1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 /* Copyright 2016 Nexenta Systems, Inc. All rights reserved. */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/zfs_ioctl.h> 44 #include <sys/zap.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/zio_compress.h> 47 #include <sys/sa.h> 48 #include <sys/zfeature.h> 49 #ifdef _KERNEL 50 #include <sys/vmsystm.h> 51 #include <sys/zfs_znode.h> 52 #endif 53 54 /* 55 * Enable/disable nopwrite feature. 56 */ 57 int zfs_nopwrite_enabled = 1; 58 59 /* 60 * Tunable to control percentage of dirtied blocks from frees in one TXG. 61 * After this threshold is crossed, additional dirty blocks from frees 62 * wait until the next TXG. 63 * A value of zero will disable this throttle. 64 */ 65 uint32_t zfs_per_txg_dirty_frees_percent = 30; 66 67 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 68 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 69 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 70 { DMU_BSWAP_UINT64, TRUE, "object array" }, 71 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 72 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 73 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 74 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 75 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 76 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 77 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 78 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 79 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 80 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 81 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 82 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 83 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 84 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 85 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 86 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 87 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 88 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 89 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 90 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 91 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 92 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 93 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 94 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 95 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 96 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 97 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 98 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 99 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 100 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 101 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 102 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 103 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 104 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 105 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 106 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 107 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 108 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 109 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 110 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 111 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 112 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 113 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 114 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 115 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 116 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 117 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 118 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 119 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 120 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 121 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 122 }; 123 124 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 125 { byteswap_uint8_array, "uint8" }, 126 { byteswap_uint16_array, "uint16" }, 127 { byteswap_uint32_array, "uint32" }, 128 { byteswap_uint64_array, "uint64" }, 129 { zap_byteswap, "zap" }, 130 { dnode_buf_byteswap, "dnode" }, 131 { dmu_objset_byteswap, "objset" }, 132 { zfs_znode_byteswap, "znode" }, 133 { zfs_oldacl_byteswap, "oldacl" }, 134 { zfs_acl_byteswap, "acl" } 135 }; 136 137 int 138 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 139 void *tag, dmu_buf_t **dbp) 140 { 141 uint64_t blkid; 142 dmu_buf_impl_t *db; 143 144 blkid = dbuf_whichblock(dn, 0, offset); 145 rw_enter(&dn->dn_struct_rwlock, RW_READER); 146 db = dbuf_hold(dn, blkid, tag); 147 rw_exit(&dn->dn_struct_rwlock); 148 149 if (db == NULL) { 150 *dbp = NULL; 151 return (SET_ERROR(EIO)); 152 } 153 154 *dbp = &db->db; 155 return (0); 156 } 157 int 158 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 159 void *tag, dmu_buf_t **dbp) 160 { 161 dnode_t *dn; 162 uint64_t blkid; 163 dmu_buf_impl_t *db; 164 int err; 165 166 err = dnode_hold(os, object, FTAG, &dn); 167 if (err) 168 return (err); 169 blkid = dbuf_whichblock(dn, 0, offset); 170 rw_enter(&dn->dn_struct_rwlock, RW_READER); 171 db = dbuf_hold(dn, blkid, tag); 172 rw_exit(&dn->dn_struct_rwlock); 173 dnode_rele(dn, FTAG); 174 175 if (db == NULL) { 176 *dbp = NULL; 177 return (SET_ERROR(EIO)); 178 } 179 180 *dbp = &db->db; 181 return (err); 182 } 183 184 int 185 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 186 void *tag, dmu_buf_t **dbp, int flags) 187 { 188 int err; 189 int db_flags = DB_RF_CANFAIL; 190 191 if (flags & DMU_READ_NO_PREFETCH) 192 db_flags |= DB_RF_NOPREFETCH; 193 194 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 195 if (err == 0) { 196 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 197 err = dbuf_read(db, NULL, db_flags); 198 if (err != 0) { 199 dbuf_rele(db, tag); 200 *dbp = NULL; 201 } 202 } 203 204 return (err); 205 } 206 207 int 208 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 209 void *tag, dmu_buf_t **dbp, int flags) 210 { 211 int err; 212 int db_flags = DB_RF_CANFAIL; 213 214 if (flags & DMU_READ_NO_PREFETCH) 215 db_flags |= DB_RF_NOPREFETCH; 216 217 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 218 if (err == 0) { 219 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 220 err = dbuf_read(db, NULL, db_flags); 221 if (err != 0) { 222 dbuf_rele(db, tag); 223 *dbp = NULL; 224 } 225 } 226 227 return (err); 228 } 229 230 int 231 dmu_bonus_max(void) 232 { 233 return (DN_MAX_BONUSLEN); 234 } 235 236 int 237 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 238 { 239 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 240 dnode_t *dn; 241 int error; 242 243 DB_DNODE_ENTER(db); 244 dn = DB_DNODE(db); 245 246 if (dn->dn_bonus != db) { 247 error = SET_ERROR(EINVAL); 248 } else if (newsize < 0 || newsize > db_fake->db_size) { 249 error = SET_ERROR(EINVAL); 250 } else { 251 dnode_setbonuslen(dn, newsize, tx); 252 error = 0; 253 } 254 255 DB_DNODE_EXIT(db); 256 return (error); 257 } 258 259 int 260 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 261 { 262 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 263 dnode_t *dn; 264 int error; 265 266 DB_DNODE_ENTER(db); 267 dn = DB_DNODE(db); 268 269 if (!DMU_OT_IS_VALID(type)) { 270 error = SET_ERROR(EINVAL); 271 } else if (dn->dn_bonus != db) { 272 error = SET_ERROR(EINVAL); 273 } else { 274 dnode_setbonus_type(dn, type, tx); 275 error = 0; 276 } 277 278 DB_DNODE_EXIT(db); 279 return (error); 280 } 281 282 dmu_object_type_t 283 dmu_get_bonustype(dmu_buf_t *db_fake) 284 { 285 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 286 dnode_t *dn; 287 dmu_object_type_t type; 288 289 DB_DNODE_ENTER(db); 290 dn = DB_DNODE(db); 291 type = dn->dn_bonustype; 292 DB_DNODE_EXIT(db); 293 294 return (type); 295 } 296 297 int 298 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 299 { 300 dnode_t *dn; 301 int error; 302 303 error = dnode_hold(os, object, FTAG, &dn); 304 dbuf_rm_spill(dn, tx); 305 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 306 dnode_rm_spill(dn, tx); 307 rw_exit(&dn->dn_struct_rwlock); 308 dnode_rele(dn, FTAG); 309 return (error); 310 } 311 312 /* 313 * returns ENOENT, EIO, or 0. 314 */ 315 int 316 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 317 { 318 dnode_t *dn; 319 dmu_buf_impl_t *db; 320 int error; 321 322 error = dnode_hold(os, object, FTAG, &dn); 323 if (error) 324 return (error); 325 326 rw_enter(&dn->dn_struct_rwlock, RW_READER); 327 if (dn->dn_bonus == NULL) { 328 rw_exit(&dn->dn_struct_rwlock); 329 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 330 if (dn->dn_bonus == NULL) 331 dbuf_create_bonus(dn); 332 } 333 db = dn->dn_bonus; 334 335 /* as long as the bonus buf is held, the dnode will be held */ 336 if (refcount_add(&db->db_holds, tag) == 1) { 337 VERIFY(dnode_add_ref(dn, db)); 338 atomic_inc_32(&dn->dn_dbufs_count); 339 } 340 341 /* 342 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 343 * hold and incrementing the dbuf count to ensure that dnode_move() sees 344 * a dnode hold for every dbuf. 345 */ 346 rw_exit(&dn->dn_struct_rwlock); 347 348 dnode_rele(dn, FTAG); 349 350 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 351 352 *dbp = &db->db; 353 return (0); 354 } 355 356 /* 357 * returns ENOENT, EIO, or 0. 358 * 359 * This interface will allocate a blank spill dbuf when a spill blk 360 * doesn't already exist on the dnode. 361 * 362 * if you only want to find an already existing spill db, then 363 * dmu_spill_hold_existing() should be used. 364 */ 365 int 366 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 367 { 368 dmu_buf_impl_t *db = NULL; 369 int err; 370 371 if ((flags & DB_RF_HAVESTRUCT) == 0) 372 rw_enter(&dn->dn_struct_rwlock, RW_READER); 373 374 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 375 376 if ((flags & DB_RF_HAVESTRUCT) == 0) 377 rw_exit(&dn->dn_struct_rwlock); 378 379 ASSERT(db != NULL); 380 err = dbuf_read(db, NULL, flags); 381 if (err == 0) 382 *dbp = &db->db; 383 else 384 dbuf_rele(db, tag); 385 return (err); 386 } 387 388 int 389 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 390 { 391 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 392 dnode_t *dn; 393 int err; 394 395 DB_DNODE_ENTER(db); 396 dn = DB_DNODE(db); 397 398 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 399 err = SET_ERROR(EINVAL); 400 } else { 401 rw_enter(&dn->dn_struct_rwlock, RW_READER); 402 403 if (!dn->dn_have_spill) { 404 err = SET_ERROR(ENOENT); 405 } else { 406 err = dmu_spill_hold_by_dnode(dn, 407 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 408 } 409 410 rw_exit(&dn->dn_struct_rwlock); 411 } 412 413 DB_DNODE_EXIT(db); 414 return (err); 415 } 416 417 int 418 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 419 { 420 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 421 dnode_t *dn; 422 int err; 423 424 DB_DNODE_ENTER(db); 425 dn = DB_DNODE(db); 426 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 427 DB_DNODE_EXIT(db); 428 429 return (err); 430 } 431 432 /* 433 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 434 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 435 * and can induce severe lock contention when writing to several files 436 * whose dnodes are in the same block. 437 */ 438 static int 439 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 440 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 441 { 442 dmu_buf_t **dbp; 443 uint64_t blkid, nblks, i; 444 uint32_t dbuf_flags; 445 int err; 446 zio_t *zio; 447 448 ASSERT(length <= DMU_MAX_ACCESS); 449 450 /* 451 * Note: We directly notify the prefetch code of this read, so that 452 * we can tell it about the multi-block read. dbuf_read() only knows 453 * about the one block it is accessing. 454 */ 455 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 456 DB_RF_NOPREFETCH; 457 458 rw_enter(&dn->dn_struct_rwlock, RW_READER); 459 if (dn->dn_datablkshift) { 460 int blkshift = dn->dn_datablkshift; 461 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 462 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 463 } else { 464 if (offset + length > dn->dn_datablksz) { 465 zfs_panic_recover("zfs: accessing past end of object " 466 "%llx/%llx (size=%u access=%llu+%llu)", 467 (longlong_t)dn->dn_objset-> 468 os_dsl_dataset->ds_object, 469 (longlong_t)dn->dn_object, dn->dn_datablksz, 470 (longlong_t)offset, (longlong_t)length); 471 rw_exit(&dn->dn_struct_rwlock); 472 return (SET_ERROR(EIO)); 473 } 474 nblks = 1; 475 } 476 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 477 478 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 479 blkid = dbuf_whichblock(dn, 0, offset); 480 for (i = 0; i < nblks; i++) { 481 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 482 if (db == NULL) { 483 rw_exit(&dn->dn_struct_rwlock); 484 dmu_buf_rele_array(dbp, nblks, tag); 485 zio_nowait(zio); 486 return (SET_ERROR(EIO)); 487 } 488 489 /* initiate async i/o */ 490 if (read) 491 (void) dbuf_read(db, zio, dbuf_flags); 492 dbp[i] = &db->db; 493 } 494 495 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 496 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 497 dmu_zfetch(&dn->dn_zfetch, blkid, nblks, 498 read && DNODE_IS_CACHEABLE(dn)); 499 } 500 rw_exit(&dn->dn_struct_rwlock); 501 502 /* wait for async i/o */ 503 err = zio_wait(zio); 504 if (err) { 505 dmu_buf_rele_array(dbp, nblks, tag); 506 return (err); 507 } 508 509 /* wait for other io to complete */ 510 if (read) { 511 for (i = 0; i < nblks; i++) { 512 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 513 mutex_enter(&db->db_mtx); 514 while (db->db_state == DB_READ || 515 db->db_state == DB_FILL) 516 cv_wait(&db->db_changed, &db->db_mtx); 517 if (db->db_state == DB_UNCACHED) 518 err = SET_ERROR(EIO); 519 mutex_exit(&db->db_mtx); 520 if (err) { 521 dmu_buf_rele_array(dbp, nblks, tag); 522 return (err); 523 } 524 } 525 } 526 527 *numbufsp = nblks; 528 *dbpp = dbp; 529 return (0); 530 } 531 532 static int 533 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 534 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 535 { 536 dnode_t *dn; 537 int err; 538 539 err = dnode_hold(os, object, FTAG, &dn); 540 if (err) 541 return (err); 542 543 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 544 numbufsp, dbpp, DMU_READ_PREFETCH); 545 546 dnode_rele(dn, FTAG); 547 548 return (err); 549 } 550 551 int 552 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 553 uint64_t length, boolean_t read, void *tag, int *numbufsp, 554 dmu_buf_t ***dbpp) 555 { 556 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 557 dnode_t *dn; 558 int err; 559 560 DB_DNODE_ENTER(db); 561 dn = DB_DNODE(db); 562 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 563 numbufsp, dbpp, DMU_READ_PREFETCH); 564 DB_DNODE_EXIT(db); 565 566 return (err); 567 } 568 569 void 570 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 571 { 572 int i; 573 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 574 575 if (numbufs == 0) 576 return; 577 578 for (i = 0; i < numbufs; i++) { 579 if (dbp[i]) 580 dbuf_rele(dbp[i], tag); 581 } 582 583 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 584 } 585 586 /* 587 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 588 * indirect blocks prefeteched will be those that point to the blocks containing 589 * the data starting at offset, and continuing to offset + len. 590 * 591 * Note that if the indirect blocks above the blocks being prefetched are not in 592 * cache, they will be asychronously read in. 593 */ 594 void 595 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 596 uint64_t len, zio_priority_t pri) 597 { 598 dnode_t *dn; 599 uint64_t blkid; 600 int nblks, err; 601 602 if (len == 0) { /* they're interested in the bonus buffer */ 603 dn = DMU_META_DNODE(os); 604 605 if (object == 0 || object >= DN_MAX_OBJECT) 606 return; 607 608 rw_enter(&dn->dn_struct_rwlock, RW_READER); 609 blkid = dbuf_whichblock(dn, level, 610 object * sizeof (dnode_phys_t)); 611 dbuf_prefetch(dn, level, blkid, pri, 0); 612 rw_exit(&dn->dn_struct_rwlock); 613 return; 614 } 615 616 /* 617 * XXX - Note, if the dnode for the requested object is not 618 * already cached, we will do a *synchronous* read in the 619 * dnode_hold() call. The same is true for any indirects. 620 */ 621 err = dnode_hold(os, object, FTAG, &dn); 622 if (err != 0) 623 return; 624 625 rw_enter(&dn->dn_struct_rwlock, RW_READER); 626 /* 627 * offset + len - 1 is the last byte we want to prefetch for, and offset 628 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 629 * last block we want to prefetch, and dbuf_whichblock(dn, level, 630 * offset) is the first. Then the number we need to prefetch is the 631 * last - first + 1. 632 */ 633 if (level > 0 || dn->dn_datablkshift != 0) { 634 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 635 dbuf_whichblock(dn, level, offset) + 1; 636 } else { 637 nblks = (offset < dn->dn_datablksz); 638 } 639 640 if (nblks != 0) { 641 blkid = dbuf_whichblock(dn, level, offset); 642 for (int i = 0; i < nblks; i++) 643 dbuf_prefetch(dn, level, blkid + i, pri, 0); 644 } 645 646 rw_exit(&dn->dn_struct_rwlock); 647 648 dnode_rele(dn, FTAG); 649 } 650 651 /* 652 * Get the next "chunk" of file data to free. We traverse the file from 653 * the end so that the file gets shorter over time (if we crashes in the 654 * middle, this will leave us in a better state). We find allocated file 655 * data by simply searching the allocated level 1 indirects. 656 * 657 * On input, *start should be the first offset that does not need to be 658 * freed (e.g. "offset + length"). On return, *start will be the first 659 * offset that should be freed. 660 */ 661 static int 662 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 663 { 664 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 665 /* bytes of data covered by a level-1 indirect block */ 666 uint64_t iblkrange = 667 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 668 669 ASSERT3U(minimum, <=, *start); 670 671 if (*start - minimum <= iblkrange * maxblks) { 672 *start = minimum; 673 return (0); 674 } 675 ASSERT(ISP2(iblkrange)); 676 677 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 678 int err; 679 680 /* 681 * dnode_next_offset(BACKWARDS) will find an allocated L1 682 * indirect block at or before the input offset. We must 683 * decrement *start so that it is at the end of the region 684 * to search. 685 */ 686 (*start)--; 687 err = dnode_next_offset(dn, 688 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 689 690 /* if there are no indirect blocks before start, we are done */ 691 if (err == ESRCH) { 692 *start = minimum; 693 break; 694 } else if (err != 0) { 695 return (err); 696 } 697 698 /* set start to the beginning of this L1 indirect */ 699 *start = P2ALIGN(*start, iblkrange); 700 } 701 if (*start < minimum) 702 *start = minimum; 703 return (0); 704 } 705 706 /* 707 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 708 * otherwise return false. 709 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 710 */ 711 /*ARGSUSED*/ 712 static boolean_t 713 dmu_objset_zfs_unmounting(objset_t *os) 714 { 715 #ifdef _KERNEL 716 if (dmu_objset_type(os) == DMU_OST_ZFS) 717 return (zfs_get_vfs_flag_unmounted(os)); 718 #endif 719 return (B_FALSE); 720 } 721 722 static int 723 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 724 uint64_t length) 725 { 726 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 727 int err; 728 uint64_t dirty_frees_threshold; 729 dsl_pool_t *dp = dmu_objset_pool(os); 730 731 if (offset >= object_size) 732 return (0); 733 734 if (zfs_per_txg_dirty_frees_percent <= 100) 735 dirty_frees_threshold = 736 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 737 else 738 dirty_frees_threshold = zfs_dirty_data_max / 4; 739 740 if (length == DMU_OBJECT_END || offset + length > object_size) 741 length = object_size - offset; 742 743 while (length != 0) { 744 uint64_t chunk_end, chunk_begin, chunk_len; 745 uint64_t long_free_dirty_all_txgs = 0; 746 dmu_tx_t *tx; 747 748 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 749 return (SET_ERROR(EINTR)); 750 751 chunk_end = chunk_begin = offset + length; 752 753 /* move chunk_begin backwards to the beginning of this chunk */ 754 err = get_next_chunk(dn, &chunk_begin, offset); 755 if (err) 756 return (err); 757 ASSERT3U(chunk_begin, >=, offset); 758 ASSERT3U(chunk_begin, <=, chunk_end); 759 760 chunk_len = chunk_end - chunk_begin; 761 762 mutex_enter(&dp->dp_lock); 763 for (int t = 0; t < TXG_SIZE; t++) { 764 long_free_dirty_all_txgs += 765 dp->dp_long_free_dirty_pertxg[t]; 766 } 767 mutex_exit(&dp->dp_lock); 768 769 /* 770 * To avoid filling up a TXG with just frees wait for 771 * the next TXG to open before freeing more chunks if 772 * we have reached the threshold of frees 773 */ 774 if (dirty_frees_threshold != 0 && 775 long_free_dirty_all_txgs >= dirty_frees_threshold) { 776 txg_wait_open(dp, 0); 777 continue; 778 } 779 780 tx = dmu_tx_create(os); 781 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 782 783 /* 784 * Mark this transaction as typically resulting in a net 785 * reduction in space used. 786 */ 787 dmu_tx_mark_netfree(tx); 788 err = dmu_tx_assign(tx, TXG_WAIT); 789 if (err) { 790 dmu_tx_abort(tx); 791 return (err); 792 } 793 794 mutex_enter(&dp->dp_lock); 795 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] += 796 chunk_len; 797 mutex_exit(&dp->dp_lock); 798 DTRACE_PROBE3(free__long__range, 799 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len, 800 uint64_t, dmu_tx_get_txg(tx)); 801 dnode_free_range(dn, chunk_begin, chunk_len, tx); 802 dmu_tx_commit(tx); 803 804 length -= chunk_len; 805 } 806 return (0); 807 } 808 809 int 810 dmu_free_long_range(objset_t *os, uint64_t object, 811 uint64_t offset, uint64_t length) 812 { 813 dnode_t *dn; 814 int err; 815 816 err = dnode_hold(os, object, FTAG, &dn); 817 if (err != 0) 818 return (err); 819 err = dmu_free_long_range_impl(os, dn, offset, length); 820 821 /* 822 * It is important to zero out the maxblkid when freeing the entire 823 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 824 * will take the fast path, and (b) dnode_reallocate() can verify 825 * that the entire file has been freed. 826 */ 827 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 828 dn->dn_maxblkid = 0; 829 830 dnode_rele(dn, FTAG); 831 return (err); 832 } 833 834 int 835 dmu_free_long_object(objset_t *os, uint64_t object) 836 { 837 dmu_tx_t *tx; 838 int err; 839 840 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 841 if (err != 0) 842 return (err); 843 844 tx = dmu_tx_create(os); 845 dmu_tx_hold_bonus(tx, object); 846 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 847 dmu_tx_mark_netfree(tx); 848 err = dmu_tx_assign(tx, TXG_WAIT); 849 if (err == 0) { 850 err = dmu_object_free(os, object, tx); 851 dmu_tx_commit(tx); 852 } else { 853 dmu_tx_abort(tx); 854 } 855 856 return (err); 857 } 858 859 int 860 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 861 uint64_t size, dmu_tx_t *tx) 862 { 863 dnode_t *dn; 864 int err = dnode_hold(os, object, FTAG, &dn); 865 if (err) 866 return (err); 867 ASSERT(offset < UINT64_MAX); 868 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 869 dnode_free_range(dn, offset, size, tx); 870 dnode_rele(dn, FTAG); 871 return (0); 872 } 873 874 static int 875 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 876 void *buf, uint32_t flags) 877 { 878 dmu_buf_t **dbp; 879 int numbufs, err = 0; 880 881 /* 882 * Deal with odd block sizes, where there can't be data past the first 883 * block. If we ever do the tail block optimization, we will need to 884 * handle that here as well. 885 */ 886 if (dn->dn_maxblkid == 0) { 887 int newsz = offset > dn->dn_datablksz ? 0 : 888 MIN(size, dn->dn_datablksz - offset); 889 bzero((char *)buf + newsz, size - newsz); 890 size = newsz; 891 } 892 893 while (size > 0) { 894 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 895 int i; 896 897 /* 898 * NB: we could do this block-at-a-time, but it's nice 899 * to be reading in parallel. 900 */ 901 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 902 TRUE, FTAG, &numbufs, &dbp, flags); 903 if (err) 904 break; 905 906 for (i = 0; i < numbufs; i++) { 907 int tocpy; 908 int bufoff; 909 dmu_buf_t *db = dbp[i]; 910 911 ASSERT(size > 0); 912 913 bufoff = offset - db->db_offset; 914 tocpy = (int)MIN(db->db_size - bufoff, size); 915 916 bcopy((char *)db->db_data + bufoff, buf, tocpy); 917 918 offset += tocpy; 919 size -= tocpy; 920 buf = (char *)buf + tocpy; 921 } 922 dmu_buf_rele_array(dbp, numbufs, FTAG); 923 } 924 return (err); 925 } 926 927 int 928 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 929 void *buf, uint32_t flags) 930 { 931 dnode_t *dn; 932 int err; 933 934 err = dnode_hold(os, object, FTAG, &dn); 935 if (err != 0) 936 return (err); 937 938 err = dmu_read_impl(dn, offset, size, buf, flags); 939 dnode_rele(dn, FTAG); 940 return (err); 941 } 942 943 int 944 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 945 uint32_t flags) 946 { 947 return (dmu_read_impl(dn, offset, size, buf, flags)); 948 } 949 950 static void 951 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 952 const void *buf, dmu_tx_t *tx) 953 { 954 int i; 955 956 for (i = 0; i < numbufs; i++) { 957 int tocpy; 958 int bufoff; 959 dmu_buf_t *db = dbp[i]; 960 961 ASSERT(size > 0); 962 963 bufoff = offset - db->db_offset; 964 tocpy = (int)MIN(db->db_size - bufoff, size); 965 966 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 967 968 if (tocpy == db->db_size) 969 dmu_buf_will_fill(db, tx); 970 else 971 dmu_buf_will_dirty(db, tx); 972 973 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 974 975 if (tocpy == db->db_size) 976 dmu_buf_fill_done(db, tx); 977 978 offset += tocpy; 979 size -= tocpy; 980 buf = (char *)buf + tocpy; 981 } 982 } 983 984 void 985 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 986 const void *buf, dmu_tx_t *tx) 987 { 988 dmu_buf_t **dbp; 989 int numbufs; 990 991 if (size == 0) 992 return; 993 994 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 995 FALSE, FTAG, &numbufs, &dbp)); 996 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 997 dmu_buf_rele_array(dbp, numbufs, FTAG); 998 } 999 1000 void 1001 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1002 const void *buf, dmu_tx_t *tx) 1003 { 1004 dmu_buf_t **dbp; 1005 int numbufs; 1006 1007 if (size == 0) 1008 return; 1009 1010 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1011 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1012 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1013 dmu_buf_rele_array(dbp, numbufs, FTAG); 1014 } 1015 1016 void 1017 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1018 dmu_tx_t *tx) 1019 { 1020 dmu_buf_t **dbp; 1021 int numbufs, i; 1022 1023 if (size == 0) 1024 return; 1025 1026 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1027 FALSE, FTAG, &numbufs, &dbp)); 1028 1029 for (i = 0; i < numbufs; i++) { 1030 dmu_buf_t *db = dbp[i]; 1031 1032 dmu_buf_will_not_fill(db, tx); 1033 } 1034 dmu_buf_rele_array(dbp, numbufs, FTAG); 1035 } 1036 1037 void 1038 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1039 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1040 int compressed_size, int byteorder, dmu_tx_t *tx) 1041 { 1042 dmu_buf_t *db; 1043 1044 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1045 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1046 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1047 FTAG, &db)); 1048 1049 dmu_buf_write_embedded(db, 1050 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1051 uncompressed_size, compressed_size, byteorder, tx); 1052 1053 dmu_buf_rele(db, FTAG); 1054 } 1055 1056 /* 1057 * DMU support for xuio 1058 */ 1059 kstat_t *xuio_ksp = NULL; 1060 1061 int 1062 dmu_xuio_init(xuio_t *xuio, int nblk) 1063 { 1064 dmu_xuio_t *priv; 1065 uio_t *uio = &xuio->xu_uio; 1066 1067 uio->uio_iovcnt = nblk; 1068 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 1069 1070 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 1071 priv->cnt = nblk; 1072 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 1073 priv->iovp = uio->uio_iov; 1074 XUIO_XUZC_PRIV(xuio) = priv; 1075 1076 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1077 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 1078 else 1079 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 1080 1081 return (0); 1082 } 1083 1084 void 1085 dmu_xuio_fini(xuio_t *xuio) 1086 { 1087 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1088 int nblk = priv->cnt; 1089 1090 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 1091 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 1092 kmem_free(priv, sizeof (dmu_xuio_t)); 1093 1094 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1095 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 1096 else 1097 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 1098 } 1099 1100 /* 1101 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 1102 * and increase priv->next by 1. 1103 */ 1104 int 1105 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 1106 { 1107 struct iovec *iov; 1108 uio_t *uio = &xuio->xu_uio; 1109 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1110 int i = priv->next++; 1111 1112 ASSERT(i < priv->cnt); 1113 ASSERT(off + n <= arc_buf_lsize(abuf)); 1114 iov = uio->uio_iov + i; 1115 iov->iov_base = (char *)abuf->b_data + off; 1116 iov->iov_len = n; 1117 priv->bufs[i] = abuf; 1118 return (0); 1119 } 1120 1121 int 1122 dmu_xuio_cnt(xuio_t *xuio) 1123 { 1124 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1125 return (priv->cnt); 1126 } 1127 1128 arc_buf_t * 1129 dmu_xuio_arcbuf(xuio_t *xuio, int i) 1130 { 1131 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1132 1133 ASSERT(i < priv->cnt); 1134 return (priv->bufs[i]); 1135 } 1136 1137 void 1138 dmu_xuio_clear(xuio_t *xuio, int i) 1139 { 1140 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1141 1142 ASSERT(i < priv->cnt); 1143 priv->bufs[i] = NULL; 1144 } 1145 1146 static void 1147 xuio_stat_init(void) 1148 { 1149 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 1150 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 1151 KSTAT_FLAG_VIRTUAL); 1152 if (xuio_ksp != NULL) { 1153 xuio_ksp->ks_data = &xuio_stats; 1154 kstat_install(xuio_ksp); 1155 } 1156 } 1157 1158 static void 1159 xuio_stat_fini(void) 1160 { 1161 if (xuio_ksp != NULL) { 1162 kstat_delete(xuio_ksp); 1163 xuio_ksp = NULL; 1164 } 1165 } 1166 1167 void 1168 xuio_stat_wbuf_copied(void) 1169 { 1170 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1171 } 1172 1173 void 1174 xuio_stat_wbuf_nocopy(void) 1175 { 1176 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1177 } 1178 1179 #ifdef _KERNEL 1180 static int 1181 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1182 { 1183 dmu_buf_t **dbp; 1184 int numbufs, i, err; 1185 xuio_t *xuio = NULL; 1186 1187 /* 1188 * NB: we could do this block-at-a-time, but it's nice 1189 * to be reading in parallel. 1190 */ 1191 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1192 TRUE, FTAG, &numbufs, &dbp, 0); 1193 if (err) 1194 return (err); 1195 1196 if (uio->uio_extflg == UIO_XUIO) 1197 xuio = (xuio_t *)uio; 1198 1199 for (i = 0; i < numbufs; i++) { 1200 int tocpy; 1201 int bufoff; 1202 dmu_buf_t *db = dbp[i]; 1203 1204 ASSERT(size > 0); 1205 1206 bufoff = uio->uio_loffset - db->db_offset; 1207 tocpy = (int)MIN(db->db_size - bufoff, size); 1208 1209 if (xuio) { 1210 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1211 arc_buf_t *dbuf_abuf = dbi->db_buf; 1212 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1213 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1214 if (!err) { 1215 uio->uio_resid -= tocpy; 1216 uio->uio_loffset += tocpy; 1217 } 1218 1219 if (abuf == dbuf_abuf) 1220 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1221 else 1222 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1223 } else { 1224 err = uiomove((char *)db->db_data + bufoff, tocpy, 1225 UIO_READ, uio); 1226 } 1227 if (err) 1228 break; 1229 1230 size -= tocpy; 1231 } 1232 dmu_buf_rele_array(dbp, numbufs, FTAG); 1233 1234 return (err); 1235 } 1236 1237 /* 1238 * Read 'size' bytes into the uio buffer. 1239 * From object zdb->db_object. 1240 * Starting at offset uio->uio_loffset. 1241 * 1242 * If the caller already has a dbuf in the target object 1243 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1244 * because we don't have to find the dnode_t for the object. 1245 */ 1246 int 1247 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1248 { 1249 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1250 dnode_t *dn; 1251 int err; 1252 1253 if (size == 0) 1254 return (0); 1255 1256 DB_DNODE_ENTER(db); 1257 dn = DB_DNODE(db); 1258 err = dmu_read_uio_dnode(dn, uio, size); 1259 DB_DNODE_EXIT(db); 1260 1261 return (err); 1262 } 1263 1264 /* 1265 * Read 'size' bytes into the uio buffer. 1266 * From the specified object 1267 * Starting at offset uio->uio_loffset. 1268 */ 1269 int 1270 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1271 { 1272 dnode_t *dn; 1273 int err; 1274 1275 if (size == 0) 1276 return (0); 1277 1278 err = dnode_hold(os, object, FTAG, &dn); 1279 if (err) 1280 return (err); 1281 1282 err = dmu_read_uio_dnode(dn, uio, size); 1283 1284 dnode_rele(dn, FTAG); 1285 1286 return (err); 1287 } 1288 1289 static int 1290 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1291 { 1292 dmu_buf_t **dbp; 1293 int numbufs; 1294 int err = 0; 1295 int i; 1296 1297 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1298 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1299 if (err) 1300 return (err); 1301 1302 for (i = 0; i < numbufs; i++) { 1303 int tocpy; 1304 int bufoff; 1305 dmu_buf_t *db = dbp[i]; 1306 1307 ASSERT(size > 0); 1308 1309 bufoff = uio->uio_loffset - db->db_offset; 1310 tocpy = (int)MIN(db->db_size - bufoff, size); 1311 1312 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1313 1314 if (tocpy == db->db_size) 1315 dmu_buf_will_fill(db, tx); 1316 else 1317 dmu_buf_will_dirty(db, tx); 1318 1319 /* 1320 * XXX uiomove could block forever (eg. nfs-backed 1321 * pages). There needs to be a uiolockdown() function 1322 * to lock the pages in memory, so that uiomove won't 1323 * block. 1324 */ 1325 err = uiomove((char *)db->db_data + bufoff, tocpy, 1326 UIO_WRITE, uio); 1327 1328 if (tocpy == db->db_size) 1329 dmu_buf_fill_done(db, tx); 1330 1331 if (err) 1332 break; 1333 1334 size -= tocpy; 1335 } 1336 1337 dmu_buf_rele_array(dbp, numbufs, FTAG); 1338 return (err); 1339 } 1340 1341 /* 1342 * Write 'size' bytes from the uio buffer. 1343 * To object zdb->db_object. 1344 * Starting at offset uio->uio_loffset. 1345 * 1346 * If the caller already has a dbuf in the target object 1347 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1348 * because we don't have to find the dnode_t for the object. 1349 */ 1350 int 1351 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1352 dmu_tx_t *tx) 1353 { 1354 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1355 dnode_t *dn; 1356 int err; 1357 1358 if (size == 0) 1359 return (0); 1360 1361 DB_DNODE_ENTER(db); 1362 dn = DB_DNODE(db); 1363 err = dmu_write_uio_dnode(dn, uio, size, tx); 1364 DB_DNODE_EXIT(db); 1365 1366 return (err); 1367 } 1368 1369 /* 1370 * Write 'size' bytes from the uio buffer. 1371 * To the specified object. 1372 * Starting at offset uio->uio_loffset. 1373 */ 1374 int 1375 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1376 dmu_tx_t *tx) 1377 { 1378 dnode_t *dn; 1379 int err; 1380 1381 if (size == 0) 1382 return (0); 1383 1384 err = dnode_hold(os, object, FTAG, &dn); 1385 if (err) 1386 return (err); 1387 1388 err = dmu_write_uio_dnode(dn, uio, size, tx); 1389 1390 dnode_rele(dn, FTAG); 1391 1392 return (err); 1393 } 1394 1395 int 1396 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1397 page_t *pp, dmu_tx_t *tx) 1398 { 1399 dmu_buf_t **dbp; 1400 int numbufs, i; 1401 int err; 1402 1403 if (size == 0) 1404 return (0); 1405 1406 err = dmu_buf_hold_array(os, object, offset, size, 1407 FALSE, FTAG, &numbufs, &dbp); 1408 if (err) 1409 return (err); 1410 1411 for (i = 0; i < numbufs; i++) { 1412 int tocpy, copied, thiscpy; 1413 int bufoff; 1414 dmu_buf_t *db = dbp[i]; 1415 caddr_t va; 1416 1417 ASSERT(size > 0); 1418 ASSERT3U(db->db_size, >=, PAGESIZE); 1419 1420 bufoff = offset - db->db_offset; 1421 tocpy = (int)MIN(db->db_size - bufoff, size); 1422 1423 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1424 1425 if (tocpy == db->db_size) 1426 dmu_buf_will_fill(db, tx); 1427 else 1428 dmu_buf_will_dirty(db, tx); 1429 1430 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1431 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1432 thiscpy = MIN(PAGESIZE, tocpy - copied); 1433 va = zfs_map_page(pp, S_READ); 1434 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1435 zfs_unmap_page(pp, va); 1436 pp = pp->p_next; 1437 bufoff += PAGESIZE; 1438 } 1439 1440 if (tocpy == db->db_size) 1441 dmu_buf_fill_done(db, tx); 1442 1443 offset += tocpy; 1444 size -= tocpy; 1445 } 1446 dmu_buf_rele_array(dbp, numbufs, FTAG); 1447 return (err); 1448 } 1449 #endif 1450 1451 /* 1452 * Allocate a loaned anonymous arc buffer. 1453 */ 1454 arc_buf_t * 1455 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1456 { 1457 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1458 1459 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1460 } 1461 1462 /* 1463 * Free a loaned arc buffer. 1464 */ 1465 void 1466 dmu_return_arcbuf(arc_buf_t *buf) 1467 { 1468 arc_return_buf(buf, FTAG); 1469 arc_buf_destroy(buf, FTAG); 1470 } 1471 1472 /* 1473 * When possible directly assign passed loaned arc buffer to a dbuf. 1474 * If this is not possible copy the contents of passed arc buf via 1475 * dmu_write(). 1476 */ 1477 void 1478 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1479 dmu_tx_t *tx) 1480 { 1481 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1482 dnode_t *dn; 1483 dmu_buf_impl_t *db; 1484 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1485 uint64_t blkid; 1486 1487 DB_DNODE_ENTER(dbuf); 1488 dn = DB_DNODE(dbuf); 1489 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1490 blkid = dbuf_whichblock(dn, 0, offset); 1491 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1492 rw_exit(&dn->dn_struct_rwlock); 1493 DB_DNODE_EXIT(dbuf); 1494 1495 /* 1496 * We can only assign if the offset is aligned, the arc buf is the 1497 * same size as the dbuf, and the dbuf is not metadata. 1498 */ 1499 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1500 dbuf_assign_arcbuf(db, buf, tx); 1501 dbuf_rele(db, FTAG); 1502 } else { 1503 objset_t *os; 1504 uint64_t object; 1505 1506 /* compressed bufs must always be assignable to their dbuf */ 1507 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1508 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1509 1510 DB_DNODE_ENTER(dbuf); 1511 dn = DB_DNODE(dbuf); 1512 os = dn->dn_objset; 1513 object = dn->dn_object; 1514 DB_DNODE_EXIT(dbuf); 1515 1516 dbuf_rele(db, FTAG); 1517 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1518 dmu_return_arcbuf(buf); 1519 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1520 } 1521 } 1522 1523 typedef struct { 1524 dbuf_dirty_record_t *dsa_dr; 1525 dmu_sync_cb_t *dsa_done; 1526 zgd_t *dsa_zgd; 1527 dmu_tx_t *dsa_tx; 1528 } dmu_sync_arg_t; 1529 1530 /* ARGSUSED */ 1531 static void 1532 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1533 { 1534 dmu_sync_arg_t *dsa = varg; 1535 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1536 blkptr_t *bp = zio->io_bp; 1537 1538 if (zio->io_error == 0) { 1539 if (BP_IS_HOLE(bp)) { 1540 /* 1541 * A block of zeros may compress to a hole, but the 1542 * block size still needs to be known for replay. 1543 */ 1544 BP_SET_LSIZE(bp, db->db_size); 1545 } else if (!BP_IS_EMBEDDED(bp)) { 1546 ASSERT(BP_GET_LEVEL(bp) == 0); 1547 bp->blk_fill = 1; 1548 } 1549 } 1550 } 1551 1552 static void 1553 dmu_sync_late_arrival_ready(zio_t *zio) 1554 { 1555 dmu_sync_ready(zio, NULL, zio->io_private); 1556 } 1557 1558 /* ARGSUSED */ 1559 static void 1560 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1561 { 1562 dmu_sync_arg_t *dsa = varg; 1563 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1564 dmu_buf_impl_t *db = dr->dr_dbuf; 1565 1566 mutex_enter(&db->db_mtx); 1567 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1568 if (zio->io_error == 0) { 1569 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1570 if (dr->dt.dl.dr_nopwrite) { 1571 blkptr_t *bp = zio->io_bp; 1572 blkptr_t *bp_orig = &zio->io_bp_orig; 1573 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1574 1575 ASSERT(BP_EQUAL(bp, bp_orig)); 1576 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1577 ASSERT(zio_checksum_table[chksum].ci_flags & 1578 ZCHECKSUM_FLAG_NOPWRITE); 1579 } 1580 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1581 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1582 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1583 1584 /* 1585 * Old style holes are filled with all zeros, whereas 1586 * new-style holes maintain their lsize, type, level, 1587 * and birth time (see zio_write_compress). While we 1588 * need to reset the BP_SET_LSIZE() call that happened 1589 * in dmu_sync_ready for old style holes, we do *not* 1590 * want to wipe out the information contained in new 1591 * style holes. Thus, only zero out the block pointer if 1592 * it's an old style hole. 1593 */ 1594 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1595 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1596 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1597 } else { 1598 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1599 } 1600 cv_broadcast(&db->db_changed); 1601 mutex_exit(&db->db_mtx); 1602 1603 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1604 1605 kmem_free(dsa, sizeof (*dsa)); 1606 } 1607 1608 static void 1609 dmu_sync_late_arrival_done(zio_t *zio) 1610 { 1611 blkptr_t *bp = zio->io_bp; 1612 dmu_sync_arg_t *dsa = zio->io_private; 1613 blkptr_t *bp_orig = &zio->io_bp_orig; 1614 1615 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1616 /* 1617 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1618 * then there is nothing to do here. Otherwise, free the 1619 * newly allocated block in this txg. 1620 */ 1621 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1622 ASSERT(BP_EQUAL(bp, bp_orig)); 1623 } else { 1624 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1625 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1626 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1627 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1628 } 1629 } 1630 1631 dmu_tx_commit(dsa->dsa_tx); 1632 1633 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1634 1635 kmem_free(dsa, sizeof (*dsa)); 1636 } 1637 1638 static int 1639 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1640 zio_prop_t *zp, zbookmark_phys_t *zb) 1641 { 1642 dmu_sync_arg_t *dsa; 1643 dmu_tx_t *tx; 1644 1645 tx = dmu_tx_create(os); 1646 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1647 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1648 dmu_tx_abort(tx); 1649 /* Make zl_get_data do txg_waited_synced() */ 1650 return (SET_ERROR(EIO)); 1651 } 1652 1653 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1654 dsa->dsa_dr = NULL; 1655 dsa->dsa_done = done; 1656 dsa->dsa_zgd = zgd; 1657 dsa->dsa_tx = tx; 1658 1659 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1660 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zgd->zgd_db->db_size, 1661 zp, dmu_sync_late_arrival_ready, NULL, 1662 NULL, dmu_sync_late_arrival_done, dsa, ZIO_PRIORITY_SYNC_WRITE, 1663 ZIO_FLAG_CANFAIL, zb)); 1664 1665 return (0); 1666 } 1667 1668 /* 1669 * Intent log support: sync the block associated with db to disk. 1670 * N.B. and XXX: the caller is responsible for making sure that the 1671 * data isn't changing while dmu_sync() is writing it. 1672 * 1673 * Return values: 1674 * 1675 * EEXIST: this txg has already been synced, so there's nothing to do. 1676 * The caller should not log the write. 1677 * 1678 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1679 * The caller should not log the write. 1680 * 1681 * EALREADY: this block is already in the process of being synced. 1682 * The caller should track its progress (somehow). 1683 * 1684 * EIO: could not do the I/O. 1685 * The caller should do a txg_wait_synced(). 1686 * 1687 * 0: the I/O has been initiated. 1688 * The caller should log this blkptr in the done callback. 1689 * It is possible that the I/O will fail, in which case 1690 * the error will be reported to the done callback and 1691 * propagated to pio from zio_done(). 1692 */ 1693 int 1694 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1695 { 1696 blkptr_t *bp = zgd->zgd_bp; 1697 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1698 objset_t *os = db->db_objset; 1699 dsl_dataset_t *ds = os->os_dsl_dataset; 1700 dbuf_dirty_record_t *dr; 1701 dmu_sync_arg_t *dsa; 1702 zbookmark_phys_t zb; 1703 zio_prop_t zp; 1704 dnode_t *dn; 1705 1706 ASSERT(pio != NULL); 1707 ASSERT(txg != 0); 1708 1709 SET_BOOKMARK(&zb, ds->ds_object, 1710 db->db.db_object, db->db_level, db->db_blkid); 1711 1712 DB_DNODE_ENTER(db); 1713 dn = DB_DNODE(db); 1714 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, 1715 ZIO_COMPRESS_INHERIT, &zp); 1716 DB_DNODE_EXIT(db); 1717 1718 /* 1719 * If we're frozen (running ziltest), we always need to generate a bp. 1720 */ 1721 if (txg > spa_freeze_txg(os->os_spa)) 1722 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1723 1724 /* 1725 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1726 * and us. If we determine that this txg is not yet syncing, 1727 * but it begins to sync a moment later, that's OK because the 1728 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1729 */ 1730 mutex_enter(&db->db_mtx); 1731 1732 if (txg <= spa_last_synced_txg(os->os_spa)) { 1733 /* 1734 * This txg has already synced. There's nothing to do. 1735 */ 1736 mutex_exit(&db->db_mtx); 1737 return (SET_ERROR(EEXIST)); 1738 } 1739 1740 if (txg <= spa_syncing_txg(os->os_spa)) { 1741 /* 1742 * This txg is currently syncing, so we can't mess with 1743 * the dirty record anymore; just write a new log block. 1744 */ 1745 mutex_exit(&db->db_mtx); 1746 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1747 } 1748 1749 dr = db->db_last_dirty; 1750 while (dr && dr->dr_txg != txg) 1751 dr = dr->dr_next; 1752 1753 if (dr == NULL) { 1754 /* 1755 * There's no dr for this dbuf, so it must have been freed. 1756 * There's no need to log writes to freed blocks, so we're done. 1757 */ 1758 mutex_exit(&db->db_mtx); 1759 return (SET_ERROR(ENOENT)); 1760 } 1761 1762 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1763 1764 /* 1765 * Assume the on-disk data is X, the current syncing data (in 1766 * txg - 1) is Y, and the current in-memory data is Z (currently 1767 * in dmu_sync). 1768 * 1769 * We usually want to perform a nopwrite if X and Z are the 1770 * same. However, if Y is different (i.e. the BP is going to 1771 * change before this write takes effect), then a nopwrite will 1772 * be incorrect - we would override with X, which could have 1773 * been freed when Y was written. 1774 * 1775 * (Note that this is not a concern when we are nop-writing from 1776 * syncing context, because X and Y must be identical, because 1777 * all previous txgs have been synced.) 1778 * 1779 * Therefore, we disable nopwrite if the current BP could change 1780 * before this TXG. There are two ways it could change: by 1781 * being dirty (dr_next is non-NULL), or by being freed 1782 * (dnode_block_freed()). This behavior is verified by 1783 * zio_done(), which VERIFYs that the override BP is identical 1784 * to the on-disk BP. 1785 */ 1786 DB_DNODE_ENTER(db); 1787 dn = DB_DNODE(db); 1788 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1789 zp.zp_nopwrite = B_FALSE; 1790 DB_DNODE_EXIT(db); 1791 1792 ASSERT(dr->dr_txg == txg); 1793 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1794 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1795 /* 1796 * We have already issued a sync write for this buffer, 1797 * or this buffer has already been synced. It could not 1798 * have been dirtied since, or we would have cleared the state. 1799 */ 1800 mutex_exit(&db->db_mtx); 1801 return (SET_ERROR(EALREADY)); 1802 } 1803 1804 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1805 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1806 mutex_exit(&db->db_mtx); 1807 1808 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1809 dsa->dsa_dr = dr; 1810 dsa->dsa_done = done; 1811 dsa->dsa_zgd = zgd; 1812 dsa->dsa_tx = NULL; 1813 1814 zio_nowait(arc_write(pio, os->os_spa, txg, 1815 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1816 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 1817 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1818 1819 return (0); 1820 } 1821 1822 int 1823 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1824 dmu_tx_t *tx) 1825 { 1826 dnode_t *dn; 1827 int err; 1828 1829 err = dnode_hold(os, object, FTAG, &dn); 1830 if (err) 1831 return (err); 1832 err = dnode_set_blksz(dn, size, ibs, tx); 1833 dnode_rele(dn, FTAG); 1834 return (err); 1835 } 1836 1837 void 1838 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1839 dmu_tx_t *tx) 1840 { 1841 dnode_t *dn; 1842 1843 /* 1844 * Send streams include each object's checksum function. This 1845 * check ensures that the receiving system can understand the 1846 * checksum function transmitted. 1847 */ 1848 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1849 1850 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1851 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1852 dn->dn_checksum = checksum; 1853 dnode_setdirty(dn, tx); 1854 dnode_rele(dn, FTAG); 1855 } 1856 1857 void 1858 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1859 dmu_tx_t *tx) 1860 { 1861 dnode_t *dn; 1862 1863 /* 1864 * Send streams include each object's compression function. This 1865 * check ensures that the receiving system can understand the 1866 * compression function transmitted. 1867 */ 1868 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1869 1870 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1871 dn->dn_compress = compress; 1872 dnode_setdirty(dn, tx); 1873 dnode_rele(dn, FTAG); 1874 } 1875 1876 int zfs_mdcomp_disable = 0; 1877 1878 /* 1879 * When the "redundant_metadata" property is set to "most", only indirect 1880 * blocks of this level and higher will have an additional ditto block. 1881 */ 1882 int zfs_redundant_metadata_most_ditto_level = 2; 1883 1884 void 1885 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, 1886 enum zio_compress override_compress, zio_prop_t *zp) 1887 { 1888 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1889 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1890 (wp & WP_SPILL)); 1891 enum zio_checksum checksum = os->os_checksum; 1892 enum zio_compress compress = os->os_compress; 1893 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1894 boolean_t dedup = B_FALSE; 1895 boolean_t nopwrite = B_FALSE; 1896 boolean_t dedup_verify = os->os_dedup_verify; 1897 int copies = os->os_copies; 1898 boolean_t lz4_ac = spa_feature_is_active(os->os_spa, 1899 SPA_FEATURE_LZ4_COMPRESS); 1900 1901 IMPLY(override_compress == ZIO_COMPRESS_LZ4, lz4_ac); 1902 1903 /* 1904 * We maintain different write policies for each of the following 1905 * types of data: 1906 * 1. metadata 1907 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1908 * 3. all other level 0 blocks 1909 */ 1910 if (ismd) { 1911 if (zfs_mdcomp_disable) { 1912 compress = ZIO_COMPRESS_EMPTY; 1913 } else { 1914 /* 1915 * XXX -- we should design a compression algorithm 1916 * that specializes in arrays of bps. 1917 */ 1918 compress = zio_compress_select(os->os_spa, 1919 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1920 } 1921 1922 /* 1923 * Metadata always gets checksummed. If the data 1924 * checksum is multi-bit correctable, and it's not a 1925 * ZBT-style checksum, then it's suitable for metadata 1926 * as well. Otherwise, the metadata checksum defaults 1927 * to fletcher4. 1928 */ 1929 if (!(zio_checksum_table[checksum].ci_flags & 1930 ZCHECKSUM_FLAG_METADATA) || 1931 (zio_checksum_table[checksum].ci_flags & 1932 ZCHECKSUM_FLAG_EMBEDDED)) 1933 checksum = ZIO_CHECKSUM_FLETCHER_4; 1934 1935 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1936 (os->os_redundant_metadata == 1937 ZFS_REDUNDANT_METADATA_MOST && 1938 (level >= zfs_redundant_metadata_most_ditto_level || 1939 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1940 copies++; 1941 } else if (wp & WP_NOFILL) { 1942 ASSERT(level == 0); 1943 1944 /* 1945 * If we're writing preallocated blocks, we aren't actually 1946 * writing them so don't set any policy properties. These 1947 * blocks are currently only used by an external subsystem 1948 * outside of zfs (i.e. dump) and not written by the zio 1949 * pipeline. 1950 */ 1951 compress = ZIO_COMPRESS_OFF; 1952 checksum = ZIO_CHECKSUM_NOPARITY; 1953 } else { 1954 compress = zio_compress_select(os->os_spa, dn->dn_compress, 1955 compress); 1956 1957 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1958 zio_checksum_select(dn->dn_checksum, checksum) : 1959 dedup_checksum; 1960 1961 /* 1962 * Determine dedup setting. If we are in dmu_sync(), 1963 * we won't actually dedup now because that's all 1964 * done in syncing context; but we do want to use the 1965 * dedup checkum. If the checksum is not strong 1966 * enough to ensure unique signatures, force 1967 * dedup_verify. 1968 */ 1969 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1970 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1971 if (!(zio_checksum_table[checksum].ci_flags & 1972 ZCHECKSUM_FLAG_DEDUP)) 1973 dedup_verify = B_TRUE; 1974 } 1975 1976 /* 1977 * Enable nopwrite if we have secure enough checksum 1978 * algorithm (see comment in zio_nop_write) and 1979 * compression is enabled. We don't enable nopwrite if 1980 * dedup is enabled as the two features are mutually 1981 * exclusive. 1982 */ 1983 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 1984 ZCHECKSUM_FLAG_NOPWRITE) && 1985 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1986 } 1987 1988 zp->zp_checksum = checksum; 1989 1990 /* 1991 * If we're writing a pre-compressed buffer, the compression type we use 1992 * must match the data. If it hasn't been compressed yet, then we should 1993 * use the value dictated by the policies above. 1994 */ 1995 zp->zp_compress = override_compress != ZIO_COMPRESS_INHERIT 1996 ? override_compress : compress; 1997 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); 1998 1999 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2000 zp->zp_level = level; 2001 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2002 zp->zp_dedup = dedup; 2003 zp->zp_dedup_verify = dedup && dedup_verify; 2004 zp->zp_nopwrite = nopwrite; 2005 } 2006 2007 int 2008 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2009 { 2010 dnode_t *dn; 2011 int err; 2012 2013 /* 2014 * Sync any current changes before 2015 * we go trundling through the block pointers. 2016 */ 2017 err = dmu_object_wait_synced(os, object); 2018 if (err) { 2019 return (err); 2020 } 2021 2022 err = dnode_hold(os, object, FTAG, &dn); 2023 if (err) { 2024 return (err); 2025 } 2026 2027 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2028 dnode_rele(dn, FTAG); 2029 2030 return (err); 2031 } 2032 2033 /* 2034 * Given the ZFS object, if it contains any dirty nodes 2035 * this function flushes all dirty blocks to disk. This 2036 * ensures the DMU object info is updated. A more efficient 2037 * future version might just find the TXG with the maximum 2038 * ID and wait for that to be synced. 2039 */ 2040 int 2041 dmu_object_wait_synced(objset_t *os, uint64_t object) 2042 { 2043 dnode_t *dn; 2044 int error, i; 2045 2046 error = dnode_hold(os, object, FTAG, &dn); 2047 if (error) { 2048 return (error); 2049 } 2050 2051 for (i = 0; i < TXG_SIZE; i++) { 2052 if (list_link_active(&dn->dn_dirty_link[i])) { 2053 break; 2054 } 2055 } 2056 dnode_rele(dn, FTAG); 2057 if (i != TXG_SIZE) { 2058 txg_wait_synced(dmu_objset_pool(os), 0); 2059 } 2060 2061 return (0); 2062 } 2063 2064 void 2065 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2066 { 2067 dnode_phys_t *dnp; 2068 2069 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2070 mutex_enter(&dn->dn_mtx); 2071 2072 dnp = dn->dn_phys; 2073 2074 doi->doi_data_block_size = dn->dn_datablksz; 2075 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2076 1ULL << dn->dn_indblkshift : 0; 2077 doi->doi_type = dn->dn_type; 2078 doi->doi_bonus_type = dn->dn_bonustype; 2079 doi->doi_bonus_size = dn->dn_bonuslen; 2080 doi->doi_indirection = dn->dn_nlevels; 2081 doi->doi_checksum = dn->dn_checksum; 2082 doi->doi_compress = dn->dn_compress; 2083 doi->doi_nblkptr = dn->dn_nblkptr; 2084 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2085 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2086 doi->doi_fill_count = 0; 2087 for (int i = 0; i < dnp->dn_nblkptr; i++) 2088 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2089 2090 mutex_exit(&dn->dn_mtx); 2091 rw_exit(&dn->dn_struct_rwlock); 2092 } 2093 2094 /* 2095 * Get information on a DMU object. 2096 * If doi is NULL, just indicates whether the object exists. 2097 */ 2098 int 2099 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2100 { 2101 dnode_t *dn; 2102 int err = dnode_hold(os, object, FTAG, &dn); 2103 2104 if (err) 2105 return (err); 2106 2107 if (doi != NULL) 2108 dmu_object_info_from_dnode(dn, doi); 2109 2110 dnode_rele(dn, FTAG); 2111 return (0); 2112 } 2113 2114 /* 2115 * As above, but faster; can be used when you have a held dbuf in hand. 2116 */ 2117 void 2118 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2119 { 2120 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2121 2122 DB_DNODE_ENTER(db); 2123 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2124 DB_DNODE_EXIT(db); 2125 } 2126 2127 /* 2128 * Faster still when you only care about the size. 2129 * This is specifically optimized for zfs_getattr(). 2130 */ 2131 void 2132 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2133 u_longlong_t *nblk512) 2134 { 2135 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2136 dnode_t *dn; 2137 2138 DB_DNODE_ENTER(db); 2139 dn = DB_DNODE(db); 2140 2141 *blksize = dn->dn_datablksz; 2142 /* add 1 for dnode space */ 2143 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2144 SPA_MINBLOCKSHIFT) + 1; 2145 DB_DNODE_EXIT(db); 2146 } 2147 2148 void 2149 byteswap_uint64_array(void *vbuf, size_t size) 2150 { 2151 uint64_t *buf = vbuf; 2152 size_t count = size >> 3; 2153 int i; 2154 2155 ASSERT((size & 7) == 0); 2156 2157 for (i = 0; i < count; i++) 2158 buf[i] = BSWAP_64(buf[i]); 2159 } 2160 2161 void 2162 byteswap_uint32_array(void *vbuf, size_t size) 2163 { 2164 uint32_t *buf = vbuf; 2165 size_t count = size >> 2; 2166 int i; 2167 2168 ASSERT((size & 3) == 0); 2169 2170 for (i = 0; i < count; i++) 2171 buf[i] = BSWAP_32(buf[i]); 2172 } 2173 2174 void 2175 byteswap_uint16_array(void *vbuf, size_t size) 2176 { 2177 uint16_t *buf = vbuf; 2178 size_t count = size >> 1; 2179 int i; 2180 2181 ASSERT((size & 1) == 0); 2182 2183 for (i = 0; i < count; i++) 2184 buf[i] = BSWAP_16(buf[i]); 2185 } 2186 2187 /* ARGSUSED */ 2188 void 2189 byteswap_uint8_array(void *vbuf, size_t size) 2190 { 2191 } 2192 2193 void 2194 dmu_init(void) 2195 { 2196 zfs_dbgmsg_init(); 2197 sa_cache_init(); 2198 xuio_stat_init(); 2199 dmu_objset_init(); 2200 dnode_init(); 2201 zfetch_init(); 2202 l2arc_init(); 2203 arc_init(); 2204 dbuf_init(); 2205 } 2206 2207 void 2208 dmu_fini(void) 2209 { 2210 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2211 l2arc_fini(); 2212 zfetch_fini(); 2213 dbuf_fini(); 2214 dnode_fini(); 2215 dmu_objset_fini(); 2216 xuio_stat_fini(); 2217 sa_cache_fini(); 2218 zfs_dbgmsg_fini(); 2219 } 2220