1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 28 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 29 * Copyright (c) 2018 DilOS 30 */ 31 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dbuf.h> 36 #include <sys/dnode.h> 37 #include <sys/zfs_context.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dmu_traverse.h> 40 #include <sys/dsl_dataset.h> 41 #include <sys/dsl_dir.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dmu_zfetch.h> 46 #include <sys/zfs_ioctl.h> 47 #include <sys/zap.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/zio_compress.h> 50 #include <sys/sa.h> 51 #include <sys/zfeature.h> 52 #include <sys/abd.h> 53 #ifdef _KERNEL 54 #include <sys/vmsystm.h> 55 #include <sys/zfs_znode.h> 56 #endif 57 58 static xuio_stats_t xuio_stats = { 59 { "onloan_read_buf", KSTAT_DATA_UINT64 }, 60 { "onloan_write_buf", KSTAT_DATA_UINT64 }, 61 { "read_buf_copied", KSTAT_DATA_UINT64 }, 62 { "read_buf_nocopy", KSTAT_DATA_UINT64 }, 63 { "write_buf_copied", KSTAT_DATA_UINT64 }, 64 { "write_buf_nocopy", KSTAT_DATA_UINT64 } 65 }; 66 67 #define XUIOSTAT_INCR(stat, val) \ 68 atomic_add_64(&xuio_stats.stat.value.ui64, (val)) 69 #define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1) 70 71 /* 72 * Enable/disable nopwrite feature. 73 */ 74 int zfs_nopwrite_enabled = 1; 75 76 /* 77 * Tunable to control percentage of dirtied blocks from frees in one TXG. 78 * After this threshold is crossed, additional dirty blocks from frees 79 * wait until the next TXG. 80 * A value of zero will disable this throttle. 81 */ 82 uint32_t zfs_per_txg_dirty_frees_percent = 30; 83 84 /* 85 * This can be used for testing, to ensure that certain actions happen 86 * while in the middle of a remap (which might otherwise complete too 87 * quickly). 88 */ 89 int zfs_object_remap_one_indirect_delay_ticks = 0; 90 91 /* 92 * Limit the amount we can prefetch with one call to this amount. This 93 * helps to limit the amount of memory that can be used by prefetching. 94 * Larger objects should be prefetched a bit at a time. 95 */ 96 uint64_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE; 97 98 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 99 { DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" }, 100 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" }, 101 { DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" }, 102 { DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" }, 103 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" }, 104 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" }, 105 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" }, 106 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" }, 107 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" }, 108 { DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" }, 109 { DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" }, 110 { DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" }, 111 { DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" }, 112 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map" }, 113 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" }, 114 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" }, 115 { DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" }, 116 { DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" }, 117 { DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" }, 118 { DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" }, 119 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" }, 120 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" }, 121 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" }, 122 { DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" }, 123 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" }, 124 { DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" }, 125 { DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" }, 126 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" }, 127 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" }, 128 { DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" }, 129 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" }, 130 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" }, 131 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" }, 132 { DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" }, 133 { DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" }, 134 { DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" }, 135 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" }, 136 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones" }, 137 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" }, 138 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used"}, 139 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/proj quota"}, 140 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags" }, 141 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" }, 142 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" }, 143 { DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" }, 144 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" }, 145 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" }, 146 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" }, 147 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" }, 148 { DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" }, 149 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" }, 150 { DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" }, 151 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" }, 152 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" } 153 }; 154 155 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 156 { byteswap_uint8_array, "uint8" }, 157 { byteswap_uint16_array, "uint16" }, 158 { byteswap_uint32_array, "uint32" }, 159 { byteswap_uint64_array, "uint64" }, 160 { zap_byteswap, "zap" }, 161 { dnode_buf_byteswap, "dnode" }, 162 { dmu_objset_byteswap, "objset" }, 163 { zfs_znode_byteswap, "znode" }, 164 { zfs_oldacl_byteswap, "oldacl" }, 165 { zfs_acl_byteswap, "acl" } 166 }; 167 168 int 169 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 170 void *tag, dmu_buf_t **dbp) 171 { 172 uint64_t blkid; 173 dmu_buf_impl_t *db; 174 175 rw_enter(&dn->dn_struct_rwlock, RW_READER); 176 blkid = dbuf_whichblock(dn, 0, offset); 177 db = dbuf_hold(dn, blkid, tag); 178 rw_exit(&dn->dn_struct_rwlock); 179 180 if (db == NULL) { 181 *dbp = NULL; 182 return (SET_ERROR(EIO)); 183 } 184 185 *dbp = &db->db; 186 return (0); 187 } 188 int 189 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 190 void *tag, dmu_buf_t **dbp) 191 { 192 dnode_t *dn; 193 uint64_t blkid; 194 dmu_buf_impl_t *db; 195 int err; 196 197 err = dnode_hold(os, object, FTAG, &dn); 198 if (err) 199 return (err); 200 rw_enter(&dn->dn_struct_rwlock, RW_READER); 201 blkid = dbuf_whichblock(dn, 0, offset); 202 db = dbuf_hold(dn, blkid, tag); 203 rw_exit(&dn->dn_struct_rwlock); 204 dnode_rele(dn, FTAG); 205 206 if (db == NULL) { 207 *dbp = NULL; 208 return (SET_ERROR(EIO)); 209 } 210 211 *dbp = &db->db; 212 return (err); 213 } 214 215 int 216 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 217 void *tag, dmu_buf_t **dbp, int flags) 218 { 219 int err; 220 int db_flags = DB_RF_CANFAIL; 221 222 if (flags & DMU_READ_NO_PREFETCH) 223 db_flags |= DB_RF_NOPREFETCH; 224 if (flags & DMU_READ_NO_DECRYPT) 225 db_flags |= DB_RF_NO_DECRYPT; 226 227 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 228 if (err == 0) { 229 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 230 err = dbuf_read(db, NULL, db_flags); 231 if (err != 0) { 232 dbuf_rele(db, tag); 233 *dbp = NULL; 234 } 235 } 236 237 return (err); 238 } 239 240 int 241 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 242 void *tag, dmu_buf_t **dbp, int flags) 243 { 244 int err; 245 int db_flags = DB_RF_CANFAIL; 246 247 if (flags & DMU_READ_NO_PREFETCH) 248 db_flags |= DB_RF_NOPREFETCH; 249 if (flags & DMU_READ_NO_DECRYPT) 250 db_flags |= DB_RF_NO_DECRYPT; 251 252 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 253 if (err == 0) { 254 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 255 err = dbuf_read(db, NULL, db_flags); 256 if (err != 0) { 257 dbuf_rele(db, tag); 258 *dbp = NULL; 259 } 260 } 261 262 return (err); 263 } 264 265 int 266 dmu_bonus_max(void) 267 { 268 return (DN_OLD_MAX_BONUSLEN); 269 } 270 271 int 272 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 273 { 274 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 275 dnode_t *dn; 276 int error; 277 278 DB_DNODE_ENTER(db); 279 dn = DB_DNODE(db); 280 281 if (dn->dn_bonus != db) { 282 error = SET_ERROR(EINVAL); 283 } else if (newsize < 0 || newsize > db_fake->db_size) { 284 error = SET_ERROR(EINVAL); 285 } else { 286 dnode_setbonuslen(dn, newsize, tx); 287 error = 0; 288 } 289 290 DB_DNODE_EXIT(db); 291 return (error); 292 } 293 294 int 295 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 296 { 297 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 298 dnode_t *dn; 299 int error; 300 301 DB_DNODE_ENTER(db); 302 dn = DB_DNODE(db); 303 304 if (!DMU_OT_IS_VALID(type)) { 305 error = SET_ERROR(EINVAL); 306 } else if (dn->dn_bonus != db) { 307 error = SET_ERROR(EINVAL); 308 } else { 309 dnode_setbonus_type(dn, type, tx); 310 error = 0; 311 } 312 313 DB_DNODE_EXIT(db); 314 return (error); 315 } 316 317 dmu_object_type_t 318 dmu_get_bonustype(dmu_buf_t *db_fake) 319 { 320 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 321 dnode_t *dn; 322 dmu_object_type_t type; 323 324 DB_DNODE_ENTER(db); 325 dn = DB_DNODE(db); 326 type = dn->dn_bonustype; 327 DB_DNODE_EXIT(db); 328 329 return (type); 330 } 331 332 int 333 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 334 { 335 dnode_t *dn; 336 int error; 337 338 error = dnode_hold(os, object, FTAG, &dn); 339 dbuf_rm_spill(dn, tx); 340 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 341 dnode_rm_spill(dn, tx); 342 rw_exit(&dn->dn_struct_rwlock); 343 dnode_rele(dn, FTAG); 344 return (error); 345 } 346 347 /* 348 * Lookup and hold the bonus buffer for the provided dnode. If the dnode 349 * has not yet been allocated a new bonus dbuf a will be allocated. 350 * Returns ENOENT, EIO, or 0. 351 */ 352 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp, 353 uint32_t flags) 354 { 355 dmu_buf_impl_t *db; 356 int error; 357 uint32_t db_flags = DB_RF_MUST_SUCCEED; 358 359 if (flags & DMU_READ_NO_PREFETCH) 360 db_flags |= DB_RF_NOPREFETCH; 361 if (flags & DMU_READ_NO_DECRYPT) 362 db_flags |= DB_RF_NO_DECRYPT; 363 364 rw_enter(&dn->dn_struct_rwlock, RW_READER); 365 if (dn->dn_bonus == NULL) { 366 rw_exit(&dn->dn_struct_rwlock); 367 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 368 if (dn->dn_bonus == NULL) 369 dbuf_create_bonus(dn); 370 } 371 db = dn->dn_bonus; 372 373 /* as long as the bonus buf is held, the dnode will be held */ 374 if (zfs_refcount_add(&db->db_holds, tag) == 1) { 375 VERIFY(dnode_add_ref(dn, db)); 376 atomic_inc_32(&dn->dn_dbufs_count); 377 } 378 379 /* 380 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 381 * hold and incrementing the dbuf count to ensure that dnode_move() sees 382 * a dnode hold for every dbuf. 383 */ 384 rw_exit(&dn->dn_struct_rwlock); 385 386 error = dbuf_read(db, NULL, db_flags); 387 if (error) { 388 dnode_evict_bonus(dn); 389 dbuf_rele(db, tag); 390 *dbp = NULL; 391 return (error); 392 } 393 394 *dbp = &db->db; 395 return (0); 396 } 397 398 /* 399 * returns ENOENT, EIO, or 0. 400 */ 401 int 402 dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag, uint32_t flags, 403 dmu_buf_t **dbp) 404 { 405 dnode_t *dn; 406 dmu_buf_impl_t *db; 407 int error; 408 uint32_t db_flags = DB_RF_MUST_SUCCEED; 409 410 if (flags & DMU_READ_NO_PREFETCH) 411 db_flags |= DB_RF_NOPREFETCH; 412 if (flags & DMU_READ_NO_DECRYPT) 413 db_flags |= DB_RF_NO_DECRYPT; 414 415 error = dnode_hold(os, object, FTAG, &dn); 416 if (error) 417 return (error); 418 419 rw_enter(&dn->dn_struct_rwlock, RW_READER); 420 if (dn->dn_bonus == NULL) { 421 rw_exit(&dn->dn_struct_rwlock); 422 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 423 if (dn->dn_bonus == NULL) 424 dbuf_create_bonus(dn); 425 } 426 db = dn->dn_bonus; 427 428 /* as long as the bonus buf is held, the dnode will be held */ 429 if (zfs_refcount_add(&db->db_holds, tag) == 1) { 430 VERIFY(dnode_add_ref(dn, db)); 431 atomic_inc_32(&dn->dn_dbufs_count); 432 } 433 434 /* 435 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 436 * hold and incrementing the dbuf count to ensure that dnode_move() sees 437 * a dnode hold for every dbuf. 438 */ 439 rw_exit(&dn->dn_struct_rwlock); 440 441 dnode_rele(dn, FTAG); 442 443 error = dbuf_read(db, NULL, db_flags); 444 if (error) { 445 dnode_evict_bonus(dn); 446 dbuf_rele(db, tag); 447 *dbp = NULL; 448 return (error); 449 } 450 451 *dbp = &db->db; 452 return (0); 453 } 454 455 int 456 dmu_bonus_hold(objset_t *os, uint64_t obj, void *tag, dmu_buf_t **dbp) 457 { 458 return (dmu_bonus_hold_impl(os, obj, tag, DMU_READ_NO_PREFETCH, dbp)); 459 } 460 461 /* 462 * returns ENOENT, EIO, or 0. 463 * 464 * This interface will allocate a blank spill dbuf when a spill blk 465 * doesn't already exist on the dnode. 466 * 467 * if you only want to find an already existing spill db, then 468 * dmu_spill_hold_existing() should be used. 469 */ 470 int 471 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 472 { 473 dmu_buf_impl_t *db = NULL; 474 int err; 475 476 if ((flags & DB_RF_HAVESTRUCT) == 0) 477 rw_enter(&dn->dn_struct_rwlock, RW_READER); 478 479 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 480 481 if ((flags & DB_RF_HAVESTRUCT) == 0) 482 rw_exit(&dn->dn_struct_rwlock); 483 484 ASSERT(db != NULL); 485 err = dbuf_read(db, NULL, flags); 486 if (err == 0) 487 *dbp = &db->db; 488 else 489 dbuf_rele(db, tag); 490 return (err); 491 } 492 493 int 494 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 495 { 496 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 497 dnode_t *dn; 498 int err; 499 500 DB_DNODE_ENTER(db); 501 dn = DB_DNODE(db); 502 503 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 504 err = SET_ERROR(EINVAL); 505 } else { 506 rw_enter(&dn->dn_struct_rwlock, RW_READER); 507 508 if (!dn->dn_have_spill) { 509 err = SET_ERROR(ENOENT); 510 } else { 511 err = dmu_spill_hold_by_dnode(dn, 512 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 513 } 514 515 rw_exit(&dn->dn_struct_rwlock); 516 } 517 518 DB_DNODE_EXIT(db); 519 return (err); 520 } 521 522 int 523 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag, 524 dmu_buf_t **dbp) 525 { 526 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 527 dnode_t *dn; 528 int err; 529 uint32_t db_flags = DB_RF_CANFAIL; 530 531 if (flags & DMU_READ_NO_DECRYPT) 532 db_flags |= DB_RF_NO_DECRYPT; 533 534 DB_DNODE_ENTER(db); 535 dn = DB_DNODE(db); 536 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp); 537 DB_DNODE_EXIT(db); 538 539 return (err); 540 } 541 542 /* 543 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 544 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 545 * and can induce severe lock contention when writing to several files 546 * whose dnodes are in the same block. 547 */ 548 int 549 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 550 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 551 { 552 dmu_buf_t **dbp; 553 uint64_t blkid, nblks, i; 554 uint32_t dbuf_flags; 555 int err; 556 zio_t *zio; 557 558 ASSERT(length <= DMU_MAX_ACCESS); 559 560 /* 561 * Note: We directly notify the prefetch code of this read, so that 562 * we can tell it about the multi-block read. dbuf_read() only knows 563 * about the one block it is accessing. 564 */ 565 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 566 DB_RF_NOPREFETCH; 567 568 rw_enter(&dn->dn_struct_rwlock, RW_READER); 569 if (dn->dn_datablkshift) { 570 int blkshift = dn->dn_datablkshift; 571 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 572 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 573 } else { 574 if (offset + length > dn->dn_datablksz) { 575 zfs_panic_recover("zfs: accessing past end of object " 576 "%llx/%llx (size=%u access=%llu+%llu)", 577 (longlong_t)dn->dn_objset-> 578 os_dsl_dataset->ds_object, 579 (longlong_t)dn->dn_object, dn->dn_datablksz, 580 (longlong_t)offset, (longlong_t)length); 581 rw_exit(&dn->dn_struct_rwlock); 582 return (SET_ERROR(EIO)); 583 } 584 nblks = 1; 585 } 586 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 587 588 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 589 blkid = dbuf_whichblock(dn, 0, offset); 590 for (i = 0; i < nblks; i++) { 591 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 592 if (db == NULL) { 593 rw_exit(&dn->dn_struct_rwlock); 594 dmu_buf_rele_array(dbp, nblks, tag); 595 zio_nowait(zio); 596 return (SET_ERROR(EIO)); 597 } 598 599 /* initiate async i/o */ 600 if (read) 601 (void) dbuf_read(db, zio, dbuf_flags); 602 dbp[i] = &db->db; 603 } 604 605 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 606 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 607 dmu_zfetch(&dn->dn_zfetch, blkid, nblks, 608 read && DNODE_IS_CACHEABLE(dn), B_TRUE); 609 } 610 rw_exit(&dn->dn_struct_rwlock); 611 612 /* wait for async i/o */ 613 err = zio_wait(zio); 614 if (err) { 615 dmu_buf_rele_array(dbp, nblks, tag); 616 return (err); 617 } 618 619 /* wait for other io to complete */ 620 if (read) { 621 for (i = 0; i < nblks; i++) { 622 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 623 mutex_enter(&db->db_mtx); 624 while (db->db_state == DB_READ || 625 db->db_state == DB_FILL) 626 cv_wait(&db->db_changed, &db->db_mtx); 627 if (db->db_state == DB_UNCACHED) 628 err = SET_ERROR(EIO); 629 mutex_exit(&db->db_mtx); 630 if (err) { 631 dmu_buf_rele_array(dbp, nblks, tag); 632 return (err); 633 } 634 } 635 } 636 637 *numbufsp = nblks; 638 *dbpp = dbp; 639 return (0); 640 } 641 642 static int 643 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 644 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 645 { 646 dnode_t *dn; 647 int err; 648 649 err = dnode_hold(os, object, FTAG, &dn); 650 if (err) 651 return (err); 652 653 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 654 numbufsp, dbpp, DMU_READ_PREFETCH); 655 656 dnode_rele(dn, FTAG); 657 658 return (err); 659 } 660 661 int 662 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 663 uint64_t length, boolean_t read, void *tag, int *numbufsp, 664 dmu_buf_t ***dbpp) 665 { 666 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 667 dnode_t *dn; 668 int err; 669 670 DB_DNODE_ENTER(db); 671 dn = DB_DNODE(db); 672 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 673 numbufsp, dbpp, DMU_READ_PREFETCH); 674 DB_DNODE_EXIT(db); 675 676 return (err); 677 } 678 679 void 680 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 681 { 682 int i; 683 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 684 685 if (numbufs == 0) 686 return; 687 688 for (i = 0; i < numbufs; i++) { 689 if (dbp[i]) 690 dbuf_rele(dbp[i], tag); 691 } 692 693 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 694 } 695 696 /* 697 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 698 * indirect blocks prefeteched will be those that point to the blocks containing 699 * the data starting at offset, and continuing to offset + len. 700 * 701 * Note that if the indirect blocks above the blocks being prefetched are not 702 * in cache, they will be asychronously read in. 703 */ 704 void 705 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 706 uint64_t len, zio_priority_t pri) 707 { 708 dnode_t *dn; 709 uint64_t blkid; 710 int nblks, err; 711 712 if (len == 0) { /* they're interested in the bonus buffer */ 713 dn = DMU_META_DNODE(os); 714 715 if (object == 0 || object >= DN_MAX_OBJECT) 716 return; 717 718 rw_enter(&dn->dn_struct_rwlock, RW_READER); 719 blkid = dbuf_whichblock(dn, level, 720 object * sizeof (dnode_phys_t)); 721 dbuf_prefetch(dn, level, blkid, pri, 0); 722 rw_exit(&dn->dn_struct_rwlock); 723 return; 724 } 725 726 /* 727 * See comment before the definition of dmu_prefetch_max. 728 */ 729 len = MIN(len, dmu_prefetch_max); 730 731 /* 732 * XXX - Note, if the dnode for the requested object is not 733 * already cached, we will do a *synchronous* read in the 734 * dnode_hold() call. The same is true for any indirects. 735 */ 736 err = dnode_hold(os, object, FTAG, &dn); 737 if (err != 0) 738 return; 739 740 /* 741 * offset + len - 1 is the last byte we want to prefetch for, and offset 742 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 743 * last block we want to prefetch, and dbuf_whichblock(dn, level, 744 * offset) is the first. Then the number we need to prefetch is the 745 * last - first + 1. 746 */ 747 rw_enter(&dn->dn_struct_rwlock, RW_READER); 748 if (level > 0 || dn->dn_datablkshift != 0) { 749 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 750 dbuf_whichblock(dn, level, offset) + 1; 751 } else { 752 nblks = (offset < dn->dn_datablksz); 753 } 754 755 if (nblks != 0) { 756 blkid = dbuf_whichblock(dn, level, offset); 757 for (int i = 0; i < nblks; i++) 758 dbuf_prefetch(dn, level, blkid + i, pri, 0); 759 } 760 rw_exit(&dn->dn_struct_rwlock); 761 762 dnode_rele(dn, FTAG); 763 } 764 765 /* 766 * Get the next "chunk" of file data to free. We traverse the file from 767 * the end so that the file gets shorter over time (if we crashes in the 768 * middle, this will leave us in a better state). We find allocated file 769 * data by simply searching the allocated level 1 indirects. 770 * 771 * On input, *start should be the first offset that does not need to be 772 * freed (e.g. "offset + length"). On return, *start will be the first 773 * offset that should be freed. 774 */ 775 static int 776 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 777 { 778 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 779 /* bytes of data covered by a level-1 indirect block */ 780 uint64_t iblkrange = 781 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 782 783 ASSERT3U(minimum, <=, *start); 784 785 if (*start - minimum <= iblkrange * maxblks) { 786 *start = minimum; 787 return (0); 788 } 789 ASSERT(ISP2(iblkrange)); 790 791 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 792 int err; 793 794 /* 795 * dnode_next_offset(BACKWARDS) will find an allocated L1 796 * indirect block at or before the input offset. We must 797 * decrement *start so that it is at the end of the region 798 * to search. 799 */ 800 (*start)--; 801 err = dnode_next_offset(dn, 802 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 803 804 /* if there are no indirect blocks before start, we are done */ 805 if (err == ESRCH) { 806 *start = minimum; 807 break; 808 } else if (err != 0) { 809 return (err); 810 } 811 812 /* set start to the beginning of this L1 indirect */ 813 *start = P2ALIGN(*start, iblkrange); 814 } 815 if (*start < minimum) 816 *start = minimum; 817 return (0); 818 } 819 820 /* 821 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 822 * otherwise return false. 823 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 824 */ 825 /*ARGSUSED*/ 826 static boolean_t 827 dmu_objset_zfs_unmounting(objset_t *os) 828 { 829 #ifdef _KERNEL 830 if (dmu_objset_type(os) == DMU_OST_ZFS) 831 return (zfs_get_vfs_flag_unmounted(os)); 832 #endif 833 return (B_FALSE); 834 } 835 836 static int 837 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 838 uint64_t length) 839 { 840 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 841 int err; 842 uint64_t dirty_frees_threshold; 843 dsl_pool_t *dp = dmu_objset_pool(os); 844 845 if (offset >= object_size) 846 return (0); 847 848 if (zfs_per_txg_dirty_frees_percent <= 100) 849 dirty_frees_threshold = 850 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 851 else 852 dirty_frees_threshold = zfs_dirty_data_max / 4; 853 854 if (length == DMU_OBJECT_END || offset + length > object_size) 855 length = object_size - offset; 856 857 while (length != 0) { 858 uint64_t chunk_end, chunk_begin, chunk_len; 859 uint64_t long_free_dirty_all_txgs = 0; 860 dmu_tx_t *tx; 861 862 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 863 return (SET_ERROR(EINTR)); 864 865 chunk_end = chunk_begin = offset + length; 866 867 /* move chunk_begin backwards to the beginning of this chunk */ 868 err = get_next_chunk(dn, &chunk_begin, offset); 869 if (err) 870 return (err); 871 ASSERT3U(chunk_begin, >=, offset); 872 ASSERT3U(chunk_begin, <=, chunk_end); 873 874 chunk_len = chunk_end - chunk_begin; 875 876 mutex_enter(&dp->dp_lock); 877 for (int t = 0; t < TXG_SIZE; t++) { 878 long_free_dirty_all_txgs += 879 dp->dp_long_free_dirty_pertxg[t]; 880 } 881 mutex_exit(&dp->dp_lock); 882 883 /* 884 * To avoid filling up a TXG with just frees wait for 885 * the next TXG to open before freeing more chunks if 886 * we have reached the threshold of frees 887 */ 888 if (dirty_frees_threshold != 0 && 889 long_free_dirty_all_txgs >= dirty_frees_threshold) { 890 txg_wait_open(dp, 0, B_TRUE); 891 continue; 892 } 893 894 tx = dmu_tx_create(os); 895 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 896 897 /* 898 * Mark this transaction as typically resulting in a net 899 * reduction in space used. 900 */ 901 dmu_tx_mark_netfree(tx); 902 err = dmu_tx_assign(tx, TXG_WAIT); 903 if (err) { 904 dmu_tx_abort(tx); 905 return (err); 906 } 907 908 mutex_enter(&dp->dp_lock); 909 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] += 910 chunk_len; 911 mutex_exit(&dp->dp_lock); 912 DTRACE_PROBE3(free__long__range, 913 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len, 914 uint64_t, dmu_tx_get_txg(tx)); 915 dnode_free_range(dn, chunk_begin, chunk_len, tx); 916 917 dmu_tx_commit(tx); 918 919 length -= chunk_len; 920 } 921 return (0); 922 } 923 924 int 925 dmu_free_long_range(objset_t *os, uint64_t object, 926 uint64_t offset, uint64_t length) 927 { 928 dnode_t *dn; 929 int err; 930 931 err = dnode_hold(os, object, FTAG, &dn); 932 if (err != 0) 933 return (err); 934 err = dmu_free_long_range_impl(os, dn, offset, length); 935 936 /* 937 * It is important to zero out the maxblkid when freeing the entire 938 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 939 * will take the fast path, and (b) dnode_reallocate() can verify 940 * that the entire file has been freed. 941 */ 942 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 943 dn->dn_maxblkid = 0; 944 945 dnode_rele(dn, FTAG); 946 return (err); 947 } 948 949 int 950 dmu_free_long_object(objset_t *os, uint64_t object) 951 { 952 dmu_tx_t *tx; 953 int err; 954 955 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 956 if (err != 0) 957 return (err); 958 959 tx = dmu_tx_create(os); 960 dmu_tx_hold_bonus(tx, object); 961 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 962 dmu_tx_mark_netfree(tx); 963 err = dmu_tx_assign(tx, TXG_WAIT); 964 if (err == 0) { 965 if (err == 0) 966 err = dmu_object_free(os, object, tx); 967 968 dmu_tx_commit(tx); 969 } else { 970 dmu_tx_abort(tx); 971 } 972 973 return (err); 974 } 975 976 int 977 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 978 uint64_t size, dmu_tx_t *tx) 979 { 980 dnode_t *dn; 981 int err = dnode_hold(os, object, FTAG, &dn); 982 if (err) 983 return (err); 984 ASSERT(offset < UINT64_MAX); 985 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset); 986 dnode_free_range(dn, offset, size, tx); 987 dnode_rele(dn, FTAG); 988 return (0); 989 } 990 991 static int 992 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 993 void *buf, uint32_t flags) 994 { 995 dmu_buf_t **dbp; 996 int numbufs, err = 0; 997 998 /* 999 * Deal with odd block sizes, where there can't be data past the first 1000 * block. If we ever do the tail block optimization, we will need to 1001 * handle that here as well. 1002 */ 1003 if (dn->dn_maxblkid == 0) { 1004 int newsz = offset > dn->dn_datablksz ? 0 : 1005 MIN(size, dn->dn_datablksz - offset); 1006 bzero((char *)buf + newsz, size - newsz); 1007 size = newsz; 1008 } 1009 1010 while (size > 0) { 1011 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 1012 int i; 1013 1014 /* 1015 * NB: we could do this block-at-a-time, but it's nice 1016 * to be reading in parallel. 1017 */ 1018 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 1019 TRUE, FTAG, &numbufs, &dbp, flags); 1020 if (err) 1021 break; 1022 1023 for (i = 0; i < numbufs; i++) { 1024 int tocpy; 1025 int bufoff; 1026 dmu_buf_t *db = dbp[i]; 1027 1028 ASSERT(size > 0); 1029 1030 bufoff = offset - db->db_offset; 1031 tocpy = (int)MIN(db->db_size - bufoff, size); 1032 1033 bcopy((char *)db->db_data + bufoff, buf, tocpy); 1034 1035 offset += tocpy; 1036 size -= tocpy; 1037 buf = (char *)buf + tocpy; 1038 } 1039 dmu_buf_rele_array(dbp, numbufs, FTAG); 1040 } 1041 return (err); 1042 } 1043 1044 int 1045 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1046 void *buf, uint32_t flags) 1047 { 1048 dnode_t *dn; 1049 int err; 1050 1051 err = dnode_hold(os, object, FTAG, &dn); 1052 if (err != 0) 1053 return (err); 1054 1055 err = dmu_read_impl(dn, offset, size, buf, flags); 1056 dnode_rele(dn, FTAG); 1057 return (err); 1058 } 1059 1060 int 1061 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 1062 uint32_t flags) 1063 { 1064 return (dmu_read_impl(dn, offset, size, buf, flags)); 1065 } 1066 1067 static void 1068 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 1069 const void *buf, dmu_tx_t *tx) 1070 { 1071 int i; 1072 1073 for (i = 0; i < numbufs; i++) { 1074 int tocpy; 1075 int bufoff; 1076 dmu_buf_t *db = dbp[i]; 1077 1078 ASSERT(size > 0); 1079 1080 bufoff = offset - db->db_offset; 1081 tocpy = (int)MIN(db->db_size - bufoff, size); 1082 1083 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1084 1085 if (tocpy == db->db_size) 1086 dmu_buf_will_fill(db, tx); 1087 else 1088 dmu_buf_will_dirty(db, tx); 1089 1090 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 1091 1092 if (tocpy == db->db_size) 1093 dmu_buf_fill_done(db, tx); 1094 1095 offset += tocpy; 1096 size -= tocpy; 1097 buf = (char *)buf + tocpy; 1098 } 1099 } 1100 1101 void 1102 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1103 const void *buf, dmu_tx_t *tx) 1104 { 1105 dmu_buf_t **dbp; 1106 int numbufs; 1107 1108 if (size == 0) 1109 return; 1110 1111 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 1112 FALSE, FTAG, &numbufs, &dbp)); 1113 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1114 dmu_buf_rele_array(dbp, numbufs, FTAG); 1115 } 1116 1117 void 1118 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1119 const void *buf, dmu_tx_t *tx) 1120 { 1121 dmu_buf_t **dbp; 1122 int numbufs; 1123 1124 if (size == 0) 1125 return; 1126 1127 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1128 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1129 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1130 dmu_buf_rele_array(dbp, numbufs, FTAG); 1131 } 1132 1133 static int 1134 dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn, 1135 uint64_t last_removal_txg, uint64_t offset) 1136 { 1137 uint64_t l1blkid = dbuf_whichblock(dn, 1, offset); 1138 int err = 0; 1139 1140 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1141 dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1142 ASSERT3P(dbuf, !=, NULL); 1143 1144 /* 1145 * If the block hasn't been written yet, this default will ensure 1146 * we don't try to remap it. 1147 */ 1148 uint64_t birth = UINT64_MAX; 1149 ASSERT3U(last_removal_txg, !=, UINT64_MAX); 1150 if (dbuf->db_blkptr != NULL) 1151 birth = dbuf->db_blkptr->blk_birth; 1152 rw_exit(&dn->dn_struct_rwlock); 1153 1154 /* 1155 * If this L1 was already written after the last removal, then we've 1156 * already tried to remap it. 1157 */ 1158 if (birth <= last_removal_txg && 1159 dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 && 1160 dbuf_can_remap(dbuf)) { 1161 dmu_tx_t *tx = dmu_tx_create(os); 1162 dmu_tx_hold_remap_l1indirect(tx, dn->dn_object); 1163 err = dmu_tx_assign(tx, TXG_WAIT); 1164 if (err == 0) { 1165 (void) dbuf_dirty(dbuf, tx); 1166 dmu_tx_commit(tx); 1167 } else { 1168 dmu_tx_abort(tx); 1169 } 1170 } 1171 1172 dbuf_rele(dbuf, FTAG); 1173 1174 delay(zfs_object_remap_one_indirect_delay_ticks); 1175 1176 return (err); 1177 } 1178 1179 /* 1180 * Remap all blockpointers in the object, if possible, so that they reference 1181 * only concrete vdevs. 1182 * 1183 * To do this, iterate over the L0 blockpointers and remap any that reference 1184 * an indirect vdev. Note that we only examine L0 blockpointers; since we 1185 * cannot guarantee that we can remap all blockpointer anyways (due to split 1186 * blocks), we do not want to make the code unnecessarily complicated to 1187 * catch the unlikely case that there is an L1 block on an indirect vdev that 1188 * contains no indirect blockpointers. 1189 */ 1190 int 1191 dmu_object_remap_indirects(objset_t *os, uint64_t object, 1192 uint64_t last_removal_txg) 1193 { 1194 uint64_t offset, l1span; 1195 int err; 1196 dnode_t *dn; 1197 1198 err = dnode_hold(os, object, FTAG, &dn); 1199 if (err != 0) { 1200 return (err); 1201 } 1202 1203 if (dn->dn_nlevels <= 1) { 1204 if (issig(JUSTLOOKING) && issig(FORREAL)) { 1205 err = SET_ERROR(EINTR); 1206 } 1207 1208 /* 1209 * If the dnode has no indirect blocks, we cannot dirty them. 1210 * We still want to remap the blkptr(s) in the dnode if 1211 * appropriate, so mark it as dirty. 1212 */ 1213 if (err == 0 && dnode_needs_remap(dn)) { 1214 dmu_tx_t *tx = dmu_tx_create(os); 1215 dmu_tx_hold_bonus(tx, dn->dn_object); 1216 if ((err = dmu_tx_assign(tx, TXG_WAIT)) == 0) { 1217 dnode_setdirty(dn, tx); 1218 dmu_tx_commit(tx); 1219 } else { 1220 dmu_tx_abort(tx); 1221 } 1222 } 1223 1224 dnode_rele(dn, FTAG); 1225 return (err); 1226 } 1227 1228 offset = 0; 1229 l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT + 1230 dn->dn_datablkshift); 1231 /* 1232 * Find the next L1 indirect that is not a hole. 1233 */ 1234 while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) { 1235 if (issig(JUSTLOOKING) && issig(FORREAL)) { 1236 err = SET_ERROR(EINTR); 1237 break; 1238 } 1239 if ((err = dmu_object_remap_one_indirect(os, dn, 1240 last_removal_txg, offset)) != 0) { 1241 break; 1242 } 1243 offset += l1span; 1244 } 1245 1246 dnode_rele(dn, FTAG); 1247 return (err); 1248 } 1249 1250 void 1251 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1252 dmu_tx_t *tx) 1253 { 1254 dmu_buf_t **dbp; 1255 int numbufs, i; 1256 1257 if (size == 0) 1258 return; 1259 1260 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1261 FALSE, FTAG, &numbufs, &dbp)); 1262 1263 for (i = 0; i < numbufs; i++) { 1264 dmu_buf_t *db = dbp[i]; 1265 1266 dmu_buf_will_not_fill(db, tx); 1267 } 1268 dmu_buf_rele_array(dbp, numbufs, FTAG); 1269 } 1270 1271 void 1272 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1273 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1274 int compressed_size, int byteorder, dmu_tx_t *tx) 1275 { 1276 dmu_buf_t *db; 1277 1278 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1279 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1280 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1281 FTAG, &db)); 1282 1283 dmu_buf_write_embedded(db, 1284 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1285 uncompressed_size, compressed_size, byteorder, tx); 1286 1287 dmu_buf_rele(db, FTAG); 1288 } 1289 1290 /* 1291 * DMU support for xuio 1292 */ 1293 kstat_t *xuio_ksp = NULL; 1294 1295 int 1296 dmu_xuio_init(xuio_t *xuio, int nblk) 1297 { 1298 dmu_xuio_t *priv; 1299 uio_t *uio = &xuio->xu_uio; 1300 1301 uio->uio_iovcnt = nblk; 1302 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 1303 1304 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 1305 priv->cnt = nblk; 1306 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 1307 priv->iovp = uio->uio_iov; 1308 XUIO_XUZC_PRIV(xuio) = priv; 1309 1310 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1311 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 1312 else 1313 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 1314 1315 return (0); 1316 } 1317 1318 void 1319 dmu_xuio_fini(xuio_t *xuio) 1320 { 1321 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1322 int nblk = priv->cnt; 1323 1324 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 1325 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 1326 kmem_free(priv, sizeof (dmu_xuio_t)); 1327 1328 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1329 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 1330 else 1331 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 1332 } 1333 1334 /* 1335 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 1336 * and increase priv->next by 1. 1337 */ 1338 int 1339 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 1340 { 1341 struct iovec *iov; 1342 uio_t *uio = &xuio->xu_uio; 1343 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1344 int i = priv->next++; 1345 1346 ASSERT(i < priv->cnt); 1347 ASSERT(off + n <= arc_buf_lsize(abuf)); 1348 iov = uio->uio_iov + i; 1349 iov->iov_base = (char *)abuf->b_data + off; 1350 iov->iov_len = n; 1351 priv->bufs[i] = abuf; 1352 return (0); 1353 } 1354 1355 int 1356 dmu_xuio_cnt(xuio_t *xuio) 1357 { 1358 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1359 return (priv->cnt); 1360 } 1361 1362 arc_buf_t * 1363 dmu_xuio_arcbuf(xuio_t *xuio, int i) 1364 { 1365 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1366 1367 ASSERT(i < priv->cnt); 1368 return (priv->bufs[i]); 1369 } 1370 1371 void 1372 dmu_xuio_clear(xuio_t *xuio, int i) 1373 { 1374 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1375 1376 ASSERT(i < priv->cnt); 1377 priv->bufs[i] = NULL; 1378 } 1379 1380 static void 1381 xuio_stat_init(void) 1382 { 1383 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 1384 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 1385 KSTAT_FLAG_VIRTUAL); 1386 if (xuio_ksp != NULL) { 1387 xuio_ksp->ks_data = &xuio_stats; 1388 kstat_install(xuio_ksp); 1389 } 1390 } 1391 1392 static void 1393 xuio_stat_fini(void) 1394 { 1395 if (xuio_ksp != NULL) { 1396 kstat_delete(xuio_ksp); 1397 xuio_ksp = NULL; 1398 } 1399 } 1400 1401 void 1402 xuio_stat_wbuf_copied(void) 1403 { 1404 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1405 } 1406 1407 void 1408 xuio_stat_wbuf_nocopy(void) 1409 { 1410 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1411 } 1412 1413 #ifdef _KERNEL 1414 int 1415 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1416 { 1417 dmu_buf_t **dbp; 1418 int numbufs, i, err; 1419 xuio_t *xuio = NULL; 1420 1421 /* 1422 * NB: we could do this block-at-a-time, but it's nice 1423 * to be reading in parallel. 1424 */ 1425 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1426 TRUE, FTAG, &numbufs, &dbp, 0); 1427 if (err) 1428 return (err); 1429 1430 if (uio->uio_extflg == UIO_XUIO) 1431 xuio = (xuio_t *)uio; 1432 1433 for (i = 0; i < numbufs; i++) { 1434 int tocpy; 1435 int bufoff; 1436 dmu_buf_t *db = dbp[i]; 1437 1438 ASSERT(size > 0); 1439 1440 bufoff = uio->uio_loffset - db->db_offset; 1441 tocpy = (int)MIN(db->db_size - bufoff, size); 1442 1443 if (xuio) { 1444 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1445 arc_buf_t *dbuf_abuf = dbi->db_buf; 1446 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1447 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1448 if (!err) { 1449 uio->uio_resid -= tocpy; 1450 uio->uio_loffset += tocpy; 1451 } 1452 1453 if (abuf == dbuf_abuf) 1454 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1455 else 1456 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1457 } else { 1458 err = uiomove((char *)db->db_data + bufoff, tocpy, 1459 UIO_READ, uio); 1460 } 1461 if (err) 1462 break; 1463 1464 size -= tocpy; 1465 } 1466 dmu_buf_rele_array(dbp, numbufs, FTAG); 1467 1468 return (err); 1469 } 1470 1471 /* 1472 * Read 'size' bytes into the uio buffer. 1473 * From object zdb->db_object. 1474 * Starting at offset uio->uio_loffset. 1475 * 1476 * If the caller already has a dbuf in the target object 1477 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1478 * because we don't have to find the dnode_t for the object. 1479 */ 1480 int 1481 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1482 { 1483 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1484 dnode_t *dn; 1485 int err; 1486 1487 if (size == 0) 1488 return (0); 1489 1490 DB_DNODE_ENTER(db); 1491 dn = DB_DNODE(db); 1492 err = dmu_read_uio_dnode(dn, uio, size); 1493 DB_DNODE_EXIT(db); 1494 1495 return (err); 1496 } 1497 1498 /* 1499 * Read 'size' bytes into the uio buffer. 1500 * From the specified object 1501 * Starting at offset uio->uio_loffset. 1502 */ 1503 int 1504 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1505 { 1506 dnode_t *dn; 1507 int err; 1508 1509 if (size == 0) 1510 return (0); 1511 1512 err = dnode_hold(os, object, FTAG, &dn); 1513 if (err) 1514 return (err); 1515 1516 err = dmu_read_uio_dnode(dn, uio, size); 1517 1518 dnode_rele(dn, FTAG); 1519 1520 return (err); 1521 } 1522 1523 int 1524 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1525 { 1526 dmu_buf_t **dbp; 1527 int numbufs; 1528 int err = 0; 1529 int i; 1530 1531 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1532 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1533 if (err) 1534 return (err); 1535 1536 for (i = 0; i < numbufs; i++) { 1537 int tocpy; 1538 int bufoff; 1539 dmu_buf_t *db = dbp[i]; 1540 1541 ASSERT(size > 0); 1542 1543 bufoff = uio->uio_loffset - db->db_offset; 1544 tocpy = (int)MIN(db->db_size - bufoff, size); 1545 1546 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1547 1548 if (tocpy == db->db_size) 1549 dmu_buf_will_fill(db, tx); 1550 else 1551 dmu_buf_will_dirty(db, tx); 1552 1553 /* 1554 * XXX uiomove could block forever (eg. nfs-backed 1555 * pages). There needs to be a uiolockdown() function 1556 * to lock the pages in memory, so that uiomove won't 1557 * block. 1558 */ 1559 err = uiomove((char *)db->db_data + bufoff, tocpy, 1560 UIO_WRITE, uio); 1561 1562 if (tocpy == db->db_size) 1563 dmu_buf_fill_done(db, tx); 1564 1565 if (err) 1566 break; 1567 1568 size -= tocpy; 1569 } 1570 1571 dmu_buf_rele_array(dbp, numbufs, FTAG); 1572 return (err); 1573 } 1574 1575 /* 1576 * Write 'size' bytes from the uio buffer. 1577 * To object zdb->db_object. 1578 * Starting at offset uio->uio_loffset. 1579 * 1580 * If the caller already has a dbuf in the target object 1581 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1582 * because we don't have to find the dnode_t for the object. 1583 */ 1584 int 1585 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1586 dmu_tx_t *tx) 1587 { 1588 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1589 dnode_t *dn; 1590 int err; 1591 1592 if (size == 0) 1593 return (0); 1594 1595 DB_DNODE_ENTER(db); 1596 dn = DB_DNODE(db); 1597 err = dmu_write_uio_dnode(dn, uio, size, tx); 1598 DB_DNODE_EXIT(db); 1599 1600 return (err); 1601 } 1602 1603 /* 1604 * Write 'size' bytes from the uio buffer. 1605 * To the specified object. 1606 * Starting at offset uio->uio_loffset. 1607 */ 1608 int 1609 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1610 dmu_tx_t *tx) 1611 { 1612 dnode_t *dn; 1613 int err; 1614 1615 if (size == 0) 1616 return (0); 1617 1618 err = dnode_hold(os, object, FTAG, &dn); 1619 if (err) 1620 return (err); 1621 1622 err = dmu_write_uio_dnode(dn, uio, size, tx); 1623 1624 dnode_rele(dn, FTAG); 1625 1626 return (err); 1627 } 1628 1629 int 1630 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1631 page_t *pp, dmu_tx_t *tx) 1632 { 1633 dmu_buf_t **dbp; 1634 int numbufs, i; 1635 int err; 1636 1637 if (size == 0) 1638 return (0); 1639 1640 err = dmu_buf_hold_array(os, object, offset, size, 1641 FALSE, FTAG, &numbufs, &dbp); 1642 if (err) 1643 return (err); 1644 1645 for (i = 0; i < numbufs; i++) { 1646 int tocpy, copied, thiscpy; 1647 int bufoff; 1648 dmu_buf_t *db = dbp[i]; 1649 caddr_t va; 1650 1651 ASSERT(size > 0); 1652 ASSERT3U(db->db_size, >=, PAGESIZE); 1653 1654 bufoff = offset - db->db_offset; 1655 tocpy = (int)MIN(db->db_size - bufoff, size); 1656 1657 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1658 1659 if (tocpy == db->db_size) 1660 dmu_buf_will_fill(db, tx); 1661 else 1662 dmu_buf_will_dirty(db, tx); 1663 1664 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1665 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1666 thiscpy = MIN(PAGESIZE, tocpy - copied); 1667 va = zfs_map_page(pp, S_READ); 1668 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1669 zfs_unmap_page(pp, va); 1670 pp = pp->p_next; 1671 bufoff += PAGESIZE; 1672 } 1673 1674 if (tocpy == db->db_size) 1675 dmu_buf_fill_done(db, tx); 1676 1677 offset += tocpy; 1678 size -= tocpy; 1679 } 1680 dmu_buf_rele_array(dbp, numbufs, FTAG); 1681 return (err); 1682 } 1683 #endif 1684 1685 /* 1686 * Allocate a loaned anonymous arc buffer. 1687 */ 1688 arc_buf_t * 1689 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1690 { 1691 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1692 1693 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1694 } 1695 1696 /* 1697 * Free a loaned arc buffer. 1698 */ 1699 void 1700 dmu_return_arcbuf(arc_buf_t *buf) 1701 { 1702 arc_return_buf(buf, FTAG); 1703 arc_buf_destroy(buf, FTAG); 1704 } 1705 1706 void 1707 dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset, 1708 dmu_buf_t *handle, dmu_tx_t *tx) 1709 { 1710 dmu_buf_t *dst_handle; 1711 dmu_buf_impl_t *dstdb; 1712 dmu_buf_impl_t *srcdb = (dmu_buf_impl_t *)handle; 1713 dmu_object_type_t type; 1714 arc_buf_t *abuf; 1715 uint64_t datalen; 1716 boolean_t byteorder; 1717 uint8_t salt[ZIO_DATA_SALT_LEN]; 1718 uint8_t iv[ZIO_DATA_IV_LEN]; 1719 uint8_t mac[ZIO_DATA_MAC_LEN]; 1720 1721 ASSERT3P(srcdb->db_buf, !=, NULL); 1722 1723 /* hold the db that we want to write to */ 1724 VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &dst_handle, 1725 DMU_READ_NO_DECRYPT)); 1726 dstdb = (dmu_buf_impl_t *)dst_handle; 1727 datalen = arc_buf_size(srcdb->db_buf); 1728 1729 DB_DNODE_ENTER(dstdb); 1730 type = DB_DNODE(dstdb)->dn_type; 1731 DB_DNODE_EXIT(dstdb); 1732 1733 /* allocated an arc buffer that matches the type of srcdb->db_buf */ 1734 if (arc_is_encrypted(srcdb->db_buf)) { 1735 arc_get_raw_params(srcdb->db_buf, &byteorder, salt, iv, mac); 1736 abuf = arc_loan_raw_buf(os->os_spa, dmu_objset_id(os), 1737 byteorder, salt, iv, mac, type, 1738 datalen, arc_buf_lsize(srcdb->db_buf), 1739 arc_get_compression(srcdb->db_buf)); 1740 } else { 1741 /* we won't get a compressed db back from dmu_buf_hold() */ 1742 ASSERT3U(arc_get_compression(srcdb->db_buf), 1743 ==, ZIO_COMPRESS_OFF); 1744 abuf = arc_loan_buf(os->os_spa, 1745 DMU_OT_IS_METADATA(type), datalen); 1746 } 1747 1748 ASSERT3U(datalen, ==, arc_buf_size(abuf)); 1749 1750 /* copy the data to the new buffer and assign it to the dstdb */ 1751 bcopy(srcdb->db_buf->b_data, abuf->b_data, datalen); 1752 dbuf_assign_arcbuf(dstdb, abuf, tx); 1753 dmu_buf_rele(dst_handle, FTAG); 1754 } 1755 1756 /* 1757 * When possible directly assign passed loaned arc buffer to a dbuf. 1758 * If this is not possible copy the contents of passed arc buf via 1759 * dmu_write(). 1760 */ 1761 int 1762 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, 1763 dmu_tx_t *tx) 1764 { 1765 dmu_buf_impl_t *db; 1766 objset_t *os = dn->dn_objset; 1767 uint64_t object = dn->dn_object; 1768 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1769 uint64_t blkid; 1770 1771 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1772 blkid = dbuf_whichblock(dn, 0, offset); 1773 db = dbuf_hold(dn, blkid, FTAG); 1774 if (db == NULL) 1775 return (SET_ERROR(EIO)); 1776 rw_exit(&dn->dn_struct_rwlock); 1777 1778 /* 1779 * We can only assign if the offset is aligned, the arc buf is the 1780 * same size as the dbuf, and the dbuf is not metadata. 1781 */ 1782 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1783 dbuf_assign_arcbuf(db, buf, tx); 1784 dbuf_rele(db, FTAG); 1785 } else { 1786 /* compressed bufs must always be assignable to their dbuf */ 1787 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1788 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1789 1790 os = dn->dn_objset; 1791 object = dn->dn_object; 1792 dbuf_rele(db, FTAG); 1793 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1794 dmu_return_arcbuf(buf); 1795 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1796 } 1797 1798 return (0); 1799 } 1800 1801 int 1802 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1803 dmu_tx_t *tx) 1804 { 1805 int err; 1806 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1807 1808 DB_DNODE_ENTER(dbuf); 1809 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx); 1810 DB_DNODE_EXIT(dbuf); 1811 1812 return (err); 1813 } 1814 1815 typedef struct { 1816 dbuf_dirty_record_t *dsa_dr; 1817 dmu_sync_cb_t *dsa_done; 1818 zgd_t *dsa_zgd; 1819 dmu_tx_t *dsa_tx; 1820 } dmu_sync_arg_t; 1821 1822 /* ARGSUSED */ 1823 static void 1824 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1825 { 1826 dmu_sync_arg_t *dsa = varg; 1827 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1828 blkptr_t *bp = zio->io_bp; 1829 1830 if (zio->io_error == 0) { 1831 if (BP_IS_HOLE(bp)) { 1832 /* 1833 * A block of zeros may compress to a hole, but the 1834 * block size still needs to be known for replay. 1835 */ 1836 BP_SET_LSIZE(bp, db->db_size); 1837 } else if (!BP_IS_EMBEDDED(bp)) { 1838 ASSERT(BP_GET_LEVEL(bp) == 0); 1839 BP_SET_FILL(bp, 1); 1840 } 1841 } 1842 } 1843 1844 static void 1845 dmu_sync_late_arrival_ready(zio_t *zio) 1846 { 1847 dmu_sync_ready(zio, NULL, zio->io_private); 1848 } 1849 1850 /* ARGSUSED */ 1851 static void 1852 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1853 { 1854 dmu_sync_arg_t *dsa = varg; 1855 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1856 dmu_buf_impl_t *db = dr->dr_dbuf; 1857 zgd_t *zgd = dsa->dsa_zgd; 1858 1859 /* 1860 * Record the vdev(s) backing this blkptr so they can be flushed after 1861 * the writes for the lwb have completed. 1862 */ 1863 if (zio->io_error == 0) { 1864 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1865 } 1866 1867 mutex_enter(&db->db_mtx); 1868 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1869 if (zio->io_error == 0) { 1870 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1871 if (dr->dt.dl.dr_nopwrite) { 1872 blkptr_t *bp = zio->io_bp; 1873 blkptr_t *bp_orig = &zio->io_bp_orig; 1874 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1875 1876 ASSERT(BP_EQUAL(bp, bp_orig)); 1877 VERIFY(BP_EQUAL(bp, db->db_blkptr)); 1878 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1879 ASSERT(zio_checksum_table[chksum].ci_flags & 1880 ZCHECKSUM_FLAG_NOPWRITE); 1881 } 1882 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1883 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1884 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1885 1886 /* 1887 * Old style holes are filled with all zeros, whereas 1888 * new-style holes maintain their lsize, type, level, 1889 * and birth time (see zio_write_compress). While we 1890 * need to reset the BP_SET_LSIZE() call that happened 1891 * in dmu_sync_ready for old style holes, we do *not* 1892 * want to wipe out the information contained in new 1893 * style holes. Thus, only zero out the block pointer if 1894 * it's an old style hole. 1895 */ 1896 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1897 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1898 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1899 } else { 1900 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1901 } 1902 cv_broadcast(&db->db_changed); 1903 mutex_exit(&db->db_mtx); 1904 1905 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1906 1907 kmem_free(dsa, sizeof (*dsa)); 1908 } 1909 1910 static void 1911 dmu_sync_late_arrival_done(zio_t *zio) 1912 { 1913 blkptr_t *bp = zio->io_bp; 1914 dmu_sync_arg_t *dsa = zio->io_private; 1915 blkptr_t *bp_orig = &zio->io_bp_orig; 1916 zgd_t *zgd = dsa->dsa_zgd; 1917 1918 if (zio->io_error == 0) { 1919 /* 1920 * Record the vdev(s) backing this blkptr so they can be 1921 * flushed after the writes for the lwb have completed. 1922 */ 1923 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1924 1925 if (!BP_IS_HOLE(bp)) { 1926 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); 1927 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1928 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1929 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1930 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1931 } 1932 } 1933 1934 dmu_tx_commit(dsa->dsa_tx); 1935 1936 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1937 1938 abd_put(zio->io_abd); 1939 kmem_free(dsa, sizeof (*dsa)); 1940 } 1941 1942 static int 1943 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1944 zio_prop_t *zp, zbookmark_phys_t *zb) 1945 { 1946 dmu_sync_arg_t *dsa; 1947 dmu_tx_t *tx; 1948 1949 tx = dmu_tx_create(os); 1950 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1951 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1952 dmu_tx_abort(tx); 1953 /* Make zl_get_data do txg_waited_synced() */ 1954 return (SET_ERROR(EIO)); 1955 } 1956 1957 /* 1958 * In order to prevent the zgd's lwb from being free'd prior to 1959 * dmu_sync_late_arrival_done() being called, we have to ensure 1960 * the lwb's "max txg" takes this tx's txg into account. 1961 */ 1962 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); 1963 1964 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1965 dsa->dsa_dr = NULL; 1966 dsa->dsa_done = done; 1967 dsa->dsa_zgd = zgd; 1968 dsa->dsa_tx = tx; 1969 1970 /* 1971 * Since we are currently syncing this txg, it's nontrivial to 1972 * determine what BP to nopwrite against, so we disable nopwrite. 1973 * 1974 * When syncing, the db_blkptr is initially the BP of the previous 1975 * txg. We can not nopwrite against it because it will be changed 1976 * (this is similar to the non-late-arrival case where the dbuf is 1977 * dirty in a future txg). 1978 * 1979 * Then dbuf_write_ready() sets bp_blkptr to the location we will write. 1980 * We can not nopwrite against it because although the BP will not 1981 * (typically) be changed, the data has not yet been persisted to this 1982 * location. 1983 * 1984 * Finally, when dbuf_write_done() is called, it is theoretically 1985 * possible to always nopwrite, because the data that was written in 1986 * this txg is the same data that we are trying to write. However we 1987 * would need to check that this dbuf is not dirty in any future 1988 * txg's (as we do in the normal dmu_sync() path). For simplicity, we 1989 * don't nopwrite in this case. 1990 */ 1991 zp->zp_nopwrite = B_FALSE; 1992 1993 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1994 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), 1995 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, 1996 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, 1997 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1998 1999 return (0); 2000 } 2001 2002 /* 2003 * Intent log support: sync the block associated with db to disk. 2004 * N.B. and XXX: the caller is responsible for making sure that the 2005 * data isn't changing while dmu_sync() is writing it. 2006 * 2007 * Return values: 2008 * 2009 * EEXIST: this txg has already been synced, so there's nothing to do. 2010 * The caller should not log the write. 2011 * 2012 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 2013 * The caller should not log the write. 2014 * 2015 * EALREADY: this block is already in the process of being synced. 2016 * The caller should track its progress (somehow). 2017 * 2018 * EIO: could not do the I/O. 2019 * The caller should do a txg_wait_synced(). 2020 * 2021 * 0: the I/O has been initiated. 2022 * The caller should log this blkptr in the done callback. 2023 * It is possible that the I/O will fail, in which case 2024 * the error will be reported to the done callback and 2025 * propagated to pio from zio_done(). 2026 */ 2027 int 2028 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 2029 { 2030 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 2031 objset_t *os = db->db_objset; 2032 dsl_dataset_t *ds = os->os_dsl_dataset; 2033 dbuf_dirty_record_t *dr; 2034 dmu_sync_arg_t *dsa; 2035 zbookmark_phys_t zb; 2036 zio_prop_t zp; 2037 dnode_t *dn; 2038 2039 ASSERT(pio != NULL); 2040 ASSERT(txg != 0); 2041 2042 SET_BOOKMARK(&zb, ds->ds_object, 2043 db->db.db_object, db->db_level, db->db_blkid); 2044 2045 DB_DNODE_ENTER(db); 2046 dn = DB_DNODE(db); 2047 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 2048 DB_DNODE_EXIT(db); 2049 2050 /* 2051 * If we're frozen (running ziltest), we always need to generate a bp. 2052 */ 2053 if (txg > spa_freeze_txg(os->os_spa)) 2054 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 2055 2056 /* 2057 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 2058 * and us. If we determine that this txg is not yet syncing, 2059 * but it begins to sync a moment later, that's OK because the 2060 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 2061 */ 2062 mutex_enter(&db->db_mtx); 2063 2064 if (txg <= spa_last_synced_txg(os->os_spa)) { 2065 /* 2066 * This txg has already synced. There's nothing to do. 2067 */ 2068 mutex_exit(&db->db_mtx); 2069 return (SET_ERROR(EEXIST)); 2070 } 2071 2072 if (txg <= spa_syncing_txg(os->os_spa)) { 2073 /* 2074 * This txg is currently syncing, so we can't mess with 2075 * the dirty record anymore; just write a new log block. 2076 */ 2077 mutex_exit(&db->db_mtx); 2078 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 2079 } 2080 2081 dr = db->db_last_dirty; 2082 while (dr && dr->dr_txg != txg) 2083 dr = dr->dr_next; 2084 2085 if (dr == NULL) { 2086 /* 2087 * There's no dr for this dbuf, so it must have been freed. 2088 * There's no need to log writes to freed blocks, so we're done. 2089 */ 2090 mutex_exit(&db->db_mtx); 2091 return (SET_ERROR(ENOENT)); 2092 } 2093 2094 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 2095 2096 if (db->db_blkptr != NULL) { 2097 /* 2098 * We need to fill in zgd_bp with the current blkptr so that 2099 * the nopwrite code can check if we're writing the same 2100 * data that's already on disk. We can only nopwrite if we 2101 * are sure that after making the copy, db_blkptr will not 2102 * change until our i/o completes. We ensure this by 2103 * holding the db_mtx, and only allowing nopwrite if the 2104 * block is not already dirty (see below). This is verified 2105 * by dmu_sync_done(), which VERIFYs that the db_blkptr has 2106 * not changed. 2107 */ 2108 *zgd->zgd_bp = *db->db_blkptr; 2109 } 2110 2111 /* 2112 * Assume the on-disk data is X, the current syncing data (in 2113 * txg - 1) is Y, and the current in-memory data is Z (currently 2114 * in dmu_sync). 2115 * 2116 * We usually want to perform a nopwrite if X and Z are the 2117 * same. However, if Y is different (i.e. the BP is going to 2118 * change before this write takes effect), then a nopwrite will 2119 * be incorrect - we would override with X, which could have 2120 * been freed when Y was written. 2121 * 2122 * (Note that this is not a concern when we are nop-writing from 2123 * syncing context, because X and Y must be identical, because 2124 * all previous txgs have been synced.) 2125 * 2126 * Therefore, we disable nopwrite if the current BP could change 2127 * before this TXG. There are two ways it could change: by 2128 * being dirty (dr_next is non-NULL), or by being freed 2129 * (dnode_block_freed()). This behavior is verified by 2130 * zio_done(), which VERIFYs that the override BP is identical 2131 * to the on-disk BP. 2132 */ 2133 DB_DNODE_ENTER(db); 2134 dn = DB_DNODE(db); 2135 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 2136 zp.zp_nopwrite = B_FALSE; 2137 DB_DNODE_EXIT(db); 2138 2139 ASSERT(dr->dr_txg == txg); 2140 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 2141 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 2142 /* 2143 * We have already issued a sync write for this buffer, 2144 * or this buffer has already been synced. It could not 2145 * have been dirtied since, or we would have cleared the state. 2146 */ 2147 mutex_exit(&db->db_mtx); 2148 return (SET_ERROR(EALREADY)); 2149 } 2150 2151 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 2152 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 2153 mutex_exit(&db->db_mtx); 2154 2155 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 2156 dsa->dsa_dr = dr; 2157 dsa->dsa_done = done; 2158 dsa->dsa_zgd = zgd; 2159 dsa->dsa_tx = NULL; 2160 2161 zio_nowait(arc_write(pio, os->os_spa, txg, 2162 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 2163 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 2164 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 2165 2166 return (0); 2167 } 2168 2169 int 2170 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx) 2171 { 2172 dnode_t *dn; 2173 int err; 2174 2175 err = dnode_hold(os, object, FTAG, &dn); 2176 if (err) 2177 return (err); 2178 err = dnode_set_nlevels(dn, nlevels, tx); 2179 dnode_rele(dn, FTAG); 2180 return (err); 2181 } 2182 2183 int 2184 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 2185 dmu_tx_t *tx) 2186 { 2187 dnode_t *dn; 2188 int err; 2189 2190 err = dnode_hold(os, object, FTAG, &dn); 2191 if (err) 2192 return (err); 2193 err = dnode_set_blksz(dn, size, ibs, tx); 2194 dnode_rele(dn, FTAG); 2195 return (err); 2196 } 2197 2198 int 2199 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, 2200 dmu_tx_t *tx) 2201 { 2202 dnode_t *dn; 2203 int err; 2204 2205 err = dnode_hold(os, object, FTAG, &dn); 2206 if (err) 2207 return (err); 2208 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2209 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE); 2210 rw_exit(&dn->dn_struct_rwlock); 2211 dnode_rele(dn, FTAG); 2212 return (0); 2213 } 2214 2215 void 2216 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 2217 dmu_tx_t *tx) 2218 { 2219 dnode_t *dn; 2220 2221 /* 2222 * Send streams include each object's checksum function. This 2223 * check ensures that the receiving system can understand the 2224 * checksum function transmitted. 2225 */ 2226 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 2227 2228 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 2229 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 2230 dn->dn_checksum = checksum; 2231 dnode_setdirty(dn, tx); 2232 dnode_rele(dn, FTAG); 2233 } 2234 2235 void 2236 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 2237 dmu_tx_t *tx) 2238 { 2239 dnode_t *dn; 2240 2241 /* 2242 * Send streams include each object's compression function. This 2243 * check ensures that the receiving system can understand the 2244 * compression function transmitted. 2245 */ 2246 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 2247 2248 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 2249 dn->dn_compress = compress; 2250 dnode_setdirty(dn, tx); 2251 dnode_rele(dn, FTAG); 2252 } 2253 2254 /* 2255 * When the "redundant_metadata" property is set to "most", only indirect 2256 * blocks of this level and higher will have an additional ditto block. 2257 */ 2258 int zfs_redundant_metadata_most_ditto_level = 2; 2259 2260 void 2261 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 2262 { 2263 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 2264 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 2265 (wp & WP_SPILL)); 2266 enum zio_checksum checksum = os->os_checksum; 2267 enum zio_compress compress = os->os_compress; 2268 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 2269 boolean_t dedup = B_FALSE; 2270 boolean_t nopwrite = B_FALSE; 2271 boolean_t dedup_verify = os->os_dedup_verify; 2272 boolean_t encrypt = B_FALSE; 2273 int copies = os->os_copies; 2274 2275 /* 2276 * We maintain different write policies for each of the following 2277 * types of data: 2278 * 1. metadata 2279 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 2280 * 3. all other level 0 blocks 2281 */ 2282 if (ismd) { 2283 /* 2284 * XXX -- we should design a compression algorithm 2285 * that specializes in arrays of bps. 2286 */ 2287 compress = zio_compress_select(os->os_spa, 2288 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 2289 2290 /* 2291 * Metadata always gets checksummed. If the data 2292 * checksum is multi-bit correctable, and it's not a 2293 * ZBT-style checksum, then it's suitable for metadata 2294 * as well. Otherwise, the metadata checksum defaults 2295 * to fletcher4. 2296 */ 2297 if (!(zio_checksum_table[checksum].ci_flags & 2298 ZCHECKSUM_FLAG_METADATA) || 2299 (zio_checksum_table[checksum].ci_flags & 2300 ZCHECKSUM_FLAG_EMBEDDED)) 2301 checksum = ZIO_CHECKSUM_FLETCHER_4; 2302 2303 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 2304 (os->os_redundant_metadata == 2305 ZFS_REDUNDANT_METADATA_MOST && 2306 (level >= zfs_redundant_metadata_most_ditto_level || 2307 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 2308 copies++; 2309 } else if (wp & WP_NOFILL) { 2310 ASSERT(level == 0); 2311 2312 /* 2313 * If we're writing preallocated blocks, we aren't actually 2314 * writing them so don't set any policy properties. These 2315 * blocks are currently only used by an external subsystem 2316 * outside of zfs (i.e. dump) and not written by the zio 2317 * pipeline. 2318 */ 2319 compress = ZIO_COMPRESS_OFF; 2320 checksum = ZIO_CHECKSUM_NOPARITY; 2321 } else { 2322 compress = zio_compress_select(os->os_spa, dn->dn_compress, 2323 compress); 2324 2325 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 2326 zio_checksum_select(dn->dn_checksum, checksum) : 2327 dedup_checksum; 2328 2329 /* 2330 * Determine dedup setting. If we are in dmu_sync(), 2331 * we won't actually dedup now because that's all 2332 * done in syncing context; but we do want to use the 2333 * dedup checkum. If the checksum is not strong 2334 * enough to ensure unique signatures, force 2335 * dedup_verify. 2336 */ 2337 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 2338 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 2339 if (!(zio_checksum_table[checksum].ci_flags & 2340 ZCHECKSUM_FLAG_DEDUP)) 2341 dedup_verify = B_TRUE; 2342 } 2343 2344 /* 2345 * Enable nopwrite if we have secure enough checksum 2346 * algorithm (see comment in zio_nop_write) and 2347 * compression is enabled. We don't enable nopwrite if 2348 * dedup is enabled as the two features are mutually 2349 * exclusive. 2350 */ 2351 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 2352 ZCHECKSUM_FLAG_NOPWRITE) && 2353 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 2354 } 2355 2356 /* 2357 * All objects in an encrypted objset are protected from modification 2358 * via a MAC. Encrypted objects store their IV and salt in the last DVA 2359 * in the bp, so we cannot use all copies. Encrypted objects are also 2360 * not subject to nopwrite since writing the same data will still 2361 * result in a new ciphertext. Only encrypted blocks can be dedup'd 2362 * to avoid ambiguity in the dedup code since the DDT does not store 2363 * object types. 2364 */ 2365 if (os->os_encrypted && (wp & WP_NOFILL) == 0) { 2366 encrypt = B_TRUE; 2367 2368 if (DMU_OT_IS_ENCRYPTED(type)) { 2369 copies = MIN(copies, SPA_DVAS_PER_BP - 1); 2370 nopwrite = B_FALSE; 2371 } else { 2372 dedup = B_FALSE; 2373 } 2374 2375 if (level <= 0 && 2376 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) { 2377 compress = ZIO_COMPRESS_EMPTY; 2378 } 2379 } 2380 2381 zp->zp_compress = compress; 2382 zp->zp_checksum = checksum; 2383 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2384 zp->zp_level = level; 2385 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2386 zp->zp_dedup = dedup; 2387 zp->zp_dedup_verify = dedup && dedup_verify; 2388 zp->zp_nopwrite = nopwrite; 2389 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ? 2390 os->os_zpl_special_smallblock : 0; 2391 zp->zp_encrypt = encrypt; 2392 zp->zp_byteorder = ZFS_HOST_BYTEORDER; 2393 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN); 2394 bzero(zp->zp_iv, ZIO_DATA_IV_LEN); 2395 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN); 2396 } 2397 2398 int 2399 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2400 { 2401 dnode_t *dn; 2402 int err; 2403 2404 /* 2405 * Sync any current changes before 2406 * we go trundling through the block pointers. 2407 */ 2408 err = dmu_object_wait_synced(os, object); 2409 if (err) { 2410 return (err); 2411 } 2412 2413 err = dnode_hold(os, object, FTAG, &dn); 2414 if (err) { 2415 return (err); 2416 } 2417 2418 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2419 dnode_rele(dn, FTAG); 2420 2421 return (err); 2422 } 2423 2424 /* 2425 * Given the ZFS object, if it contains any dirty nodes 2426 * this function flushes all dirty blocks to disk. This 2427 * ensures the DMU object info is updated. A more efficient 2428 * future version might just find the TXG with the maximum 2429 * ID and wait for that to be synced. 2430 */ 2431 int 2432 dmu_object_wait_synced(objset_t *os, uint64_t object) 2433 { 2434 dnode_t *dn; 2435 int error, i; 2436 2437 error = dnode_hold(os, object, FTAG, &dn); 2438 if (error) { 2439 return (error); 2440 } 2441 2442 mutex_enter(&dn->dn_mtx); 2443 for (i = 0; i < TXG_SIZE; i++) { 2444 if (list_link_active(&dn->dn_dirty_link[i]) || 2445 !list_is_empty(&dn->dn_dirty_records[i])) { 2446 break; 2447 } 2448 } 2449 mutex_exit(&dn->dn_mtx); 2450 2451 dnode_rele(dn, FTAG); 2452 if (i != TXG_SIZE) { 2453 txg_wait_synced(dmu_objset_pool(os), 0); 2454 } 2455 2456 return (0); 2457 } 2458 2459 void 2460 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2461 { 2462 dnode_phys_t *dnp; 2463 2464 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2465 mutex_enter(&dn->dn_mtx); 2466 2467 dnp = dn->dn_phys; 2468 2469 doi->doi_data_block_size = dn->dn_datablksz; 2470 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2471 1ULL << dn->dn_indblkshift : 0; 2472 doi->doi_type = dn->dn_type; 2473 doi->doi_bonus_type = dn->dn_bonustype; 2474 doi->doi_bonus_size = dn->dn_bonuslen; 2475 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT; 2476 doi->doi_indirection = dn->dn_nlevels; 2477 doi->doi_checksum = dn->dn_checksum; 2478 doi->doi_compress = dn->dn_compress; 2479 doi->doi_nblkptr = dn->dn_nblkptr; 2480 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2481 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2482 doi->doi_fill_count = 0; 2483 for (int i = 0; i < dnp->dn_nblkptr; i++) 2484 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2485 2486 mutex_exit(&dn->dn_mtx); 2487 rw_exit(&dn->dn_struct_rwlock); 2488 } 2489 2490 /* 2491 * Get information on a DMU object. 2492 * If doi is NULL, just indicates whether the object exists. 2493 */ 2494 int 2495 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2496 { 2497 dnode_t *dn; 2498 int err = dnode_hold(os, object, FTAG, &dn); 2499 2500 if (err) 2501 return (err); 2502 2503 if (doi != NULL) 2504 dmu_object_info_from_dnode(dn, doi); 2505 2506 dnode_rele(dn, FTAG); 2507 return (0); 2508 } 2509 2510 /* 2511 * As above, but faster; can be used when you have a held dbuf in hand. 2512 */ 2513 void 2514 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2515 { 2516 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2517 2518 DB_DNODE_ENTER(db); 2519 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2520 DB_DNODE_EXIT(db); 2521 } 2522 2523 /* 2524 * Faster still when you only care about the size. 2525 * This is specifically optimized for zfs_getattr(). 2526 */ 2527 void 2528 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2529 u_longlong_t *nblk512) 2530 { 2531 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2532 dnode_t *dn; 2533 2534 DB_DNODE_ENTER(db); 2535 dn = DB_DNODE(db); 2536 2537 *blksize = dn->dn_datablksz; 2538 /* add in number of slots used for the dnode itself */ 2539 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2540 SPA_MINBLOCKSHIFT) + dn->dn_num_slots; 2541 DB_DNODE_EXIT(db); 2542 } 2543 2544 void 2545 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize) 2546 { 2547 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2548 dnode_t *dn; 2549 2550 DB_DNODE_ENTER(db); 2551 dn = DB_DNODE(db); 2552 *dnsize = dn->dn_num_slots << DNODE_SHIFT; 2553 DB_DNODE_EXIT(db); 2554 } 2555 2556 void 2557 byteswap_uint64_array(void *vbuf, size_t size) 2558 { 2559 uint64_t *buf = vbuf; 2560 size_t count = size >> 3; 2561 int i; 2562 2563 ASSERT((size & 7) == 0); 2564 2565 for (i = 0; i < count; i++) 2566 buf[i] = BSWAP_64(buf[i]); 2567 } 2568 2569 void 2570 byteswap_uint32_array(void *vbuf, size_t size) 2571 { 2572 uint32_t *buf = vbuf; 2573 size_t count = size >> 2; 2574 int i; 2575 2576 ASSERT((size & 3) == 0); 2577 2578 for (i = 0; i < count; i++) 2579 buf[i] = BSWAP_32(buf[i]); 2580 } 2581 2582 void 2583 byteswap_uint16_array(void *vbuf, size_t size) 2584 { 2585 uint16_t *buf = vbuf; 2586 size_t count = size >> 1; 2587 int i; 2588 2589 ASSERT((size & 1) == 0); 2590 2591 for (i = 0; i < count; i++) 2592 buf[i] = BSWAP_16(buf[i]); 2593 } 2594 2595 /* ARGSUSED */ 2596 void 2597 byteswap_uint8_array(void *vbuf, size_t size) 2598 { 2599 } 2600 2601 void 2602 dmu_init(void) 2603 { 2604 abd_init(); 2605 zfs_dbgmsg_init(); 2606 sa_cache_init(); 2607 xuio_stat_init(); 2608 dmu_objset_init(); 2609 dnode_init(); 2610 zfetch_init(); 2611 l2arc_init(); 2612 arc_init(); 2613 dbuf_init(); 2614 } 2615 2616 void 2617 dmu_fini(void) 2618 { 2619 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2620 l2arc_fini(); 2621 zfetch_fini(); 2622 dbuf_fini(); 2623 dnode_fini(); 2624 dmu_objset_fini(); 2625 xuio_stat_fini(); 2626 sa_cache_fini(); 2627 zfs_dbgmsg_fini(); 2628 abd_fini(); 2629 } 2630