1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dbuf.h> 35 #include <sys/dnode.h> 36 #include <sys/zfs_context.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dmu_traverse.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/zfs_ioctl.h> 45 #include <sys/zap.h> 46 #include <sys/zio_checksum.h> 47 #include <sys/zfs_znode.h> 48 #include <zfs_fletcher.h> 49 #include <sys/avl.h> 50 #include <sys/ddt.h> 51 #include <sys/zfs_onexit.h> 52 #include <sys/dmu_recv.h> 53 #include <sys/dsl_destroy.h> 54 #include <sys/blkptr.h> 55 #include <sys/dsl_bookmark.h> 56 #include <sys/zfeature.h> 57 #include <sys/bqueue.h> 58 59 int zfs_recv_queue_length = SPA_MAXBLOCKSIZE; 60 61 static char *dmu_recv_tag = "dmu_recv_tag"; 62 const char *recv_clone_name = "%recv"; 63 64 static void byteswap_record(dmu_replay_record_t *drr); 65 66 typedef enum { 67 ORNS_NO, 68 ORNS_YES, 69 ORNS_MAYBE 70 } or_need_sync_t; 71 72 typedef struct dmu_recv_begin_arg { 73 const char *drba_origin; 74 dmu_recv_cookie_t *drba_cookie; 75 cred_t *drba_cred; 76 dsl_crypto_params_t *drba_dcp; 77 } dmu_recv_begin_arg_t; 78 79 static int 80 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 81 uint64_t fromguid, uint64_t featureflags) 82 { 83 uint64_t val; 84 int error; 85 dsl_pool_t *dp = ds->ds_dir->dd_pool; 86 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; 87 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; 88 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; 89 90 /* temporary clone name must not exist */ 91 error = zap_lookup(dp->dp_meta_objset, 92 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 93 8, 1, &val); 94 if (error != ENOENT) 95 return (error == 0 ? EBUSY : error); 96 97 /* new snapshot name must not exist */ 98 error = zap_lookup(dp->dp_meta_objset, 99 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 100 drba->drba_cookie->drc_tosnap, 8, 1, &val); 101 if (error != ENOENT) 102 return (error == 0 ? EEXIST : error); 103 104 /* 105 * Check snapshot limit before receiving. We'll recheck again at the 106 * end, but might as well abort before receiving if we're already over 107 * the limit. 108 * 109 * Note that we do not check the file system limit with 110 * dsl_dir_fscount_check because the temporary %clones don't count 111 * against that limit. 112 */ 113 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 114 NULL, drba->drba_cred); 115 if (error != 0) 116 return (error); 117 118 if (fromguid != 0) { 119 dsl_dataset_t *snap; 120 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 121 122 /* Can't raw receive on top of an unencrypted dataset */ 123 if (!encrypted && raw) 124 return (SET_ERROR(EINVAL)); 125 126 /* Encryption is incompatible with embedded data */ 127 if (encrypted && embed) 128 return (SET_ERROR(EINVAL)); 129 130 /* Find snapshot in this dir that matches fromguid. */ 131 while (obj != 0) { 132 error = dsl_dataset_hold_obj(dp, obj, FTAG, 133 &snap); 134 if (error != 0) 135 return (SET_ERROR(ENODEV)); 136 if (snap->ds_dir != ds->ds_dir) { 137 dsl_dataset_rele(snap, FTAG); 138 return (SET_ERROR(ENODEV)); 139 } 140 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 141 break; 142 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 143 dsl_dataset_rele(snap, FTAG); 144 } 145 if (obj == 0) 146 return (SET_ERROR(ENODEV)); 147 148 if (drba->drba_cookie->drc_force) { 149 drba->drba_cookie->drc_fromsnapobj = obj; 150 } else { 151 /* 152 * If we are not forcing, there must be no 153 * changes since fromsnap. 154 */ 155 if (dsl_dataset_modified_since_snap(ds, snap)) { 156 dsl_dataset_rele(snap, FTAG); 157 return (SET_ERROR(ETXTBSY)); 158 } 159 drba->drba_cookie->drc_fromsnapobj = 160 ds->ds_prev->ds_object; 161 } 162 163 dsl_dataset_rele(snap, FTAG); 164 } else { 165 /* if full, then must be forced */ 166 if (!drba->drba_cookie->drc_force) 167 return (SET_ERROR(EEXIST)); 168 169 /* 170 * We don't support using zfs recv -F to blow away 171 * encrypted filesystems. This would require the 172 * dsl dir to point to the old encryption key and 173 * the new one at the same time during the receive. 174 */ 175 if ((!encrypted && raw) || encrypted) 176 return (SET_ERROR(EINVAL)); 177 178 /* 179 * Perform the same encryption checks we would if 180 * we were creating a new dataset from scratch. 181 */ 182 if (!raw) { 183 boolean_t will_encrypt; 184 185 error = dmu_objset_create_crypt_check( 186 ds->ds_dir->dd_parent, drba->drba_dcp, 187 &will_encrypt); 188 if (error != 0) 189 return (error); 190 191 if (will_encrypt && embed) 192 return (SET_ERROR(EINVAL)); 193 } 194 195 drba->drba_cookie->drc_fromsnapobj = 0; 196 } 197 198 return (0); 199 200 } 201 202 static int 203 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 204 { 205 dmu_recv_begin_arg_t *drba = arg; 206 dsl_pool_t *dp = dmu_tx_pool(tx); 207 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 208 uint64_t fromguid = drrb->drr_fromguid; 209 int flags = drrb->drr_flags; 210 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 211 int error; 212 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 213 dsl_dataset_t *ds; 214 const char *tofs = drba->drba_cookie->drc_tofs; 215 216 /* already checked */ 217 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 218 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 219 220 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 221 DMU_COMPOUNDSTREAM || 222 drrb->drr_type >= DMU_OST_NUMTYPES || 223 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 224 return (SET_ERROR(EINVAL)); 225 226 /* Verify pool version supports SA if SA_SPILL feature set */ 227 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 228 spa_version(dp->dp_spa) < SPA_VERSION_SA) 229 return (SET_ERROR(ENOTSUP)); 230 231 if (drba->drba_cookie->drc_resumable && 232 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 233 return (SET_ERROR(ENOTSUP)); 234 235 /* 236 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 237 * record to a plain WRITE record, so the pool must have the 238 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 239 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 240 */ 241 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 242 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 243 return (SET_ERROR(ENOTSUP)); 244 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 245 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 246 return (SET_ERROR(ENOTSUP)); 247 248 /* 249 * The receiving code doesn't know how to translate large blocks 250 * to smaller ones, so the pool must have the LARGE_BLOCKS 251 * feature enabled if the stream has LARGE_BLOCKS. Same with 252 * large dnodes. 253 */ 254 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 255 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 256 return (SET_ERROR(ENOTSUP)); 257 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 258 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) 259 return (SET_ERROR(ENOTSUP)); 260 261 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 262 /* raw receives require the encryption feature */ 263 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) 264 return (SET_ERROR(ENOTSUP)); 265 266 /* embedded data is incompatible with encryption and raw recv */ 267 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 268 return (SET_ERROR(EINVAL)); 269 270 /* raw receives require spill block allocation flag */ 271 if (!(flags & DRR_FLAG_SPILL_BLOCK)) 272 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 273 } else { 274 dsflags |= DS_HOLD_FLAG_DECRYPT; 275 } 276 277 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 278 if (error == 0) { 279 /* target fs already exists; recv into temp clone */ 280 281 /* Can't recv a clone into an existing fs */ 282 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 283 dsl_dataset_rele_flags(ds, dsflags, FTAG); 284 return (SET_ERROR(EINVAL)); 285 } 286 287 error = recv_begin_check_existing_impl(drba, ds, fromguid, 288 featureflags); 289 dsl_dataset_rele_flags(ds, dsflags, FTAG); 290 } else if (error == ENOENT) { 291 /* target fs does not exist; must be a full backup or clone */ 292 char buf[ZFS_MAX_DATASET_NAME_LEN]; 293 294 /* 295 * If it's a non-clone incremental, we are missing the 296 * target fs, so fail the recv. 297 */ 298 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 299 drba->drba_origin)) 300 return (SET_ERROR(ENOENT)); 301 302 /* 303 * If we're receiving a full send as a clone, and it doesn't 304 * contain all the necessary free records and freeobject 305 * records, reject it. 306 */ 307 if (fromguid == 0 && drba->drba_origin && 308 !(flags & DRR_FLAG_FREERECORDS)) 309 return (SET_ERROR(EINVAL)); 310 311 /* Open the parent of tofs */ 312 ASSERT3U(strlen(tofs), <, sizeof (buf)); 313 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 314 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 315 if (error != 0) 316 return (error); 317 318 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 319 drba->drba_origin == NULL) { 320 boolean_t will_encrypt; 321 322 /* 323 * Check that we aren't breaking any encryption rules 324 * and that we have all the parameters we need to 325 * create an encrypted dataset if necessary. If we are 326 * making an encrypted dataset the stream can't have 327 * embedded data. 328 */ 329 error = dmu_objset_create_crypt_check(ds->ds_dir, 330 drba->drba_dcp, &will_encrypt); 331 if (error != 0) { 332 dsl_dataset_rele(ds, FTAG); 333 return (error); 334 } 335 336 if (will_encrypt && 337 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 338 dsl_dataset_rele(ds, FTAG); 339 return (SET_ERROR(EINVAL)); 340 } 341 } 342 343 /* 344 * Check filesystem and snapshot limits before receiving. We'll 345 * recheck snapshot limits again at the end (we create the 346 * filesystems and increment those counts during begin_sync). 347 */ 348 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 349 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 350 if (error != 0) { 351 dsl_dataset_rele(ds, FTAG); 352 return (error); 353 } 354 355 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 356 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 357 if (error != 0) { 358 dsl_dataset_rele(ds, FTAG); 359 return (error); 360 } 361 362 if (drba->drba_origin != NULL) { 363 dsl_dataset_t *origin; 364 365 error = dsl_dataset_hold(dp, drba->drba_origin, 366 FTAG, &origin); 367 if (error != 0) { 368 dsl_dataset_rele(ds, FTAG); 369 return (error); 370 } 371 if (!origin->ds_is_snapshot) { 372 dsl_dataset_rele(origin, FTAG); 373 dsl_dataset_rele(ds, FTAG); 374 return (SET_ERROR(EINVAL)); 375 } 376 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 377 fromguid != 0) { 378 dsl_dataset_rele(origin, FTAG); 379 dsl_dataset_rele(ds, FTAG); 380 return (SET_ERROR(ENODEV)); 381 } 382 if (origin->ds_dir->dd_crypto_obj != 0 && 383 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 384 dsl_dataset_rele(origin, FTAG); 385 dsl_dataset_rele(ds, FTAG); 386 return (SET_ERROR(EINVAL)); 387 } 388 dsl_dataset_rele(origin, FTAG); 389 } 390 dsl_dataset_rele(ds, FTAG); 391 error = 0; 392 } 393 return (error); 394 } 395 396 static void 397 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 398 { 399 dmu_recv_begin_arg_t *drba = arg; 400 dsl_pool_t *dp = dmu_tx_pool(tx); 401 objset_t *mos = dp->dp_meta_objset; 402 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 403 const char *tofs = drba->drba_cookie->drc_tofs; 404 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 405 dsl_dataset_t *ds, *newds; 406 objset_t *os; 407 uint64_t dsobj; 408 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 409 int error; 410 uint64_t crflags = 0; 411 dsl_crypto_params_t dummy_dcp = { 0 }; 412 dsl_crypto_params_t *dcp = drba->drba_dcp; 413 414 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 415 crflags |= DS_FLAG_CI_DATASET; 416 417 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) 418 dsflags |= DS_HOLD_FLAG_DECRYPT; 419 420 /* 421 * Raw, non-incremental recvs always use a dummy dcp with 422 * the raw cmd set. Raw incremental recvs do not use a dcp 423 * since the encryption parameters are already set in stone. 424 */ 425 if (dcp == NULL && drba->drba_cookie->drc_fromsnapobj == 0 && 426 drba->drba_origin == NULL) { 427 ASSERT3P(dcp, ==, NULL); 428 dcp = &dummy_dcp; 429 430 if (featureflags & DMU_BACKUP_FEATURE_RAW) 431 dcp->cp_cmd = DCP_CMD_RAW_RECV; 432 } 433 434 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 435 if (error == 0) { 436 /* create temporary clone */ 437 dsl_dataset_t *snap = NULL; 438 439 if (drba->drba_cookie->drc_fromsnapobj != 0) { 440 VERIFY0(dsl_dataset_hold_obj(dp, 441 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); 442 ASSERT3P(dcp, ==, NULL); 443 } 444 445 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 446 snap, crflags, drba->drba_cred, dcp, tx); 447 if (drba->drba_cookie->drc_fromsnapobj != 0) 448 dsl_dataset_rele(snap, FTAG); 449 dsl_dataset_rele_flags(ds, dsflags, FTAG); 450 } else { 451 dsl_dir_t *dd; 452 const char *tail; 453 dsl_dataset_t *origin = NULL; 454 455 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 456 457 if (drba->drba_origin != NULL) { 458 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 459 FTAG, &origin)); 460 ASSERT3P(dcp, ==, NULL); 461 } 462 463 /* Create new dataset. */ 464 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, 465 origin, crflags, drba->drba_cred, dcp, tx); 466 if (origin != NULL) 467 dsl_dataset_rele(origin, FTAG); 468 dsl_dir_rele(dd, FTAG); 469 drba->drba_cookie->drc_newfs = B_TRUE; 470 } 471 472 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds)); 473 VERIFY0(dmu_objset_from_ds(newds, &os)); 474 475 if (drba->drba_cookie->drc_resumable) { 476 dsl_dataset_zapify(newds, tx); 477 if (drrb->drr_fromguid != 0) { 478 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 479 8, 1, &drrb->drr_fromguid, tx)); 480 } 481 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 482 8, 1, &drrb->drr_toguid, tx)); 483 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 484 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 485 uint64_t one = 1; 486 uint64_t zero = 0; 487 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 488 8, 1, &one, tx)); 489 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 490 8, 1, &zero, tx)); 491 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 492 8, 1, &zero, tx)); 493 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 494 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 495 8, 1, &one, tx)); 496 } 497 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { 498 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 499 8, 1, &one, tx)); 500 } 501 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { 502 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 503 8, 1, &one, tx)); 504 } 505 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 506 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 507 8, 1, &one, tx)); 508 } 509 } 510 511 /* 512 * Usually the os->os_encrypted value is tied to the presence of a 513 * DSL Crypto Key object in the dd. However, that will not be received 514 * until dmu_recv_stream(), so we set the value manually for now. 515 */ 516 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 517 os->os_encrypted = B_TRUE; 518 drba->drba_cookie->drc_raw = B_TRUE; 519 } 520 521 dmu_buf_will_dirty(newds->ds_dbuf, tx); 522 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 523 524 /* 525 * If we actually created a non-clone, we need to create the objset 526 * in our new dataset. If this is a raw send we postpone this until 527 * dmu_recv_stream() so that we can allocate the metadnode with the 528 * properties from the DRR_BEGIN payload. 529 */ 530 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 531 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && 532 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) { 533 (void) dmu_objset_create_impl(dp->dp_spa, 534 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 535 } 536 rrw_exit(&newds->ds_bp_rwlock, FTAG); 537 538 drba->drba_cookie->drc_ds = newds; 539 540 spa_history_log_internal_ds(newds, "receive", tx, ""); 541 } 542 543 static int 544 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 545 { 546 dmu_recv_begin_arg_t *drba = arg; 547 dsl_pool_t *dp = dmu_tx_pool(tx); 548 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 549 int error; 550 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 551 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 552 dsl_dataset_t *ds; 553 const char *tofs = drba->drba_cookie->drc_tofs; 554 555 /* 6 extra bytes for /%recv */ 556 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 557 558 /* already checked */ 559 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 560 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 561 562 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 563 DMU_COMPOUNDSTREAM || 564 drrb->drr_type >= DMU_OST_NUMTYPES) 565 return (SET_ERROR(EINVAL)); 566 567 /* Verify pool version supports SA if SA_SPILL feature set */ 568 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 569 spa_version(dp->dp_spa) < SPA_VERSION_SA) 570 return (SET_ERROR(ENOTSUP)); 571 572 /* 573 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 574 * record to a plain WRITE record, so the pool must have the 575 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 576 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 577 */ 578 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 579 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 580 return (SET_ERROR(ENOTSUP)); 581 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 582 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 583 return (SET_ERROR(ENOTSUP)); 584 585 /* 586 * The receiving code doesn't know how to translate large blocks 587 * to smaller ones, so the pool must have the LARGE_BLOCKS 588 * feature enabled if the stream has LARGE_BLOCKS. Same with 589 * large dnodes. 590 */ 591 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 592 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 593 return (SET_ERROR(ENOTSUP)); 594 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 595 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) 596 return (SET_ERROR(ENOTSUP)); 597 598 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 599 tofs, recv_clone_name); 600 601 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 602 /* raw receives require spill block allocation flag */ 603 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) 604 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 605 } else { 606 dsflags |= DS_HOLD_FLAG_DECRYPT; 607 } 608 609 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 610 /* %recv does not exist; continue in tofs */ 611 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 612 if (error != 0) 613 return (error); 614 } 615 616 /* check that ds is marked inconsistent */ 617 if (!DS_IS_INCONSISTENT(ds)) { 618 dsl_dataset_rele_flags(ds, dsflags, FTAG); 619 return (SET_ERROR(EINVAL)); 620 } 621 622 /* check that there is resuming data, and that the toguid matches */ 623 if (!dsl_dataset_is_zapified(ds)) { 624 dsl_dataset_rele_flags(ds, dsflags, FTAG); 625 return (SET_ERROR(EINVAL)); 626 } 627 uint64_t val; 628 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 629 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 630 if (error != 0 || drrb->drr_toguid != val) { 631 dsl_dataset_rele_flags(ds, dsflags, FTAG); 632 return (SET_ERROR(EINVAL)); 633 } 634 635 /* 636 * Check if the receive is still running. If so, it will be owned. 637 * Note that nothing else can own the dataset (e.g. after the receive 638 * fails) because it will be marked inconsistent. 639 */ 640 if (dsl_dataset_has_owner(ds)) { 641 dsl_dataset_rele_flags(ds, dsflags, FTAG); 642 return (SET_ERROR(EBUSY)); 643 } 644 645 /* There should not be any snapshots of this fs yet. */ 646 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 647 dsl_dataset_rele_flags(ds, dsflags, FTAG); 648 return (SET_ERROR(EINVAL)); 649 } 650 651 /* 652 * Note: resume point will be checked when we process the first WRITE 653 * record. 654 */ 655 656 /* check that the origin matches */ 657 val = 0; 658 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 659 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 660 if (drrb->drr_fromguid != val) { 661 dsl_dataset_rele_flags(ds, dsflags, FTAG); 662 return (SET_ERROR(EINVAL)); 663 } 664 665 dsl_dataset_rele_flags(ds, dsflags, FTAG); 666 return (0); 667 } 668 669 static void 670 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 671 { 672 dmu_recv_begin_arg_t *drba = arg; 673 dsl_pool_t *dp = dmu_tx_pool(tx); 674 const char *tofs = drba->drba_cookie->drc_tofs; 675 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 676 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 677 dsl_dataset_t *ds; 678 objset_t *os; 679 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 680 uint64_t dsobj; 681 /* 6 extra bytes for /%recv */ 682 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 683 684 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 685 tofs, recv_clone_name); 686 687 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 688 drba->drba_cookie->drc_raw = B_TRUE; 689 } else { 690 dsflags |= DS_HOLD_FLAG_DECRYPT; 691 } 692 693 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 694 /* %recv does not exist; continue in tofs */ 695 VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds)); 696 drba->drba_cookie->drc_newfs = B_TRUE; 697 } 698 699 /* clear the inconsistent flag so that we can own it */ 700 ASSERT(DS_IS_INCONSISTENT(ds)); 701 dmu_buf_will_dirty(ds->ds_dbuf, tx); 702 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 703 dsobj = ds->ds_object; 704 dsl_dataset_rele_flags(ds, dsflags, FTAG); 705 706 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds)); 707 VERIFY0(dmu_objset_from_ds(ds, &os)); 708 709 dmu_buf_will_dirty(ds->ds_dbuf, tx); 710 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 711 712 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 713 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || 714 drba->drba_cookie->drc_raw); 715 rrw_exit(&ds->ds_bp_rwlock, FTAG); 716 717 drba->drba_cookie->drc_ds = ds; 718 719 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 720 } 721 722 /* 723 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 724 * succeeds; otherwise we will leak the holds on the datasets. 725 */ 726 int 727 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 728 boolean_t force, boolean_t resumable, nvlist_t *localprops, 729 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc) 730 { 731 dmu_recv_begin_arg_t drba = { 0 }; 732 733 bzero(drc, sizeof (dmu_recv_cookie_t)); 734 drc->drc_drr_begin = drr_begin; 735 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 736 drc->drc_tosnap = tosnap; 737 drc->drc_tofs = tofs; 738 drc->drc_force = force; 739 drc->drc_resumable = resumable; 740 drc->drc_cred = CRED(); 741 drc->drc_clone = (origin != NULL); 742 743 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 744 drc->drc_byteswap = B_TRUE; 745 (void) fletcher_4_incremental_byteswap(drr_begin, 746 sizeof (dmu_replay_record_t), &drc->drc_cksum); 747 byteswap_record(drr_begin); 748 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 749 (void) fletcher_4_incremental_native(drr_begin, 750 sizeof (dmu_replay_record_t), &drc->drc_cksum); 751 } else { 752 return (SET_ERROR(EINVAL)); 753 } 754 755 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) 756 drc->drc_spill = B_TRUE; 757 758 drba.drba_origin = origin; 759 drba.drba_cookie = drc; 760 drba.drba_cred = CRED(); 761 762 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 763 DMU_BACKUP_FEATURE_RESUMING) { 764 return (dsl_sync_task(tofs, 765 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 766 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 767 } else { 768 int err; 769 770 /* 771 * For non-raw, non-incremental, non-resuming receives the 772 * user can specify encryption parameters on the command line 773 * with "zfs recv -o". For these receives we create a dcp and 774 * pass it to the sync task. Creating the dcp will implicitly 775 * remove the encryption params from the localprops nvlist, 776 * which avoids errors when trying to set these normally 777 * read-only properties. Any other kind of receive that 778 * attempts to set these properties will fail as a result. 779 */ 780 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 781 DMU_BACKUP_FEATURE_RAW) == 0 && 782 origin == NULL && drc->drc_drrb->drr_fromguid == 0) { 783 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 784 localprops, hidden_args, &drba.drba_dcp); 785 if (err != 0) 786 return (err); 787 } 788 789 err = dsl_sync_task(tofs, 790 dmu_recv_begin_check, dmu_recv_begin_sync, 791 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 792 dsl_crypto_params_free(drba.drba_dcp, !!err); 793 794 return (err); 795 } 796 } 797 798 struct receive_record_arg { 799 dmu_replay_record_t header; 800 void *payload; /* Pointer to a buffer containing the payload */ 801 /* 802 * If the record is a write, pointer to the arc_buf_t containing the 803 * payload. 804 */ 805 arc_buf_t *arc_buf; 806 int payload_size; 807 uint64_t bytes_read; /* bytes read from stream when record created */ 808 boolean_t eos_marker; /* Marks the end of the stream */ 809 bqueue_node_t node; 810 }; 811 812 struct receive_writer_arg { 813 objset_t *os; 814 boolean_t byteswap; 815 bqueue_t q; 816 817 /* 818 * These three args are used to signal to the main thread that we're 819 * done. 820 */ 821 kmutex_t mutex; 822 kcondvar_t cv; 823 boolean_t done; 824 825 int err; 826 /* A map from guid to dataset to help handle dedup'd streams. */ 827 avl_tree_t *guid_to_ds_map; 828 boolean_t resumable; 829 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ 830 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ 831 uint64_t last_object; 832 uint64_t last_offset; 833 uint64_t max_object; /* highest object ID referenced in stream */ 834 uint64_t bytes_read; /* bytes read when current record created */ 835 836 /* Encryption parameters for the last received DRR_OBJECT_RANGE */ 837 boolean_t or_crypt_params_present; 838 uint64_t or_firstobj; 839 uint64_t or_numslots; 840 uint8_t or_salt[ZIO_DATA_SALT_LEN]; 841 uint8_t or_iv[ZIO_DATA_IV_LEN]; 842 uint8_t or_mac[ZIO_DATA_MAC_LEN]; 843 boolean_t or_byteorder; 844 845 /* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */ 846 or_need_sync_t or_need_sync; 847 }; 848 849 struct objlist { 850 list_t list; /* List of struct receive_objnode. */ 851 /* 852 * Last object looked up. Used to assert that objects are being looked 853 * up in ascending order. 854 */ 855 uint64_t last_lookup; 856 }; 857 858 struct receive_objnode { 859 list_node_t node; 860 uint64_t object; 861 }; 862 863 struct receive_arg { 864 objset_t *os; 865 vnode_t *vp; /* The vnode to read the stream from */ 866 uint64_t voff; /* The current offset in the stream */ 867 uint64_t bytes_read; 868 /* 869 * A record that has had its payload read in, but hasn't yet been handed 870 * off to the worker thread. 871 */ 872 struct receive_record_arg *rrd; 873 /* A record that has had its header read in, but not its payload. */ 874 struct receive_record_arg *next_rrd; 875 zio_cksum_t cksum; 876 zio_cksum_t prev_cksum; 877 int err; 878 boolean_t byteswap; 879 boolean_t raw; 880 uint64_t featureflags; 881 /* Sorted list of objects not to issue prefetches for. */ 882 struct objlist ignore_objlist; 883 }; 884 885 typedef struct guid_map_entry { 886 uint64_t guid; 887 boolean_t raw; 888 dsl_dataset_t *gme_ds; 889 avl_node_t avlnode; 890 } guid_map_entry_t; 891 892 static int 893 guid_compare(const void *arg1, const void *arg2) 894 { 895 const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1; 896 const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2; 897 898 return (TREE_CMP(gmep1->guid, gmep2->guid)); 899 } 900 901 static void 902 free_guid_map_onexit(void *arg) 903 { 904 avl_tree_t *ca = arg; 905 void *cookie = NULL; 906 guid_map_entry_t *gmep; 907 908 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 909 ds_hold_flags_t dsflags = DS_HOLD_FLAG_DECRYPT; 910 911 if (gmep->raw) { 912 gmep->gme_ds->ds_objset->os_raw_receive = B_FALSE; 913 dsflags &= ~DS_HOLD_FLAG_DECRYPT; 914 } 915 916 dsl_dataset_disown(gmep->gme_ds, dsflags, gmep); 917 kmem_free(gmep, sizeof (guid_map_entry_t)); 918 } 919 avl_destroy(ca); 920 kmem_free(ca, sizeof (avl_tree_t)); 921 } 922 923 static int 924 receive_read(struct receive_arg *ra, int len, void *buf) 925 { 926 int done = 0; 927 928 /* 929 * The code doesn't rely on this (lengths being multiples of 8). See 930 * comment in dump_bytes. 931 */ 932 ASSERT(len % 8 == 0 || 933 (ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0); 934 935 while (done < len) { 936 ssize_t resid; 937 938 ra->err = vn_rdwr(UIO_READ, ra->vp, 939 (char *)buf + done, len - done, 940 ra->voff, UIO_SYSSPACE, FAPPEND, 941 RLIM64_INFINITY, CRED(), &resid); 942 943 if (resid == len - done) { 944 /* 945 * Note: ECKSUM indicates that the receive 946 * was interrupted and can potentially be resumed. 947 */ 948 ra->err = SET_ERROR(ECKSUM); 949 } 950 ra->voff += len - done - resid; 951 done = len - resid; 952 if (ra->err != 0) 953 return (ra->err); 954 } 955 956 ra->bytes_read += len; 957 958 ASSERT3U(done, ==, len); 959 return (0); 960 } 961 962 static void 963 byteswap_record(dmu_replay_record_t *drr) 964 { 965 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 966 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 967 drr->drr_type = BSWAP_32(drr->drr_type); 968 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 969 970 switch (drr->drr_type) { 971 case DRR_BEGIN: 972 DO64(drr_begin.drr_magic); 973 DO64(drr_begin.drr_versioninfo); 974 DO64(drr_begin.drr_creation_time); 975 DO32(drr_begin.drr_type); 976 DO32(drr_begin.drr_flags); 977 DO64(drr_begin.drr_toguid); 978 DO64(drr_begin.drr_fromguid); 979 break; 980 case DRR_OBJECT: 981 DO64(drr_object.drr_object); 982 DO32(drr_object.drr_type); 983 DO32(drr_object.drr_bonustype); 984 DO32(drr_object.drr_blksz); 985 DO32(drr_object.drr_bonuslen); 986 DO32(drr_object.drr_raw_bonuslen); 987 DO64(drr_object.drr_toguid); 988 DO64(drr_object.drr_maxblkid); 989 break; 990 case DRR_FREEOBJECTS: 991 DO64(drr_freeobjects.drr_firstobj); 992 DO64(drr_freeobjects.drr_numobjs); 993 DO64(drr_freeobjects.drr_toguid); 994 break; 995 case DRR_WRITE: 996 DO64(drr_write.drr_object); 997 DO32(drr_write.drr_type); 998 DO64(drr_write.drr_offset); 999 DO64(drr_write.drr_logical_size); 1000 DO64(drr_write.drr_toguid); 1001 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1002 DO64(drr_write.drr_key.ddk_prop); 1003 DO64(drr_write.drr_compressed_size); 1004 break; 1005 case DRR_WRITE_BYREF: 1006 DO64(drr_write_byref.drr_object); 1007 DO64(drr_write_byref.drr_offset); 1008 DO64(drr_write_byref.drr_length); 1009 DO64(drr_write_byref.drr_toguid); 1010 DO64(drr_write_byref.drr_refguid); 1011 DO64(drr_write_byref.drr_refobject); 1012 DO64(drr_write_byref.drr_refoffset); 1013 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1014 drr_key.ddk_cksum); 1015 DO64(drr_write_byref.drr_key.ddk_prop); 1016 break; 1017 case DRR_WRITE_EMBEDDED: 1018 DO64(drr_write_embedded.drr_object); 1019 DO64(drr_write_embedded.drr_offset); 1020 DO64(drr_write_embedded.drr_length); 1021 DO64(drr_write_embedded.drr_toguid); 1022 DO32(drr_write_embedded.drr_lsize); 1023 DO32(drr_write_embedded.drr_psize); 1024 break; 1025 case DRR_FREE: 1026 DO64(drr_free.drr_object); 1027 DO64(drr_free.drr_offset); 1028 DO64(drr_free.drr_length); 1029 DO64(drr_free.drr_toguid); 1030 break; 1031 case DRR_SPILL: 1032 DO64(drr_spill.drr_object); 1033 DO64(drr_spill.drr_length); 1034 DO64(drr_spill.drr_toguid); 1035 DO64(drr_spill.drr_compressed_size); 1036 DO32(drr_spill.drr_type); 1037 break; 1038 case DRR_OBJECT_RANGE: 1039 DO64(drr_object_range.drr_firstobj); 1040 DO64(drr_object_range.drr_numslots); 1041 DO64(drr_object_range.drr_toguid); 1042 break; 1043 case DRR_END: 1044 DO64(drr_end.drr_toguid); 1045 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1046 break; 1047 } 1048 1049 if (drr->drr_type != DRR_BEGIN) { 1050 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1051 } 1052 1053 #undef DO64 1054 #undef DO32 1055 } 1056 1057 static inline uint8_t 1058 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1059 { 1060 if (bonus_type == DMU_OT_SA) { 1061 return (1); 1062 } else { 1063 return (1 + 1064 ((DN_OLD_MAX_BONUSLEN - 1065 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 1066 } 1067 } 1068 1069 static void 1070 save_resume_state(struct receive_writer_arg *rwa, 1071 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1072 { 1073 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1074 1075 if (!rwa->resumable) 1076 return; 1077 1078 /* 1079 * We use ds_resume_bytes[] != 0 to indicate that we need to 1080 * update this on disk, so it must not be 0. 1081 */ 1082 ASSERT(rwa->bytes_read != 0); 1083 1084 /* 1085 * We only resume from write records, which have a valid 1086 * (non-meta-dnode) object number. 1087 */ 1088 ASSERT(object != 0); 1089 1090 /* 1091 * For resuming to work correctly, we must receive records in order, 1092 * sorted by object,offset. This is checked by the callers, but 1093 * assert it here for good measure. 1094 */ 1095 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1096 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1097 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1098 ASSERT3U(rwa->bytes_read, >=, 1099 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1100 1101 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1102 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1103 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1104 } 1105 1106 int receive_object_delay_frac = 0; 1107 1108 static int 1109 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1110 void *data) 1111 { 1112 dmu_object_info_t doi; 1113 dmu_tx_t *tx; 1114 uint64_t object; 1115 int err; 1116 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1117 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1118 1119 if (receive_object_delay_frac != 0 && 1120 spa_get_random(receive_object_delay_frac) == 0) 1121 delay(1); 1122 1123 if (drro->drr_type == DMU_OT_NONE || 1124 !DMU_OT_IS_VALID(drro->drr_type) || 1125 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1126 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1127 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1128 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1129 drro->drr_blksz < SPA_MINBLOCKSIZE || 1130 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1131 drro->drr_bonuslen > 1132 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 1133 dn_slots > 1134 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 1135 return (SET_ERROR(EINVAL)); 1136 } 1137 1138 if (rwa->raw) { 1139 /* 1140 * We should have received a DRR_OBJECT_RANGE record 1141 * containing this block and stored it in rwa. 1142 */ 1143 if (drro->drr_object < rwa->or_firstobj || 1144 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || 1145 drro->drr_raw_bonuslen < drro->drr_bonuslen || 1146 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || 1147 drro->drr_nlevels > DN_MAX_LEVELS || 1148 drro->drr_nblkptr > DN_MAX_NBLKPTR || 1149 DN_SLOTS_TO_BONUSLEN(drro->drr_dn_slots) < 1150 drro->drr_raw_bonuslen) 1151 return (SET_ERROR(EINVAL)); 1152 } else { 1153 1154 /* 1155 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN 1156 * record indicates this by setting DRR_FLAG_SPILL_BLOCK. 1157 */ 1158 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || 1159 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { 1160 return (SET_ERROR(EINVAL)); 1161 } 1162 1163 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || 1164 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { 1165 return (SET_ERROR(EINVAL)); 1166 } 1167 } 1168 1169 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1170 1171 if (err != 0 && err != ENOENT && err != EEXIST) 1172 return (SET_ERROR(EINVAL)); 1173 1174 if (drro->drr_object > rwa->max_object) 1175 rwa->max_object = drro->drr_object; 1176 1177 /* 1178 * If we are losing blkptrs or changing the block size this must 1179 * be a new file instance. We must clear out the previous file 1180 * contents before we can change this type of metadata in the dnode. 1181 * Raw receives will also check that the indirect structure of the 1182 * dnode hasn't changed. 1183 */ 1184 if (err == 0) { 1185 uint32_t indblksz = drro->drr_indblkshift ? 1186 1ULL << drro->drr_indblkshift : 0; 1187 int nblkptr = deduce_nblkptr(drro->drr_bonustype, 1188 drro->drr_bonuslen); 1189 boolean_t did_free = B_FALSE; 1190 1191 object = drro->drr_object; 1192 1193 /* nblkptr should be bounded by the bonus size and type */ 1194 if (rwa->raw && nblkptr != drro->drr_nblkptr) 1195 return (SET_ERROR(EINVAL)); 1196 1197 /* 1198 * Check for indicators that the object was freed and 1199 * reallocated. For all sends, these indicators are: 1200 * - A changed block size 1201 * - A smaller nblkptr 1202 * - A changed dnode size 1203 * For raw sends we also check a few other fields to 1204 * ensure we are preserving the objset structure exactly 1205 * as it was on the receive side: 1206 * - A changed indirect block size 1207 * - A smaller nlevels 1208 */ 1209 if (drro->drr_blksz != doi.doi_data_block_size || 1210 nblkptr < doi.doi_nblkptr || 1211 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT || 1212 (rwa->raw && 1213 (indblksz != doi.doi_metadata_block_size || 1214 drro->drr_nlevels < doi.doi_indirection))) { 1215 err = dmu_free_long_range(rwa->os, 1216 drro->drr_object, 0, DMU_OBJECT_END); 1217 if (err != 0) 1218 return (SET_ERROR(EINVAL)); 1219 else 1220 did_free = B_TRUE; 1221 } 1222 1223 /* 1224 * The dmu does not currently support decreasing nlevels 1225 * or changing the number of dnode slots on an object. For 1226 * non-raw sends, this does not matter and the new object 1227 * can just use the previous one's nlevels. For raw sends, 1228 * however, the structure of the received dnode (including 1229 * nlevels and dnode slots) must match that of the send 1230 * side. Therefore, instead of using dmu_object_reclaim(), 1231 * we must free the object completely and call 1232 * dmu_object_claim_dnsize() instead. 1233 */ 1234 if ((rwa->raw && drro->drr_nlevels < doi.doi_indirection) || 1235 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) { 1236 err = dmu_free_long_object(rwa->os, drro->drr_object); 1237 if (err != 0) 1238 return (SET_ERROR(EINVAL)); 1239 1240 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1241 object = DMU_NEW_OBJECT; 1242 } 1243 1244 /* 1245 * For raw receives, free everything beyond the new incoming 1246 * maxblkid. Normally this would be done with a DRR_FREE 1247 * record that would come after this DRR_OBJECT record is 1248 * processed. However, for raw receives we manually set the 1249 * maxblkid from the drr_maxblkid and so we must first free 1250 * everything above that blkid to ensure the DMU is always 1251 * consistent with itself. We will never free the first block 1252 * of the object here because a maxblkid of 0 could indicate 1253 * an object with a single block or one with no blocks. This 1254 * free may be skipped when dmu_free_long_range() was called 1255 * above since it covers the entire object's contents. 1256 */ 1257 if (rwa->raw && object != DMU_NEW_OBJECT && !did_free) { 1258 err = dmu_free_long_range(rwa->os, drro->drr_object, 1259 (drro->drr_maxblkid + 1) * doi.doi_data_block_size, 1260 DMU_OBJECT_END); 1261 if (err != 0) 1262 return (SET_ERROR(EINVAL)); 1263 } 1264 } else if (err == EEXIST) { 1265 /* 1266 * The object requested is currently an interior slot of a 1267 * multi-slot dnode. This will be resolved when the next txg 1268 * is synced out, since the send stream will have told us 1269 * to free this slot when we freed the associated dnode 1270 * earlier in the stream. 1271 */ 1272 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1273 1274 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) 1275 return (SET_ERROR(EINVAL)); 1276 1277 /* object was freed and we are about to allocate a new one */ 1278 object = DMU_NEW_OBJECT; 1279 } else { 1280 /* 1281 * If the only record in this range so far was DRR_FREEOBJECTS 1282 * with at least one actually freed object, it's possible that 1283 * the block will now be converted to a hole. We need to wait 1284 * for the txg to sync to prevent races. 1285 */ 1286 if (rwa->or_need_sync == ORNS_YES) 1287 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1288 1289 /* object is free and we are about to allocate a new one */ 1290 object = DMU_NEW_OBJECT; 1291 } 1292 1293 /* Only relevant for the first object in the range */ 1294 rwa->or_need_sync = ORNS_NO; 1295 1296 /* 1297 * If this is a multi-slot dnode there is a chance that this 1298 * object will expand into a slot that is already used by 1299 * another object from the previous snapshot. We must free 1300 * these objects before we attempt to allocate the new dnode. 1301 */ 1302 if (dn_slots > 1) { 1303 boolean_t need_sync = B_FALSE; 1304 1305 for (uint64_t slot = drro->drr_object + 1; 1306 slot < drro->drr_object + dn_slots; 1307 slot++) { 1308 dmu_object_info_t slot_doi; 1309 1310 err = dmu_object_info(rwa->os, slot, &slot_doi); 1311 if (err == ENOENT || err == EEXIST) 1312 continue; 1313 else if (err != 0) 1314 return (err); 1315 1316 err = dmu_free_long_object(rwa->os, slot); 1317 1318 if (err != 0) 1319 return (err); 1320 1321 need_sync = B_TRUE; 1322 } 1323 1324 if (need_sync) 1325 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1326 } 1327 1328 tx = dmu_tx_create(rwa->os); 1329 dmu_tx_hold_bonus(tx, object); 1330 dmu_tx_hold_write(tx, object, 0, 0); 1331 err = dmu_tx_assign(tx, TXG_WAIT); 1332 if (err != 0) { 1333 dmu_tx_abort(tx); 1334 return (err); 1335 } 1336 1337 if (object == DMU_NEW_OBJECT) { 1338 /* Currently free, wants to be allocated */ 1339 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 1340 drro->drr_type, drro->drr_blksz, 1341 drro->drr_bonustype, drro->drr_bonuslen, 1342 dn_slots << DNODE_SHIFT, tx); 1343 } else if (drro->drr_type != doi.doi_type || 1344 drro->drr_blksz != doi.doi_data_block_size || 1345 drro->drr_bonustype != doi.doi_bonus_type || 1346 drro->drr_bonuslen != doi.doi_bonus_size) { 1347 /* Currently allocated, but with different properties */ 1348 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 1349 drro->drr_type, drro->drr_blksz, 1350 drro->drr_bonustype, drro->drr_bonuslen, 1351 dn_slots << DNODE_SHIFT, rwa->spill ? 1352 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); 1353 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { 1354 /* 1355 * Currently allocated, the existing version of this object 1356 * may reference a spill block that is no longer allocated 1357 * at the source and needs to be freed. 1358 */ 1359 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); 1360 } 1361 1362 if (err != 0) { 1363 dmu_tx_commit(tx); 1364 return (SET_ERROR(EINVAL)); 1365 } 1366 1367 if (rwa->or_crypt_params_present) { 1368 /* 1369 * Set the crypt params for the buffer associated with this 1370 * range of dnodes. This causes the blkptr_t to have the 1371 * same crypt params (byteorder, salt, iv, mac) as on the 1372 * sending side. 1373 * 1374 * Since we are committing this tx now, it is possible for 1375 * the dnode block to end up on-disk with the incorrect MAC, 1376 * if subsequent objects in this block are received in a 1377 * different txg. However, since the dataset is marked as 1378 * inconsistent, no code paths will do a non-raw read (or 1379 * decrypt the block / verify the MAC). The receive code and 1380 * scrub code can safely do raw reads and verify the 1381 * checksum. They don't need to verify the MAC. 1382 */ 1383 dmu_buf_t *db = NULL; 1384 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; 1385 1386 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), 1387 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); 1388 if (err != 0) { 1389 dmu_tx_commit(tx); 1390 return (SET_ERROR(EINVAL)); 1391 } 1392 1393 dmu_buf_set_crypt_params(db, rwa->or_byteorder, 1394 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); 1395 1396 dmu_buf_rele(db, FTAG); 1397 1398 rwa->or_crypt_params_present = B_FALSE; 1399 } 1400 1401 dmu_object_set_checksum(rwa->os, drro->drr_object, 1402 drro->drr_checksumtype, tx); 1403 dmu_object_set_compress(rwa->os, drro->drr_object, 1404 drro->drr_compress, tx); 1405 1406 /* handle more restrictive dnode structuring for raw recvs */ 1407 if (rwa->raw) { 1408 /* 1409 * Set the indirect block size, block shift, nlevels. 1410 * This will not fail because we ensured all of the 1411 * blocks were freed earlier if this is a new object. 1412 * For non-new objects block size and indirect block 1413 * shift cannot change and nlevels can only increase. 1414 */ 1415 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, 1416 drro->drr_blksz, drro->drr_indblkshift, tx)); 1417 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, 1418 drro->drr_nlevels, tx)); 1419 1420 /* 1421 * Set the maxblkid. This will always succeed because 1422 * we freed all blocks beyond the new maxblkid above. 1423 */ 1424 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, 1425 drro->drr_maxblkid, tx)); 1426 } 1427 1428 if (data != NULL) { 1429 dmu_buf_t *db; 1430 dnode_t *dn; 1431 uint32_t flags = DMU_READ_NO_PREFETCH; 1432 1433 if (rwa->raw) 1434 flags |= DMU_READ_NO_DECRYPT; 1435 1436 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); 1437 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); 1438 1439 dmu_buf_will_dirty(db, tx); 1440 1441 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1442 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro)); 1443 1444 /* 1445 * Raw bonus buffers have their byteorder determined by the 1446 * DRR_OBJECT_RANGE record. 1447 */ 1448 if (rwa->byteswap && !rwa->raw) { 1449 dmu_object_byteswap_t byteswap = 1450 DMU_OT_BYTESWAP(drro->drr_bonustype); 1451 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1452 DRR_OBJECT_PAYLOAD_SIZE(drro)); 1453 } 1454 dmu_buf_rele(db, FTAG); 1455 dnode_rele(dn, FTAG); 1456 } 1457 dmu_tx_commit(tx); 1458 1459 return (0); 1460 } 1461 1462 /* ARGSUSED */ 1463 static int 1464 receive_freeobjects(struct receive_writer_arg *rwa, 1465 struct drr_freeobjects *drrfo) 1466 { 1467 uint64_t obj; 1468 int next_err = 0; 1469 1470 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 1471 return (SET_ERROR(EINVAL)); 1472 1473 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 1474 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 1475 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 1476 dmu_object_info_t doi; 1477 int err; 1478 1479 err = dmu_object_info(rwa->os, obj, &doi); 1480 if (err == ENOENT) 1481 continue; 1482 else if (err != 0) 1483 return (err); 1484 1485 err = dmu_free_long_object(rwa->os, obj); 1486 1487 if (err != 0) 1488 return (err); 1489 1490 if (rwa->or_need_sync == ORNS_MAYBE) 1491 rwa->or_need_sync = ORNS_YES; 1492 1493 if (obj > rwa->max_object) 1494 rwa->max_object = obj; 1495 } 1496 if (next_err != ESRCH) 1497 return (next_err); 1498 return (0); 1499 } 1500 1501 static int 1502 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 1503 arc_buf_t *abuf) 1504 { 1505 int err; 1506 dmu_tx_t *tx; 1507 dnode_t *dn; 1508 1509 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 1510 !DMU_OT_IS_VALID(drrw->drr_type)) 1511 return (SET_ERROR(EINVAL)); 1512 1513 /* 1514 * For resuming to work, records must be in increasing order 1515 * by (object, offset). 1516 */ 1517 if (drrw->drr_object < rwa->last_object || 1518 (drrw->drr_object == rwa->last_object && 1519 drrw->drr_offset < rwa->last_offset)) { 1520 return (SET_ERROR(EINVAL)); 1521 } 1522 rwa->last_object = drrw->drr_object; 1523 rwa->last_offset = drrw->drr_offset; 1524 1525 if (rwa->last_object > rwa->max_object) 1526 rwa->max_object = rwa->last_object; 1527 1528 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 1529 return (SET_ERROR(EINVAL)); 1530 1531 tx = dmu_tx_create(rwa->os); 1532 dmu_tx_hold_write(tx, drrw->drr_object, 1533 drrw->drr_offset, drrw->drr_logical_size); 1534 err = dmu_tx_assign(tx, TXG_WAIT); 1535 if (err != 0) { 1536 dmu_tx_abort(tx); 1537 return (err); 1538 } 1539 1540 if (rwa->byteswap && !arc_is_encrypted(abuf) && 1541 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { 1542 dmu_object_byteswap_t byteswap = 1543 DMU_OT_BYTESWAP(drrw->drr_type); 1544 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 1545 DRR_WRITE_PAYLOAD_SIZE(drrw)); 1546 } 1547 1548 VERIFY0(dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn)); 1549 err = dmu_assign_arcbuf_by_dnode(dn, drrw->drr_offset, abuf, tx); 1550 if (err != 0) { 1551 dnode_rele(dn, FTAG); 1552 dmu_tx_commit(tx); 1553 return (err); 1554 } 1555 dnode_rele(dn, FTAG); 1556 1557 /* 1558 * Note: If the receive fails, we want the resume stream to start 1559 * with the same record that we last successfully received (as opposed 1560 * to the next record), so that we can verify that we are 1561 * resuming from the correct location. 1562 */ 1563 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 1564 dmu_tx_commit(tx); 1565 1566 return (0); 1567 } 1568 1569 /* 1570 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 1571 * streams to refer to a copy of the data that is already on the 1572 * system because it came in earlier in the stream. This function 1573 * finds the earlier copy of the data, and uses that copy instead of 1574 * data from the stream to fulfill this write. 1575 */ 1576 static int 1577 receive_write_byref(struct receive_writer_arg *rwa, 1578 struct drr_write_byref *drrwbr) 1579 { 1580 dmu_tx_t *tx; 1581 int err; 1582 guid_map_entry_t gmesrch; 1583 guid_map_entry_t *gmep; 1584 avl_index_t where; 1585 objset_t *ref_os = NULL; 1586 int flags = DMU_READ_PREFETCH; 1587 dmu_buf_t *dbp; 1588 1589 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 1590 return (SET_ERROR(EINVAL)); 1591 1592 /* 1593 * If the GUID of the referenced dataset is different from the 1594 * GUID of the target dataset, find the referenced dataset. 1595 */ 1596 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 1597 gmesrch.guid = drrwbr->drr_refguid; 1598 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 1599 &where)) == NULL) { 1600 return (SET_ERROR(EINVAL)); 1601 } 1602 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 1603 return (SET_ERROR(EINVAL)); 1604 } else { 1605 ref_os = rwa->os; 1606 } 1607 1608 if (drrwbr->drr_object > rwa->max_object) 1609 rwa->max_object = drrwbr->drr_object; 1610 1611 if (rwa->raw) 1612 flags |= DMU_READ_NO_DECRYPT; 1613 1614 /* may return either a regular db or an encrypted one */ 1615 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 1616 drrwbr->drr_refoffset, FTAG, &dbp, flags); 1617 if (err != 0) 1618 return (err); 1619 1620 tx = dmu_tx_create(rwa->os); 1621 1622 dmu_tx_hold_write(tx, drrwbr->drr_object, 1623 drrwbr->drr_offset, drrwbr->drr_length); 1624 err = dmu_tx_assign(tx, TXG_WAIT); 1625 if (err != 0) { 1626 dmu_tx_abort(tx); 1627 return (err); 1628 } 1629 1630 if (rwa->raw) { 1631 dmu_copy_from_buf(rwa->os, drrwbr->drr_object, 1632 drrwbr->drr_offset, dbp, tx); 1633 } else { 1634 dmu_write(rwa->os, drrwbr->drr_object, 1635 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 1636 } 1637 dmu_buf_rele(dbp, FTAG); 1638 1639 /* See comment in restore_write. */ 1640 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 1641 dmu_tx_commit(tx); 1642 return (0); 1643 } 1644 1645 static int 1646 receive_write_embedded(struct receive_writer_arg *rwa, 1647 struct drr_write_embedded *drrwe, void *data) 1648 { 1649 dmu_tx_t *tx; 1650 int err; 1651 1652 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 1653 return (EINVAL); 1654 1655 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 1656 return (EINVAL); 1657 1658 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 1659 return (EINVAL); 1660 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 1661 return (EINVAL); 1662 if (rwa->raw) 1663 return (SET_ERROR(EINVAL)); 1664 1665 if (drrwe->drr_object > rwa->max_object) 1666 rwa->max_object = drrwe->drr_object; 1667 1668 tx = dmu_tx_create(rwa->os); 1669 1670 dmu_tx_hold_write(tx, drrwe->drr_object, 1671 drrwe->drr_offset, drrwe->drr_length); 1672 err = dmu_tx_assign(tx, TXG_WAIT); 1673 if (err != 0) { 1674 dmu_tx_abort(tx); 1675 return (err); 1676 } 1677 1678 dmu_write_embedded(rwa->os, drrwe->drr_object, 1679 drrwe->drr_offset, data, drrwe->drr_etype, 1680 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 1681 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 1682 1683 /* See comment in restore_write. */ 1684 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 1685 dmu_tx_commit(tx); 1686 return (0); 1687 } 1688 1689 static int 1690 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 1691 arc_buf_t *abuf) 1692 { 1693 dmu_tx_t *tx; 1694 dmu_buf_t *db, *db_spill; 1695 int err; 1696 uint32_t flags = 0; 1697 1698 if (drrs->drr_length < SPA_MINBLOCKSIZE || 1699 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 1700 return (SET_ERROR(EINVAL)); 1701 1702 /* 1703 * This is an unmodified spill block which was added to the stream 1704 * to resolve an issue with incorrectly removing spill blocks. It 1705 * should be ignored by current versions of the code which support 1706 * the DRR_FLAG_SPILL_BLOCK flag. 1707 */ 1708 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { 1709 dmu_return_arcbuf(abuf); 1710 return (0); 1711 } 1712 1713 if (rwa->raw) { 1714 if (!DMU_OT_IS_VALID(drrs->drr_type) || 1715 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || 1716 drrs->drr_compressed_size == 0) 1717 return (SET_ERROR(EINVAL)); 1718 1719 flags |= DMU_READ_NO_DECRYPT; 1720 } 1721 1722 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 1723 return (SET_ERROR(EINVAL)); 1724 1725 if (drrs->drr_object > rwa->max_object) 1726 rwa->max_object = drrs->drr_object; 1727 1728 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 1729 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, 1730 &db_spill)) != 0) { 1731 dmu_buf_rele(db, FTAG); 1732 return (err); 1733 } 1734 1735 tx = dmu_tx_create(rwa->os); 1736 1737 dmu_tx_hold_spill(tx, db->db_object); 1738 1739 err = dmu_tx_assign(tx, TXG_WAIT); 1740 if (err != 0) { 1741 dmu_buf_rele(db, FTAG); 1742 dmu_buf_rele(db_spill, FTAG); 1743 dmu_tx_abort(tx); 1744 return (err); 1745 } 1746 1747 /* 1748 * Spill blocks may both grow and shrink. When a change in size 1749 * occurs any existing dbuf must be updated to match the logical 1750 * size of the provided arc_buf_t. 1751 */ 1752 if (db_spill->db_size != drrs->drr_length) { 1753 dmu_buf_will_fill(db_spill, tx); 1754 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 1755 drrs->drr_length, tx)); 1756 } 1757 1758 if (rwa->byteswap && !arc_is_encrypted(abuf) && 1759 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { 1760 dmu_object_byteswap_t byteswap = 1761 DMU_OT_BYTESWAP(drrs->drr_type); 1762 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 1763 DRR_SPILL_PAYLOAD_SIZE(drrs)); 1764 } 1765 1766 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); 1767 1768 dmu_buf_rele(db, FTAG); 1769 dmu_buf_rele(db_spill, FTAG); 1770 1771 dmu_tx_commit(tx); 1772 return (0); 1773 } 1774 1775 /* ARGSUSED */ 1776 static int 1777 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 1778 { 1779 int err; 1780 1781 if (drrf->drr_length != DMU_OBJECT_END && 1782 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 1783 return (SET_ERROR(EINVAL)); 1784 1785 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 1786 return (SET_ERROR(EINVAL)); 1787 1788 if (drrf->drr_object > rwa->max_object) 1789 rwa->max_object = drrf->drr_object; 1790 1791 err = dmu_free_long_range(rwa->os, drrf->drr_object, 1792 drrf->drr_offset, drrf->drr_length); 1793 1794 return (err); 1795 } 1796 1797 static int 1798 receive_object_range(struct receive_writer_arg *rwa, 1799 struct drr_object_range *drror) 1800 { 1801 /* 1802 * By default, we assume this block is in our native format 1803 * (ZFS_HOST_BYTEORDER). We then take into account whether 1804 * the send stream is byteswapped (rwa->byteswap). Finally, 1805 * we need to byteswap again if this particular block was 1806 * in non-native format on the send side. 1807 */ 1808 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ 1809 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); 1810 1811 /* 1812 * Since dnode block sizes are constant, we should not need to worry 1813 * about making sure that the dnode block size is the same on the 1814 * sending and receiving sides for the time being. For non-raw sends, 1815 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE 1816 * record at all). Raw sends require this record type because the 1817 * encryption parameters are used to protect an entire block of bonus 1818 * buffers. If the size of dnode blocks ever becomes variable, 1819 * handling will need to be added to ensure that dnode block sizes 1820 * match on the sending and receiving side. 1821 */ 1822 if (drror->drr_numslots != DNODES_PER_BLOCK || 1823 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || 1824 !rwa->raw) 1825 return (SET_ERROR(EINVAL)); 1826 1827 if (drror->drr_firstobj > rwa->max_object) 1828 rwa->max_object = drror->drr_firstobj; 1829 1830 /* 1831 * The DRR_OBJECT_RANGE handling must be deferred to receive_object() 1832 * so that the block of dnodes is not written out when it's empty, 1833 * and converted to a HOLE BP. 1834 */ 1835 rwa->or_crypt_params_present = B_TRUE; 1836 rwa->or_firstobj = drror->drr_firstobj; 1837 rwa->or_numslots = drror->drr_numslots; 1838 bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN); 1839 bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN); 1840 bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN); 1841 rwa->or_byteorder = byteorder; 1842 1843 rwa->or_need_sync = ORNS_MAYBE; 1844 1845 return (0); 1846 } 1847 1848 /* used to destroy the drc_ds on error */ 1849 static void 1850 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 1851 { 1852 dsl_dataset_t *ds = drc->drc_ds; 1853 ds_hold_flags_t dsflags; 1854 1855 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 1856 /* 1857 * Wait for the txg sync before cleaning up the receive. For 1858 * resumable receives, this ensures that our resume state has 1859 * been written out to disk. For raw receives, this ensures 1860 * that the user accounting code will not attempt to do anything 1861 * after we stopped receiving the dataset. 1862 */ 1863 txg_wait_synced(ds->ds_dir->dd_pool, 0); 1864 ds->ds_objset->os_raw_receive = B_FALSE; 1865 1866 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1867 if (drc->drc_resumable && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { 1868 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1869 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 1870 } else { 1871 char name[ZFS_MAX_DATASET_NAME_LEN]; 1872 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1873 dsl_dataset_name(ds, name); 1874 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 1875 (void) dsl_destroy_head(name); 1876 } 1877 } 1878 1879 static void 1880 receive_cksum(struct receive_arg *ra, int len, void *buf) 1881 { 1882 if (ra->byteswap) { 1883 (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 1884 } else { 1885 (void) fletcher_4_incremental_native(buf, len, &ra->cksum); 1886 } 1887 } 1888 1889 /* 1890 * Read the payload into a buffer of size len, and update the current record's 1891 * payload field. 1892 * Allocate ra->next_rrd and read the next record's header into 1893 * ra->next_rrd->header. 1894 * Verify checksum of payload and next record. 1895 */ 1896 static int 1897 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 1898 { 1899 int err; 1900 1901 if (len != 0) { 1902 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 1903 err = receive_read(ra, len, buf); 1904 if (err != 0) 1905 return (err); 1906 receive_cksum(ra, len, buf); 1907 1908 /* note: rrd is NULL when reading the begin record's payload */ 1909 if (ra->rrd != NULL) { 1910 ra->rrd->payload = buf; 1911 ra->rrd->payload_size = len; 1912 ra->rrd->bytes_read = ra->bytes_read; 1913 } 1914 } 1915 1916 ra->prev_cksum = ra->cksum; 1917 1918 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 1919 err = receive_read(ra, sizeof (ra->next_rrd->header), 1920 &ra->next_rrd->header); 1921 ra->next_rrd->bytes_read = ra->bytes_read; 1922 1923 if (err != 0) { 1924 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 1925 ra->next_rrd = NULL; 1926 return (err); 1927 } 1928 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 1929 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 1930 ra->next_rrd = NULL; 1931 return (SET_ERROR(EINVAL)); 1932 } 1933 1934 /* 1935 * Note: checksum is of everything up to but not including the 1936 * checksum itself. 1937 */ 1938 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 1939 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 1940 receive_cksum(ra, 1941 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 1942 &ra->next_rrd->header); 1943 1944 zio_cksum_t cksum_orig = 1945 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 1946 zio_cksum_t *cksump = 1947 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 1948 1949 if (ra->byteswap) 1950 byteswap_record(&ra->next_rrd->header); 1951 1952 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 1953 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 1954 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 1955 ra->next_rrd = NULL; 1956 return (SET_ERROR(ECKSUM)); 1957 } 1958 1959 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 1960 1961 return (0); 1962 } 1963 1964 static void 1965 objlist_create(struct objlist *list) 1966 { 1967 list_create(&list->list, sizeof (struct receive_objnode), 1968 offsetof(struct receive_objnode, node)); 1969 list->last_lookup = 0; 1970 } 1971 1972 static void 1973 objlist_destroy(struct objlist *list) 1974 { 1975 for (struct receive_objnode *n = list_remove_head(&list->list); 1976 n != NULL; n = list_remove_head(&list->list)) { 1977 kmem_free(n, sizeof (*n)); 1978 } 1979 list_destroy(&list->list); 1980 } 1981 1982 /* 1983 * This function looks through the objlist to see if the specified object number 1984 * is contained in the objlist. In the process, it will remove all object 1985 * numbers in the list that are smaller than the specified object number. Thus, 1986 * any lookup of an object number smaller than a previously looked up object 1987 * number will always return false; therefore, all lookups should be done in 1988 * ascending order. 1989 */ 1990 static boolean_t 1991 objlist_exists(struct objlist *list, uint64_t object) 1992 { 1993 struct receive_objnode *node = list_head(&list->list); 1994 ASSERT3U(object, >=, list->last_lookup); 1995 list->last_lookup = object; 1996 while (node != NULL && node->object < object) { 1997 VERIFY3P(node, ==, list_remove_head(&list->list)); 1998 kmem_free(node, sizeof (*node)); 1999 node = list_head(&list->list); 2000 } 2001 return (node != NULL && node->object == object); 2002 } 2003 2004 /* 2005 * The objlist is a list of object numbers stored in ascending order. However, 2006 * the insertion of new object numbers does not seek out the correct location to 2007 * store a new object number; instead, it appends it to the list for simplicity. 2008 * Thus, any users must take care to only insert new object numbers in ascending 2009 * order. 2010 */ 2011 static void 2012 objlist_insert(struct objlist *list, uint64_t object) 2013 { 2014 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 2015 node->object = object; 2016 #ifdef ZFS_DEBUG 2017 struct receive_objnode *last_object = list_tail(&list->list); 2018 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 2019 ASSERT3U(node->object, >, last_objnum); 2020 #endif 2021 list_insert_tail(&list->list, node); 2022 } 2023 2024 /* 2025 * Issue the prefetch reads for any necessary indirect blocks. 2026 * 2027 * We use the object ignore list to tell us whether or not to issue prefetches 2028 * for a given object. We do this for both correctness (in case the blocksize 2029 * of an object has changed) and performance (if the object doesn't exist, don't 2030 * needlessly try to issue prefetches). We also trim the list as we go through 2031 * the stream to prevent it from growing to an unbounded size. 2032 * 2033 * The object numbers within will always be in sorted order, and any write 2034 * records we see will also be in sorted order, but they're not sorted with 2035 * respect to each other (i.e. we can get several object records before 2036 * receiving each object's write records). As a result, once we've reached a 2037 * given object number, we can safely remove any reference to lower object 2038 * numbers in the ignore list. In practice, we receive up to 32 object records 2039 * before receiving write records, so the list can have up to 32 nodes in it. 2040 */ 2041 /* ARGSUSED */ 2042 static void 2043 receive_read_prefetch(struct receive_arg *ra, 2044 uint64_t object, uint64_t offset, uint64_t length) 2045 { 2046 if (!objlist_exists(&ra->ignore_objlist, object)) { 2047 dmu_prefetch(ra->os, object, 1, offset, length, 2048 ZIO_PRIORITY_SYNC_READ); 2049 } 2050 } 2051 2052 /* 2053 * Read records off the stream, issuing any necessary prefetches. 2054 */ 2055 static int 2056 receive_read_record(struct receive_arg *ra) 2057 { 2058 int err; 2059 2060 switch (ra->rrd->header.drr_type) { 2061 case DRR_OBJECT: 2062 { 2063 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2064 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); 2065 void *buf = NULL; 2066 dmu_object_info_t doi; 2067 2068 if (size != 0) 2069 buf = kmem_zalloc(size, KM_SLEEP); 2070 2071 err = receive_read_payload_and_next_header(ra, size, buf); 2072 if (err != 0) { 2073 kmem_free(buf, size); 2074 return (err); 2075 } 2076 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2077 /* 2078 * See receive_read_prefetch for an explanation why we're 2079 * storing this object in the ignore_obj_list. 2080 */ 2081 if (err == ENOENT || err == EEXIST || 2082 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2083 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2084 err = 0; 2085 } 2086 return (err); 2087 } 2088 case DRR_FREEOBJECTS: 2089 { 2090 err = receive_read_payload_and_next_header(ra, 0, NULL); 2091 return (err); 2092 } 2093 case DRR_WRITE: 2094 { 2095 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2096 arc_buf_t *abuf; 2097 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type); 2098 2099 if (ra->raw) { 2100 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2101 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ 2102 ra->byteswap; 2103 2104 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os), 2105 drrw->drr_object, byteorder, drrw->drr_salt, 2106 drrw->drr_iv, drrw->drr_mac, drrw->drr_type, 2107 drrw->drr_compressed_size, drrw->drr_logical_size, 2108 drrw->drr_compressiontype); 2109 } else if (DRR_WRITE_COMPRESSED(drrw)) { 2110 ASSERT3U(drrw->drr_compressed_size, >, 0); 2111 ASSERT3U(drrw->drr_logical_size, >=, 2112 drrw->drr_compressed_size); 2113 ASSERT(!is_meta); 2114 abuf = arc_loan_compressed_buf( 2115 dmu_objset_spa(ra->os), 2116 drrw->drr_compressed_size, drrw->drr_logical_size, 2117 drrw->drr_compressiontype); 2118 } else { 2119 abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2120 is_meta, drrw->drr_logical_size); 2121 } 2122 2123 err = receive_read_payload_and_next_header(ra, 2124 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data); 2125 if (err != 0) { 2126 dmu_return_arcbuf(abuf); 2127 return (err); 2128 } 2129 ra->rrd->arc_buf = abuf; 2130 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2131 drrw->drr_logical_size); 2132 return (err); 2133 } 2134 case DRR_WRITE_BYREF: 2135 { 2136 struct drr_write_byref *drrwb = 2137 &ra->rrd->header.drr_u.drr_write_byref; 2138 err = receive_read_payload_and_next_header(ra, 0, NULL); 2139 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2140 drrwb->drr_length); 2141 return (err); 2142 } 2143 case DRR_WRITE_EMBEDDED: 2144 { 2145 struct drr_write_embedded *drrwe = 2146 &ra->rrd->header.drr_u.drr_write_embedded; 2147 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2148 void *buf = kmem_zalloc(size, KM_SLEEP); 2149 2150 err = receive_read_payload_and_next_header(ra, size, buf); 2151 if (err != 0) { 2152 kmem_free(buf, size); 2153 return (err); 2154 } 2155 2156 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2157 drrwe->drr_length); 2158 return (err); 2159 } 2160 case DRR_FREE: 2161 { 2162 /* 2163 * It might be beneficial to prefetch indirect blocks here, but 2164 * we don't really have the data to decide for sure. 2165 */ 2166 err = receive_read_payload_and_next_header(ra, 0, NULL); 2167 return (err); 2168 } 2169 case DRR_END: 2170 { 2171 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2172 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2173 return (SET_ERROR(ECKSUM)); 2174 return (0); 2175 } 2176 case DRR_SPILL: 2177 { 2178 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2179 arc_buf_t *abuf; 2180 int len = DRR_SPILL_PAYLOAD_SIZE(drrs); 2181 2182 /* DRR_SPILL records are either raw or uncompressed */ 2183 if (ra->raw) { 2184 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2185 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ 2186 ra->byteswap; 2187 2188 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os), 2189 dmu_objset_id(ra->os), byteorder, drrs->drr_salt, 2190 drrs->drr_iv, drrs->drr_mac, drrs->drr_type, 2191 drrs->drr_compressed_size, drrs->drr_length, 2192 drrs->drr_compressiontype); 2193 } else { 2194 abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2195 DMU_OT_IS_METADATA(drrs->drr_type), 2196 drrs->drr_length); 2197 } 2198 2199 err = receive_read_payload_and_next_header(ra, len, 2200 abuf->b_data); 2201 if (err != 0) { 2202 dmu_return_arcbuf(abuf); 2203 return (err); 2204 } 2205 ra->rrd->arc_buf = abuf; 2206 return (err); 2207 } 2208 case DRR_OBJECT_RANGE: 2209 { 2210 err = receive_read_payload_and_next_header(ra, 0, NULL); 2211 return (err); 2212 } 2213 default: 2214 return (SET_ERROR(EINVAL)); 2215 } 2216 } 2217 2218 /* 2219 * Commit the records to the pool. 2220 */ 2221 static int 2222 receive_process_record(struct receive_writer_arg *rwa, 2223 struct receive_record_arg *rrd) 2224 { 2225 int err; 2226 2227 /* Processing in order, therefore bytes_read should be increasing. */ 2228 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2229 rwa->bytes_read = rrd->bytes_read; 2230 2231 switch (rrd->header.drr_type) { 2232 case DRR_OBJECT: 2233 { 2234 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2235 err = receive_object(rwa, drro, rrd->payload); 2236 kmem_free(rrd->payload, rrd->payload_size); 2237 rrd->payload = NULL; 2238 return (err); 2239 } 2240 case DRR_FREEOBJECTS: 2241 { 2242 struct drr_freeobjects *drrfo = 2243 &rrd->header.drr_u.drr_freeobjects; 2244 return (receive_freeobjects(rwa, drrfo)); 2245 } 2246 case DRR_WRITE: 2247 { 2248 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2249 err = receive_write(rwa, drrw, rrd->arc_buf); 2250 /* if receive_write() is successful, it consumes the arc_buf */ 2251 if (err != 0) 2252 dmu_return_arcbuf(rrd->arc_buf); 2253 rrd->arc_buf = NULL; 2254 rrd->payload = NULL; 2255 return (err); 2256 } 2257 case DRR_WRITE_BYREF: 2258 { 2259 struct drr_write_byref *drrwbr = 2260 &rrd->header.drr_u.drr_write_byref; 2261 return (receive_write_byref(rwa, drrwbr)); 2262 } 2263 case DRR_WRITE_EMBEDDED: 2264 { 2265 struct drr_write_embedded *drrwe = 2266 &rrd->header.drr_u.drr_write_embedded; 2267 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2268 kmem_free(rrd->payload, rrd->payload_size); 2269 rrd->payload = NULL; 2270 return (err); 2271 } 2272 case DRR_FREE: 2273 { 2274 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2275 return (receive_free(rwa, drrf)); 2276 } 2277 case DRR_SPILL: 2278 { 2279 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2280 err = receive_spill(rwa, drrs, rrd->arc_buf); 2281 /* if receive_spill() is successful, it consumes the arc_buf */ 2282 if (err != 0) 2283 dmu_return_arcbuf(rrd->arc_buf); 2284 rrd->arc_buf = NULL; 2285 rrd->payload = NULL; 2286 return (err); 2287 } 2288 case DRR_OBJECT_RANGE: 2289 { 2290 struct drr_object_range *drror = 2291 &rrd->header.drr_u.drr_object_range; 2292 return (receive_object_range(rwa, drror)); 2293 } 2294 default: 2295 return (SET_ERROR(EINVAL)); 2296 } 2297 } 2298 2299 /* 2300 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2301 * receive_process_record When we're done, signal the main thread and exit. 2302 */ 2303 static void 2304 receive_writer_thread(void *arg) 2305 { 2306 struct receive_writer_arg *rwa = arg; 2307 struct receive_record_arg *rrd; 2308 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2309 rrd = bqueue_dequeue(&rwa->q)) { 2310 /* 2311 * If there's an error, the main thread will stop putting things 2312 * on the queue, but we need to clear everything in it before we 2313 * can exit. 2314 */ 2315 if (rwa->err == 0) { 2316 rwa->err = receive_process_record(rwa, rrd); 2317 } else if (rrd->arc_buf != NULL) { 2318 dmu_return_arcbuf(rrd->arc_buf); 2319 rrd->arc_buf = NULL; 2320 rrd->payload = NULL; 2321 } else if (rrd->payload != NULL) { 2322 kmem_free(rrd->payload, rrd->payload_size); 2323 rrd->payload = NULL; 2324 } 2325 kmem_free(rrd, sizeof (*rrd)); 2326 } 2327 kmem_free(rrd, sizeof (*rrd)); 2328 mutex_enter(&rwa->mutex); 2329 rwa->done = B_TRUE; 2330 cv_signal(&rwa->cv); 2331 mutex_exit(&rwa->mutex); 2332 thread_exit(); 2333 } 2334 2335 static int 2336 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2337 { 2338 uint64_t val; 2339 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2340 uint64_t dsobj = dmu_objset_id(ra->os); 2341 uint64_t resume_obj, resume_off; 2342 2343 if (nvlist_lookup_uint64(begin_nvl, 2344 "resume_object", &resume_obj) != 0 || 2345 nvlist_lookup_uint64(begin_nvl, 2346 "resume_offset", &resume_off) != 0) { 2347 return (SET_ERROR(EINVAL)); 2348 } 2349 VERIFY0(zap_lookup(mos, dsobj, 2350 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2351 if (resume_obj != val) 2352 return (SET_ERROR(EINVAL)); 2353 VERIFY0(zap_lookup(mos, dsobj, 2354 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2355 if (resume_off != val) 2356 return (SET_ERROR(EINVAL)); 2357 2358 return (0); 2359 } 2360 2361 /* 2362 * Read in the stream's records, one by one, and apply them to the pool. There 2363 * are two threads involved; the thread that calls this function will spin up a 2364 * worker thread, read the records off the stream one by one, and issue 2365 * prefetches for any necessary indirect blocks. It will then push the records 2366 * onto an internal blocking queue. The worker thread will pull the records off 2367 * the queue, and actually write the data into the DMU. This way, the worker 2368 * thread doesn't have to wait for reads to complete, since everything it needs 2369 * (the indirect blocks) will be prefetched. 2370 * 2371 * NB: callers *must* call dmu_recv_end() if this succeeds. 2372 */ 2373 int 2374 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2375 int cleanup_fd, uint64_t *action_handlep) 2376 { 2377 int err = 0; 2378 struct receive_arg ra = { 0 }; 2379 struct receive_writer_arg rwa = { 0 }; 2380 int featureflags; 2381 nvlist_t *begin_nvl = NULL; 2382 2383 ra.byteswap = drc->drc_byteswap; 2384 ra.raw = drc->drc_raw; 2385 ra.cksum = drc->drc_cksum; 2386 ra.vp = vp; 2387 ra.voff = *voffp; 2388 2389 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2390 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2391 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2392 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2393 } 2394 2395 objlist_create(&ra.ignore_objlist); 2396 2397 /* these were verified in dmu_recv_begin */ 2398 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2399 DMU_SUBSTREAM); 2400 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2401 2402 /* 2403 * Open the objset we are modifying. 2404 */ 2405 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2406 2407 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2408 2409 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2410 ra.featureflags = featureflags; 2411 2412 ASSERT0(ra.os->os_encrypted && 2413 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); 2414 2415 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2416 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2417 minor_t minor; 2418 2419 if (cleanup_fd == -1) { 2420 err = SET_ERROR(EBADF); 2421 goto out; 2422 } 2423 err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2424 if (err != 0) { 2425 cleanup_fd = -1; 2426 goto out; 2427 } 2428 2429 if (*action_handlep == 0) { 2430 rwa.guid_to_ds_map = 2431 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2432 avl_create(rwa.guid_to_ds_map, guid_compare, 2433 sizeof (guid_map_entry_t), 2434 offsetof(guid_map_entry_t, avlnode)); 2435 err = zfs_onexit_add_cb(minor, 2436 free_guid_map_onexit, rwa.guid_to_ds_map, 2437 action_handlep); 2438 if (err != 0) 2439 goto out; 2440 } else { 2441 err = zfs_onexit_cb_data(minor, *action_handlep, 2442 (void **)&rwa.guid_to_ds_map); 2443 if (err != 0) 2444 goto out; 2445 } 2446 2447 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2448 } 2449 2450 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2451 void *payload = NULL; 2452 if (payloadlen != 0) 2453 payload = kmem_alloc(payloadlen, KM_SLEEP); 2454 2455 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2456 if (err != 0) { 2457 if (payloadlen != 0) 2458 kmem_free(payload, payloadlen); 2459 goto out; 2460 } 2461 if (payloadlen != 0) { 2462 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2463 kmem_free(payload, payloadlen); 2464 if (err != 0) 2465 goto out; 2466 } 2467 2468 /* handle DSL encryption key payload */ 2469 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 2470 nvlist_t *keynvl = NULL; 2471 2472 ASSERT(ra.os->os_encrypted); 2473 ASSERT(drc->drc_raw); 2474 2475 err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl); 2476 if (err != 0) 2477 goto out; 2478 2479 /* 2480 * If this is a new dataset we set the key immediately. 2481 * Otherwise we don't want to change the key until we 2482 * are sure the rest of the receive succeeded so we stash 2483 * the keynvl away until then. 2484 */ 2485 err = dsl_crypto_recv_raw(spa_name(ra.os->os_spa), 2486 drc->drc_ds->ds_object, drc->drc_fromsnapobj, 2487 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); 2488 if (err != 0) 2489 goto out; 2490 2491 /* see comment in dmu_recv_end_sync() */ 2492 drc->drc_ivset_guid = 0; 2493 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", 2494 &drc->drc_ivset_guid); 2495 2496 if (!drc->drc_newfs) 2497 drc->drc_keynvl = fnvlist_dup(keynvl); 2498 } 2499 2500 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2501 err = resume_check(&ra, begin_nvl); 2502 if (err != 0) 2503 goto out; 2504 } 2505 2506 (void) bqueue_init(&rwa.q, 2507 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), 2508 offsetof(struct receive_record_arg, node)); 2509 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2510 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2511 rwa.os = ra.os; 2512 rwa.byteswap = drc->drc_byteswap; 2513 rwa.resumable = drc->drc_resumable; 2514 rwa.raw = drc->drc_raw; 2515 rwa.spill = drc->drc_spill; 2516 rwa.os->os_raw_receive = drc->drc_raw; 2517 2518 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2519 TS_RUN, minclsyspri); 2520 /* 2521 * We're reading rwa.err without locks, which is safe since we are the 2522 * only reader, and the worker thread is the only writer. It's ok if we 2523 * miss a write for an iteration or two of the loop, since the writer 2524 * thread will keep freeing records we send it until we send it an eos 2525 * marker. 2526 * 2527 * We can leave this loop in 3 ways: First, if rwa.err is 2528 * non-zero. In that case, the writer thread will free the rrd we just 2529 * pushed. Second, if we're interrupted; in that case, either it's the 2530 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2531 * has been handed off to the writer thread who will free it. Finally, 2532 * if receive_read_record fails or we're at the end of the stream, then 2533 * we free ra.rrd and exit. 2534 */ 2535 while (rwa.err == 0) { 2536 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2537 err = SET_ERROR(EINTR); 2538 break; 2539 } 2540 2541 ASSERT3P(ra.rrd, ==, NULL); 2542 ra.rrd = ra.next_rrd; 2543 ra.next_rrd = NULL; 2544 /* Allocates and loads header into ra.next_rrd */ 2545 err = receive_read_record(&ra); 2546 2547 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2548 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2549 ra.rrd = NULL; 2550 break; 2551 } 2552 2553 bqueue_enqueue(&rwa.q, ra.rrd, 2554 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2555 ra.rrd = NULL; 2556 } 2557 ASSERT3P(ra.rrd, ==, NULL); 2558 ra.rrd = kmem_zalloc(sizeof (*ra.rrd), KM_SLEEP); 2559 ra.rrd->eos_marker = B_TRUE; 2560 bqueue_enqueue(&rwa.q, ra.rrd, 1); 2561 2562 mutex_enter(&rwa.mutex); 2563 while (!rwa.done) { 2564 cv_wait(&rwa.cv, &rwa.mutex); 2565 } 2566 mutex_exit(&rwa.mutex); 2567 2568 /* 2569 * If we are receiving a full stream as a clone, all object IDs which 2570 * are greater than the maximum ID referenced in the stream are 2571 * by definition unused and must be freed. Note that it's possible that 2572 * we've resumed this send and the first record we received was the END 2573 * record. In that case, max_object would be 0, but we shouldn't start 2574 * freeing all objects from there; instead we should start from the 2575 * resumeobj. 2576 */ 2577 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 2578 uint64_t obj; 2579 if (nvlist_lookup_uint64(begin_nvl, "resume_object", &obj) != 0) 2580 obj = 0; 2581 if (rwa.max_object > obj) 2582 obj = rwa.max_object; 2583 obj++; 2584 int free_err = 0; 2585 int next_err = 0; 2586 2587 while (next_err == 0) { 2588 free_err = dmu_free_long_object(rwa.os, obj); 2589 if (free_err != 0 && free_err != ENOENT) 2590 break; 2591 2592 next_err = dmu_object_next(rwa.os, &obj, FALSE, 0); 2593 } 2594 2595 if (err == 0) { 2596 if (free_err != 0 && free_err != ENOENT) 2597 err = free_err; 2598 else if (next_err != ESRCH) 2599 err = next_err; 2600 } 2601 } 2602 2603 cv_destroy(&rwa.cv); 2604 mutex_destroy(&rwa.mutex); 2605 bqueue_destroy(&rwa.q); 2606 if (err == 0) 2607 err = rwa.err; 2608 2609 out: 2610 /* 2611 * If we hit an error before we started the receive_writer_thread 2612 * we need to clean up the next_rrd we create by processing the 2613 * DRR_BEGIN record. 2614 */ 2615 if (ra.next_rrd != NULL) 2616 kmem_free(ra.next_rrd, sizeof (*ra.next_rrd)); 2617 2618 nvlist_free(begin_nvl); 2619 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2620 zfs_onexit_fd_rele(cleanup_fd); 2621 2622 if (err != 0) { 2623 /* 2624 * Clean up references. If receive is not resumable, 2625 * destroy what we created, so we don't leave it in 2626 * the inconsistent state. 2627 */ 2628 dmu_recv_cleanup_ds(drc); 2629 nvlist_free(drc->drc_keynvl); 2630 } 2631 2632 *voffp = ra.voff; 2633 objlist_destroy(&ra.ignore_objlist); 2634 return (err); 2635 } 2636 2637 static int 2638 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2639 { 2640 dmu_recv_cookie_t *drc = arg; 2641 dsl_pool_t *dp = dmu_tx_pool(tx); 2642 int error; 2643 2644 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2645 2646 if (!drc->drc_newfs) { 2647 dsl_dataset_t *origin_head; 2648 2649 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2650 if (error != 0) 2651 return (error); 2652 if (drc->drc_force) { 2653 /* 2654 * We will destroy any snapshots in tofs (i.e. before 2655 * origin_head) that are after the origin (which is 2656 * the snap before drc_ds, because drc_ds can not 2657 * have any snaps of its own). 2658 */ 2659 uint64_t obj; 2660 2661 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2662 while (obj != 2663 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2664 dsl_dataset_t *snap; 2665 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2666 &snap); 2667 if (error != 0) 2668 break; 2669 if (snap->ds_dir != origin_head->ds_dir) 2670 error = SET_ERROR(EINVAL); 2671 if (error == 0) { 2672 error = dsl_destroy_snapshot_check_impl( 2673 snap, B_FALSE); 2674 } 2675 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2676 dsl_dataset_rele(snap, FTAG); 2677 if (error != 0) 2678 break; 2679 } 2680 if (error != 0) { 2681 dsl_dataset_rele(origin_head, FTAG); 2682 return (error); 2683 } 2684 } 2685 if (drc->drc_keynvl != NULL) { 2686 error = dsl_crypto_recv_raw_key_check(drc->drc_ds, 2687 drc->drc_keynvl, tx); 2688 if (error != 0) { 2689 dsl_dataset_rele(origin_head, FTAG); 2690 return (error); 2691 } 2692 } 2693 2694 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2695 origin_head, drc->drc_force, drc->drc_owner, tx); 2696 if (error != 0) { 2697 dsl_dataset_rele(origin_head, FTAG); 2698 return (error); 2699 } 2700 error = dsl_dataset_snapshot_check_impl(origin_head, 2701 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2702 dsl_dataset_rele(origin_head, FTAG); 2703 if (error != 0) 2704 return (error); 2705 2706 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2707 } else { 2708 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2709 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2710 } 2711 return (error); 2712 } 2713 2714 static void 2715 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2716 { 2717 dmu_recv_cookie_t *drc = arg; 2718 dsl_pool_t *dp = dmu_tx_pool(tx); 2719 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; 2720 2721 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2722 tx, "snap=%s", drc->drc_tosnap); 2723 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; 2724 2725 if (!drc->drc_newfs) { 2726 dsl_dataset_t *origin_head; 2727 2728 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2729 &origin_head)); 2730 2731 if (drc->drc_force) { 2732 /* 2733 * Destroy any snapshots of drc_tofs (origin_head) 2734 * after the origin (the snap before drc_ds). 2735 */ 2736 uint64_t obj; 2737 2738 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2739 while (obj != 2740 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2741 dsl_dataset_t *snap; 2742 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2743 &snap)); 2744 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 2745 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2746 dsl_destroy_snapshot_sync_impl(snap, 2747 B_FALSE, tx); 2748 dsl_dataset_rele(snap, FTAG); 2749 } 2750 } 2751 if (drc->drc_keynvl != NULL) { 2752 dsl_crypto_recv_raw_key_sync(drc->drc_ds, 2753 drc->drc_keynvl, tx); 2754 nvlist_free(drc->drc_keynvl); 2755 drc->drc_keynvl = NULL; 2756 } 2757 2758 VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev); 2759 2760 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 2761 origin_head, tx); 2762 dsl_dataset_snapshot_sync_impl(origin_head, 2763 drc->drc_tosnap, tx); 2764 2765 /* set snapshot's creation time and guid */ 2766 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 2767 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 2768 drc->drc_drrb->drr_creation_time; 2769 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 2770 drc->drc_drrb->drr_toguid; 2771 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 2772 ~DS_FLAG_INCONSISTENT; 2773 2774 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 2775 dsl_dataset_phys(origin_head)->ds_flags &= 2776 ~DS_FLAG_INCONSISTENT; 2777 2778 drc->drc_newsnapobj = 2779 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2780 2781 dsl_dataset_rele(origin_head, FTAG); 2782 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 2783 2784 if (drc->drc_owner != NULL) 2785 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 2786 } else { 2787 dsl_dataset_t *ds = drc->drc_ds; 2788 2789 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 2790 2791 /* set snapshot's creation time and guid */ 2792 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 2793 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 2794 drc->drc_drrb->drr_creation_time; 2795 dsl_dataset_phys(ds->ds_prev)->ds_guid = 2796 drc->drc_drrb->drr_toguid; 2797 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 2798 ~DS_FLAG_INCONSISTENT; 2799 2800 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2801 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 2802 if (dsl_dataset_has_resume_receive_state(ds)) { 2803 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2804 DS_FIELD_RESUME_FROMGUID, tx); 2805 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2806 DS_FIELD_RESUME_OBJECT, tx); 2807 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2808 DS_FIELD_RESUME_OFFSET, tx); 2809 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2810 DS_FIELD_RESUME_BYTES, tx); 2811 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2812 DS_FIELD_RESUME_TOGUID, tx); 2813 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2814 DS_FIELD_RESUME_TONAME, tx); 2815 } 2816 drc->drc_newsnapobj = 2817 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 2818 } 2819 2820 /* 2821 * If this is a raw receive, the crypt_keydata nvlist will include 2822 * a to_ivset_guid for us to set on the new snapshot. This value 2823 * will override the value generated by the snapshot code. However, 2824 * this value may not be present, because older implementations of 2825 * the raw send code did not include this value, and we are still 2826 * allowed to receive them if the zfs_disable_ivset_guid_check 2827 * tunable is set, in which case we will leave the newly-generated 2828 * value. 2829 */ 2830 if (drc->drc_raw && drc->drc_ivset_guid != 0) { 2831 dmu_object_zapify(dp->dp_meta_objset, drc->drc_newsnapobj, 2832 DMU_OT_DSL_DATASET, tx); 2833 VERIFY0(zap_update(dp->dp_meta_objset, drc->drc_newsnapobj, 2834 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, 2835 &drc->drc_ivset_guid, tx)); 2836 } 2837 2838 /* 2839 * Release the hold from dmu_recv_begin. This must be done before 2840 * we return to open context, so that when we free the dataset's dnode 2841 * we can evict its bonus buffer. Since the dataset may be destroyed 2842 * at this point (and therefore won't have a valid pointer to the spa) 2843 * we release the key mapping manually here while we do have a valid 2844 * pointer, if it exists. 2845 */ 2846 if (!drc->drc_raw && encrypted) { 2847 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, 2848 drc->drc_ds->ds_object, drc->drc_ds); 2849 } 2850 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); 2851 drc->drc_ds = NULL; 2852 } 2853 2854 static int 2855 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj, 2856 boolean_t raw) 2857 { 2858 dsl_pool_t *dp; 2859 dsl_dataset_t *snapds; 2860 guid_map_entry_t *gmep; 2861 objset_t *os; 2862 ds_hold_flags_t dsflags; 2863 int err; 2864 2865 ASSERT(guid_map != NULL); 2866 2867 dsflags = (raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2868 err = dsl_pool_hold(name, FTAG, &dp); 2869 if (err != 0) 2870 return (err); 2871 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 2872 err = dsl_dataset_own_obj(dp, snapobj, dsflags, gmep, &snapds); 2873 if (err == 0) { 2874 /* 2875 * If this is a deduplicated raw send stream, we need 2876 * to make sure that we can still read raw blocks from 2877 * earlier datasets in the stream, so we set the 2878 * os_raw_receive flag now. 2879 */ 2880 if (raw) { 2881 err = dmu_objset_from_ds(snapds, &os); 2882 if (err != 0) { 2883 dsl_dataset_disown(snapds, dsflags, FTAG); 2884 dsl_pool_rele(dp, FTAG); 2885 kmem_free(gmep, sizeof (*gmep)); 2886 return (err); 2887 } 2888 os->os_raw_receive = B_TRUE; 2889 } 2890 2891 gmep->raw = raw; 2892 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 2893 gmep->gme_ds = snapds; 2894 avl_add(guid_map, gmep); 2895 } else { 2896 kmem_free(gmep, sizeof (*gmep)); 2897 } 2898 2899 dsl_pool_rele(dp, FTAG); 2900 return (err); 2901 } 2902 2903 static int dmu_recv_end_modified_blocks = 3; 2904 2905 static int 2906 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 2907 { 2908 #ifdef _KERNEL 2909 /* 2910 * We will be destroying the ds; make sure its origin is unmounted if 2911 * necessary. 2912 */ 2913 char name[ZFS_MAX_DATASET_NAME_LEN]; 2914 dsl_dataset_name(drc->drc_ds, name); 2915 zfs_destroy_unmount_origin(name); 2916 #endif 2917 2918 return (dsl_sync_task(drc->drc_tofs, 2919 dmu_recv_end_check, dmu_recv_end_sync, drc, 2920 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 2921 } 2922 2923 static int 2924 dmu_recv_new_end(dmu_recv_cookie_t *drc) 2925 { 2926 return (dsl_sync_task(drc->drc_tofs, 2927 dmu_recv_end_check, dmu_recv_end_sync, drc, 2928 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 2929 } 2930 2931 int 2932 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 2933 { 2934 int error; 2935 2936 drc->drc_owner = owner; 2937 2938 if (drc->drc_newfs) 2939 error = dmu_recv_new_end(drc); 2940 else 2941 error = dmu_recv_existing_end(drc); 2942 2943 if (error != 0) { 2944 dmu_recv_cleanup_ds(drc); 2945 nvlist_free(drc->drc_keynvl); 2946 } else if (drc->drc_guid_to_ds_map != NULL) { 2947 (void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map, 2948 drc->drc_newsnapobj, drc->drc_raw); 2949 } 2950 return (error); 2951 } 2952 2953 /* 2954 * Return TRUE if this objset is currently being received into. 2955 */ 2956 boolean_t 2957 dmu_objset_is_receiving(objset_t *os) 2958 { 2959 return (os->os_dsl_dataset != NULL && 2960 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 2961 } 2962