1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 /* Copyright 2016 Nexenta Systems, Inc. All rights reserved. */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/zfs_ioctl.h> 44 #include <sys/zap.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/zio_compress.h> 47 #include <sys/sa.h> 48 #include <sys/zfeature.h> 49 #ifdef _KERNEL 50 #include <sys/vmsystm.h> 51 #include <sys/zfs_znode.h> 52 #endif 53 54 /* 55 * Enable/disable nopwrite feature. 56 */ 57 int zfs_nopwrite_enabled = 1; 58 59 /* 60 * Tunable to control percentage of dirtied blocks from frees in one TXG. 61 * After this threshold is crossed, additional dirty blocks from frees 62 * wait until the next TXG. 63 * A value of zero will disable this throttle. 64 */ 65 uint32_t zfs_per_txg_dirty_frees_percent = 30; 66 67 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 68 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 69 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 70 { DMU_BSWAP_UINT64, TRUE, "object array" }, 71 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 72 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 73 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 74 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 75 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 76 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 77 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 78 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 79 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 80 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 81 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 82 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 83 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 84 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 85 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 86 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 87 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 88 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 89 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 90 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 91 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 92 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 93 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 94 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 95 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 96 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 97 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 98 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 99 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 100 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 101 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 102 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 103 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 104 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 105 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 106 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 107 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 108 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 109 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 110 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 111 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 112 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 113 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 114 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 115 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 116 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 117 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 118 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 119 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 120 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 121 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 122 }; 123 124 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 125 { byteswap_uint8_array, "uint8" }, 126 { byteswap_uint16_array, "uint16" }, 127 { byteswap_uint32_array, "uint32" }, 128 { byteswap_uint64_array, "uint64" }, 129 { zap_byteswap, "zap" }, 130 { dnode_buf_byteswap, "dnode" }, 131 { dmu_objset_byteswap, "objset" }, 132 { zfs_znode_byteswap, "znode" }, 133 { zfs_oldacl_byteswap, "oldacl" }, 134 { zfs_acl_byteswap, "acl" } 135 }; 136 137 int 138 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 139 void *tag, dmu_buf_t **dbp) 140 { 141 uint64_t blkid; 142 dmu_buf_impl_t *db; 143 144 blkid = dbuf_whichblock(dn, 0, offset); 145 rw_enter(&dn->dn_struct_rwlock, RW_READER); 146 db = dbuf_hold(dn, blkid, tag); 147 rw_exit(&dn->dn_struct_rwlock); 148 149 if (db == NULL) { 150 *dbp = NULL; 151 return (SET_ERROR(EIO)); 152 } 153 154 *dbp = &db->db; 155 return (0); 156 } 157 int 158 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 159 void *tag, dmu_buf_t **dbp) 160 { 161 dnode_t *dn; 162 uint64_t blkid; 163 dmu_buf_impl_t *db; 164 int err; 165 166 err = dnode_hold(os, object, FTAG, &dn); 167 if (err) 168 return (err); 169 blkid = dbuf_whichblock(dn, 0, offset); 170 rw_enter(&dn->dn_struct_rwlock, RW_READER); 171 db = dbuf_hold(dn, blkid, tag); 172 rw_exit(&dn->dn_struct_rwlock); 173 dnode_rele(dn, FTAG); 174 175 if (db == NULL) { 176 *dbp = NULL; 177 return (SET_ERROR(EIO)); 178 } 179 180 *dbp = &db->db; 181 return (err); 182 } 183 184 int 185 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 186 void *tag, dmu_buf_t **dbp, int flags) 187 { 188 int err; 189 int db_flags = DB_RF_CANFAIL; 190 191 if (flags & DMU_READ_NO_PREFETCH) 192 db_flags |= DB_RF_NOPREFETCH; 193 194 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 195 if (err == 0) { 196 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 197 err = dbuf_read(db, NULL, db_flags); 198 if (err != 0) { 199 dbuf_rele(db, tag); 200 *dbp = NULL; 201 } 202 } 203 204 return (err); 205 } 206 207 int 208 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 209 void *tag, dmu_buf_t **dbp, int flags) 210 { 211 int err; 212 int db_flags = DB_RF_CANFAIL; 213 214 if (flags & DMU_READ_NO_PREFETCH) 215 db_flags |= DB_RF_NOPREFETCH; 216 217 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 218 if (err == 0) { 219 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 220 err = dbuf_read(db, NULL, db_flags); 221 if (err != 0) { 222 dbuf_rele(db, tag); 223 *dbp = NULL; 224 } 225 } 226 227 return (err); 228 } 229 230 int 231 dmu_bonus_max(void) 232 { 233 return (DN_MAX_BONUSLEN); 234 } 235 236 int 237 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 238 { 239 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 240 dnode_t *dn; 241 int error; 242 243 DB_DNODE_ENTER(db); 244 dn = DB_DNODE(db); 245 246 if (dn->dn_bonus != db) { 247 error = SET_ERROR(EINVAL); 248 } else if (newsize < 0 || newsize > db_fake->db_size) { 249 error = SET_ERROR(EINVAL); 250 } else { 251 dnode_setbonuslen(dn, newsize, tx); 252 error = 0; 253 } 254 255 DB_DNODE_EXIT(db); 256 return (error); 257 } 258 259 int 260 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 261 { 262 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 263 dnode_t *dn; 264 int error; 265 266 DB_DNODE_ENTER(db); 267 dn = DB_DNODE(db); 268 269 if (!DMU_OT_IS_VALID(type)) { 270 error = SET_ERROR(EINVAL); 271 } else if (dn->dn_bonus != db) { 272 error = SET_ERROR(EINVAL); 273 } else { 274 dnode_setbonus_type(dn, type, tx); 275 error = 0; 276 } 277 278 DB_DNODE_EXIT(db); 279 return (error); 280 } 281 282 dmu_object_type_t 283 dmu_get_bonustype(dmu_buf_t *db_fake) 284 { 285 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 286 dnode_t *dn; 287 dmu_object_type_t type; 288 289 DB_DNODE_ENTER(db); 290 dn = DB_DNODE(db); 291 type = dn->dn_bonustype; 292 DB_DNODE_EXIT(db); 293 294 return (type); 295 } 296 297 int 298 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 299 { 300 dnode_t *dn; 301 int error; 302 303 error = dnode_hold(os, object, FTAG, &dn); 304 dbuf_rm_spill(dn, tx); 305 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 306 dnode_rm_spill(dn, tx); 307 rw_exit(&dn->dn_struct_rwlock); 308 dnode_rele(dn, FTAG); 309 return (error); 310 } 311 312 /* 313 * returns ENOENT, EIO, or 0. 314 */ 315 int 316 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 317 { 318 dnode_t *dn; 319 dmu_buf_impl_t *db; 320 int error; 321 322 error = dnode_hold(os, object, FTAG, &dn); 323 if (error) 324 return (error); 325 326 rw_enter(&dn->dn_struct_rwlock, RW_READER); 327 if (dn->dn_bonus == NULL) { 328 rw_exit(&dn->dn_struct_rwlock); 329 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 330 if (dn->dn_bonus == NULL) 331 dbuf_create_bonus(dn); 332 } 333 db = dn->dn_bonus; 334 335 /* as long as the bonus buf is held, the dnode will be held */ 336 if (refcount_add(&db->db_holds, tag) == 1) { 337 VERIFY(dnode_add_ref(dn, db)); 338 atomic_inc_32(&dn->dn_dbufs_count); 339 } 340 341 /* 342 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 343 * hold and incrementing the dbuf count to ensure that dnode_move() sees 344 * a dnode hold for every dbuf. 345 */ 346 rw_exit(&dn->dn_struct_rwlock); 347 348 dnode_rele(dn, FTAG); 349 350 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 351 352 *dbp = &db->db; 353 return (0); 354 } 355 356 /* 357 * returns ENOENT, EIO, or 0. 358 * 359 * This interface will allocate a blank spill dbuf when a spill blk 360 * doesn't already exist on the dnode. 361 * 362 * if you only want to find an already existing spill db, then 363 * dmu_spill_hold_existing() should be used. 364 */ 365 int 366 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 367 { 368 dmu_buf_impl_t *db = NULL; 369 int err; 370 371 if ((flags & DB_RF_HAVESTRUCT) == 0) 372 rw_enter(&dn->dn_struct_rwlock, RW_READER); 373 374 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 375 376 if ((flags & DB_RF_HAVESTRUCT) == 0) 377 rw_exit(&dn->dn_struct_rwlock); 378 379 ASSERT(db != NULL); 380 err = dbuf_read(db, NULL, flags); 381 if (err == 0) 382 *dbp = &db->db; 383 else 384 dbuf_rele(db, tag); 385 return (err); 386 } 387 388 int 389 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 390 { 391 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 392 dnode_t *dn; 393 int err; 394 395 DB_DNODE_ENTER(db); 396 dn = DB_DNODE(db); 397 398 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 399 err = SET_ERROR(EINVAL); 400 } else { 401 rw_enter(&dn->dn_struct_rwlock, RW_READER); 402 403 if (!dn->dn_have_spill) { 404 err = SET_ERROR(ENOENT); 405 } else { 406 err = dmu_spill_hold_by_dnode(dn, 407 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 408 } 409 410 rw_exit(&dn->dn_struct_rwlock); 411 } 412 413 DB_DNODE_EXIT(db); 414 return (err); 415 } 416 417 int 418 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 419 { 420 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 421 dnode_t *dn; 422 int err; 423 424 DB_DNODE_ENTER(db); 425 dn = DB_DNODE(db); 426 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 427 DB_DNODE_EXIT(db); 428 429 return (err); 430 } 431 432 /* 433 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 434 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 435 * and can induce severe lock contention when writing to several files 436 * whose dnodes are in the same block. 437 */ 438 static int 439 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 440 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 441 { 442 dmu_buf_t **dbp; 443 uint64_t blkid, nblks, i; 444 uint32_t dbuf_flags; 445 int err; 446 zio_t *zio; 447 448 ASSERT(length <= DMU_MAX_ACCESS); 449 450 /* 451 * Note: We directly notify the prefetch code of this read, so that 452 * we can tell it about the multi-block read. dbuf_read() only knows 453 * about the one block it is accessing. 454 */ 455 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 456 DB_RF_NOPREFETCH; 457 458 rw_enter(&dn->dn_struct_rwlock, RW_READER); 459 if (dn->dn_datablkshift) { 460 int blkshift = dn->dn_datablkshift; 461 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 462 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 463 } else { 464 if (offset + length > dn->dn_datablksz) { 465 zfs_panic_recover("zfs: accessing past end of object " 466 "%llx/%llx (size=%u access=%llu+%llu)", 467 (longlong_t)dn->dn_objset-> 468 os_dsl_dataset->ds_object, 469 (longlong_t)dn->dn_object, dn->dn_datablksz, 470 (longlong_t)offset, (longlong_t)length); 471 rw_exit(&dn->dn_struct_rwlock); 472 return (SET_ERROR(EIO)); 473 } 474 nblks = 1; 475 } 476 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 477 478 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 479 blkid = dbuf_whichblock(dn, 0, offset); 480 for (i = 0; i < nblks; i++) { 481 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 482 if (db == NULL) { 483 rw_exit(&dn->dn_struct_rwlock); 484 dmu_buf_rele_array(dbp, nblks, tag); 485 zio_nowait(zio); 486 return (SET_ERROR(EIO)); 487 } 488 489 /* initiate async i/o */ 490 if (read) 491 (void) dbuf_read(db, zio, dbuf_flags); 492 dbp[i] = &db->db; 493 } 494 495 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 496 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 497 dmu_zfetch(&dn->dn_zfetch, blkid, nblks, 498 read && DNODE_IS_CACHEABLE(dn)); 499 } 500 rw_exit(&dn->dn_struct_rwlock); 501 502 /* wait for async i/o */ 503 err = zio_wait(zio); 504 if (err) { 505 dmu_buf_rele_array(dbp, nblks, tag); 506 return (err); 507 } 508 509 /* wait for other io to complete */ 510 if (read) { 511 for (i = 0; i < nblks; i++) { 512 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 513 mutex_enter(&db->db_mtx); 514 while (db->db_state == DB_READ || 515 db->db_state == DB_FILL) 516 cv_wait(&db->db_changed, &db->db_mtx); 517 if (db->db_state == DB_UNCACHED) 518 err = SET_ERROR(EIO); 519 mutex_exit(&db->db_mtx); 520 if (err) { 521 dmu_buf_rele_array(dbp, nblks, tag); 522 return (err); 523 } 524 } 525 } 526 527 *numbufsp = nblks; 528 *dbpp = dbp; 529 return (0); 530 } 531 532 static int 533 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 534 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 535 { 536 dnode_t *dn; 537 int err; 538 539 err = dnode_hold(os, object, FTAG, &dn); 540 if (err) 541 return (err); 542 543 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 544 numbufsp, dbpp, DMU_READ_PREFETCH); 545 546 dnode_rele(dn, FTAG); 547 548 return (err); 549 } 550 551 int 552 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 553 uint64_t length, boolean_t read, void *tag, int *numbufsp, 554 dmu_buf_t ***dbpp) 555 { 556 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 557 dnode_t *dn; 558 int err; 559 560 DB_DNODE_ENTER(db); 561 dn = DB_DNODE(db); 562 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 563 numbufsp, dbpp, DMU_READ_PREFETCH); 564 DB_DNODE_EXIT(db); 565 566 return (err); 567 } 568 569 void 570 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 571 { 572 int i; 573 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 574 575 if (numbufs == 0) 576 return; 577 578 for (i = 0; i < numbufs; i++) { 579 if (dbp[i]) 580 dbuf_rele(dbp[i], tag); 581 } 582 583 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 584 } 585 586 /* 587 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 588 * indirect blocks prefeteched will be those that point to the blocks containing 589 * the data starting at offset, and continuing to offset + len. 590 * 591 * Note that if the indirect blocks above the blocks being prefetched are not in 592 * cache, they will be asychronously read in. 593 */ 594 void 595 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 596 uint64_t len, zio_priority_t pri) 597 { 598 dnode_t *dn; 599 uint64_t blkid; 600 int nblks, err; 601 602 if (len == 0) { /* they're interested in the bonus buffer */ 603 dn = DMU_META_DNODE(os); 604 605 if (object == 0 || object >= DN_MAX_OBJECT) 606 return; 607 608 rw_enter(&dn->dn_struct_rwlock, RW_READER); 609 blkid = dbuf_whichblock(dn, level, 610 object * sizeof (dnode_phys_t)); 611 dbuf_prefetch(dn, level, blkid, pri, 0); 612 rw_exit(&dn->dn_struct_rwlock); 613 return; 614 } 615 616 /* 617 * XXX - Note, if the dnode for the requested object is not 618 * already cached, we will do a *synchronous* read in the 619 * dnode_hold() call. The same is true for any indirects. 620 */ 621 err = dnode_hold(os, object, FTAG, &dn); 622 if (err != 0) 623 return; 624 625 rw_enter(&dn->dn_struct_rwlock, RW_READER); 626 /* 627 * offset + len - 1 is the last byte we want to prefetch for, and offset 628 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 629 * last block we want to prefetch, and dbuf_whichblock(dn, level, 630 * offset) is the first. Then the number we need to prefetch is the 631 * last - first + 1. 632 */ 633 if (level > 0 || dn->dn_datablkshift != 0) { 634 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 635 dbuf_whichblock(dn, level, offset) + 1; 636 } else { 637 nblks = (offset < dn->dn_datablksz); 638 } 639 640 if (nblks != 0) { 641 blkid = dbuf_whichblock(dn, level, offset); 642 for (int i = 0; i < nblks; i++) 643 dbuf_prefetch(dn, level, blkid + i, pri, 0); 644 } 645 646 rw_exit(&dn->dn_struct_rwlock); 647 648 dnode_rele(dn, FTAG); 649 } 650 651 /* 652 * Get the next "chunk" of file data to free. We traverse the file from 653 * the end so that the file gets shorter over time (if we crashes in the 654 * middle, this will leave us in a better state). We find allocated file 655 * data by simply searching the allocated level 1 indirects. 656 * 657 * On input, *start should be the first offset that does not need to be 658 * freed (e.g. "offset + length"). On return, *start will be the first 659 * offset that should be freed. 660 */ 661 static int 662 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 663 { 664 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 665 /* bytes of data covered by a level-1 indirect block */ 666 uint64_t iblkrange = 667 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 668 669 ASSERT3U(minimum, <=, *start); 670 671 if (*start - minimum <= iblkrange * maxblks) { 672 *start = minimum; 673 return (0); 674 } 675 ASSERT(ISP2(iblkrange)); 676 677 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 678 int err; 679 680 /* 681 * dnode_next_offset(BACKWARDS) will find an allocated L1 682 * indirect block at or before the input offset. We must 683 * decrement *start so that it is at the end of the region 684 * to search. 685 */ 686 (*start)--; 687 err = dnode_next_offset(dn, 688 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 689 690 /* if there are no indirect blocks before start, we are done */ 691 if (err == ESRCH) { 692 *start = minimum; 693 break; 694 } else if (err != 0) { 695 return (err); 696 } 697 698 /* set start to the beginning of this L1 indirect */ 699 *start = P2ALIGN(*start, iblkrange); 700 } 701 if (*start < minimum) 702 *start = minimum; 703 return (0); 704 } 705 706 /* 707 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 708 * otherwise return false. 709 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 710 */ 711 /*ARGSUSED*/ 712 static boolean_t 713 dmu_objset_zfs_unmounting(objset_t *os) 714 { 715 #ifdef _KERNEL 716 if (dmu_objset_type(os) == DMU_OST_ZFS) 717 return (zfs_get_vfs_flag_unmounted(os)); 718 #endif 719 return (B_FALSE); 720 } 721 722 static int 723 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 724 uint64_t length) 725 { 726 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 727 int err; 728 uint64_t dirty_frees_threshold; 729 dsl_pool_t *dp = dmu_objset_pool(os); 730 731 if (offset >= object_size) 732 return (0); 733 734 if (zfs_per_txg_dirty_frees_percent <= 100) 735 dirty_frees_threshold = 736 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 737 else 738 dirty_frees_threshold = zfs_dirty_data_max / 4; 739 740 if (length == DMU_OBJECT_END || offset + length > object_size) 741 length = object_size - offset; 742 743 while (length != 0) { 744 uint64_t chunk_end, chunk_begin, chunk_len; 745 uint64_t long_free_dirty_all_txgs = 0; 746 dmu_tx_t *tx; 747 748 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 749 return (SET_ERROR(EINTR)); 750 751 chunk_end = chunk_begin = offset + length; 752 753 /* move chunk_begin backwards to the beginning of this chunk */ 754 err = get_next_chunk(dn, &chunk_begin, offset); 755 if (err) 756 return (err); 757 ASSERT3U(chunk_begin, >=, offset); 758 ASSERT3U(chunk_begin, <=, chunk_end); 759 760 chunk_len = chunk_end - chunk_begin; 761 762 mutex_enter(&dp->dp_lock); 763 for (int t = 0; t < TXG_SIZE; t++) { 764 long_free_dirty_all_txgs += 765 dp->dp_long_free_dirty_pertxg[t]; 766 } 767 mutex_exit(&dp->dp_lock); 768 769 /* 770 * To avoid filling up a TXG with just frees wait for 771 * the next TXG to open before freeing more chunks if 772 * we have reached the threshold of frees 773 */ 774 if (dirty_frees_threshold != 0 && 775 long_free_dirty_all_txgs >= dirty_frees_threshold) { 776 txg_wait_open(dp, 0); 777 continue; 778 } 779 780 tx = dmu_tx_create(os); 781 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 782 783 /* 784 * Mark this transaction as typically resulting in a net 785 * reduction in space used. 786 */ 787 dmu_tx_mark_netfree(tx); 788 err = dmu_tx_assign(tx, TXG_WAIT); 789 if (err) { 790 dmu_tx_abort(tx); 791 return (err); 792 } 793 794 mutex_enter(&dp->dp_lock); 795 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] += 796 chunk_len; 797 mutex_exit(&dp->dp_lock); 798 DTRACE_PROBE3(free__long__range, 799 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len, 800 uint64_t, dmu_tx_get_txg(tx)); 801 dnode_free_range(dn, chunk_begin, chunk_len, tx); 802 dmu_tx_commit(tx); 803 804 length -= chunk_len; 805 } 806 return (0); 807 } 808 809 int 810 dmu_free_long_range(objset_t *os, uint64_t object, 811 uint64_t offset, uint64_t length) 812 { 813 dnode_t *dn; 814 int err; 815 816 err = dnode_hold(os, object, FTAG, &dn); 817 if (err != 0) 818 return (err); 819 err = dmu_free_long_range_impl(os, dn, offset, length); 820 821 /* 822 * It is important to zero out the maxblkid when freeing the entire 823 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 824 * will take the fast path, and (b) dnode_reallocate() can verify 825 * that the entire file has been freed. 826 */ 827 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 828 dn->dn_maxblkid = 0; 829 830 dnode_rele(dn, FTAG); 831 return (err); 832 } 833 834 int 835 dmu_free_long_object(objset_t *os, uint64_t object) 836 { 837 dmu_tx_t *tx; 838 int err; 839 840 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 841 if (err != 0) 842 return (err); 843 844 tx = dmu_tx_create(os); 845 dmu_tx_hold_bonus(tx, object); 846 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 847 dmu_tx_mark_netfree(tx); 848 err = dmu_tx_assign(tx, TXG_WAIT); 849 if (err == 0) { 850 err = dmu_object_free(os, object, tx); 851 dmu_tx_commit(tx); 852 } else { 853 dmu_tx_abort(tx); 854 } 855 856 return (err); 857 } 858 859 int 860 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 861 uint64_t size, dmu_tx_t *tx) 862 { 863 dnode_t *dn; 864 int err = dnode_hold(os, object, FTAG, &dn); 865 if (err) 866 return (err); 867 ASSERT(offset < UINT64_MAX); 868 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 869 dnode_free_range(dn, offset, size, tx); 870 dnode_rele(dn, FTAG); 871 return (0); 872 } 873 874 int 875 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 876 void *buf, uint32_t flags) 877 { 878 dnode_t *dn; 879 dmu_buf_t **dbp; 880 int numbufs, err; 881 882 err = dnode_hold(os, object, FTAG, &dn); 883 if (err) 884 return (err); 885 886 /* 887 * Deal with odd block sizes, where there can't be data past the first 888 * block. If we ever do the tail block optimization, we will need to 889 * handle that here as well. 890 */ 891 if (dn->dn_maxblkid == 0) { 892 int newsz = offset > dn->dn_datablksz ? 0 : 893 MIN(size, dn->dn_datablksz - offset); 894 bzero((char *)buf + newsz, size - newsz); 895 size = newsz; 896 } 897 898 while (size > 0) { 899 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 900 int i; 901 902 /* 903 * NB: we could do this block-at-a-time, but it's nice 904 * to be reading in parallel. 905 */ 906 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 907 TRUE, FTAG, &numbufs, &dbp, flags); 908 if (err) 909 break; 910 911 for (i = 0; i < numbufs; i++) { 912 int tocpy; 913 int bufoff; 914 dmu_buf_t *db = dbp[i]; 915 916 ASSERT(size > 0); 917 918 bufoff = offset - db->db_offset; 919 tocpy = (int)MIN(db->db_size - bufoff, size); 920 921 bcopy((char *)db->db_data + bufoff, buf, tocpy); 922 923 offset += tocpy; 924 size -= tocpy; 925 buf = (char *)buf + tocpy; 926 } 927 dmu_buf_rele_array(dbp, numbufs, FTAG); 928 } 929 dnode_rele(dn, FTAG); 930 return (err); 931 } 932 933 void 934 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 935 const void *buf, dmu_tx_t *tx) 936 { 937 dmu_buf_t **dbp; 938 int numbufs, i; 939 940 if (size == 0) 941 return; 942 943 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 944 FALSE, FTAG, &numbufs, &dbp)); 945 946 for (i = 0; i < numbufs; i++) { 947 int tocpy; 948 int bufoff; 949 dmu_buf_t *db = dbp[i]; 950 951 ASSERT(size > 0); 952 953 bufoff = offset - db->db_offset; 954 tocpy = (int)MIN(db->db_size - bufoff, size); 955 956 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 957 958 if (tocpy == db->db_size) 959 dmu_buf_will_fill(db, tx); 960 else 961 dmu_buf_will_dirty(db, tx); 962 963 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 964 965 if (tocpy == db->db_size) 966 dmu_buf_fill_done(db, tx); 967 968 offset += tocpy; 969 size -= tocpy; 970 buf = (char *)buf + tocpy; 971 } 972 dmu_buf_rele_array(dbp, numbufs, FTAG); 973 } 974 975 void 976 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 977 dmu_tx_t *tx) 978 { 979 dmu_buf_t **dbp; 980 int numbufs, i; 981 982 if (size == 0) 983 return; 984 985 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 986 FALSE, FTAG, &numbufs, &dbp)); 987 988 for (i = 0; i < numbufs; i++) { 989 dmu_buf_t *db = dbp[i]; 990 991 dmu_buf_will_not_fill(db, tx); 992 } 993 dmu_buf_rele_array(dbp, numbufs, FTAG); 994 } 995 996 void 997 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 998 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 999 int compressed_size, int byteorder, dmu_tx_t *tx) 1000 { 1001 dmu_buf_t *db; 1002 1003 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1004 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1005 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1006 FTAG, &db)); 1007 1008 dmu_buf_write_embedded(db, 1009 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1010 uncompressed_size, compressed_size, byteorder, tx); 1011 1012 dmu_buf_rele(db, FTAG); 1013 } 1014 1015 /* 1016 * DMU support for xuio 1017 */ 1018 kstat_t *xuio_ksp = NULL; 1019 1020 int 1021 dmu_xuio_init(xuio_t *xuio, int nblk) 1022 { 1023 dmu_xuio_t *priv; 1024 uio_t *uio = &xuio->xu_uio; 1025 1026 uio->uio_iovcnt = nblk; 1027 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 1028 1029 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 1030 priv->cnt = nblk; 1031 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 1032 priv->iovp = uio->uio_iov; 1033 XUIO_XUZC_PRIV(xuio) = priv; 1034 1035 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1036 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 1037 else 1038 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 1039 1040 return (0); 1041 } 1042 1043 void 1044 dmu_xuio_fini(xuio_t *xuio) 1045 { 1046 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1047 int nblk = priv->cnt; 1048 1049 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 1050 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 1051 kmem_free(priv, sizeof (dmu_xuio_t)); 1052 1053 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1054 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 1055 else 1056 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 1057 } 1058 1059 /* 1060 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 1061 * and increase priv->next by 1. 1062 */ 1063 int 1064 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 1065 { 1066 struct iovec *iov; 1067 uio_t *uio = &xuio->xu_uio; 1068 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1069 int i = priv->next++; 1070 1071 ASSERT(i < priv->cnt); 1072 ASSERT(off + n <= arc_buf_lsize(abuf)); 1073 iov = uio->uio_iov + i; 1074 iov->iov_base = (char *)abuf->b_data + off; 1075 iov->iov_len = n; 1076 priv->bufs[i] = abuf; 1077 return (0); 1078 } 1079 1080 int 1081 dmu_xuio_cnt(xuio_t *xuio) 1082 { 1083 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1084 return (priv->cnt); 1085 } 1086 1087 arc_buf_t * 1088 dmu_xuio_arcbuf(xuio_t *xuio, int i) 1089 { 1090 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1091 1092 ASSERT(i < priv->cnt); 1093 return (priv->bufs[i]); 1094 } 1095 1096 void 1097 dmu_xuio_clear(xuio_t *xuio, int i) 1098 { 1099 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1100 1101 ASSERT(i < priv->cnt); 1102 priv->bufs[i] = NULL; 1103 } 1104 1105 static void 1106 xuio_stat_init(void) 1107 { 1108 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 1109 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 1110 KSTAT_FLAG_VIRTUAL); 1111 if (xuio_ksp != NULL) { 1112 xuio_ksp->ks_data = &xuio_stats; 1113 kstat_install(xuio_ksp); 1114 } 1115 } 1116 1117 static void 1118 xuio_stat_fini(void) 1119 { 1120 if (xuio_ksp != NULL) { 1121 kstat_delete(xuio_ksp); 1122 xuio_ksp = NULL; 1123 } 1124 } 1125 1126 void 1127 xuio_stat_wbuf_copied(void) 1128 { 1129 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1130 } 1131 1132 void 1133 xuio_stat_wbuf_nocopy(void) 1134 { 1135 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1136 } 1137 1138 #ifdef _KERNEL 1139 static int 1140 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1141 { 1142 dmu_buf_t **dbp; 1143 int numbufs, i, err; 1144 xuio_t *xuio = NULL; 1145 1146 /* 1147 * NB: we could do this block-at-a-time, but it's nice 1148 * to be reading in parallel. 1149 */ 1150 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1151 TRUE, FTAG, &numbufs, &dbp, 0); 1152 if (err) 1153 return (err); 1154 1155 if (uio->uio_extflg == UIO_XUIO) 1156 xuio = (xuio_t *)uio; 1157 1158 for (i = 0; i < numbufs; i++) { 1159 int tocpy; 1160 int bufoff; 1161 dmu_buf_t *db = dbp[i]; 1162 1163 ASSERT(size > 0); 1164 1165 bufoff = uio->uio_loffset - db->db_offset; 1166 tocpy = (int)MIN(db->db_size - bufoff, size); 1167 1168 if (xuio) { 1169 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1170 arc_buf_t *dbuf_abuf = dbi->db_buf; 1171 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1172 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1173 if (!err) { 1174 uio->uio_resid -= tocpy; 1175 uio->uio_loffset += tocpy; 1176 } 1177 1178 if (abuf == dbuf_abuf) 1179 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1180 else 1181 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1182 } else { 1183 err = uiomove((char *)db->db_data + bufoff, tocpy, 1184 UIO_READ, uio); 1185 } 1186 if (err) 1187 break; 1188 1189 size -= tocpy; 1190 } 1191 dmu_buf_rele_array(dbp, numbufs, FTAG); 1192 1193 return (err); 1194 } 1195 1196 /* 1197 * Read 'size' bytes into the uio buffer. 1198 * From object zdb->db_object. 1199 * Starting at offset uio->uio_loffset. 1200 * 1201 * If the caller already has a dbuf in the target object 1202 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1203 * because we don't have to find the dnode_t for the object. 1204 */ 1205 int 1206 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1207 { 1208 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1209 dnode_t *dn; 1210 int err; 1211 1212 if (size == 0) 1213 return (0); 1214 1215 DB_DNODE_ENTER(db); 1216 dn = DB_DNODE(db); 1217 err = dmu_read_uio_dnode(dn, uio, size); 1218 DB_DNODE_EXIT(db); 1219 1220 return (err); 1221 } 1222 1223 /* 1224 * Read 'size' bytes into the uio buffer. 1225 * From the specified object 1226 * Starting at offset uio->uio_loffset. 1227 */ 1228 int 1229 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1230 { 1231 dnode_t *dn; 1232 int err; 1233 1234 if (size == 0) 1235 return (0); 1236 1237 err = dnode_hold(os, object, FTAG, &dn); 1238 if (err) 1239 return (err); 1240 1241 err = dmu_read_uio_dnode(dn, uio, size); 1242 1243 dnode_rele(dn, FTAG); 1244 1245 return (err); 1246 } 1247 1248 static int 1249 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1250 { 1251 dmu_buf_t **dbp; 1252 int numbufs; 1253 int err = 0; 1254 int i; 1255 1256 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1257 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1258 if (err) 1259 return (err); 1260 1261 for (i = 0; i < numbufs; i++) { 1262 int tocpy; 1263 int bufoff; 1264 dmu_buf_t *db = dbp[i]; 1265 1266 ASSERT(size > 0); 1267 1268 bufoff = uio->uio_loffset - db->db_offset; 1269 tocpy = (int)MIN(db->db_size - bufoff, size); 1270 1271 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1272 1273 if (tocpy == db->db_size) 1274 dmu_buf_will_fill(db, tx); 1275 else 1276 dmu_buf_will_dirty(db, tx); 1277 1278 /* 1279 * XXX uiomove could block forever (eg. nfs-backed 1280 * pages). There needs to be a uiolockdown() function 1281 * to lock the pages in memory, so that uiomove won't 1282 * block. 1283 */ 1284 err = uiomove((char *)db->db_data + bufoff, tocpy, 1285 UIO_WRITE, uio); 1286 1287 if (tocpy == db->db_size) 1288 dmu_buf_fill_done(db, tx); 1289 1290 if (err) 1291 break; 1292 1293 size -= tocpy; 1294 } 1295 1296 dmu_buf_rele_array(dbp, numbufs, FTAG); 1297 return (err); 1298 } 1299 1300 /* 1301 * Write 'size' bytes from the uio buffer. 1302 * To object zdb->db_object. 1303 * Starting at offset uio->uio_loffset. 1304 * 1305 * If the caller already has a dbuf in the target object 1306 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1307 * because we don't have to find the dnode_t for the object. 1308 */ 1309 int 1310 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1311 dmu_tx_t *tx) 1312 { 1313 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1314 dnode_t *dn; 1315 int err; 1316 1317 if (size == 0) 1318 return (0); 1319 1320 DB_DNODE_ENTER(db); 1321 dn = DB_DNODE(db); 1322 err = dmu_write_uio_dnode(dn, uio, size, tx); 1323 DB_DNODE_EXIT(db); 1324 1325 return (err); 1326 } 1327 1328 /* 1329 * Write 'size' bytes from the uio buffer. 1330 * To the specified object. 1331 * Starting at offset uio->uio_loffset. 1332 */ 1333 int 1334 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1335 dmu_tx_t *tx) 1336 { 1337 dnode_t *dn; 1338 int err; 1339 1340 if (size == 0) 1341 return (0); 1342 1343 err = dnode_hold(os, object, FTAG, &dn); 1344 if (err) 1345 return (err); 1346 1347 err = dmu_write_uio_dnode(dn, uio, size, tx); 1348 1349 dnode_rele(dn, FTAG); 1350 1351 return (err); 1352 } 1353 1354 int 1355 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1356 page_t *pp, dmu_tx_t *tx) 1357 { 1358 dmu_buf_t **dbp; 1359 int numbufs, i; 1360 int err; 1361 1362 if (size == 0) 1363 return (0); 1364 1365 err = dmu_buf_hold_array(os, object, offset, size, 1366 FALSE, FTAG, &numbufs, &dbp); 1367 if (err) 1368 return (err); 1369 1370 for (i = 0; i < numbufs; i++) { 1371 int tocpy, copied, thiscpy; 1372 int bufoff; 1373 dmu_buf_t *db = dbp[i]; 1374 caddr_t va; 1375 1376 ASSERT(size > 0); 1377 ASSERT3U(db->db_size, >=, PAGESIZE); 1378 1379 bufoff = offset - db->db_offset; 1380 tocpy = (int)MIN(db->db_size - bufoff, size); 1381 1382 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1383 1384 if (tocpy == db->db_size) 1385 dmu_buf_will_fill(db, tx); 1386 else 1387 dmu_buf_will_dirty(db, tx); 1388 1389 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1390 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1391 thiscpy = MIN(PAGESIZE, tocpy - copied); 1392 va = zfs_map_page(pp, S_READ); 1393 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1394 zfs_unmap_page(pp, va); 1395 pp = pp->p_next; 1396 bufoff += PAGESIZE; 1397 } 1398 1399 if (tocpy == db->db_size) 1400 dmu_buf_fill_done(db, tx); 1401 1402 offset += tocpy; 1403 size -= tocpy; 1404 } 1405 dmu_buf_rele_array(dbp, numbufs, FTAG); 1406 return (err); 1407 } 1408 #endif 1409 1410 /* 1411 * Allocate a loaned anonymous arc buffer. 1412 */ 1413 arc_buf_t * 1414 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1415 { 1416 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1417 1418 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1419 } 1420 1421 /* 1422 * Free a loaned arc buffer. 1423 */ 1424 void 1425 dmu_return_arcbuf(arc_buf_t *buf) 1426 { 1427 arc_return_buf(buf, FTAG); 1428 arc_buf_destroy(buf, FTAG); 1429 } 1430 1431 /* 1432 * When possible directly assign passed loaned arc buffer to a dbuf. 1433 * If this is not possible copy the contents of passed arc buf via 1434 * dmu_write(). 1435 */ 1436 void 1437 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1438 dmu_tx_t *tx) 1439 { 1440 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1441 dnode_t *dn; 1442 dmu_buf_impl_t *db; 1443 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1444 uint64_t blkid; 1445 1446 DB_DNODE_ENTER(dbuf); 1447 dn = DB_DNODE(dbuf); 1448 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1449 blkid = dbuf_whichblock(dn, 0, offset); 1450 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1451 rw_exit(&dn->dn_struct_rwlock); 1452 DB_DNODE_EXIT(dbuf); 1453 1454 /* 1455 * We can only assign if the offset is aligned, the arc buf is the 1456 * same size as the dbuf, and the dbuf is not metadata. 1457 */ 1458 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1459 dbuf_assign_arcbuf(db, buf, tx); 1460 dbuf_rele(db, FTAG); 1461 } else { 1462 objset_t *os; 1463 uint64_t object; 1464 1465 /* compressed bufs must always be assignable to their dbuf */ 1466 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1467 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1468 1469 DB_DNODE_ENTER(dbuf); 1470 dn = DB_DNODE(dbuf); 1471 os = dn->dn_objset; 1472 object = dn->dn_object; 1473 DB_DNODE_EXIT(dbuf); 1474 1475 dbuf_rele(db, FTAG); 1476 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1477 dmu_return_arcbuf(buf); 1478 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1479 } 1480 } 1481 1482 typedef struct { 1483 dbuf_dirty_record_t *dsa_dr; 1484 dmu_sync_cb_t *dsa_done; 1485 zgd_t *dsa_zgd; 1486 dmu_tx_t *dsa_tx; 1487 } dmu_sync_arg_t; 1488 1489 /* ARGSUSED */ 1490 static void 1491 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1492 { 1493 dmu_sync_arg_t *dsa = varg; 1494 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1495 blkptr_t *bp = zio->io_bp; 1496 1497 if (zio->io_error == 0) { 1498 if (BP_IS_HOLE(bp)) { 1499 /* 1500 * A block of zeros may compress to a hole, but the 1501 * block size still needs to be known for replay. 1502 */ 1503 BP_SET_LSIZE(bp, db->db_size); 1504 } else if (!BP_IS_EMBEDDED(bp)) { 1505 ASSERT(BP_GET_LEVEL(bp) == 0); 1506 bp->blk_fill = 1; 1507 } 1508 } 1509 } 1510 1511 static void 1512 dmu_sync_late_arrival_ready(zio_t *zio) 1513 { 1514 dmu_sync_ready(zio, NULL, zio->io_private); 1515 } 1516 1517 /* ARGSUSED */ 1518 static void 1519 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1520 { 1521 dmu_sync_arg_t *dsa = varg; 1522 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1523 dmu_buf_impl_t *db = dr->dr_dbuf; 1524 1525 mutex_enter(&db->db_mtx); 1526 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1527 if (zio->io_error == 0) { 1528 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1529 if (dr->dt.dl.dr_nopwrite) { 1530 blkptr_t *bp = zio->io_bp; 1531 blkptr_t *bp_orig = &zio->io_bp_orig; 1532 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1533 1534 ASSERT(BP_EQUAL(bp, bp_orig)); 1535 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1536 ASSERT(zio_checksum_table[chksum].ci_flags & 1537 ZCHECKSUM_FLAG_NOPWRITE); 1538 } 1539 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1540 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1541 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1542 1543 /* 1544 * Old style holes are filled with all zeros, whereas 1545 * new-style holes maintain their lsize, type, level, 1546 * and birth time (see zio_write_compress). While we 1547 * need to reset the BP_SET_LSIZE() call that happened 1548 * in dmu_sync_ready for old style holes, we do *not* 1549 * want to wipe out the information contained in new 1550 * style holes. Thus, only zero out the block pointer if 1551 * it's an old style hole. 1552 */ 1553 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1554 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1555 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1556 } else { 1557 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1558 } 1559 cv_broadcast(&db->db_changed); 1560 mutex_exit(&db->db_mtx); 1561 1562 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1563 1564 kmem_free(dsa, sizeof (*dsa)); 1565 } 1566 1567 static void 1568 dmu_sync_late_arrival_done(zio_t *zio) 1569 { 1570 blkptr_t *bp = zio->io_bp; 1571 dmu_sync_arg_t *dsa = zio->io_private; 1572 blkptr_t *bp_orig = &zio->io_bp_orig; 1573 1574 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1575 /* 1576 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1577 * then there is nothing to do here. Otherwise, free the 1578 * newly allocated block in this txg. 1579 */ 1580 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1581 ASSERT(BP_EQUAL(bp, bp_orig)); 1582 } else { 1583 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1584 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1585 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1586 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1587 } 1588 } 1589 1590 dmu_tx_commit(dsa->dsa_tx); 1591 1592 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1593 1594 kmem_free(dsa, sizeof (*dsa)); 1595 } 1596 1597 static int 1598 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1599 zio_prop_t *zp, zbookmark_phys_t *zb) 1600 { 1601 dmu_sync_arg_t *dsa; 1602 dmu_tx_t *tx; 1603 1604 tx = dmu_tx_create(os); 1605 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1606 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1607 dmu_tx_abort(tx); 1608 /* Make zl_get_data do txg_waited_synced() */ 1609 return (SET_ERROR(EIO)); 1610 } 1611 1612 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1613 dsa->dsa_dr = NULL; 1614 dsa->dsa_done = done; 1615 dsa->dsa_zgd = zgd; 1616 dsa->dsa_tx = tx; 1617 1618 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1619 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zgd->zgd_db->db_size, 1620 zp, dmu_sync_late_arrival_ready, NULL, 1621 NULL, dmu_sync_late_arrival_done, dsa, ZIO_PRIORITY_SYNC_WRITE, 1622 ZIO_FLAG_CANFAIL, zb)); 1623 1624 return (0); 1625 } 1626 1627 /* 1628 * Intent log support: sync the block associated with db to disk. 1629 * N.B. and XXX: the caller is responsible for making sure that the 1630 * data isn't changing while dmu_sync() is writing it. 1631 * 1632 * Return values: 1633 * 1634 * EEXIST: this txg has already been synced, so there's nothing to do. 1635 * The caller should not log the write. 1636 * 1637 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1638 * The caller should not log the write. 1639 * 1640 * EALREADY: this block is already in the process of being synced. 1641 * The caller should track its progress (somehow). 1642 * 1643 * EIO: could not do the I/O. 1644 * The caller should do a txg_wait_synced(). 1645 * 1646 * 0: the I/O has been initiated. 1647 * The caller should log this blkptr in the done callback. 1648 * It is possible that the I/O will fail, in which case 1649 * the error will be reported to the done callback and 1650 * propagated to pio from zio_done(). 1651 */ 1652 int 1653 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1654 { 1655 blkptr_t *bp = zgd->zgd_bp; 1656 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1657 objset_t *os = db->db_objset; 1658 dsl_dataset_t *ds = os->os_dsl_dataset; 1659 dbuf_dirty_record_t *dr; 1660 dmu_sync_arg_t *dsa; 1661 zbookmark_phys_t zb; 1662 zio_prop_t zp; 1663 dnode_t *dn; 1664 1665 ASSERT(pio != NULL); 1666 ASSERT(txg != 0); 1667 1668 SET_BOOKMARK(&zb, ds->ds_object, 1669 db->db.db_object, db->db_level, db->db_blkid); 1670 1671 DB_DNODE_ENTER(db); 1672 dn = DB_DNODE(db); 1673 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, 1674 ZIO_COMPRESS_INHERIT, &zp); 1675 DB_DNODE_EXIT(db); 1676 1677 /* 1678 * If we're frozen (running ziltest), we always need to generate a bp. 1679 */ 1680 if (txg > spa_freeze_txg(os->os_spa)) 1681 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1682 1683 /* 1684 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1685 * and us. If we determine that this txg is not yet syncing, 1686 * but it begins to sync a moment later, that's OK because the 1687 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1688 */ 1689 mutex_enter(&db->db_mtx); 1690 1691 if (txg <= spa_last_synced_txg(os->os_spa)) { 1692 /* 1693 * This txg has already synced. There's nothing to do. 1694 */ 1695 mutex_exit(&db->db_mtx); 1696 return (SET_ERROR(EEXIST)); 1697 } 1698 1699 if (txg <= spa_syncing_txg(os->os_spa)) { 1700 /* 1701 * This txg is currently syncing, so we can't mess with 1702 * the dirty record anymore; just write a new log block. 1703 */ 1704 mutex_exit(&db->db_mtx); 1705 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1706 } 1707 1708 dr = db->db_last_dirty; 1709 while (dr && dr->dr_txg != txg) 1710 dr = dr->dr_next; 1711 1712 if (dr == NULL) { 1713 /* 1714 * There's no dr for this dbuf, so it must have been freed. 1715 * There's no need to log writes to freed blocks, so we're done. 1716 */ 1717 mutex_exit(&db->db_mtx); 1718 return (SET_ERROR(ENOENT)); 1719 } 1720 1721 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1722 1723 /* 1724 * Assume the on-disk data is X, the current syncing data (in 1725 * txg - 1) is Y, and the current in-memory data is Z (currently 1726 * in dmu_sync). 1727 * 1728 * We usually want to perform a nopwrite if X and Z are the 1729 * same. However, if Y is different (i.e. the BP is going to 1730 * change before this write takes effect), then a nopwrite will 1731 * be incorrect - we would override with X, which could have 1732 * been freed when Y was written. 1733 * 1734 * (Note that this is not a concern when we are nop-writing from 1735 * syncing context, because X and Y must be identical, because 1736 * all previous txgs have been synced.) 1737 * 1738 * Therefore, we disable nopwrite if the current BP could change 1739 * before this TXG. There are two ways it could change: by 1740 * being dirty (dr_next is non-NULL), or by being freed 1741 * (dnode_block_freed()). This behavior is verified by 1742 * zio_done(), which VERIFYs that the override BP is identical 1743 * to the on-disk BP. 1744 */ 1745 DB_DNODE_ENTER(db); 1746 dn = DB_DNODE(db); 1747 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1748 zp.zp_nopwrite = B_FALSE; 1749 DB_DNODE_EXIT(db); 1750 1751 ASSERT(dr->dr_txg == txg); 1752 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1753 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1754 /* 1755 * We have already issued a sync write for this buffer, 1756 * or this buffer has already been synced. It could not 1757 * have been dirtied since, or we would have cleared the state. 1758 */ 1759 mutex_exit(&db->db_mtx); 1760 return (SET_ERROR(EALREADY)); 1761 } 1762 1763 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1764 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1765 mutex_exit(&db->db_mtx); 1766 1767 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1768 dsa->dsa_dr = dr; 1769 dsa->dsa_done = done; 1770 dsa->dsa_zgd = zgd; 1771 dsa->dsa_tx = NULL; 1772 1773 zio_nowait(arc_write(pio, os->os_spa, txg, 1774 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1775 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 1776 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1777 1778 return (0); 1779 } 1780 1781 int 1782 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1783 dmu_tx_t *tx) 1784 { 1785 dnode_t *dn; 1786 int err; 1787 1788 err = dnode_hold(os, object, FTAG, &dn); 1789 if (err) 1790 return (err); 1791 err = dnode_set_blksz(dn, size, ibs, tx); 1792 dnode_rele(dn, FTAG); 1793 return (err); 1794 } 1795 1796 void 1797 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1798 dmu_tx_t *tx) 1799 { 1800 dnode_t *dn; 1801 1802 /* 1803 * Send streams include each object's checksum function. This 1804 * check ensures that the receiving system can understand the 1805 * checksum function transmitted. 1806 */ 1807 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1808 1809 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1810 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1811 dn->dn_checksum = checksum; 1812 dnode_setdirty(dn, tx); 1813 dnode_rele(dn, FTAG); 1814 } 1815 1816 void 1817 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1818 dmu_tx_t *tx) 1819 { 1820 dnode_t *dn; 1821 1822 /* 1823 * Send streams include each object's compression function. This 1824 * check ensures that the receiving system can understand the 1825 * compression function transmitted. 1826 */ 1827 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1828 1829 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1830 dn->dn_compress = compress; 1831 dnode_setdirty(dn, tx); 1832 dnode_rele(dn, FTAG); 1833 } 1834 1835 int zfs_mdcomp_disable = 0; 1836 1837 /* 1838 * When the "redundant_metadata" property is set to "most", only indirect 1839 * blocks of this level and higher will have an additional ditto block. 1840 */ 1841 int zfs_redundant_metadata_most_ditto_level = 2; 1842 1843 void 1844 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, 1845 enum zio_compress override_compress, zio_prop_t *zp) 1846 { 1847 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1848 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1849 (wp & WP_SPILL)); 1850 enum zio_checksum checksum = os->os_checksum; 1851 enum zio_compress compress = os->os_compress; 1852 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1853 boolean_t dedup = B_FALSE; 1854 boolean_t nopwrite = B_FALSE; 1855 boolean_t dedup_verify = os->os_dedup_verify; 1856 int copies = os->os_copies; 1857 boolean_t lz4_ac = spa_feature_is_active(os->os_spa, 1858 SPA_FEATURE_LZ4_COMPRESS); 1859 1860 IMPLY(override_compress == ZIO_COMPRESS_LZ4, lz4_ac); 1861 1862 /* 1863 * We maintain different write policies for each of the following 1864 * types of data: 1865 * 1. metadata 1866 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1867 * 3. all other level 0 blocks 1868 */ 1869 if (ismd) { 1870 if (zfs_mdcomp_disable) { 1871 compress = ZIO_COMPRESS_EMPTY; 1872 } else { 1873 /* 1874 * XXX -- we should design a compression algorithm 1875 * that specializes in arrays of bps. 1876 */ 1877 compress = zio_compress_select(os->os_spa, 1878 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1879 } 1880 1881 /* 1882 * Metadata always gets checksummed. If the data 1883 * checksum is multi-bit correctable, and it's not a 1884 * ZBT-style checksum, then it's suitable for metadata 1885 * as well. Otherwise, the metadata checksum defaults 1886 * to fletcher4. 1887 */ 1888 if (!(zio_checksum_table[checksum].ci_flags & 1889 ZCHECKSUM_FLAG_METADATA) || 1890 (zio_checksum_table[checksum].ci_flags & 1891 ZCHECKSUM_FLAG_EMBEDDED)) 1892 checksum = ZIO_CHECKSUM_FLETCHER_4; 1893 1894 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1895 (os->os_redundant_metadata == 1896 ZFS_REDUNDANT_METADATA_MOST && 1897 (level >= zfs_redundant_metadata_most_ditto_level || 1898 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1899 copies++; 1900 } else if (wp & WP_NOFILL) { 1901 ASSERT(level == 0); 1902 1903 /* 1904 * If we're writing preallocated blocks, we aren't actually 1905 * writing them so don't set any policy properties. These 1906 * blocks are currently only used by an external subsystem 1907 * outside of zfs (i.e. dump) and not written by the zio 1908 * pipeline. 1909 */ 1910 compress = ZIO_COMPRESS_OFF; 1911 checksum = ZIO_CHECKSUM_NOPARITY; 1912 } else { 1913 compress = zio_compress_select(os->os_spa, dn->dn_compress, 1914 compress); 1915 1916 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1917 zio_checksum_select(dn->dn_checksum, checksum) : 1918 dedup_checksum; 1919 1920 /* 1921 * Determine dedup setting. If we are in dmu_sync(), 1922 * we won't actually dedup now because that's all 1923 * done in syncing context; but we do want to use the 1924 * dedup checkum. If the checksum is not strong 1925 * enough to ensure unique signatures, force 1926 * dedup_verify. 1927 */ 1928 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1929 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1930 if (!(zio_checksum_table[checksum].ci_flags & 1931 ZCHECKSUM_FLAG_DEDUP)) 1932 dedup_verify = B_TRUE; 1933 } 1934 1935 /* 1936 * Enable nopwrite if we have secure enough checksum 1937 * algorithm (see comment in zio_nop_write) and 1938 * compression is enabled. We don't enable nopwrite if 1939 * dedup is enabled as the two features are mutually 1940 * exclusive. 1941 */ 1942 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 1943 ZCHECKSUM_FLAG_NOPWRITE) && 1944 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1945 } 1946 1947 zp->zp_checksum = checksum; 1948 1949 /* 1950 * If we're writing a pre-compressed buffer, the compression type we use 1951 * must match the data. If it hasn't been compressed yet, then we should 1952 * use the value dictated by the policies above. 1953 */ 1954 zp->zp_compress = override_compress != ZIO_COMPRESS_INHERIT 1955 ? override_compress : compress; 1956 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); 1957 1958 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1959 zp->zp_level = level; 1960 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 1961 zp->zp_dedup = dedup; 1962 zp->zp_dedup_verify = dedup && dedup_verify; 1963 zp->zp_nopwrite = nopwrite; 1964 } 1965 1966 int 1967 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1968 { 1969 dnode_t *dn; 1970 int err; 1971 1972 /* 1973 * Sync any current changes before 1974 * we go trundling through the block pointers. 1975 */ 1976 err = dmu_object_wait_synced(os, object); 1977 if (err) { 1978 return (err); 1979 } 1980 1981 err = dnode_hold(os, object, FTAG, &dn); 1982 if (err) { 1983 return (err); 1984 } 1985 1986 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1987 dnode_rele(dn, FTAG); 1988 1989 return (err); 1990 } 1991 1992 /* 1993 * Given the ZFS object, if it contains any dirty nodes 1994 * this function flushes all dirty blocks to disk. This 1995 * ensures the DMU object info is updated. A more efficient 1996 * future version might just find the TXG with the maximum 1997 * ID and wait for that to be synced. 1998 */ 1999 int 2000 dmu_object_wait_synced(objset_t *os, uint64_t object) 2001 { 2002 dnode_t *dn; 2003 int error, i; 2004 2005 error = dnode_hold(os, object, FTAG, &dn); 2006 if (error) { 2007 return (error); 2008 } 2009 2010 for (i = 0; i < TXG_SIZE; i++) { 2011 if (list_link_active(&dn->dn_dirty_link[i])) { 2012 break; 2013 } 2014 } 2015 dnode_rele(dn, FTAG); 2016 if (i != TXG_SIZE) { 2017 txg_wait_synced(dmu_objset_pool(os), 0); 2018 } 2019 2020 return (0); 2021 } 2022 2023 void 2024 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2025 { 2026 dnode_phys_t *dnp; 2027 2028 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2029 mutex_enter(&dn->dn_mtx); 2030 2031 dnp = dn->dn_phys; 2032 2033 doi->doi_data_block_size = dn->dn_datablksz; 2034 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2035 1ULL << dn->dn_indblkshift : 0; 2036 doi->doi_type = dn->dn_type; 2037 doi->doi_bonus_type = dn->dn_bonustype; 2038 doi->doi_bonus_size = dn->dn_bonuslen; 2039 doi->doi_indirection = dn->dn_nlevels; 2040 doi->doi_checksum = dn->dn_checksum; 2041 doi->doi_compress = dn->dn_compress; 2042 doi->doi_nblkptr = dn->dn_nblkptr; 2043 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2044 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2045 doi->doi_fill_count = 0; 2046 for (int i = 0; i < dnp->dn_nblkptr; i++) 2047 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2048 2049 mutex_exit(&dn->dn_mtx); 2050 rw_exit(&dn->dn_struct_rwlock); 2051 } 2052 2053 /* 2054 * Get information on a DMU object. 2055 * If doi is NULL, just indicates whether the object exists. 2056 */ 2057 int 2058 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2059 { 2060 dnode_t *dn; 2061 int err = dnode_hold(os, object, FTAG, &dn); 2062 2063 if (err) 2064 return (err); 2065 2066 if (doi != NULL) 2067 dmu_object_info_from_dnode(dn, doi); 2068 2069 dnode_rele(dn, FTAG); 2070 return (0); 2071 } 2072 2073 /* 2074 * As above, but faster; can be used when you have a held dbuf in hand. 2075 */ 2076 void 2077 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2078 { 2079 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2080 2081 DB_DNODE_ENTER(db); 2082 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2083 DB_DNODE_EXIT(db); 2084 } 2085 2086 /* 2087 * Faster still when you only care about the size. 2088 * This is specifically optimized for zfs_getattr(). 2089 */ 2090 void 2091 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2092 u_longlong_t *nblk512) 2093 { 2094 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2095 dnode_t *dn; 2096 2097 DB_DNODE_ENTER(db); 2098 dn = DB_DNODE(db); 2099 2100 *blksize = dn->dn_datablksz; 2101 /* add 1 for dnode space */ 2102 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2103 SPA_MINBLOCKSHIFT) + 1; 2104 DB_DNODE_EXIT(db); 2105 } 2106 2107 void 2108 byteswap_uint64_array(void *vbuf, size_t size) 2109 { 2110 uint64_t *buf = vbuf; 2111 size_t count = size >> 3; 2112 int i; 2113 2114 ASSERT((size & 7) == 0); 2115 2116 for (i = 0; i < count; i++) 2117 buf[i] = BSWAP_64(buf[i]); 2118 } 2119 2120 void 2121 byteswap_uint32_array(void *vbuf, size_t size) 2122 { 2123 uint32_t *buf = vbuf; 2124 size_t count = size >> 2; 2125 int i; 2126 2127 ASSERT((size & 3) == 0); 2128 2129 for (i = 0; i < count; i++) 2130 buf[i] = BSWAP_32(buf[i]); 2131 } 2132 2133 void 2134 byteswap_uint16_array(void *vbuf, size_t size) 2135 { 2136 uint16_t *buf = vbuf; 2137 size_t count = size >> 1; 2138 int i; 2139 2140 ASSERT((size & 1) == 0); 2141 2142 for (i = 0; i < count; i++) 2143 buf[i] = BSWAP_16(buf[i]); 2144 } 2145 2146 /* ARGSUSED */ 2147 void 2148 byteswap_uint8_array(void *vbuf, size_t size) 2149 { 2150 } 2151 2152 void 2153 dmu_init(void) 2154 { 2155 zfs_dbgmsg_init(); 2156 sa_cache_init(); 2157 xuio_stat_init(); 2158 dmu_objset_init(); 2159 dnode_init(); 2160 zfetch_init(); 2161 l2arc_init(); 2162 arc_init(); 2163 dbuf_init(); 2164 } 2165 2166 void 2167 dmu_fini(void) 2168 { 2169 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2170 l2arc_fini(); 2171 zfetch_fini(); 2172 dbuf_fini(); 2173 dnode_fini(); 2174 dmu_objset_fini(); 2175 xuio_stat_fini(); 2176 sa_cache_fini(); 2177 zfs_dbgmsg_fini(); 2178 } 2179