481 	if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
482 	    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
483 		return (SET_ERROR(EINTR));
484 	if (dsp->dsa_err != 0)
485 		return (SET_ERROR(EINTR));
486 	return (0);
487 }
488 
489 static boolean_t
490 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
491 {
492 	if (!BP_IS_EMBEDDED(bp))
493 		return (B_FALSE);
494 
495 	/*
496 	 * Compression function must be legacy, or explicitly enabled.
497 	 */
498 	if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
499 	    !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LZ4)))
500 		return (B_FALSE);
501 
502 	/*
503 	 * Embed type must be explicitly enabled.
504 	 */
505 	switch (BPE_GET_ETYPE(bp)) {
506 	case BP_EMBEDDED_TYPE_DATA:
507 		if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
508 			return (B_TRUE);
509 		break;
510 	default:
511 		return (B_FALSE);
512 	}
513 	return (B_FALSE);
514 }
515 
516 /*
517  * This is the callback function to traverse_dataset that acts as the worker
518  * thread for dmu_send_impl.
519  */
520 /*ARGSUSED*/
521 static int
522 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
523     const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
524 {
525 	struct send_thread_arg *sta = arg;
526 	struct send_block_record *record;
527 	uint64_t record_size;
528 	int err = 0;
529 
530 	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
531 	    zb->zb_object >= sta->resume.zb_object);
532 
533 	if (sta->cancel)
534 		return (SET_ERROR(EINTR));
535 
536 	if (bp == NULL) {
537 		ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
538 		return (0);
539 	} else if (zb->zb_level < 0) {
540 		return (0);
541 	}
542 
543 	record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
544 	record->eos_marker = B_FALSE;
545 	record->bp = *bp;
546 	record->zb = *zb;
547 	record->indblkshift = dnp->dn_indblkshift;
548 	record->datablkszsec = dnp->dn_datablkszsec;
549 	record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
550 	bqueue_enqueue(&sta->q, record, record_size);
551 
552 	return (err);
553 }
554 
555 /*
556  * This function kicks off the traverse_dataset.  It also handles setting the
557  * error code of the thread in case something goes wrong, and pushes the End of
558  * Stream record when the traverse_dataset call has finished.  If there is no
559  * dataset to traverse, the thread immediately pushes End of Stream marker.
560  */
561 static void
562 send_traverse_thread(void *arg)
563 {
564 	struct send_thread_arg *st_arg = arg;
565 	int err;
566 	struct send_block_record *data;
567 
568 	if (st_arg->ds != NULL) {
569 		err = traverse_dataset_resume(st_arg->ds,
570 		    st_arg->fromtxg, &st_arg->resume,
571 		    st_arg->flags, send_cb, st_arg);
572 
573 		if (err != EINTR)
574 			st_arg->error_code = err;
575 	}
576 	data = kmem_zalloc(sizeof (*data), KM_SLEEP);
577 	data->eos_marker = B_TRUE;
578 	bqueue_enqueue(&st_arg->q, data, 1);
579 	thread_exit();
580 }
581 
582 /*
583  * This function actually handles figuring out what kind of record needs to be
584  * dumped, reading the data (which has hopefully been prefetched), and calling
585  * the appropriate helper function.
586  */
587 static int
588 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
589 {
590 	dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
591 	const blkptr_t *bp = &data->bp;
592 	const zbookmark_phys_t *zb = &data->zb;
593 	uint8_t indblkshift = data->indblkshift;
594 	uint16_t dblkszsec = data->datablkszsec;
595 	spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
596 	dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
597 	int err = 0;
598 
599 	ASSERT3U(zb->zb_level, >=, 0);
600 
601 	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
602 	    zb->zb_object >= dsa->dsa_resume_object);
603 
604 	if (zb->zb_object != DMU_META_DNODE_OBJECT &&
605 	    DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
606 		return (0);
607 	} else if (BP_IS_HOLE(bp) &&
608 	    zb->zb_object == DMU_META_DNODE_OBJECT) {
609 		uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
610 		uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
611 		err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
612 	} else if (BP_IS_HOLE(bp)) {
613 		uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
614 		uint64_t offset = zb->zb_blkid * span;
615 		err = dump_free(dsa, zb->zb_object, offset, span);
616 	} else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
617 		return (0);
618 	} else if (type == DMU_OT_DNODE) {
619 		int blksz = BP_GET_LSIZE(bp);
620 		arc_flags_t aflags = ARC_FLAG_WAIT;
621 		arc_buf_t *abuf;
622 
623 		ASSERT0(zb->zb_level);
624 
625 		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
626 		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
627 		    &aflags, zb) != 0)
628 			return (SET_ERROR(EIO));
629 
630 		dnode_phys_t *blk = abuf->b_data;
631 		uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT);
632 		for (int i = 0; i < blksz >> DNODE_SHIFT; i++) {
633 			err = dump_dnode(dsa, dnobj + i, blk + i);
634 			if (err != 0)
635 				break;
636 		}
637 		arc_buf_destroy(abuf, &abuf);
638 	} else if (type == DMU_OT_SA) {
639 		arc_flags_t aflags = ARC_FLAG_WAIT;
640 		arc_buf_t *abuf;
641 		int blksz = BP_GET_LSIZE(bp);
642 
643 		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
644 		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
645 		    &aflags, zb) != 0)
646 			return (SET_ERROR(EIO));
647 
648 		err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
649 		arc_buf_destroy(abuf, &abuf);
650 	} else if (backup_do_embed(dsa, bp)) {
651 		/* it's an embedded level-0 block of a regular object */
652 		int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
653 		ASSERT0(zb->zb_level);
654 		err = dump_write_embedded(dsa, zb->zb_object,
655 		    zb->zb_blkid * blksz, blksz, bp);
656 	} else {
657 		/* it's a level-0 block of a regular object */
658 		arc_flags_t aflags = ARC_FLAG_WAIT;
659 		arc_buf_t *abuf;
660 		int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
661 		uint64_t offset;
662 
663 		/*
664 		 * If we have large blocks stored on disk but the send flags
665 		 * don't allow us to send large blocks, we split the data from
666 		 * the arc buf into chunks.
667 		 */
668 		boolean_t split_large_blocks = blksz > SPA_OLD_MAXBLOCKSIZE &&
669 		    !(dsa->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
670 		/*
671 		 * We should only request compressed data from the ARC if all
672 		 * the following are true:
673 		 *  - stream compression was requested
674 		 *  - we aren't splitting large blocks into smaller chunks
675 		 *  - the data won't need to be byteswapped before sending
676 		 *  - this isn't an embedded block
677 		 *  - this isn't metadata (if receiving on a different endian
678 		 *    system it can be byteswapped more easily)
679 		 */
680 		boolean_t request_compressed =
681 		    (dsa->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
682 		    !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
683 		    !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
684 
685 		ASSERT0(zb->zb_level);
686 		ASSERT(zb->zb_object > dsa->dsa_resume_object ||
687 		    (zb->zb_object == dsa->dsa_resume_object &&
688 		    zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
689 
690 		ASSERT0(zb->zb_level);
691 		ASSERT(zb->zb_object > dsa->dsa_resume_object ||
692 		    (zb->zb_object == dsa->dsa_resume_object &&
693 		    zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
694 
695 		ASSERT3U(blksz, ==, BP_GET_LSIZE(bp));
696 
697 		enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
698 		if (request_compressed)
699 			zioflags |= ZIO_FLAG_RAW;
700 		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
701 		    ZIO_PRIORITY_ASYNC_READ, zioflags, &aflags, zb) != 0) {
702 			if (zfs_send_corrupt_data) {
703 				/* Send a block filled with 0x"zfs badd bloc" */
704 				abuf = arc_alloc_buf(spa, &abuf, ARC_BUFC_DATA,
705 				    blksz);
706 				uint64_t *ptr;
707 				for (ptr = abuf->b_data;
708 				    (char *)ptr < (char *)abuf->b_data + blksz;
709 				    ptr++)
710 					*ptr = 0x2f5baddb10cULL;
711 			} else {
712 				return (SET_ERROR(EIO));
713 			}
714 		}
715 
716 		offset = zb->zb_blkid * blksz;
717 
718 		if (split_large_blocks) {
719 			ASSERT3U(arc_get_compression(abuf), ==,
720 			    ZIO_COMPRESS_OFF);
721 			char *buf = abuf->b_data;
722 			while (blksz > 0 && err == 0) {
723 				int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
724 				err = dump_write(dsa, type, zb->zb_object,
725 				    offset, n, n, NULL, buf);
726 				offset += n;
727 				buf += n;
728 				blksz -= n;
729 			}
730 		} else {
731 			err = dump_write(dsa, type, zb->zb_object, offset,
732 			    blksz, arc_buf_size(abuf), bp, abuf->b_data);
733 		}
734 		arc_buf_destroy(abuf, &abuf);
735 	}
736 
737 	ASSERT(err == 0 || err == EINTR);
738 	return (err);
739 }
740 
741 /*
742  * Pop the new data off the queue, and free the old data.
743  */
744 static struct send_block_record *
745 get_next_record(bqueue_t *bq, struct send_block_record *data)
746 {
747 	struct send_block_record *tmp = bqueue_dequeue(bq);
748 	kmem_free(data, sizeof (*data));
749 	return (tmp);
750 }
751 
752 /*
753  * Actually do the bulk of the work in a zfs send.
754  *
755  * Note: Releases dp using the specified tag.
756  */
757 static int
758 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
759     zfs_bookmark_phys_t *ancestor_zb, boolean_t is_clone,
760     boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
761     int outfd, uint64_t resumeobj, uint64_t resumeoff,
762     vnode_t *vp, offset_t *off)
763 {
764 	objset_t *os;
765 	dmu_replay_record_t *drr;
766 	dmu_sendarg_t *dsp;
767 	int err;
768 	uint64_t fromtxg = 0;
769 	uint64_t featureflags = 0;
770 	struct send_thread_arg to_arg = { 0 };
771 
772 	err = dmu_objset_from_ds(to_ds, &os);
773 	if (err != 0) {
774 		dsl_pool_rele(dp, tag);
775 		return (err);
776 	}
777 
778 	drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
779 	drr->drr_type = DRR_BEGIN;
780 	drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
781 	DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
782 	    DMU_SUBSTREAM);
783 
784 #ifdef _KERNEL
785 	if (dmu_objset_type(os) == DMU_OST_ZFS) {
786 		uint64_t version;
787 		if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
788 			kmem_free(drr, sizeof (dmu_replay_record_t));
789 			dsl_pool_rele(dp, tag);
790 			return (SET_ERROR(EINVAL));
791 		}
792 		if (version >= ZPL_VERSION_SA) {
793 			featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
794 		}
795 	}
796 #endif
797 
798 	if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
799 		featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
800 	if (embedok &&
801 	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
802 		featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
803 		if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
804 			featureflags |= DMU_BACKUP_FEATURE_LZ4;
805 	}
806 	if (compressok) {
807 		featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
808 	}
809 	if ((featureflags &
810 	    (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED)) !=
811 	    0 && spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
812 		featureflags |= DMU_BACKUP_FEATURE_LZ4;
813 	}
814 
815 	if (resumeobj != 0 || resumeoff != 0) {
816 		featureflags |= DMU_BACKUP_FEATURE_RESUMING;
817 	}
818 
819 	DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
820 	    featureflags);
821 
822 	drr->drr_u.drr_begin.drr_creation_time =
823 	    dsl_dataset_phys(to_ds)->ds_creation_time;
824 	drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
825 	if (is_clone)
826 		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
827 	drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
828 	if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
829 		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
830 	if (zfs_send_set_freerecords_bit)
831 		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
832 
833 	if (ancestor_zb != NULL) {
834 		drr->drr_u.drr_begin.drr_fromguid =
835 		    ancestor_zb->zbm_guid;
836 		fromtxg = ancestor_zb->zbm_creation_txg;
837 	}
838 	dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
839 	if (!to_ds->ds_is_snapshot) {
840 		(void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
841 		    sizeof (drr->drr_u.drr_begin.drr_toname));
842 	}
843 
844 	dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
845 
846 	dsp->dsa_drr = drr;
847 	dsp->dsa_vp = vp;
848 	dsp->dsa_outfd = outfd;
849 	dsp->dsa_proc = curproc;
850 	dsp->dsa_os = os;
851 	dsp->dsa_off = off;
852 	dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
853 	dsp->dsa_pending_op = PENDING_NONE;
854 	dsp->dsa_featureflags = featureflags;
855 	dsp->dsa_resume_object = resumeobj;
856 	dsp->dsa_resume_offset = resumeoff;
857 
858 	mutex_enter(&to_ds->ds_sendstream_lock);
859 	list_insert_head(&to_ds->ds_sendstreams, dsp);
860 	mutex_exit(&to_ds->ds_sendstream_lock);
861 
862 	dsl_dataset_long_hold(to_ds, FTAG);
863 	dsl_pool_rele(dp, tag);
864 
865 	void *payload = NULL;
866 	size_t payload_len = 0;
867 	if (resumeobj != 0 || resumeoff != 0) {
868 		dmu_object_info_t to_doi;
869 		err = dmu_object_info(os, resumeobj, &to_doi);
870 		if (err != 0)
871 			goto out;
872 		SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
873 		    resumeoff / to_doi.doi_data_block_size);
874 
875 		nvlist_t *nvl = fnvlist_alloc();
876 		fnvlist_add_uint64(nvl, "resume_object", resumeobj);
877 		fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
878 		payload = fnvlist_pack(nvl, &payload_len);
879 		drr->drr_payloadlen = payload_len;
880 		fnvlist_free(nvl);
881 	}
882 
883 	err = dump_record(dsp, payload, payload_len);
884 	fnvlist_pack_free(payload, payload_len);
885 	if (err != 0) {
886 		err = dsp->dsa_err;
887 		goto out;
888 	}
889 
890 	err = bqueue_init(&to_arg.q, zfs_send_queue_length,
891 	    offsetof(struct send_block_record, ln));
892 	to_arg.error_code = 0;
893 	to_arg.cancel = B_FALSE;
894 	to_arg.ds = to_ds;
895 	to_arg.fromtxg = fromtxg;
896 	to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
897 	(void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc,
898 	    TS_RUN, minclsyspri);
899 
900 	struct send_block_record *to_data;
901 	to_data = bqueue_dequeue(&to_arg.q);
902 
903 	while (!to_data->eos_marker && err == 0) {
904 		err = do_dump(dsp, to_data);
905 		to_data = get_next_record(&to_arg.q, to_data);
906 		if (issig(JUSTLOOKING) && issig(FORREAL))
907 			err = EINTR;
908 	}
909 
910 	if (err != 0) {
911 		to_arg.cancel = B_TRUE;
912 		while (!to_data->eos_marker) {
913 			to_data = get_next_record(&to_arg.q, to_data);
914 		}
915 	}
916 	kmem_free(to_data, sizeof (*to_data));
917 
918 	bqueue_destroy(&to_arg.q);
919 
920 	if (err == 0 && to_arg.error_code != 0)
921 		err = to_arg.error_code;
922 
923 	if (err != 0)
924 		goto out;
925 
926 	if (dsp->dsa_pending_op != PENDING_NONE)
927 		if (dump_record(dsp, NULL, 0) != 0)
928 			err = SET_ERROR(EINTR);
929 
930 	if (err != 0) {
931 		if (err == EINTR && dsp->dsa_err != 0)
932 			err = dsp->dsa_err;
933 		goto out;
934 	}
935 
936 	bzero(drr, sizeof (dmu_replay_record_t));
937 	drr->drr_type = DRR_END;
938 	drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
939 	drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
940 
941 	if (dump_record(dsp, NULL, 0) != 0)
942 		err = dsp->dsa_err;
943 
944 out:
945 	mutex_enter(&to_ds->ds_sendstream_lock);
946 	list_remove(&to_ds->ds_sendstreams, dsp);
947 	mutex_exit(&to_ds->ds_sendstream_lock);
948 
949 	VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end));
950 
951 	kmem_free(drr, sizeof (dmu_replay_record_t));
952 	kmem_free(dsp, sizeof (dmu_sendarg_t));
953 
954 	dsl_dataset_long_rele(to_ds, FTAG);
955 
956 	return (err);
957 }
958 
959 int
960 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
961     boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
962     int outfd, vnode_t *vp, offset_t *off)
963 {
964 	dsl_pool_t *dp;
965 	dsl_dataset_t *ds;
966 	dsl_dataset_t *fromds = NULL;
967 	int err;
968 
969 	err = dsl_pool_hold(pool, FTAG, &dp);
970 	if (err != 0)
971 		return (err);
972 
973 	err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
974 	if (err != 0) {
975 		dsl_pool_rele(dp, FTAG);
976 		return (err);
977 	}
978 
979 	if (fromsnap != 0) {
980 		zfs_bookmark_phys_t zb;
981 		boolean_t is_clone;
982 
983 		err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
984 		if (err != 0) {
985 			dsl_dataset_rele(ds, FTAG);
986 			dsl_pool_rele(dp, FTAG);
987 			return (err);
988 		}
989 		if (!dsl_dataset_is_before(ds, fromds, 0))
990 			err = SET_ERROR(EXDEV);
991 		zb.zbm_creation_time =
992 		    dsl_dataset_phys(fromds)->ds_creation_time;
993 		zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
994 		zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
995 		is_clone = (fromds->ds_dir != ds->ds_dir);
996 		dsl_dataset_rele(fromds, FTAG);
997 		err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
998 		    embedok, large_block_ok, compressok, outfd, 0, 0, vp, off);
999 	} else {
1000 		err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1001 		    embedok, large_block_ok, compressok, outfd, 0, 0, vp, off);
1002 	}
1003 	dsl_dataset_rele(ds, FTAG);
1004 	return (err);
1005 }
1006 
1007 int
1008 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
1009     boolean_t large_block_ok, boolean_t compressok, int outfd,
1010     uint64_t resumeobj, uint64_t resumeoff,
1011     vnode_t *vp, offset_t *off)
1012 {
1013 	dsl_pool_t *dp;
1014 	dsl_dataset_t *ds;
1015 	int err;
1016 	boolean_t owned = B_FALSE;
1017 
1018 	if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
1019 		return (SET_ERROR(EINVAL));
1020 
1021 	err = dsl_pool_hold(tosnap, FTAG, &dp);
1022 	if (err != 0)
1023 		return (err);
1024 
1025 	if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
1026 		/*
1027 		 * We are sending a filesystem or volume.  Ensure
1028 		 * that it doesn't change by owning the dataset.
1029 		 */
1030 		err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
1031 		owned = B_TRUE;
1032 	} else {
1033 		err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
1034 	}
1035 	if (err != 0) {
1036 		dsl_pool_rele(dp, FTAG);
1037 		return (err);
1038 	}
1039 
1040 	if (fromsnap != NULL) {
1041 		zfs_bookmark_phys_t zb;
1042 		boolean_t is_clone = B_FALSE;
1043 		int fsnamelen = strchr(tosnap, '@') - tosnap;
1044 
1045 		/*
1046 		 * If the fromsnap is in a different filesystem, then
1047 		 * mark the send stream as a clone.
1048 		 */
1049 		if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
1050 		    (fromsnap[fsnamelen] != '@' &&
1051 		    fromsnap[fsnamelen] != '#')) {
1052 			is_clone = B_TRUE;
1053 		}
1054 
1055 		if (strchr(fromsnap, '@')) {
1056 			dsl_dataset_t *fromds;
1057 			err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
1058 			if (err == 0) {
1059 				if (!dsl_dataset_is_before(ds, fromds, 0))
1060 					err = SET_ERROR(EXDEV);
1061 				zb.zbm_creation_time =
1062 				    dsl_dataset_phys(fromds)->ds_creation_time;
1063 				zb.zbm_creation_txg =
1064 				    dsl_dataset_phys(fromds)->ds_creation_txg;
1065 				zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
1066 				is_clone = (ds->ds_dir != fromds->ds_dir);
1067 				dsl_dataset_rele(fromds, FTAG);
1068 			}
1069 		} else {
1070 			err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
1071 		}
1072 		if (err != 0) {
1073 			dsl_dataset_rele(ds, FTAG);
1074 			dsl_pool_rele(dp, FTAG);
1075 			return (err);
1076 		}
1077 		err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
1078 		    embedok, large_block_ok, compressok,
1079 		    outfd, resumeobj, resumeoff, vp, off);
1080 	} else {
1081 		err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1082 		    embedok, large_block_ok, compressok,
1083 		    outfd, resumeobj, resumeoff, vp, off);
1084 	}
1085 	if (owned)
1086 		dsl_dataset_disown(ds, FTAG);
1087 	else
1088 		dsl_dataset_rele(ds, FTAG);
1089 	return (err);
1090 }
1091 
1092 static int
1093 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
1094     uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
1095 {
1096 	int err;
1097 	uint64_t size;
1098 	/*
1099 	 * Assume that space (both on-disk and in-stream) is dominated by
1100 	 * data.  We will adjust for indirect blocks and the copies property,
1101 	 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1102 	 */
1103 	uint64_t recordsize;
1104 	uint64_t record_count;
1105 	objset_t *os;
1106 	VERIFY0(dmu_objset_from_ds(ds, &os));
1107 
1108 	/* Assume all (uncompressed) blocks are recordsize. */
1109 	if (os->os_phys->os_type == DMU_OST_ZVOL) {
1110 		err = dsl_prop_get_int_ds(ds,
1111 		    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
1112 	} else {
1113 		err = dsl_prop_get_int_ds(ds,
1114 		    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
1115 	}
1116 	if (err != 0)
1117 		return (err);
1118 	record_count = uncompressed / recordsize;
1119 
1120 	/*
1121 	 * If we're estimating a send size for a compressed stream, use the
1122 	 * compressed data size to estimate the stream size. Otherwise, use the
1123 	 * uncompressed data size.
1124 	 */
1125 	size = stream_compressed ? compressed : uncompressed;
1126 
1127 	/*
1128 	 * Subtract out approximate space used by indirect blocks.
1129 	 * Assume most space is used by data blocks (non-indirect, non-dnode).
1130 	 * Assume no ditto blocks or internal fragmentation.
1131 	 *
1132 	 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1133 	 * block.
1134 	 */
1135 	size -= record_count * sizeof (blkptr_t);
1136 
1137 	/* Add in the space for the record associated with each block. */
1138 	size += record_count * sizeof (dmu_replay_record_t);
1139 
1140 	*sizep = size;
1141 
1142 	return (0);
1143 }
1144 
1145 int
1146 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds,
1147     boolean_t stream_compressed, uint64_t *sizep)
1148 {
1149 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1150 	int err;
1151 	uint64_t uncomp, comp;
1152 
1153 	ASSERT(dsl_pool_config_held(dp));
1154 
1155 	/* tosnap must be a snapshot */
1156 	if (!ds->ds_is_snapshot)
1157 		return (SET_ERROR(EINVAL));
1158 
1159 	/* fromsnap, if provided, must be a snapshot */
1160 	if (fromds != NULL && !fromds->ds_is_snapshot)
1161 		return (SET_ERROR(EINVAL));
1162 
1163 	/*
1164 	 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1165 	 * or the origin's fs.
1166 	 */
1167 	if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1168 		return (SET_ERROR(EXDEV));
1169 
1170 	/* Get compressed and uncompressed size estimates of changed data. */
1171 	if (fromds == NULL) {
1172 		uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1173 		comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
1174 	} else {
1175 		uint64_t used;
1176 		err = dsl_dataset_space_written(fromds, ds,
1177 		    &used, &comp, &uncomp);
1178 		if (err != 0)
1179 			return (err);
1180 	}
1181 
1182 	err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
1183 	    stream_compressed, sizep);
1184 	/*
1185 	 * Add the size of the BEGIN and END records to the estimate.
1186 	 */
1187 	*sizep += 2 * sizeof (dmu_replay_record_t);
1188 	return (err);
1189 }
1190 
1191 struct calculate_send_arg {
1192 	uint64_t uncompressed;
1193 	uint64_t compressed;
1194 };
1195 
1196 /*
1197  * Simple callback used to traverse the blocks of a snapshot and sum their
1198  * uncompressed and compressed sizes.
1199  */
1200 /* ARGSUSED */
1201 static int
1202 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1203     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1204 {
1205 	struct calculate_send_arg *space = arg;
1206 	if (bp != NULL && !BP_IS_HOLE(bp)) {
1207 		space->uncompressed += BP_GET_UCSIZE(bp);
1208 		space->compressed += BP_GET_PSIZE(bp);
1209 	}
1210 	return (0);
1211 }
1212 
1213 /*
1214  * Given a desination snapshot and a TXG, calculate the approximate size of a
1215  * send stream sent from that TXG. from_txg may be zero, indicating that the
1216  * whole snapshot will be sent.
1217  */
1218 int
1219 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1220     boolean_t stream_compressed, uint64_t *sizep)
1221 {
1222 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1223 	int err;
1224 	struct calculate_send_arg size = { 0 };
1225 
1226 	ASSERT(dsl_pool_config_held(dp));
1227 
1228 	/* tosnap must be a snapshot */
1229 	if (!ds->ds_is_snapshot)
1230 		return (SET_ERROR(EINVAL));
1231 
1232 	/* verify that from_txg is before the provided snapshot was taken */
1233 	if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1234 		return (SET_ERROR(EXDEV));
1235 	}
1236 
1237 	/*
1238 	 * traverse the blocks of the snapshot with birth times after
1239 	 * from_txg, summing their uncompressed size
1240 	 */
1241 	err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1242 	    dmu_calculate_send_traversal, &size);
1243 	if (err)
1244 		return (err);
1245 
1246 	err = dmu_adjust_send_estimate_for_indirects(ds, size.uncompressed,
1247 	    size.compressed, stream_compressed, sizep);
1248 	return (err);
1249 }
1250 
1251 typedef struct dmu_recv_begin_arg {
1252 	const char *drba_origin;
1253 	dmu_recv_cookie_t *drba_cookie;
1254 	cred_t *drba_cred;
1255 	uint64_t drba_snapobj;
1256 } dmu_recv_begin_arg_t;
1257 
1258 static int
1259 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1260     uint64_t fromguid)
1261 {
1262 	uint64_t val;
1263 	int error;
1264 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1265 
1266 	/* temporary clone name must not exist */
1267 	error = zap_lookup(dp->dp_meta_objset,
1268 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1269 	    8, 1, &val);
1270 	if (error != ENOENT)
1271 		return (error == 0 ? EBUSY : error);
1272 
1273 	/* new snapshot name must not exist */
1274 	error = zap_lookup(dp->dp_meta_objset,
1275 	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1276 	    drba->drba_cookie->drc_tosnap, 8, 1, &val);
1277 	if (error != ENOENT)
1278 		return (error == 0 ? EEXIST : error);
1279 
1280 	/*
1281 	 * Check snapshot limit before receiving. We'll recheck again at the
1282 	 * end, but might as well abort before receiving if we're already over
1283 	 * the limit.
1284 	 *
1285 	 * Note that we do not check the file system limit with
1286 	 * dsl_dir_fscount_check because the temporary %clones don't count
1287 	 * against that limit.
1288 	 */
1289 	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1290 	    NULL, drba->drba_cred);
1291 	if (error != 0)
1292 		return (error);
1293 
1294 	if (fromguid != 0) {
1295 		dsl_dataset_t *snap;
1296 		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1297 
1298 		/* Find snapshot in this dir that matches fromguid. */
1299 		while (obj != 0) {
1300 			error = dsl_dataset_hold_obj(dp, obj, FTAG,
1301 			    &snap);
1302 			if (error != 0)
1303 				return (SET_ERROR(ENODEV));
1304 			if (snap->ds_dir != ds->ds_dir) {
1305 				dsl_dataset_rele(snap, FTAG);
1306 				return (SET_ERROR(ENODEV));
1307 			}
1308 			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1309 				break;
1310 			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1311 			dsl_dataset_rele(snap, FTAG);
1312 		}
1313 		if (obj == 0)
1314 			return (SET_ERROR(ENODEV));
1315 
1316 		if (drba->drba_cookie->drc_force) {
1317 			drba->drba_snapobj = obj;
1318 		} else {
1319 			/*
1320 			 * If we are not forcing, there must be no
1321 			 * changes since fromsnap.
1322 			 */
1323 			if (dsl_dataset_modified_since_snap(ds, snap)) {
1324 				dsl_dataset_rele(snap, FTAG);
1325 				return (SET_ERROR(ETXTBSY));
1326 			}
1327 			drba->drba_snapobj = ds->ds_prev->ds_object;
1328 		}
1329 
1330 		dsl_dataset_rele(snap, FTAG);
1331 	} else {
1332 		/* if full, then must be forced */
1333 		if (!drba->drba_cookie->drc_force)
1334 			return (SET_ERROR(EEXIST));
1335 		/* start from $ORIGIN@$ORIGIN, if supported */
1336 		drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1337 		    dp->dp_origin_snap->ds_object : 0;
1338 	}
1339 
1340 	return (0);
1341 
1342 }
1343 
1344 static int
1345 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1346 {
1347 	dmu_recv_begin_arg_t *drba = arg;
1348 	dsl_pool_t *dp = dmu_tx_pool(tx);
1349 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1350 	uint64_t fromguid = drrb->drr_fromguid;
1351 	int flags = drrb->drr_flags;
1352 	int error;
1353 	uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1354 	dsl_dataset_t *ds;
1355 	const char *tofs = drba->drba_cookie->drc_tofs;
1356 
1357 	/* already checked */
1358 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1359 	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1360 
1361 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1362 	    DMU_COMPOUNDSTREAM ||
1363 	    drrb->drr_type >= DMU_OST_NUMTYPES ||
1364 	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1365 		return (SET_ERROR(EINVAL));
1366 
1367 	/* Verify pool version supports SA if SA_SPILL feature set */
1368 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1369 	    spa_version(dp->dp_spa) < SPA_VERSION_SA)
1370 		return (SET_ERROR(ENOTSUP));
1371 
1372 	if (drba->drba_cookie->drc_resumable &&
1373 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1374 		return (SET_ERROR(ENOTSUP));
1375 
1376 	/*
1377 	 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1378 	 * record to a plain WRITE record, so the pool must have the
1379 	 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1380 	 * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1381 	 */
1382 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1383 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1384 		return (SET_ERROR(ENOTSUP));
1385 	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
1386 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1387 		return (SET_ERROR(ENOTSUP));
1388 
1389 	/*
1390 	 * The receiving code doesn't know how to translate large blocks
1391 	 * to smaller ones, so the pool must have the LARGE_BLOCKS
1392 	 * feature enabled if the stream has LARGE_BLOCKS.
1393 	 */
1394 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1395 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1396 		return (SET_ERROR(ENOTSUP));
1397 
1398 	error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1399 	if (error == 0) {
1400 		/* target fs already exists; recv into temp clone */
1401 
1402 		/* Can't recv a clone into an existing fs */
1403 		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
1404 			dsl_dataset_rele(ds, FTAG);
1405 			return (SET_ERROR(EINVAL));
1406 		}
1407 
1408 		error = recv_begin_check_existing_impl(drba, ds, fromguid);
1409 		dsl_dataset_rele(ds, FTAG);
1410 	} else if (error == ENOENT) {
1411 		/* target fs does not exist; must be a full backup or clone */
1412 		char buf[ZFS_MAX_DATASET_NAME_LEN];
1413 
1414 		/*
1415 		 * If it's a non-clone incremental, we are missing the
1416 		 * target fs, so fail the recv.
1417 		 */
1418 		if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1419 		    drba->drba_origin))
1420 			return (SET_ERROR(ENOENT));
1421 
1422 		/*
1423 		 * If we're receiving a full send as a clone, and it doesn't
1424 		 * contain all the necessary free records and freeobject
1425 		 * records, reject it.
1426 		 */
1427 		if (fromguid == 0 && drba->drba_origin &&
1428 		    !(flags & DRR_FLAG_FREERECORDS))
1429 			return (SET_ERROR(EINVAL));
1430 
1431 		/* Open the parent of tofs */
1432 		ASSERT3U(strlen(tofs), <, sizeof (buf));
1433 		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1434 		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1435 		if (error != 0)
1436 			return (error);
1437 
1438 		/*
1439 		 * Check filesystem and snapshot limits before receiving. We'll
1440 		 * recheck snapshot limits again at the end (we create the
1441 		 * filesystems and increment those counts during begin_sync).
1442 		 */
1443 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1444 		    ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1445 		if (error != 0) {
1446 			dsl_dataset_rele(ds, FTAG);
1447 			return (error);
1448 		}
1449 
1450 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1451 		    ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1452 		if (error != 0) {
1453 			dsl_dataset_rele(ds, FTAG);
1454 			return (error);
1455 		}
1456 
1457 		if (drba->drba_origin != NULL) {
1458 			dsl_dataset_t *origin;
1459 			error = dsl_dataset_hold(dp, drba->drba_origin,
1460 			    FTAG, &origin);
1461 			if (error != 0) {
1462 				dsl_dataset_rele(ds, FTAG);
1463 				return (error);
1464 			}
1465 			if (!origin->ds_is_snapshot) {
1466 				dsl_dataset_rele(origin, FTAG);
1467 				dsl_dataset_rele(ds, FTAG);
1468 				return (SET_ERROR(EINVAL));
1469 			}
1470 			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
1471 			    fromguid != 0) {
1472 				dsl_dataset_rele(origin, FTAG);
1473 				dsl_dataset_rele(ds, FTAG);
1474 				return (SET_ERROR(ENODEV));
1475 			}
1476 			dsl_dataset_rele(origin, FTAG);
1477 		}
1478 		dsl_dataset_rele(ds, FTAG);
1479 		error = 0;
1480 	}
1481 	return (error);
1482 }
1483 
1484 static void
1485 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1486 {
1487 	dmu_recv_begin_arg_t *drba = arg;
1488 	dsl_pool_t *dp = dmu_tx_pool(tx);
1489 	objset_t *mos = dp->dp_meta_objset;
1490 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1491 	const char *tofs = drba->drba_cookie->drc_tofs;
1492 	dsl_dataset_t *ds, *newds;
1493 	uint64_t dsobj;
1494 	int error;
1495 	uint64_t crflags = 0;
1496 
1497 	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1498 		crflags |= DS_FLAG_CI_DATASET;
1499 
1500 	error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1501 	if (error == 0) {
1502 		/* create temporary clone */
1503 		dsl_dataset_t *snap = NULL;
1504 		if (drba->drba_snapobj != 0) {
1505 			VERIFY0(dsl_dataset_hold_obj(dp,
1506 			    drba->drba_snapobj, FTAG, &snap));
1507 		}
1508 		dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1509 		    snap, crflags, drba->drba_cred, tx);
1510 		if (drba->drba_snapobj != 0)
1511 			dsl_dataset_rele(snap, FTAG);
1512 		dsl_dataset_rele(ds, FTAG);
1513 	} else {
1514 		dsl_dir_t *dd;
1515 		const char *tail;
1516 		dsl_dataset_t *origin = NULL;
1517 
1518 		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1519 
1520 		if (drba->drba_origin != NULL) {
1521 			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1522 			    FTAG, &origin));
1523 		}
1524 
1525 		/* Create new dataset. */
1526 		dsobj = dsl_dataset_create_sync(dd,
1527 		    strrchr(tofs, '/') + 1,
1528 		    origin, crflags, drba->drba_cred, tx);
1529 		if (origin != NULL)
1530 			dsl_dataset_rele(origin, FTAG);
1531 		dsl_dir_rele(dd, FTAG);
1532 		drba->drba_cookie->drc_newfs = B_TRUE;
1533 	}
1534 	VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1535 
1536 	if (drba->drba_cookie->drc_resumable) {
1537 		dsl_dataset_zapify(newds, tx);
1538 		if (drrb->drr_fromguid != 0) {
1539 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1540 			    8, 1, &drrb->drr_fromguid, tx));
1541 		}
1542 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1543 		    8, 1, &drrb->drr_toguid, tx));
1544 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1545 		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1546 		uint64_t one = 1;
1547 		uint64_t zero = 0;
1548 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1549 		    8, 1, &one, tx));
1550 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1551 		    8, 1, &zero, tx));
1552 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1553 		    8, 1, &zero, tx));
1554 		if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1555 		    DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
1556 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
1557 			    8, 1, &one, tx));
1558 		}
1559 		if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1560 		    DMU_BACKUP_FEATURE_EMBED_DATA) {
1561 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1562 			    8, 1, &one, tx));
1563 		}
1564 		if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1565 		    DMU_BACKUP_FEATURE_COMPRESSED) {
1566 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
1567 			    8, 1, &one, tx));
1568 		}
1569 	}
1570 
1571 	dmu_buf_will_dirty(newds->ds_dbuf, tx);
1572 	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1573 
1574 	/*
1575 	 * If we actually created a non-clone, we need to create the
1576 	 * objset in our new dataset.
1577 	 */
1578 	rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
1579 	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1580 		(void) dmu_objset_create_impl(dp->dp_spa,
1581 		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1582 	}
1583 	rrw_exit(&newds->ds_bp_rwlock, FTAG);
1584 
1585 	drba->drba_cookie->drc_ds = newds;
1586 
1587 	spa_history_log_internal_ds(newds, "receive", tx, "");
1588 }
1589 
1590 static int
1591 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1592 {
1593 	dmu_recv_begin_arg_t *drba = arg;
1594 	dsl_pool_t *dp = dmu_tx_pool(tx);
1595 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1596 	int error;
1597 	uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1598 	dsl_dataset_t *ds;
1599 	const char *tofs = drba->drba_cookie->drc_tofs;
1600 
1601 	/* already checked */
1602 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1603 	ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1604 
1605 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1606 	    DMU_COMPOUNDSTREAM ||
1607 	    drrb->drr_type >= DMU_OST_NUMTYPES)
1608 		return (SET_ERROR(EINVAL));
1609 
1610 	/* Verify pool version supports SA if SA_SPILL feature set */
1611 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1612 	    spa_version(dp->dp_spa) < SPA_VERSION_SA)
1613 		return (SET_ERROR(ENOTSUP));
1614 
1615 	/*
1616 	 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1617 	 * record to a plain WRITE record, so the pool must have the
1618 	 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1619 	 * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1620 	 */
1621 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1622 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1623 		return (SET_ERROR(ENOTSUP));
1624 	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
1625 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1626 		return (SET_ERROR(ENOTSUP));
1627 
1628 	/* 6 extra bytes for /%recv */
1629 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1630 
1631 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1632 	    tofs, recv_clone_name);
1633 
1634 	if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1635 		/* %recv does not exist; continue in tofs */
1636 		error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1637 		if (error != 0)
1638 			return (error);
1639 	}
1640 
1641 	/* check that ds is marked inconsistent */
1642 	if (!DS_IS_INCONSISTENT(ds)) {
1643 		dsl_dataset_rele(ds, FTAG);
1644 		return (SET_ERROR(EINVAL));
1645 	}
1646 
1647 	/* check that there is resuming data, and that the toguid matches */
1648 	if (!dsl_dataset_is_zapified(ds)) {
1649 		dsl_dataset_rele(ds, FTAG);
1650 		return (SET_ERROR(EINVAL));
1651 	}
1652 	uint64_t val;
1653 	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1654 	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1655 	if (error != 0 || drrb->drr_toguid != val) {
1656 		dsl_dataset_rele(ds, FTAG);
1657 		return (SET_ERROR(EINVAL));
1658 	}
1659 
1660 	/*
1661 	 * Check if the receive is still running.  If so, it will be owned.
1662 	 * Note that nothing else can own the dataset (e.g. after the receive
1663 	 * fails) because it will be marked inconsistent.
1664 	 */
1665 	if (dsl_dataset_has_owner(ds)) {
1666 		dsl_dataset_rele(ds, FTAG);
1667 		return (SET_ERROR(EBUSY));
1668 	}
1669 
1670 	/* There should not be any snapshots of this fs yet. */
1671 	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1672 		dsl_dataset_rele(ds, FTAG);
1673 		return (SET_ERROR(EINVAL));
1674 	}
1675 
1676 	/*
1677 	 * Note: resume point will be checked when we process the first WRITE
1678 	 * record.
1679 	 */
1680 
1681 	/* check that the origin matches */
1682 	val = 0;
1683 	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1684 	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1685 	if (drrb->drr_fromguid != val) {
1686 		dsl_dataset_rele(ds, FTAG);
1687 		return (SET_ERROR(EINVAL));
1688 	}
1689 
1690 	dsl_dataset_rele(ds, FTAG);
1691 	return (0);
1692 }
1693 
1694 static void
1695 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1696 {
1697 	dmu_recv_begin_arg_t *drba = arg;
1698 	dsl_pool_t *dp = dmu_tx_pool(tx);
1699 	const char *tofs = drba->drba_cookie->drc_tofs;
1700 	dsl_dataset_t *ds;
1701 	uint64_t dsobj;
1702 	/* 6 extra bytes for /%recv */
1703 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1704 
1705 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1706 	    tofs, recv_clone_name);
1707 
1708 	if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1709 		/* %recv does not exist; continue in tofs */
1710 		VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1711 		drba->drba_cookie->drc_newfs = B_TRUE;
1712 	}
1713 
1714 	/* clear the inconsistent flag so that we can own it */
1715 	ASSERT(DS_IS_INCONSISTENT(ds));
1716 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
1717 	dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1718 	dsobj = ds->ds_object;
1719 	dsl_dataset_rele(ds, FTAG);
1720 
1721 	VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1722 
1723 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
1724 	dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1725 
1726 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1727 	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1728 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
1729 
1730 	drba->drba_cookie->drc_ds = ds;
1731 
1732 	spa_history_log_internal_ds(ds, "resume receive", tx, "");
1733 }
1734 
1735 /*
1736  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1737  * succeeds; otherwise we will leak the holds on the datasets.
1738  */
1739 int
1740 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1741     boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1742 {
1743 	dmu_recv_begin_arg_t drba = { 0 };
1744 
1745 	bzero(drc, sizeof (dmu_recv_cookie_t));
1746 	drc->drc_drr_begin = drr_begin;
1747 	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1748 	drc->drc_tosnap = tosnap;
1749 	drc->drc_tofs = tofs;
1750 	drc->drc_force = force;
1751 	drc->drc_resumable = resumable;
1752 	drc->drc_cred = CRED();
1753 
1754 	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1755 		drc->drc_byteswap = B_TRUE;
1756 		(void) fletcher_4_incremental_byteswap(drr_begin,
1757 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1758 		byteswap_record(drr_begin);
1759 	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1760 		(void) fletcher_4_incremental_native(drr_begin,
1761 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1762 	} else {
1763 		return (SET_ERROR(EINVAL));
1764 	}
1765 
1766 	drba.drba_origin = origin;
1767 	drba.drba_cookie = drc;
1768 	drba.drba_cred = CRED();
1769 
1770 	if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1771 	    DMU_BACKUP_FEATURE_RESUMING) {
1772 		return (dsl_sync_task(tofs,
1773 		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1774 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1775 	} else  {
1776 		return (dsl_sync_task(tofs,
1777 		    dmu_recv_begin_check, dmu_recv_begin_sync,
1778 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1779 	}
1780 }
1781 
1782 struct receive_record_arg {
1783 	dmu_replay_record_t header;
1784 	void *payload; /* Pointer to a buffer containing the payload */
1785 	/*
1786 	 * If the record is a write, pointer to the arc_buf_t containing the
1787 	 * payload.
1788 	 */
1789 	arc_buf_t *write_buf;
1790 	int payload_size;
1791 	uint64_t bytes_read; /* bytes read from stream when record created */
1792 	boolean_t eos_marker; /* Marks the end of the stream */
1793 	bqueue_node_t node;
1794 };
1795 
1796 struct receive_writer_arg {
1797 	objset_t *os;
1798 	boolean_t byteswap;
1799 	bqueue_t q;
1800 
1801 	/*
1802 	 * These three args are used to signal to the main thread that we're
1803 	 * done.
1804 	 */
1805 	kmutex_t mutex;
1806 	kcondvar_t cv;
1807 	boolean_t done;
1808 
1809 	int err;
1810 	/* A map from guid to dataset to help handle dedup'd streams. */
1811 	avl_tree_t *guid_to_ds_map;
1812 	boolean_t resumable;
1813 	uint64_t last_object, last_offset;
1814 	uint64_t bytes_read; /* bytes read when current record created */
1815 };
1816 
1817 struct objlist {
1818 	list_t list; /* List of struct receive_objnode. */
1819 	/*
1820 	 * Last object looked up. Used to assert that objects are being looked
1821 	 * up in ascending order.
1822 	 */
1823 	uint64_t last_lookup;
1824 };
1825 
1826 struct receive_objnode {
1827 	list_node_t node;
1828 	uint64_t object;
1829 };
1830 
1831 struct receive_arg {
1832 	objset_t *os;
1833 	vnode_t *vp; /* The vnode to read the stream from */
1834 	uint64_t voff; /* The current offset in the stream */
1835 	uint64_t bytes_read;
1836 	/*
1837 	 * A record that has had its payload read in, but hasn't yet been handed
1838 	 * off to the worker thread.
1839 	 */
1840 	struct receive_record_arg *rrd;
1841 	/* A record that has had its header read in, but not its payload. */
1842 	struct receive_record_arg *next_rrd;
1843 	zio_cksum_t cksum;
1844 	zio_cksum_t prev_cksum;
1845 	int err;
1846 	boolean_t byteswap;
1847 	/* Sorted list of objects not to issue prefetches for. */
1848 	struct objlist ignore_objlist;
1849 };
1850 
1851 typedef struct guid_map_entry {
1852 	uint64_t	guid;
1853 	dsl_dataset_t	*gme_ds;
1854 	avl_node_t	avlnode;
1855 } guid_map_entry_t;
1856 
1857 static int
1858 guid_compare(const void *arg1, const void *arg2)
1859 {
1860 	const guid_map_entry_t *gmep1 = arg1;
1861 	const guid_map_entry_t *gmep2 = arg2;
1862 
1863 	if (gmep1->guid < gmep2->guid)
1864 		return (-1);
1865 	else if (gmep1->guid > gmep2->guid)
1866 		return (1);
1867 	return (0);
1868 }
1869 
1870 static void
1871 free_guid_map_onexit(void *arg)
1872 {
1873 	avl_tree_t *ca = arg;
1874 	void *cookie = NULL;
1875 	guid_map_entry_t *gmep;
1876 
1877 	while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1878 		dsl_dataset_long_rele(gmep->gme_ds, gmep);
1879 		dsl_dataset_rele(gmep->gme_ds, gmep);
1880 		kmem_free(gmep, sizeof (guid_map_entry_t));
1881 	}
1882 	avl_destroy(ca);
1883 	kmem_free(ca, sizeof (avl_tree_t));
1884 }
1885 
1886 static int
1887 receive_read(struct receive_arg *ra, int len, void *buf)
1888 {
1889 	int done = 0;
1890 
1891 	/*
1892 	 * The code doesn't rely on this (lengths being multiples of 8).  See
1893 	 * comment in dump_bytes.
1894 	 */
1895 	ASSERT0(len % 8);
1896 
1897 	while (done < len) {
1898 		ssize_t resid;
1899 
1900 		ra->err = vn_rdwr(UIO_READ, ra->vp,
1901 		    (char *)buf + done, len - done,
1902 		    ra->voff, UIO_SYSSPACE, FAPPEND,
1903 		    RLIM64_INFINITY, CRED(), &resid);
1904 
1905 		if (resid == len - done) {
1906 			/*
1907 			 * Note: ECKSUM indicates that the receive
1908 			 * was interrupted and can potentially be resumed.
1909 			 */
1910 			ra->err = SET_ERROR(ECKSUM);
1911 		}
1912 		ra->voff += len - done - resid;
1913 		done = len - resid;
1914 		if (ra->err != 0)
1915 			return (ra->err);
1916 	}
1917 
1918 	ra->bytes_read += len;
1919 
1920 	ASSERT3U(done, ==, len);
1921 	return (0);
1922 }
1923 
1924 static void
1925 byteswap_record(dmu_replay_record_t *drr)
1926 {
1927 #define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1928 #define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1929 	drr->drr_type = BSWAP_32(drr->drr_type);
1930 	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
1931 
1932 	switch (drr->drr_type) {
1933 	case DRR_BEGIN:
1934 		DO64(drr_begin.drr_magic);
1935 		DO64(drr_begin.drr_versioninfo);
1936 		DO64(drr_begin.drr_creation_time);
1937 		DO32(drr_begin.drr_type);
1938 		DO32(drr_begin.drr_flags);
1939 		DO64(drr_begin.drr_toguid);
1940 		DO64(drr_begin.drr_fromguid);
1941 		break;
1942 	case DRR_OBJECT:
1943 		DO64(drr_object.drr_object);
1944 		DO32(drr_object.drr_type);
1945 		DO32(drr_object.drr_bonustype);
1946 		DO32(drr_object.drr_blksz);
1947 		DO32(drr_object.drr_bonuslen);
1948 		DO64(drr_object.drr_toguid);
1949 		break;
1950 	case DRR_FREEOBJECTS:
1951 		DO64(drr_freeobjects.drr_firstobj);
1952 		DO64(drr_freeobjects.drr_numobjs);
1953 		DO64(drr_freeobjects.drr_toguid);
1954 		break;
1955 	case DRR_WRITE:
1956 		DO64(drr_write.drr_object);
1957 		DO32(drr_write.drr_type);
1958 		DO64(drr_write.drr_offset);
1959 		DO64(drr_write.drr_logical_size);
1960 		DO64(drr_write.drr_toguid);
1961 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1962 		DO64(drr_write.drr_key.ddk_prop);
1963 		DO64(drr_write.drr_compressed_size);
1964 		break;
1965 	case DRR_WRITE_BYREF:
1966 		DO64(drr_write_byref.drr_object);
1967 		DO64(drr_write_byref.drr_offset);
1968 		DO64(drr_write_byref.drr_length);
1969 		DO64(drr_write_byref.drr_toguid);
1970 		DO64(drr_write_byref.drr_refguid);
1971 		DO64(drr_write_byref.drr_refobject);
1972 		DO64(drr_write_byref.drr_refoffset);
1973 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1974 		    drr_key.ddk_cksum);
1975 		DO64(drr_write_byref.drr_key.ddk_prop);
1976 		break;
1977 	case DRR_WRITE_EMBEDDED:
1978 		DO64(drr_write_embedded.drr_object);
1979 		DO64(drr_write_embedded.drr_offset);
1980 		DO64(drr_write_embedded.drr_length);
1981 		DO64(drr_write_embedded.drr_toguid);
1982 		DO32(drr_write_embedded.drr_lsize);
1983 		DO32(drr_write_embedded.drr_psize);
1984 		break;
1985 	case DRR_FREE:
1986 		DO64(drr_free.drr_object);
1987 		DO64(drr_free.drr_offset);
1988 		DO64(drr_free.drr_length);
1989 		DO64(drr_free.drr_toguid);
1990 		break;
1991 	case DRR_SPILL:
1992 		DO64(drr_spill.drr_object);
1993 		DO64(drr_spill.drr_length);
1994 		DO64(drr_spill.drr_toguid);
1995 		break;
1996 	case DRR_END:
1997 		DO64(drr_end.drr_toguid);
1998 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1999 		break;
2000 	}
2001 
2002 	if (drr->drr_type != DRR_BEGIN) {
2003 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
2004 	}
2005 
2006 #undef DO64
2007 #undef DO32
2008 }
2009 
2010 static inline uint8_t
2011 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
2012 {
2013 	if (bonus_type == DMU_OT_SA) {
2014 		return (1);
2015 	} else {
2016 		return (1 +
2017 		    ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT));
2018 	}
2019 }
2020 
2021 static void
2022 save_resume_state(struct receive_writer_arg *rwa,
2023     uint64_t object, uint64_t offset, dmu_tx_t *tx)
2024 {
2025 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2026 
2027 	if (!rwa->resumable)
2028 		return;
2029 
2030 	/*
2031 	 * We use ds_resume_bytes[] != 0 to indicate that we need to
2032 	 * update this on disk, so it must not be 0.
2033 	 */
2034 	ASSERT(rwa->bytes_read != 0);
2035 
2036 	/*
2037 	 * We only resume from write records, which have a valid
2038 	 * (non-meta-dnode) object number.
2039 	 */
2040 	ASSERT(object != 0);
2041 
2042 	/*
2043 	 * For resuming to work correctly, we must receive records in order,
2044 	 * sorted by object,offset.  This is checked by the callers, but
2045 	 * assert it here for good measure.
2046 	 */
2047 	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
2048 	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
2049 	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
2050 	ASSERT3U(rwa->bytes_read, >=,
2051 	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
2052 
2053 	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
2054 	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
2055 	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
2056 }
2057 
2058 static int
2059 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
2060     void *data)
2061 {
2062 	dmu_object_info_t doi;
2063 	dmu_tx_t *tx;
2064 	uint64_t object;
2065 	int err;
2066 
2067 	if (drro->drr_type == DMU_OT_NONE ||
2068 	    !DMU_OT_IS_VALID(drro->drr_type) ||
2069 	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
2070 	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
2071 	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
2072 	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
2073 	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
2074 	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
2075 	    drro->drr_bonuslen > DN_MAX_BONUSLEN) {
2076 		return (SET_ERROR(EINVAL));
2077 	}
2078 
2079 	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
2080 
2081 	if (err != 0 && err != ENOENT)
2082 		return (SET_ERROR(EINVAL));
2083 	object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
2084 
2085 	/*
2086 	 * If we are losing blkptrs or changing the block size this must
2087 	 * be a new file instance.  We must clear out the previous file
2088 	 * contents before we can change this type of metadata in the dnode.
2089 	 */
2090 	if (err == 0) {
2091 		int nblkptr;
2092 
2093 		nblkptr = deduce_nblkptr(drro->drr_bonustype,
2094 		    drro->drr_bonuslen);
2095 
2096 		if (drro->drr_blksz != doi.doi_data_block_size ||
2097 		    nblkptr < doi.doi_nblkptr) {
2098 			err = dmu_free_long_range(rwa->os, drro->drr_object,
2099 			    0, DMU_OBJECT_END);
2100 			if (err != 0)
2101 				return (SET_ERROR(EINVAL));
2102 		}
2103 	}
2104 
2105 	tx = dmu_tx_create(rwa->os);
2106 	dmu_tx_hold_bonus(tx, object);
2107 	err = dmu_tx_assign(tx, TXG_WAIT);
2108 	if (err != 0) {
2109 		dmu_tx_abort(tx);
2110 		return (err);
2111 	}
2112 
2113 	if (object == DMU_NEW_OBJECT) {
2114 		/* currently free, want to be allocated */
2115 		err = dmu_object_claim(rwa->os, drro->drr_object,
2116 		    drro->drr_type, drro->drr_blksz,
2117 		    drro->drr_bonustype, drro->drr_bonuslen, tx);
2118 	} else if (drro->drr_type != doi.doi_type ||
2119 	    drro->drr_blksz != doi.doi_data_block_size ||
2120 	    drro->drr_bonustype != doi.doi_bonus_type ||
2121 	    drro->drr_bonuslen != doi.doi_bonus_size) {
2122 		/* currently allocated, but with different properties */
2123 		err = dmu_object_reclaim(rwa->os, drro->drr_object,
2124 		    drro->drr_type, drro->drr_blksz,
2125 		    drro->drr_bonustype, drro->drr_bonuslen, tx);
2126 	}
2127 	if (err != 0) {
2128 		dmu_tx_commit(tx);
2129 		return (SET_ERROR(EINVAL));
2130 	}
2131 
2132 	dmu_object_set_checksum(rwa->os, drro->drr_object,
2133 	    drro->drr_checksumtype, tx);
2134 	dmu_object_set_compress(rwa->os, drro->drr_object,
2135 	    drro->drr_compress, tx);
2136 
2137 	if (data != NULL) {
2138 		dmu_buf_t *db;
2139 
2140 		VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
2141 		dmu_buf_will_dirty(db, tx);
2142 
2143 		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2144 		bcopy(data, db->db_data, drro->drr_bonuslen);
2145 		if (rwa->byteswap) {
2146 			dmu_object_byteswap_t byteswap =
2147 			    DMU_OT_BYTESWAP(drro->drr_bonustype);
2148 			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2149 			    drro->drr_bonuslen);
2150 		}
2151 		dmu_buf_rele(db, FTAG);
2152 	}
2153 	dmu_tx_commit(tx);
2154 
2155 	return (0);
2156 }
2157 
2158 /* ARGSUSED */
2159 static int
2160 receive_freeobjects(struct receive_writer_arg *rwa,
2161     struct drr_freeobjects *drrfo)
2162 {
2163 	uint64_t obj;
2164 	int next_err = 0;
2165 
2166 	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2167 		return (SET_ERROR(EINVAL));
2168 
2169 	for (obj = drrfo->drr_firstobj;
2170 	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
2171 	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2172 		int err;
2173 
2174 		if (dmu_object_info(rwa->os, obj, NULL) != 0)
2175 			continue;
2176 
2177 		err = dmu_free_long_object(rwa->os, obj);
2178 		if (err != 0)
2179 			return (err);
2180 	}
2181 	if (next_err != ESRCH)
2182 		return (next_err);
2183 	return (0);
2184 }
2185 
2186 static int
2187 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2188     arc_buf_t *abuf)
2189 {
2190 	dmu_tx_t *tx;
2191 	int err;
2192 
2193 	if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2194 	    !DMU_OT_IS_VALID(drrw->drr_type))
2195 		return (SET_ERROR(EINVAL));
2196 
2197 	/*
2198 	 * For resuming to work, records must be in increasing order
2199 	 * by (object, offset).
2200 	 */
2201 	if (drrw->drr_object < rwa->last_object ||
2202 	    (drrw->drr_object == rwa->last_object &&
2203 	    drrw->drr_offset < rwa->last_offset)) {
2204 		return (SET_ERROR(EINVAL));
2205 	}
2206 	rwa->last_object = drrw->drr_object;
2207 	rwa->last_offset = drrw->drr_offset;
2208 
2209 	if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2210 		return (SET_ERROR(EINVAL));
2211 
2212 	tx = dmu_tx_create(rwa->os);
2213 
2214 	dmu_tx_hold_write(tx, drrw->drr_object,
2215 	    drrw->drr_offset, drrw->drr_logical_size);
2216 	err = dmu_tx_assign(tx, TXG_WAIT);
2217 	if (err != 0) {
2218 		dmu_tx_abort(tx);
2219 		return (err);
2220 	}
2221 	if (rwa->byteswap) {
2222 		dmu_object_byteswap_t byteswap =
2223 		    DMU_OT_BYTESWAP(drrw->drr_type);
2224 		dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2225 		    DRR_WRITE_PAYLOAD_SIZE(drrw));
2226 	}
2227 
2228 	/* use the bonus buf to look up the dnode in dmu_assign_arcbuf */
2229 	dmu_buf_t *bonus;
2230 	if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2231 		return (SET_ERROR(EINVAL));
2232 	dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2233 
2234 	/*
2235 	 * Note: If the receive fails, we want the resume stream to start
2236 	 * with the same record that we last successfully received (as opposed
2237 	 * to the next record), so that we can verify that we are
2238 	 * resuming from the correct location.
2239 	 */
2240 	save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2241 	dmu_tx_commit(tx);
2242 	dmu_buf_rele(bonus, FTAG);
2243 
2244 	return (0);
2245 }
2246 
2247 /*
2248  * Handle a DRR_WRITE_BYREF record.  This record is used in dedup'ed
2249  * streams to refer to a copy of the data that is already on the
2250  * system because it came in earlier in the stream.  This function
2251  * finds the earlier copy of the data, and uses that copy instead of
2252  * data from the stream to fulfill this write.
2253  */
2254 static int
2255 receive_write_byref(struct receive_writer_arg *rwa,
2256     struct drr_write_byref *drrwbr)
2257 {
2258 	dmu_tx_t *tx;
2259 	int err;
2260 	guid_map_entry_t gmesrch;
2261 	guid_map_entry_t *gmep;
2262 	avl_index_t where;
2263 	objset_t *ref_os = NULL;
2264 	dmu_buf_t *dbp;
2265 
2266 	if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2267 		return (SET_ERROR(EINVAL));
2268 
2269 	/*
2270 	 * If the GUID of the referenced dataset is different from the
2271 	 * GUID of the target dataset, find the referenced dataset.
2272 	 */
2273 	if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2274 		gmesrch.guid = drrwbr->drr_refguid;
2275 		if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2276 		    &where)) == NULL) {
2277 			return (SET_ERROR(EINVAL));
2278 		}
2279 		if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2280 			return (SET_ERROR(EINVAL));
2281 	} else {
2282 		ref_os = rwa->os;
2283 	}
2284 
2285 	err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2286 	    drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2287 	if (err != 0)
2288 		return (err);
2289 
2290 	tx = dmu_tx_create(rwa->os);
2291 
2292 	dmu_tx_hold_write(tx, drrwbr->drr_object,
2293 	    drrwbr->drr_offset, drrwbr->drr_length);
2294 	err = dmu_tx_assign(tx, TXG_WAIT);
2295 	if (err != 0) {
2296 		dmu_tx_abort(tx);
2297 		return (err);
2298 	}
2299 	dmu_write(rwa->os, drrwbr->drr_object,
2300 	    drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2301 	dmu_buf_rele(dbp, FTAG);
2302 
2303 	/* See comment in restore_write. */
2304 	save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2305 	dmu_tx_commit(tx);
2306 	return (0);
2307 }
2308 
2309 static int
2310 receive_write_embedded(struct receive_writer_arg *rwa,
2311     struct drr_write_embedded *drrwe, void *data)
2312 {
2313 	dmu_tx_t *tx;
2314 	int err;
2315 
2316 	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2317 		return (EINVAL);
2318 
2319 	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2320 		return (EINVAL);
2321 
2322 	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2323 		return (EINVAL);
2324 	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2325 		return (EINVAL);
2326 
2327 	tx = dmu_tx_create(rwa->os);
2328 
2329 	dmu_tx_hold_write(tx, drrwe->drr_object,
2330 	    drrwe->drr_offset, drrwe->drr_length);
2331 	err = dmu_tx_assign(tx, TXG_WAIT);
2332 	if (err != 0) {
2333 		dmu_tx_abort(tx);
2334 		return (err);
2335 	}
2336 
2337 	dmu_write_embedded(rwa->os, drrwe->drr_object,
2338 	    drrwe->drr_offset, data, drrwe->drr_etype,
2339 	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2340 	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2341 
2342 	/* See comment in restore_write. */
2343 	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2344 	dmu_tx_commit(tx);
2345 	return (0);
2346 }
2347 
2348 static int
2349 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2350     void *data)
2351 {
2352 	dmu_tx_t *tx;
2353 	dmu_buf_t *db, *db_spill;
2354 	int err;
2355 
2356 	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2357 	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2358 		return (SET_ERROR(EINVAL));
2359 
2360 	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2361 		return (SET_ERROR(EINVAL));
2362 
2363 	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2364 	if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2365 		dmu_buf_rele(db, FTAG);
2366 		return (err);
2367 	}
2368 
2369 	tx = dmu_tx_create(rwa->os);
2370 
2371 	dmu_tx_hold_spill(tx, db->db_object);
2372 
2373 	err = dmu_tx_assign(tx, TXG_WAIT);
2374 	if (err != 0) {
2375 		dmu_buf_rele(db, FTAG);
2376 		dmu_buf_rele(db_spill, FTAG);
2377 		dmu_tx_abort(tx);
2378 		return (err);
2379 	}
2380 	dmu_buf_will_dirty(db_spill, tx);
2381 
2382 	if (db_spill->db_size < drrs->drr_length)
2383 		VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2384 		    drrs->drr_length, tx));
2385 	bcopy(data, db_spill->db_data, drrs->drr_length);
2386 
2387 	dmu_buf_rele(db, FTAG);
2388 	dmu_buf_rele(db_spill, FTAG);
2389 
2390 	dmu_tx_commit(tx);
2391 	return (0);
2392 }
2393 
2394 /* ARGSUSED */
2395 static int
2396 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2397 {
2398 	int err;
2399 
2400 	if (drrf->drr_length != -1ULL &&
2401 	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2402 		return (SET_ERROR(EINVAL));
2403 
2404 	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2405 		return (SET_ERROR(EINVAL));
2406 
2407 	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2408 	    drrf->drr_offset, drrf->drr_length);
2409 
2410 	return (err);
2411 }
2412 
2413 /* used to destroy the drc_ds on error */
2414 static void
2415 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2416 {
2417 	if (drc->drc_resumable) {
2418 		/* wait for our resume state to be written to disk */
2419 		txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2420 		dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2421 	} else {
2422 		char name[ZFS_MAX_DATASET_NAME_LEN];
2423 		dsl_dataset_name(drc->drc_ds, name);
2424 		dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2425 		(void) dsl_destroy_head(name);
2426 	}
2427 }
2428 
2429 static void
2430 receive_cksum(struct receive_arg *ra, int len, void *buf)
2431 {
2432 	if (ra->byteswap) {
2433 		(void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2434 	} else {
2435 		(void) fletcher_4_incremental_native(buf, len, &ra->cksum);
2436 	}
2437 }
2438 
2439 /*
2440  * Read the payload into a buffer of size len, and update the current record's
2441  * payload field.
2442  * Allocate ra->next_rrd and read the next record's header into
2443  * ra->next_rrd->header.
2444  * Verify checksum of payload and next record.
2445  */
2446 static int
2447 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2448 {
2449 	int err;
2450 
2451 	if (len != 0) {
2452 		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2453 		err = receive_read(ra, len, buf);
2454 		if (err != 0)
2455 			return (err);
2456 		receive_cksum(ra, len, buf);
2457 
2458 		/* note: rrd is NULL when reading the begin record's payload */
2459 		if (ra->rrd != NULL) {
2460 			ra->rrd->payload = buf;
2461 			ra->rrd->payload_size = len;
2462 			ra->rrd->bytes_read = ra->bytes_read;
2463 		}
2464 	}
2465 
2466 	ra->prev_cksum = ra->cksum;
2467 
2468 	ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2469 	err = receive_read(ra, sizeof (ra->next_rrd->header),
2470 	    &ra->next_rrd->header);
2471 	ra->next_rrd->bytes_read = ra->bytes_read;
2472 	if (err != 0) {
2473 		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2474 		ra->next_rrd = NULL;
2475 		return (err);
2476 	}
2477 	if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2478 		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2479 		ra->next_rrd = NULL;
2480 		return (SET_ERROR(EINVAL));
2481 	}
2482 
2483 	/*
2484 	 * Note: checksum is of everything up to but not including the
2485 	 * checksum itself.
2486 	 */
2487 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2488 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2489 	receive_cksum(ra,
2490 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2491 	    &ra->next_rrd->header);
2492 
2493 	zio_cksum_t cksum_orig =
2494 	    ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2495 	zio_cksum_t *cksump =
2496 	    &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2497 
2498 	if (ra->byteswap)
2499 		byteswap_record(&ra->next_rrd->header);
2500 
2501 	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2502 	    !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2503 		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2504 		ra->next_rrd = NULL;
2505 		return (SET_ERROR(ECKSUM));
2506 	}
2507 
2508 	receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2509 
2510 	return (0);
2511 }
2512 
2513 static void
2514 objlist_create(struct objlist *list)
2515 {
2516 	list_create(&list->list, sizeof (struct receive_objnode),
2517 	    offsetof(struct receive_objnode, node));
2518 	list->last_lookup = 0;
2519 }
2520 
2521 static void
2522 objlist_destroy(struct objlist *list)
2523 {
2524 	for (struct receive_objnode *n = list_remove_head(&list->list);
2525 	    n != NULL; n = list_remove_head(&list->list)) {
2526 		kmem_free(n, sizeof (*n));
2527 	}
2528 	list_destroy(&list->list);
2529 }
2530 
2531 /*
2532  * This function looks through the objlist to see if the specified object number
2533  * is contained in the objlist.  In the process, it will remove all object
2534  * numbers in the list that are smaller than the specified object number.  Thus,
2535  * any lookup of an object number smaller than a previously looked up object
2536  * number will always return false; therefore, all lookups should be done in
2537  * ascending order.
2538  */
2539 static boolean_t
2540 objlist_exists(struct objlist *list, uint64_t object)
2541 {
2542 	struct receive_objnode *node = list_head(&list->list);
2543 	ASSERT3U(object, >=, list->last_lookup);
2544 	list->last_lookup = object;
2545 	while (node != NULL && node->object < object) {
2546 		VERIFY3P(node, ==, list_remove_head(&list->list));
2547 		kmem_free(node, sizeof (*node));
2548 		node = list_head(&list->list);
2549 	}
2550 	return (node != NULL && node->object == object);
2551 }
2552 
2553 /*
2554  * The objlist is a list of object numbers stored in ascending order.  However,
2555  * the insertion of new object numbers does not seek out the correct location to
2556  * store a new object number; instead, it appends it to the list for simplicity.
2557  * Thus, any users must take care to only insert new object numbers in ascending
2558  * order.
2559  */
2560 static void
2561 objlist_insert(struct objlist *list, uint64_t object)
2562 {
2563 	struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2564 	node->object = object;
2565 #ifdef ZFS_DEBUG
2566 	struct receive_objnode *last_object = list_tail(&list->list);
2567 	uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2568 	ASSERT3U(node->object, >, last_objnum);
2569 #endif
2570 	list_insert_tail(&list->list, node);
2571 }
2572 
2573 /*
2574  * Issue the prefetch reads for any necessary indirect blocks.
2575  *
2576  * We use the object ignore list to tell us whether or not to issue prefetches
2577  * for a given object.  We do this for both correctness (in case the blocksize
2578  * of an object has changed) and performance (if the object doesn't exist, don't
2579  * needlessly try to issue prefetches).  We also trim the list as we go through
2580  * the stream to prevent it from growing to an unbounded size.
2581  *
2582  * The object numbers within will always be in sorted order, and any write
2583  * records we see will also be in sorted order, but they're not sorted with
2584  * respect to each other (i.e. we can get several object records before
2585  * receiving each object's write records).  As a result, once we've reached a
2586  * given object number, we can safely remove any reference to lower object
2587  * numbers in the ignore list. In practice, we receive up to 32 object records
2588  * before receiving write records, so the list can have up to 32 nodes in it.
2589  */
2590 /* ARGSUSED */
2591 static void
2592 receive_read_prefetch(struct receive_arg *ra,
2593     uint64_t object, uint64_t offset, uint64_t length)
2594 {
2595 	if (!objlist_exists(&ra->ignore_objlist, object)) {
2596 		dmu_prefetch(ra->os, object, 1, offset, length,
2597 		    ZIO_PRIORITY_SYNC_READ);
2598 	}
2599 }
2600 
2601 /*
2602  * Read records off the stream, issuing any necessary prefetches.
2603  */
2604 static int
2605 receive_read_record(struct receive_arg *ra)
2606 {
2607 	int err;
2608 
2609 	switch (ra->rrd->header.drr_type) {
2610 	case DRR_OBJECT:
2611 	{
2612 		struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2613 		uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2614 		void *buf = kmem_zalloc(size, KM_SLEEP);
2615 		dmu_object_info_t doi;
2616 		err = receive_read_payload_and_next_header(ra, size, buf);
2617 		if (err != 0) {
2618 			kmem_free(buf, size);
2619 			return (err);
2620 		}
2621 		err = dmu_object_info(ra->os, drro->drr_object, &doi);
2622 		/*
2623 		 * See receive_read_prefetch for an explanation why we're
2624 		 * storing this object in the ignore_obj_list.
2625 		 */
2626 		if (err == ENOENT ||
2627 		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2628 			objlist_insert(&ra->ignore_objlist, drro->drr_object);
2629 			err = 0;
2630 		}
2631 		return (err);
2632 	}
2633 	case DRR_FREEOBJECTS:
2634 	{
2635 		err = receive_read_payload_and_next_header(ra, 0, NULL);
2636 		return (err);
2637 	}
2638 	case DRR_WRITE:
2639 	{
2640 		struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2641 		arc_buf_t *abuf;
2642 		boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
2643 		if (DRR_WRITE_COMPRESSED(drrw)) {
2644 			ASSERT3U(drrw->drr_compressed_size, >, 0);
2645 			ASSERT3U(drrw->drr_logical_size, >=,
2646 			    drrw->drr_compressed_size);
2647 			ASSERT(!is_meta);
2648 			abuf = arc_loan_compressed_buf(
2649 			    dmu_objset_spa(ra->os),
2650 			    drrw->drr_compressed_size, drrw->drr_logical_size,
2651 			    drrw->drr_compressiontype);
2652 		} else {
2653 			abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2654 			    is_meta, drrw->drr_logical_size);
2655 		}
2656 
2657 		err = receive_read_payload_and_next_header(ra,
2658 		    DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
2659 		if (err != 0) {
2660 			dmu_return_arcbuf(abuf);
2661 			return (err);
2662 		}
2663 		ra->rrd->write_buf = abuf;
2664 		receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2665 		    drrw->drr_logical_size);
2666 		return (err);
2667 	}
2668 	case DRR_WRITE_BYREF:
2669 	{
2670 		struct drr_write_byref *drrwb =
2671 		    &ra->rrd->header.drr_u.drr_write_byref;
2672 		err = receive_read_payload_and_next_header(ra, 0, NULL);
2673 		receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2674 		    drrwb->drr_length);
2675 		return (err);
2676 	}
2677 	case DRR_WRITE_EMBEDDED:
2678 	{
2679 		struct drr_write_embedded *drrwe =
2680 		    &ra->rrd->header.drr_u.drr_write_embedded;
2681 		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2682 		void *buf = kmem_zalloc(size, KM_SLEEP);
2683 
2684 		err = receive_read_payload_and_next_header(ra, size, buf);
2685 		if (err != 0) {
2686 			kmem_free(buf, size);
2687 			return (err);
2688 		}
2689 
2690 		receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2691 		    drrwe->drr_length);
2692 		return (err);
2693 	}
2694 	case DRR_FREE:
2695 	{
2696 		/*
2697 		 * It might be beneficial to prefetch indirect blocks here, but
2698 		 * we don't really have the data to decide for sure.
2699 		 */
2700 		err = receive_read_payload_and_next_header(ra, 0, NULL);
2701 		return (err);
2702 	}
2703 	case DRR_END:
2704 	{
2705 		struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2706 		if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2707 			return (SET_ERROR(ECKSUM));
2708 		return (0);
2709 	}
2710 	case DRR_SPILL:
2711 	{
2712 		struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2713 		void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2714 		err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2715 		    buf);
2716 		if (err != 0)
2717 			kmem_free(buf, drrs->drr_length);
2718 		return (err);
2719 	}
2720 	default:
2721 		return (SET_ERROR(EINVAL));
2722 	}
2723 }
2724 
2725 /*
2726  * Commit the records to the pool.
2727  */
2728 static int
2729 receive_process_record(struct receive_writer_arg *rwa,
2730     struct receive_record_arg *rrd)
2731 {
2732 	int err;
2733 
2734 	/* Processing in order, therefore bytes_read should be increasing. */
2735 	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2736 	rwa->bytes_read = rrd->bytes_read;
2737 
2738 	switch (rrd->header.drr_type) {
2739 	case DRR_OBJECT:
2740 	{
2741 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2742 		err = receive_object(rwa, drro, rrd->payload);
2743 		kmem_free(rrd->payload, rrd->payload_size);
2744 		rrd->payload = NULL;
2745 		return (err);
2746 	}
2747 	case DRR_FREEOBJECTS:
2748 	{
2749 		struct drr_freeobjects *drrfo =
2750 		    &rrd->header.drr_u.drr_freeobjects;
2751 		return (receive_freeobjects(rwa, drrfo));
2752 	}
2753 	case DRR_WRITE:
2754 	{
2755 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2756 		err = receive_write(rwa, drrw, rrd->write_buf);
2757 		/* if receive_write() is successful, it consumes the arc_buf */
2758 		if (err != 0)
2759 			dmu_return_arcbuf(rrd->write_buf);
2760 		rrd->write_buf = NULL;
2761 		rrd->payload = NULL;
2762 		return (err);
2763 	}
2764 	case DRR_WRITE_BYREF:
2765 	{
2766 		struct drr_write_byref *drrwbr =
2767 		    &rrd->header.drr_u.drr_write_byref;
2768 		return (receive_write_byref(rwa, drrwbr));
2769 	}
2770 	case DRR_WRITE_EMBEDDED:
2771 	{
2772 		struct drr_write_embedded *drrwe =
2773 		    &rrd->header.drr_u.drr_write_embedded;
2774 		err = receive_write_embedded(rwa, drrwe, rrd->payload);
2775 		kmem_free(rrd->payload, rrd->payload_size);
2776 		rrd->payload = NULL;
2777 		return (err);
2778 	}
2779 	case DRR_FREE:
2780 	{
2781 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2782 		return (receive_free(rwa, drrf));
2783 	}
2784 	case DRR_SPILL:
2785 	{
2786 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2787 		err = receive_spill(rwa, drrs, rrd->payload);
2788 		kmem_free(rrd->payload, rrd->payload_size);
2789 		rrd->payload = NULL;
2790 		return (err);
2791 	}
2792 	default:
2793 		return (SET_ERROR(EINVAL));
2794 	}
2795 }
2796 
2797 /*
2798  * dmu_recv_stream's worker thread; pull records off the queue, and then call
2799  * receive_process_record  When we're done, signal the main thread and exit.
2800  */
2801 static void
2802 receive_writer_thread(void *arg)
2803 {
2804 	struct receive_writer_arg *rwa = arg;
2805 	struct receive_record_arg *rrd;
2806 	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2807 	    rrd = bqueue_dequeue(&rwa->q)) {
2808 		/*
2809 		 * If there's an error, the main thread will stop putting things
2810 		 * on the queue, but we need to clear everything in it before we
2811 		 * can exit.
2812 		 */
2813 		if (rwa->err == 0) {
2814 			rwa->err = receive_process_record(rwa, rrd);
2815 		} else if (rrd->write_buf != NULL) {
2816 			dmu_return_arcbuf(rrd->write_buf);
2817 			rrd->write_buf = NULL;
2818 			rrd->payload = NULL;
2819 		} else if (rrd->payload != NULL) {
2820 			kmem_free(rrd->payload, rrd->payload_size);
2821 			rrd->payload = NULL;
2822 		}
2823 		kmem_free(rrd, sizeof (*rrd));
2824 	}
2825 	kmem_free(rrd, sizeof (*rrd));
2826 	mutex_enter(&rwa->mutex);
2827 	rwa->done = B_TRUE;
2828 	cv_signal(&rwa->cv);
2829 	mutex_exit(&rwa->mutex);
2830 	thread_exit();
2831 }
2832 
2833 static int
2834 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2835 {
2836 	uint64_t val;
2837 	objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2838 	uint64_t dsobj = dmu_objset_id(ra->os);
2839 	uint64_t resume_obj, resume_off;
2840 
2841 	if (nvlist_lookup_uint64(begin_nvl,
2842 	    "resume_object", &resume_obj) != 0 ||
2843 	    nvlist_lookup_uint64(begin_nvl,
2844 	    "resume_offset", &resume_off) != 0) {
2845 		return (SET_ERROR(EINVAL));
2846 	}
2847 	VERIFY0(zap_lookup(mos, dsobj,
2848 	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2849 	if (resume_obj != val)
2850 		return (SET_ERROR(EINVAL));
2851 	VERIFY0(zap_lookup(mos, dsobj,
2852 	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2853 	if (resume_off != val)
2854 		return (SET_ERROR(EINVAL));
2855 
2856 	return (0);
2857 }
2858 
2859 /*
2860  * Read in the stream's records, one by one, and apply them to the pool.  There
2861  * are two threads involved; the thread that calls this function will spin up a
2862  * worker thread, read the records off the stream one by one, and issue
2863  * prefetches for any necessary indirect blocks.  It will then push the records
2864  * onto an internal blocking queue.  The worker thread will pull the records off
2865  * the queue, and actually write the data into the DMU.  This way, the worker
2866  * thread doesn't have to wait for reads to complete, since everything it needs
2867  * (the indirect blocks) will be prefetched.
2868  *
2869  * NB: callers *must* call dmu_recv_end() if this succeeds.
2870  */
2871 int
2872 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
2873     int cleanup_fd, uint64_t *action_handlep)
2874 {
2875 	int err = 0;
2876 	struct receive_arg ra = { 0 };
2877 	struct receive_writer_arg rwa = { 0 };
2878 	int featureflags;
2879 	nvlist_t *begin_nvl = NULL;
2880 
2881 	ra.byteswap = drc->drc_byteswap;
2882 	ra.cksum = drc->drc_cksum;
2883 	ra.vp = vp;
2884 	ra.voff = *voffp;
2885 
2886 	if (dsl_dataset_is_zapified(drc->drc_ds)) {
2887 		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2888 		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2889 		    sizeof (ra.bytes_read), 1, &ra.bytes_read);
2890 	}
2891 
2892 	objlist_create(&ra.ignore_objlist);
2893 
2894 	/* these were verified in dmu_recv_begin */
2895 	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2896 	    DMU_SUBSTREAM);
2897 	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2898 
2899 	/*
2900 	 * Open the objset we are modifying.
2901 	 */
2902 	VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2903 
2904 	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2905 
2906 	featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2907 
2908 	/* if this stream is dedup'ed, set up the avl tree for guid mapping */
2909 	if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2910 		minor_t minor;
2911 
2912 		if (cleanup_fd == -1) {
2913 			ra.err = SET_ERROR(EBADF);
2914 			goto out;
2915 		}
2916 		ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2917 		if (ra.err != 0) {
2918 			cleanup_fd = -1;
2919 			goto out;
2920 		}
2921 
2922 		if (*action_handlep == 0) {
2923 			rwa.guid_to_ds_map =
2924 			    kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2925 			avl_create(rwa.guid_to_ds_map, guid_compare,
2926 			    sizeof (guid_map_entry_t),
2927 			    offsetof(guid_map_entry_t, avlnode));
2928 			err = zfs_onexit_add_cb(minor,
2929 			    free_guid_map_onexit, rwa.guid_to_ds_map,
2930 			    action_handlep);
2931 			if (ra.err != 0)
2932 				goto out;
2933 		} else {
2934 			err = zfs_onexit_cb_data(minor, *action_handlep,
2935 			    (void **)&rwa.guid_to_ds_map);
2936 			if (ra.err != 0)
2937 				goto out;
2938 		}
2939 
2940 		drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2941 	}
2942 
2943 	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2944 	void *payload = NULL;
2945 	if (payloadlen != 0)
2946 		payload = kmem_alloc(payloadlen, KM_SLEEP);
2947 
2948 	err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2949 	if (err != 0) {
2950 		if (payloadlen != 0)
2951 			kmem_free(payload, payloadlen);
2952 		goto out;
2953 	}
2954 	if (payloadlen != 0) {
2955 		err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2956 		kmem_free(payload, payloadlen);
2957 		if (err != 0)
2958 			goto out;
2959 	}
2960 
2961 	if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2962 		err = resume_check(&ra, begin_nvl);
2963 		if (err != 0)
2964 			goto out;
2965 	}
2966 
2967 	(void) bqueue_init(&rwa.q, zfs_recv_queue_length,
2968 	    offsetof(struct receive_record_arg, node));
2969 	cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
2970 	mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
2971 	rwa.os = ra.os;
2972 	rwa.byteswap = drc->drc_byteswap;
2973 	rwa.resumable = drc->drc_resumable;
2974 
2975 	(void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc,
2976 	    TS_RUN, minclsyspri);
2977 	/*
2978 	 * We're reading rwa.err without locks, which is safe since we are the
2979 	 * only reader, and the worker thread is the only writer.  It's ok if we
2980 	 * miss a write for an iteration or two of the loop, since the writer
2981 	 * thread will keep freeing records we send it until we send it an eos
2982 	 * marker.
2983 	 *
2984 	 * We can leave this loop in 3 ways:  First, if rwa.err is
2985 	 * non-zero.  In that case, the writer thread will free the rrd we just
2986 	 * pushed.  Second, if  we're interrupted; in that case, either it's the
2987 	 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2988 	 * has been handed off to the writer thread who will free it.  Finally,
2989 	 * if receive_read_record fails or we're at the end of the stream, then
2990 	 * we free ra.rrd and exit.
2991 	 */
2992 	while (rwa.err == 0) {
2993 		if (issig(JUSTLOOKING) && issig(FORREAL)) {
2994 			err = SET_ERROR(EINTR);
2995 			break;
2996 		}
2997 
2998 		ASSERT3P(ra.rrd, ==, NULL);
2999 		ra.rrd = ra.next_rrd;
3000 		ra.next_rrd = NULL;
3001 		/* Allocates and loads header into ra.next_rrd */
3002 		err = receive_read_record(&ra);
3003 
3004 		if (ra.rrd->header.drr_type == DRR_END || err != 0) {
3005 			kmem_free(ra.rrd, sizeof (*ra.rrd));
3006 			ra.rrd = NULL;
3007 			break;
3008 		}
3009 
3010 		bqueue_enqueue(&rwa.q, ra.rrd,
3011 		    sizeof (struct receive_record_arg) + ra.rrd->payload_size);
3012 		ra.rrd = NULL;
3013 	}
3014 	if (ra.next_rrd == NULL)
3015 		ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP);
3016 	ra.next_rrd->eos_marker = B_TRUE;
3017 	bqueue_enqueue(&rwa.q, ra.next_rrd, 1);
3018 
3019 	mutex_enter(&rwa.mutex);
3020 	while (!rwa.done) {
3021 		cv_wait(&rwa.cv, &rwa.mutex);
3022 	}
3023 	mutex_exit(&rwa.mutex);
3024 
3025 	cv_destroy(&rwa.cv);
3026 	mutex_destroy(&rwa.mutex);
3027 	bqueue_destroy(&rwa.q);
3028 	if (err == 0)
3029 		err = rwa.err;
3030 
3031 out:
3032 	nvlist_free(begin_nvl);
3033 	if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
3034 		zfs_onexit_fd_rele(cleanup_fd);
3035 
3036 	if (err != 0) {
3037 		/*
3038 		 * Clean up references. If receive is not resumable,
3039 		 * destroy what we created, so we don't leave it in
3040 		 * the inconsistent state.
3041 		 */
3042 		dmu_recv_cleanup_ds(drc);
3043 	}
3044 
3045 	*voffp = ra.voff;
3046 	objlist_destroy(&ra.ignore_objlist);
3047 	return (err);
3048 }
3049 
3050 static int
3051 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3052 {
3053 	dmu_recv_cookie_t *drc = arg;
3054 	dsl_pool_t *dp = dmu_tx_pool(tx);
3055 	int error;
3056 
3057 	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3058 
3059 	if (!drc->drc_newfs) {
3060 		dsl_dataset_t *origin_head;
3061 
3062 		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3063 		if (error != 0)
3064 			return (error);
3065 		if (drc->drc_force) {
3066 			/*
3067 			 * We will destroy any snapshots in tofs (i.e. before
3068 			 * origin_head) that are after the origin (which is
3069 			 * the snap before drc_ds, because drc_ds can not
3070 			 * have any snaps of its own).
3071 			 */
3072 			uint64_t obj;
3073 
3074 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3075 			while (obj !=
3076 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3077 				dsl_dataset_t *snap;
3078 				error = dsl_dataset_hold_obj(dp, obj, FTAG,
3079 				    &snap);
3080 				if (error != 0)
3081 					break;
3082 				if (snap->ds_dir != origin_head->ds_dir)
3083 					error = SET_ERROR(EINVAL);
3084 				if (error == 0)  {
3085 					error = dsl_destroy_snapshot_check_impl(
3086 					    snap, B_FALSE);
3087 				}
3088 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3089 				dsl_dataset_rele(snap, FTAG);
3090 				if (error != 0)
3091 					break;
3092 			}
3093 			if (error != 0) {
3094 				dsl_dataset_rele(origin_head, FTAG);
3095 				return (error);
3096 			}
3097 		}
3098 		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3099 		    origin_head, drc->drc_force, drc->drc_owner, tx);
3100 		if (error != 0) {
3101 			dsl_dataset_rele(origin_head, FTAG);
3102 			return (error);
3103 		}
3104 		error = dsl_dataset_snapshot_check_impl(origin_head,
3105 		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3106 		dsl_dataset_rele(origin_head, FTAG);
3107 		if (error != 0)
3108 			return (error);
3109 
3110 		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3111 	} else {
3112 		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3113 		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3114 	}
3115 	return (error);
3116 }
3117 
3118 static void
3119 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3120 {
3121 	dmu_recv_cookie_t *drc = arg;
3122 	dsl_pool_t *dp = dmu_tx_pool(tx);
3123 
3124 	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3125 	    tx, "snap=%s", drc->drc_tosnap);
3126 
3127 	if (!drc->drc_newfs) {
3128 		dsl_dataset_t *origin_head;
3129 
3130 		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3131 		    &origin_head));
3132 
3133 		if (drc->drc_force) {
3134 			/*
3135 			 * Destroy any snapshots of drc_tofs (origin_head)
3136 			 * after the origin (the snap before drc_ds).
3137 			 */
3138 			uint64_t obj;
3139 
3140 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3141 			while (obj !=
3142 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3143 				dsl_dataset_t *snap;
3144 				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3145 				    &snap));
3146 				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3147 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3148 				dsl_destroy_snapshot_sync_impl(snap,
3149 				    B_FALSE, tx);
3150 				dsl_dataset_rele(snap, FTAG);
3151 			}
3152 		}
3153 		VERIFY3P(drc->drc_ds->ds_prev, ==,
3154 		    origin_head->ds_prev);
3155 
3156 		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3157 		    origin_head, tx);
3158 		dsl_dataset_snapshot_sync_impl(origin_head,
3159 		    drc->drc_tosnap, tx);
3160 
3161 		/* set snapshot's creation time and guid */
3162 		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3163 		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3164 		    drc->drc_drrb->drr_creation_time;
3165 		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3166 		    drc->drc_drrb->drr_toguid;
3167 		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3168 		    ~DS_FLAG_INCONSISTENT;
3169 
3170 		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3171 		dsl_dataset_phys(origin_head)->ds_flags &=
3172 		    ~DS_FLAG_INCONSISTENT;
3173 
3174 		drc->drc_newsnapobj =
3175 		    dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3176 
3177 		dsl_dataset_rele(origin_head, FTAG);
3178 		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3179 
3180 		if (drc->drc_owner != NULL)
3181 			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3182 	} else {
3183 		dsl_dataset_t *ds = drc->drc_ds;
3184 
3185 		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3186 
3187 		/* set snapshot's creation time and guid */
3188 		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3189 		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3190 		    drc->drc_drrb->drr_creation_time;
3191 		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3192 		    drc->drc_drrb->drr_toguid;
3193 		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3194 		    ~DS_FLAG_INCONSISTENT;
3195 
3196 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3197 		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3198 		if (dsl_dataset_has_resume_receive_state(ds)) {
3199 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3200 			    DS_FIELD_RESUME_FROMGUID, tx);
3201 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3202 			    DS_FIELD_RESUME_OBJECT, tx);
3203 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3204 			    DS_FIELD_RESUME_OFFSET, tx);
3205 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3206 			    DS_FIELD_RESUME_BYTES, tx);
3207 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3208 			    DS_FIELD_RESUME_TOGUID, tx);
3209 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3210 			    DS_FIELD_RESUME_TONAME, tx);
3211 		}
3212 		drc->drc_newsnapobj =
3213 		    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3214 	}
3215 	/*
3216 	 * Release the hold from dmu_recv_begin.  This must be done before
3217 	 * we return to open context, so that when we free the dataset's dnode,
3218 	 * we can evict its bonus buffer.
3219 	 */
3220 	dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3221 	drc->drc_ds = NULL;
3222 }
3223 
3224 static int
3225 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3226 {
3227 	dsl_pool_t *dp;
3228 	dsl_dataset_t *snapds;
3229 	guid_map_entry_t *gmep;
3230 	int err;
3231 
3232 	ASSERT(guid_map != NULL);
3233 
3234 	err = dsl_pool_hold(name, FTAG, &dp);
3235 	if (err != 0)
3236 		return (err);
3237 	gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3238 	err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3239 	if (err == 0) {
3240 		gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3241 		gmep->gme_ds = snapds;
3242 		avl_add(guid_map, gmep);
3243 		dsl_dataset_long_hold(snapds, gmep);
3244 	} else {
3245 		kmem_free(gmep, sizeof (*gmep));
3246 	}
3247 
3248 	dsl_pool_rele(dp, FTAG);
3249 	return (err);
3250 }
3251 
3252 static int dmu_recv_end_modified_blocks = 3;
3253 
3254 static int
3255 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3256 {
3257 #ifdef _KERNEL
3258 	/*
3259 	 * We will be destroying the ds; make sure its origin is unmounted if
3260 	 * necessary.
3261 	 */
3262 	char name[ZFS_MAX_DATASET_NAME_LEN];
3263 	dsl_dataset_name(drc->drc_ds, name);
3264 	zfs_destroy_unmount_origin(name);
3265 #endif
3266 
3267 	return (dsl_sync_task(drc->drc_tofs,
3268 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3269 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3270 }
3271 
3272 static int
3273 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3274 {
3275 	return (dsl_sync_task(drc->drc_tofs,
3276 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3277 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3278 }
3279 
3280 int
3281 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3282 {
3283 	int error;
3284 
3285 	drc->drc_owner = owner;
3286 
3287 	if (drc->drc_newfs)
3288 		error = dmu_recv_new_end(drc);
3289 	else
3290 		error = dmu_recv_existing_end(drc);
3291 
3292 	if (error != 0) {
3293 		dmu_recv_cleanup_ds(drc);
3294 	} else if (drc->drc_guid_to_ds_map != NULL) {
3295 		(void) add_ds_to_guidmap(drc->drc_tofs,
3296 		    drc->drc_guid_to_ds_map,
3297 		    drc->drc_newsnapobj);
3298 	}
3299 	return (error);
3300 }
3301 
3302 /*
3303  * Return TRUE if this objset is currently being received into.
3304  */
3305 boolean_t
3306 dmu_objset_is_receiving(objset_t *os)
3307 {
3308 	return (os->os_dsl_dataset != NULL &&
3309 	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3310 }
3311