1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/dmu.h> 32 #include <sys/dmu_impl.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dbuf.h> 35 #include <sys/dnode.h> 36 #include <sys/zfs_context.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dmu_traverse.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/zfs_ioctl.h> 45 #include <sys/zap.h> 46 #include <sys/zio_checksum.h> 47 #include <sys/zfs_znode.h> 48 #include <zfs_fletcher.h> 49 #include <sys/avl.h> 50 #include <sys/ddt.h> 51 #include <sys/zfs_onexit.h> 52 #include <sys/dmu_recv.h> 53 #include <sys/dsl_destroy.h> 54 #include <sys/blkptr.h> 55 #include <sys/dsl_bookmark.h> 56 #include <sys/zfeature.h> 57 #include <sys/bqueue.h> 58 59 int zfs_recv_queue_length = SPA_MAXBLOCKSIZE; 60 61 static char *dmu_recv_tag = "dmu_recv_tag"; 62 const char *recv_clone_name = "%recv"; 63 64 static void byteswap_record(dmu_replay_record_t *drr); 65 66 typedef struct dmu_recv_begin_arg { 67 const char *drba_origin; 68 dmu_recv_cookie_t *drba_cookie; 69 cred_t *drba_cred; 70 dsl_crypto_params_t *drba_dcp; 71 } dmu_recv_begin_arg_t; 72 73 static int 74 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 75 uint64_t fromguid, uint64_t featureflags) 76 { 77 uint64_t val; 78 int error; 79 dsl_pool_t *dp = ds->ds_dir->dd_pool; 80 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; 81 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; 82 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; 83 84 /* temporary clone name must not exist */ 85 error = zap_lookup(dp->dp_meta_objset, 86 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 87 8, 1, &val); 88 if (error != ENOENT) 89 return (error == 0 ? EBUSY : error); 90 91 /* new snapshot name must not exist */ 92 error = zap_lookup(dp->dp_meta_objset, 93 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 94 drba->drba_cookie->drc_tosnap, 8, 1, &val); 95 if (error != ENOENT) 96 return (error == 0 ? EEXIST : error); 97 98 /* 99 * Check snapshot limit before receiving. We'll recheck again at the 100 * end, but might as well abort before receiving if we're already over 101 * the limit. 102 * 103 * Note that we do not check the file system limit with 104 * dsl_dir_fscount_check because the temporary %clones don't count 105 * against that limit. 106 */ 107 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 108 NULL, drba->drba_cred); 109 if (error != 0) 110 return (error); 111 112 if (fromguid != 0) { 113 dsl_dataset_t *snap; 114 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 115 116 /* Can't raw receive on top of an unencrypted dataset */ 117 if (!encrypted && raw) 118 return (SET_ERROR(EINVAL)); 119 120 /* Encryption is incompatible with embedded data */ 121 if (encrypted && embed) 122 return (SET_ERROR(EINVAL)); 123 124 /* Find snapshot in this dir that matches fromguid. */ 125 while (obj != 0) { 126 error = dsl_dataset_hold_obj(dp, obj, FTAG, 127 &snap); 128 if (error != 0) 129 return (SET_ERROR(ENODEV)); 130 if (snap->ds_dir != ds->ds_dir) { 131 dsl_dataset_rele(snap, FTAG); 132 return (SET_ERROR(ENODEV)); 133 } 134 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 135 break; 136 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 137 dsl_dataset_rele(snap, FTAG); 138 } 139 if (obj == 0) 140 return (SET_ERROR(ENODEV)); 141 142 if (drba->drba_cookie->drc_force) { 143 drba->drba_cookie->drc_fromsnapobj = obj; 144 } else { 145 /* 146 * If we are not forcing, there must be no 147 * changes since fromsnap. 148 */ 149 if (dsl_dataset_modified_since_snap(ds, snap)) { 150 dsl_dataset_rele(snap, FTAG); 151 return (SET_ERROR(ETXTBSY)); 152 } 153 drba->drba_cookie->drc_fromsnapobj = 154 ds->ds_prev->ds_object; 155 } 156 157 dsl_dataset_rele(snap, FTAG); 158 } else { 159 /* if full, then must be forced */ 160 if (!drba->drba_cookie->drc_force) 161 return (SET_ERROR(EEXIST)); 162 163 /* 164 * We don't support using zfs recv -F to blow away 165 * encrypted filesystems. This would require the 166 * dsl dir to point to the old encryption key and 167 * the new one at the same time during the receive. 168 */ 169 if ((!encrypted && raw) || encrypted) 170 return (SET_ERROR(EINVAL)); 171 172 /* 173 * Perform the same encryption checks we would if 174 * we were creating a new dataset from scratch. 175 */ 176 if (!raw) { 177 boolean_t will_encrypt; 178 179 error = dmu_objset_create_crypt_check( 180 ds->ds_dir->dd_parent, drba->drba_dcp, 181 &will_encrypt); 182 if (error != 0) 183 return (error); 184 185 if (will_encrypt && embed) 186 return (SET_ERROR(EINVAL)); 187 } 188 189 drba->drba_cookie->drc_fromsnapobj = 0; 190 } 191 192 return (0); 193 194 } 195 196 static int 197 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 198 { 199 dmu_recv_begin_arg_t *drba = arg; 200 dsl_pool_t *dp = dmu_tx_pool(tx); 201 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 202 uint64_t fromguid = drrb->drr_fromguid; 203 int flags = drrb->drr_flags; 204 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 205 int error; 206 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 207 dsl_dataset_t *ds; 208 const char *tofs = drba->drba_cookie->drc_tofs; 209 210 /* already checked */ 211 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 212 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 213 214 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 215 DMU_COMPOUNDSTREAM || 216 drrb->drr_type >= DMU_OST_NUMTYPES || 217 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 218 return (SET_ERROR(EINVAL)); 219 220 /* Verify pool version supports SA if SA_SPILL feature set */ 221 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 222 spa_version(dp->dp_spa) < SPA_VERSION_SA) 223 return (SET_ERROR(ENOTSUP)); 224 225 if (drba->drba_cookie->drc_resumable && 226 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 227 return (SET_ERROR(ENOTSUP)); 228 229 /* 230 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 231 * record to a plain WRITE record, so the pool must have the 232 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 233 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 234 */ 235 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 236 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 237 return (SET_ERROR(ENOTSUP)); 238 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 239 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 240 return (SET_ERROR(ENOTSUP)); 241 242 /* 243 * The receiving code doesn't know how to translate large blocks 244 * to smaller ones, so the pool must have the LARGE_BLOCKS 245 * feature enabled if the stream has LARGE_BLOCKS. Same with 246 * large dnodes. 247 */ 248 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 249 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 250 return (SET_ERROR(ENOTSUP)); 251 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 252 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) 253 return (SET_ERROR(ENOTSUP)); 254 255 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 256 /* raw receives require the encryption feature */ 257 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) 258 return (SET_ERROR(ENOTSUP)); 259 260 /* embedded data is incompatible with encryption and raw recv */ 261 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 262 return (SET_ERROR(EINVAL)); 263 264 /* raw receives require spill block allocation flag */ 265 if (!(flags & DRR_FLAG_SPILL_BLOCK)) 266 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 267 } else { 268 dsflags |= DS_HOLD_FLAG_DECRYPT; 269 } 270 271 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 272 if (error == 0) { 273 /* target fs already exists; recv into temp clone */ 274 275 /* Can't recv a clone into an existing fs */ 276 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 277 dsl_dataset_rele_flags(ds, dsflags, FTAG); 278 return (SET_ERROR(EINVAL)); 279 } 280 281 error = recv_begin_check_existing_impl(drba, ds, fromguid, 282 featureflags); 283 dsl_dataset_rele_flags(ds, dsflags, FTAG); 284 } else if (error == ENOENT) { 285 /* target fs does not exist; must be a full backup or clone */ 286 char buf[ZFS_MAX_DATASET_NAME_LEN]; 287 288 /* 289 * If it's a non-clone incremental, we are missing the 290 * target fs, so fail the recv. 291 */ 292 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 293 drba->drba_origin)) 294 return (SET_ERROR(ENOENT)); 295 296 /* 297 * If we're receiving a full send as a clone, and it doesn't 298 * contain all the necessary free records and freeobject 299 * records, reject it. 300 */ 301 if (fromguid == 0 && drba->drba_origin && 302 !(flags & DRR_FLAG_FREERECORDS)) 303 return (SET_ERROR(EINVAL)); 304 305 /* Open the parent of tofs */ 306 ASSERT3U(strlen(tofs), <, sizeof (buf)); 307 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 308 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 309 if (error != 0) 310 return (error); 311 312 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 313 drba->drba_origin == NULL) { 314 boolean_t will_encrypt; 315 316 /* 317 * Check that we aren't breaking any encryption rules 318 * and that we have all the parameters we need to 319 * create an encrypted dataset if necessary. If we are 320 * making an encrypted dataset the stream can't have 321 * embedded data. 322 */ 323 error = dmu_objset_create_crypt_check(ds->ds_dir, 324 drba->drba_dcp, &will_encrypt); 325 if (error != 0) { 326 dsl_dataset_rele(ds, FTAG); 327 return (error); 328 } 329 330 if (will_encrypt && 331 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 332 dsl_dataset_rele(ds, FTAG); 333 return (SET_ERROR(EINVAL)); 334 } 335 } 336 337 /* 338 * Check filesystem and snapshot limits before receiving. We'll 339 * recheck snapshot limits again at the end (we create the 340 * filesystems and increment those counts during begin_sync). 341 */ 342 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 343 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 344 if (error != 0) { 345 dsl_dataset_rele(ds, FTAG); 346 return (error); 347 } 348 349 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 350 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 351 if (error != 0) { 352 dsl_dataset_rele(ds, FTAG); 353 return (error); 354 } 355 356 if (drba->drba_origin != NULL) { 357 dsl_dataset_t *origin; 358 359 error = dsl_dataset_hold(dp, drba->drba_origin, 360 FTAG, &origin); 361 if (error != 0) { 362 dsl_dataset_rele(ds, FTAG); 363 return (error); 364 } 365 if (!origin->ds_is_snapshot) { 366 dsl_dataset_rele(origin, FTAG); 367 dsl_dataset_rele(ds, FTAG); 368 return (SET_ERROR(EINVAL)); 369 } 370 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 371 fromguid != 0) { 372 dsl_dataset_rele(origin, FTAG); 373 dsl_dataset_rele(ds, FTAG); 374 return (SET_ERROR(ENODEV)); 375 } 376 if (origin->ds_dir->dd_crypto_obj != 0 && 377 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 378 dsl_dataset_rele(origin, FTAG); 379 dsl_dataset_rele(ds, FTAG); 380 return (SET_ERROR(EINVAL)); 381 } 382 dsl_dataset_rele(origin, FTAG); 383 } 384 dsl_dataset_rele(ds, FTAG); 385 error = 0; 386 } 387 return (error); 388 } 389 390 static void 391 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 392 { 393 dmu_recv_begin_arg_t *drba = arg; 394 dsl_pool_t *dp = dmu_tx_pool(tx); 395 objset_t *mos = dp->dp_meta_objset; 396 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 397 const char *tofs = drba->drba_cookie->drc_tofs; 398 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 399 dsl_dataset_t *ds, *newds; 400 objset_t *os; 401 uint64_t dsobj; 402 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 403 int error; 404 uint64_t crflags = 0; 405 dsl_crypto_params_t dummy_dcp = { 0 }; 406 dsl_crypto_params_t *dcp = drba->drba_dcp; 407 408 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 409 crflags |= DS_FLAG_CI_DATASET; 410 411 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) 412 dsflags |= DS_HOLD_FLAG_DECRYPT; 413 414 /* 415 * Raw, non-incremental recvs always use a dummy dcp with 416 * the raw cmd set. Raw incremental recvs do not use a dcp 417 * since the encryption parameters are already set in stone. 418 */ 419 if (dcp == NULL && drba->drba_cookie->drc_fromsnapobj == 0 && 420 drba->drba_origin == NULL) { 421 ASSERT3P(dcp, ==, NULL); 422 dcp = &dummy_dcp; 423 424 if (featureflags & DMU_BACKUP_FEATURE_RAW) 425 dcp->cp_cmd = DCP_CMD_RAW_RECV; 426 } 427 428 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 429 if (error == 0) { 430 /* create temporary clone */ 431 dsl_dataset_t *snap = NULL; 432 433 if (drba->drba_cookie->drc_fromsnapobj != 0) { 434 VERIFY0(dsl_dataset_hold_obj(dp, 435 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); 436 ASSERT3P(dcp, ==, NULL); 437 } 438 439 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 440 snap, crflags, drba->drba_cred, dcp, tx); 441 if (drba->drba_cookie->drc_fromsnapobj != 0) 442 dsl_dataset_rele(snap, FTAG); 443 dsl_dataset_rele_flags(ds, dsflags, FTAG); 444 } else { 445 dsl_dir_t *dd; 446 const char *tail; 447 dsl_dataset_t *origin = NULL; 448 449 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 450 451 if (drba->drba_origin != NULL) { 452 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 453 FTAG, &origin)); 454 ASSERT3P(dcp, ==, NULL); 455 } 456 457 /* Create new dataset. */ 458 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, 459 origin, crflags, drba->drba_cred, dcp, tx); 460 if (origin != NULL) 461 dsl_dataset_rele(origin, FTAG); 462 dsl_dir_rele(dd, FTAG); 463 drba->drba_cookie->drc_newfs = B_TRUE; 464 } 465 466 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds)); 467 VERIFY0(dmu_objset_from_ds(newds, &os)); 468 469 if (drba->drba_cookie->drc_resumable) { 470 dsl_dataset_zapify(newds, tx); 471 if (drrb->drr_fromguid != 0) { 472 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 473 8, 1, &drrb->drr_fromguid, tx)); 474 } 475 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 476 8, 1, &drrb->drr_toguid, tx)); 477 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 478 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 479 uint64_t one = 1; 480 uint64_t zero = 0; 481 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 482 8, 1, &one, tx)); 483 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 484 8, 1, &zero, tx)); 485 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 486 8, 1, &zero, tx)); 487 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 488 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 489 8, 1, &one, tx)); 490 } 491 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { 492 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 493 8, 1, &one, tx)); 494 } 495 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { 496 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 497 8, 1, &one, tx)); 498 } 499 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 500 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 501 8, 1, &one, tx)); 502 } 503 } 504 505 /* 506 * Usually the os->os_encrypted value is tied to the presence of a 507 * DSL Crypto Key object in the dd. However, that will not be received 508 * until dmu_recv_stream(), so we set the value manually for now. 509 */ 510 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 511 os->os_encrypted = B_TRUE; 512 drba->drba_cookie->drc_raw = B_TRUE; 513 } 514 515 dmu_buf_will_dirty(newds->ds_dbuf, tx); 516 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 517 518 /* 519 * If we actually created a non-clone, we need to create the objset 520 * in our new dataset. If this is a raw send we postpone this until 521 * dmu_recv_stream() so that we can allocate the metadnode with the 522 * properties from the DRR_BEGIN payload. 523 */ 524 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 525 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && 526 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) { 527 (void) dmu_objset_create_impl(dp->dp_spa, 528 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 529 } 530 rrw_exit(&newds->ds_bp_rwlock, FTAG); 531 532 drba->drba_cookie->drc_ds = newds; 533 534 spa_history_log_internal_ds(newds, "receive", tx, ""); 535 } 536 537 static int 538 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 539 { 540 dmu_recv_begin_arg_t *drba = arg; 541 dsl_pool_t *dp = dmu_tx_pool(tx); 542 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 543 int error; 544 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 545 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 546 dsl_dataset_t *ds; 547 const char *tofs = drba->drba_cookie->drc_tofs; 548 549 /* 6 extra bytes for /%recv */ 550 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 551 552 /* already checked */ 553 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 554 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 555 556 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 557 DMU_COMPOUNDSTREAM || 558 drrb->drr_type >= DMU_OST_NUMTYPES) 559 return (SET_ERROR(EINVAL)); 560 561 /* Verify pool version supports SA if SA_SPILL feature set */ 562 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 563 spa_version(dp->dp_spa) < SPA_VERSION_SA) 564 return (SET_ERROR(ENOTSUP)); 565 566 /* 567 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 568 * record to a plain WRITE record, so the pool must have the 569 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 570 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 571 */ 572 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 573 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 574 return (SET_ERROR(ENOTSUP)); 575 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 576 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 577 return (SET_ERROR(ENOTSUP)); 578 579 /* 580 * The receiving code doesn't know how to translate large blocks 581 * to smaller ones, so the pool must have the LARGE_BLOCKS 582 * feature enabled if the stream has LARGE_BLOCKS. Same with 583 * large dnodes. 584 */ 585 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 586 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 587 return (SET_ERROR(ENOTSUP)); 588 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 589 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) 590 return (SET_ERROR(ENOTSUP)); 591 592 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 593 tofs, recv_clone_name); 594 595 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 596 /* raw receives require spill block allocation flag */ 597 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) 598 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 599 } else { 600 dsflags |= DS_HOLD_FLAG_DECRYPT; 601 } 602 603 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 604 /* %recv does not exist; continue in tofs */ 605 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 606 if (error != 0) 607 return (error); 608 } 609 610 /* check that ds is marked inconsistent */ 611 if (!DS_IS_INCONSISTENT(ds)) { 612 dsl_dataset_rele_flags(ds, dsflags, FTAG); 613 return (SET_ERROR(EINVAL)); 614 } 615 616 /* check that there is resuming data, and that the toguid matches */ 617 if (!dsl_dataset_is_zapified(ds)) { 618 dsl_dataset_rele_flags(ds, dsflags, FTAG); 619 return (SET_ERROR(EINVAL)); 620 } 621 uint64_t val; 622 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 623 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 624 if (error != 0 || drrb->drr_toguid != val) { 625 dsl_dataset_rele_flags(ds, dsflags, FTAG); 626 return (SET_ERROR(EINVAL)); 627 } 628 629 /* 630 * Check if the receive is still running. If so, it will be owned. 631 * Note that nothing else can own the dataset (e.g. after the receive 632 * fails) because it will be marked inconsistent. 633 */ 634 if (dsl_dataset_has_owner(ds)) { 635 dsl_dataset_rele_flags(ds, dsflags, FTAG); 636 return (SET_ERROR(EBUSY)); 637 } 638 639 /* There should not be any snapshots of this fs yet. */ 640 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 641 dsl_dataset_rele_flags(ds, dsflags, FTAG); 642 return (SET_ERROR(EINVAL)); 643 } 644 645 /* 646 * Note: resume point will be checked when we process the first WRITE 647 * record. 648 */ 649 650 /* check that the origin matches */ 651 val = 0; 652 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 653 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 654 if (drrb->drr_fromguid != val) { 655 dsl_dataset_rele_flags(ds, dsflags, FTAG); 656 return (SET_ERROR(EINVAL)); 657 } 658 659 dsl_dataset_rele_flags(ds, dsflags, FTAG); 660 return (0); 661 } 662 663 static void 664 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 665 { 666 dmu_recv_begin_arg_t *drba = arg; 667 dsl_pool_t *dp = dmu_tx_pool(tx); 668 const char *tofs = drba->drba_cookie->drc_tofs; 669 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 670 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 671 dsl_dataset_t *ds; 672 objset_t *os; 673 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 674 uint64_t dsobj; 675 /* 6 extra bytes for /%recv */ 676 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 677 678 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 679 tofs, recv_clone_name); 680 681 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 682 drba->drba_cookie->drc_raw = B_TRUE; 683 } else { 684 dsflags |= DS_HOLD_FLAG_DECRYPT; 685 } 686 687 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 688 /* %recv does not exist; continue in tofs */ 689 VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds)); 690 drba->drba_cookie->drc_newfs = B_TRUE; 691 } 692 693 /* clear the inconsistent flag so that we can own it */ 694 ASSERT(DS_IS_INCONSISTENT(ds)); 695 dmu_buf_will_dirty(ds->ds_dbuf, tx); 696 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 697 dsobj = ds->ds_object; 698 dsl_dataset_rele_flags(ds, dsflags, FTAG); 699 700 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds)); 701 VERIFY0(dmu_objset_from_ds(ds, &os)); 702 703 dmu_buf_will_dirty(ds->ds_dbuf, tx); 704 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 705 706 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 707 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || 708 drba->drba_cookie->drc_raw); 709 rrw_exit(&ds->ds_bp_rwlock, FTAG); 710 711 drba->drba_cookie->drc_ds = ds; 712 713 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 714 } 715 716 /* 717 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 718 * succeeds; otherwise we will leak the holds on the datasets. 719 */ 720 int 721 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 722 boolean_t force, boolean_t resumable, nvlist_t *localprops, 723 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc) 724 { 725 dmu_recv_begin_arg_t drba = { 0 }; 726 727 bzero(drc, sizeof (dmu_recv_cookie_t)); 728 drc->drc_drr_begin = drr_begin; 729 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 730 drc->drc_tosnap = tosnap; 731 drc->drc_tofs = tofs; 732 drc->drc_force = force; 733 drc->drc_resumable = resumable; 734 drc->drc_cred = CRED(); 735 drc->drc_clone = (origin != NULL); 736 737 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 738 drc->drc_byteswap = B_TRUE; 739 (void) fletcher_4_incremental_byteswap(drr_begin, 740 sizeof (dmu_replay_record_t), &drc->drc_cksum); 741 byteswap_record(drr_begin); 742 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 743 (void) fletcher_4_incremental_native(drr_begin, 744 sizeof (dmu_replay_record_t), &drc->drc_cksum); 745 } else { 746 return (SET_ERROR(EINVAL)); 747 } 748 749 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) 750 drc->drc_spill = B_TRUE; 751 752 drba.drba_origin = origin; 753 drba.drba_cookie = drc; 754 drba.drba_cred = CRED(); 755 756 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 757 DMU_BACKUP_FEATURE_RESUMING) { 758 return (dsl_sync_task(tofs, 759 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 760 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 761 } else { 762 int err; 763 764 /* 765 * For non-raw, non-incremental, non-resuming receives the 766 * user can specify encryption parameters on the command line 767 * with "zfs recv -o". For these receives we create a dcp and 768 * pass it to the sync task. Creating the dcp will implicitly 769 * remove the encryption params from the localprops nvlist, 770 * which avoids errors when trying to set these normally 771 * read-only properties. Any other kind of receive that 772 * attempts to set these properties will fail as a result. 773 */ 774 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 775 DMU_BACKUP_FEATURE_RAW) == 0 && 776 origin == NULL && drc->drc_drrb->drr_fromguid == 0) { 777 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 778 localprops, hidden_args, &drba.drba_dcp); 779 if (err != 0) 780 return (err); 781 } 782 783 err = dsl_sync_task(tofs, 784 dmu_recv_begin_check, dmu_recv_begin_sync, 785 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 786 dsl_crypto_params_free(drba.drba_dcp, !!err); 787 788 return (err); 789 } 790 } 791 792 struct receive_record_arg { 793 dmu_replay_record_t header; 794 void *payload; /* Pointer to a buffer containing the payload */ 795 /* 796 * If the record is a write, pointer to the arc_buf_t containing the 797 * payload. 798 */ 799 arc_buf_t *arc_buf; 800 int payload_size; 801 uint64_t bytes_read; /* bytes read from stream when record created */ 802 boolean_t eos_marker; /* Marks the end of the stream */ 803 bqueue_node_t node; 804 }; 805 806 struct receive_writer_arg { 807 objset_t *os; 808 boolean_t byteswap; 809 bqueue_t q; 810 811 /* 812 * These three args are used to signal to the main thread that we're 813 * done. 814 */ 815 kmutex_t mutex; 816 kcondvar_t cv; 817 boolean_t done; 818 819 int err; 820 /* A map from guid to dataset to help handle dedup'd streams. */ 821 avl_tree_t *guid_to_ds_map; 822 boolean_t resumable; 823 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ 824 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ 825 uint64_t last_object; 826 uint64_t last_offset; 827 uint64_t max_object; /* highest object ID referenced in stream */ 828 uint64_t bytes_read; /* bytes read when current record created */ 829 830 /* Encryption parameters for the last received DRR_OBJECT_RANGE */ 831 boolean_t or_crypt_params_present; 832 uint64_t or_firstobj; 833 uint64_t or_numslots; 834 uint8_t or_salt[ZIO_DATA_SALT_LEN]; 835 uint8_t or_iv[ZIO_DATA_IV_LEN]; 836 uint8_t or_mac[ZIO_DATA_MAC_LEN]; 837 boolean_t or_byteorder; 838 }; 839 840 struct objlist { 841 list_t list; /* List of struct receive_objnode. */ 842 /* 843 * Last object looked up. Used to assert that objects are being looked 844 * up in ascending order. 845 */ 846 uint64_t last_lookup; 847 }; 848 849 struct receive_objnode { 850 list_node_t node; 851 uint64_t object; 852 }; 853 854 struct receive_arg { 855 objset_t *os; 856 vnode_t *vp; /* The vnode to read the stream from */ 857 uint64_t voff; /* The current offset in the stream */ 858 uint64_t bytes_read; 859 /* 860 * A record that has had its payload read in, but hasn't yet been handed 861 * off to the worker thread. 862 */ 863 struct receive_record_arg *rrd; 864 /* A record that has had its header read in, but not its payload. */ 865 struct receive_record_arg *next_rrd; 866 zio_cksum_t cksum; 867 zio_cksum_t prev_cksum; 868 int err; 869 boolean_t byteswap; 870 boolean_t raw; 871 uint64_t featureflags; 872 /* Sorted list of objects not to issue prefetches for. */ 873 struct objlist ignore_objlist; 874 }; 875 876 typedef struct guid_map_entry { 877 uint64_t guid; 878 boolean_t raw; 879 dsl_dataset_t *gme_ds; 880 avl_node_t avlnode; 881 } guid_map_entry_t; 882 883 static int 884 guid_compare(const void *arg1, const void *arg2) 885 { 886 const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1; 887 const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2; 888 889 return (TREE_CMP(gmep1->guid, gmep2->guid)); 890 } 891 892 static void 893 free_guid_map_onexit(void *arg) 894 { 895 avl_tree_t *ca = arg; 896 void *cookie = NULL; 897 guid_map_entry_t *gmep; 898 899 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 900 ds_hold_flags_t dsflags = DS_HOLD_FLAG_DECRYPT; 901 902 if (gmep->raw) { 903 gmep->gme_ds->ds_objset->os_raw_receive = B_FALSE; 904 dsflags &= ~DS_HOLD_FLAG_DECRYPT; 905 } 906 907 dsl_dataset_disown(gmep->gme_ds, dsflags, gmep); 908 kmem_free(gmep, sizeof (guid_map_entry_t)); 909 } 910 avl_destroy(ca); 911 kmem_free(ca, sizeof (avl_tree_t)); 912 } 913 914 static int 915 receive_read(struct receive_arg *ra, int len, void *buf) 916 { 917 int done = 0; 918 919 /* 920 * The code doesn't rely on this (lengths being multiples of 8). See 921 * comment in dump_bytes. 922 */ 923 ASSERT(len % 8 == 0 || 924 (ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0); 925 926 while (done < len) { 927 ssize_t resid; 928 929 ra->err = vn_rdwr(UIO_READ, ra->vp, 930 (char *)buf + done, len - done, 931 ra->voff, UIO_SYSSPACE, FAPPEND, 932 RLIM64_INFINITY, CRED(), &resid); 933 934 if (resid == len - done) { 935 /* 936 * Note: ECKSUM indicates that the receive 937 * was interrupted and can potentially be resumed. 938 */ 939 ra->err = SET_ERROR(ECKSUM); 940 } 941 ra->voff += len - done - resid; 942 done = len - resid; 943 if (ra->err != 0) 944 return (ra->err); 945 } 946 947 ra->bytes_read += len; 948 949 ASSERT3U(done, ==, len); 950 return (0); 951 } 952 953 static void 954 byteswap_record(dmu_replay_record_t *drr) 955 { 956 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 957 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 958 drr->drr_type = BSWAP_32(drr->drr_type); 959 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 960 961 switch (drr->drr_type) { 962 case DRR_BEGIN: 963 DO64(drr_begin.drr_magic); 964 DO64(drr_begin.drr_versioninfo); 965 DO64(drr_begin.drr_creation_time); 966 DO32(drr_begin.drr_type); 967 DO32(drr_begin.drr_flags); 968 DO64(drr_begin.drr_toguid); 969 DO64(drr_begin.drr_fromguid); 970 break; 971 case DRR_OBJECT: 972 DO64(drr_object.drr_object); 973 DO32(drr_object.drr_type); 974 DO32(drr_object.drr_bonustype); 975 DO32(drr_object.drr_blksz); 976 DO32(drr_object.drr_bonuslen); 977 DO32(drr_object.drr_raw_bonuslen); 978 DO64(drr_object.drr_toguid); 979 DO64(drr_object.drr_maxblkid); 980 break; 981 case DRR_FREEOBJECTS: 982 DO64(drr_freeobjects.drr_firstobj); 983 DO64(drr_freeobjects.drr_numobjs); 984 DO64(drr_freeobjects.drr_toguid); 985 break; 986 case DRR_WRITE: 987 DO64(drr_write.drr_object); 988 DO32(drr_write.drr_type); 989 DO64(drr_write.drr_offset); 990 DO64(drr_write.drr_logical_size); 991 DO64(drr_write.drr_toguid); 992 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 993 DO64(drr_write.drr_key.ddk_prop); 994 DO64(drr_write.drr_compressed_size); 995 break; 996 case DRR_WRITE_BYREF: 997 DO64(drr_write_byref.drr_object); 998 DO64(drr_write_byref.drr_offset); 999 DO64(drr_write_byref.drr_length); 1000 DO64(drr_write_byref.drr_toguid); 1001 DO64(drr_write_byref.drr_refguid); 1002 DO64(drr_write_byref.drr_refobject); 1003 DO64(drr_write_byref.drr_refoffset); 1004 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1005 drr_key.ddk_cksum); 1006 DO64(drr_write_byref.drr_key.ddk_prop); 1007 break; 1008 case DRR_WRITE_EMBEDDED: 1009 DO64(drr_write_embedded.drr_object); 1010 DO64(drr_write_embedded.drr_offset); 1011 DO64(drr_write_embedded.drr_length); 1012 DO64(drr_write_embedded.drr_toguid); 1013 DO32(drr_write_embedded.drr_lsize); 1014 DO32(drr_write_embedded.drr_psize); 1015 break; 1016 case DRR_FREE: 1017 DO64(drr_free.drr_object); 1018 DO64(drr_free.drr_offset); 1019 DO64(drr_free.drr_length); 1020 DO64(drr_free.drr_toguid); 1021 break; 1022 case DRR_SPILL: 1023 DO64(drr_spill.drr_object); 1024 DO64(drr_spill.drr_length); 1025 DO64(drr_spill.drr_toguid); 1026 DO64(drr_spill.drr_compressed_size); 1027 DO32(drr_spill.drr_type); 1028 break; 1029 case DRR_OBJECT_RANGE: 1030 DO64(drr_object_range.drr_firstobj); 1031 DO64(drr_object_range.drr_numslots); 1032 DO64(drr_object_range.drr_toguid); 1033 break; 1034 case DRR_END: 1035 DO64(drr_end.drr_toguid); 1036 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1037 break; 1038 } 1039 1040 if (drr->drr_type != DRR_BEGIN) { 1041 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1042 } 1043 1044 #undef DO64 1045 #undef DO32 1046 } 1047 1048 static inline uint8_t 1049 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1050 { 1051 if (bonus_type == DMU_OT_SA) { 1052 return (1); 1053 } else { 1054 return (1 + 1055 ((DN_OLD_MAX_BONUSLEN - 1056 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 1057 } 1058 } 1059 1060 static void 1061 save_resume_state(struct receive_writer_arg *rwa, 1062 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1063 { 1064 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1065 1066 if (!rwa->resumable) 1067 return; 1068 1069 /* 1070 * We use ds_resume_bytes[] != 0 to indicate that we need to 1071 * update this on disk, so it must not be 0. 1072 */ 1073 ASSERT(rwa->bytes_read != 0); 1074 1075 /* 1076 * We only resume from write records, which have a valid 1077 * (non-meta-dnode) object number. 1078 */ 1079 ASSERT(object != 0); 1080 1081 /* 1082 * For resuming to work correctly, we must receive records in order, 1083 * sorted by object,offset. This is checked by the callers, but 1084 * assert it here for good measure. 1085 */ 1086 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1087 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1088 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1089 ASSERT3U(rwa->bytes_read, >=, 1090 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1091 1092 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1093 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1094 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1095 } 1096 1097 int receive_object_delay_frac = 0; 1098 1099 static int 1100 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1101 void *data) 1102 { 1103 dmu_object_info_t doi; 1104 dmu_tx_t *tx; 1105 uint64_t object; 1106 int err; 1107 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1108 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1109 1110 if (receive_object_delay_frac != 0 && 1111 spa_get_random(receive_object_delay_frac) == 0) 1112 delay(1); 1113 1114 if (drro->drr_type == DMU_OT_NONE || 1115 !DMU_OT_IS_VALID(drro->drr_type) || 1116 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1117 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1118 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1119 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1120 drro->drr_blksz < SPA_MINBLOCKSIZE || 1121 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1122 drro->drr_bonuslen > 1123 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 1124 dn_slots > 1125 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 1126 return (SET_ERROR(EINVAL)); 1127 } 1128 1129 if (rwa->raw) { 1130 /* 1131 * We should have received a DRR_OBJECT_RANGE record 1132 * containing this block and stored it in rwa. 1133 */ 1134 if (drro->drr_object < rwa->or_firstobj || 1135 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || 1136 drro->drr_raw_bonuslen < drro->drr_bonuslen || 1137 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || 1138 drro->drr_nlevels > DN_MAX_LEVELS || 1139 drro->drr_nblkptr > DN_MAX_NBLKPTR || 1140 DN_SLOTS_TO_BONUSLEN(drro->drr_dn_slots) < 1141 drro->drr_raw_bonuslen) 1142 return (SET_ERROR(EINVAL)); 1143 } else { 1144 1145 /* 1146 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN 1147 * record indicates this by setting DRR_FLAG_SPILL_BLOCK. 1148 */ 1149 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || 1150 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { 1151 return (SET_ERROR(EINVAL)); 1152 } 1153 1154 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || 1155 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { 1156 return (SET_ERROR(EINVAL)); 1157 } 1158 } 1159 1160 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1161 1162 if (err != 0 && err != ENOENT && err != EEXIST) 1163 return (SET_ERROR(EINVAL)); 1164 1165 if (drro->drr_object > rwa->max_object) 1166 rwa->max_object = drro->drr_object; 1167 1168 /* 1169 * If we are losing blkptrs or changing the block size this must 1170 * be a new file instance. We must clear out the previous file 1171 * contents before we can change this type of metadata in the dnode. 1172 * Raw receives will also check that the indirect structure of the 1173 * dnode hasn't changed. 1174 */ 1175 if (err == 0) { 1176 uint32_t indblksz = drro->drr_indblkshift ? 1177 1ULL << drro->drr_indblkshift : 0; 1178 int nblkptr = deduce_nblkptr(drro->drr_bonustype, 1179 drro->drr_bonuslen); 1180 boolean_t did_free = B_FALSE; 1181 1182 object = drro->drr_object; 1183 1184 /* nblkptr should be bounded by the bonus size and type */ 1185 if (rwa->raw && nblkptr != drro->drr_nblkptr) 1186 return (SET_ERROR(EINVAL)); 1187 1188 /* 1189 * Check for indicators that the object was freed and 1190 * reallocated. For all sends, these indicators are: 1191 * - A changed block size 1192 * - A smaller nblkptr 1193 * - A changed dnode size 1194 * For raw sends we also check a few other fields to 1195 * ensure we are preserving the objset structure exactly 1196 * as it was on the receive side: 1197 * - A changed indirect block size 1198 * - A smaller nlevels 1199 */ 1200 if (drro->drr_blksz != doi.doi_data_block_size || 1201 nblkptr < doi.doi_nblkptr || 1202 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT || 1203 (rwa->raw && 1204 (indblksz != doi.doi_metadata_block_size || 1205 drro->drr_nlevels < doi.doi_indirection))) { 1206 err = dmu_free_long_range(rwa->os, 1207 drro->drr_object, 0, DMU_OBJECT_END); 1208 if (err != 0) 1209 return (SET_ERROR(EINVAL)); 1210 else 1211 did_free = B_TRUE; 1212 } 1213 1214 /* 1215 * The dmu does not currently support decreasing nlevels 1216 * or changing the number of dnode slots on an object. For 1217 * non-raw sends, this does not matter and the new object 1218 * can just use the previous one's nlevels. For raw sends, 1219 * however, the structure of the received dnode (including 1220 * nlevels and dnode slots) must match that of the send 1221 * side. Therefore, instead of using dmu_object_reclaim(), 1222 * we must free the object completely and call 1223 * dmu_object_claim_dnsize() instead. 1224 */ 1225 if ((rwa->raw && drro->drr_nlevels < doi.doi_indirection) || 1226 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) { 1227 err = dmu_free_long_object(rwa->os, drro->drr_object); 1228 if (err != 0) 1229 return (SET_ERROR(EINVAL)); 1230 1231 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1232 object = DMU_NEW_OBJECT; 1233 } 1234 1235 /* 1236 * For raw receives, free everything beyond the new incoming 1237 * maxblkid. Normally this would be done with a DRR_FREE 1238 * record that would come after this DRR_OBJECT record is 1239 * processed. However, for raw receives we manually set the 1240 * maxblkid from the drr_maxblkid and so we must first free 1241 * everything above that blkid to ensure the DMU is always 1242 * consistent with itself. We will never free the first block 1243 * of the object here because a maxblkid of 0 could indicate 1244 * an object with a single block or one with no blocks. This 1245 * free may be skipped when dmu_free_long_range() was called 1246 * above since it covers the entire object's contents. 1247 */ 1248 if (rwa->raw && object != DMU_NEW_OBJECT && !did_free) { 1249 err = dmu_free_long_range(rwa->os, drro->drr_object, 1250 (drro->drr_maxblkid + 1) * doi.doi_data_block_size, 1251 DMU_OBJECT_END); 1252 if (err != 0) 1253 return (SET_ERROR(EINVAL)); 1254 } 1255 } else if (err == EEXIST) { 1256 /* 1257 * The object requested is currently an interior slot of a 1258 * multi-slot dnode. This will be resolved when the next txg 1259 * is synced out, since the send stream will have told us 1260 * to free this slot when we freed the associated dnode 1261 * earlier in the stream. 1262 */ 1263 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1264 1265 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) 1266 return (SET_ERROR(EINVAL)); 1267 1268 /* object was freed and we are about to allocate a new one */ 1269 object = DMU_NEW_OBJECT; 1270 } else { 1271 /* object is free and we are about to allocate a new one */ 1272 object = DMU_NEW_OBJECT; 1273 } 1274 1275 /* 1276 * If this is a multi-slot dnode there is a chance that this 1277 * object will expand into a slot that is already used by 1278 * another object from the previous snapshot. We must free 1279 * these objects before we attempt to allocate the new dnode. 1280 */ 1281 if (dn_slots > 1) { 1282 boolean_t need_sync = B_FALSE; 1283 1284 for (uint64_t slot = drro->drr_object + 1; 1285 slot < drro->drr_object + dn_slots; 1286 slot++) { 1287 dmu_object_info_t slot_doi; 1288 1289 err = dmu_object_info(rwa->os, slot, &slot_doi); 1290 if (err == ENOENT || err == EEXIST) 1291 continue; 1292 else if (err != 0) 1293 return (err); 1294 1295 err = dmu_free_long_object(rwa->os, slot); 1296 1297 if (err != 0) 1298 return (err); 1299 1300 need_sync = B_TRUE; 1301 } 1302 1303 if (need_sync) 1304 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1305 } 1306 1307 tx = dmu_tx_create(rwa->os); 1308 dmu_tx_hold_bonus(tx, object); 1309 dmu_tx_hold_write(tx, object, 0, 0); 1310 err = dmu_tx_assign(tx, TXG_WAIT); 1311 if (err != 0) { 1312 dmu_tx_abort(tx); 1313 return (err); 1314 } 1315 1316 if (object == DMU_NEW_OBJECT) { 1317 /* Currently free, wants to be allocated */ 1318 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 1319 drro->drr_type, drro->drr_blksz, 1320 drro->drr_bonustype, drro->drr_bonuslen, 1321 dn_slots << DNODE_SHIFT, tx); 1322 } else if (drro->drr_type != doi.doi_type || 1323 drro->drr_blksz != doi.doi_data_block_size || 1324 drro->drr_bonustype != doi.doi_bonus_type || 1325 drro->drr_bonuslen != doi.doi_bonus_size) { 1326 /* Currently allocated, but with different properties */ 1327 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 1328 drro->drr_type, drro->drr_blksz, 1329 drro->drr_bonustype, drro->drr_bonuslen, 1330 dn_slots << DNODE_SHIFT, rwa->spill ? 1331 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); 1332 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { 1333 /* 1334 * Currently allocated, the existing version of this object 1335 * may reference a spill block that is no longer allocated 1336 * at the source and needs to be freed. 1337 */ 1338 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); 1339 } 1340 1341 if (err != 0) { 1342 dmu_tx_commit(tx); 1343 return (SET_ERROR(EINVAL)); 1344 } 1345 1346 if (rwa->or_crypt_params_present) { 1347 /* 1348 * Set the crypt params for the buffer associated with this 1349 * range of dnodes. This causes the blkptr_t to have the 1350 * same crypt params (byteorder, salt, iv, mac) as on the 1351 * sending side. 1352 * 1353 * Since we are committing this tx now, it is possible for 1354 * the dnode block to end up on-disk with the incorrect MAC, 1355 * if subsequent objects in this block are received in a 1356 * different txg. However, since the dataset is marked as 1357 * inconsistent, no code paths will do a non-raw read (or 1358 * decrypt the block / verify the MAC). The receive code and 1359 * scrub code can safely do raw reads and verify the 1360 * checksum. They don't need to verify the MAC. 1361 */ 1362 dmu_buf_t *db = NULL; 1363 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; 1364 1365 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), 1366 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); 1367 if (err != 0) { 1368 dmu_tx_commit(tx); 1369 return (SET_ERROR(EINVAL)); 1370 } 1371 1372 dmu_buf_set_crypt_params(db, rwa->or_byteorder, 1373 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); 1374 1375 dmu_buf_rele(db, FTAG); 1376 1377 rwa->or_crypt_params_present = B_FALSE; 1378 } 1379 1380 dmu_object_set_checksum(rwa->os, drro->drr_object, 1381 drro->drr_checksumtype, tx); 1382 dmu_object_set_compress(rwa->os, drro->drr_object, 1383 drro->drr_compress, tx); 1384 1385 /* handle more restrictive dnode structuring for raw recvs */ 1386 if (rwa->raw) { 1387 /* 1388 * Set the indirect block size, block shift, nlevels. 1389 * This will not fail because we ensured all of the 1390 * blocks were freed earlier if this is a new object. 1391 * For non-new objects block size and indirect block 1392 * shift cannot change and nlevels can only increase. 1393 */ 1394 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, 1395 drro->drr_blksz, drro->drr_indblkshift, tx)); 1396 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, 1397 drro->drr_nlevels, tx)); 1398 1399 /* 1400 * Set the maxblkid. This will always succeed because 1401 * we freed all blocks beyond the new maxblkid above. 1402 */ 1403 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, 1404 drro->drr_maxblkid, tx)); 1405 } 1406 1407 if (data != NULL) { 1408 dmu_buf_t *db; 1409 dnode_t *dn; 1410 uint32_t flags = DMU_READ_NO_PREFETCH; 1411 1412 if (rwa->raw) 1413 flags |= DMU_READ_NO_DECRYPT; 1414 1415 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); 1416 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); 1417 1418 dmu_buf_will_dirty(db, tx); 1419 1420 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1421 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro)); 1422 1423 /* 1424 * Raw bonus buffers have their byteorder determined by the 1425 * DRR_OBJECT_RANGE record. 1426 */ 1427 if (rwa->byteswap && !rwa->raw) { 1428 dmu_object_byteswap_t byteswap = 1429 DMU_OT_BYTESWAP(drro->drr_bonustype); 1430 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1431 DRR_OBJECT_PAYLOAD_SIZE(drro)); 1432 } 1433 dmu_buf_rele(db, FTAG); 1434 dnode_rele(dn, FTAG); 1435 } 1436 dmu_tx_commit(tx); 1437 1438 return (0); 1439 } 1440 1441 /* ARGSUSED */ 1442 static int 1443 receive_freeobjects(struct receive_writer_arg *rwa, 1444 struct drr_freeobjects *drrfo) 1445 { 1446 uint64_t obj; 1447 int next_err = 0; 1448 1449 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 1450 return (SET_ERROR(EINVAL)); 1451 1452 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 1453 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 1454 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 1455 dmu_object_info_t doi; 1456 int err; 1457 1458 err = dmu_object_info(rwa->os, obj, &doi); 1459 if (err == ENOENT) 1460 continue; 1461 else if (err != 0) 1462 return (err); 1463 1464 err = dmu_free_long_object(rwa->os, obj); 1465 1466 if (err != 0) 1467 return (err); 1468 1469 if (obj > rwa->max_object) 1470 rwa->max_object = obj; 1471 } 1472 if (next_err != ESRCH) 1473 return (next_err); 1474 return (0); 1475 } 1476 1477 static int 1478 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 1479 arc_buf_t *abuf) 1480 { 1481 int err; 1482 dmu_tx_t *tx; 1483 dnode_t *dn; 1484 1485 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 1486 !DMU_OT_IS_VALID(drrw->drr_type)) 1487 return (SET_ERROR(EINVAL)); 1488 1489 /* 1490 * For resuming to work, records must be in increasing order 1491 * by (object, offset). 1492 */ 1493 if (drrw->drr_object < rwa->last_object || 1494 (drrw->drr_object == rwa->last_object && 1495 drrw->drr_offset < rwa->last_offset)) { 1496 return (SET_ERROR(EINVAL)); 1497 } 1498 rwa->last_object = drrw->drr_object; 1499 rwa->last_offset = drrw->drr_offset; 1500 1501 if (rwa->last_object > rwa->max_object) 1502 rwa->max_object = rwa->last_object; 1503 1504 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 1505 return (SET_ERROR(EINVAL)); 1506 1507 tx = dmu_tx_create(rwa->os); 1508 dmu_tx_hold_write(tx, drrw->drr_object, 1509 drrw->drr_offset, drrw->drr_logical_size); 1510 err = dmu_tx_assign(tx, TXG_WAIT); 1511 if (err != 0) { 1512 dmu_tx_abort(tx); 1513 return (err); 1514 } 1515 1516 if (rwa->byteswap && !arc_is_encrypted(abuf) && 1517 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { 1518 dmu_object_byteswap_t byteswap = 1519 DMU_OT_BYTESWAP(drrw->drr_type); 1520 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 1521 DRR_WRITE_PAYLOAD_SIZE(drrw)); 1522 } 1523 1524 VERIFY0(dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn)); 1525 err = dmu_assign_arcbuf_by_dnode(dn, drrw->drr_offset, abuf, tx); 1526 if (err != 0) { 1527 dnode_rele(dn, FTAG); 1528 dmu_tx_commit(tx); 1529 return (err); 1530 } 1531 dnode_rele(dn, FTAG); 1532 1533 /* 1534 * Note: If the receive fails, we want the resume stream to start 1535 * with the same record that we last successfully received (as opposed 1536 * to the next record), so that we can verify that we are 1537 * resuming from the correct location. 1538 */ 1539 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 1540 dmu_tx_commit(tx); 1541 1542 return (0); 1543 } 1544 1545 /* 1546 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 1547 * streams to refer to a copy of the data that is already on the 1548 * system because it came in earlier in the stream. This function 1549 * finds the earlier copy of the data, and uses that copy instead of 1550 * data from the stream to fulfill this write. 1551 */ 1552 static int 1553 receive_write_byref(struct receive_writer_arg *rwa, 1554 struct drr_write_byref *drrwbr) 1555 { 1556 dmu_tx_t *tx; 1557 int err; 1558 guid_map_entry_t gmesrch; 1559 guid_map_entry_t *gmep; 1560 avl_index_t where; 1561 objset_t *ref_os = NULL; 1562 int flags = DMU_READ_PREFETCH; 1563 dmu_buf_t *dbp; 1564 1565 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 1566 return (SET_ERROR(EINVAL)); 1567 1568 /* 1569 * If the GUID of the referenced dataset is different from the 1570 * GUID of the target dataset, find the referenced dataset. 1571 */ 1572 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 1573 gmesrch.guid = drrwbr->drr_refguid; 1574 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 1575 &where)) == NULL) { 1576 return (SET_ERROR(EINVAL)); 1577 } 1578 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 1579 return (SET_ERROR(EINVAL)); 1580 } else { 1581 ref_os = rwa->os; 1582 } 1583 1584 if (drrwbr->drr_object > rwa->max_object) 1585 rwa->max_object = drrwbr->drr_object; 1586 1587 if (rwa->raw) 1588 flags |= DMU_READ_NO_DECRYPT; 1589 1590 /* may return either a regular db or an encrypted one */ 1591 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 1592 drrwbr->drr_refoffset, FTAG, &dbp, flags); 1593 if (err != 0) 1594 return (err); 1595 1596 tx = dmu_tx_create(rwa->os); 1597 1598 dmu_tx_hold_write(tx, drrwbr->drr_object, 1599 drrwbr->drr_offset, drrwbr->drr_length); 1600 err = dmu_tx_assign(tx, TXG_WAIT); 1601 if (err != 0) { 1602 dmu_tx_abort(tx); 1603 return (err); 1604 } 1605 1606 if (rwa->raw) { 1607 dmu_copy_from_buf(rwa->os, drrwbr->drr_object, 1608 drrwbr->drr_offset, dbp, tx); 1609 } else { 1610 dmu_write(rwa->os, drrwbr->drr_object, 1611 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 1612 } 1613 dmu_buf_rele(dbp, FTAG); 1614 1615 /* See comment in restore_write. */ 1616 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 1617 dmu_tx_commit(tx); 1618 return (0); 1619 } 1620 1621 static int 1622 receive_write_embedded(struct receive_writer_arg *rwa, 1623 struct drr_write_embedded *drrwe, void *data) 1624 { 1625 dmu_tx_t *tx; 1626 int err; 1627 1628 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 1629 return (EINVAL); 1630 1631 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 1632 return (EINVAL); 1633 1634 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 1635 return (EINVAL); 1636 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 1637 return (EINVAL); 1638 if (rwa->raw) 1639 return (SET_ERROR(EINVAL)); 1640 1641 if (drrwe->drr_object > rwa->max_object) 1642 rwa->max_object = drrwe->drr_object; 1643 1644 tx = dmu_tx_create(rwa->os); 1645 1646 dmu_tx_hold_write(tx, drrwe->drr_object, 1647 drrwe->drr_offset, drrwe->drr_length); 1648 err = dmu_tx_assign(tx, TXG_WAIT); 1649 if (err != 0) { 1650 dmu_tx_abort(tx); 1651 return (err); 1652 } 1653 1654 dmu_write_embedded(rwa->os, drrwe->drr_object, 1655 drrwe->drr_offset, data, drrwe->drr_etype, 1656 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 1657 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 1658 1659 /* See comment in restore_write. */ 1660 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 1661 dmu_tx_commit(tx); 1662 return (0); 1663 } 1664 1665 static int 1666 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 1667 arc_buf_t *abuf) 1668 { 1669 dmu_tx_t *tx; 1670 dmu_buf_t *db, *db_spill; 1671 int err; 1672 uint32_t flags = 0; 1673 1674 if (drrs->drr_length < SPA_MINBLOCKSIZE || 1675 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 1676 return (SET_ERROR(EINVAL)); 1677 1678 /* 1679 * This is an unmodified spill block which was added to the stream 1680 * to resolve an issue with incorrectly removing spill blocks. It 1681 * should be ignored by current versions of the code which support 1682 * the DRR_FLAG_SPILL_BLOCK flag. 1683 */ 1684 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { 1685 dmu_return_arcbuf(abuf); 1686 return (0); 1687 } 1688 1689 if (rwa->raw) { 1690 if (!DMU_OT_IS_VALID(drrs->drr_type) || 1691 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || 1692 drrs->drr_compressed_size == 0) 1693 return (SET_ERROR(EINVAL)); 1694 1695 flags |= DMU_READ_NO_DECRYPT; 1696 } 1697 1698 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 1699 return (SET_ERROR(EINVAL)); 1700 1701 if (drrs->drr_object > rwa->max_object) 1702 rwa->max_object = drrs->drr_object; 1703 1704 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 1705 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, 1706 &db_spill)) != 0) { 1707 dmu_buf_rele(db, FTAG); 1708 return (err); 1709 } 1710 1711 tx = dmu_tx_create(rwa->os); 1712 1713 dmu_tx_hold_spill(tx, db->db_object); 1714 1715 err = dmu_tx_assign(tx, TXG_WAIT); 1716 if (err != 0) { 1717 dmu_buf_rele(db, FTAG); 1718 dmu_buf_rele(db_spill, FTAG); 1719 dmu_tx_abort(tx); 1720 return (err); 1721 } 1722 1723 /* 1724 * Spill blocks may both grow and shrink. When a change in size 1725 * occurs any existing dbuf must be updated to match the logical 1726 * size of the provided arc_buf_t. 1727 */ 1728 if (db_spill->db_size != drrs->drr_length) { 1729 dmu_buf_will_fill(db_spill, tx); 1730 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 1731 drrs->drr_length, tx)); 1732 } 1733 1734 if (rwa->byteswap && !arc_is_encrypted(abuf) && 1735 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { 1736 dmu_object_byteswap_t byteswap = 1737 DMU_OT_BYTESWAP(drrs->drr_type); 1738 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 1739 DRR_SPILL_PAYLOAD_SIZE(drrs)); 1740 } 1741 1742 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); 1743 1744 dmu_buf_rele(db, FTAG); 1745 dmu_buf_rele(db_spill, FTAG); 1746 1747 dmu_tx_commit(tx); 1748 return (0); 1749 } 1750 1751 /* ARGSUSED */ 1752 static int 1753 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 1754 { 1755 int err; 1756 1757 if (drrf->drr_length != DMU_OBJECT_END && 1758 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 1759 return (SET_ERROR(EINVAL)); 1760 1761 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 1762 return (SET_ERROR(EINVAL)); 1763 1764 if (drrf->drr_object > rwa->max_object) 1765 rwa->max_object = drrf->drr_object; 1766 1767 err = dmu_free_long_range(rwa->os, drrf->drr_object, 1768 drrf->drr_offset, drrf->drr_length); 1769 1770 return (err); 1771 } 1772 1773 static int 1774 receive_object_range(struct receive_writer_arg *rwa, 1775 struct drr_object_range *drror) 1776 { 1777 /* 1778 * By default, we assume this block is in our native format 1779 * (ZFS_HOST_BYTEORDER). We then take into account whether 1780 * the send stream is byteswapped (rwa->byteswap). Finally, 1781 * we need to byteswap again if this particular block was 1782 * in non-native format on the send side. 1783 */ 1784 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ 1785 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); 1786 1787 /* 1788 * Since dnode block sizes are constant, we should not need to worry 1789 * about making sure that the dnode block size is the same on the 1790 * sending and receiving sides for the time being. For non-raw sends, 1791 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE 1792 * record at all). Raw sends require this record type because the 1793 * encryption parameters are used to protect an entire block of bonus 1794 * buffers. If the size of dnode blocks ever becomes variable, 1795 * handling will need to be added to ensure that dnode block sizes 1796 * match on the sending and receiving side. 1797 */ 1798 if (drror->drr_numslots != DNODES_PER_BLOCK || 1799 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || 1800 !rwa->raw) 1801 return (SET_ERROR(EINVAL)); 1802 1803 if (drror->drr_firstobj > rwa->max_object) 1804 rwa->max_object = drror->drr_firstobj; 1805 1806 /* 1807 * The DRR_OBJECT_RANGE handling must be deferred to receive_object() 1808 * so that the block of dnodes is not written out when it's empty, 1809 * and converted to a HOLE BP. 1810 */ 1811 rwa->or_crypt_params_present = B_TRUE; 1812 rwa->or_firstobj = drror->drr_firstobj; 1813 rwa->or_numslots = drror->drr_numslots; 1814 bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN); 1815 bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN); 1816 bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN); 1817 rwa->or_byteorder = byteorder; 1818 1819 return (0); 1820 } 1821 1822 /* used to destroy the drc_ds on error */ 1823 static void 1824 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 1825 { 1826 dsl_dataset_t *ds = drc->drc_ds; 1827 ds_hold_flags_t dsflags; 1828 1829 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 1830 /* 1831 * Wait for the txg sync before cleaning up the receive. For 1832 * resumable receives, this ensures that our resume state has 1833 * been written out to disk. For raw receives, this ensures 1834 * that the user accounting code will not attempt to do anything 1835 * after we stopped receiving the dataset. 1836 */ 1837 txg_wait_synced(ds->ds_dir->dd_pool, 0); 1838 ds->ds_objset->os_raw_receive = B_FALSE; 1839 1840 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1841 if (drc->drc_resumable && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { 1842 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1843 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 1844 } else { 1845 char name[ZFS_MAX_DATASET_NAME_LEN]; 1846 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1847 dsl_dataset_name(ds, name); 1848 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 1849 (void) dsl_destroy_head(name); 1850 } 1851 } 1852 1853 static void 1854 receive_cksum(struct receive_arg *ra, int len, void *buf) 1855 { 1856 if (ra->byteswap) { 1857 (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 1858 } else { 1859 (void) fletcher_4_incremental_native(buf, len, &ra->cksum); 1860 } 1861 } 1862 1863 /* 1864 * Read the payload into a buffer of size len, and update the current record's 1865 * payload field. 1866 * Allocate ra->next_rrd and read the next record's header into 1867 * ra->next_rrd->header. 1868 * Verify checksum of payload and next record. 1869 */ 1870 static int 1871 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 1872 { 1873 int err; 1874 1875 if (len != 0) { 1876 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 1877 err = receive_read(ra, len, buf); 1878 if (err != 0) 1879 return (err); 1880 receive_cksum(ra, len, buf); 1881 1882 /* note: rrd is NULL when reading the begin record's payload */ 1883 if (ra->rrd != NULL) { 1884 ra->rrd->payload = buf; 1885 ra->rrd->payload_size = len; 1886 ra->rrd->bytes_read = ra->bytes_read; 1887 } 1888 } 1889 1890 ra->prev_cksum = ra->cksum; 1891 1892 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 1893 err = receive_read(ra, sizeof (ra->next_rrd->header), 1894 &ra->next_rrd->header); 1895 ra->next_rrd->bytes_read = ra->bytes_read; 1896 1897 if (err != 0) { 1898 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 1899 ra->next_rrd = NULL; 1900 return (err); 1901 } 1902 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 1903 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 1904 ra->next_rrd = NULL; 1905 return (SET_ERROR(EINVAL)); 1906 } 1907 1908 /* 1909 * Note: checksum is of everything up to but not including the 1910 * checksum itself. 1911 */ 1912 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 1913 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 1914 receive_cksum(ra, 1915 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 1916 &ra->next_rrd->header); 1917 1918 zio_cksum_t cksum_orig = 1919 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 1920 zio_cksum_t *cksump = 1921 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 1922 1923 if (ra->byteswap) 1924 byteswap_record(&ra->next_rrd->header); 1925 1926 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 1927 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 1928 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 1929 ra->next_rrd = NULL; 1930 return (SET_ERROR(ECKSUM)); 1931 } 1932 1933 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 1934 1935 return (0); 1936 } 1937 1938 static void 1939 objlist_create(struct objlist *list) 1940 { 1941 list_create(&list->list, sizeof (struct receive_objnode), 1942 offsetof(struct receive_objnode, node)); 1943 list->last_lookup = 0; 1944 } 1945 1946 static void 1947 objlist_destroy(struct objlist *list) 1948 { 1949 for (struct receive_objnode *n = list_remove_head(&list->list); 1950 n != NULL; n = list_remove_head(&list->list)) { 1951 kmem_free(n, sizeof (*n)); 1952 } 1953 list_destroy(&list->list); 1954 } 1955 1956 /* 1957 * This function looks through the objlist to see if the specified object number 1958 * is contained in the objlist. In the process, it will remove all object 1959 * numbers in the list that are smaller than the specified object number. Thus, 1960 * any lookup of an object number smaller than a previously looked up object 1961 * number will always return false; therefore, all lookups should be done in 1962 * ascending order. 1963 */ 1964 static boolean_t 1965 objlist_exists(struct objlist *list, uint64_t object) 1966 { 1967 struct receive_objnode *node = list_head(&list->list); 1968 ASSERT3U(object, >=, list->last_lookup); 1969 list->last_lookup = object; 1970 while (node != NULL && node->object < object) { 1971 VERIFY3P(node, ==, list_remove_head(&list->list)); 1972 kmem_free(node, sizeof (*node)); 1973 node = list_head(&list->list); 1974 } 1975 return (node != NULL && node->object == object); 1976 } 1977 1978 /* 1979 * The objlist is a list of object numbers stored in ascending order. However, 1980 * the insertion of new object numbers does not seek out the correct location to 1981 * store a new object number; instead, it appends it to the list for simplicity. 1982 * Thus, any users must take care to only insert new object numbers in ascending 1983 * order. 1984 */ 1985 static void 1986 objlist_insert(struct objlist *list, uint64_t object) 1987 { 1988 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 1989 node->object = object; 1990 #ifdef ZFS_DEBUG 1991 struct receive_objnode *last_object = list_tail(&list->list); 1992 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 1993 ASSERT3U(node->object, >, last_objnum); 1994 #endif 1995 list_insert_tail(&list->list, node); 1996 } 1997 1998 /* 1999 * Issue the prefetch reads for any necessary indirect blocks. 2000 * 2001 * We use the object ignore list to tell us whether or not to issue prefetches 2002 * for a given object. We do this for both correctness (in case the blocksize 2003 * of an object has changed) and performance (if the object doesn't exist, don't 2004 * needlessly try to issue prefetches). We also trim the list as we go through 2005 * the stream to prevent it from growing to an unbounded size. 2006 * 2007 * The object numbers within will always be in sorted order, and any write 2008 * records we see will also be in sorted order, but they're not sorted with 2009 * respect to each other (i.e. we can get several object records before 2010 * receiving each object's write records). As a result, once we've reached a 2011 * given object number, we can safely remove any reference to lower object 2012 * numbers in the ignore list. In practice, we receive up to 32 object records 2013 * before receiving write records, so the list can have up to 32 nodes in it. 2014 */ 2015 /* ARGSUSED */ 2016 static void 2017 receive_read_prefetch(struct receive_arg *ra, 2018 uint64_t object, uint64_t offset, uint64_t length) 2019 { 2020 if (!objlist_exists(&ra->ignore_objlist, object)) { 2021 dmu_prefetch(ra->os, object, 1, offset, length, 2022 ZIO_PRIORITY_SYNC_READ); 2023 } 2024 } 2025 2026 /* 2027 * Read records off the stream, issuing any necessary prefetches. 2028 */ 2029 static int 2030 receive_read_record(struct receive_arg *ra) 2031 { 2032 int err; 2033 2034 switch (ra->rrd->header.drr_type) { 2035 case DRR_OBJECT: 2036 { 2037 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2038 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); 2039 void *buf = NULL; 2040 dmu_object_info_t doi; 2041 2042 if (size != 0) 2043 buf = kmem_zalloc(size, KM_SLEEP); 2044 2045 err = receive_read_payload_and_next_header(ra, size, buf); 2046 if (err != 0) { 2047 kmem_free(buf, size); 2048 return (err); 2049 } 2050 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2051 /* 2052 * See receive_read_prefetch for an explanation why we're 2053 * storing this object in the ignore_obj_list. 2054 */ 2055 if (err == ENOENT || err == EEXIST || 2056 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2057 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2058 err = 0; 2059 } 2060 return (err); 2061 } 2062 case DRR_FREEOBJECTS: 2063 { 2064 err = receive_read_payload_and_next_header(ra, 0, NULL); 2065 return (err); 2066 } 2067 case DRR_WRITE: 2068 { 2069 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2070 arc_buf_t *abuf; 2071 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type); 2072 2073 if (ra->raw) { 2074 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2075 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ 2076 ra->byteswap; 2077 2078 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os), 2079 drrw->drr_object, byteorder, drrw->drr_salt, 2080 drrw->drr_iv, drrw->drr_mac, drrw->drr_type, 2081 drrw->drr_compressed_size, drrw->drr_logical_size, 2082 drrw->drr_compressiontype); 2083 } else if (DRR_WRITE_COMPRESSED(drrw)) { 2084 ASSERT3U(drrw->drr_compressed_size, >, 0); 2085 ASSERT3U(drrw->drr_logical_size, >=, 2086 drrw->drr_compressed_size); 2087 ASSERT(!is_meta); 2088 abuf = arc_loan_compressed_buf( 2089 dmu_objset_spa(ra->os), 2090 drrw->drr_compressed_size, drrw->drr_logical_size, 2091 drrw->drr_compressiontype); 2092 } else { 2093 abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2094 is_meta, drrw->drr_logical_size); 2095 } 2096 2097 err = receive_read_payload_and_next_header(ra, 2098 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data); 2099 if (err != 0) { 2100 dmu_return_arcbuf(abuf); 2101 return (err); 2102 } 2103 ra->rrd->arc_buf = abuf; 2104 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2105 drrw->drr_logical_size); 2106 return (err); 2107 } 2108 case DRR_WRITE_BYREF: 2109 { 2110 struct drr_write_byref *drrwb = 2111 &ra->rrd->header.drr_u.drr_write_byref; 2112 err = receive_read_payload_and_next_header(ra, 0, NULL); 2113 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2114 drrwb->drr_length); 2115 return (err); 2116 } 2117 case DRR_WRITE_EMBEDDED: 2118 { 2119 struct drr_write_embedded *drrwe = 2120 &ra->rrd->header.drr_u.drr_write_embedded; 2121 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2122 void *buf = kmem_zalloc(size, KM_SLEEP); 2123 2124 err = receive_read_payload_and_next_header(ra, size, buf); 2125 if (err != 0) { 2126 kmem_free(buf, size); 2127 return (err); 2128 } 2129 2130 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2131 drrwe->drr_length); 2132 return (err); 2133 } 2134 case DRR_FREE: 2135 { 2136 /* 2137 * It might be beneficial to prefetch indirect blocks here, but 2138 * we don't really have the data to decide for sure. 2139 */ 2140 err = receive_read_payload_and_next_header(ra, 0, NULL); 2141 return (err); 2142 } 2143 case DRR_END: 2144 { 2145 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2146 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2147 return (SET_ERROR(ECKSUM)); 2148 return (0); 2149 } 2150 case DRR_SPILL: 2151 { 2152 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2153 arc_buf_t *abuf; 2154 int len = DRR_SPILL_PAYLOAD_SIZE(drrs); 2155 2156 /* DRR_SPILL records are either raw or uncompressed */ 2157 if (ra->raw) { 2158 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2159 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ 2160 ra->byteswap; 2161 2162 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os), 2163 dmu_objset_id(ra->os), byteorder, drrs->drr_salt, 2164 drrs->drr_iv, drrs->drr_mac, drrs->drr_type, 2165 drrs->drr_compressed_size, drrs->drr_length, 2166 drrs->drr_compressiontype); 2167 } else { 2168 abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2169 DMU_OT_IS_METADATA(drrs->drr_type), 2170 drrs->drr_length); 2171 } 2172 2173 err = receive_read_payload_and_next_header(ra, len, 2174 abuf->b_data); 2175 if (err != 0) { 2176 dmu_return_arcbuf(abuf); 2177 return (err); 2178 } 2179 ra->rrd->arc_buf = abuf; 2180 return (err); 2181 } 2182 case DRR_OBJECT_RANGE: 2183 { 2184 err = receive_read_payload_and_next_header(ra, 0, NULL); 2185 return (err); 2186 } 2187 default: 2188 return (SET_ERROR(EINVAL)); 2189 } 2190 } 2191 2192 /* 2193 * Commit the records to the pool. 2194 */ 2195 static int 2196 receive_process_record(struct receive_writer_arg *rwa, 2197 struct receive_record_arg *rrd) 2198 { 2199 int err; 2200 2201 /* Processing in order, therefore bytes_read should be increasing. */ 2202 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2203 rwa->bytes_read = rrd->bytes_read; 2204 2205 switch (rrd->header.drr_type) { 2206 case DRR_OBJECT: 2207 { 2208 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2209 err = receive_object(rwa, drro, rrd->payload); 2210 kmem_free(rrd->payload, rrd->payload_size); 2211 rrd->payload = NULL; 2212 return (err); 2213 } 2214 case DRR_FREEOBJECTS: 2215 { 2216 struct drr_freeobjects *drrfo = 2217 &rrd->header.drr_u.drr_freeobjects; 2218 return (receive_freeobjects(rwa, drrfo)); 2219 } 2220 case DRR_WRITE: 2221 { 2222 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2223 err = receive_write(rwa, drrw, rrd->arc_buf); 2224 /* if receive_write() is successful, it consumes the arc_buf */ 2225 if (err != 0) 2226 dmu_return_arcbuf(rrd->arc_buf); 2227 rrd->arc_buf = NULL; 2228 rrd->payload = NULL; 2229 return (err); 2230 } 2231 case DRR_WRITE_BYREF: 2232 { 2233 struct drr_write_byref *drrwbr = 2234 &rrd->header.drr_u.drr_write_byref; 2235 return (receive_write_byref(rwa, drrwbr)); 2236 } 2237 case DRR_WRITE_EMBEDDED: 2238 { 2239 struct drr_write_embedded *drrwe = 2240 &rrd->header.drr_u.drr_write_embedded; 2241 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2242 kmem_free(rrd->payload, rrd->payload_size); 2243 rrd->payload = NULL; 2244 return (err); 2245 } 2246 case DRR_FREE: 2247 { 2248 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2249 return (receive_free(rwa, drrf)); 2250 } 2251 case DRR_SPILL: 2252 { 2253 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2254 err = receive_spill(rwa, drrs, rrd->arc_buf); 2255 /* if receive_spill() is successful, it consumes the arc_buf */ 2256 if (err != 0) 2257 dmu_return_arcbuf(rrd->arc_buf); 2258 rrd->arc_buf = NULL; 2259 rrd->payload = NULL; 2260 return (err); 2261 } 2262 case DRR_OBJECT_RANGE: 2263 { 2264 struct drr_object_range *drror = 2265 &rrd->header.drr_u.drr_object_range; 2266 return (receive_object_range(rwa, drror)); 2267 } 2268 default: 2269 return (SET_ERROR(EINVAL)); 2270 } 2271 } 2272 2273 /* 2274 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2275 * receive_process_record When we're done, signal the main thread and exit. 2276 */ 2277 static void 2278 receive_writer_thread(void *arg) 2279 { 2280 struct receive_writer_arg *rwa = arg; 2281 struct receive_record_arg *rrd; 2282 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2283 rrd = bqueue_dequeue(&rwa->q)) { 2284 /* 2285 * If there's an error, the main thread will stop putting things 2286 * on the queue, but we need to clear everything in it before we 2287 * can exit. 2288 */ 2289 if (rwa->err == 0) { 2290 rwa->err = receive_process_record(rwa, rrd); 2291 } else if (rrd->arc_buf != NULL) { 2292 dmu_return_arcbuf(rrd->arc_buf); 2293 rrd->arc_buf = NULL; 2294 rrd->payload = NULL; 2295 } else if (rrd->payload != NULL) { 2296 kmem_free(rrd->payload, rrd->payload_size); 2297 rrd->payload = NULL; 2298 } 2299 kmem_free(rrd, sizeof (*rrd)); 2300 } 2301 kmem_free(rrd, sizeof (*rrd)); 2302 mutex_enter(&rwa->mutex); 2303 rwa->done = B_TRUE; 2304 cv_signal(&rwa->cv); 2305 mutex_exit(&rwa->mutex); 2306 thread_exit(); 2307 } 2308 2309 static int 2310 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2311 { 2312 uint64_t val; 2313 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2314 uint64_t dsobj = dmu_objset_id(ra->os); 2315 uint64_t resume_obj, resume_off; 2316 2317 if (nvlist_lookup_uint64(begin_nvl, 2318 "resume_object", &resume_obj) != 0 || 2319 nvlist_lookup_uint64(begin_nvl, 2320 "resume_offset", &resume_off) != 0) { 2321 return (SET_ERROR(EINVAL)); 2322 } 2323 VERIFY0(zap_lookup(mos, dsobj, 2324 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2325 if (resume_obj != val) 2326 return (SET_ERROR(EINVAL)); 2327 VERIFY0(zap_lookup(mos, dsobj, 2328 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2329 if (resume_off != val) 2330 return (SET_ERROR(EINVAL)); 2331 2332 return (0); 2333 } 2334 2335 /* 2336 * Read in the stream's records, one by one, and apply them to the pool. There 2337 * are two threads involved; the thread that calls this function will spin up a 2338 * worker thread, read the records off the stream one by one, and issue 2339 * prefetches for any necessary indirect blocks. It will then push the records 2340 * onto an internal blocking queue. The worker thread will pull the records off 2341 * the queue, and actually write the data into the DMU. This way, the worker 2342 * thread doesn't have to wait for reads to complete, since everything it needs 2343 * (the indirect blocks) will be prefetched. 2344 * 2345 * NB: callers *must* call dmu_recv_end() if this succeeds. 2346 */ 2347 int 2348 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2349 int cleanup_fd, uint64_t *action_handlep) 2350 { 2351 int err = 0; 2352 struct receive_arg ra = { 0 }; 2353 struct receive_writer_arg rwa = { 0 }; 2354 int featureflags; 2355 nvlist_t *begin_nvl = NULL; 2356 2357 ra.byteswap = drc->drc_byteswap; 2358 ra.raw = drc->drc_raw; 2359 ra.cksum = drc->drc_cksum; 2360 ra.vp = vp; 2361 ra.voff = *voffp; 2362 2363 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2364 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2365 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2366 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2367 } 2368 2369 objlist_create(&ra.ignore_objlist); 2370 2371 /* these were verified in dmu_recv_begin */ 2372 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2373 DMU_SUBSTREAM); 2374 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2375 2376 /* 2377 * Open the objset we are modifying. 2378 */ 2379 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2380 2381 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2382 2383 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2384 ra.featureflags = featureflags; 2385 2386 ASSERT0(ra.os->os_encrypted && 2387 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); 2388 2389 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2390 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2391 minor_t minor; 2392 2393 if (cleanup_fd == -1) { 2394 err = SET_ERROR(EBADF); 2395 goto out; 2396 } 2397 err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2398 if (err != 0) { 2399 cleanup_fd = -1; 2400 goto out; 2401 } 2402 2403 if (*action_handlep == 0) { 2404 rwa.guid_to_ds_map = 2405 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2406 avl_create(rwa.guid_to_ds_map, guid_compare, 2407 sizeof (guid_map_entry_t), 2408 offsetof(guid_map_entry_t, avlnode)); 2409 err = zfs_onexit_add_cb(minor, 2410 free_guid_map_onexit, rwa.guid_to_ds_map, 2411 action_handlep); 2412 if (err != 0) 2413 goto out; 2414 } else { 2415 err = zfs_onexit_cb_data(minor, *action_handlep, 2416 (void **)&rwa.guid_to_ds_map); 2417 if (err != 0) 2418 goto out; 2419 } 2420 2421 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2422 } 2423 2424 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2425 void *payload = NULL; 2426 if (payloadlen != 0) 2427 payload = kmem_alloc(payloadlen, KM_SLEEP); 2428 2429 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2430 if (err != 0) { 2431 if (payloadlen != 0) 2432 kmem_free(payload, payloadlen); 2433 goto out; 2434 } 2435 if (payloadlen != 0) { 2436 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2437 kmem_free(payload, payloadlen); 2438 if (err != 0) 2439 goto out; 2440 } 2441 2442 /* handle DSL encryption key payload */ 2443 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 2444 nvlist_t *keynvl = NULL; 2445 2446 ASSERT(ra.os->os_encrypted); 2447 ASSERT(drc->drc_raw); 2448 2449 err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl); 2450 if (err != 0) 2451 goto out; 2452 2453 /* 2454 * If this is a new dataset we set the key immediately. 2455 * Otherwise we don't want to change the key until we 2456 * are sure the rest of the receive succeeded so we stash 2457 * the keynvl away until then. 2458 */ 2459 err = dsl_crypto_recv_raw(spa_name(ra.os->os_spa), 2460 drc->drc_ds->ds_object, drc->drc_fromsnapobj, 2461 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); 2462 if (err != 0) 2463 goto out; 2464 2465 /* see comment in dmu_recv_end_sync() */ 2466 drc->drc_ivset_guid = 0; 2467 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", 2468 &drc->drc_ivset_guid); 2469 2470 if (!drc->drc_newfs) 2471 drc->drc_keynvl = fnvlist_dup(keynvl); 2472 } 2473 2474 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2475 err = resume_check(&ra, begin_nvl); 2476 if (err != 0) 2477 goto out; 2478 } 2479 2480 (void) bqueue_init(&rwa.q, 2481 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), 2482 offsetof(struct receive_record_arg, node)); 2483 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2484 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2485 rwa.os = ra.os; 2486 rwa.byteswap = drc->drc_byteswap; 2487 rwa.resumable = drc->drc_resumable; 2488 rwa.raw = drc->drc_raw; 2489 rwa.spill = drc->drc_spill; 2490 rwa.os->os_raw_receive = drc->drc_raw; 2491 2492 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2493 TS_RUN, minclsyspri); 2494 /* 2495 * We're reading rwa.err without locks, which is safe since we are the 2496 * only reader, and the worker thread is the only writer. It's ok if we 2497 * miss a write for an iteration or two of the loop, since the writer 2498 * thread will keep freeing records we send it until we send it an eos 2499 * marker. 2500 * 2501 * We can leave this loop in 3 ways: First, if rwa.err is 2502 * non-zero. In that case, the writer thread will free the rrd we just 2503 * pushed. Second, if we're interrupted; in that case, either it's the 2504 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2505 * has been handed off to the writer thread who will free it. Finally, 2506 * if receive_read_record fails or we're at the end of the stream, then 2507 * we free ra.rrd and exit. 2508 */ 2509 while (rwa.err == 0) { 2510 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2511 err = SET_ERROR(EINTR); 2512 break; 2513 } 2514 2515 ASSERT3P(ra.rrd, ==, NULL); 2516 ra.rrd = ra.next_rrd; 2517 ra.next_rrd = NULL; 2518 /* Allocates and loads header into ra.next_rrd */ 2519 err = receive_read_record(&ra); 2520 2521 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2522 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2523 ra.rrd = NULL; 2524 break; 2525 } 2526 2527 bqueue_enqueue(&rwa.q, ra.rrd, 2528 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2529 ra.rrd = NULL; 2530 } 2531 ASSERT3P(ra.rrd, ==, NULL); 2532 ra.rrd = kmem_zalloc(sizeof (*ra.rrd), KM_SLEEP); 2533 ra.rrd->eos_marker = B_TRUE; 2534 bqueue_enqueue(&rwa.q, ra.rrd, 1); 2535 2536 mutex_enter(&rwa.mutex); 2537 while (!rwa.done) { 2538 cv_wait(&rwa.cv, &rwa.mutex); 2539 } 2540 mutex_exit(&rwa.mutex); 2541 2542 /* 2543 * If we are receiving a full stream as a clone, all object IDs which 2544 * are greater than the maximum ID referenced in the stream are 2545 * by definition unused and must be freed. Note that it's possible that 2546 * we've resumed this send and the first record we received was the END 2547 * record. In that case, max_object would be 0, but we shouldn't start 2548 * freeing all objects from there; instead we should start from the 2549 * resumeobj. 2550 */ 2551 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 2552 uint64_t obj; 2553 if (nvlist_lookup_uint64(begin_nvl, "resume_object", &obj) != 0) 2554 obj = 0; 2555 if (rwa.max_object > obj) 2556 obj = rwa.max_object; 2557 obj++; 2558 int free_err = 0; 2559 int next_err = 0; 2560 2561 while (next_err == 0) { 2562 free_err = dmu_free_long_object(rwa.os, obj); 2563 if (free_err != 0 && free_err != ENOENT) 2564 break; 2565 2566 next_err = dmu_object_next(rwa.os, &obj, FALSE, 0); 2567 } 2568 2569 if (err == 0) { 2570 if (free_err != 0 && free_err != ENOENT) 2571 err = free_err; 2572 else if (next_err != ESRCH) 2573 err = next_err; 2574 } 2575 } 2576 2577 cv_destroy(&rwa.cv); 2578 mutex_destroy(&rwa.mutex); 2579 bqueue_destroy(&rwa.q); 2580 if (err == 0) 2581 err = rwa.err; 2582 2583 out: 2584 /* 2585 * If we hit an error before we started the receive_writer_thread 2586 * we need to clean up the next_rrd we create by processing the 2587 * DRR_BEGIN record. 2588 */ 2589 if (ra.next_rrd != NULL) 2590 kmem_free(ra.next_rrd, sizeof (*ra.next_rrd)); 2591 2592 nvlist_free(begin_nvl); 2593 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2594 zfs_onexit_fd_rele(cleanup_fd); 2595 2596 if (err != 0) { 2597 /* 2598 * Clean up references. If receive is not resumable, 2599 * destroy what we created, so we don't leave it in 2600 * the inconsistent state. 2601 */ 2602 dmu_recv_cleanup_ds(drc); 2603 nvlist_free(drc->drc_keynvl); 2604 } 2605 2606 *voffp = ra.voff; 2607 objlist_destroy(&ra.ignore_objlist); 2608 return (err); 2609 } 2610 2611 static int 2612 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2613 { 2614 dmu_recv_cookie_t *drc = arg; 2615 dsl_pool_t *dp = dmu_tx_pool(tx); 2616 int error; 2617 2618 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2619 2620 if (!drc->drc_newfs) { 2621 dsl_dataset_t *origin_head; 2622 2623 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2624 if (error != 0) 2625 return (error); 2626 if (drc->drc_force) { 2627 /* 2628 * We will destroy any snapshots in tofs (i.e. before 2629 * origin_head) that are after the origin (which is 2630 * the snap before drc_ds, because drc_ds can not 2631 * have any snaps of its own). 2632 */ 2633 uint64_t obj; 2634 2635 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2636 while (obj != 2637 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2638 dsl_dataset_t *snap; 2639 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2640 &snap); 2641 if (error != 0) 2642 break; 2643 if (snap->ds_dir != origin_head->ds_dir) 2644 error = SET_ERROR(EINVAL); 2645 if (error == 0) { 2646 error = dsl_destroy_snapshot_check_impl( 2647 snap, B_FALSE); 2648 } 2649 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2650 dsl_dataset_rele(snap, FTAG); 2651 if (error != 0) 2652 break; 2653 } 2654 if (error != 0) { 2655 dsl_dataset_rele(origin_head, FTAG); 2656 return (error); 2657 } 2658 } 2659 if (drc->drc_keynvl != NULL) { 2660 error = dsl_crypto_recv_raw_key_check(drc->drc_ds, 2661 drc->drc_keynvl, tx); 2662 if (error != 0) { 2663 dsl_dataset_rele(origin_head, FTAG); 2664 return (error); 2665 } 2666 } 2667 2668 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2669 origin_head, drc->drc_force, drc->drc_owner, tx); 2670 if (error != 0) { 2671 dsl_dataset_rele(origin_head, FTAG); 2672 return (error); 2673 } 2674 error = dsl_dataset_snapshot_check_impl(origin_head, 2675 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2676 dsl_dataset_rele(origin_head, FTAG); 2677 if (error != 0) 2678 return (error); 2679 2680 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2681 } else { 2682 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2683 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2684 } 2685 return (error); 2686 } 2687 2688 static void 2689 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2690 { 2691 dmu_recv_cookie_t *drc = arg; 2692 dsl_pool_t *dp = dmu_tx_pool(tx); 2693 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; 2694 2695 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2696 tx, "snap=%s", drc->drc_tosnap); 2697 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; 2698 2699 if (!drc->drc_newfs) { 2700 dsl_dataset_t *origin_head; 2701 2702 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2703 &origin_head)); 2704 2705 if (drc->drc_force) { 2706 /* 2707 * Destroy any snapshots of drc_tofs (origin_head) 2708 * after the origin (the snap before drc_ds). 2709 */ 2710 uint64_t obj; 2711 2712 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2713 while (obj != 2714 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2715 dsl_dataset_t *snap; 2716 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2717 &snap)); 2718 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 2719 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2720 dsl_destroy_snapshot_sync_impl(snap, 2721 B_FALSE, tx); 2722 dsl_dataset_rele(snap, FTAG); 2723 } 2724 } 2725 if (drc->drc_keynvl != NULL) { 2726 dsl_crypto_recv_raw_key_sync(drc->drc_ds, 2727 drc->drc_keynvl, tx); 2728 nvlist_free(drc->drc_keynvl); 2729 drc->drc_keynvl = NULL; 2730 } 2731 2732 VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev); 2733 2734 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 2735 origin_head, tx); 2736 dsl_dataset_snapshot_sync_impl(origin_head, 2737 drc->drc_tosnap, tx); 2738 2739 /* set snapshot's creation time and guid */ 2740 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 2741 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 2742 drc->drc_drrb->drr_creation_time; 2743 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 2744 drc->drc_drrb->drr_toguid; 2745 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 2746 ~DS_FLAG_INCONSISTENT; 2747 2748 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 2749 dsl_dataset_phys(origin_head)->ds_flags &= 2750 ~DS_FLAG_INCONSISTENT; 2751 2752 drc->drc_newsnapobj = 2753 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2754 2755 dsl_dataset_rele(origin_head, FTAG); 2756 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 2757 2758 if (drc->drc_owner != NULL) 2759 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 2760 } else { 2761 dsl_dataset_t *ds = drc->drc_ds; 2762 2763 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 2764 2765 /* set snapshot's creation time and guid */ 2766 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 2767 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 2768 drc->drc_drrb->drr_creation_time; 2769 dsl_dataset_phys(ds->ds_prev)->ds_guid = 2770 drc->drc_drrb->drr_toguid; 2771 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 2772 ~DS_FLAG_INCONSISTENT; 2773 2774 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2775 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 2776 if (dsl_dataset_has_resume_receive_state(ds)) { 2777 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2778 DS_FIELD_RESUME_FROMGUID, tx); 2779 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2780 DS_FIELD_RESUME_OBJECT, tx); 2781 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2782 DS_FIELD_RESUME_OFFSET, tx); 2783 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2784 DS_FIELD_RESUME_BYTES, tx); 2785 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2786 DS_FIELD_RESUME_TOGUID, tx); 2787 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 2788 DS_FIELD_RESUME_TONAME, tx); 2789 } 2790 drc->drc_newsnapobj = 2791 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 2792 } 2793 2794 /* 2795 * If this is a raw receive, the crypt_keydata nvlist will include 2796 * a to_ivset_guid for us to set on the new snapshot. This value 2797 * will override the value generated by the snapshot code. However, 2798 * this value may not be present, because older implementations of 2799 * the raw send code did not include this value, and we are still 2800 * allowed to receive them if the zfs_disable_ivset_guid_check 2801 * tunable is set, in which case we will leave the newly-generated 2802 * value. 2803 */ 2804 if (drc->drc_raw && drc->drc_ivset_guid != 0) { 2805 dmu_object_zapify(dp->dp_meta_objset, drc->drc_newsnapobj, 2806 DMU_OT_DSL_DATASET, tx); 2807 VERIFY0(zap_update(dp->dp_meta_objset, drc->drc_newsnapobj, 2808 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, 2809 &drc->drc_ivset_guid, tx)); 2810 } 2811 2812 /* 2813 * Release the hold from dmu_recv_begin. This must be done before 2814 * we return to open context, so that when we free the dataset's dnode 2815 * we can evict its bonus buffer. Since the dataset may be destroyed 2816 * at this point (and therefore won't have a valid pointer to the spa) 2817 * we release the key mapping manually here while we do have a valid 2818 * pointer, if it exists. 2819 */ 2820 if (!drc->drc_raw && encrypted) { 2821 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, 2822 drc->drc_ds->ds_object, drc->drc_ds); 2823 } 2824 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); 2825 drc->drc_ds = NULL; 2826 } 2827 2828 static int 2829 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj, 2830 boolean_t raw) 2831 { 2832 dsl_pool_t *dp; 2833 dsl_dataset_t *snapds; 2834 guid_map_entry_t *gmep; 2835 objset_t *os; 2836 ds_hold_flags_t dsflags; 2837 int err; 2838 2839 ASSERT(guid_map != NULL); 2840 2841 dsflags = (raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2842 err = dsl_pool_hold(name, FTAG, &dp); 2843 if (err != 0) 2844 return (err); 2845 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 2846 err = dsl_dataset_own_obj(dp, snapobj, dsflags, gmep, &snapds); 2847 if (err == 0) { 2848 /* 2849 * If this is a deduplicated raw send stream, we need 2850 * to make sure that we can still read raw blocks from 2851 * earlier datasets in the stream, so we set the 2852 * os_raw_receive flag now. 2853 */ 2854 if (raw) { 2855 err = dmu_objset_from_ds(snapds, &os); 2856 if (err != 0) { 2857 dsl_dataset_disown(snapds, dsflags, FTAG); 2858 dsl_pool_rele(dp, FTAG); 2859 kmem_free(gmep, sizeof (*gmep)); 2860 return (err); 2861 } 2862 os->os_raw_receive = B_TRUE; 2863 } 2864 2865 gmep->raw = raw; 2866 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 2867 gmep->gme_ds = snapds; 2868 avl_add(guid_map, gmep); 2869 } else { 2870 kmem_free(gmep, sizeof (*gmep)); 2871 } 2872 2873 dsl_pool_rele(dp, FTAG); 2874 return (err); 2875 } 2876 2877 static int dmu_recv_end_modified_blocks = 3; 2878 2879 static int 2880 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 2881 { 2882 #ifdef _KERNEL 2883 /* 2884 * We will be destroying the ds; make sure its origin is unmounted if 2885 * necessary. 2886 */ 2887 char name[ZFS_MAX_DATASET_NAME_LEN]; 2888 dsl_dataset_name(drc->drc_ds, name); 2889 zfs_destroy_unmount_origin(name); 2890 #endif 2891 2892 return (dsl_sync_task(drc->drc_tofs, 2893 dmu_recv_end_check, dmu_recv_end_sync, drc, 2894 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 2895 } 2896 2897 static int 2898 dmu_recv_new_end(dmu_recv_cookie_t *drc) 2899 { 2900 return (dsl_sync_task(drc->drc_tofs, 2901 dmu_recv_end_check, dmu_recv_end_sync, drc, 2902 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 2903 } 2904 2905 int 2906 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 2907 { 2908 int error; 2909 2910 drc->drc_owner = owner; 2911 2912 if (drc->drc_newfs) 2913 error = dmu_recv_new_end(drc); 2914 else 2915 error = dmu_recv_existing_end(drc); 2916 2917 if (error != 0) { 2918 dmu_recv_cleanup_ds(drc); 2919 nvlist_free(drc->drc_keynvl); 2920 } else if (drc->drc_guid_to_ds_map != NULL) { 2921 (void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map, 2922 drc->drc_newsnapobj, drc->drc_raw); 2923 } 2924 return (error); 2925 } 2926 2927 /* 2928 * Return TRUE if this objset is currently being received into. 2929 */ 2930 boolean_t 2931 dmu_objset_is_receiving(objset_t *os) 2932 { 2933 return (os->os_dsl_dataset != NULL && 2934 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 2935 } 2936