1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/dmu.h> 26 #include <sys/dmu_impl.h> 27 #include <sys/dmu_tx.h> 28 #include <sys/dbuf.h> 29 #include <sys/dnode.h> 30 #include <sys/zfs_context.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_traverse.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_pool.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dsl_prop.h> 38 #include <sys/dmu_zfetch.h> 39 #include <sys/zfs_ioctl.h> 40 #include <sys/zap.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/sa.h> 43 #ifdef _KERNEL 44 #include <sys/vmsystm.h> 45 #include <sys/zfs_znode.h> 46 #endif 47 48 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 49 { byteswap_uint8_array, TRUE, "unallocated" }, 50 { zap_byteswap, TRUE, "object directory" }, 51 { byteswap_uint64_array, TRUE, "object array" }, 52 { byteswap_uint8_array, TRUE, "packed nvlist" }, 53 { byteswap_uint64_array, TRUE, "packed nvlist size" }, 54 { byteswap_uint64_array, TRUE, "bplist" }, 55 { byteswap_uint64_array, TRUE, "bplist header" }, 56 { byteswap_uint64_array, TRUE, "SPA space map header" }, 57 { byteswap_uint64_array, TRUE, "SPA space map" }, 58 { byteswap_uint64_array, TRUE, "ZIL intent log" }, 59 { dnode_buf_byteswap, TRUE, "DMU dnode" }, 60 { dmu_objset_byteswap, TRUE, "DMU objset" }, 61 { byteswap_uint64_array, TRUE, "DSL directory" }, 62 { zap_byteswap, TRUE, "DSL directory child map"}, 63 { zap_byteswap, TRUE, "DSL dataset snap map" }, 64 { zap_byteswap, TRUE, "DSL props" }, 65 { byteswap_uint64_array, TRUE, "DSL dataset" }, 66 { zfs_znode_byteswap, TRUE, "ZFS znode" }, 67 { zfs_oldacl_byteswap, TRUE, "ZFS V0 ACL" }, 68 { byteswap_uint8_array, FALSE, "ZFS plain file" }, 69 { zap_byteswap, TRUE, "ZFS directory" }, 70 { zap_byteswap, TRUE, "ZFS master node" }, 71 { zap_byteswap, TRUE, "ZFS delete queue" }, 72 { byteswap_uint8_array, FALSE, "zvol object" }, 73 { zap_byteswap, TRUE, "zvol prop" }, 74 { byteswap_uint8_array, FALSE, "other uint8[]" }, 75 { byteswap_uint64_array, FALSE, "other uint64[]" }, 76 { zap_byteswap, TRUE, "other ZAP" }, 77 { zap_byteswap, TRUE, "persistent error log" }, 78 { byteswap_uint8_array, TRUE, "SPA history" }, 79 { byteswap_uint64_array, TRUE, "SPA history offsets" }, 80 { zap_byteswap, TRUE, "Pool properties" }, 81 { zap_byteswap, TRUE, "DSL permissions" }, 82 { zfs_acl_byteswap, TRUE, "ZFS ACL" }, 83 { byteswap_uint8_array, TRUE, "ZFS SYSACL" }, 84 { byteswap_uint8_array, TRUE, "FUID table" }, 85 { byteswap_uint64_array, TRUE, "FUID table size" }, 86 { zap_byteswap, TRUE, "DSL dataset next clones"}, 87 { zap_byteswap, TRUE, "scrub work queue" }, 88 { zap_byteswap, TRUE, "ZFS user/group used" }, 89 { zap_byteswap, TRUE, "ZFS user/group quota" }, 90 { zap_byteswap, TRUE, "snapshot refcount tags"}, 91 { zap_byteswap, TRUE, "DDT ZAP algorithm" }, 92 { zap_byteswap, TRUE, "DDT statistics" }, 93 { byteswap_uint8_array, TRUE, "System attributes" }, 94 { zap_byteswap, TRUE, "SA master node" }, 95 { zap_byteswap, TRUE, "SA attr registration" }, 96 { zap_byteswap, TRUE, "SA attr layouts" }, }; 97 98 int 99 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 100 void *tag, dmu_buf_t **dbp) 101 { 102 dnode_t *dn; 103 uint64_t blkid; 104 dmu_buf_impl_t *db; 105 int err; 106 107 err = dnode_hold(os, object, FTAG, &dn); 108 if (err) 109 return (err); 110 blkid = dbuf_whichblock(dn, offset); 111 rw_enter(&dn->dn_struct_rwlock, RW_READER); 112 db = dbuf_hold(dn, blkid, tag); 113 rw_exit(&dn->dn_struct_rwlock); 114 if (db == NULL) { 115 err = EIO; 116 } else { 117 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 118 if (err) { 119 dbuf_rele(db, tag); 120 db = NULL; 121 } 122 } 123 124 dnode_rele(dn, FTAG); 125 *dbp = &db->db; 126 return (err); 127 } 128 129 int 130 dmu_bonus_max(void) 131 { 132 return (DN_MAX_BONUSLEN); 133 } 134 135 int 136 dmu_set_bonus(dmu_buf_t *db, int newsize, dmu_tx_t *tx) 137 { 138 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 139 140 if (dn->dn_bonus != (dmu_buf_impl_t *)db) 141 return (EINVAL); 142 if (newsize < 0 || newsize > db->db_size) 143 return (EINVAL); 144 dnode_setbonuslen(dn, newsize, tx); 145 return (0); 146 } 147 148 int 149 dmu_set_bonustype(dmu_buf_t *db, dmu_object_type_t type, dmu_tx_t *tx) 150 { 151 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 152 153 if (type > DMU_OT_NUMTYPES) 154 return (EINVAL); 155 156 if (dn->dn_bonus != (dmu_buf_impl_t *)db) 157 return (EINVAL); 158 159 dnode_setbonus_type(dn, type, tx); 160 return (0); 161 } 162 163 int 164 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 165 { 166 dnode_t *dn; 167 int error; 168 169 error = dnode_hold(os, object, FTAG, &dn); 170 dbuf_rm_spill(dn, tx); 171 dnode_rele(dn, FTAG); 172 return (error); 173 } 174 175 /* 176 * returns ENOENT, EIO, or 0. 177 */ 178 int 179 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 180 { 181 dnode_t *dn; 182 dmu_buf_impl_t *db; 183 int error; 184 185 error = dnode_hold(os, object, FTAG, &dn); 186 if (error) 187 return (error); 188 189 rw_enter(&dn->dn_struct_rwlock, RW_READER); 190 if (dn->dn_bonus == NULL) { 191 rw_exit(&dn->dn_struct_rwlock); 192 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 193 if (dn->dn_bonus == NULL) 194 dbuf_create_bonus(dn); 195 } 196 db = dn->dn_bonus; 197 rw_exit(&dn->dn_struct_rwlock); 198 199 /* as long as the bonus buf is held, the dnode will be held */ 200 if (refcount_add(&db->db_holds, tag) == 1) 201 VERIFY(dnode_add_ref(dn, db)); 202 203 dnode_rele(dn, FTAG); 204 205 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED)); 206 207 *dbp = &db->db; 208 return (0); 209 } 210 211 /* 212 * returns ENOENT, EIO, or 0. 213 * 214 * This interface will allocate a blank spill dbuf when a spill blk 215 * doesn't already exist on the dnode. 216 * 217 * if you only want to find an already existing spill db, then 218 * dmu_spill_hold_existing() should be used. 219 */ 220 int 221 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 222 { 223 dmu_buf_impl_t *db = NULL; 224 int err; 225 226 if ((flags & DB_RF_HAVESTRUCT) == 0) 227 rw_enter(&dn->dn_struct_rwlock, RW_READER); 228 229 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 230 231 if ((flags & DB_RF_HAVESTRUCT) == 0) 232 rw_exit(&dn->dn_struct_rwlock); 233 234 ASSERT(db != NULL); 235 err = dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | flags); 236 *dbp = &db->db; 237 return (err); 238 } 239 240 int 241 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 242 { 243 dnode_t *dn = ((dmu_buf_impl_t *)bonus)->db_dnode; 244 int err; 245 246 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) 247 return (EINVAL); 248 rw_enter(&dn->dn_struct_rwlock, RW_READER); 249 250 if (!dn->dn_have_spill) { 251 rw_exit(&dn->dn_struct_rwlock); 252 return (ENOENT); 253 } 254 err = dmu_spill_hold_by_dnode(dn, DB_RF_HAVESTRUCT, tag, dbp); 255 rw_exit(&dn->dn_struct_rwlock); 256 return (err); 257 } 258 259 int 260 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 261 { 262 return (dmu_spill_hold_by_dnode(((dmu_buf_impl_t *)bonus)->db_dnode, 263 0, tag, dbp)); 264 } 265 266 /* 267 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 268 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 269 * and can induce severe lock contention when writing to several files 270 * whose dnodes are in the same block. 271 */ 272 static int 273 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 274 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 275 { 276 dsl_pool_t *dp = NULL; 277 dmu_buf_t **dbp; 278 uint64_t blkid, nblks, i; 279 uint32_t dbuf_flags; 280 int err; 281 zio_t *zio; 282 hrtime_t start; 283 284 ASSERT(length <= DMU_MAX_ACCESS); 285 286 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 287 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 288 dbuf_flags |= DB_RF_NOPREFETCH; 289 290 rw_enter(&dn->dn_struct_rwlock, RW_READER); 291 if (dn->dn_datablkshift) { 292 int blkshift = dn->dn_datablkshift; 293 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 294 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 295 } else { 296 if (offset + length > dn->dn_datablksz) { 297 zfs_panic_recover("zfs: accessing past end of object " 298 "%llx/%llx (size=%u access=%llu+%llu)", 299 (longlong_t)dn->dn_objset-> 300 os_dsl_dataset->ds_object, 301 (longlong_t)dn->dn_object, dn->dn_datablksz, 302 (longlong_t)offset, (longlong_t)length); 303 rw_exit(&dn->dn_struct_rwlock); 304 return (EIO); 305 } 306 nblks = 1; 307 } 308 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 309 310 if (dn->dn_objset->os_dsl_dataset) 311 dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool; 312 if (dp && dsl_pool_sync_context(dp)) 313 start = gethrtime(); 314 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 315 blkid = dbuf_whichblock(dn, offset); 316 for (i = 0; i < nblks; i++) { 317 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 318 if (db == NULL) { 319 rw_exit(&dn->dn_struct_rwlock); 320 dmu_buf_rele_array(dbp, nblks, tag); 321 zio_nowait(zio); 322 return (EIO); 323 } 324 /* initiate async i/o */ 325 if (read) { 326 (void) dbuf_read(db, zio, dbuf_flags); 327 } 328 dbp[i] = &db->db; 329 } 330 rw_exit(&dn->dn_struct_rwlock); 331 332 /* wait for async i/o */ 333 err = zio_wait(zio); 334 /* track read overhead when we are in sync context */ 335 if (dp && dsl_pool_sync_context(dp)) 336 dp->dp_read_overhead += gethrtime() - start; 337 if (err) { 338 dmu_buf_rele_array(dbp, nblks, tag); 339 return (err); 340 } 341 342 /* wait for other io to complete */ 343 if (read) { 344 for (i = 0; i < nblks; i++) { 345 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 346 mutex_enter(&db->db_mtx); 347 while (db->db_state == DB_READ || 348 db->db_state == DB_FILL) 349 cv_wait(&db->db_changed, &db->db_mtx); 350 if (db->db_state == DB_UNCACHED) 351 err = EIO; 352 mutex_exit(&db->db_mtx); 353 if (err) { 354 dmu_buf_rele_array(dbp, nblks, tag); 355 return (err); 356 } 357 } 358 } 359 360 *numbufsp = nblks; 361 *dbpp = dbp; 362 return (0); 363 } 364 365 static int 366 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 367 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 368 { 369 dnode_t *dn; 370 int err; 371 372 err = dnode_hold(os, object, FTAG, &dn); 373 if (err) 374 return (err); 375 376 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 377 numbufsp, dbpp, DMU_READ_PREFETCH); 378 379 dnode_rele(dn, FTAG); 380 381 return (err); 382 } 383 384 int 385 dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 386 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 387 { 388 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 389 int err; 390 391 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 392 numbufsp, dbpp, DMU_READ_PREFETCH); 393 394 return (err); 395 } 396 397 void 398 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 399 { 400 int i; 401 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 402 403 if (numbufs == 0) 404 return; 405 406 for (i = 0; i < numbufs; i++) { 407 if (dbp[i]) 408 dbuf_rele(dbp[i], tag); 409 } 410 411 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 412 } 413 414 void 415 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 416 { 417 dnode_t *dn; 418 uint64_t blkid; 419 int nblks, i, err; 420 421 if (zfs_prefetch_disable) 422 return; 423 424 if (len == 0) { /* they're interested in the bonus buffer */ 425 dn = os->os_meta_dnode; 426 427 if (object == 0 || object >= DN_MAX_OBJECT) 428 return; 429 430 rw_enter(&dn->dn_struct_rwlock, RW_READER); 431 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 432 dbuf_prefetch(dn, blkid); 433 rw_exit(&dn->dn_struct_rwlock); 434 return; 435 } 436 437 /* 438 * XXX - Note, if the dnode for the requested object is not 439 * already cached, we will do a *synchronous* read in the 440 * dnode_hold() call. The same is true for any indirects. 441 */ 442 err = dnode_hold(os, object, FTAG, &dn); 443 if (err != 0) 444 return; 445 446 rw_enter(&dn->dn_struct_rwlock, RW_READER); 447 if (dn->dn_datablkshift) { 448 int blkshift = dn->dn_datablkshift; 449 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) - 450 P2ALIGN(offset, 1<<blkshift)) >> blkshift; 451 } else { 452 nblks = (offset < dn->dn_datablksz); 453 } 454 455 if (nblks != 0) { 456 blkid = dbuf_whichblock(dn, offset); 457 for (i = 0; i < nblks; i++) 458 dbuf_prefetch(dn, blkid+i); 459 } 460 461 rw_exit(&dn->dn_struct_rwlock); 462 463 dnode_rele(dn, FTAG); 464 } 465 466 /* 467 * Get the next "chunk" of file data to free. We traverse the file from 468 * the end so that the file gets shorter over time (if we crashes in the 469 * middle, this will leave us in a better state). We find allocated file 470 * data by simply searching the allocated level 1 indirects. 471 */ 472 static int 473 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit) 474 { 475 uint64_t len = *start - limit; 476 uint64_t blkcnt = 0; 477 uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1)); 478 uint64_t iblkrange = 479 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 480 481 ASSERT(limit <= *start); 482 483 if (len <= iblkrange * maxblks) { 484 *start = limit; 485 return (0); 486 } 487 ASSERT(ISP2(iblkrange)); 488 489 while (*start > limit && blkcnt < maxblks) { 490 int err; 491 492 /* find next allocated L1 indirect */ 493 err = dnode_next_offset(dn, 494 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 495 496 /* if there are no more, then we are done */ 497 if (err == ESRCH) { 498 *start = limit; 499 return (0); 500 } else if (err) { 501 return (err); 502 } 503 blkcnt += 1; 504 505 /* reset offset to end of "next" block back */ 506 *start = P2ALIGN(*start, iblkrange); 507 if (*start <= limit) 508 *start = limit; 509 else 510 *start -= 1; 511 } 512 return (0); 513 } 514 515 static int 516 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 517 uint64_t length, boolean_t free_dnode) 518 { 519 dmu_tx_t *tx; 520 uint64_t object_size, start, end, len; 521 boolean_t trunc = (length == DMU_OBJECT_END); 522 int align, err; 523 524 align = 1 << dn->dn_datablkshift; 525 ASSERT(align > 0); 526 object_size = align == 1 ? dn->dn_datablksz : 527 (dn->dn_maxblkid + 1) << dn->dn_datablkshift; 528 529 end = offset + length; 530 if (trunc || end > object_size) 531 end = object_size; 532 if (end <= offset) 533 return (0); 534 length = end - offset; 535 536 while (length) { 537 start = end; 538 /* assert(offset <= start) */ 539 err = get_next_chunk(dn, &start, offset); 540 if (err) 541 return (err); 542 len = trunc ? DMU_OBJECT_END : end - start; 543 544 tx = dmu_tx_create(os); 545 dmu_tx_hold_free(tx, dn->dn_object, start, len); 546 err = dmu_tx_assign(tx, TXG_WAIT); 547 if (err) { 548 dmu_tx_abort(tx); 549 return (err); 550 } 551 552 dnode_free_range(dn, start, trunc ? -1 : len, tx); 553 554 if (start == 0 && free_dnode) { 555 ASSERT(trunc); 556 dnode_free(dn, tx); 557 } 558 559 length -= end - start; 560 561 dmu_tx_commit(tx); 562 end = start; 563 } 564 return (0); 565 } 566 567 int 568 dmu_free_long_range(objset_t *os, uint64_t object, 569 uint64_t offset, uint64_t length) 570 { 571 dnode_t *dn; 572 int err; 573 574 err = dnode_hold(os, object, FTAG, &dn); 575 if (err != 0) 576 return (err); 577 err = dmu_free_long_range_impl(os, dn, offset, length, FALSE); 578 dnode_rele(dn, FTAG); 579 return (err); 580 } 581 582 int 583 dmu_free_object(objset_t *os, uint64_t object) 584 { 585 dnode_t *dn; 586 dmu_tx_t *tx; 587 int err; 588 589 err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 590 FTAG, &dn); 591 if (err != 0) 592 return (err); 593 if (dn->dn_nlevels == 1) { 594 tx = dmu_tx_create(os); 595 dmu_tx_hold_bonus(tx, object); 596 dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END); 597 err = dmu_tx_assign(tx, TXG_WAIT); 598 if (err == 0) { 599 dnode_free_range(dn, 0, DMU_OBJECT_END, tx); 600 dnode_free(dn, tx); 601 dmu_tx_commit(tx); 602 } else { 603 dmu_tx_abort(tx); 604 } 605 } else { 606 err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE); 607 } 608 dnode_rele(dn, FTAG); 609 return (err); 610 } 611 612 int 613 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 614 uint64_t size, dmu_tx_t *tx) 615 { 616 dnode_t *dn; 617 int err = dnode_hold(os, object, FTAG, &dn); 618 if (err) 619 return (err); 620 ASSERT(offset < UINT64_MAX); 621 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 622 dnode_free_range(dn, offset, size, tx); 623 dnode_rele(dn, FTAG); 624 return (0); 625 } 626 627 int 628 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 629 void *buf, uint32_t flags) 630 { 631 dnode_t *dn; 632 dmu_buf_t **dbp; 633 int numbufs, err; 634 635 err = dnode_hold(os, object, FTAG, &dn); 636 if (err) 637 return (err); 638 639 /* 640 * Deal with odd block sizes, where there can't be data past the first 641 * block. If we ever do the tail block optimization, we will need to 642 * handle that here as well. 643 */ 644 if (dn->dn_maxblkid == 0) { 645 int newsz = offset > dn->dn_datablksz ? 0 : 646 MIN(size, dn->dn_datablksz - offset); 647 bzero((char *)buf + newsz, size - newsz); 648 size = newsz; 649 } 650 651 while (size > 0) { 652 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 653 int i; 654 655 /* 656 * NB: we could do this block-at-a-time, but it's nice 657 * to be reading in parallel. 658 */ 659 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 660 TRUE, FTAG, &numbufs, &dbp, flags); 661 if (err) 662 break; 663 664 for (i = 0; i < numbufs; i++) { 665 int tocpy; 666 int bufoff; 667 dmu_buf_t *db = dbp[i]; 668 669 ASSERT(size > 0); 670 671 bufoff = offset - db->db_offset; 672 tocpy = (int)MIN(db->db_size - bufoff, size); 673 674 bcopy((char *)db->db_data + bufoff, buf, tocpy); 675 676 offset += tocpy; 677 size -= tocpy; 678 buf = (char *)buf + tocpy; 679 } 680 dmu_buf_rele_array(dbp, numbufs, FTAG); 681 } 682 dnode_rele(dn, FTAG); 683 return (err); 684 } 685 686 void 687 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 688 const void *buf, dmu_tx_t *tx) 689 { 690 dmu_buf_t **dbp; 691 int numbufs, i; 692 693 if (size == 0) 694 return; 695 696 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 697 FALSE, FTAG, &numbufs, &dbp)); 698 699 for (i = 0; i < numbufs; i++) { 700 int tocpy; 701 int bufoff; 702 dmu_buf_t *db = dbp[i]; 703 704 ASSERT(size > 0); 705 706 bufoff = offset - db->db_offset; 707 tocpy = (int)MIN(db->db_size - bufoff, size); 708 709 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 710 711 if (tocpy == db->db_size) 712 dmu_buf_will_fill(db, tx); 713 else 714 dmu_buf_will_dirty(db, tx); 715 716 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 717 718 if (tocpy == db->db_size) 719 dmu_buf_fill_done(db, tx); 720 721 offset += tocpy; 722 size -= tocpy; 723 buf = (char *)buf + tocpy; 724 } 725 dmu_buf_rele_array(dbp, numbufs, FTAG); 726 } 727 728 void 729 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 730 dmu_tx_t *tx) 731 { 732 dmu_buf_t **dbp; 733 int numbufs, i; 734 735 if (size == 0) 736 return; 737 738 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 739 FALSE, FTAG, &numbufs, &dbp)); 740 741 for (i = 0; i < numbufs; i++) { 742 dmu_buf_t *db = dbp[i]; 743 744 dmu_buf_will_not_fill(db, tx); 745 } 746 dmu_buf_rele_array(dbp, numbufs, FTAG); 747 } 748 749 /* 750 * DMU support for xuio 751 */ 752 kstat_t *xuio_ksp = NULL; 753 754 int 755 dmu_xuio_init(xuio_t *xuio, int nblk) 756 { 757 dmu_xuio_t *priv; 758 uio_t *uio = &xuio->xu_uio; 759 760 uio->uio_iovcnt = nblk; 761 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 762 763 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 764 priv->cnt = nblk; 765 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 766 priv->iovp = uio->uio_iov; 767 XUIO_XUZC_PRIV(xuio) = priv; 768 769 if (XUIO_XUZC_RW(xuio) == UIO_READ) 770 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 771 else 772 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 773 774 return (0); 775 } 776 777 void 778 dmu_xuio_fini(xuio_t *xuio) 779 { 780 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 781 int nblk = priv->cnt; 782 783 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 784 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 785 kmem_free(priv, sizeof (dmu_xuio_t)); 786 787 if (XUIO_XUZC_RW(xuio) == UIO_READ) 788 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 789 else 790 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 791 } 792 793 /* 794 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 795 * and increase priv->next by 1. 796 */ 797 int 798 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 799 { 800 struct iovec *iov; 801 uio_t *uio = &xuio->xu_uio; 802 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 803 int i = priv->next++; 804 805 ASSERT(i < priv->cnt); 806 ASSERT(off + n <= arc_buf_size(abuf)); 807 iov = uio->uio_iov + i; 808 iov->iov_base = (char *)abuf->b_data + off; 809 iov->iov_len = n; 810 priv->bufs[i] = abuf; 811 return (0); 812 } 813 814 int 815 dmu_xuio_cnt(xuio_t *xuio) 816 { 817 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 818 return (priv->cnt); 819 } 820 821 arc_buf_t * 822 dmu_xuio_arcbuf(xuio_t *xuio, int i) 823 { 824 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 825 826 ASSERT(i < priv->cnt); 827 return (priv->bufs[i]); 828 } 829 830 void 831 dmu_xuio_clear(xuio_t *xuio, int i) 832 { 833 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 834 835 ASSERT(i < priv->cnt); 836 priv->bufs[i] = NULL; 837 } 838 839 static void 840 xuio_stat_init(void) 841 { 842 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 843 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 844 KSTAT_FLAG_VIRTUAL); 845 if (xuio_ksp != NULL) { 846 xuio_ksp->ks_data = &xuio_stats; 847 kstat_install(xuio_ksp); 848 } 849 } 850 851 static void 852 xuio_stat_fini(void) 853 { 854 if (xuio_ksp != NULL) { 855 kstat_delete(xuio_ksp); 856 xuio_ksp = NULL; 857 } 858 } 859 860 void 861 xuio_stat_wbuf_copied() 862 { 863 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 864 } 865 866 void 867 xuio_stat_wbuf_nocopy() 868 { 869 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 870 } 871 872 #ifdef _KERNEL 873 int 874 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 875 { 876 dmu_buf_t **dbp; 877 int numbufs, i, err; 878 xuio_t *xuio = NULL; 879 880 /* 881 * NB: we could do this block-at-a-time, but it's nice 882 * to be reading in parallel. 883 */ 884 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 885 &numbufs, &dbp); 886 if (err) 887 return (err); 888 889 if (uio->uio_extflg == UIO_XUIO) 890 xuio = (xuio_t *)uio; 891 892 for (i = 0; i < numbufs; i++) { 893 int tocpy; 894 int bufoff; 895 dmu_buf_t *db = dbp[i]; 896 897 ASSERT(size > 0); 898 899 bufoff = uio->uio_loffset - db->db_offset; 900 tocpy = (int)MIN(db->db_size - bufoff, size); 901 902 if (xuio) { 903 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 904 arc_buf_t *dbuf_abuf = dbi->db_buf; 905 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 906 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 907 if (!err) { 908 uio->uio_resid -= tocpy; 909 uio->uio_loffset += tocpy; 910 } 911 912 if (abuf == dbuf_abuf) 913 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 914 else 915 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 916 } else { 917 err = uiomove((char *)db->db_data + bufoff, tocpy, 918 UIO_READ, uio); 919 } 920 if (err) 921 break; 922 923 size -= tocpy; 924 } 925 dmu_buf_rele_array(dbp, numbufs, FTAG); 926 927 return (err); 928 } 929 930 static int 931 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 932 { 933 dmu_buf_t **dbp; 934 int numbufs; 935 int err = 0; 936 int i; 937 938 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 939 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 940 if (err) 941 return (err); 942 943 for (i = 0; i < numbufs; i++) { 944 int tocpy; 945 int bufoff; 946 dmu_buf_t *db = dbp[i]; 947 948 ASSERT(size > 0); 949 950 bufoff = uio->uio_loffset - db->db_offset; 951 tocpy = (int)MIN(db->db_size - bufoff, size); 952 953 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 954 955 if (tocpy == db->db_size) 956 dmu_buf_will_fill(db, tx); 957 else 958 dmu_buf_will_dirty(db, tx); 959 960 /* 961 * XXX uiomove could block forever (eg. nfs-backed 962 * pages). There needs to be a uiolockdown() function 963 * to lock the pages in memory, so that uiomove won't 964 * block. 965 */ 966 err = uiomove((char *)db->db_data + bufoff, tocpy, 967 UIO_WRITE, uio); 968 969 if (tocpy == db->db_size) 970 dmu_buf_fill_done(db, tx); 971 972 if (err) 973 break; 974 975 size -= tocpy; 976 } 977 978 dmu_buf_rele_array(dbp, numbufs, FTAG); 979 return (err); 980 } 981 982 int 983 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 984 dmu_tx_t *tx) 985 { 986 if (size == 0) 987 return (0); 988 989 return (dmu_write_uio_dnode(((dmu_buf_impl_t *)zdb)->db_dnode, 990 uio, size, tx)); 991 } 992 993 int 994 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 995 dmu_tx_t *tx) 996 { 997 dnode_t *dn; 998 int err; 999 1000 if (size == 0) 1001 return (0); 1002 1003 err = dnode_hold(os, object, FTAG, &dn); 1004 if (err) 1005 return (err); 1006 1007 err = dmu_write_uio_dnode(dn, uio, size, tx); 1008 1009 dnode_rele(dn, FTAG); 1010 1011 return (err); 1012 } 1013 1014 int 1015 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1016 page_t *pp, dmu_tx_t *tx) 1017 { 1018 dmu_buf_t **dbp; 1019 int numbufs, i; 1020 int err; 1021 1022 if (size == 0) 1023 return (0); 1024 1025 err = dmu_buf_hold_array(os, object, offset, size, 1026 FALSE, FTAG, &numbufs, &dbp); 1027 if (err) 1028 return (err); 1029 1030 for (i = 0; i < numbufs; i++) { 1031 int tocpy, copied, thiscpy; 1032 int bufoff; 1033 dmu_buf_t *db = dbp[i]; 1034 caddr_t va; 1035 1036 ASSERT(size > 0); 1037 ASSERT3U(db->db_size, >=, PAGESIZE); 1038 1039 bufoff = offset - db->db_offset; 1040 tocpy = (int)MIN(db->db_size - bufoff, size); 1041 1042 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1043 1044 if (tocpy == db->db_size) 1045 dmu_buf_will_fill(db, tx); 1046 else 1047 dmu_buf_will_dirty(db, tx); 1048 1049 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1050 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1051 thiscpy = MIN(PAGESIZE, tocpy - copied); 1052 va = zfs_map_page(pp, S_READ); 1053 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1054 zfs_unmap_page(pp, va); 1055 pp = pp->p_next; 1056 bufoff += PAGESIZE; 1057 } 1058 1059 if (tocpy == db->db_size) 1060 dmu_buf_fill_done(db, tx); 1061 1062 offset += tocpy; 1063 size -= tocpy; 1064 } 1065 dmu_buf_rele_array(dbp, numbufs, FTAG); 1066 return (err); 1067 } 1068 #endif 1069 1070 /* 1071 * Allocate a loaned anonymous arc buffer. 1072 */ 1073 arc_buf_t * 1074 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1075 { 1076 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; 1077 1078 return (arc_loan_buf(dn->dn_objset->os_spa, size)); 1079 } 1080 1081 /* 1082 * Free a loaned arc buffer. 1083 */ 1084 void 1085 dmu_return_arcbuf(arc_buf_t *buf) 1086 { 1087 arc_return_buf(buf, FTAG); 1088 VERIFY(arc_buf_remove_ref(buf, FTAG) == 1); 1089 } 1090 1091 /* 1092 * When possible directly assign passed loaned arc buffer to a dbuf. 1093 * If this is not possible copy the contents of passed arc buf via 1094 * dmu_write(). 1095 */ 1096 void 1097 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1098 dmu_tx_t *tx) 1099 { 1100 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; 1101 dmu_buf_impl_t *db; 1102 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1103 uint64_t blkid; 1104 1105 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1106 blkid = dbuf_whichblock(dn, offset); 1107 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1108 rw_exit(&dn->dn_struct_rwlock); 1109 1110 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1111 dbuf_assign_arcbuf(db, buf, tx); 1112 dbuf_rele(db, FTAG); 1113 } else { 1114 dbuf_rele(db, FTAG); 1115 dmu_write(dn->dn_objset, dn->dn_object, offset, blksz, 1116 buf->b_data, tx); 1117 dmu_return_arcbuf(buf); 1118 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1119 } 1120 } 1121 1122 typedef struct { 1123 dbuf_dirty_record_t *dsa_dr; 1124 dmu_sync_cb_t *dsa_done; 1125 zgd_t *dsa_zgd; 1126 dmu_tx_t *dsa_tx; 1127 } dmu_sync_arg_t; 1128 1129 /* ARGSUSED */ 1130 static void 1131 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1132 { 1133 dmu_sync_arg_t *dsa = varg; 1134 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1135 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1136 blkptr_t *bp = zio->io_bp; 1137 1138 if (zio->io_error == 0) { 1139 if (BP_IS_HOLE(bp)) { 1140 /* 1141 * A block of zeros may compress to a hole, but the 1142 * block size still needs to be known for replay. 1143 */ 1144 BP_SET_LSIZE(bp, db->db_size); 1145 } else { 1146 ASSERT(BP_GET_TYPE(bp) == dn->dn_type); 1147 ASSERT(BP_GET_LEVEL(bp) == 0); 1148 bp->blk_fill = 1; 1149 } 1150 } 1151 } 1152 1153 static void 1154 dmu_sync_late_arrival_ready(zio_t *zio) 1155 { 1156 dmu_sync_ready(zio, NULL, zio->io_private); 1157 } 1158 1159 /* ARGSUSED */ 1160 static void 1161 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1162 { 1163 dmu_sync_arg_t *dsa = varg; 1164 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1165 dmu_buf_impl_t *db = dr->dr_dbuf; 1166 1167 mutex_enter(&db->db_mtx); 1168 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1169 if (zio->io_error == 0) { 1170 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1171 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1172 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1173 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1174 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1175 } else { 1176 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1177 } 1178 cv_broadcast(&db->db_changed); 1179 mutex_exit(&db->db_mtx); 1180 1181 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1182 1183 kmem_free(dsa, sizeof (*dsa)); 1184 } 1185 1186 static void 1187 dmu_sync_late_arrival_done(zio_t *zio) 1188 { 1189 blkptr_t *bp = zio->io_bp; 1190 dmu_sync_arg_t *dsa = zio->io_private; 1191 1192 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1193 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1194 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1195 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1196 } 1197 1198 dmu_tx_commit(dsa->dsa_tx); 1199 1200 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1201 1202 kmem_free(dsa, sizeof (*dsa)); 1203 } 1204 1205 static int 1206 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1207 zio_prop_t *zp, zbookmark_t *zb) 1208 { 1209 dmu_sync_arg_t *dsa; 1210 dmu_tx_t *tx; 1211 1212 tx = dmu_tx_create(os); 1213 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1214 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1215 dmu_tx_abort(tx); 1216 return (EIO); /* Make zl_get_data do txg_waited_synced() */ 1217 } 1218 1219 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1220 dsa->dsa_dr = NULL; 1221 dsa->dsa_done = done; 1222 dsa->dsa_zgd = zgd; 1223 dsa->dsa_tx = tx; 1224 1225 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1226 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1227 dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa, 1228 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1229 1230 return (0); 1231 } 1232 1233 /* 1234 * Intent log support: sync the block associated with db to disk. 1235 * N.B. and XXX: the caller is responsible for making sure that the 1236 * data isn't changing while dmu_sync() is writing it. 1237 * 1238 * Return values: 1239 * 1240 * EEXIST: this txg has already been synced, so there's nothing to to. 1241 * The caller should not log the write. 1242 * 1243 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1244 * The caller should not log the write. 1245 * 1246 * EALREADY: this block is already in the process of being synced. 1247 * The caller should track its progress (somehow). 1248 * 1249 * EIO: could not do the I/O. 1250 * The caller should do a txg_wait_synced(). 1251 * 1252 * 0: the I/O has been initiated. 1253 * The caller should log this blkptr in the done callback. 1254 * It is possible that the I/O will fail, in which case 1255 * the error will be reported to the done callback and 1256 * propagated to pio from zio_done(). 1257 */ 1258 int 1259 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1260 { 1261 blkptr_t *bp = zgd->zgd_bp; 1262 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1263 objset_t *os = db->db_objset; 1264 dsl_dataset_t *ds = os->os_dsl_dataset; 1265 dbuf_dirty_record_t *dr; 1266 dmu_sync_arg_t *dsa; 1267 zbookmark_t zb; 1268 zio_prop_t zp; 1269 1270 ASSERT(pio != NULL); 1271 ASSERT(BP_IS_HOLE(bp)); 1272 ASSERT(txg != 0); 1273 1274 SET_BOOKMARK(&zb, ds->ds_object, 1275 db->db.db_object, db->db_level, db->db_blkid); 1276 1277 dmu_write_policy(os, db->db_dnode, db->db_level, WP_DMU_SYNC, &zp); 1278 1279 /* 1280 * If we're frozen (running ziltest), we always need to generate a bp. 1281 */ 1282 if (txg > spa_freeze_txg(os->os_spa)) 1283 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1284 1285 /* 1286 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1287 * and us. If we determine that this txg is not yet syncing, 1288 * but it begins to sync a moment later, that's OK because the 1289 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1290 */ 1291 mutex_enter(&db->db_mtx); 1292 1293 if (txg <= spa_last_synced_txg(os->os_spa)) { 1294 /* 1295 * This txg has already synced. There's nothing to do. 1296 */ 1297 mutex_exit(&db->db_mtx); 1298 return (EEXIST); 1299 } 1300 1301 if (txg <= spa_syncing_txg(os->os_spa)) { 1302 /* 1303 * This txg is currently syncing, so we can't mess with 1304 * the dirty record anymore; just write a new log block. 1305 */ 1306 mutex_exit(&db->db_mtx); 1307 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1308 } 1309 1310 dr = db->db_last_dirty; 1311 while (dr && dr->dr_txg != txg) 1312 dr = dr->dr_next; 1313 1314 if (dr == NULL) { 1315 /* 1316 * There's no dr for this dbuf, so it must have been freed. 1317 * There's no need to log writes to freed blocks, so we're done. 1318 */ 1319 mutex_exit(&db->db_mtx); 1320 return (ENOENT); 1321 } 1322 1323 ASSERT(dr->dr_txg == txg); 1324 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1325 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1326 /* 1327 * We have already issued a sync write for this buffer, 1328 * or this buffer has already been synced. It could not 1329 * have been dirtied since, or we would have cleared the state. 1330 */ 1331 mutex_exit(&db->db_mtx); 1332 return (EALREADY); 1333 } 1334 1335 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1336 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1337 mutex_exit(&db->db_mtx); 1338 1339 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1340 dsa->dsa_dr = dr; 1341 dsa->dsa_done = done; 1342 dsa->dsa_zgd = zgd; 1343 dsa->dsa_tx = NULL; 1344 1345 zio_nowait(arc_write(pio, os->os_spa, txg, 1346 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp, 1347 dmu_sync_ready, dmu_sync_done, dsa, 1348 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1349 1350 return (0); 1351 } 1352 1353 int 1354 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1355 dmu_tx_t *tx) 1356 { 1357 dnode_t *dn; 1358 int err; 1359 1360 err = dnode_hold(os, object, FTAG, &dn); 1361 if (err) 1362 return (err); 1363 err = dnode_set_blksz(dn, size, ibs, tx); 1364 dnode_rele(dn, FTAG); 1365 return (err); 1366 } 1367 1368 void 1369 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1370 dmu_tx_t *tx) 1371 { 1372 dnode_t *dn; 1373 1374 /* XXX assumes dnode_hold will not get an i/o error */ 1375 (void) dnode_hold(os, object, FTAG, &dn); 1376 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1377 dn->dn_checksum = checksum; 1378 dnode_setdirty(dn, tx); 1379 dnode_rele(dn, FTAG); 1380 } 1381 1382 void 1383 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1384 dmu_tx_t *tx) 1385 { 1386 dnode_t *dn; 1387 1388 /* XXX assumes dnode_hold will not get an i/o error */ 1389 (void) dnode_hold(os, object, FTAG, &dn); 1390 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1391 dn->dn_compress = compress; 1392 dnode_setdirty(dn, tx); 1393 dnode_rele(dn, FTAG); 1394 } 1395 1396 int zfs_mdcomp_disable = 0; 1397 1398 void 1399 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1400 { 1401 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1402 boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata); 1403 enum zio_checksum checksum = os->os_checksum; 1404 enum zio_compress compress = os->os_compress; 1405 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1406 boolean_t dedup; 1407 boolean_t dedup_verify = os->os_dedup_verify; 1408 int copies = os->os_copies; 1409 1410 /* 1411 * Determine checksum setting. 1412 */ 1413 if (ismd) { 1414 /* 1415 * Metadata always gets checksummed. If the data 1416 * checksum is multi-bit correctable, and it's not a 1417 * ZBT-style checksum, then it's suitable for metadata 1418 * as well. Otherwise, the metadata checksum defaults 1419 * to fletcher4. 1420 */ 1421 if (zio_checksum_table[checksum].ci_correctable < 1 || 1422 zio_checksum_table[checksum].ci_eck) 1423 checksum = ZIO_CHECKSUM_FLETCHER_4; 1424 } else { 1425 checksum = zio_checksum_select(dn->dn_checksum, checksum); 1426 } 1427 1428 /* 1429 * Determine compression setting. 1430 */ 1431 if (ismd) { 1432 /* 1433 * XXX -- we should design a compression algorithm 1434 * that specializes in arrays of bps. 1435 */ 1436 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 1437 ZIO_COMPRESS_LZJB; 1438 } else { 1439 compress = zio_compress_select(dn->dn_compress, compress); 1440 } 1441 1442 /* 1443 * Determine dedup setting. If we are in dmu_sync(), we won't 1444 * actually dedup now because that's all done in syncing context; 1445 * but we do want to use the dedup checkum. If the checksum is not 1446 * strong enough to ensure unique signatures, force dedup_verify. 1447 */ 1448 dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF); 1449 if (dedup) { 1450 checksum = dedup_checksum; 1451 if (!zio_checksum_table[checksum].ci_dedup) 1452 dedup_verify = 1; 1453 } 1454 1455 if (wp & WP_DMU_SYNC) 1456 dedup = 0; 1457 1458 if (wp & WP_NOFILL) { 1459 ASSERT(!ismd && level == 0); 1460 checksum = ZIO_CHECKSUM_OFF; 1461 compress = ZIO_COMPRESS_OFF; 1462 dedup = B_FALSE; 1463 } 1464 1465 zp->zp_checksum = checksum; 1466 zp->zp_compress = compress; 1467 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1468 zp->zp_level = level; 1469 zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa)); 1470 zp->zp_dedup = dedup; 1471 zp->zp_dedup_verify = dedup && dedup_verify; 1472 } 1473 1474 int 1475 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1476 { 1477 dnode_t *dn; 1478 int i, err; 1479 1480 err = dnode_hold(os, object, FTAG, &dn); 1481 if (err) 1482 return (err); 1483 /* 1484 * Sync any current changes before 1485 * we go trundling through the block pointers. 1486 */ 1487 for (i = 0; i < TXG_SIZE; i++) { 1488 if (list_link_active(&dn->dn_dirty_link[i])) 1489 break; 1490 } 1491 if (i != TXG_SIZE) { 1492 dnode_rele(dn, FTAG); 1493 txg_wait_synced(dmu_objset_pool(os), 0); 1494 err = dnode_hold(os, object, FTAG, &dn); 1495 if (err) 1496 return (err); 1497 } 1498 1499 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1500 dnode_rele(dn, FTAG); 1501 1502 return (err); 1503 } 1504 1505 void 1506 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1507 { 1508 dnode_phys_t *dnp; 1509 1510 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1511 mutex_enter(&dn->dn_mtx); 1512 1513 dnp = dn->dn_phys; 1514 1515 doi->doi_data_block_size = dn->dn_datablksz; 1516 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1517 1ULL << dn->dn_indblkshift : 0; 1518 doi->doi_type = dn->dn_type; 1519 doi->doi_bonus_type = dn->dn_bonustype; 1520 doi->doi_bonus_size = dn->dn_bonuslen; 1521 doi->doi_indirection = dn->dn_nlevels; 1522 doi->doi_checksum = dn->dn_checksum; 1523 doi->doi_compress = dn->dn_compress; 1524 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1525 doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz; 1526 doi->doi_fill_count = 0; 1527 for (int i = 0; i < dnp->dn_nblkptr; i++) 1528 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; 1529 1530 mutex_exit(&dn->dn_mtx); 1531 rw_exit(&dn->dn_struct_rwlock); 1532 } 1533 1534 /* 1535 * Get information on a DMU object. 1536 * If doi is NULL, just indicates whether the object exists. 1537 */ 1538 int 1539 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1540 { 1541 dnode_t *dn; 1542 int err = dnode_hold(os, object, FTAG, &dn); 1543 1544 if (err) 1545 return (err); 1546 1547 if (doi != NULL) 1548 dmu_object_info_from_dnode(dn, doi); 1549 1550 dnode_rele(dn, FTAG); 1551 return (0); 1552 } 1553 1554 /* 1555 * As above, but faster; can be used when you have a held dbuf in hand. 1556 */ 1557 void 1558 dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi) 1559 { 1560 dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi); 1561 } 1562 1563 /* 1564 * Faster still when you only care about the size. 1565 * This is specifically optimized for zfs_getattr(). 1566 */ 1567 void 1568 dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512) 1569 { 1570 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1571 1572 *blksize = dn->dn_datablksz; 1573 /* add 1 for dnode space */ 1574 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1575 SPA_MINBLOCKSHIFT) + 1; 1576 } 1577 1578 void 1579 byteswap_uint64_array(void *vbuf, size_t size) 1580 { 1581 uint64_t *buf = vbuf; 1582 size_t count = size >> 3; 1583 int i; 1584 1585 ASSERT((size & 7) == 0); 1586 1587 for (i = 0; i < count; i++) 1588 buf[i] = BSWAP_64(buf[i]); 1589 } 1590 1591 void 1592 byteswap_uint32_array(void *vbuf, size_t size) 1593 { 1594 uint32_t *buf = vbuf; 1595 size_t count = size >> 2; 1596 int i; 1597 1598 ASSERT((size & 3) == 0); 1599 1600 for (i = 0; i < count; i++) 1601 buf[i] = BSWAP_32(buf[i]); 1602 } 1603 1604 void 1605 byteswap_uint16_array(void *vbuf, size_t size) 1606 { 1607 uint16_t *buf = vbuf; 1608 size_t count = size >> 1; 1609 int i; 1610 1611 ASSERT((size & 1) == 0); 1612 1613 for (i = 0; i < count; i++) 1614 buf[i] = BSWAP_16(buf[i]); 1615 } 1616 1617 /* ARGSUSED */ 1618 void 1619 byteswap_uint8_array(void *vbuf, size_t size) 1620 { 1621 } 1622 1623 void 1624 dmu_init(void) 1625 { 1626 dbuf_init(); 1627 dnode_init(); 1628 zfetch_init(); 1629 arc_init(); 1630 l2arc_init(); 1631 xuio_stat_init(); 1632 sa_cache_init(); 1633 } 1634 1635 void 1636 dmu_fini(void) 1637 { 1638 arc_fini(); 1639 zfetch_fini(); 1640 dnode_fini(); 1641 dbuf_fini(); 1642 l2arc_fini(); 1643 xuio_stat_fini(); 1644 sa_cache_fini(); 1645 } 1646