1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dbuf.h> 35 #include <sys/dnode.h> 36 #include <sys/zfs_context.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dmu_traverse.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/zfs_ioctl.h> 45 #include <sys/zap.h> 46 #include <sys/zio_checksum.h> 47 #include <sys/zfs_znode.h> 48 #include <zfs_fletcher.h> 49 #include <sys/avl.h> 50 #include <sys/ddt.h> 51 #include <sys/zfs_onexit.h> 52 #include <sys/dmu_send.h> 53 #include <sys/dsl_destroy.h> 54 #include <sys/blkptr.h> 55 #include <sys/dsl_bookmark.h> 56 #include <sys/zfeature.h> 57 #include <sys/bqueue.h> 58 59 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 60 int zfs_send_corrupt_data = B_FALSE; 61 int zfs_send_queue_length = 16 * 1024 * 1024; 62 int zfs_recv_queue_length = 16 * 1024 * 1024; 63 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */ 64 int zfs_send_set_freerecords_bit = B_TRUE; 65 66 static char *dmu_recv_tag = "dmu_recv_tag"; 67 const char *recv_clone_name = "%recv"; 68 69 #define BP_SPAN(datablkszsec, indblkshift, level) \ 70 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 71 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 72 73 static void byteswap_record(dmu_replay_record_t *drr); 74 75 struct send_thread_arg { 76 bqueue_t q; 77 dsl_dataset_t *ds; /* Dataset to traverse */ 78 uint64_t fromtxg; /* Traverse from this txg */ 79 int flags; /* flags to pass to traverse_dataset */ 80 int error_code; 81 boolean_t cancel; 82 zbookmark_phys_t resume; 83 }; 84 85 struct send_block_record { 86 boolean_t eos_marker; /* Marks the end of the stream */ 87 blkptr_t bp; 88 zbookmark_phys_t zb; 89 uint8_t indblkshift; 90 uint16_t datablkszsec; 91 bqueue_node_t ln; 92 }; 93 94 static int 95 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 96 { 97 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); 98 ssize_t resid; /* have to get resid to get detailed errno */ 99 100 /* 101 * The code does not rely on this (len being a multiple of 8). We keep 102 * this assertion because of the corresponding assertion in 103 * receive_read(). Keeping this assertion ensures that we do not 104 * inadvertently break backwards compatibility (causing the assertion 105 * in receive_read() to trigger on old software). 106 * 107 * Removing the assertions could be rolled into a new feature that uses 108 * data that isn't 8-byte aligned; if the assertions were removed, a 109 * feature flag would have to be added. 110 */ 111 112 ASSERT0(len % 8); 113 114 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 115 (caddr_t)buf, len, 116 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 117 118 mutex_enter(&ds->ds_sendstream_lock); 119 *dsp->dsa_off += len; 120 mutex_exit(&ds->ds_sendstream_lock); 121 122 return (dsp->dsa_err); 123 } 124 125 /* 126 * For all record types except BEGIN, fill in the checksum (overlaid in 127 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 128 * up to the start of the checksum itself. 129 */ 130 static int 131 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 132 { 133 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 134 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 135 fletcher_4_incremental_native(dsp->dsa_drr, 136 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 137 &dsp->dsa_zc); 138 if (dsp->dsa_drr->drr_type == DRR_BEGIN) { 139 dsp->dsa_sent_begin = B_TRUE; 140 } else { 141 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 142 drr_checksum.drr_checksum)); 143 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 144 } 145 if (dsp->dsa_drr->drr_type == DRR_END) { 146 dsp->dsa_sent_end = B_TRUE; 147 } 148 fletcher_4_incremental_native(&dsp->dsa_drr-> 149 drr_u.drr_checksum.drr_checksum, 150 sizeof (zio_cksum_t), &dsp->dsa_zc); 151 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 152 return (SET_ERROR(EINTR)); 153 if (payload_len != 0) { 154 fletcher_4_incremental_native(payload, payload_len, 155 &dsp->dsa_zc); 156 if (dump_bytes(dsp, payload, payload_len) != 0) 157 return (SET_ERROR(EINTR)); 158 } 159 return (0); 160 } 161 162 /* 163 * Fill in the drr_free struct, or perform aggregation if the previous record is 164 * also a free record, and the two are adjacent. 165 * 166 * Note that we send free records even for a full send, because we want to be 167 * able to receive a full send as a clone, which requires a list of all the free 168 * and freeobject records that were generated on the source. 169 */ 170 static int 171 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 172 uint64_t length) 173 { 174 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 175 176 /* 177 * When we receive a free record, dbuf_free_range() assumes 178 * that the receiving system doesn't have any dbufs in the range 179 * being freed. This is always true because there is a one-record 180 * constraint: we only send one WRITE record for any given 181 * object,offset. We know that the one-record constraint is 182 * true because we always send data in increasing order by 183 * object,offset. 184 * 185 * If the increasing-order constraint ever changes, we should find 186 * another way to assert that the one-record constraint is still 187 * satisfied. 188 */ 189 ASSERT(object > dsp->dsa_last_data_object || 190 (object == dsp->dsa_last_data_object && 191 offset > dsp->dsa_last_data_offset)); 192 193 if (length != -1ULL && offset + length < offset) 194 length = -1ULL; 195 196 /* 197 * If there is a pending op, but it's not PENDING_FREE, push it out, 198 * since free block aggregation can only be done for blocks of the 199 * same type (i.e., DRR_FREE records can only be aggregated with 200 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 201 * aggregated with other DRR_FREEOBJECTS records. 202 */ 203 if (dsp->dsa_pending_op != PENDING_NONE && 204 dsp->dsa_pending_op != PENDING_FREE) { 205 if (dump_record(dsp, NULL, 0) != 0) 206 return (SET_ERROR(EINTR)); 207 dsp->dsa_pending_op = PENDING_NONE; 208 } 209 210 if (dsp->dsa_pending_op == PENDING_FREE) { 211 /* 212 * There should never be a PENDING_FREE if length is -1 213 * (because dump_dnode is the only place where this 214 * function is called with a -1, and only after flushing 215 * any pending record). 216 */ 217 ASSERT(length != -1ULL); 218 /* 219 * Check to see whether this free block can be aggregated 220 * with pending one. 221 */ 222 if (drrf->drr_object == object && drrf->drr_offset + 223 drrf->drr_length == offset) { 224 drrf->drr_length += length; 225 return (0); 226 } else { 227 /* not a continuation. Push out pending record */ 228 if (dump_record(dsp, NULL, 0) != 0) 229 return (SET_ERROR(EINTR)); 230 dsp->dsa_pending_op = PENDING_NONE; 231 } 232 } 233 /* create a FREE record and make it pending */ 234 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 235 dsp->dsa_drr->drr_type = DRR_FREE; 236 drrf->drr_object = object; 237 drrf->drr_offset = offset; 238 drrf->drr_length = length; 239 drrf->drr_toguid = dsp->dsa_toguid; 240 if (length == -1ULL) { 241 if (dump_record(dsp, NULL, 0) != 0) 242 return (SET_ERROR(EINTR)); 243 } else { 244 dsp->dsa_pending_op = PENDING_FREE; 245 } 246 247 return (0); 248 } 249 250 static int 251 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 252 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) 253 { 254 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 255 256 /* 257 * We send data in increasing object, offset order. 258 * See comment in dump_free() for details. 259 */ 260 ASSERT(object > dsp->dsa_last_data_object || 261 (object == dsp->dsa_last_data_object && 262 offset > dsp->dsa_last_data_offset)); 263 dsp->dsa_last_data_object = object; 264 dsp->dsa_last_data_offset = offset + blksz - 1; 265 266 /* 267 * If there is any kind of pending aggregation (currently either 268 * a grouping of free objects or free blocks), push it out to 269 * the stream, since aggregation can't be done across operations 270 * of different types. 271 */ 272 if (dsp->dsa_pending_op != PENDING_NONE) { 273 if (dump_record(dsp, NULL, 0) != 0) 274 return (SET_ERROR(EINTR)); 275 dsp->dsa_pending_op = PENDING_NONE; 276 } 277 /* write a WRITE record */ 278 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 279 dsp->dsa_drr->drr_type = DRR_WRITE; 280 drrw->drr_object = object; 281 drrw->drr_type = type; 282 drrw->drr_offset = offset; 283 drrw->drr_length = blksz; 284 drrw->drr_toguid = dsp->dsa_toguid; 285 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 286 /* 287 * There's no pre-computed checksum for partial-block 288 * writes or embedded BP's, so (like 289 * fletcher4-checkummed blocks) userland will have to 290 * compute a dedup-capable checksum itself. 291 */ 292 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 293 } else { 294 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 295 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 296 ZCHECKSUM_FLAG_DEDUP) 297 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 298 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 299 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 300 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 301 drrw->drr_key.ddk_cksum = bp->blk_cksum; 302 } 303 304 if (dump_record(dsp, data, blksz) != 0) 305 return (SET_ERROR(EINTR)); 306 return (0); 307 } 308 309 static int 310 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 311 int blksz, const blkptr_t *bp) 312 { 313 char buf[BPE_PAYLOAD_SIZE]; 314 struct drr_write_embedded *drrw = 315 &(dsp->dsa_drr->drr_u.drr_write_embedded); 316 317 if (dsp->dsa_pending_op != PENDING_NONE) { 318 if (dump_record(dsp, NULL, 0) != 0) 319 return (EINTR); 320 dsp->dsa_pending_op = PENDING_NONE; 321 } 322 323 ASSERT(BP_IS_EMBEDDED(bp)); 324 325 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 326 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 327 drrw->drr_object = object; 328 drrw->drr_offset = offset; 329 drrw->drr_length = blksz; 330 drrw->drr_toguid = dsp->dsa_toguid; 331 drrw->drr_compression = BP_GET_COMPRESS(bp); 332 drrw->drr_etype = BPE_GET_ETYPE(bp); 333 drrw->drr_lsize = BPE_GET_LSIZE(bp); 334 drrw->drr_psize = BPE_GET_PSIZE(bp); 335 336 decode_embedded_bp_compressed(bp, buf); 337 338 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 339 return (EINTR); 340 return (0); 341 } 342 343 static int 344 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 345 { 346 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 347 348 if (dsp->dsa_pending_op != PENDING_NONE) { 349 if (dump_record(dsp, NULL, 0) != 0) 350 return (SET_ERROR(EINTR)); 351 dsp->dsa_pending_op = PENDING_NONE; 352 } 353 354 /* write a SPILL record */ 355 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 356 dsp->dsa_drr->drr_type = DRR_SPILL; 357 drrs->drr_object = object; 358 drrs->drr_length = blksz; 359 drrs->drr_toguid = dsp->dsa_toguid; 360 361 if (dump_record(dsp, data, blksz) != 0) 362 return (SET_ERROR(EINTR)); 363 return (0); 364 } 365 366 static int 367 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 368 { 369 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 370 371 /* 372 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 373 * push it out, since free block aggregation can only be done for 374 * blocks of the same type (i.e., DRR_FREE records can only be 375 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 376 * can only be aggregated with other DRR_FREEOBJECTS records. 377 */ 378 if (dsp->dsa_pending_op != PENDING_NONE && 379 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 380 if (dump_record(dsp, NULL, 0) != 0) 381 return (SET_ERROR(EINTR)); 382 dsp->dsa_pending_op = PENDING_NONE; 383 } 384 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 385 /* 386 * See whether this free object array can be aggregated 387 * with pending one 388 */ 389 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 390 drrfo->drr_numobjs += numobjs; 391 return (0); 392 } else { 393 /* can't be aggregated. Push out pending record */ 394 if (dump_record(dsp, NULL, 0) != 0) 395 return (SET_ERROR(EINTR)); 396 dsp->dsa_pending_op = PENDING_NONE; 397 } 398 } 399 400 /* write a FREEOBJECTS record */ 401 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 402 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 403 drrfo->drr_firstobj = firstobj; 404 drrfo->drr_numobjs = numobjs; 405 drrfo->drr_toguid = dsp->dsa_toguid; 406 407 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 408 409 return (0); 410 } 411 412 static int 413 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 414 { 415 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 416 417 if (object < dsp->dsa_resume_object) { 418 /* 419 * Note: when resuming, we will visit all the dnodes in 420 * the block of dnodes that we are resuming from. In 421 * this case it's unnecessary to send the dnodes prior to 422 * the one we are resuming from. We should be at most one 423 * block's worth of dnodes behind the resume point. 424 */ 425 ASSERT3U(dsp->dsa_resume_object - object, <, 426 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 427 return (0); 428 } 429 430 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 431 return (dump_freeobjects(dsp, object, 1)); 432 433 if (dsp->dsa_pending_op != PENDING_NONE) { 434 if (dump_record(dsp, NULL, 0) != 0) 435 return (SET_ERROR(EINTR)); 436 dsp->dsa_pending_op = PENDING_NONE; 437 } 438 439 /* write an OBJECT record */ 440 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 441 dsp->dsa_drr->drr_type = DRR_OBJECT; 442 drro->drr_object = object; 443 drro->drr_type = dnp->dn_type; 444 drro->drr_bonustype = dnp->dn_bonustype; 445 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 446 drro->drr_bonuslen = dnp->dn_bonuslen; 447 drro->drr_checksumtype = dnp->dn_checksum; 448 drro->drr_compress = dnp->dn_compress; 449 drro->drr_toguid = dsp->dsa_toguid; 450 451 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 452 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 453 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 454 455 if (dump_record(dsp, DN_BONUS(dnp), 456 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 457 return (SET_ERROR(EINTR)); 458 } 459 460 /* Free anything past the end of the file. */ 461 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 462 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 463 return (SET_ERROR(EINTR)); 464 if (dsp->dsa_err != 0) 465 return (SET_ERROR(EINTR)); 466 return (0); 467 } 468 469 static boolean_t 470 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 471 { 472 if (!BP_IS_EMBEDDED(bp)) 473 return (B_FALSE); 474 475 /* 476 * Compression function must be legacy, or explicitly enabled. 477 */ 478 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 479 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) 480 return (B_FALSE); 481 482 /* 483 * Embed type must be explicitly enabled. 484 */ 485 switch (BPE_GET_ETYPE(bp)) { 486 case BP_EMBEDDED_TYPE_DATA: 487 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 488 return (B_TRUE); 489 break; 490 default: 491 return (B_FALSE); 492 } 493 return (B_FALSE); 494 } 495 496 /* 497 * This is the callback function to traverse_dataset that acts as the worker 498 * thread for dmu_send_impl. 499 */ 500 /*ARGSUSED*/ 501 static int 502 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 503 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 504 { 505 struct send_thread_arg *sta = arg; 506 struct send_block_record *record; 507 uint64_t record_size; 508 int err = 0; 509 510 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 511 zb->zb_object >= sta->resume.zb_object); 512 513 if (sta->cancel) 514 return (SET_ERROR(EINTR)); 515 516 if (bp == NULL) { 517 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 518 return (0); 519 } else if (zb->zb_level < 0) { 520 return (0); 521 } 522 523 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 524 record->eos_marker = B_FALSE; 525 record->bp = *bp; 526 record->zb = *zb; 527 record->indblkshift = dnp->dn_indblkshift; 528 record->datablkszsec = dnp->dn_datablkszsec; 529 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 530 bqueue_enqueue(&sta->q, record, record_size); 531 532 return (err); 533 } 534 535 /* 536 * This function kicks off the traverse_dataset. It also handles setting the 537 * error code of the thread in case something goes wrong, and pushes the End of 538 * Stream record when the traverse_dataset call has finished. If there is no 539 * dataset to traverse, the thread immediately pushes End of Stream marker. 540 */ 541 static void 542 send_traverse_thread(void *arg) 543 { 544 struct send_thread_arg *st_arg = arg; 545 int err; 546 struct send_block_record *data; 547 548 if (st_arg->ds != NULL) { 549 err = traverse_dataset_resume(st_arg->ds, 550 st_arg->fromtxg, &st_arg->resume, 551 st_arg->flags, send_cb, st_arg); 552 553 if (err != EINTR) 554 st_arg->error_code = err; 555 } 556 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 557 data->eos_marker = B_TRUE; 558 bqueue_enqueue(&st_arg->q, data, 1); 559 } 560 561 /* 562 * This function actually handles figuring out what kind of record needs to be 563 * dumped, reading the data (which has hopefully been prefetched), and calling 564 * the appropriate helper function. 565 */ 566 static int 567 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 568 { 569 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 570 const blkptr_t *bp = &data->bp; 571 const zbookmark_phys_t *zb = &data->zb; 572 uint8_t indblkshift = data->indblkshift; 573 uint16_t dblkszsec = data->datablkszsec; 574 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 575 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 576 int err = 0; 577 578 ASSERT3U(zb->zb_level, >=, 0); 579 580 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 581 zb->zb_object >= dsa->dsa_resume_object); 582 583 if (zb->zb_object != DMU_META_DNODE_OBJECT && 584 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 585 return (0); 586 } else if (BP_IS_HOLE(bp) && 587 zb->zb_object == DMU_META_DNODE_OBJECT) { 588 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 589 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 590 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 591 } else if (BP_IS_HOLE(bp)) { 592 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 593 uint64_t offset = zb->zb_blkid * span; 594 err = dump_free(dsa, zb->zb_object, offset, span); 595 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 596 return (0); 597 } else if (type == DMU_OT_DNODE) { 598 int blksz = BP_GET_LSIZE(bp); 599 arc_flags_t aflags = ARC_FLAG_WAIT; 600 arc_buf_t *abuf; 601 602 ASSERT0(zb->zb_level); 603 604 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 605 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 606 &aflags, zb) != 0) 607 return (SET_ERROR(EIO)); 608 609 dnode_phys_t *blk = abuf->b_data; 610 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 611 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 612 err = dump_dnode(dsa, dnobj + i, blk + i); 613 if (err != 0) 614 break; 615 } 616 arc_buf_destroy(abuf, &abuf); 617 } else if (type == DMU_OT_SA) { 618 arc_flags_t aflags = ARC_FLAG_WAIT; 619 arc_buf_t *abuf; 620 int blksz = BP_GET_LSIZE(bp); 621 622 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 623 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 624 &aflags, zb) != 0) 625 return (SET_ERROR(EIO)); 626 627 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 628 arc_buf_destroy(abuf, &abuf); 629 } else if (backup_do_embed(dsa, bp)) { 630 /* it's an embedded level-0 block of a regular object */ 631 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 632 ASSERT0(zb->zb_level); 633 err = dump_write_embedded(dsa, zb->zb_object, 634 zb->zb_blkid * blksz, blksz, bp); 635 } else { 636 /* it's a level-0 block of a regular object */ 637 arc_flags_t aflags = ARC_FLAG_WAIT; 638 arc_buf_t *abuf; 639 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 640 uint64_t offset; 641 642 ASSERT0(zb->zb_level); 643 ASSERT(zb->zb_object > dsa->dsa_resume_object || 644 (zb->zb_object == dsa->dsa_resume_object && 645 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 646 647 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 648 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 649 &aflags, zb) != 0) { 650 if (zfs_send_corrupt_data) { 651 /* Send a block filled with 0x"zfs badd bloc" */ 652 abuf = arc_alloc_buf(spa, blksz, &abuf, 653 ARC_BUFC_DATA); 654 uint64_t *ptr; 655 for (ptr = abuf->b_data; 656 (char *)ptr < (char *)abuf->b_data + blksz; 657 ptr++) 658 *ptr = 0x2f5baddb10cULL; 659 } else { 660 return (SET_ERROR(EIO)); 661 } 662 } 663 664 offset = zb->zb_blkid * blksz; 665 666 if (!(dsa->dsa_featureflags & 667 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 668 blksz > SPA_OLD_MAXBLOCKSIZE) { 669 char *buf = abuf->b_data; 670 while (blksz > 0 && err == 0) { 671 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 672 err = dump_write(dsa, type, zb->zb_object, 673 offset, n, NULL, buf); 674 offset += n; 675 buf += n; 676 blksz -= n; 677 } 678 } else { 679 err = dump_write(dsa, type, zb->zb_object, 680 offset, blksz, bp, abuf->b_data); 681 } 682 arc_buf_destroy(abuf, &abuf); 683 } 684 685 ASSERT(err == 0 || err == EINTR); 686 return (err); 687 } 688 689 /* 690 * Pop the new data off the queue, and free the old data. 691 */ 692 static struct send_block_record * 693 get_next_record(bqueue_t *bq, struct send_block_record *data) 694 { 695 struct send_block_record *tmp = bqueue_dequeue(bq); 696 kmem_free(data, sizeof (*data)); 697 return (tmp); 698 } 699 700 /* 701 * Actually do the bulk of the work in a zfs send. 702 * 703 * Note: Releases dp using the specified tag. 704 */ 705 static int 706 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 707 zfs_bookmark_phys_t *ancestor_zb, 708 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd, 709 uint64_t resumeobj, uint64_t resumeoff, 710 vnode_t *vp, offset_t *off) 711 { 712 objset_t *os; 713 dmu_replay_record_t *drr; 714 dmu_sendarg_t *dsp; 715 int err; 716 uint64_t fromtxg = 0; 717 uint64_t featureflags = 0; 718 struct send_thread_arg to_arg = { 0 }; 719 720 err = dmu_objset_from_ds(to_ds, &os); 721 if (err != 0) { 722 dsl_pool_rele(dp, tag); 723 return (err); 724 } 725 726 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 727 drr->drr_type = DRR_BEGIN; 728 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 729 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 730 DMU_SUBSTREAM); 731 732 #ifdef _KERNEL 733 if (dmu_objset_type(os) == DMU_OST_ZFS) { 734 uint64_t version; 735 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 736 kmem_free(drr, sizeof (dmu_replay_record_t)); 737 dsl_pool_rele(dp, tag); 738 return (SET_ERROR(EINVAL)); 739 } 740 if (version >= ZPL_VERSION_SA) { 741 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 742 } 743 } 744 #endif 745 746 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 747 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 748 if (embedok && 749 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 750 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 751 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 752 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; 753 } 754 755 if (resumeobj != 0 || resumeoff != 0) { 756 featureflags |= DMU_BACKUP_FEATURE_RESUMING; 757 } 758 759 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 760 featureflags); 761 762 drr->drr_u.drr_begin.drr_creation_time = 763 dsl_dataset_phys(to_ds)->ds_creation_time; 764 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 765 if (is_clone) 766 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 767 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 768 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 769 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 770 if (zfs_send_set_freerecords_bit) 771 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS; 772 773 if (ancestor_zb != NULL) { 774 drr->drr_u.drr_begin.drr_fromguid = 775 ancestor_zb->zbm_guid; 776 fromtxg = ancestor_zb->zbm_creation_txg; 777 } 778 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 779 if (!to_ds->ds_is_snapshot) { 780 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 781 sizeof (drr->drr_u.drr_begin.drr_toname)); 782 } 783 784 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 785 786 dsp->dsa_drr = drr; 787 dsp->dsa_vp = vp; 788 dsp->dsa_outfd = outfd; 789 dsp->dsa_proc = curproc; 790 dsp->dsa_os = os; 791 dsp->dsa_off = off; 792 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 793 dsp->dsa_pending_op = PENDING_NONE; 794 dsp->dsa_featureflags = featureflags; 795 dsp->dsa_resume_object = resumeobj; 796 dsp->dsa_resume_offset = resumeoff; 797 798 mutex_enter(&to_ds->ds_sendstream_lock); 799 list_insert_head(&to_ds->ds_sendstreams, dsp); 800 mutex_exit(&to_ds->ds_sendstream_lock); 801 802 dsl_dataset_long_hold(to_ds, FTAG); 803 dsl_pool_rele(dp, tag); 804 805 void *payload = NULL; 806 size_t payload_len = 0; 807 if (resumeobj != 0 || resumeoff != 0) { 808 dmu_object_info_t to_doi; 809 err = dmu_object_info(os, resumeobj, &to_doi); 810 if (err != 0) 811 goto out; 812 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, 813 resumeoff / to_doi.doi_data_block_size); 814 815 nvlist_t *nvl = fnvlist_alloc(); 816 fnvlist_add_uint64(nvl, "resume_object", resumeobj); 817 fnvlist_add_uint64(nvl, "resume_offset", resumeoff); 818 payload = fnvlist_pack(nvl, &payload_len); 819 drr->drr_payloadlen = payload_len; 820 fnvlist_free(nvl); 821 } 822 823 err = dump_record(dsp, payload, payload_len); 824 fnvlist_pack_free(payload, payload_len); 825 if (err != 0) { 826 err = dsp->dsa_err; 827 goto out; 828 } 829 830 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 831 offsetof(struct send_block_record, ln)); 832 to_arg.error_code = 0; 833 to_arg.cancel = B_FALSE; 834 to_arg.ds = to_ds; 835 to_arg.fromtxg = fromtxg; 836 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 837 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 838 TS_RUN, minclsyspri); 839 840 struct send_block_record *to_data; 841 to_data = bqueue_dequeue(&to_arg.q); 842 843 while (!to_data->eos_marker && err == 0) { 844 err = do_dump(dsp, to_data); 845 to_data = get_next_record(&to_arg.q, to_data); 846 if (issig(JUSTLOOKING) && issig(FORREAL)) 847 err = EINTR; 848 } 849 850 if (err != 0) { 851 to_arg.cancel = B_TRUE; 852 while (!to_data->eos_marker) { 853 to_data = get_next_record(&to_arg.q, to_data); 854 } 855 } 856 kmem_free(to_data, sizeof (*to_data)); 857 858 bqueue_destroy(&to_arg.q); 859 860 if (err == 0 && to_arg.error_code != 0) 861 err = to_arg.error_code; 862 863 if (err != 0) 864 goto out; 865 866 if (dsp->dsa_pending_op != PENDING_NONE) 867 if (dump_record(dsp, NULL, 0) != 0) 868 err = SET_ERROR(EINTR); 869 870 if (err != 0) { 871 if (err == EINTR && dsp->dsa_err != 0) 872 err = dsp->dsa_err; 873 goto out; 874 } 875 876 bzero(drr, sizeof (dmu_replay_record_t)); 877 drr->drr_type = DRR_END; 878 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 879 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 880 881 if (dump_record(dsp, NULL, 0) != 0) 882 err = dsp->dsa_err; 883 884 out: 885 mutex_enter(&to_ds->ds_sendstream_lock); 886 list_remove(&to_ds->ds_sendstreams, dsp); 887 mutex_exit(&to_ds->ds_sendstream_lock); 888 889 VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end)); 890 891 kmem_free(drr, sizeof (dmu_replay_record_t)); 892 kmem_free(dsp, sizeof (dmu_sendarg_t)); 893 894 dsl_dataset_long_rele(to_ds, FTAG); 895 896 return (err); 897 } 898 899 int 900 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 901 boolean_t embedok, boolean_t large_block_ok, 902 int outfd, vnode_t *vp, offset_t *off) 903 { 904 dsl_pool_t *dp; 905 dsl_dataset_t *ds; 906 dsl_dataset_t *fromds = NULL; 907 int err; 908 909 err = dsl_pool_hold(pool, FTAG, &dp); 910 if (err != 0) 911 return (err); 912 913 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 914 if (err != 0) { 915 dsl_pool_rele(dp, FTAG); 916 return (err); 917 } 918 919 if (fromsnap != 0) { 920 zfs_bookmark_phys_t zb; 921 boolean_t is_clone; 922 923 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 924 if (err != 0) { 925 dsl_dataset_rele(ds, FTAG); 926 dsl_pool_rele(dp, FTAG); 927 return (err); 928 } 929 if (!dsl_dataset_is_before(ds, fromds, 0)) 930 err = SET_ERROR(EXDEV); 931 zb.zbm_creation_time = 932 dsl_dataset_phys(fromds)->ds_creation_time; 933 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 934 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 935 is_clone = (fromds->ds_dir != ds->ds_dir); 936 dsl_dataset_rele(fromds, FTAG); 937 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 938 embedok, large_block_ok, outfd, 0, 0, vp, off); 939 } else { 940 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 941 embedok, large_block_ok, outfd, 0, 0, vp, off); 942 } 943 dsl_dataset_rele(ds, FTAG); 944 return (err); 945 } 946 947 int 948 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 949 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff, 950 vnode_t *vp, offset_t *off) 951 { 952 dsl_pool_t *dp; 953 dsl_dataset_t *ds; 954 int err; 955 boolean_t owned = B_FALSE; 956 957 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 958 return (SET_ERROR(EINVAL)); 959 960 err = dsl_pool_hold(tosnap, FTAG, &dp); 961 if (err != 0) 962 return (err); 963 964 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 965 /* 966 * We are sending a filesystem or volume. Ensure 967 * that it doesn't change by owning the dataset. 968 */ 969 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 970 owned = B_TRUE; 971 } else { 972 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 973 } 974 if (err != 0) { 975 dsl_pool_rele(dp, FTAG); 976 return (err); 977 } 978 979 if (fromsnap != NULL) { 980 zfs_bookmark_phys_t zb; 981 boolean_t is_clone = B_FALSE; 982 int fsnamelen = strchr(tosnap, '@') - tosnap; 983 984 /* 985 * If the fromsnap is in a different filesystem, then 986 * mark the send stream as a clone. 987 */ 988 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 989 (fromsnap[fsnamelen] != '@' && 990 fromsnap[fsnamelen] != '#')) { 991 is_clone = B_TRUE; 992 } 993 994 if (strchr(fromsnap, '@')) { 995 dsl_dataset_t *fromds; 996 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 997 if (err == 0) { 998 if (!dsl_dataset_is_before(ds, fromds, 0)) 999 err = SET_ERROR(EXDEV); 1000 zb.zbm_creation_time = 1001 dsl_dataset_phys(fromds)->ds_creation_time; 1002 zb.zbm_creation_txg = 1003 dsl_dataset_phys(fromds)->ds_creation_txg; 1004 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 1005 is_clone = (ds->ds_dir != fromds->ds_dir); 1006 dsl_dataset_rele(fromds, FTAG); 1007 } 1008 } else { 1009 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 1010 } 1011 if (err != 0) { 1012 dsl_dataset_rele(ds, FTAG); 1013 dsl_pool_rele(dp, FTAG); 1014 return (err); 1015 } 1016 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 1017 embedok, large_block_ok, 1018 outfd, resumeobj, resumeoff, vp, off); 1019 } else { 1020 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1021 embedok, large_block_ok, 1022 outfd, resumeobj, resumeoff, vp, off); 1023 } 1024 if (owned) 1025 dsl_dataset_disown(ds, FTAG); 1026 else 1027 dsl_dataset_rele(ds, FTAG); 1028 return (err); 1029 } 1030 1031 static int 1032 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size, 1033 uint64_t *sizep) 1034 { 1035 int err; 1036 /* 1037 * Assume that space (both on-disk and in-stream) is dominated by 1038 * data. We will adjust for indirect blocks and the copies property, 1039 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 1040 */ 1041 1042 /* 1043 * Subtract out approximate space used by indirect blocks. 1044 * Assume most space is used by data blocks (non-indirect, non-dnode). 1045 * Assume all blocks are recordsize. Assume ditto blocks and 1046 * internal fragmentation counter out compression. 1047 * 1048 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 1049 * block, which we observe in practice. 1050 */ 1051 uint64_t recordsize; 1052 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); 1053 if (err != 0) 1054 return (err); 1055 size -= size / recordsize * sizeof (blkptr_t); 1056 1057 /* Add in the space for the record associated with each block. */ 1058 size += size / recordsize * sizeof (dmu_replay_record_t); 1059 1060 *sizep = size; 1061 1062 return (0); 1063 } 1064 1065 int 1066 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) 1067 { 1068 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1069 int err; 1070 uint64_t size; 1071 1072 ASSERT(dsl_pool_config_held(dp)); 1073 1074 /* tosnap must be a snapshot */ 1075 if (!ds->ds_is_snapshot) 1076 return (SET_ERROR(EINVAL)); 1077 1078 /* fromsnap, if provided, must be a snapshot */ 1079 if (fromds != NULL && !fromds->ds_is_snapshot) 1080 return (SET_ERROR(EINVAL)); 1081 1082 /* 1083 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1084 * or the origin's fs. 1085 */ 1086 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1087 return (SET_ERROR(EXDEV)); 1088 1089 /* Get uncompressed size estimate of changed data. */ 1090 if (fromds == NULL) { 1091 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1092 } else { 1093 uint64_t used, comp; 1094 err = dsl_dataset_space_written(fromds, ds, 1095 &used, &comp, &size); 1096 if (err != 0) 1097 return (err); 1098 } 1099 1100 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1101 return (err); 1102 } 1103 1104 /* 1105 * Simple callback used to traverse the blocks of a snapshot and sum their 1106 * uncompressed size 1107 */ 1108 /* ARGSUSED */ 1109 static int 1110 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1111 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1112 { 1113 uint64_t *spaceptr = arg; 1114 if (bp != NULL && !BP_IS_HOLE(bp)) { 1115 *spaceptr += BP_GET_UCSIZE(bp); 1116 } 1117 return (0); 1118 } 1119 1120 /* 1121 * Given a desination snapshot and a TXG, calculate the approximate size of a 1122 * send stream sent from that TXG. from_txg may be zero, indicating that the 1123 * whole snapshot will be sent. 1124 */ 1125 int 1126 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1127 uint64_t *sizep) 1128 { 1129 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1130 int err; 1131 uint64_t size = 0; 1132 1133 ASSERT(dsl_pool_config_held(dp)); 1134 1135 /* tosnap must be a snapshot */ 1136 if (!dsl_dataset_is_snapshot(ds)) 1137 return (SET_ERROR(EINVAL)); 1138 1139 /* verify that from_txg is before the provided snapshot was taken */ 1140 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1141 return (SET_ERROR(EXDEV)); 1142 } 1143 1144 /* 1145 * traverse the blocks of the snapshot with birth times after 1146 * from_txg, summing their uncompressed size 1147 */ 1148 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1149 dmu_calculate_send_traversal, &size); 1150 if (err) 1151 return (err); 1152 1153 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1154 return (err); 1155 } 1156 1157 typedef struct dmu_recv_begin_arg { 1158 const char *drba_origin; 1159 dmu_recv_cookie_t *drba_cookie; 1160 cred_t *drba_cred; 1161 uint64_t drba_snapobj; 1162 } dmu_recv_begin_arg_t; 1163 1164 static int 1165 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1166 uint64_t fromguid) 1167 { 1168 uint64_t val; 1169 int error; 1170 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1171 1172 /* temporary clone name must not exist */ 1173 error = zap_lookup(dp->dp_meta_objset, 1174 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1175 8, 1, &val); 1176 if (error != ENOENT) 1177 return (error == 0 ? EBUSY : error); 1178 1179 /* new snapshot name must not exist */ 1180 error = zap_lookup(dp->dp_meta_objset, 1181 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1182 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1183 if (error != ENOENT) 1184 return (error == 0 ? EEXIST : error); 1185 1186 /* 1187 * Check snapshot limit before receiving. We'll recheck again at the 1188 * end, but might as well abort before receiving if we're already over 1189 * the limit. 1190 * 1191 * Note that we do not check the file system limit with 1192 * dsl_dir_fscount_check because the temporary %clones don't count 1193 * against that limit. 1194 */ 1195 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1196 NULL, drba->drba_cred); 1197 if (error != 0) 1198 return (error); 1199 1200 if (fromguid != 0) { 1201 dsl_dataset_t *snap; 1202 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1203 1204 /* Find snapshot in this dir that matches fromguid. */ 1205 while (obj != 0) { 1206 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1207 &snap); 1208 if (error != 0) 1209 return (SET_ERROR(ENODEV)); 1210 if (snap->ds_dir != ds->ds_dir) { 1211 dsl_dataset_rele(snap, FTAG); 1212 return (SET_ERROR(ENODEV)); 1213 } 1214 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1215 break; 1216 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1217 dsl_dataset_rele(snap, FTAG); 1218 } 1219 if (obj == 0) 1220 return (SET_ERROR(ENODEV)); 1221 1222 if (drba->drba_cookie->drc_force) { 1223 drba->drba_snapobj = obj; 1224 } else { 1225 /* 1226 * If we are not forcing, there must be no 1227 * changes since fromsnap. 1228 */ 1229 if (dsl_dataset_modified_since_snap(ds, snap)) { 1230 dsl_dataset_rele(snap, FTAG); 1231 return (SET_ERROR(ETXTBSY)); 1232 } 1233 drba->drba_snapobj = ds->ds_prev->ds_object; 1234 } 1235 1236 dsl_dataset_rele(snap, FTAG); 1237 } else { 1238 /* if full, then must be forced */ 1239 if (!drba->drba_cookie->drc_force) 1240 return (SET_ERROR(EEXIST)); 1241 /* start from $ORIGIN@$ORIGIN, if supported */ 1242 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1243 dp->dp_origin_snap->ds_object : 0; 1244 } 1245 1246 return (0); 1247 1248 } 1249 1250 static int 1251 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1252 { 1253 dmu_recv_begin_arg_t *drba = arg; 1254 dsl_pool_t *dp = dmu_tx_pool(tx); 1255 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1256 uint64_t fromguid = drrb->drr_fromguid; 1257 int flags = drrb->drr_flags; 1258 int error; 1259 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1260 dsl_dataset_t *ds; 1261 const char *tofs = drba->drba_cookie->drc_tofs; 1262 1263 /* already checked */ 1264 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1265 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 1266 1267 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1268 DMU_COMPOUNDSTREAM || 1269 drrb->drr_type >= DMU_OST_NUMTYPES || 1270 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1271 return (SET_ERROR(EINVAL)); 1272 1273 /* Verify pool version supports SA if SA_SPILL feature set */ 1274 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1275 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1276 return (SET_ERROR(ENOTSUP)); 1277 1278 if (drba->drba_cookie->drc_resumable && 1279 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 1280 return (SET_ERROR(ENOTSUP)); 1281 1282 /* 1283 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1284 * record to a plan WRITE record, so the pool must have the 1285 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1286 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1287 */ 1288 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1289 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1290 return (SET_ERROR(ENOTSUP)); 1291 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1292 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1293 return (SET_ERROR(ENOTSUP)); 1294 1295 /* 1296 * The receiving code doesn't know how to translate large blocks 1297 * to smaller ones, so the pool must have the LARGE_BLOCKS 1298 * feature enabled if the stream has LARGE_BLOCKS. 1299 */ 1300 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1301 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1302 return (SET_ERROR(ENOTSUP)); 1303 1304 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1305 if (error == 0) { 1306 /* target fs already exists; recv into temp clone */ 1307 1308 /* Can't recv a clone into an existing fs */ 1309 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 1310 dsl_dataset_rele(ds, FTAG); 1311 return (SET_ERROR(EINVAL)); 1312 } 1313 1314 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1315 dsl_dataset_rele(ds, FTAG); 1316 } else if (error == ENOENT) { 1317 /* target fs does not exist; must be a full backup or clone */ 1318 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1319 1320 /* 1321 * If it's a non-clone incremental, we are missing the 1322 * target fs, so fail the recv. 1323 */ 1324 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1325 drba->drba_origin)) 1326 return (SET_ERROR(ENOENT)); 1327 1328 /* 1329 * If we're receiving a full send as a clone, and it doesn't 1330 * contain all the necessary free records and freeobject 1331 * records, reject it. 1332 */ 1333 if (fromguid == 0 && drba->drba_origin && 1334 !(flags & DRR_FLAG_FREERECORDS)) 1335 return (SET_ERROR(EINVAL)); 1336 1337 /* Open the parent of tofs */ 1338 ASSERT3U(strlen(tofs), <, sizeof (buf)); 1339 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1340 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1341 if (error != 0) 1342 return (error); 1343 1344 /* 1345 * Check filesystem and snapshot limits before receiving. We'll 1346 * recheck snapshot limits again at the end (we create the 1347 * filesystems and increment those counts during begin_sync). 1348 */ 1349 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1350 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1351 if (error != 0) { 1352 dsl_dataset_rele(ds, FTAG); 1353 return (error); 1354 } 1355 1356 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1357 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1358 if (error != 0) { 1359 dsl_dataset_rele(ds, FTAG); 1360 return (error); 1361 } 1362 1363 if (drba->drba_origin != NULL) { 1364 dsl_dataset_t *origin; 1365 error = dsl_dataset_hold(dp, drba->drba_origin, 1366 FTAG, &origin); 1367 if (error != 0) { 1368 dsl_dataset_rele(ds, FTAG); 1369 return (error); 1370 } 1371 if (!origin->ds_is_snapshot) { 1372 dsl_dataset_rele(origin, FTAG); 1373 dsl_dataset_rele(ds, FTAG); 1374 return (SET_ERROR(EINVAL)); 1375 } 1376 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 1377 fromguid != 0) { 1378 dsl_dataset_rele(origin, FTAG); 1379 dsl_dataset_rele(ds, FTAG); 1380 return (SET_ERROR(ENODEV)); 1381 } 1382 dsl_dataset_rele(origin, FTAG); 1383 } 1384 dsl_dataset_rele(ds, FTAG); 1385 error = 0; 1386 } 1387 return (error); 1388 } 1389 1390 static void 1391 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1392 { 1393 dmu_recv_begin_arg_t *drba = arg; 1394 dsl_pool_t *dp = dmu_tx_pool(tx); 1395 objset_t *mos = dp->dp_meta_objset; 1396 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1397 const char *tofs = drba->drba_cookie->drc_tofs; 1398 dsl_dataset_t *ds, *newds; 1399 uint64_t dsobj; 1400 int error; 1401 uint64_t crflags = 0; 1402 1403 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 1404 crflags |= DS_FLAG_CI_DATASET; 1405 1406 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1407 if (error == 0) { 1408 /* create temporary clone */ 1409 dsl_dataset_t *snap = NULL; 1410 if (drba->drba_snapobj != 0) { 1411 VERIFY0(dsl_dataset_hold_obj(dp, 1412 drba->drba_snapobj, FTAG, &snap)); 1413 } 1414 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1415 snap, crflags, drba->drba_cred, tx); 1416 if (drba->drba_snapobj != 0) 1417 dsl_dataset_rele(snap, FTAG); 1418 dsl_dataset_rele(ds, FTAG); 1419 } else { 1420 dsl_dir_t *dd; 1421 const char *tail; 1422 dsl_dataset_t *origin = NULL; 1423 1424 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1425 1426 if (drba->drba_origin != NULL) { 1427 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1428 FTAG, &origin)); 1429 } 1430 1431 /* Create new dataset. */ 1432 dsobj = dsl_dataset_create_sync(dd, 1433 strrchr(tofs, '/') + 1, 1434 origin, crflags, drba->drba_cred, tx); 1435 if (origin != NULL) 1436 dsl_dataset_rele(origin, FTAG); 1437 dsl_dir_rele(dd, FTAG); 1438 drba->drba_cookie->drc_newfs = B_TRUE; 1439 } 1440 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1441 1442 if (drba->drba_cookie->drc_resumable) { 1443 dsl_dataset_zapify(newds, tx); 1444 if (drrb->drr_fromguid != 0) { 1445 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 1446 8, 1, &drrb->drr_fromguid, tx)); 1447 } 1448 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 1449 8, 1, &drrb->drr_toguid, tx)); 1450 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1451 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 1452 uint64_t one = 1; 1453 uint64_t zero = 0; 1454 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 1455 8, 1, &one, tx)); 1456 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 1457 8, 1, &zero, tx)); 1458 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 1459 8, 1, &zero, tx)); 1460 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1461 DMU_BACKUP_FEATURE_EMBED_DATA) { 1462 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 1463 8, 1, &one, tx)); 1464 } 1465 } 1466 1467 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1468 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1469 1470 /* 1471 * If we actually created a non-clone, we need to create the 1472 * objset in our new dataset. 1473 */ 1474 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 1475 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1476 (void) dmu_objset_create_impl(dp->dp_spa, 1477 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1478 } 1479 rrw_exit(&newds->ds_bp_rwlock, FTAG); 1480 1481 drba->drba_cookie->drc_ds = newds; 1482 1483 spa_history_log_internal_ds(newds, "receive", tx, ""); 1484 } 1485 1486 static int 1487 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1488 { 1489 dmu_recv_begin_arg_t *drba = arg; 1490 dsl_pool_t *dp = dmu_tx_pool(tx); 1491 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1492 int error; 1493 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1494 dsl_dataset_t *ds; 1495 const char *tofs = drba->drba_cookie->drc_tofs; 1496 1497 /* already checked */ 1498 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1499 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 1500 1501 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1502 DMU_COMPOUNDSTREAM || 1503 drrb->drr_type >= DMU_OST_NUMTYPES) 1504 return (SET_ERROR(EINVAL)); 1505 1506 /* Verify pool version supports SA if SA_SPILL feature set */ 1507 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1508 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1509 return (SET_ERROR(ENOTSUP)); 1510 1511 /* 1512 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1513 * record to a plain WRITE record, so the pool must have the 1514 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1515 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1516 */ 1517 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1518 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1519 return (SET_ERROR(ENOTSUP)); 1520 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1521 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1522 return (SET_ERROR(ENOTSUP)); 1523 1524 /* 6 extra bytes for /%recv */ 1525 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1526 1527 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1528 tofs, recv_clone_name); 1529 1530 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1531 /* %recv does not exist; continue in tofs */ 1532 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1533 if (error != 0) 1534 return (error); 1535 } 1536 1537 /* check that ds is marked inconsistent */ 1538 if (!DS_IS_INCONSISTENT(ds)) { 1539 dsl_dataset_rele(ds, FTAG); 1540 return (SET_ERROR(EINVAL)); 1541 } 1542 1543 /* check that there is resuming data, and that the toguid matches */ 1544 if (!dsl_dataset_is_zapified(ds)) { 1545 dsl_dataset_rele(ds, FTAG); 1546 return (SET_ERROR(EINVAL)); 1547 } 1548 uint64_t val; 1549 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1550 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1551 if (error != 0 || drrb->drr_toguid != val) { 1552 dsl_dataset_rele(ds, FTAG); 1553 return (SET_ERROR(EINVAL)); 1554 } 1555 1556 /* 1557 * Check if the receive is still running. If so, it will be owned. 1558 * Note that nothing else can own the dataset (e.g. after the receive 1559 * fails) because it will be marked inconsistent. 1560 */ 1561 if (dsl_dataset_has_owner(ds)) { 1562 dsl_dataset_rele(ds, FTAG); 1563 return (SET_ERROR(EBUSY)); 1564 } 1565 1566 /* There should not be any snapshots of this fs yet. */ 1567 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1568 dsl_dataset_rele(ds, FTAG); 1569 return (SET_ERROR(EINVAL)); 1570 } 1571 1572 /* 1573 * Note: resume point will be checked when we process the first WRITE 1574 * record. 1575 */ 1576 1577 /* check that the origin matches */ 1578 val = 0; 1579 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1580 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1581 if (drrb->drr_fromguid != val) { 1582 dsl_dataset_rele(ds, FTAG); 1583 return (SET_ERROR(EINVAL)); 1584 } 1585 1586 dsl_dataset_rele(ds, FTAG); 1587 return (0); 1588 } 1589 1590 static void 1591 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1592 { 1593 dmu_recv_begin_arg_t *drba = arg; 1594 dsl_pool_t *dp = dmu_tx_pool(tx); 1595 const char *tofs = drba->drba_cookie->drc_tofs; 1596 dsl_dataset_t *ds; 1597 uint64_t dsobj; 1598 /* 6 extra bytes for /%recv */ 1599 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1600 1601 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1602 tofs, recv_clone_name); 1603 1604 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1605 /* %recv does not exist; continue in tofs */ 1606 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); 1607 drba->drba_cookie->drc_newfs = B_TRUE; 1608 } 1609 1610 /* clear the inconsistent flag so that we can own it */ 1611 ASSERT(DS_IS_INCONSISTENT(ds)); 1612 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1613 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 1614 dsobj = ds->ds_object; 1615 dsl_dataset_rele(ds, FTAG); 1616 1617 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); 1618 1619 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1620 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 1621 1622 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1623 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); 1624 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1625 1626 drba->drba_cookie->drc_ds = ds; 1627 1628 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 1629 } 1630 1631 /* 1632 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1633 * succeeds; otherwise we will leak the holds on the datasets. 1634 */ 1635 int 1636 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1637 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 1638 { 1639 dmu_recv_begin_arg_t drba = { 0 }; 1640 1641 bzero(drc, sizeof (dmu_recv_cookie_t)); 1642 drc->drc_drr_begin = drr_begin; 1643 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1644 drc->drc_tosnap = tosnap; 1645 drc->drc_tofs = tofs; 1646 drc->drc_force = force; 1647 drc->drc_resumable = resumable; 1648 drc->drc_cred = CRED(); 1649 1650 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1651 drc->drc_byteswap = B_TRUE; 1652 fletcher_4_incremental_byteswap(drr_begin, 1653 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1654 byteswap_record(drr_begin); 1655 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1656 fletcher_4_incremental_native(drr_begin, 1657 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1658 } else { 1659 return (SET_ERROR(EINVAL)); 1660 } 1661 1662 drba.drba_origin = origin; 1663 drba.drba_cookie = drc; 1664 drba.drba_cred = CRED(); 1665 1666 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1667 DMU_BACKUP_FEATURE_RESUMING) { 1668 return (dsl_sync_task(tofs, 1669 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1670 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1671 } else { 1672 return (dsl_sync_task(tofs, 1673 dmu_recv_begin_check, dmu_recv_begin_sync, 1674 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1675 } 1676 } 1677 1678 struct receive_record_arg { 1679 dmu_replay_record_t header; 1680 void *payload; /* Pointer to a buffer containing the payload */ 1681 /* 1682 * If the record is a write, pointer to the arc_buf_t containing the 1683 * payload. 1684 */ 1685 arc_buf_t *write_buf; 1686 int payload_size; 1687 uint64_t bytes_read; /* bytes read from stream when record created */ 1688 boolean_t eos_marker; /* Marks the end of the stream */ 1689 bqueue_node_t node; 1690 }; 1691 1692 struct receive_writer_arg { 1693 objset_t *os; 1694 boolean_t byteswap; 1695 bqueue_t q; 1696 1697 /* 1698 * These three args are used to signal to the main thread that we're 1699 * done. 1700 */ 1701 kmutex_t mutex; 1702 kcondvar_t cv; 1703 boolean_t done; 1704 1705 int err; 1706 /* A map from guid to dataset to help handle dedup'd streams. */ 1707 avl_tree_t *guid_to_ds_map; 1708 boolean_t resumable; 1709 uint64_t last_object, last_offset; 1710 uint64_t bytes_read; /* bytes read when current record created */ 1711 }; 1712 1713 struct objlist { 1714 list_t list; /* List of struct receive_objnode. */ 1715 /* 1716 * Last object looked up. Used to assert that objects are being looked 1717 * up in ascending order. 1718 */ 1719 uint64_t last_lookup; 1720 }; 1721 1722 struct receive_objnode { 1723 list_node_t node; 1724 uint64_t object; 1725 }; 1726 1727 struct receive_arg { 1728 objset_t *os; 1729 vnode_t *vp; /* The vnode to read the stream from */ 1730 uint64_t voff; /* The current offset in the stream */ 1731 uint64_t bytes_read; 1732 /* 1733 * A record that has had its payload read in, but hasn't yet been handed 1734 * off to the worker thread. 1735 */ 1736 struct receive_record_arg *rrd; 1737 /* A record that has had its header read in, but not its payload. */ 1738 struct receive_record_arg *next_rrd; 1739 zio_cksum_t cksum; 1740 zio_cksum_t prev_cksum; 1741 int err; 1742 boolean_t byteswap; 1743 /* Sorted list of objects not to issue prefetches for. */ 1744 struct objlist ignore_objlist; 1745 }; 1746 1747 typedef struct guid_map_entry { 1748 uint64_t guid; 1749 dsl_dataset_t *gme_ds; 1750 avl_node_t avlnode; 1751 } guid_map_entry_t; 1752 1753 static int 1754 guid_compare(const void *arg1, const void *arg2) 1755 { 1756 const guid_map_entry_t *gmep1 = arg1; 1757 const guid_map_entry_t *gmep2 = arg2; 1758 1759 if (gmep1->guid < gmep2->guid) 1760 return (-1); 1761 else if (gmep1->guid > gmep2->guid) 1762 return (1); 1763 return (0); 1764 } 1765 1766 static void 1767 free_guid_map_onexit(void *arg) 1768 { 1769 avl_tree_t *ca = arg; 1770 void *cookie = NULL; 1771 guid_map_entry_t *gmep; 1772 1773 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1774 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1775 dsl_dataset_rele(gmep->gme_ds, gmep); 1776 kmem_free(gmep, sizeof (guid_map_entry_t)); 1777 } 1778 avl_destroy(ca); 1779 kmem_free(ca, sizeof (avl_tree_t)); 1780 } 1781 1782 static int 1783 receive_read(struct receive_arg *ra, int len, void *buf) 1784 { 1785 int done = 0; 1786 1787 /* 1788 * The code doesn't rely on this (lengths being multiples of 8). See 1789 * comment in dump_bytes. 1790 */ 1791 ASSERT0(len % 8); 1792 1793 while (done < len) { 1794 ssize_t resid; 1795 1796 ra->err = vn_rdwr(UIO_READ, ra->vp, 1797 (char *)buf + done, len - done, 1798 ra->voff, UIO_SYSSPACE, FAPPEND, 1799 RLIM64_INFINITY, CRED(), &resid); 1800 1801 if (resid == len - done) { 1802 /* 1803 * Note: ECKSUM indicates that the receive 1804 * was interrupted and can potentially be resumed. 1805 */ 1806 ra->err = SET_ERROR(ECKSUM); 1807 } 1808 ra->voff += len - done - resid; 1809 done = len - resid; 1810 if (ra->err != 0) 1811 return (ra->err); 1812 } 1813 1814 ra->bytes_read += len; 1815 1816 ASSERT3U(done, ==, len); 1817 return (0); 1818 } 1819 1820 static void 1821 byteswap_record(dmu_replay_record_t *drr) 1822 { 1823 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1824 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1825 drr->drr_type = BSWAP_32(drr->drr_type); 1826 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1827 1828 switch (drr->drr_type) { 1829 case DRR_BEGIN: 1830 DO64(drr_begin.drr_magic); 1831 DO64(drr_begin.drr_versioninfo); 1832 DO64(drr_begin.drr_creation_time); 1833 DO32(drr_begin.drr_type); 1834 DO32(drr_begin.drr_flags); 1835 DO64(drr_begin.drr_toguid); 1836 DO64(drr_begin.drr_fromguid); 1837 break; 1838 case DRR_OBJECT: 1839 DO64(drr_object.drr_object); 1840 DO32(drr_object.drr_type); 1841 DO32(drr_object.drr_bonustype); 1842 DO32(drr_object.drr_blksz); 1843 DO32(drr_object.drr_bonuslen); 1844 DO64(drr_object.drr_toguid); 1845 break; 1846 case DRR_FREEOBJECTS: 1847 DO64(drr_freeobjects.drr_firstobj); 1848 DO64(drr_freeobjects.drr_numobjs); 1849 DO64(drr_freeobjects.drr_toguid); 1850 break; 1851 case DRR_WRITE: 1852 DO64(drr_write.drr_object); 1853 DO32(drr_write.drr_type); 1854 DO64(drr_write.drr_offset); 1855 DO64(drr_write.drr_length); 1856 DO64(drr_write.drr_toguid); 1857 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1858 DO64(drr_write.drr_key.ddk_prop); 1859 break; 1860 case DRR_WRITE_BYREF: 1861 DO64(drr_write_byref.drr_object); 1862 DO64(drr_write_byref.drr_offset); 1863 DO64(drr_write_byref.drr_length); 1864 DO64(drr_write_byref.drr_toguid); 1865 DO64(drr_write_byref.drr_refguid); 1866 DO64(drr_write_byref.drr_refobject); 1867 DO64(drr_write_byref.drr_refoffset); 1868 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1869 drr_key.ddk_cksum); 1870 DO64(drr_write_byref.drr_key.ddk_prop); 1871 break; 1872 case DRR_WRITE_EMBEDDED: 1873 DO64(drr_write_embedded.drr_object); 1874 DO64(drr_write_embedded.drr_offset); 1875 DO64(drr_write_embedded.drr_length); 1876 DO64(drr_write_embedded.drr_toguid); 1877 DO32(drr_write_embedded.drr_lsize); 1878 DO32(drr_write_embedded.drr_psize); 1879 break; 1880 case DRR_FREE: 1881 DO64(drr_free.drr_object); 1882 DO64(drr_free.drr_offset); 1883 DO64(drr_free.drr_length); 1884 DO64(drr_free.drr_toguid); 1885 break; 1886 case DRR_SPILL: 1887 DO64(drr_spill.drr_object); 1888 DO64(drr_spill.drr_length); 1889 DO64(drr_spill.drr_toguid); 1890 break; 1891 case DRR_END: 1892 DO64(drr_end.drr_toguid); 1893 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1894 break; 1895 } 1896 1897 if (drr->drr_type != DRR_BEGIN) { 1898 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1899 } 1900 1901 #undef DO64 1902 #undef DO32 1903 } 1904 1905 static inline uint8_t 1906 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1907 { 1908 if (bonus_type == DMU_OT_SA) { 1909 return (1); 1910 } else { 1911 return (1 + 1912 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 1913 } 1914 } 1915 1916 static void 1917 save_resume_state(struct receive_writer_arg *rwa, 1918 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1919 { 1920 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1921 1922 if (!rwa->resumable) 1923 return; 1924 1925 /* 1926 * We use ds_resume_bytes[] != 0 to indicate that we need to 1927 * update this on disk, so it must not be 0. 1928 */ 1929 ASSERT(rwa->bytes_read != 0); 1930 1931 /* 1932 * We only resume from write records, which have a valid 1933 * (non-meta-dnode) object number. 1934 */ 1935 ASSERT(object != 0); 1936 1937 /* 1938 * For resuming to work correctly, we must receive records in order, 1939 * sorted by object,offset. This is checked by the callers, but 1940 * assert it here for good measure. 1941 */ 1942 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1943 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1944 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1945 ASSERT3U(rwa->bytes_read, >=, 1946 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1947 1948 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1949 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1950 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1951 } 1952 1953 static int 1954 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1955 void *data) 1956 { 1957 dmu_object_info_t doi; 1958 dmu_tx_t *tx; 1959 uint64_t object; 1960 int err; 1961 1962 if (drro->drr_type == DMU_OT_NONE || 1963 !DMU_OT_IS_VALID(drro->drr_type) || 1964 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1965 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1966 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1967 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1968 drro->drr_blksz < SPA_MINBLOCKSIZE || 1969 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1970 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 1971 return (SET_ERROR(EINVAL)); 1972 } 1973 1974 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1975 1976 if (err != 0 && err != ENOENT) 1977 return (SET_ERROR(EINVAL)); 1978 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 1979 1980 /* 1981 * If we are losing blkptrs or changing the block size this must 1982 * be a new file instance. We must clear out the previous file 1983 * contents before we can change this type of metadata in the dnode. 1984 */ 1985 if (err == 0) { 1986 int nblkptr; 1987 1988 nblkptr = deduce_nblkptr(drro->drr_bonustype, 1989 drro->drr_bonuslen); 1990 1991 if (drro->drr_blksz != doi.doi_data_block_size || 1992 nblkptr < doi.doi_nblkptr) { 1993 err = dmu_free_long_range(rwa->os, drro->drr_object, 1994 0, DMU_OBJECT_END); 1995 if (err != 0) 1996 return (SET_ERROR(EINVAL)); 1997 } 1998 } 1999 2000 tx = dmu_tx_create(rwa->os); 2001 dmu_tx_hold_bonus(tx, object); 2002 err = dmu_tx_assign(tx, TXG_WAIT); 2003 if (err != 0) { 2004 dmu_tx_abort(tx); 2005 return (err); 2006 } 2007 2008 if (object == DMU_NEW_OBJECT) { 2009 /* currently free, want to be allocated */ 2010 err = dmu_object_claim(rwa->os, drro->drr_object, 2011 drro->drr_type, drro->drr_blksz, 2012 drro->drr_bonustype, drro->drr_bonuslen, tx); 2013 } else if (drro->drr_type != doi.doi_type || 2014 drro->drr_blksz != doi.doi_data_block_size || 2015 drro->drr_bonustype != doi.doi_bonus_type || 2016 drro->drr_bonuslen != doi.doi_bonus_size) { 2017 /* currently allocated, but with different properties */ 2018 err = dmu_object_reclaim(rwa->os, drro->drr_object, 2019 drro->drr_type, drro->drr_blksz, 2020 drro->drr_bonustype, drro->drr_bonuslen, tx); 2021 } 2022 if (err != 0) { 2023 dmu_tx_commit(tx); 2024 return (SET_ERROR(EINVAL)); 2025 } 2026 2027 dmu_object_set_checksum(rwa->os, drro->drr_object, 2028 drro->drr_checksumtype, tx); 2029 dmu_object_set_compress(rwa->os, drro->drr_object, 2030 drro->drr_compress, tx); 2031 2032 if (data != NULL) { 2033 dmu_buf_t *db; 2034 2035 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 2036 dmu_buf_will_dirty(db, tx); 2037 2038 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2039 bcopy(data, db->db_data, drro->drr_bonuslen); 2040 if (rwa->byteswap) { 2041 dmu_object_byteswap_t byteswap = 2042 DMU_OT_BYTESWAP(drro->drr_bonustype); 2043 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2044 drro->drr_bonuslen); 2045 } 2046 dmu_buf_rele(db, FTAG); 2047 } 2048 dmu_tx_commit(tx); 2049 2050 return (0); 2051 } 2052 2053 /* ARGSUSED */ 2054 static int 2055 receive_freeobjects(struct receive_writer_arg *rwa, 2056 struct drr_freeobjects *drrfo) 2057 { 2058 uint64_t obj; 2059 int next_err = 0; 2060 2061 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2062 return (SET_ERROR(EINVAL)); 2063 2064 for (obj = drrfo->drr_firstobj; 2065 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 2066 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2067 int err; 2068 2069 if (dmu_object_info(rwa->os, obj, NULL) != 0) 2070 continue; 2071 2072 err = dmu_free_long_object(rwa->os, obj); 2073 if (err != 0) 2074 return (err); 2075 } 2076 if (next_err != ESRCH) 2077 return (next_err); 2078 return (0); 2079 } 2080 2081 static int 2082 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 2083 arc_buf_t *abuf) 2084 { 2085 dmu_tx_t *tx; 2086 int err; 2087 2088 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || 2089 !DMU_OT_IS_VALID(drrw->drr_type)) 2090 return (SET_ERROR(EINVAL)); 2091 2092 /* 2093 * For resuming to work, records must be in increasing order 2094 * by (object, offset). 2095 */ 2096 if (drrw->drr_object < rwa->last_object || 2097 (drrw->drr_object == rwa->last_object && 2098 drrw->drr_offset < rwa->last_offset)) { 2099 return (SET_ERROR(EINVAL)); 2100 } 2101 rwa->last_object = drrw->drr_object; 2102 rwa->last_offset = drrw->drr_offset; 2103 2104 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 2105 return (SET_ERROR(EINVAL)); 2106 2107 tx = dmu_tx_create(rwa->os); 2108 2109 dmu_tx_hold_write(tx, drrw->drr_object, 2110 drrw->drr_offset, drrw->drr_length); 2111 err = dmu_tx_assign(tx, TXG_WAIT); 2112 if (err != 0) { 2113 dmu_tx_abort(tx); 2114 return (err); 2115 } 2116 if (rwa->byteswap) { 2117 dmu_object_byteswap_t byteswap = 2118 DMU_OT_BYTESWAP(drrw->drr_type); 2119 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2120 drrw->drr_length); 2121 } 2122 2123 dmu_buf_t *bonus; 2124 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 2125 return (SET_ERROR(EINVAL)); 2126 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 2127 2128 /* 2129 * Note: If the receive fails, we want the resume stream to start 2130 * with the same record that we last successfully received (as opposed 2131 * to the next record), so that we can verify that we are 2132 * resuming from the correct location. 2133 */ 2134 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2135 dmu_tx_commit(tx); 2136 dmu_buf_rele(bonus, FTAG); 2137 2138 return (0); 2139 } 2140 2141 /* 2142 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 2143 * streams to refer to a copy of the data that is already on the 2144 * system because it came in earlier in the stream. This function 2145 * finds the earlier copy of the data, and uses that copy instead of 2146 * data from the stream to fulfill this write. 2147 */ 2148 static int 2149 receive_write_byref(struct receive_writer_arg *rwa, 2150 struct drr_write_byref *drrwbr) 2151 { 2152 dmu_tx_t *tx; 2153 int err; 2154 guid_map_entry_t gmesrch; 2155 guid_map_entry_t *gmep; 2156 avl_index_t where; 2157 objset_t *ref_os = NULL; 2158 dmu_buf_t *dbp; 2159 2160 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 2161 return (SET_ERROR(EINVAL)); 2162 2163 /* 2164 * If the GUID of the referenced dataset is different from the 2165 * GUID of the target dataset, find the referenced dataset. 2166 */ 2167 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 2168 gmesrch.guid = drrwbr->drr_refguid; 2169 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 2170 &where)) == NULL) { 2171 return (SET_ERROR(EINVAL)); 2172 } 2173 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 2174 return (SET_ERROR(EINVAL)); 2175 } else { 2176 ref_os = rwa->os; 2177 } 2178 2179 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 2180 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 2181 if (err != 0) 2182 return (err); 2183 2184 tx = dmu_tx_create(rwa->os); 2185 2186 dmu_tx_hold_write(tx, drrwbr->drr_object, 2187 drrwbr->drr_offset, drrwbr->drr_length); 2188 err = dmu_tx_assign(tx, TXG_WAIT); 2189 if (err != 0) { 2190 dmu_tx_abort(tx); 2191 return (err); 2192 } 2193 dmu_write(rwa->os, drrwbr->drr_object, 2194 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 2195 dmu_buf_rele(dbp, FTAG); 2196 2197 /* See comment in restore_write. */ 2198 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 2199 dmu_tx_commit(tx); 2200 return (0); 2201 } 2202 2203 static int 2204 receive_write_embedded(struct receive_writer_arg *rwa, 2205 struct drr_write_embedded *drrwe, void *data) 2206 { 2207 dmu_tx_t *tx; 2208 int err; 2209 2210 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2211 return (EINVAL); 2212 2213 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2214 return (EINVAL); 2215 2216 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2217 return (EINVAL); 2218 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2219 return (EINVAL); 2220 2221 tx = dmu_tx_create(rwa->os); 2222 2223 dmu_tx_hold_write(tx, drrwe->drr_object, 2224 drrwe->drr_offset, drrwe->drr_length); 2225 err = dmu_tx_assign(tx, TXG_WAIT); 2226 if (err != 0) { 2227 dmu_tx_abort(tx); 2228 return (err); 2229 } 2230 2231 dmu_write_embedded(rwa->os, drrwe->drr_object, 2232 drrwe->drr_offset, data, drrwe->drr_etype, 2233 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2234 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2235 2236 /* See comment in restore_write. */ 2237 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2238 dmu_tx_commit(tx); 2239 return (0); 2240 } 2241 2242 static int 2243 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2244 void *data) 2245 { 2246 dmu_tx_t *tx; 2247 dmu_buf_t *db, *db_spill; 2248 int err; 2249 2250 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2251 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2252 return (SET_ERROR(EINVAL)); 2253 2254 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2255 return (SET_ERROR(EINVAL)); 2256 2257 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2258 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 2259 dmu_buf_rele(db, FTAG); 2260 return (err); 2261 } 2262 2263 tx = dmu_tx_create(rwa->os); 2264 2265 dmu_tx_hold_spill(tx, db->db_object); 2266 2267 err = dmu_tx_assign(tx, TXG_WAIT); 2268 if (err != 0) { 2269 dmu_buf_rele(db, FTAG); 2270 dmu_buf_rele(db_spill, FTAG); 2271 dmu_tx_abort(tx); 2272 return (err); 2273 } 2274 dmu_buf_will_dirty(db_spill, tx); 2275 2276 if (db_spill->db_size < drrs->drr_length) 2277 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2278 drrs->drr_length, tx)); 2279 bcopy(data, db_spill->db_data, drrs->drr_length); 2280 2281 dmu_buf_rele(db, FTAG); 2282 dmu_buf_rele(db_spill, FTAG); 2283 2284 dmu_tx_commit(tx); 2285 return (0); 2286 } 2287 2288 /* ARGSUSED */ 2289 static int 2290 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2291 { 2292 int err; 2293 2294 if (drrf->drr_length != -1ULL && 2295 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2296 return (SET_ERROR(EINVAL)); 2297 2298 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2299 return (SET_ERROR(EINVAL)); 2300 2301 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2302 drrf->drr_offset, drrf->drr_length); 2303 2304 return (err); 2305 } 2306 2307 /* used to destroy the drc_ds on error */ 2308 static void 2309 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2310 { 2311 if (drc->drc_resumable) { 2312 /* wait for our resume state to be written to disk */ 2313 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); 2314 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2315 } else { 2316 char name[ZFS_MAX_DATASET_NAME_LEN]; 2317 dsl_dataset_name(drc->drc_ds, name); 2318 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2319 (void) dsl_destroy_head(name); 2320 } 2321 } 2322 2323 static void 2324 receive_cksum(struct receive_arg *ra, int len, void *buf) 2325 { 2326 if (ra->byteswap) { 2327 fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 2328 } else { 2329 fletcher_4_incremental_native(buf, len, &ra->cksum); 2330 } 2331 } 2332 2333 /* 2334 * Read the payload into a buffer of size len, and update the current record's 2335 * payload field. 2336 * Allocate ra->next_rrd and read the next record's header into 2337 * ra->next_rrd->header. 2338 * Verify checksum of payload and next record. 2339 */ 2340 static int 2341 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 2342 { 2343 int err; 2344 2345 if (len != 0) { 2346 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2347 err = receive_read(ra, len, buf); 2348 if (err != 0) 2349 return (err); 2350 receive_cksum(ra, len, buf); 2351 2352 /* note: rrd is NULL when reading the begin record's payload */ 2353 if (ra->rrd != NULL) { 2354 ra->rrd->payload = buf; 2355 ra->rrd->payload_size = len; 2356 ra->rrd->bytes_read = ra->bytes_read; 2357 } 2358 } 2359 2360 ra->prev_cksum = ra->cksum; 2361 2362 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2363 err = receive_read(ra, sizeof (ra->next_rrd->header), 2364 &ra->next_rrd->header); 2365 ra->next_rrd->bytes_read = ra->bytes_read; 2366 if (err != 0) { 2367 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2368 ra->next_rrd = NULL; 2369 return (err); 2370 } 2371 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2372 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2373 ra->next_rrd = NULL; 2374 return (SET_ERROR(EINVAL)); 2375 } 2376 2377 /* 2378 * Note: checksum is of everything up to but not including the 2379 * checksum itself. 2380 */ 2381 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2382 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2383 receive_cksum(ra, 2384 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2385 &ra->next_rrd->header); 2386 2387 zio_cksum_t cksum_orig = 2388 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2389 zio_cksum_t *cksump = 2390 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2391 2392 if (ra->byteswap) 2393 byteswap_record(&ra->next_rrd->header); 2394 2395 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2396 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2397 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2398 ra->next_rrd = NULL; 2399 return (SET_ERROR(ECKSUM)); 2400 } 2401 2402 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2403 2404 return (0); 2405 } 2406 2407 static void 2408 objlist_create(struct objlist *list) 2409 { 2410 list_create(&list->list, sizeof (struct receive_objnode), 2411 offsetof(struct receive_objnode, node)); 2412 list->last_lookup = 0; 2413 } 2414 2415 static void 2416 objlist_destroy(struct objlist *list) 2417 { 2418 for (struct receive_objnode *n = list_remove_head(&list->list); 2419 n != NULL; n = list_remove_head(&list->list)) { 2420 kmem_free(n, sizeof (*n)); 2421 } 2422 list_destroy(&list->list); 2423 } 2424 2425 /* 2426 * This function looks through the objlist to see if the specified object number 2427 * is contained in the objlist. In the process, it will remove all object 2428 * numbers in the list that are smaller than the specified object number. Thus, 2429 * any lookup of an object number smaller than a previously looked up object 2430 * number will always return false; therefore, all lookups should be done in 2431 * ascending order. 2432 */ 2433 static boolean_t 2434 objlist_exists(struct objlist *list, uint64_t object) 2435 { 2436 struct receive_objnode *node = list_head(&list->list); 2437 ASSERT3U(object, >=, list->last_lookup); 2438 list->last_lookup = object; 2439 while (node != NULL && node->object < object) { 2440 VERIFY3P(node, ==, list_remove_head(&list->list)); 2441 kmem_free(node, sizeof (*node)); 2442 node = list_head(&list->list); 2443 } 2444 return (node != NULL && node->object == object); 2445 } 2446 2447 /* 2448 * The objlist is a list of object numbers stored in ascending order. However, 2449 * the insertion of new object numbers does not seek out the correct location to 2450 * store a new object number; instead, it appends it to the list for simplicity. 2451 * Thus, any users must take care to only insert new object numbers in ascending 2452 * order. 2453 */ 2454 static void 2455 objlist_insert(struct objlist *list, uint64_t object) 2456 { 2457 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 2458 node->object = object; 2459 #ifdef ZFS_DEBUG 2460 struct receive_objnode *last_object = list_tail(&list->list); 2461 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 2462 ASSERT3U(node->object, >, last_objnum); 2463 #endif 2464 list_insert_tail(&list->list, node); 2465 } 2466 2467 /* 2468 * Issue the prefetch reads for any necessary indirect blocks. 2469 * 2470 * We use the object ignore list to tell us whether or not to issue prefetches 2471 * for a given object. We do this for both correctness (in case the blocksize 2472 * of an object has changed) and performance (if the object doesn't exist, don't 2473 * needlessly try to issue prefetches). We also trim the list as we go through 2474 * the stream to prevent it from growing to an unbounded size. 2475 * 2476 * The object numbers within will always be in sorted order, and any write 2477 * records we see will also be in sorted order, but they're not sorted with 2478 * respect to each other (i.e. we can get several object records before 2479 * receiving each object's write records). As a result, once we've reached a 2480 * given object number, we can safely remove any reference to lower object 2481 * numbers in the ignore list. In practice, we receive up to 32 object records 2482 * before receiving write records, so the list can have up to 32 nodes in it. 2483 */ 2484 /* ARGSUSED */ 2485 static void 2486 receive_read_prefetch(struct receive_arg *ra, 2487 uint64_t object, uint64_t offset, uint64_t length) 2488 { 2489 if (!objlist_exists(&ra->ignore_objlist, object)) { 2490 dmu_prefetch(ra->os, object, 1, offset, length, 2491 ZIO_PRIORITY_SYNC_READ); 2492 } 2493 } 2494 2495 /* 2496 * Read records off the stream, issuing any necessary prefetches. 2497 */ 2498 static int 2499 receive_read_record(struct receive_arg *ra) 2500 { 2501 int err; 2502 2503 switch (ra->rrd->header.drr_type) { 2504 case DRR_OBJECT: 2505 { 2506 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2507 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2508 void *buf = kmem_zalloc(size, KM_SLEEP); 2509 dmu_object_info_t doi; 2510 err = receive_read_payload_and_next_header(ra, size, buf); 2511 if (err != 0) { 2512 kmem_free(buf, size); 2513 return (err); 2514 } 2515 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2516 /* 2517 * See receive_read_prefetch for an explanation why we're 2518 * storing this object in the ignore_obj_list. 2519 */ 2520 if (err == ENOENT || 2521 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2522 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2523 err = 0; 2524 } 2525 return (err); 2526 } 2527 case DRR_FREEOBJECTS: 2528 { 2529 err = receive_read_payload_and_next_header(ra, 0, NULL); 2530 return (err); 2531 } 2532 case DRR_WRITE: 2533 { 2534 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2535 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2536 drrw->drr_length); 2537 2538 err = receive_read_payload_and_next_header(ra, 2539 drrw->drr_length, abuf->b_data); 2540 if (err != 0) { 2541 dmu_return_arcbuf(abuf); 2542 return (err); 2543 } 2544 ra->rrd->write_buf = abuf; 2545 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2546 drrw->drr_length); 2547 return (err); 2548 } 2549 case DRR_WRITE_BYREF: 2550 { 2551 struct drr_write_byref *drrwb = 2552 &ra->rrd->header.drr_u.drr_write_byref; 2553 err = receive_read_payload_and_next_header(ra, 0, NULL); 2554 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2555 drrwb->drr_length); 2556 return (err); 2557 } 2558 case DRR_WRITE_EMBEDDED: 2559 { 2560 struct drr_write_embedded *drrwe = 2561 &ra->rrd->header.drr_u.drr_write_embedded; 2562 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2563 void *buf = kmem_zalloc(size, KM_SLEEP); 2564 2565 err = receive_read_payload_and_next_header(ra, size, buf); 2566 if (err != 0) { 2567 kmem_free(buf, size); 2568 return (err); 2569 } 2570 2571 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2572 drrwe->drr_length); 2573 return (err); 2574 } 2575 case DRR_FREE: 2576 { 2577 /* 2578 * It might be beneficial to prefetch indirect blocks here, but 2579 * we don't really have the data to decide for sure. 2580 */ 2581 err = receive_read_payload_and_next_header(ra, 0, NULL); 2582 return (err); 2583 } 2584 case DRR_END: 2585 { 2586 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2587 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2588 return (SET_ERROR(ECKSUM)); 2589 return (0); 2590 } 2591 case DRR_SPILL: 2592 { 2593 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2594 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2595 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2596 buf); 2597 if (err != 0) 2598 kmem_free(buf, drrs->drr_length); 2599 return (err); 2600 } 2601 default: 2602 return (SET_ERROR(EINVAL)); 2603 } 2604 } 2605 2606 /* 2607 * Commit the records to the pool. 2608 */ 2609 static int 2610 receive_process_record(struct receive_writer_arg *rwa, 2611 struct receive_record_arg *rrd) 2612 { 2613 int err; 2614 2615 /* Processing in order, therefore bytes_read should be increasing. */ 2616 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2617 rwa->bytes_read = rrd->bytes_read; 2618 2619 switch (rrd->header.drr_type) { 2620 case DRR_OBJECT: 2621 { 2622 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2623 err = receive_object(rwa, drro, rrd->payload); 2624 kmem_free(rrd->payload, rrd->payload_size); 2625 rrd->payload = NULL; 2626 return (err); 2627 } 2628 case DRR_FREEOBJECTS: 2629 { 2630 struct drr_freeobjects *drrfo = 2631 &rrd->header.drr_u.drr_freeobjects; 2632 return (receive_freeobjects(rwa, drrfo)); 2633 } 2634 case DRR_WRITE: 2635 { 2636 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2637 err = receive_write(rwa, drrw, rrd->write_buf); 2638 /* if receive_write() is successful, it consumes the arc_buf */ 2639 if (err != 0) 2640 dmu_return_arcbuf(rrd->write_buf); 2641 rrd->write_buf = NULL; 2642 rrd->payload = NULL; 2643 return (err); 2644 } 2645 case DRR_WRITE_BYREF: 2646 { 2647 struct drr_write_byref *drrwbr = 2648 &rrd->header.drr_u.drr_write_byref; 2649 return (receive_write_byref(rwa, drrwbr)); 2650 } 2651 case DRR_WRITE_EMBEDDED: 2652 { 2653 struct drr_write_embedded *drrwe = 2654 &rrd->header.drr_u.drr_write_embedded; 2655 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2656 kmem_free(rrd->payload, rrd->payload_size); 2657 rrd->payload = NULL; 2658 return (err); 2659 } 2660 case DRR_FREE: 2661 { 2662 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2663 return (receive_free(rwa, drrf)); 2664 } 2665 case DRR_SPILL: 2666 { 2667 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2668 err = receive_spill(rwa, drrs, rrd->payload); 2669 kmem_free(rrd->payload, rrd->payload_size); 2670 rrd->payload = NULL; 2671 return (err); 2672 } 2673 default: 2674 return (SET_ERROR(EINVAL)); 2675 } 2676 } 2677 2678 /* 2679 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2680 * receive_process_record When we're done, signal the main thread and exit. 2681 */ 2682 static void 2683 receive_writer_thread(void *arg) 2684 { 2685 struct receive_writer_arg *rwa = arg; 2686 struct receive_record_arg *rrd; 2687 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2688 rrd = bqueue_dequeue(&rwa->q)) { 2689 /* 2690 * If there's an error, the main thread will stop putting things 2691 * on the queue, but we need to clear everything in it before we 2692 * can exit. 2693 */ 2694 if (rwa->err == 0) { 2695 rwa->err = receive_process_record(rwa, rrd); 2696 } else if (rrd->write_buf != NULL) { 2697 dmu_return_arcbuf(rrd->write_buf); 2698 rrd->write_buf = NULL; 2699 rrd->payload = NULL; 2700 } else if (rrd->payload != NULL) { 2701 kmem_free(rrd->payload, rrd->payload_size); 2702 rrd->payload = NULL; 2703 } 2704 kmem_free(rrd, sizeof (*rrd)); 2705 } 2706 kmem_free(rrd, sizeof (*rrd)); 2707 mutex_enter(&rwa->mutex); 2708 rwa->done = B_TRUE; 2709 cv_signal(&rwa->cv); 2710 mutex_exit(&rwa->mutex); 2711 } 2712 2713 static int 2714 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2715 { 2716 uint64_t val; 2717 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2718 uint64_t dsobj = dmu_objset_id(ra->os); 2719 uint64_t resume_obj, resume_off; 2720 2721 if (nvlist_lookup_uint64(begin_nvl, 2722 "resume_object", &resume_obj) != 0 || 2723 nvlist_lookup_uint64(begin_nvl, 2724 "resume_offset", &resume_off) != 0) { 2725 return (SET_ERROR(EINVAL)); 2726 } 2727 VERIFY0(zap_lookup(mos, dsobj, 2728 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2729 if (resume_obj != val) 2730 return (SET_ERROR(EINVAL)); 2731 VERIFY0(zap_lookup(mos, dsobj, 2732 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2733 if (resume_off != val) 2734 return (SET_ERROR(EINVAL)); 2735 2736 return (0); 2737 } 2738 2739 /* 2740 * Read in the stream's records, one by one, and apply them to the pool. There 2741 * are two threads involved; the thread that calls this function will spin up a 2742 * worker thread, read the records off the stream one by one, and issue 2743 * prefetches for any necessary indirect blocks. It will then push the records 2744 * onto an internal blocking queue. The worker thread will pull the records off 2745 * the queue, and actually write the data into the DMU. This way, the worker 2746 * thread doesn't have to wait for reads to complete, since everything it needs 2747 * (the indirect blocks) will be prefetched. 2748 * 2749 * NB: callers *must* call dmu_recv_end() if this succeeds. 2750 */ 2751 int 2752 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2753 int cleanup_fd, uint64_t *action_handlep) 2754 { 2755 int err = 0; 2756 struct receive_arg ra = { 0 }; 2757 struct receive_writer_arg rwa = { 0 }; 2758 int featureflags; 2759 nvlist_t *begin_nvl = NULL; 2760 2761 ra.byteswap = drc->drc_byteswap; 2762 ra.cksum = drc->drc_cksum; 2763 ra.vp = vp; 2764 ra.voff = *voffp; 2765 2766 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2767 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2768 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2769 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2770 } 2771 2772 objlist_create(&ra.ignore_objlist); 2773 2774 /* these were verified in dmu_recv_begin */ 2775 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2776 DMU_SUBSTREAM); 2777 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2778 2779 /* 2780 * Open the objset we are modifying. 2781 */ 2782 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2783 2784 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2785 2786 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2787 2788 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2789 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2790 minor_t minor; 2791 2792 if (cleanup_fd == -1) { 2793 ra.err = SET_ERROR(EBADF); 2794 goto out; 2795 } 2796 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2797 if (ra.err != 0) { 2798 cleanup_fd = -1; 2799 goto out; 2800 } 2801 2802 if (*action_handlep == 0) { 2803 rwa.guid_to_ds_map = 2804 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2805 avl_create(rwa.guid_to_ds_map, guid_compare, 2806 sizeof (guid_map_entry_t), 2807 offsetof(guid_map_entry_t, avlnode)); 2808 err = zfs_onexit_add_cb(minor, 2809 free_guid_map_onexit, rwa.guid_to_ds_map, 2810 action_handlep); 2811 if (ra.err != 0) 2812 goto out; 2813 } else { 2814 err = zfs_onexit_cb_data(minor, *action_handlep, 2815 (void **)&rwa.guid_to_ds_map); 2816 if (ra.err != 0) 2817 goto out; 2818 } 2819 2820 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2821 } 2822 2823 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2824 void *payload = NULL; 2825 if (payloadlen != 0) 2826 payload = kmem_alloc(payloadlen, KM_SLEEP); 2827 2828 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2829 if (err != 0) { 2830 if (payloadlen != 0) 2831 kmem_free(payload, payloadlen); 2832 goto out; 2833 } 2834 if (payloadlen != 0) { 2835 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2836 kmem_free(payload, payloadlen); 2837 if (err != 0) 2838 goto out; 2839 } 2840 2841 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2842 err = resume_check(&ra, begin_nvl); 2843 if (err != 0) 2844 goto out; 2845 } 2846 2847 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2848 offsetof(struct receive_record_arg, node)); 2849 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2850 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2851 rwa.os = ra.os; 2852 rwa.byteswap = drc->drc_byteswap; 2853 rwa.resumable = drc->drc_resumable; 2854 2855 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2856 TS_RUN, minclsyspri); 2857 /* 2858 * We're reading rwa.err without locks, which is safe since we are the 2859 * only reader, and the worker thread is the only writer. It's ok if we 2860 * miss a write for an iteration or two of the loop, since the writer 2861 * thread will keep freeing records we send it until we send it an eos 2862 * marker. 2863 * 2864 * We can leave this loop in 3 ways: First, if rwa.err is 2865 * non-zero. In that case, the writer thread will free the rrd we just 2866 * pushed. Second, if we're interrupted; in that case, either it's the 2867 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2868 * has been handed off to the writer thread who will free it. Finally, 2869 * if receive_read_record fails or we're at the end of the stream, then 2870 * we free ra.rrd and exit. 2871 */ 2872 while (rwa.err == 0) { 2873 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2874 err = SET_ERROR(EINTR); 2875 break; 2876 } 2877 2878 ASSERT3P(ra.rrd, ==, NULL); 2879 ra.rrd = ra.next_rrd; 2880 ra.next_rrd = NULL; 2881 /* Allocates and loads header into ra.next_rrd */ 2882 err = receive_read_record(&ra); 2883 2884 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2885 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2886 ra.rrd = NULL; 2887 break; 2888 } 2889 2890 bqueue_enqueue(&rwa.q, ra.rrd, 2891 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2892 ra.rrd = NULL; 2893 } 2894 if (ra.next_rrd == NULL) 2895 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 2896 ra.next_rrd->eos_marker = B_TRUE; 2897 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 2898 2899 mutex_enter(&rwa.mutex); 2900 while (!rwa.done) { 2901 cv_wait(&rwa.cv, &rwa.mutex); 2902 } 2903 mutex_exit(&rwa.mutex); 2904 2905 cv_destroy(&rwa.cv); 2906 mutex_destroy(&rwa.mutex); 2907 bqueue_destroy(&rwa.q); 2908 if (err == 0) 2909 err = rwa.err; 2910 2911 out: 2912 nvlist_free(begin_nvl); 2913 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2914 zfs_onexit_fd_rele(cleanup_fd); 2915 2916 if (err != 0) { 2917 /* 2918 * Clean up references. If receive is not resumable, 2919 * destroy what we created, so we don't leave it in 2920 * the inconsistent state. 2921 */ 2922 dmu_recv_cleanup_ds(drc); 2923 } 2924 2925 *voffp = ra.voff; 2926 objlist_destroy(&ra.ignore_objlist); 2927 return (err); 2928 } 2929 2930 static int 2931 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2932 { 2933 dmu_recv_cookie_t *drc = arg; 2934 dsl_pool_t *dp = dmu_tx_pool(tx); 2935 int error; 2936 2937 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2938 2939 if (!drc->drc_newfs) { 2940 dsl_dataset_t *origin_head; 2941 2942 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2943 if (error != 0) 2944 return (error); 2945 if (drc->drc_force) { 2946 /* 2947 * We will destroy any snapshots in tofs (i.e. before 2948 * origin_head) that are after the origin (which is 2949 * the snap before drc_ds, because drc_ds can not 2950 * have any snaps of its own). 2951 */ 2952 uint64_t obj; 2953 2954 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2955 while (obj != 2956 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2957 dsl_dataset_t *snap; 2958 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2959 &snap); 2960 if (error != 0) 2961 break; 2962 if (snap->ds_dir != origin_head->ds_dir) 2963 error = SET_ERROR(EINVAL); 2964 if (error == 0) { 2965 error = dsl_destroy_snapshot_check_impl( 2966 snap, B_FALSE); 2967 } 2968 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2969 dsl_dataset_rele(snap, FTAG); 2970 if (error != 0) 2971 break; 2972 } 2973 if (error != 0) { 2974 dsl_dataset_rele(origin_head, FTAG); 2975 return (error); 2976 } 2977 } 2978 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2979 origin_head, drc->drc_force, drc->drc_owner, tx); 2980 if (error != 0) { 2981 dsl_dataset_rele(origin_head, FTAG); 2982 return (error); 2983 } 2984 error = dsl_dataset_snapshot_check_impl(origin_head, 2985 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2986 dsl_dataset_rele(origin_head, FTAG); 2987 if (error != 0) 2988 return (error); 2989 2990 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2991 } else { 2992 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2993 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2994 } 2995 return (error); 2996 } 2997 2998 static void 2999 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3000 { 3001 dmu_recv_cookie_t *drc = arg; 3002 dsl_pool_t *dp = dmu_tx_pool(tx); 3003 3004 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3005 tx, "snap=%s", drc->drc_tosnap); 3006 3007 if (!drc->drc_newfs) { 3008 dsl_dataset_t *origin_head; 3009 3010 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3011 &origin_head)); 3012 3013 if (drc->drc_force) { 3014 /* 3015 * Destroy any snapshots of drc_tofs (origin_head) 3016 * after the origin (the snap before drc_ds). 3017 */ 3018 uint64_t obj; 3019 3020 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3021 while (obj != 3022 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3023 dsl_dataset_t *snap; 3024 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3025 &snap)); 3026 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3027 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3028 dsl_destroy_snapshot_sync_impl(snap, 3029 B_FALSE, tx); 3030 dsl_dataset_rele(snap, FTAG); 3031 } 3032 } 3033 VERIFY3P(drc->drc_ds->ds_prev, ==, 3034 origin_head->ds_prev); 3035 3036 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3037 origin_head, tx); 3038 dsl_dataset_snapshot_sync_impl(origin_head, 3039 drc->drc_tosnap, tx); 3040 3041 /* set snapshot's creation time and guid */ 3042 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3043 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3044 drc->drc_drrb->drr_creation_time; 3045 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3046 drc->drc_drrb->drr_toguid; 3047 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3048 ~DS_FLAG_INCONSISTENT; 3049 3050 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3051 dsl_dataset_phys(origin_head)->ds_flags &= 3052 ~DS_FLAG_INCONSISTENT; 3053 3054 drc->drc_newsnapobj = 3055 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3056 3057 dsl_dataset_rele(origin_head, FTAG); 3058 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3059 3060 if (drc->drc_owner != NULL) 3061 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3062 } else { 3063 dsl_dataset_t *ds = drc->drc_ds; 3064 3065 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3066 3067 /* set snapshot's creation time and guid */ 3068 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3069 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3070 drc->drc_drrb->drr_creation_time; 3071 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3072 drc->drc_drrb->drr_toguid; 3073 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3074 ~DS_FLAG_INCONSISTENT; 3075 3076 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3077 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3078 if (dsl_dataset_has_resume_receive_state(ds)) { 3079 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3080 DS_FIELD_RESUME_FROMGUID, tx); 3081 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3082 DS_FIELD_RESUME_OBJECT, tx); 3083 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3084 DS_FIELD_RESUME_OFFSET, tx); 3085 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3086 DS_FIELD_RESUME_BYTES, tx); 3087 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3088 DS_FIELD_RESUME_TOGUID, tx); 3089 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3090 DS_FIELD_RESUME_TONAME, tx); 3091 } 3092 drc->drc_newsnapobj = 3093 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3094 } 3095 /* 3096 * Release the hold from dmu_recv_begin. This must be done before 3097 * we return to open context, so that when we free the dataset's dnode, 3098 * we can evict its bonus buffer. 3099 */ 3100 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 3101 drc->drc_ds = NULL; 3102 } 3103 3104 static int 3105 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 3106 { 3107 dsl_pool_t *dp; 3108 dsl_dataset_t *snapds; 3109 guid_map_entry_t *gmep; 3110 int err; 3111 3112 ASSERT(guid_map != NULL); 3113 3114 err = dsl_pool_hold(name, FTAG, &dp); 3115 if (err != 0) 3116 return (err); 3117 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 3118 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 3119 if (err == 0) { 3120 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 3121 gmep->gme_ds = snapds; 3122 avl_add(guid_map, gmep); 3123 dsl_dataset_long_hold(snapds, gmep); 3124 } else { 3125 kmem_free(gmep, sizeof (*gmep)); 3126 } 3127 3128 dsl_pool_rele(dp, FTAG); 3129 return (err); 3130 } 3131 3132 static int dmu_recv_end_modified_blocks = 3; 3133 3134 static int 3135 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3136 { 3137 #ifdef _KERNEL 3138 /* 3139 * We will be destroying the ds; make sure its origin is unmounted if 3140 * necessary. 3141 */ 3142 char name[ZFS_MAX_DATASET_NAME_LEN]; 3143 dsl_dataset_name(drc->drc_ds, name); 3144 zfs_destroy_unmount_origin(name); 3145 #endif 3146 3147 return (dsl_sync_task(drc->drc_tofs, 3148 dmu_recv_end_check, dmu_recv_end_sync, drc, 3149 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3150 } 3151 3152 static int 3153 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3154 { 3155 return (dsl_sync_task(drc->drc_tofs, 3156 dmu_recv_end_check, dmu_recv_end_sync, drc, 3157 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3158 } 3159 3160 int 3161 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3162 { 3163 int error; 3164 3165 drc->drc_owner = owner; 3166 3167 if (drc->drc_newfs) 3168 error = dmu_recv_new_end(drc); 3169 else 3170 error = dmu_recv_existing_end(drc); 3171 3172 if (error != 0) { 3173 dmu_recv_cleanup_ds(drc); 3174 } else if (drc->drc_guid_to_ds_map != NULL) { 3175 (void) add_ds_to_guidmap(drc->drc_tofs, 3176 drc->drc_guid_to_ds_map, 3177 drc->drc_newsnapobj); 3178 } 3179 return (error); 3180 } 3181 3182 /* 3183 * Return TRUE if this objset is currently being received into. 3184 */ 3185 boolean_t 3186 dmu_objset_is_receiving(objset_t *os) 3187 { 3188 return (os->os_dsl_dataset != NULL && 3189 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3190 } 3191