1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 /* Copyright 2016 Nexenta Systems, Inc. All rights reserved. */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/zfs_ioctl.h> 44 #include <sys/zap.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/zio_compress.h> 47 #include <sys/sa.h> 48 #include <sys/zfeature.h> 49 #include <sys/abd.h> 50 #ifdef _KERNEL 51 #include <sys/vmsystm.h> 52 #include <sys/zfs_znode.h> 53 #endif 54 55 /* 56 * Enable/disable nopwrite feature. 57 */ 58 int zfs_nopwrite_enabled = 1; 59 60 /* 61 * Tunable to control percentage of dirtied blocks from frees in one TXG. 62 * After this threshold is crossed, additional dirty blocks from frees 63 * wait until the next TXG. 64 * A value of zero will disable this throttle. 65 */ 66 uint32_t zfs_per_txg_dirty_frees_percent = 30; 67 68 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 69 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 70 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 71 { DMU_BSWAP_UINT64, TRUE, "object array" }, 72 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 73 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 74 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 75 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 76 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 77 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 78 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 79 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 80 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 81 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 82 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 83 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 84 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 85 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 86 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 87 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 88 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 89 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 90 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 91 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 92 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 93 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 94 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 95 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 96 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 97 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 98 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 99 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 100 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 101 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 102 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 103 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 104 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 105 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 106 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 107 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 108 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 109 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 110 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 111 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 112 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 113 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 114 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 115 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 116 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 117 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 118 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 119 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 120 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 121 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 122 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 123 }; 124 125 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 126 { byteswap_uint8_array, "uint8" }, 127 { byteswap_uint16_array, "uint16" }, 128 { byteswap_uint32_array, "uint32" }, 129 { byteswap_uint64_array, "uint64" }, 130 { zap_byteswap, "zap" }, 131 { dnode_buf_byteswap, "dnode" }, 132 { dmu_objset_byteswap, "objset" }, 133 { zfs_znode_byteswap, "znode" }, 134 { zfs_oldacl_byteswap, "oldacl" }, 135 { zfs_acl_byteswap, "acl" } 136 }; 137 138 int 139 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 140 void *tag, dmu_buf_t **dbp) 141 { 142 uint64_t blkid; 143 dmu_buf_impl_t *db; 144 145 blkid = dbuf_whichblock(dn, 0, offset); 146 rw_enter(&dn->dn_struct_rwlock, RW_READER); 147 db = dbuf_hold(dn, blkid, tag); 148 rw_exit(&dn->dn_struct_rwlock); 149 150 if (db == NULL) { 151 *dbp = NULL; 152 return (SET_ERROR(EIO)); 153 } 154 155 *dbp = &db->db; 156 return (0); 157 } 158 int 159 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 160 void *tag, dmu_buf_t **dbp) 161 { 162 dnode_t *dn; 163 uint64_t blkid; 164 dmu_buf_impl_t *db; 165 int err; 166 167 err = dnode_hold(os, object, FTAG, &dn); 168 if (err) 169 return (err); 170 blkid = dbuf_whichblock(dn, 0, offset); 171 rw_enter(&dn->dn_struct_rwlock, RW_READER); 172 db = dbuf_hold(dn, blkid, tag); 173 rw_exit(&dn->dn_struct_rwlock); 174 dnode_rele(dn, FTAG); 175 176 if (db == NULL) { 177 *dbp = NULL; 178 return (SET_ERROR(EIO)); 179 } 180 181 *dbp = &db->db; 182 return (err); 183 } 184 185 int 186 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 187 void *tag, dmu_buf_t **dbp, int flags) 188 { 189 int err; 190 int db_flags = DB_RF_CANFAIL; 191 192 if (flags & DMU_READ_NO_PREFETCH) 193 db_flags |= DB_RF_NOPREFETCH; 194 195 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 196 if (err == 0) { 197 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 198 err = dbuf_read(db, NULL, db_flags); 199 if (err != 0) { 200 dbuf_rele(db, tag); 201 *dbp = NULL; 202 } 203 } 204 205 return (err); 206 } 207 208 int 209 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 210 void *tag, dmu_buf_t **dbp, int flags) 211 { 212 int err; 213 int db_flags = DB_RF_CANFAIL; 214 215 if (flags & DMU_READ_NO_PREFETCH) 216 db_flags |= DB_RF_NOPREFETCH; 217 218 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 219 if (err == 0) { 220 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 221 err = dbuf_read(db, NULL, db_flags); 222 if (err != 0) { 223 dbuf_rele(db, tag); 224 *dbp = NULL; 225 } 226 } 227 228 return (err); 229 } 230 231 int 232 dmu_bonus_max(void) 233 { 234 return (DN_MAX_BONUSLEN); 235 } 236 237 int 238 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 239 { 240 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 241 dnode_t *dn; 242 int error; 243 244 DB_DNODE_ENTER(db); 245 dn = DB_DNODE(db); 246 247 if (dn->dn_bonus != db) { 248 error = SET_ERROR(EINVAL); 249 } else if (newsize < 0 || newsize > db_fake->db_size) { 250 error = SET_ERROR(EINVAL); 251 } else { 252 dnode_setbonuslen(dn, newsize, tx); 253 error = 0; 254 } 255 256 DB_DNODE_EXIT(db); 257 return (error); 258 } 259 260 int 261 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 262 { 263 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 264 dnode_t *dn; 265 int error; 266 267 DB_DNODE_ENTER(db); 268 dn = DB_DNODE(db); 269 270 if (!DMU_OT_IS_VALID(type)) { 271 error = SET_ERROR(EINVAL); 272 } else if (dn->dn_bonus != db) { 273 error = SET_ERROR(EINVAL); 274 } else { 275 dnode_setbonus_type(dn, type, tx); 276 error = 0; 277 } 278 279 DB_DNODE_EXIT(db); 280 return (error); 281 } 282 283 dmu_object_type_t 284 dmu_get_bonustype(dmu_buf_t *db_fake) 285 { 286 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 287 dnode_t *dn; 288 dmu_object_type_t type; 289 290 DB_DNODE_ENTER(db); 291 dn = DB_DNODE(db); 292 type = dn->dn_bonustype; 293 DB_DNODE_EXIT(db); 294 295 return (type); 296 } 297 298 int 299 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 300 { 301 dnode_t *dn; 302 int error; 303 304 error = dnode_hold(os, object, FTAG, &dn); 305 dbuf_rm_spill(dn, tx); 306 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 307 dnode_rm_spill(dn, tx); 308 rw_exit(&dn->dn_struct_rwlock); 309 dnode_rele(dn, FTAG); 310 return (error); 311 } 312 313 /* 314 * returns ENOENT, EIO, or 0. 315 */ 316 int 317 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 318 { 319 dnode_t *dn; 320 dmu_buf_impl_t *db; 321 int error; 322 323 error = dnode_hold(os, object, FTAG, &dn); 324 if (error) 325 return (error); 326 327 rw_enter(&dn->dn_struct_rwlock, RW_READER); 328 if (dn->dn_bonus == NULL) { 329 rw_exit(&dn->dn_struct_rwlock); 330 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 331 if (dn->dn_bonus == NULL) 332 dbuf_create_bonus(dn); 333 } 334 db = dn->dn_bonus; 335 336 /* as long as the bonus buf is held, the dnode will be held */ 337 if (refcount_add(&db->db_holds, tag) == 1) { 338 VERIFY(dnode_add_ref(dn, db)); 339 atomic_inc_32(&dn->dn_dbufs_count); 340 } 341 342 /* 343 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 344 * hold and incrementing the dbuf count to ensure that dnode_move() sees 345 * a dnode hold for every dbuf. 346 */ 347 rw_exit(&dn->dn_struct_rwlock); 348 349 dnode_rele(dn, FTAG); 350 351 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 352 353 *dbp = &db->db; 354 return (0); 355 } 356 357 /* 358 * returns ENOENT, EIO, or 0. 359 * 360 * This interface will allocate a blank spill dbuf when a spill blk 361 * doesn't already exist on the dnode. 362 * 363 * if you only want to find an already existing spill db, then 364 * dmu_spill_hold_existing() should be used. 365 */ 366 int 367 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 368 { 369 dmu_buf_impl_t *db = NULL; 370 int err; 371 372 if ((flags & DB_RF_HAVESTRUCT) == 0) 373 rw_enter(&dn->dn_struct_rwlock, RW_READER); 374 375 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 376 377 if ((flags & DB_RF_HAVESTRUCT) == 0) 378 rw_exit(&dn->dn_struct_rwlock); 379 380 ASSERT(db != NULL); 381 err = dbuf_read(db, NULL, flags); 382 if (err == 0) 383 *dbp = &db->db; 384 else 385 dbuf_rele(db, tag); 386 return (err); 387 } 388 389 int 390 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 391 { 392 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 393 dnode_t *dn; 394 int err; 395 396 DB_DNODE_ENTER(db); 397 dn = DB_DNODE(db); 398 399 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 400 err = SET_ERROR(EINVAL); 401 } else { 402 rw_enter(&dn->dn_struct_rwlock, RW_READER); 403 404 if (!dn->dn_have_spill) { 405 err = SET_ERROR(ENOENT); 406 } else { 407 err = dmu_spill_hold_by_dnode(dn, 408 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 409 } 410 411 rw_exit(&dn->dn_struct_rwlock); 412 } 413 414 DB_DNODE_EXIT(db); 415 return (err); 416 } 417 418 int 419 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 420 { 421 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 422 dnode_t *dn; 423 int err; 424 425 DB_DNODE_ENTER(db); 426 dn = DB_DNODE(db); 427 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 428 DB_DNODE_EXIT(db); 429 430 return (err); 431 } 432 433 /* 434 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 435 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 436 * and can induce severe lock contention when writing to several files 437 * whose dnodes are in the same block. 438 */ 439 static int 440 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 441 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 442 { 443 dmu_buf_t **dbp; 444 uint64_t blkid, nblks, i; 445 uint32_t dbuf_flags; 446 int err; 447 zio_t *zio; 448 449 ASSERT(length <= DMU_MAX_ACCESS); 450 451 /* 452 * Note: We directly notify the prefetch code of this read, so that 453 * we can tell it about the multi-block read. dbuf_read() only knows 454 * about the one block it is accessing. 455 */ 456 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 457 DB_RF_NOPREFETCH; 458 459 rw_enter(&dn->dn_struct_rwlock, RW_READER); 460 if (dn->dn_datablkshift) { 461 int blkshift = dn->dn_datablkshift; 462 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 463 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 464 } else { 465 if (offset + length > dn->dn_datablksz) { 466 zfs_panic_recover("zfs: accessing past end of object " 467 "%llx/%llx (size=%u access=%llu+%llu)", 468 (longlong_t)dn->dn_objset-> 469 os_dsl_dataset->ds_object, 470 (longlong_t)dn->dn_object, dn->dn_datablksz, 471 (longlong_t)offset, (longlong_t)length); 472 rw_exit(&dn->dn_struct_rwlock); 473 return (SET_ERROR(EIO)); 474 } 475 nblks = 1; 476 } 477 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 478 479 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 480 blkid = dbuf_whichblock(dn, 0, offset); 481 for (i = 0; i < nblks; i++) { 482 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 483 if (db == NULL) { 484 rw_exit(&dn->dn_struct_rwlock); 485 dmu_buf_rele_array(dbp, nblks, tag); 486 zio_nowait(zio); 487 return (SET_ERROR(EIO)); 488 } 489 490 /* initiate async i/o */ 491 if (read) 492 (void) dbuf_read(db, zio, dbuf_flags); 493 dbp[i] = &db->db; 494 } 495 496 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 497 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 498 dmu_zfetch(&dn->dn_zfetch, blkid, nblks, 499 read && DNODE_IS_CACHEABLE(dn)); 500 } 501 rw_exit(&dn->dn_struct_rwlock); 502 503 /* wait for async i/o */ 504 err = zio_wait(zio); 505 if (err) { 506 dmu_buf_rele_array(dbp, nblks, tag); 507 return (err); 508 } 509 510 /* wait for other io to complete */ 511 if (read) { 512 for (i = 0; i < nblks; i++) { 513 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 514 mutex_enter(&db->db_mtx); 515 while (db->db_state == DB_READ || 516 db->db_state == DB_FILL) 517 cv_wait(&db->db_changed, &db->db_mtx); 518 if (db->db_state == DB_UNCACHED) 519 err = SET_ERROR(EIO); 520 mutex_exit(&db->db_mtx); 521 if (err) { 522 dmu_buf_rele_array(dbp, nblks, tag); 523 return (err); 524 } 525 } 526 } 527 528 *numbufsp = nblks; 529 *dbpp = dbp; 530 return (0); 531 } 532 533 static int 534 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 535 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 536 { 537 dnode_t *dn; 538 int err; 539 540 err = dnode_hold(os, object, FTAG, &dn); 541 if (err) 542 return (err); 543 544 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 545 numbufsp, dbpp, DMU_READ_PREFETCH); 546 547 dnode_rele(dn, FTAG); 548 549 return (err); 550 } 551 552 int 553 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 554 uint64_t length, boolean_t read, void *tag, int *numbufsp, 555 dmu_buf_t ***dbpp) 556 { 557 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 558 dnode_t *dn; 559 int err; 560 561 DB_DNODE_ENTER(db); 562 dn = DB_DNODE(db); 563 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 564 numbufsp, dbpp, DMU_READ_PREFETCH); 565 DB_DNODE_EXIT(db); 566 567 return (err); 568 } 569 570 void 571 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 572 { 573 int i; 574 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 575 576 if (numbufs == 0) 577 return; 578 579 for (i = 0; i < numbufs; i++) { 580 if (dbp[i]) 581 dbuf_rele(dbp[i], tag); 582 } 583 584 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 585 } 586 587 /* 588 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 589 * indirect blocks prefeteched will be those that point to the blocks containing 590 * the data starting at offset, and continuing to offset + len. 591 * 592 * Note that if the indirect blocks above the blocks being prefetched are not in 593 * cache, they will be asychronously read in. 594 */ 595 void 596 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 597 uint64_t len, zio_priority_t pri) 598 { 599 dnode_t *dn; 600 uint64_t blkid; 601 int nblks, err; 602 603 if (len == 0) { /* they're interested in the bonus buffer */ 604 dn = DMU_META_DNODE(os); 605 606 if (object == 0 || object >= DN_MAX_OBJECT) 607 return; 608 609 rw_enter(&dn->dn_struct_rwlock, RW_READER); 610 blkid = dbuf_whichblock(dn, level, 611 object * sizeof (dnode_phys_t)); 612 dbuf_prefetch(dn, level, blkid, pri, 0); 613 rw_exit(&dn->dn_struct_rwlock); 614 return; 615 } 616 617 /* 618 * XXX - Note, if the dnode for the requested object is not 619 * already cached, we will do a *synchronous* read in the 620 * dnode_hold() call. The same is true for any indirects. 621 */ 622 err = dnode_hold(os, object, FTAG, &dn); 623 if (err != 0) 624 return; 625 626 rw_enter(&dn->dn_struct_rwlock, RW_READER); 627 /* 628 * offset + len - 1 is the last byte we want to prefetch for, and offset 629 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 630 * last block we want to prefetch, and dbuf_whichblock(dn, level, 631 * offset) is the first. Then the number we need to prefetch is the 632 * last - first + 1. 633 */ 634 if (level > 0 || dn->dn_datablkshift != 0) { 635 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 636 dbuf_whichblock(dn, level, offset) + 1; 637 } else { 638 nblks = (offset < dn->dn_datablksz); 639 } 640 641 if (nblks != 0) { 642 blkid = dbuf_whichblock(dn, level, offset); 643 for (int i = 0; i < nblks; i++) 644 dbuf_prefetch(dn, level, blkid + i, pri, 0); 645 } 646 647 rw_exit(&dn->dn_struct_rwlock); 648 649 dnode_rele(dn, FTAG); 650 } 651 652 /* 653 * Get the next "chunk" of file data to free. We traverse the file from 654 * the end so that the file gets shorter over time (if we crashes in the 655 * middle, this will leave us in a better state). We find allocated file 656 * data by simply searching the allocated level 1 indirects. 657 * 658 * On input, *start should be the first offset that does not need to be 659 * freed (e.g. "offset + length"). On return, *start will be the first 660 * offset that should be freed. 661 */ 662 static int 663 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 664 { 665 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 666 /* bytes of data covered by a level-1 indirect block */ 667 uint64_t iblkrange = 668 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 669 670 ASSERT3U(minimum, <=, *start); 671 672 if (*start - minimum <= iblkrange * maxblks) { 673 *start = minimum; 674 return (0); 675 } 676 ASSERT(ISP2(iblkrange)); 677 678 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 679 int err; 680 681 /* 682 * dnode_next_offset(BACKWARDS) will find an allocated L1 683 * indirect block at or before the input offset. We must 684 * decrement *start so that it is at the end of the region 685 * to search. 686 */ 687 (*start)--; 688 err = dnode_next_offset(dn, 689 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 690 691 /* if there are no indirect blocks before start, we are done */ 692 if (err == ESRCH) { 693 *start = minimum; 694 break; 695 } else if (err != 0) { 696 return (err); 697 } 698 699 /* set start to the beginning of this L1 indirect */ 700 *start = P2ALIGN(*start, iblkrange); 701 } 702 if (*start < minimum) 703 *start = minimum; 704 return (0); 705 } 706 707 /* 708 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 709 * otherwise return false. 710 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 711 */ 712 /*ARGSUSED*/ 713 static boolean_t 714 dmu_objset_zfs_unmounting(objset_t *os) 715 { 716 #ifdef _KERNEL 717 if (dmu_objset_type(os) == DMU_OST_ZFS) 718 return (zfs_get_vfs_flag_unmounted(os)); 719 #endif 720 return (B_FALSE); 721 } 722 723 static int 724 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 725 uint64_t length) 726 { 727 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 728 int err; 729 uint64_t dirty_frees_threshold; 730 dsl_pool_t *dp = dmu_objset_pool(os); 731 732 if (offset >= object_size) 733 return (0); 734 735 if (zfs_per_txg_dirty_frees_percent <= 100) 736 dirty_frees_threshold = 737 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 738 else 739 dirty_frees_threshold = zfs_dirty_data_max / 4; 740 741 if (length == DMU_OBJECT_END || offset + length > object_size) 742 length = object_size - offset; 743 744 while (length != 0) { 745 uint64_t chunk_end, chunk_begin, chunk_len; 746 uint64_t long_free_dirty_all_txgs = 0; 747 dmu_tx_t *tx; 748 749 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 750 return (SET_ERROR(EINTR)); 751 752 chunk_end = chunk_begin = offset + length; 753 754 /* move chunk_begin backwards to the beginning of this chunk */ 755 err = get_next_chunk(dn, &chunk_begin, offset); 756 if (err) 757 return (err); 758 ASSERT3U(chunk_begin, >=, offset); 759 ASSERT3U(chunk_begin, <=, chunk_end); 760 761 chunk_len = chunk_end - chunk_begin; 762 763 mutex_enter(&dp->dp_lock); 764 for (int t = 0; t < TXG_SIZE; t++) { 765 long_free_dirty_all_txgs += 766 dp->dp_long_free_dirty_pertxg[t]; 767 } 768 mutex_exit(&dp->dp_lock); 769 770 /* 771 * To avoid filling up a TXG with just frees wait for 772 * the next TXG to open before freeing more chunks if 773 * we have reached the threshold of frees 774 */ 775 if (dirty_frees_threshold != 0 && 776 long_free_dirty_all_txgs >= dirty_frees_threshold) { 777 txg_wait_open(dp, 0); 778 continue; 779 } 780 781 tx = dmu_tx_create(os); 782 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 783 784 /* 785 * Mark this transaction as typically resulting in a net 786 * reduction in space used. 787 */ 788 dmu_tx_mark_netfree(tx); 789 err = dmu_tx_assign(tx, TXG_WAIT); 790 if (err) { 791 dmu_tx_abort(tx); 792 return (err); 793 } 794 795 mutex_enter(&dp->dp_lock); 796 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] += 797 chunk_len; 798 mutex_exit(&dp->dp_lock); 799 DTRACE_PROBE3(free__long__range, 800 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len, 801 uint64_t, dmu_tx_get_txg(tx)); 802 dnode_free_range(dn, chunk_begin, chunk_len, tx); 803 dmu_tx_commit(tx); 804 805 length -= chunk_len; 806 } 807 return (0); 808 } 809 810 int 811 dmu_free_long_range(objset_t *os, uint64_t object, 812 uint64_t offset, uint64_t length) 813 { 814 dnode_t *dn; 815 int err; 816 817 err = dnode_hold(os, object, FTAG, &dn); 818 if (err != 0) 819 return (err); 820 err = dmu_free_long_range_impl(os, dn, offset, length); 821 822 /* 823 * It is important to zero out the maxblkid when freeing the entire 824 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 825 * will take the fast path, and (b) dnode_reallocate() can verify 826 * that the entire file has been freed. 827 */ 828 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 829 dn->dn_maxblkid = 0; 830 831 dnode_rele(dn, FTAG); 832 return (err); 833 } 834 835 int 836 dmu_free_long_object(objset_t *os, uint64_t object) 837 { 838 dmu_tx_t *tx; 839 int err; 840 841 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 842 if (err != 0) 843 return (err); 844 845 tx = dmu_tx_create(os); 846 dmu_tx_hold_bonus(tx, object); 847 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 848 dmu_tx_mark_netfree(tx); 849 err = dmu_tx_assign(tx, TXG_WAIT); 850 if (err == 0) { 851 err = dmu_object_free(os, object, tx); 852 dmu_tx_commit(tx); 853 } else { 854 dmu_tx_abort(tx); 855 } 856 857 return (err); 858 } 859 860 int 861 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 862 uint64_t size, dmu_tx_t *tx) 863 { 864 dnode_t *dn; 865 int err = dnode_hold(os, object, FTAG, &dn); 866 if (err) 867 return (err); 868 ASSERT(offset < UINT64_MAX); 869 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 870 dnode_free_range(dn, offset, size, tx); 871 dnode_rele(dn, FTAG); 872 return (0); 873 } 874 875 static int 876 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 877 void *buf, uint32_t flags) 878 { 879 dmu_buf_t **dbp; 880 int numbufs, err = 0; 881 882 /* 883 * Deal with odd block sizes, where there can't be data past the first 884 * block. If we ever do the tail block optimization, we will need to 885 * handle that here as well. 886 */ 887 if (dn->dn_maxblkid == 0) { 888 int newsz = offset > dn->dn_datablksz ? 0 : 889 MIN(size, dn->dn_datablksz - offset); 890 bzero((char *)buf + newsz, size - newsz); 891 size = newsz; 892 } 893 894 while (size > 0) { 895 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 896 int i; 897 898 /* 899 * NB: we could do this block-at-a-time, but it's nice 900 * to be reading in parallel. 901 */ 902 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 903 TRUE, FTAG, &numbufs, &dbp, flags); 904 if (err) 905 break; 906 907 for (i = 0; i < numbufs; i++) { 908 int tocpy; 909 int bufoff; 910 dmu_buf_t *db = dbp[i]; 911 912 ASSERT(size > 0); 913 914 bufoff = offset - db->db_offset; 915 tocpy = (int)MIN(db->db_size - bufoff, size); 916 917 bcopy((char *)db->db_data + bufoff, buf, tocpy); 918 919 offset += tocpy; 920 size -= tocpy; 921 buf = (char *)buf + tocpy; 922 } 923 dmu_buf_rele_array(dbp, numbufs, FTAG); 924 } 925 return (err); 926 } 927 928 int 929 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 930 void *buf, uint32_t flags) 931 { 932 dnode_t *dn; 933 int err; 934 935 err = dnode_hold(os, object, FTAG, &dn); 936 if (err != 0) 937 return (err); 938 939 err = dmu_read_impl(dn, offset, size, buf, flags); 940 dnode_rele(dn, FTAG); 941 return (err); 942 } 943 944 int 945 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 946 uint32_t flags) 947 { 948 return (dmu_read_impl(dn, offset, size, buf, flags)); 949 } 950 951 static void 952 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 953 const void *buf, dmu_tx_t *tx) 954 { 955 int i; 956 957 for (i = 0; i < numbufs; i++) { 958 int tocpy; 959 int bufoff; 960 dmu_buf_t *db = dbp[i]; 961 962 ASSERT(size > 0); 963 964 bufoff = offset - db->db_offset; 965 tocpy = (int)MIN(db->db_size - bufoff, size); 966 967 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 968 969 if (tocpy == db->db_size) 970 dmu_buf_will_fill(db, tx); 971 else 972 dmu_buf_will_dirty(db, tx); 973 974 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 975 976 if (tocpy == db->db_size) 977 dmu_buf_fill_done(db, tx); 978 979 offset += tocpy; 980 size -= tocpy; 981 buf = (char *)buf + tocpy; 982 } 983 } 984 985 void 986 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 987 const void *buf, dmu_tx_t *tx) 988 { 989 dmu_buf_t **dbp; 990 int numbufs; 991 992 if (size == 0) 993 return; 994 995 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 996 FALSE, FTAG, &numbufs, &dbp)); 997 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 998 dmu_buf_rele_array(dbp, numbufs, FTAG); 999 } 1000 1001 void 1002 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1003 const void *buf, dmu_tx_t *tx) 1004 { 1005 dmu_buf_t **dbp; 1006 int numbufs; 1007 1008 if (size == 0) 1009 return; 1010 1011 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1012 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1013 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1014 dmu_buf_rele_array(dbp, numbufs, FTAG); 1015 } 1016 1017 void 1018 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1019 dmu_tx_t *tx) 1020 { 1021 dmu_buf_t **dbp; 1022 int numbufs, i; 1023 1024 if (size == 0) 1025 return; 1026 1027 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1028 FALSE, FTAG, &numbufs, &dbp)); 1029 1030 for (i = 0; i < numbufs; i++) { 1031 dmu_buf_t *db = dbp[i]; 1032 1033 dmu_buf_will_not_fill(db, tx); 1034 } 1035 dmu_buf_rele_array(dbp, numbufs, FTAG); 1036 } 1037 1038 void 1039 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1040 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1041 int compressed_size, int byteorder, dmu_tx_t *tx) 1042 { 1043 dmu_buf_t *db; 1044 1045 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1046 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1047 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1048 FTAG, &db)); 1049 1050 dmu_buf_write_embedded(db, 1051 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1052 uncompressed_size, compressed_size, byteorder, tx); 1053 1054 dmu_buf_rele(db, FTAG); 1055 } 1056 1057 /* 1058 * DMU support for xuio 1059 */ 1060 kstat_t *xuio_ksp = NULL; 1061 1062 int 1063 dmu_xuio_init(xuio_t *xuio, int nblk) 1064 { 1065 dmu_xuio_t *priv; 1066 uio_t *uio = &xuio->xu_uio; 1067 1068 uio->uio_iovcnt = nblk; 1069 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 1070 1071 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 1072 priv->cnt = nblk; 1073 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 1074 priv->iovp = uio->uio_iov; 1075 XUIO_XUZC_PRIV(xuio) = priv; 1076 1077 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1078 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 1079 else 1080 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 1081 1082 return (0); 1083 } 1084 1085 void 1086 dmu_xuio_fini(xuio_t *xuio) 1087 { 1088 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1089 int nblk = priv->cnt; 1090 1091 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 1092 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 1093 kmem_free(priv, sizeof (dmu_xuio_t)); 1094 1095 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1096 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 1097 else 1098 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 1099 } 1100 1101 /* 1102 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 1103 * and increase priv->next by 1. 1104 */ 1105 int 1106 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 1107 { 1108 struct iovec *iov; 1109 uio_t *uio = &xuio->xu_uio; 1110 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1111 int i = priv->next++; 1112 1113 ASSERT(i < priv->cnt); 1114 ASSERT(off + n <= arc_buf_lsize(abuf)); 1115 iov = uio->uio_iov + i; 1116 iov->iov_base = (char *)abuf->b_data + off; 1117 iov->iov_len = n; 1118 priv->bufs[i] = abuf; 1119 return (0); 1120 } 1121 1122 int 1123 dmu_xuio_cnt(xuio_t *xuio) 1124 { 1125 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1126 return (priv->cnt); 1127 } 1128 1129 arc_buf_t * 1130 dmu_xuio_arcbuf(xuio_t *xuio, int i) 1131 { 1132 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1133 1134 ASSERT(i < priv->cnt); 1135 return (priv->bufs[i]); 1136 } 1137 1138 void 1139 dmu_xuio_clear(xuio_t *xuio, int i) 1140 { 1141 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1142 1143 ASSERT(i < priv->cnt); 1144 priv->bufs[i] = NULL; 1145 } 1146 1147 static void 1148 xuio_stat_init(void) 1149 { 1150 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 1151 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 1152 KSTAT_FLAG_VIRTUAL); 1153 if (xuio_ksp != NULL) { 1154 xuio_ksp->ks_data = &xuio_stats; 1155 kstat_install(xuio_ksp); 1156 } 1157 } 1158 1159 static void 1160 xuio_stat_fini(void) 1161 { 1162 if (xuio_ksp != NULL) { 1163 kstat_delete(xuio_ksp); 1164 xuio_ksp = NULL; 1165 } 1166 } 1167 1168 void 1169 xuio_stat_wbuf_copied(void) 1170 { 1171 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1172 } 1173 1174 void 1175 xuio_stat_wbuf_nocopy(void) 1176 { 1177 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1178 } 1179 1180 #ifdef _KERNEL 1181 static int 1182 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1183 { 1184 dmu_buf_t **dbp; 1185 int numbufs, i, err; 1186 xuio_t *xuio = NULL; 1187 1188 /* 1189 * NB: we could do this block-at-a-time, but it's nice 1190 * to be reading in parallel. 1191 */ 1192 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1193 TRUE, FTAG, &numbufs, &dbp, 0); 1194 if (err) 1195 return (err); 1196 1197 if (uio->uio_extflg == UIO_XUIO) 1198 xuio = (xuio_t *)uio; 1199 1200 for (i = 0; i < numbufs; i++) { 1201 int tocpy; 1202 int bufoff; 1203 dmu_buf_t *db = dbp[i]; 1204 1205 ASSERT(size > 0); 1206 1207 bufoff = uio->uio_loffset - db->db_offset; 1208 tocpy = (int)MIN(db->db_size - bufoff, size); 1209 1210 if (xuio) { 1211 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1212 arc_buf_t *dbuf_abuf = dbi->db_buf; 1213 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1214 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1215 if (!err) { 1216 uio->uio_resid -= tocpy; 1217 uio->uio_loffset += tocpy; 1218 } 1219 1220 if (abuf == dbuf_abuf) 1221 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1222 else 1223 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1224 } else { 1225 err = uiomove((char *)db->db_data + bufoff, tocpy, 1226 UIO_READ, uio); 1227 } 1228 if (err) 1229 break; 1230 1231 size -= tocpy; 1232 } 1233 dmu_buf_rele_array(dbp, numbufs, FTAG); 1234 1235 return (err); 1236 } 1237 1238 /* 1239 * Read 'size' bytes into the uio buffer. 1240 * From object zdb->db_object. 1241 * Starting at offset uio->uio_loffset. 1242 * 1243 * If the caller already has a dbuf in the target object 1244 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1245 * because we don't have to find the dnode_t for the object. 1246 */ 1247 int 1248 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1249 { 1250 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1251 dnode_t *dn; 1252 int err; 1253 1254 if (size == 0) 1255 return (0); 1256 1257 DB_DNODE_ENTER(db); 1258 dn = DB_DNODE(db); 1259 err = dmu_read_uio_dnode(dn, uio, size); 1260 DB_DNODE_EXIT(db); 1261 1262 return (err); 1263 } 1264 1265 /* 1266 * Read 'size' bytes into the uio buffer. 1267 * From the specified object 1268 * Starting at offset uio->uio_loffset. 1269 */ 1270 int 1271 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1272 { 1273 dnode_t *dn; 1274 int err; 1275 1276 if (size == 0) 1277 return (0); 1278 1279 err = dnode_hold(os, object, FTAG, &dn); 1280 if (err) 1281 return (err); 1282 1283 err = dmu_read_uio_dnode(dn, uio, size); 1284 1285 dnode_rele(dn, FTAG); 1286 1287 return (err); 1288 } 1289 1290 static int 1291 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1292 { 1293 dmu_buf_t **dbp; 1294 int numbufs; 1295 int err = 0; 1296 int i; 1297 1298 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1299 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1300 if (err) 1301 return (err); 1302 1303 for (i = 0; i < numbufs; i++) { 1304 int tocpy; 1305 int bufoff; 1306 dmu_buf_t *db = dbp[i]; 1307 1308 ASSERT(size > 0); 1309 1310 bufoff = uio->uio_loffset - db->db_offset; 1311 tocpy = (int)MIN(db->db_size - bufoff, size); 1312 1313 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1314 1315 if (tocpy == db->db_size) 1316 dmu_buf_will_fill(db, tx); 1317 else 1318 dmu_buf_will_dirty(db, tx); 1319 1320 /* 1321 * XXX uiomove could block forever (eg. nfs-backed 1322 * pages). There needs to be a uiolockdown() function 1323 * to lock the pages in memory, so that uiomove won't 1324 * block. 1325 */ 1326 err = uiomove((char *)db->db_data + bufoff, tocpy, 1327 UIO_WRITE, uio); 1328 1329 if (tocpy == db->db_size) 1330 dmu_buf_fill_done(db, tx); 1331 1332 if (err) 1333 break; 1334 1335 size -= tocpy; 1336 } 1337 1338 dmu_buf_rele_array(dbp, numbufs, FTAG); 1339 return (err); 1340 } 1341 1342 /* 1343 * Write 'size' bytes from the uio buffer. 1344 * To object zdb->db_object. 1345 * Starting at offset uio->uio_loffset. 1346 * 1347 * If the caller already has a dbuf in the target object 1348 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1349 * because we don't have to find the dnode_t for the object. 1350 */ 1351 int 1352 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1353 dmu_tx_t *tx) 1354 { 1355 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1356 dnode_t *dn; 1357 int err; 1358 1359 if (size == 0) 1360 return (0); 1361 1362 DB_DNODE_ENTER(db); 1363 dn = DB_DNODE(db); 1364 err = dmu_write_uio_dnode(dn, uio, size, tx); 1365 DB_DNODE_EXIT(db); 1366 1367 return (err); 1368 } 1369 1370 /* 1371 * Write 'size' bytes from the uio buffer. 1372 * To the specified object. 1373 * Starting at offset uio->uio_loffset. 1374 */ 1375 int 1376 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1377 dmu_tx_t *tx) 1378 { 1379 dnode_t *dn; 1380 int err; 1381 1382 if (size == 0) 1383 return (0); 1384 1385 err = dnode_hold(os, object, FTAG, &dn); 1386 if (err) 1387 return (err); 1388 1389 err = dmu_write_uio_dnode(dn, uio, size, tx); 1390 1391 dnode_rele(dn, FTAG); 1392 1393 return (err); 1394 } 1395 1396 int 1397 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1398 page_t *pp, dmu_tx_t *tx) 1399 { 1400 dmu_buf_t **dbp; 1401 int numbufs, i; 1402 int err; 1403 1404 if (size == 0) 1405 return (0); 1406 1407 err = dmu_buf_hold_array(os, object, offset, size, 1408 FALSE, FTAG, &numbufs, &dbp); 1409 if (err) 1410 return (err); 1411 1412 for (i = 0; i < numbufs; i++) { 1413 int tocpy, copied, thiscpy; 1414 int bufoff; 1415 dmu_buf_t *db = dbp[i]; 1416 caddr_t va; 1417 1418 ASSERT(size > 0); 1419 ASSERT3U(db->db_size, >=, PAGESIZE); 1420 1421 bufoff = offset - db->db_offset; 1422 tocpy = (int)MIN(db->db_size - bufoff, size); 1423 1424 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1425 1426 if (tocpy == db->db_size) 1427 dmu_buf_will_fill(db, tx); 1428 else 1429 dmu_buf_will_dirty(db, tx); 1430 1431 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1432 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1433 thiscpy = MIN(PAGESIZE, tocpy - copied); 1434 va = zfs_map_page(pp, S_READ); 1435 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1436 zfs_unmap_page(pp, va); 1437 pp = pp->p_next; 1438 bufoff += PAGESIZE; 1439 } 1440 1441 if (tocpy == db->db_size) 1442 dmu_buf_fill_done(db, tx); 1443 1444 offset += tocpy; 1445 size -= tocpy; 1446 } 1447 dmu_buf_rele_array(dbp, numbufs, FTAG); 1448 return (err); 1449 } 1450 #endif 1451 1452 /* 1453 * Allocate a loaned anonymous arc buffer. 1454 */ 1455 arc_buf_t * 1456 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1457 { 1458 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1459 1460 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1461 } 1462 1463 /* 1464 * Free a loaned arc buffer. 1465 */ 1466 void 1467 dmu_return_arcbuf(arc_buf_t *buf) 1468 { 1469 arc_return_buf(buf, FTAG); 1470 arc_buf_destroy(buf, FTAG); 1471 } 1472 1473 /* 1474 * When possible directly assign passed loaned arc buffer to a dbuf. 1475 * If this is not possible copy the contents of passed arc buf via 1476 * dmu_write(). 1477 */ 1478 void 1479 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1480 dmu_tx_t *tx) 1481 { 1482 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1483 dnode_t *dn; 1484 dmu_buf_impl_t *db; 1485 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1486 uint64_t blkid; 1487 1488 DB_DNODE_ENTER(dbuf); 1489 dn = DB_DNODE(dbuf); 1490 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1491 blkid = dbuf_whichblock(dn, 0, offset); 1492 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1493 rw_exit(&dn->dn_struct_rwlock); 1494 DB_DNODE_EXIT(dbuf); 1495 1496 /* 1497 * We can only assign if the offset is aligned, the arc buf is the 1498 * same size as the dbuf, and the dbuf is not metadata. 1499 */ 1500 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1501 dbuf_assign_arcbuf(db, buf, tx); 1502 dbuf_rele(db, FTAG); 1503 } else { 1504 objset_t *os; 1505 uint64_t object; 1506 1507 /* compressed bufs must always be assignable to their dbuf */ 1508 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1509 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1510 1511 DB_DNODE_ENTER(dbuf); 1512 dn = DB_DNODE(dbuf); 1513 os = dn->dn_objset; 1514 object = dn->dn_object; 1515 DB_DNODE_EXIT(dbuf); 1516 1517 dbuf_rele(db, FTAG); 1518 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1519 dmu_return_arcbuf(buf); 1520 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1521 } 1522 } 1523 1524 typedef struct { 1525 dbuf_dirty_record_t *dsa_dr; 1526 dmu_sync_cb_t *dsa_done; 1527 zgd_t *dsa_zgd; 1528 dmu_tx_t *dsa_tx; 1529 } dmu_sync_arg_t; 1530 1531 /* ARGSUSED */ 1532 static void 1533 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1534 { 1535 dmu_sync_arg_t *dsa = varg; 1536 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1537 blkptr_t *bp = zio->io_bp; 1538 1539 if (zio->io_error == 0) { 1540 if (BP_IS_HOLE(bp)) { 1541 /* 1542 * A block of zeros may compress to a hole, but the 1543 * block size still needs to be known for replay. 1544 */ 1545 BP_SET_LSIZE(bp, db->db_size); 1546 } else if (!BP_IS_EMBEDDED(bp)) { 1547 ASSERT(BP_GET_LEVEL(bp) == 0); 1548 bp->blk_fill = 1; 1549 } 1550 } 1551 } 1552 1553 static void 1554 dmu_sync_late_arrival_ready(zio_t *zio) 1555 { 1556 dmu_sync_ready(zio, NULL, zio->io_private); 1557 } 1558 1559 /* ARGSUSED */ 1560 static void 1561 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1562 { 1563 dmu_sync_arg_t *dsa = varg; 1564 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1565 dmu_buf_impl_t *db = dr->dr_dbuf; 1566 1567 mutex_enter(&db->db_mtx); 1568 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1569 if (zio->io_error == 0) { 1570 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1571 if (dr->dt.dl.dr_nopwrite) { 1572 blkptr_t *bp = zio->io_bp; 1573 blkptr_t *bp_orig = &zio->io_bp_orig; 1574 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1575 1576 ASSERT(BP_EQUAL(bp, bp_orig)); 1577 VERIFY(BP_EQUAL(bp, db->db_blkptr)); 1578 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1579 ASSERT(zio_checksum_table[chksum].ci_flags & 1580 ZCHECKSUM_FLAG_NOPWRITE); 1581 } 1582 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1583 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1584 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1585 1586 /* 1587 * Old style holes are filled with all zeros, whereas 1588 * new-style holes maintain their lsize, type, level, 1589 * and birth time (see zio_write_compress). While we 1590 * need to reset the BP_SET_LSIZE() call that happened 1591 * in dmu_sync_ready for old style holes, we do *not* 1592 * want to wipe out the information contained in new 1593 * style holes. Thus, only zero out the block pointer if 1594 * it's an old style hole. 1595 */ 1596 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1597 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1598 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1599 } else { 1600 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1601 } 1602 cv_broadcast(&db->db_changed); 1603 mutex_exit(&db->db_mtx); 1604 1605 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1606 1607 kmem_free(dsa, sizeof (*dsa)); 1608 } 1609 1610 static void 1611 dmu_sync_late_arrival_done(zio_t *zio) 1612 { 1613 blkptr_t *bp = zio->io_bp; 1614 dmu_sync_arg_t *dsa = zio->io_private; 1615 blkptr_t *bp_orig = &zio->io_bp_orig; 1616 1617 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1618 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); 1619 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1620 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1621 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1622 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1623 } 1624 1625 dmu_tx_commit(dsa->dsa_tx); 1626 1627 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1628 1629 abd_put(zio->io_abd); 1630 kmem_free(dsa, sizeof (*dsa)); 1631 } 1632 1633 static int 1634 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1635 zio_prop_t *zp, zbookmark_phys_t *zb) 1636 { 1637 dmu_sync_arg_t *dsa; 1638 dmu_tx_t *tx; 1639 1640 tx = dmu_tx_create(os); 1641 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1642 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1643 dmu_tx_abort(tx); 1644 /* Make zl_get_data do txg_waited_synced() */ 1645 return (SET_ERROR(EIO)); 1646 } 1647 1648 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1649 dsa->dsa_dr = NULL; 1650 dsa->dsa_done = done; 1651 dsa->dsa_zgd = zgd; 1652 dsa->dsa_tx = tx; 1653 1654 /* 1655 * Since we are currently syncing this txg, it's nontrivial to 1656 * determine what BP to nopwrite against, so we disable nopwrite. 1657 * 1658 * When syncing, the db_blkptr is initially the BP of the previous 1659 * txg. We can not nopwrite against it because it will be changed 1660 * (this is similar to the non-late-arrival case where the dbuf is 1661 * dirty in a future txg). 1662 * 1663 * Then dbuf_write_ready() sets bp_blkptr to the location we will write. 1664 * We can not nopwrite against it because although the BP will not 1665 * (typically) be changed, the data has not yet been persisted to this 1666 * location. 1667 * 1668 * Finally, when dbuf_write_done() is called, it is theoretically 1669 * possible to always nopwrite, because the data that was written in 1670 * this txg is the same data that we are trying to write. However we 1671 * would need to check that this dbuf is not dirty in any future 1672 * txg's (as we do in the normal dmu_sync() path). For simplicity, we 1673 * don't nopwrite in this case. 1674 */ 1675 zp->zp_nopwrite = B_FALSE; 1676 1677 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1678 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), 1679 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, 1680 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, 1681 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1682 1683 return (0); 1684 } 1685 1686 /* 1687 * Intent log support: sync the block associated with db to disk. 1688 * N.B. and XXX: the caller is responsible for making sure that the 1689 * data isn't changing while dmu_sync() is writing it. 1690 * 1691 * Return values: 1692 * 1693 * EEXIST: this txg has already been synced, so there's nothing to do. 1694 * The caller should not log the write. 1695 * 1696 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1697 * The caller should not log the write. 1698 * 1699 * EALREADY: this block is already in the process of being synced. 1700 * The caller should track its progress (somehow). 1701 * 1702 * EIO: could not do the I/O. 1703 * The caller should do a txg_wait_synced(). 1704 * 1705 * 0: the I/O has been initiated. 1706 * The caller should log this blkptr in the done callback. 1707 * It is possible that the I/O will fail, in which case 1708 * the error will be reported to the done callback and 1709 * propagated to pio from zio_done(). 1710 */ 1711 int 1712 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1713 { 1714 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1715 objset_t *os = db->db_objset; 1716 dsl_dataset_t *ds = os->os_dsl_dataset; 1717 dbuf_dirty_record_t *dr; 1718 dmu_sync_arg_t *dsa; 1719 zbookmark_phys_t zb; 1720 zio_prop_t zp; 1721 dnode_t *dn; 1722 1723 ASSERT(pio != NULL); 1724 ASSERT(txg != 0); 1725 1726 SET_BOOKMARK(&zb, ds->ds_object, 1727 db->db.db_object, db->db_level, db->db_blkid); 1728 1729 DB_DNODE_ENTER(db); 1730 dn = DB_DNODE(db); 1731 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1732 DB_DNODE_EXIT(db); 1733 1734 /* 1735 * If we're frozen (running ziltest), we always need to generate a bp. 1736 */ 1737 if (txg > spa_freeze_txg(os->os_spa)) 1738 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1739 1740 /* 1741 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1742 * and us. If we determine that this txg is not yet syncing, 1743 * but it begins to sync a moment later, that's OK because the 1744 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1745 */ 1746 mutex_enter(&db->db_mtx); 1747 1748 if (txg <= spa_last_synced_txg(os->os_spa)) { 1749 /* 1750 * This txg has already synced. There's nothing to do. 1751 */ 1752 mutex_exit(&db->db_mtx); 1753 return (SET_ERROR(EEXIST)); 1754 } 1755 1756 if (txg <= spa_syncing_txg(os->os_spa)) { 1757 /* 1758 * This txg is currently syncing, so we can't mess with 1759 * the dirty record anymore; just write a new log block. 1760 */ 1761 mutex_exit(&db->db_mtx); 1762 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1763 } 1764 1765 dr = db->db_last_dirty; 1766 while (dr && dr->dr_txg != txg) 1767 dr = dr->dr_next; 1768 1769 if (dr == NULL) { 1770 /* 1771 * There's no dr for this dbuf, so it must have been freed. 1772 * There's no need to log writes to freed blocks, so we're done. 1773 */ 1774 mutex_exit(&db->db_mtx); 1775 return (SET_ERROR(ENOENT)); 1776 } 1777 1778 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1779 1780 if (db->db_blkptr != NULL) { 1781 /* 1782 * We need to fill in zgd_bp with the current blkptr so that 1783 * the nopwrite code can check if we're writing the same 1784 * data that's already on disk. We can only nopwrite if we 1785 * are sure that after making the copy, db_blkptr will not 1786 * change until our i/o completes. We ensure this by 1787 * holding the db_mtx, and only allowing nopwrite if the 1788 * block is not already dirty (see below). This is verified 1789 * by dmu_sync_done(), which VERIFYs that the db_blkptr has 1790 * not changed. 1791 */ 1792 *zgd->zgd_bp = *db->db_blkptr; 1793 } 1794 1795 /* 1796 * Assume the on-disk data is X, the current syncing data (in 1797 * txg - 1) is Y, and the current in-memory data is Z (currently 1798 * in dmu_sync). 1799 * 1800 * We usually want to perform a nopwrite if X and Z are the 1801 * same. However, if Y is different (i.e. the BP is going to 1802 * change before this write takes effect), then a nopwrite will 1803 * be incorrect - we would override with X, which could have 1804 * been freed when Y was written. 1805 * 1806 * (Note that this is not a concern when we are nop-writing from 1807 * syncing context, because X and Y must be identical, because 1808 * all previous txgs have been synced.) 1809 * 1810 * Therefore, we disable nopwrite if the current BP could change 1811 * before this TXG. There are two ways it could change: by 1812 * being dirty (dr_next is non-NULL), or by being freed 1813 * (dnode_block_freed()). This behavior is verified by 1814 * zio_done(), which VERIFYs that the override BP is identical 1815 * to the on-disk BP. 1816 */ 1817 DB_DNODE_ENTER(db); 1818 dn = DB_DNODE(db); 1819 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1820 zp.zp_nopwrite = B_FALSE; 1821 DB_DNODE_EXIT(db); 1822 1823 ASSERT(dr->dr_txg == txg); 1824 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1825 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1826 /* 1827 * We have already issued a sync write for this buffer, 1828 * or this buffer has already been synced. It could not 1829 * have been dirtied since, or we would have cleared the state. 1830 */ 1831 mutex_exit(&db->db_mtx); 1832 return (SET_ERROR(EALREADY)); 1833 } 1834 1835 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1836 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1837 mutex_exit(&db->db_mtx); 1838 1839 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1840 dsa->dsa_dr = dr; 1841 dsa->dsa_done = done; 1842 dsa->dsa_zgd = zgd; 1843 dsa->dsa_tx = NULL; 1844 1845 zio_nowait(arc_write(pio, os->os_spa, txg, 1846 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1847 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 1848 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1849 1850 return (0); 1851 } 1852 1853 int 1854 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1855 dmu_tx_t *tx) 1856 { 1857 dnode_t *dn; 1858 int err; 1859 1860 err = dnode_hold(os, object, FTAG, &dn); 1861 if (err) 1862 return (err); 1863 err = dnode_set_blksz(dn, size, ibs, tx); 1864 dnode_rele(dn, FTAG); 1865 return (err); 1866 } 1867 1868 void 1869 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1870 dmu_tx_t *tx) 1871 { 1872 dnode_t *dn; 1873 1874 /* 1875 * Send streams include each object's checksum function. This 1876 * check ensures that the receiving system can understand the 1877 * checksum function transmitted. 1878 */ 1879 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1880 1881 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1882 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1883 dn->dn_checksum = checksum; 1884 dnode_setdirty(dn, tx); 1885 dnode_rele(dn, FTAG); 1886 } 1887 1888 void 1889 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1890 dmu_tx_t *tx) 1891 { 1892 dnode_t *dn; 1893 1894 /* 1895 * Send streams include each object's compression function. This 1896 * check ensures that the receiving system can understand the 1897 * compression function transmitted. 1898 */ 1899 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1900 1901 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1902 dn->dn_compress = compress; 1903 dnode_setdirty(dn, tx); 1904 dnode_rele(dn, FTAG); 1905 } 1906 1907 int zfs_mdcomp_disable = 0; 1908 1909 /* 1910 * When the "redundant_metadata" property is set to "most", only indirect 1911 * blocks of this level and higher will have an additional ditto block. 1912 */ 1913 int zfs_redundant_metadata_most_ditto_level = 2; 1914 1915 void 1916 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1917 { 1918 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1919 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1920 (wp & WP_SPILL)); 1921 enum zio_checksum checksum = os->os_checksum; 1922 enum zio_compress compress = os->os_compress; 1923 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1924 boolean_t dedup = B_FALSE; 1925 boolean_t nopwrite = B_FALSE; 1926 boolean_t dedup_verify = os->os_dedup_verify; 1927 int copies = os->os_copies; 1928 1929 /* 1930 * We maintain different write policies for each of the following 1931 * types of data: 1932 * 1. metadata 1933 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1934 * 3. all other level 0 blocks 1935 */ 1936 if (ismd) { 1937 if (zfs_mdcomp_disable) { 1938 compress = ZIO_COMPRESS_EMPTY; 1939 } else { 1940 /* 1941 * XXX -- we should design a compression algorithm 1942 * that specializes in arrays of bps. 1943 */ 1944 compress = zio_compress_select(os->os_spa, 1945 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1946 } 1947 1948 /* 1949 * Metadata always gets checksummed. If the data 1950 * checksum is multi-bit correctable, and it's not a 1951 * ZBT-style checksum, then it's suitable for metadata 1952 * as well. Otherwise, the metadata checksum defaults 1953 * to fletcher4. 1954 */ 1955 if (!(zio_checksum_table[checksum].ci_flags & 1956 ZCHECKSUM_FLAG_METADATA) || 1957 (zio_checksum_table[checksum].ci_flags & 1958 ZCHECKSUM_FLAG_EMBEDDED)) 1959 checksum = ZIO_CHECKSUM_FLETCHER_4; 1960 1961 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1962 (os->os_redundant_metadata == 1963 ZFS_REDUNDANT_METADATA_MOST && 1964 (level >= zfs_redundant_metadata_most_ditto_level || 1965 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1966 copies++; 1967 } else if (wp & WP_NOFILL) { 1968 ASSERT(level == 0); 1969 1970 /* 1971 * If we're writing preallocated blocks, we aren't actually 1972 * writing them so don't set any policy properties. These 1973 * blocks are currently only used by an external subsystem 1974 * outside of zfs (i.e. dump) and not written by the zio 1975 * pipeline. 1976 */ 1977 compress = ZIO_COMPRESS_OFF; 1978 checksum = ZIO_CHECKSUM_NOPARITY; 1979 } else { 1980 compress = zio_compress_select(os->os_spa, dn->dn_compress, 1981 compress); 1982 1983 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1984 zio_checksum_select(dn->dn_checksum, checksum) : 1985 dedup_checksum; 1986 1987 /* 1988 * Determine dedup setting. If we are in dmu_sync(), 1989 * we won't actually dedup now because that's all 1990 * done in syncing context; but we do want to use the 1991 * dedup checkum. If the checksum is not strong 1992 * enough to ensure unique signatures, force 1993 * dedup_verify. 1994 */ 1995 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1996 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1997 if (!(zio_checksum_table[checksum].ci_flags & 1998 ZCHECKSUM_FLAG_DEDUP)) 1999 dedup_verify = B_TRUE; 2000 } 2001 2002 /* 2003 * Enable nopwrite if we have secure enough checksum 2004 * algorithm (see comment in zio_nop_write) and 2005 * compression is enabled. We don't enable nopwrite if 2006 * dedup is enabled as the two features are mutually 2007 * exclusive. 2008 */ 2009 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 2010 ZCHECKSUM_FLAG_NOPWRITE) && 2011 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 2012 } 2013 2014 zp->zp_checksum = checksum; 2015 zp->zp_compress = compress; 2016 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); 2017 2018 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2019 zp->zp_level = level; 2020 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2021 zp->zp_dedup = dedup; 2022 zp->zp_dedup_verify = dedup && dedup_verify; 2023 zp->zp_nopwrite = nopwrite; 2024 } 2025 2026 int 2027 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2028 { 2029 dnode_t *dn; 2030 int err; 2031 2032 /* 2033 * Sync any current changes before 2034 * we go trundling through the block pointers. 2035 */ 2036 err = dmu_object_wait_synced(os, object); 2037 if (err) { 2038 return (err); 2039 } 2040 2041 err = dnode_hold(os, object, FTAG, &dn); 2042 if (err) { 2043 return (err); 2044 } 2045 2046 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2047 dnode_rele(dn, FTAG); 2048 2049 return (err); 2050 } 2051 2052 /* 2053 * Given the ZFS object, if it contains any dirty nodes 2054 * this function flushes all dirty blocks to disk. This 2055 * ensures the DMU object info is updated. A more efficient 2056 * future version might just find the TXG with the maximum 2057 * ID and wait for that to be synced. 2058 */ 2059 int 2060 dmu_object_wait_synced(objset_t *os, uint64_t object) 2061 { 2062 dnode_t *dn; 2063 int error, i; 2064 2065 error = dnode_hold(os, object, FTAG, &dn); 2066 if (error) { 2067 return (error); 2068 } 2069 2070 for (i = 0; i < TXG_SIZE; i++) { 2071 if (list_link_active(&dn->dn_dirty_link[i])) { 2072 break; 2073 } 2074 } 2075 dnode_rele(dn, FTAG); 2076 if (i != TXG_SIZE) { 2077 txg_wait_synced(dmu_objset_pool(os), 0); 2078 } 2079 2080 return (0); 2081 } 2082 2083 void 2084 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2085 { 2086 dnode_phys_t *dnp; 2087 2088 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2089 mutex_enter(&dn->dn_mtx); 2090 2091 dnp = dn->dn_phys; 2092 2093 doi->doi_data_block_size = dn->dn_datablksz; 2094 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2095 1ULL << dn->dn_indblkshift : 0; 2096 doi->doi_type = dn->dn_type; 2097 doi->doi_bonus_type = dn->dn_bonustype; 2098 doi->doi_bonus_size = dn->dn_bonuslen; 2099 doi->doi_indirection = dn->dn_nlevels; 2100 doi->doi_checksum = dn->dn_checksum; 2101 doi->doi_compress = dn->dn_compress; 2102 doi->doi_nblkptr = dn->dn_nblkptr; 2103 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2104 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2105 doi->doi_fill_count = 0; 2106 for (int i = 0; i < dnp->dn_nblkptr; i++) 2107 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2108 2109 mutex_exit(&dn->dn_mtx); 2110 rw_exit(&dn->dn_struct_rwlock); 2111 } 2112 2113 /* 2114 * Get information on a DMU object. 2115 * If doi is NULL, just indicates whether the object exists. 2116 */ 2117 int 2118 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2119 { 2120 dnode_t *dn; 2121 int err = dnode_hold(os, object, FTAG, &dn); 2122 2123 if (err) 2124 return (err); 2125 2126 if (doi != NULL) 2127 dmu_object_info_from_dnode(dn, doi); 2128 2129 dnode_rele(dn, FTAG); 2130 return (0); 2131 } 2132 2133 /* 2134 * As above, but faster; can be used when you have a held dbuf in hand. 2135 */ 2136 void 2137 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2138 { 2139 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2140 2141 DB_DNODE_ENTER(db); 2142 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2143 DB_DNODE_EXIT(db); 2144 } 2145 2146 /* 2147 * Faster still when you only care about the size. 2148 * This is specifically optimized for zfs_getattr(). 2149 */ 2150 void 2151 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2152 u_longlong_t *nblk512) 2153 { 2154 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2155 dnode_t *dn; 2156 2157 DB_DNODE_ENTER(db); 2158 dn = DB_DNODE(db); 2159 2160 *blksize = dn->dn_datablksz; 2161 /* add 1 for dnode space */ 2162 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2163 SPA_MINBLOCKSHIFT) + 1; 2164 DB_DNODE_EXIT(db); 2165 } 2166 2167 void 2168 byteswap_uint64_array(void *vbuf, size_t size) 2169 { 2170 uint64_t *buf = vbuf; 2171 size_t count = size >> 3; 2172 int i; 2173 2174 ASSERT((size & 7) == 0); 2175 2176 for (i = 0; i < count; i++) 2177 buf[i] = BSWAP_64(buf[i]); 2178 } 2179 2180 void 2181 byteswap_uint32_array(void *vbuf, size_t size) 2182 { 2183 uint32_t *buf = vbuf; 2184 size_t count = size >> 2; 2185 int i; 2186 2187 ASSERT((size & 3) == 0); 2188 2189 for (i = 0; i < count; i++) 2190 buf[i] = BSWAP_32(buf[i]); 2191 } 2192 2193 void 2194 byteswap_uint16_array(void *vbuf, size_t size) 2195 { 2196 uint16_t *buf = vbuf; 2197 size_t count = size >> 1; 2198 int i; 2199 2200 ASSERT((size & 1) == 0); 2201 2202 for (i = 0; i < count; i++) 2203 buf[i] = BSWAP_16(buf[i]); 2204 } 2205 2206 /* ARGSUSED */ 2207 void 2208 byteswap_uint8_array(void *vbuf, size_t size) 2209 { 2210 } 2211 2212 void 2213 dmu_init(void) 2214 { 2215 abd_init(); 2216 zfs_dbgmsg_init(); 2217 sa_cache_init(); 2218 xuio_stat_init(); 2219 dmu_objset_init(); 2220 dnode_init(); 2221 zfetch_init(); 2222 l2arc_init(); 2223 arc_init(); 2224 dbuf_init(); 2225 } 2226 2227 void 2228 dmu_fini(void) 2229 { 2230 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2231 l2arc_fini(); 2232 zfetch_fini(); 2233 dbuf_fini(); 2234 dnode_fini(); 2235 dmu_objset_fini(); 2236 xuio_stat_fini(); 2237 sa_cache_fini(); 2238 zfs_dbgmsg_fini(); 2239 abd_fini(); 2240 } 2241