1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/dmu.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dbuf.h> 32 #include <sys/dnode.h> 33 #include <sys/zfs_context.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/dmu_traverse.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/dsl_dir.h> 38 #include <sys/dsl_pool.h> 39 #include <sys/dsl_synctask.h> 40 #include <sys/dsl_prop.h> 41 #include <sys/dmu_zfetch.h> 42 #include <sys/zfs_ioctl.h> 43 #include <sys/zap.h> 44 #include <sys/zio_checksum.h> 45 #ifdef _KERNEL 46 #include <sys/vmsystm.h> 47 #endif 48 49 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 50 { byteswap_uint8_array, TRUE, "unallocated" }, 51 { zap_byteswap, TRUE, "object directory" }, 52 { byteswap_uint64_array, TRUE, "object array" }, 53 { byteswap_uint8_array, TRUE, "packed nvlist" }, 54 { byteswap_uint64_array, TRUE, "packed nvlist size" }, 55 { byteswap_uint64_array, TRUE, "bplist" }, 56 { byteswap_uint64_array, TRUE, "bplist header" }, 57 { byteswap_uint64_array, TRUE, "SPA space map header" }, 58 { byteswap_uint64_array, TRUE, "SPA space map" }, 59 { byteswap_uint64_array, TRUE, "ZIL intent log" }, 60 { dnode_buf_byteswap, TRUE, "DMU dnode" }, 61 { dmu_objset_byteswap, TRUE, "DMU objset" }, 62 { byteswap_uint64_array, TRUE, "DSL directory" }, 63 { zap_byteswap, TRUE, "DSL directory child map"}, 64 { zap_byteswap, TRUE, "DSL dataset snap map" }, 65 { zap_byteswap, TRUE, "DSL props" }, 66 { byteswap_uint64_array, TRUE, "DSL dataset" }, 67 { zfs_znode_byteswap, TRUE, "ZFS znode" }, 68 { zfs_acl_byteswap, TRUE, "ZFS ACL" }, 69 { byteswap_uint8_array, FALSE, "ZFS plain file" }, 70 { zap_byteswap, TRUE, "ZFS directory" }, 71 { zap_byteswap, TRUE, "ZFS master node" }, 72 { zap_byteswap, TRUE, "ZFS delete queue" }, 73 { byteswap_uint8_array, FALSE, "zvol object" }, 74 { zap_byteswap, TRUE, "zvol prop" }, 75 { byteswap_uint8_array, FALSE, "other uint8[]" }, 76 { byteswap_uint64_array, FALSE, "other uint64[]" }, 77 { zap_byteswap, TRUE, "other ZAP" }, 78 { zap_byteswap, TRUE, "persistent error log" }, 79 { byteswap_uint8_array, TRUE, "SPA history" }, 80 { byteswap_uint64_array, TRUE, "SPA history offsets" }, 81 { zap_byteswap, TRUE, "Pool properties" }, 82 }; 83 84 int 85 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 86 void *tag, dmu_buf_t **dbp) 87 { 88 dnode_t *dn; 89 uint64_t blkid; 90 dmu_buf_impl_t *db; 91 int err; 92 93 err = dnode_hold(os->os, object, FTAG, &dn); 94 if (err) 95 return (err); 96 blkid = dbuf_whichblock(dn, offset); 97 rw_enter(&dn->dn_struct_rwlock, RW_READER); 98 db = dbuf_hold(dn, blkid, tag); 99 rw_exit(&dn->dn_struct_rwlock); 100 if (db == NULL) { 101 err = EIO; 102 } else { 103 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 104 if (err) { 105 dbuf_rele(db, tag); 106 db = NULL; 107 } 108 } 109 110 dnode_rele(dn, FTAG); 111 *dbp = &db->db; 112 return (err); 113 } 114 115 int 116 dmu_bonus_max(void) 117 { 118 return (DN_MAX_BONUSLEN); 119 } 120 121 /* 122 * returns ENOENT, EIO, or 0. 123 */ 124 int 125 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 126 { 127 dnode_t *dn; 128 int err, count; 129 dmu_buf_impl_t *db; 130 131 err = dnode_hold(os->os, object, FTAG, &dn); 132 if (err) 133 return (err); 134 135 rw_enter(&dn->dn_struct_rwlock, RW_READER); 136 if (dn->dn_bonus == NULL) { 137 rw_exit(&dn->dn_struct_rwlock); 138 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 139 if (dn->dn_bonus == NULL) 140 dn->dn_bonus = dbuf_create_bonus(dn); 141 } 142 db = dn->dn_bonus; 143 rw_exit(&dn->dn_struct_rwlock); 144 mutex_enter(&db->db_mtx); 145 count = refcount_add(&db->db_holds, tag); 146 mutex_exit(&db->db_mtx); 147 if (count == 1) 148 dnode_add_ref(dn, db); 149 dnode_rele(dn, FTAG); 150 151 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED)); 152 153 *dbp = &db->db; 154 return (0); 155 } 156 157 /* 158 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 159 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 160 * and can induce severe lock contention when writing to several files 161 * whose dnodes are in the same block. 162 */ 163 static int 164 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, 165 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 166 { 167 dmu_buf_t **dbp; 168 uint64_t blkid, nblks, i; 169 uint32_t flags; 170 int err; 171 zio_t *zio; 172 173 ASSERT(length <= DMU_MAX_ACCESS); 174 175 flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT; 176 if (length > zfetch_array_rd_sz) 177 flags |= DB_RF_NOPREFETCH; 178 179 rw_enter(&dn->dn_struct_rwlock, RW_READER); 180 if (dn->dn_datablkshift) { 181 int blkshift = dn->dn_datablkshift; 182 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 183 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 184 } else { 185 if (offset + length > dn->dn_datablksz) { 186 zfs_panic_recover("zfs: accessing past end of object " 187 "%llx/%llx (size=%u access=%llu+%llu)", 188 (longlong_t)dn->dn_objset-> 189 os_dsl_dataset->ds_object, 190 (longlong_t)dn->dn_object, dn->dn_datablksz, 191 (longlong_t)offset, (longlong_t)length); 192 return (EIO); 193 } 194 nblks = 1; 195 } 196 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 197 198 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, TRUE); 199 blkid = dbuf_whichblock(dn, offset); 200 for (i = 0; i < nblks; i++) { 201 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 202 if (db == NULL) { 203 rw_exit(&dn->dn_struct_rwlock); 204 dmu_buf_rele_array(dbp, nblks, tag); 205 zio_nowait(zio); 206 return (EIO); 207 } 208 /* initiate async i/o */ 209 if (read) { 210 rw_exit(&dn->dn_struct_rwlock); 211 (void) dbuf_read(db, zio, flags); 212 rw_enter(&dn->dn_struct_rwlock, RW_READER); 213 } 214 dbp[i] = &db->db; 215 } 216 rw_exit(&dn->dn_struct_rwlock); 217 218 /* wait for async i/o */ 219 err = zio_wait(zio); 220 if (err) { 221 dmu_buf_rele_array(dbp, nblks, tag); 222 return (err); 223 } 224 225 /* wait for other io to complete */ 226 if (read) { 227 for (i = 0; i < nblks; i++) { 228 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 229 mutex_enter(&db->db_mtx); 230 while (db->db_state == DB_READ || 231 db->db_state == DB_FILL) 232 cv_wait(&db->db_changed, &db->db_mtx); 233 if (db->db_state == DB_UNCACHED) 234 err = EIO; 235 mutex_exit(&db->db_mtx); 236 if (err) { 237 dmu_buf_rele_array(dbp, nblks, tag); 238 return (err); 239 } 240 } 241 } 242 243 *numbufsp = nblks; 244 *dbpp = dbp; 245 return (0); 246 } 247 248 static int 249 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 250 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 251 { 252 dnode_t *dn; 253 int err; 254 255 err = dnode_hold(os->os, object, FTAG, &dn); 256 if (err) 257 return (err); 258 259 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 260 numbufsp, dbpp); 261 262 dnode_rele(dn, FTAG); 263 264 return (err); 265 } 266 267 int 268 dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 269 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 270 { 271 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 272 int err; 273 274 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 275 numbufsp, dbpp); 276 277 return (err); 278 } 279 280 void 281 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 282 { 283 int i; 284 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 285 286 if (numbufs == 0) 287 return; 288 289 for (i = 0; i < numbufs; i++) { 290 if (dbp[i]) 291 dbuf_rele(dbp[i], tag); 292 } 293 294 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 295 } 296 297 void 298 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 299 { 300 dnode_t *dn; 301 uint64_t blkid; 302 int nblks, i, err; 303 304 if (zfs_prefetch_disable) 305 return; 306 307 if (len == 0) { /* they're interested in the bonus buffer */ 308 dn = os->os->os_meta_dnode; 309 310 if (object == 0 || object >= DN_MAX_OBJECT) 311 return; 312 313 rw_enter(&dn->dn_struct_rwlock, RW_READER); 314 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 315 dbuf_prefetch(dn, blkid); 316 rw_exit(&dn->dn_struct_rwlock); 317 return; 318 } 319 320 /* 321 * XXX - Note, if the dnode for the requested object is not 322 * already cached, we will do a *synchronous* read in the 323 * dnode_hold() call. The same is true for any indirects. 324 */ 325 err = dnode_hold(os->os, object, FTAG, &dn); 326 if (err != 0) 327 return; 328 329 rw_enter(&dn->dn_struct_rwlock, RW_READER); 330 if (dn->dn_datablkshift) { 331 int blkshift = dn->dn_datablkshift; 332 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) - 333 P2ALIGN(offset, 1<<blkshift)) >> blkshift; 334 } else { 335 nblks = (offset < dn->dn_datablksz); 336 } 337 338 if (nblks != 0) { 339 blkid = dbuf_whichblock(dn, offset); 340 for (i = 0; i < nblks; i++) 341 dbuf_prefetch(dn, blkid+i); 342 } 343 344 rw_exit(&dn->dn_struct_rwlock); 345 346 dnode_rele(dn, FTAG); 347 } 348 349 int 350 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 351 uint64_t size, dmu_tx_t *tx) 352 { 353 dnode_t *dn; 354 int err = dnode_hold(os->os, object, FTAG, &dn); 355 if (err) 356 return (err); 357 ASSERT(offset < UINT64_MAX); 358 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 359 dnode_free_range(dn, offset, size, tx); 360 dnode_rele(dn, FTAG); 361 return (0); 362 } 363 364 int 365 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 366 void *buf) 367 { 368 dnode_t *dn; 369 dmu_buf_t **dbp; 370 int numbufs, i, err; 371 372 err = dnode_hold(os->os, object, FTAG, &dn); 373 if (err) 374 return (err); 375 376 /* 377 * Deal with odd block sizes, where there can't be data past the first 378 * block. If we ever do the tail block optimization, we will need to 379 * handle that here as well. 380 */ 381 if (dn->dn_datablkshift == 0) { 382 int newsz = offset > dn->dn_datablksz ? 0 : 383 MIN(size, dn->dn_datablksz - offset); 384 bzero((char *)buf + newsz, size - newsz); 385 size = newsz; 386 } 387 388 while (size > 0) { 389 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 390 int err; 391 392 /* 393 * NB: we could do this block-at-a-time, but it's nice 394 * to be reading in parallel. 395 */ 396 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 397 TRUE, FTAG, &numbufs, &dbp); 398 if (err) 399 return (err); 400 401 for (i = 0; i < numbufs; i++) { 402 int tocpy; 403 int bufoff; 404 dmu_buf_t *db = dbp[i]; 405 406 ASSERT(size > 0); 407 408 bufoff = offset - db->db_offset; 409 tocpy = (int)MIN(db->db_size - bufoff, size); 410 411 bcopy((char *)db->db_data + bufoff, buf, tocpy); 412 413 offset += tocpy; 414 size -= tocpy; 415 buf = (char *)buf + tocpy; 416 } 417 dmu_buf_rele_array(dbp, numbufs, FTAG); 418 } 419 dnode_rele(dn, FTAG); 420 return (0); 421 } 422 423 void 424 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 425 const void *buf, dmu_tx_t *tx) 426 { 427 dmu_buf_t **dbp; 428 int numbufs, i; 429 430 if (size == 0) 431 return; 432 433 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 434 FALSE, FTAG, &numbufs, &dbp)); 435 436 for (i = 0; i < numbufs; i++) { 437 int tocpy; 438 int bufoff; 439 dmu_buf_t *db = dbp[i]; 440 441 ASSERT(size > 0); 442 443 bufoff = offset - db->db_offset; 444 tocpy = (int)MIN(db->db_size - bufoff, size); 445 446 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 447 448 if (tocpy == db->db_size) 449 dmu_buf_will_fill(db, tx); 450 else 451 dmu_buf_will_dirty(db, tx); 452 453 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 454 455 if (tocpy == db->db_size) 456 dmu_buf_fill_done(db, tx); 457 458 offset += tocpy; 459 size -= tocpy; 460 buf = (char *)buf + tocpy; 461 } 462 dmu_buf_rele_array(dbp, numbufs, FTAG); 463 } 464 465 #ifdef _KERNEL 466 int 467 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 468 { 469 dmu_buf_t **dbp; 470 int numbufs, i, err; 471 472 /* 473 * NB: we could do this block-at-a-time, but it's nice 474 * to be reading in parallel. 475 */ 476 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 477 &numbufs, &dbp); 478 if (err) 479 return (err); 480 481 for (i = 0; i < numbufs; i++) { 482 int tocpy; 483 int bufoff; 484 dmu_buf_t *db = dbp[i]; 485 486 ASSERT(size > 0); 487 488 bufoff = uio->uio_loffset - db->db_offset; 489 tocpy = (int)MIN(db->db_size - bufoff, size); 490 491 err = uiomove((char *)db->db_data + bufoff, tocpy, 492 UIO_READ, uio); 493 if (err) 494 break; 495 496 size -= tocpy; 497 } 498 dmu_buf_rele_array(dbp, numbufs, FTAG); 499 500 return (err); 501 } 502 503 int 504 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 505 dmu_tx_t *tx) 506 { 507 dmu_buf_t **dbp; 508 int numbufs, i; 509 int err = 0; 510 511 if (size == 0) 512 return (0); 513 514 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, 515 FALSE, FTAG, &numbufs, &dbp); 516 if (err) 517 return (err); 518 519 for (i = 0; i < numbufs; i++) { 520 int tocpy; 521 int bufoff; 522 dmu_buf_t *db = dbp[i]; 523 524 ASSERT(size > 0); 525 526 bufoff = uio->uio_loffset - db->db_offset; 527 tocpy = (int)MIN(db->db_size - bufoff, size); 528 529 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 530 531 if (tocpy == db->db_size) 532 dmu_buf_will_fill(db, tx); 533 else 534 dmu_buf_will_dirty(db, tx); 535 536 /* 537 * XXX uiomove could block forever (eg. nfs-backed 538 * pages). There needs to be a uiolockdown() function 539 * to lock the pages in memory, so that uiomove won't 540 * block. 541 */ 542 err = uiomove((char *)db->db_data + bufoff, tocpy, 543 UIO_WRITE, uio); 544 545 if (tocpy == db->db_size) 546 dmu_buf_fill_done(db, tx); 547 548 if (err) 549 break; 550 551 size -= tocpy; 552 } 553 dmu_buf_rele_array(dbp, numbufs, FTAG); 554 return (err); 555 } 556 557 int 558 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 559 page_t *pp, dmu_tx_t *tx) 560 { 561 dmu_buf_t **dbp; 562 int numbufs, i; 563 int err; 564 565 if (size == 0) 566 return (0); 567 568 err = dmu_buf_hold_array(os, object, offset, size, 569 FALSE, FTAG, &numbufs, &dbp); 570 if (err) 571 return (err); 572 573 for (i = 0; i < numbufs; i++) { 574 int tocpy, copied, thiscpy; 575 int bufoff; 576 dmu_buf_t *db = dbp[i]; 577 caddr_t va; 578 579 ASSERT(size > 0); 580 ASSERT3U(db->db_size, >=, PAGESIZE); 581 582 bufoff = offset - db->db_offset; 583 tocpy = (int)MIN(db->db_size - bufoff, size); 584 585 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 586 587 if (tocpy == db->db_size) 588 dmu_buf_will_fill(db, tx); 589 else 590 dmu_buf_will_dirty(db, tx); 591 592 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 593 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 594 thiscpy = MIN(PAGESIZE, tocpy - copied); 595 va = ppmapin(pp, PROT_READ, (caddr_t)-1); 596 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 597 ppmapout(va); 598 pp = pp->p_next; 599 bufoff += PAGESIZE; 600 } 601 602 if (tocpy == db->db_size) 603 dmu_buf_fill_done(db, tx); 604 605 if (err) 606 break; 607 608 offset += tocpy; 609 size -= tocpy; 610 } 611 dmu_buf_rele_array(dbp, numbufs, FTAG); 612 return (err); 613 } 614 #endif 615 616 typedef struct { 617 dbuf_dirty_record_t *dr; 618 dmu_sync_cb_t *done; 619 void *arg; 620 } dmu_sync_arg_t; 621 622 /* ARGSUSED */ 623 static void 624 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 625 { 626 dmu_sync_arg_t *in = varg; 627 dbuf_dirty_record_t *dr = in->dr; 628 dmu_buf_impl_t *db = dr->dr_dbuf; 629 dmu_sync_cb_t *done = in->done; 630 631 if (!BP_IS_HOLE(zio->io_bp)) { 632 zio->io_bp->blk_fill = 1; 633 BP_SET_TYPE(zio->io_bp, db->db_dnode->dn_type); 634 BP_SET_LEVEL(zio->io_bp, 0); 635 } 636 637 mutex_enter(&db->db_mtx); 638 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 639 dr->dt.dl.dr_overridden_by = *zio->io_bp; /* structure assignment */ 640 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 641 cv_broadcast(&db->db_changed); 642 mutex_exit(&db->db_mtx); 643 644 if (done) 645 done(&(db->db), in->arg); 646 647 kmem_free(in, sizeof (dmu_sync_arg_t)); 648 } 649 650 /* 651 * Intent log support: sync the block associated with db to disk. 652 * N.B. and XXX: the caller is responsible for making sure that the 653 * data isn't changing while dmu_sync() is writing it. 654 * 655 * Return values: 656 * 657 * EEXIST: this txg has already been synced, so there's nothing to to. 658 * The caller should not log the write. 659 * 660 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 661 * The caller should not log the write. 662 * 663 * EALREADY: this block is already in the process of being synced. 664 * The caller should track its progress (somehow). 665 * 666 * EINPROGRESS: the IO has been initiated. 667 * The caller should log this blkptr in the callback. 668 * 669 * 0: completed. Sets *bp to the blkptr just written. 670 * The caller should log this blkptr immediately. 671 */ 672 int 673 dmu_sync(zio_t *pio, dmu_buf_t *db_fake, 674 blkptr_t *bp, uint64_t txg, dmu_sync_cb_t *done, void *arg) 675 { 676 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 677 objset_impl_t *os = db->db_objset; 678 dsl_pool_t *dp = os->os_dsl_dataset->ds_dir->dd_pool; 679 tx_state_t *tx = &dp->dp_tx; 680 dbuf_dirty_record_t *dr; 681 dmu_sync_arg_t *in; 682 zbookmark_t zb; 683 zio_t *zio; 684 int zio_flags; 685 int err; 686 687 ASSERT(BP_IS_HOLE(bp)); 688 ASSERT(txg != 0); 689 690 691 dprintf("dmu_sync txg=%llu, s,o,q %llu %llu %llu\n", 692 txg, tx->tx_synced_txg, tx->tx_open_txg, tx->tx_quiesced_txg); 693 694 /* 695 * XXX - would be nice if we could do this without suspending... 696 */ 697 txg_suspend(dp); 698 699 /* 700 * If this txg already synced, there's nothing to do. 701 */ 702 if (txg <= tx->tx_synced_txg) { 703 txg_resume(dp); 704 /* 705 * If we're running ziltest, we need the blkptr regardless. 706 */ 707 if (txg > spa_freeze_txg(dp->dp_spa)) { 708 /* if db_blkptr == NULL, this was an empty write */ 709 if (db->db_blkptr) 710 *bp = *db->db_blkptr; /* structure assignment */ 711 return (0); 712 } 713 return (EEXIST); 714 } 715 716 mutex_enter(&db->db_mtx); 717 718 if (txg == tx->tx_syncing_txg) { 719 while (db->db_data_pending) { 720 /* 721 * IO is in-progress. Wait for it to finish. 722 * XXX - would be nice to be able to somehow "attach" 723 * this zio to the parent zio passed in. 724 */ 725 cv_wait(&db->db_changed, &db->db_mtx); 726 if (!db->db_data_pending && 727 db->db_blkptr && BP_IS_HOLE(db->db_blkptr)) { 728 /* 729 * IO was compressed away 730 */ 731 *bp = *db->db_blkptr; /* structure assignment */ 732 mutex_exit(&db->db_mtx); 733 txg_resume(dp); 734 return (0); 735 } 736 ASSERT(db->db_data_pending || 737 (db->db_blkptr && db->db_blkptr->blk_birth == txg)); 738 } 739 740 if (db->db_blkptr && db->db_blkptr->blk_birth == txg) { 741 /* 742 * IO is already completed. 743 */ 744 *bp = *db->db_blkptr; /* structure assignment */ 745 mutex_exit(&db->db_mtx); 746 txg_resume(dp); 747 return (0); 748 } 749 } 750 751 dr = db->db_last_dirty; 752 while (dr && dr->dr_txg > txg) 753 dr = dr->dr_next; 754 if (dr == NULL || dr->dr_txg < txg) { 755 /* 756 * This dbuf isn't dirty, must have been free_range'd. 757 * There's no need to log writes to freed blocks, so we're done. 758 */ 759 mutex_exit(&db->db_mtx); 760 txg_resume(dp); 761 return (ENOENT); 762 } 763 764 ASSERT(dr->dr_txg == txg); 765 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 766 /* 767 * We have already issued a sync write for this buffer. 768 */ 769 mutex_exit(&db->db_mtx); 770 txg_resume(dp); 771 return (EALREADY); 772 } else if (dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 773 /* 774 * This buffer has already been synced. It could not 775 * have been dirtied since, or we would have cleared the state. 776 */ 777 *bp = dr->dt.dl.dr_overridden_by; /* structure assignment */ 778 mutex_exit(&db->db_mtx); 779 txg_resume(dp); 780 return (0); 781 } 782 783 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 784 in = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 785 in->dr = dr; 786 in->done = done; 787 in->arg = arg; 788 mutex_exit(&db->db_mtx); 789 txg_resume(dp); 790 791 zb.zb_objset = os->os_dsl_dataset->ds_object; 792 zb.zb_object = db->db.db_object; 793 zb.zb_level = db->db_level; 794 zb.zb_blkid = db->db_blkid; 795 zio_flags = ZIO_FLAG_MUSTSUCCEED; 796 if (dmu_ot[db->db_dnode->dn_type].ot_metadata || zb.zb_level != 0) 797 zio_flags |= ZIO_FLAG_METADATA; 798 zio = arc_write(pio, os->os_spa, 799 zio_checksum_select(db->db_dnode->dn_checksum, os->os_checksum), 800 zio_compress_select(db->db_dnode->dn_compress, os->os_compress), 801 dmu_get_replication_level(os, &zb, db->db_dnode->dn_type), 802 txg, bp, dr->dt.dl.dr_data, NULL, dmu_sync_done, in, 803 ZIO_PRIORITY_SYNC_WRITE, zio_flags, &zb); 804 805 if (pio) { 806 zio_nowait(zio); 807 err = EINPROGRESS; 808 } else { 809 err = zio_wait(zio); 810 ASSERT(err == 0); 811 } 812 return (err); 813 } 814 815 int 816 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 817 dmu_tx_t *tx) 818 { 819 dnode_t *dn; 820 int err; 821 822 err = dnode_hold(os->os, object, FTAG, &dn); 823 if (err) 824 return (err); 825 err = dnode_set_blksz(dn, size, ibs, tx); 826 dnode_rele(dn, FTAG); 827 return (err); 828 } 829 830 void 831 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 832 dmu_tx_t *tx) 833 { 834 dnode_t *dn; 835 836 /* XXX assumes dnode_hold will not get an i/o error */ 837 (void) dnode_hold(os->os, object, FTAG, &dn); 838 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 839 dn->dn_checksum = checksum; 840 dnode_setdirty(dn, tx); 841 dnode_rele(dn, FTAG); 842 } 843 844 void 845 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 846 dmu_tx_t *tx) 847 { 848 dnode_t *dn; 849 850 /* XXX assumes dnode_hold will not get an i/o error */ 851 (void) dnode_hold(os->os, object, FTAG, &dn); 852 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 853 dn->dn_compress = compress; 854 dnode_setdirty(dn, tx); 855 dnode_rele(dn, FTAG); 856 } 857 858 int 859 dmu_get_replication_level(objset_impl_t *os, 860 zbookmark_t *zb, dmu_object_type_t ot) 861 { 862 int ncopies = os->os_copies; 863 864 /* If it's the mos, it should have max copies set. */ 865 ASSERT(zb->zb_objset != 0 || 866 ncopies == spa_max_replication(os->os_spa)); 867 868 if (dmu_ot[ot].ot_metadata || zb->zb_level != 0) 869 ncopies++; 870 return (MIN(ncopies, spa_max_replication(os->os_spa))); 871 } 872 873 int 874 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 875 { 876 dnode_t *dn; 877 int i, err; 878 879 err = dnode_hold(os->os, object, FTAG, &dn); 880 if (err) 881 return (err); 882 /* 883 * Sync any current changes before 884 * we go trundling through the block pointers. 885 */ 886 for (i = 0; i < TXG_SIZE; i++) { 887 if (list_link_active(&dn->dn_dirty_link[i])) 888 break; 889 } 890 if (i != TXG_SIZE) { 891 dnode_rele(dn, FTAG); 892 txg_wait_synced(dmu_objset_pool(os), 0); 893 err = dnode_hold(os->os, object, FTAG, &dn); 894 if (err) 895 return (err); 896 } 897 898 err = dnode_next_offset(dn, hole, off, 1, 1, 0); 899 dnode_rele(dn, FTAG); 900 901 return (err); 902 } 903 904 void 905 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 906 { 907 rw_enter(&dn->dn_struct_rwlock, RW_READER); 908 mutex_enter(&dn->dn_mtx); 909 910 doi->doi_data_block_size = dn->dn_datablksz; 911 doi->doi_metadata_block_size = dn->dn_indblkshift ? 912 1ULL << dn->dn_indblkshift : 0; 913 doi->doi_indirection = dn->dn_nlevels; 914 doi->doi_checksum = dn->dn_checksum; 915 doi->doi_compress = dn->dn_compress; 916 doi->doi_physical_blks = (DN_USED_BYTES(dn->dn_phys) + 917 SPA_MINBLOCKSIZE/2) >> SPA_MINBLOCKSHIFT; 918 doi->doi_max_block_offset = dn->dn_phys->dn_maxblkid; 919 doi->doi_type = dn->dn_type; 920 doi->doi_bonus_size = dn->dn_bonuslen; 921 doi->doi_bonus_type = dn->dn_bonustype; 922 923 mutex_exit(&dn->dn_mtx); 924 rw_exit(&dn->dn_struct_rwlock); 925 } 926 927 /* 928 * Get information on a DMU object. 929 * If doi is NULL, just indicates whether the object exists. 930 */ 931 int 932 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 933 { 934 dnode_t *dn; 935 int err = dnode_hold(os->os, object, FTAG, &dn); 936 937 if (err) 938 return (err); 939 940 if (doi != NULL) 941 dmu_object_info_from_dnode(dn, doi); 942 943 dnode_rele(dn, FTAG); 944 return (0); 945 } 946 947 /* 948 * As above, but faster; can be used when you have a held dbuf in hand. 949 */ 950 void 951 dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi) 952 { 953 dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi); 954 } 955 956 /* 957 * Faster still when you only care about the size. 958 * This is specifically optimized for zfs_getattr(). 959 */ 960 void 961 dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512) 962 { 963 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 964 965 *blksize = dn->dn_datablksz; 966 /* add 1 for dnode space */ 967 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 968 SPA_MINBLOCKSHIFT) + 1; 969 } 970 971 void 972 byteswap_uint64_array(void *vbuf, size_t size) 973 { 974 uint64_t *buf = vbuf; 975 size_t count = size >> 3; 976 int i; 977 978 ASSERT((size & 7) == 0); 979 980 for (i = 0; i < count; i++) 981 buf[i] = BSWAP_64(buf[i]); 982 } 983 984 void 985 byteswap_uint32_array(void *vbuf, size_t size) 986 { 987 uint32_t *buf = vbuf; 988 size_t count = size >> 2; 989 int i; 990 991 ASSERT((size & 3) == 0); 992 993 for (i = 0; i < count; i++) 994 buf[i] = BSWAP_32(buf[i]); 995 } 996 997 void 998 byteswap_uint16_array(void *vbuf, size_t size) 999 { 1000 uint16_t *buf = vbuf; 1001 size_t count = size >> 1; 1002 int i; 1003 1004 ASSERT((size & 1) == 0); 1005 1006 for (i = 0; i < count; i++) 1007 buf[i] = BSWAP_16(buf[i]); 1008 } 1009 1010 /* ARGSUSED */ 1011 void 1012 byteswap_uint8_array(void *vbuf, size_t size) 1013 { 1014 } 1015 1016 void 1017 dmu_init(void) 1018 { 1019 dbuf_init(); 1020 dnode_init(); 1021 arc_init(); 1022 } 1023 1024 void 1025 dmu_fini(void) 1026 { 1027 arc_fini(); 1028 dnode_fini(); 1029 dbuf_fini(); 1030 } 1031