1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 /* Copyright 2016 Nexenta Systems, Inc. All rights reserved. */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/zfs_ioctl.h> 44 #include <sys/zap.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/zio_compress.h> 47 #include <sys/sa.h> 48 #include <sys/zfeature.h> 49 #include <sys/abd.h> 50 #ifdef _KERNEL 51 #include <sys/vmsystm.h> 52 #include <sys/zfs_znode.h> 53 #endif 54 55 /* 56 * Enable/disable nopwrite feature. 57 */ 58 int zfs_nopwrite_enabled = 1; 59 60 /* 61 * Tunable to control percentage of dirtied blocks from frees in one TXG. 62 * After this threshold is crossed, additional dirty blocks from frees 63 * wait until the next TXG. 64 * A value of zero will disable this throttle. 65 */ 66 uint32_t zfs_per_txg_dirty_frees_percent = 30; 67 68 /* 69 * This can be used for testing, to ensure that certain actions happen 70 * while in the middle of a remap (which might otherwise complete too 71 * quickly). 72 */ 73 int zfs_object_remap_one_indirect_delay_ticks = 0; 74 75 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 76 { DMU_BSWAP_UINT8, TRUE, FALSE, "unallocated" }, 77 { DMU_BSWAP_ZAP, TRUE, TRUE, "object directory" }, 78 { DMU_BSWAP_UINT64, TRUE, TRUE, "object array" }, 79 { DMU_BSWAP_UINT8, TRUE, FALSE, "packed nvlist" }, 80 { DMU_BSWAP_UINT64, TRUE, FALSE, "packed nvlist size" }, 81 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj" }, 82 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj header" }, 83 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map header" }, 84 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map" }, 85 { DMU_BSWAP_UINT64, TRUE, FALSE, "ZIL intent log" }, 86 { DMU_BSWAP_DNODE, TRUE, FALSE, "DMU dnode" }, 87 { DMU_BSWAP_OBJSET, TRUE, TRUE, "DMU objset" }, 88 { DMU_BSWAP_UINT64, TRUE, TRUE, "DSL directory" }, 89 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL directory child map" }, 90 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL dataset snap map" }, 91 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL props" }, 92 { DMU_BSWAP_UINT64, TRUE, TRUE, "DSL dataset" }, 93 { DMU_BSWAP_ZNODE, TRUE, FALSE, "ZFS znode" }, 94 { DMU_BSWAP_OLDACL, TRUE, FALSE, "ZFS V0 ACL" }, 95 { DMU_BSWAP_UINT8, FALSE, FALSE, "ZFS plain file" }, 96 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS directory" }, 97 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS master node" }, 98 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS delete queue" }, 99 { DMU_BSWAP_UINT8, FALSE, FALSE, "zvol object" }, 100 { DMU_BSWAP_ZAP, TRUE, FALSE, "zvol prop" }, 101 { DMU_BSWAP_UINT8, FALSE, FALSE, "other uint8[]" }, 102 { DMU_BSWAP_UINT64, FALSE, FALSE, "other uint64[]" }, 103 { DMU_BSWAP_ZAP, TRUE, FALSE, "other ZAP" }, 104 { DMU_BSWAP_ZAP, TRUE, FALSE, "persistent error log" }, 105 { DMU_BSWAP_UINT8, TRUE, FALSE, "SPA history" }, 106 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA history offsets" }, 107 { DMU_BSWAP_ZAP, TRUE, TRUE, "Pool properties" }, 108 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL permissions" }, 109 { DMU_BSWAP_ACL, TRUE, FALSE, "ZFS ACL" }, 110 { DMU_BSWAP_UINT8, TRUE, FALSE, "ZFS SYSACL" }, 111 { DMU_BSWAP_UINT8, TRUE, FALSE, "FUID table" }, 112 { DMU_BSWAP_UINT64, TRUE, FALSE, "FUID table size" }, 113 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL dataset next clones" }, 114 { DMU_BSWAP_ZAP, TRUE, FALSE, "scan work queue" }, 115 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS user/group used" }, 116 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS user/group quota" }, 117 { DMU_BSWAP_ZAP, TRUE, TRUE, "snapshot refcount tags" }, 118 { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT ZAP algorithm" }, 119 { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT statistics" }, 120 { DMU_BSWAP_UINT8, TRUE, FALSE, "System attributes" }, 121 { DMU_BSWAP_ZAP, TRUE, FALSE, "SA master node" }, 122 { DMU_BSWAP_ZAP, TRUE, FALSE, "SA attr registration" }, 123 { DMU_BSWAP_ZAP, TRUE, FALSE, "SA attr layouts" }, 124 { DMU_BSWAP_ZAP, TRUE, FALSE, "scan translations" }, 125 { DMU_BSWAP_UINT8, FALSE, FALSE, "deduplicated block" }, 126 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL deadlist map" }, 127 { DMU_BSWAP_UINT64, TRUE, TRUE, "DSL deadlist map hdr" }, 128 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL dir clones" }, 129 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj subobj" } 130 }; 131 132 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 133 { byteswap_uint8_array, "uint8" }, 134 { byteswap_uint16_array, "uint16" }, 135 { byteswap_uint32_array, "uint32" }, 136 { byteswap_uint64_array, "uint64" }, 137 { zap_byteswap, "zap" }, 138 { dnode_buf_byteswap, "dnode" }, 139 { dmu_objset_byteswap, "objset" }, 140 { zfs_znode_byteswap, "znode" }, 141 { zfs_oldacl_byteswap, "oldacl" }, 142 { zfs_acl_byteswap, "acl" } 143 }; 144 145 int 146 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 147 void *tag, dmu_buf_t **dbp) 148 { 149 uint64_t blkid; 150 dmu_buf_impl_t *db; 151 152 blkid = dbuf_whichblock(dn, 0, offset); 153 rw_enter(&dn->dn_struct_rwlock, RW_READER); 154 db = dbuf_hold(dn, blkid, tag); 155 rw_exit(&dn->dn_struct_rwlock); 156 157 if (db == NULL) { 158 *dbp = NULL; 159 return (SET_ERROR(EIO)); 160 } 161 162 *dbp = &db->db; 163 return (0); 164 } 165 int 166 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 167 void *tag, dmu_buf_t **dbp) 168 { 169 dnode_t *dn; 170 uint64_t blkid; 171 dmu_buf_impl_t *db; 172 int err; 173 174 err = dnode_hold(os, object, FTAG, &dn); 175 if (err) 176 return (err); 177 blkid = dbuf_whichblock(dn, 0, offset); 178 rw_enter(&dn->dn_struct_rwlock, RW_READER); 179 db = dbuf_hold(dn, blkid, tag); 180 rw_exit(&dn->dn_struct_rwlock); 181 dnode_rele(dn, FTAG); 182 183 if (db == NULL) { 184 *dbp = NULL; 185 return (SET_ERROR(EIO)); 186 } 187 188 *dbp = &db->db; 189 return (err); 190 } 191 192 int 193 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 194 void *tag, dmu_buf_t **dbp, int flags) 195 { 196 int err; 197 int db_flags = DB_RF_CANFAIL; 198 199 if (flags & DMU_READ_NO_PREFETCH) 200 db_flags |= DB_RF_NOPREFETCH; 201 202 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 203 if (err == 0) { 204 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 205 err = dbuf_read(db, NULL, db_flags); 206 if (err != 0) { 207 dbuf_rele(db, tag); 208 *dbp = NULL; 209 } 210 } 211 212 return (err); 213 } 214 215 int 216 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 217 void *tag, dmu_buf_t **dbp, int flags) 218 { 219 int err; 220 int db_flags = DB_RF_CANFAIL; 221 222 if (flags & DMU_READ_NO_PREFETCH) 223 db_flags |= DB_RF_NOPREFETCH; 224 225 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 226 if (err == 0) { 227 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 228 err = dbuf_read(db, NULL, db_flags); 229 if (err != 0) { 230 dbuf_rele(db, tag); 231 *dbp = NULL; 232 } 233 } 234 235 return (err); 236 } 237 238 int 239 dmu_bonus_max(void) 240 { 241 return (DN_MAX_BONUSLEN); 242 } 243 244 int 245 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 246 { 247 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 248 dnode_t *dn; 249 int error; 250 251 DB_DNODE_ENTER(db); 252 dn = DB_DNODE(db); 253 254 if (dn->dn_bonus != db) { 255 error = SET_ERROR(EINVAL); 256 } else if (newsize < 0 || newsize > db_fake->db_size) { 257 error = SET_ERROR(EINVAL); 258 } else { 259 dnode_setbonuslen(dn, newsize, tx); 260 error = 0; 261 } 262 263 DB_DNODE_EXIT(db); 264 return (error); 265 } 266 267 int 268 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 269 { 270 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 271 dnode_t *dn; 272 int error; 273 274 DB_DNODE_ENTER(db); 275 dn = DB_DNODE(db); 276 277 if (!DMU_OT_IS_VALID(type)) { 278 error = SET_ERROR(EINVAL); 279 } else if (dn->dn_bonus != db) { 280 error = SET_ERROR(EINVAL); 281 } else { 282 dnode_setbonus_type(dn, type, tx); 283 error = 0; 284 } 285 286 DB_DNODE_EXIT(db); 287 return (error); 288 } 289 290 dmu_object_type_t 291 dmu_get_bonustype(dmu_buf_t *db_fake) 292 { 293 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 294 dnode_t *dn; 295 dmu_object_type_t type; 296 297 DB_DNODE_ENTER(db); 298 dn = DB_DNODE(db); 299 type = dn->dn_bonustype; 300 DB_DNODE_EXIT(db); 301 302 return (type); 303 } 304 305 int 306 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 307 { 308 dnode_t *dn; 309 int error; 310 311 error = dnode_hold(os, object, FTAG, &dn); 312 dbuf_rm_spill(dn, tx); 313 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 314 dnode_rm_spill(dn, tx); 315 rw_exit(&dn->dn_struct_rwlock); 316 dnode_rele(dn, FTAG); 317 return (error); 318 } 319 320 /* 321 * returns ENOENT, EIO, or 0. 322 */ 323 int 324 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 325 { 326 dnode_t *dn; 327 dmu_buf_impl_t *db; 328 int error; 329 330 error = dnode_hold(os, object, FTAG, &dn); 331 if (error) 332 return (error); 333 334 rw_enter(&dn->dn_struct_rwlock, RW_READER); 335 if (dn->dn_bonus == NULL) { 336 rw_exit(&dn->dn_struct_rwlock); 337 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 338 if (dn->dn_bonus == NULL) 339 dbuf_create_bonus(dn); 340 } 341 db = dn->dn_bonus; 342 343 /* as long as the bonus buf is held, the dnode will be held */ 344 if (refcount_add(&db->db_holds, tag) == 1) { 345 VERIFY(dnode_add_ref(dn, db)); 346 atomic_inc_32(&dn->dn_dbufs_count); 347 } 348 349 /* 350 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 351 * hold and incrementing the dbuf count to ensure that dnode_move() sees 352 * a dnode hold for every dbuf. 353 */ 354 rw_exit(&dn->dn_struct_rwlock); 355 356 dnode_rele(dn, FTAG); 357 358 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 359 360 *dbp = &db->db; 361 return (0); 362 } 363 364 /* 365 * returns ENOENT, EIO, or 0. 366 * 367 * This interface will allocate a blank spill dbuf when a spill blk 368 * doesn't already exist on the dnode. 369 * 370 * if you only want to find an already existing spill db, then 371 * dmu_spill_hold_existing() should be used. 372 */ 373 int 374 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 375 { 376 dmu_buf_impl_t *db = NULL; 377 int err; 378 379 if ((flags & DB_RF_HAVESTRUCT) == 0) 380 rw_enter(&dn->dn_struct_rwlock, RW_READER); 381 382 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 383 384 if ((flags & DB_RF_HAVESTRUCT) == 0) 385 rw_exit(&dn->dn_struct_rwlock); 386 387 ASSERT(db != NULL); 388 err = dbuf_read(db, NULL, flags); 389 if (err == 0) 390 *dbp = &db->db; 391 else 392 dbuf_rele(db, tag); 393 return (err); 394 } 395 396 int 397 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 398 { 399 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 400 dnode_t *dn; 401 int err; 402 403 DB_DNODE_ENTER(db); 404 dn = DB_DNODE(db); 405 406 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 407 err = SET_ERROR(EINVAL); 408 } else { 409 rw_enter(&dn->dn_struct_rwlock, RW_READER); 410 411 if (!dn->dn_have_spill) { 412 err = SET_ERROR(ENOENT); 413 } else { 414 err = dmu_spill_hold_by_dnode(dn, 415 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 416 } 417 418 rw_exit(&dn->dn_struct_rwlock); 419 } 420 421 DB_DNODE_EXIT(db); 422 return (err); 423 } 424 425 int 426 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 427 { 428 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 429 dnode_t *dn; 430 int err; 431 432 DB_DNODE_ENTER(db); 433 dn = DB_DNODE(db); 434 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 435 DB_DNODE_EXIT(db); 436 437 return (err); 438 } 439 440 /* 441 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 442 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 443 * and can induce severe lock contention when writing to several files 444 * whose dnodes are in the same block. 445 */ 446 int 447 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 448 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 449 { 450 dmu_buf_t **dbp; 451 uint64_t blkid, nblks, i; 452 uint32_t dbuf_flags; 453 int err; 454 zio_t *zio; 455 456 ASSERT(length <= DMU_MAX_ACCESS); 457 458 /* 459 * Note: We directly notify the prefetch code of this read, so that 460 * we can tell it about the multi-block read. dbuf_read() only knows 461 * about the one block it is accessing. 462 */ 463 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 464 DB_RF_NOPREFETCH; 465 466 rw_enter(&dn->dn_struct_rwlock, RW_READER); 467 if (dn->dn_datablkshift) { 468 int blkshift = dn->dn_datablkshift; 469 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 470 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 471 } else { 472 if (offset + length > dn->dn_datablksz) { 473 zfs_panic_recover("zfs: accessing past end of object " 474 "%llx/%llx (size=%u access=%llu+%llu)", 475 (longlong_t)dn->dn_objset-> 476 os_dsl_dataset->ds_object, 477 (longlong_t)dn->dn_object, dn->dn_datablksz, 478 (longlong_t)offset, (longlong_t)length); 479 rw_exit(&dn->dn_struct_rwlock); 480 return (SET_ERROR(EIO)); 481 } 482 nblks = 1; 483 } 484 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 485 486 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 487 blkid = dbuf_whichblock(dn, 0, offset); 488 for (i = 0; i < nblks; i++) { 489 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 490 if (db == NULL) { 491 rw_exit(&dn->dn_struct_rwlock); 492 dmu_buf_rele_array(dbp, nblks, tag); 493 zio_nowait(zio); 494 return (SET_ERROR(EIO)); 495 } 496 497 /* initiate async i/o */ 498 if (read) 499 (void) dbuf_read(db, zio, dbuf_flags); 500 dbp[i] = &db->db; 501 } 502 503 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 504 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 505 dmu_zfetch(&dn->dn_zfetch, blkid, nblks, 506 read && DNODE_IS_CACHEABLE(dn)); 507 } 508 rw_exit(&dn->dn_struct_rwlock); 509 510 /* wait for async i/o */ 511 err = zio_wait(zio); 512 if (err) { 513 dmu_buf_rele_array(dbp, nblks, tag); 514 return (err); 515 } 516 517 /* wait for other io to complete */ 518 if (read) { 519 for (i = 0; i < nblks; i++) { 520 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 521 mutex_enter(&db->db_mtx); 522 while (db->db_state == DB_READ || 523 db->db_state == DB_FILL) 524 cv_wait(&db->db_changed, &db->db_mtx); 525 if (db->db_state == DB_UNCACHED) 526 err = SET_ERROR(EIO); 527 mutex_exit(&db->db_mtx); 528 if (err) { 529 dmu_buf_rele_array(dbp, nblks, tag); 530 return (err); 531 } 532 } 533 } 534 535 *numbufsp = nblks; 536 *dbpp = dbp; 537 return (0); 538 } 539 540 static int 541 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 542 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 543 { 544 dnode_t *dn; 545 int err; 546 547 err = dnode_hold(os, object, FTAG, &dn); 548 if (err) 549 return (err); 550 551 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 552 numbufsp, dbpp, DMU_READ_PREFETCH); 553 554 dnode_rele(dn, FTAG); 555 556 return (err); 557 } 558 559 int 560 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 561 uint64_t length, boolean_t read, void *tag, int *numbufsp, 562 dmu_buf_t ***dbpp) 563 { 564 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 565 dnode_t *dn; 566 int err; 567 568 DB_DNODE_ENTER(db); 569 dn = DB_DNODE(db); 570 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 571 numbufsp, dbpp, DMU_READ_PREFETCH); 572 DB_DNODE_EXIT(db); 573 574 return (err); 575 } 576 577 void 578 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 579 { 580 int i; 581 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 582 583 if (numbufs == 0) 584 return; 585 586 for (i = 0; i < numbufs; i++) { 587 if (dbp[i]) 588 dbuf_rele(dbp[i], tag); 589 } 590 591 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 592 } 593 594 /* 595 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 596 * indirect blocks prefeteched will be those that point to the blocks containing 597 * the data starting at offset, and continuing to offset + len. 598 * 599 * Note that if the indirect blocks above the blocks being prefetched are not in 600 * cache, they will be asychronously read in. 601 */ 602 void 603 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 604 uint64_t len, zio_priority_t pri) 605 { 606 dnode_t *dn; 607 uint64_t blkid; 608 int nblks, err; 609 610 if (len == 0) { /* they're interested in the bonus buffer */ 611 dn = DMU_META_DNODE(os); 612 613 if (object == 0 || object >= DN_MAX_OBJECT) 614 return; 615 616 rw_enter(&dn->dn_struct_rwlock, RW_READER); 617 blkid = dbuf_whichblock(dn, level, 618 object * sizeof (dnode_phys_t)); 619 dbuf_prefetch(dn, level, blkid, pri, 0); 620 rw_exit(&dn->dn_struct_rwlock); 621 return; 622 } 623 624 /* 625 * XXX - Note, if the dnode for the requested object is not 626 * already cached, we will do a *synchronous* read in the 627 * dnode_hold() call. The same is true for any indirects. 628 */ 629 err = dnode_hold(os, object, FTAG, &dn); 630 if (err != 0) 631 return; 632 633 rw_enter(&dn->dn_struct_rwlock, RW_READER); 634 /* 635 * offset + len - 1 is the last byte we want to prefetch for, and offset 636 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 637 * last block we want to prefetch, and dbuf_whichblock(dn, level, 638 * offset) is the first. Then the number we need to prefetch is the 639 * last - first + 1. 640 */ 641 if (level > 0 || dn->dn_datablkshift != 0) { 642 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 643 dbuf_whichblock(dn, level, offset) + 1; 644 } else { 645 nblks = (offset < dn->dn_datablksz); 646 } 647 648 if (nblks != 0) { 649 blkid = dbuf_whichblock(dn, level, offset); 650 for (int i = 0; i < nblks; i++) 651 dbuf_prefetch(dn, level, blkid + i, pri, 0); 652 } 653 654 rw_exit(&dn->dn_struct_rwlock); 655 656 dnode_rele(dn, FTAG); 657 } 658 659 /* 660 * Get the next "chunk" of file data to free. We traverse the file from 661 * the end so that the file gets shorter over time (if we crashes in the 662 * middle, this will leave us in a better state). We find allocated file 663 * data by simply searching the allocated level 1 indirects. 664 * 665 * On input, *start should be the first offset that does not need to be 666 * freed (e.g. "offset + length"). On return, *start will be the first 667 * offset that should be freed. 668 */ 669 static int 670 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 671 { 672 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 673 /* bytes of data covered by a level-1 indirect block */ 674 uint64_t iblkrange = 675 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 676 677 ASSERT3U(minimum, <=, *start); 678 679 if (*start - minimum <= iblkrange * maxblks) { 680 *start = minimum; 681 return (0); 682 } 683 ASSERT(ISP2(iblkrange)); 684 685 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 686 int err; 687 688 /* 689 * dnode_next_offset(BACKWARDS) will find an allocated L1 690 * indirect block at or before the input offset. We must 691 * decrement *start so that it is at the end of the region 692 * to search. 693 */ 694 (*start)--; 695 err = dnode_next_offset(dn, 696 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 697 698 /* if there are no indirect blocks before start, we are done */ 699 if (err == ESRCH) { 700 *start = minimum; 701 break; 702 } else if (err != 0) { 703 return (err); 704 } 705 706 /* set start to the beginning of this L1 indirect */ 707 *start = P2ALIGN(*start, iblkrange); 708 } 709 if (*start < minimum) 710 *start = minimum; 711 return (0); 712 } 713 714 /* 715 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 716 * otherwise return false. 717 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 718 */ 719 /*ARGSUSED*/ 720 static boolean_t 721 dmu_objset_zfs_unmounting(objset_t *os) 722 { 723 #ifdef _KERNEL 724 if (dmu_objset_type(os) == DMU_OST_ZFS) 725 return (zfs_get_vfs_flag_unmounted(os)); 726 #endif 727 return (B_FALSE); 728 } 729 730 static int 731 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 732 uint64_t length) 733 { 734 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 735 int err; 736 uint64_t dirty_frees_threshold; 737 dsl_pool_t *dp = dmu_objset_pool(os); 738 739 if (offset >= object_size) 740 return (0); 741 742 if (zfs_per_txg_dirty_frees_percent <= 100) 743 dirty_frees_threshold = 744 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 745 else 746 dirty_frees_threshold = zfs_dirty_data_max / 4; 747 748 if (length == DMU_OBJECT_END || offset + length > object_size) 749 length = object_size - offset; 750 751 while (length != 0) { 752 uint64_t chunk_end, chunk_begin, chunk_len; 753 uint64_t long_free_dirty_all_txgs = 0; 754 dmu_tx_t *tx; 755 756 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 757 return (SET_ERROR(EINTR)); 758 759 chunk_end = chunk_begin = offset + length; 760 761 /* move chunk_begin backwards to the beginning of this chunk */ 762 err = get_next_chunk(dn, &chunk_begin, offset); 763 if (err) 764 return (err); 765 ASSERT3U(chunk_begin, >=, offset); 766 ASSERT3U(chunk_begin, <=, chunk_end); 767 768 chunk_len = chunk_end - chunk_begin; 769 770 mutex_enter(&dp->dp_lock); 771 for (int t = 0; t < TXG_SIZE; t++) { 772 long_free_dirty_all_txgs += 773 dp->dp_long_free_dirty_pertxg[t]; 774 } 775 mutex_exit(&dp->dp_lock); 776 777 /* 778 * To avoid filling up a TXG with just frees wait for 779 * the next TXG to open before freeing more chunks if 780 * we have reached the threshold of frees 781 */ 782 if (dirty_frees_threshold != 0 && 783 long_free_dirty_all_txgs >= dirty_frees_threshold) { 784 txg_wait_open(dp, 0); 785 continue; 786 } 787 788 tx = dmu_tx_create(os); 789 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 790 791 /* 792 * Mark this transaction as typically resulting in a net 793 * reduction in space used. 794 */ 795 dmu_tx_mark_netfree(tx); 796 err = dmu_tx_assign(tx, TXG_WAIT); 797 if (err) { 798 dmu_tx_abort(tx); 799 return (err); 800 } 801 802 mutex_enter(&dp->dp_lock); 803 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] += 804 chunk_len; 805 mutex_exit(&dp->dp_lock); 806 DTRACE_PROBE3(free__long__range, 807 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len, 808 uint64_t, dmu_tx_get_txg(tx)); 809 dnode_free_range(dn, chunk_begin, chunk_len, tx); 810 dmu_tx_commit(tx); 811 812 length -= chunk_len; 813 } 814 return (0); 815 } 816 817 int 818 dmu_free_long_range(objset_t *os, uint64_t object, 819 uint64_t offset, uint64_t length) 820 { 821 dnode_t *dn; 822 int err; 823 824 err = dnode_hold(os, object, FTAG, &dn); 825 if (err != 0) 826 return (err); 827 err = dmu_free_long_range_impl(os, dn, offset, length); 828 829 /* 830 * It is important to zero out the maxblkid when freeing the entire 831 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 832 * will take the fast path, and (b) dnode_reallocate() can verify 833 * that the entire file has been freed. 834 */ 835 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 836 dn->dn_maxblkid = 0; 837 838 dnode_rele(dn, FTAG); 839 return (err); 840 } 841 842 int 843 dmu_free_long_object(objset_t *os, uint64_t object) 844 { 845 dmu_tx_t *tx; 846 int err; 847 848 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 849 if (err != 0) 850 return (err); 851 852 tx = dmu_tx_create(os); 853 dmu_tx_hold_bonus(tx, object); 854 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 855 dmu_tx_mark_netfree(tx); 856 err = dmu_tx_assign(tx, TXG_WAIT); 857 if (err == 0) { 858 err = dmu_object_free(os, object, tx); 859 dmu_tx_commit(tx); 860 } else { 861 dmu_tx_abort(tx); 862 } 863 864 return (err); 865 } 866 867 int 868 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 869 uint64_t size, dmu_tx_t *tx) 870 { 871 dnode_t *dn; 872 int err = dnode_hold(os, object, FTAG, &dn); 873 if (err) 874 return (err); 875 ASSERT(offset < UINT64_MAX); 876 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 877 dnode_free_range(dn, offset, size, tx); 878 dnode_rele(dn, FTAG); 879 return (0); 880 } 881 882 static int 883 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 884 void *buf, uint32_t flags) 885 { 886 dmu_buf_t **dbp; 887 int numbufs, err = 0; 888 889 /* 890 * Deal with odd block sizes, where there can't be data past the first 891 * block. If we ever do the tail block optimization, we will need to 892 * handle that here as well. 893 */ 894 if (dn->dn_maxblkid == 0) { 895 int newsz = offset > dn->dn_datablksz ? 0 : 896 MIN(size, dn->dn_datablksz - offset); 897 bzero((char *)buf + newsz, size - newsz); 898 size = newsz; 899 } 900 901 while (size > 0) { 902 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 903 int i; 904 905 /* 906 * NB: we could do this block-at-a-time, but it's nice 907 * to be reading in parallel. 908 */ 909 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 910 TRUE, FTAG, &numbufs, &dbp, flags); 911 if (err) 912 break; 913 914 for (i = 0; i < numbufs; i++) { 915 int tocpy; 916 int bufoff; 917 dmu_buf_t *db = dbp[i]; 918 919 ASSERT(size > 0); 920 921 bufoff = offset - db->db_offset; 922 tocpy = (int)MIN(db->db_size - bufoff, size); 923 924 bcopy((char *)db->db_data + bufoff, buf, tocpy); 925 926 offset += tocpy; 927 size -= tocpy; 928 buf = (char *)buf + tocpy; 929 } 930 dmu_buf_rele_array(dbp, numbufs, FTAG); 931 } 932 return (err); 933 } 934 935 int 936 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 937 void *buf, uint32_t flags) 938 { 939 dnode_t *dn; 940 int err; 941 942 err = dnode_hold(os, object, FTAG, &dn); 943 if (err != 0) 944 return (err); 945 946 err = dmu_read_impl(dn, offset, size, buf, flags); 947 dnode_rele(dn, FTAG); 948 return (err); 949 } 950 951 int 952 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 953 uint32_t flags) 954 { 955 return (dmu_read_impl(dn, offset, size, buf, flags)); 956 } 957 958 static void 959 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 960 const void *buf, dmu_tx_t *tx) 961 { 962 int i; 963 964 for (i = 0; i < numbufs; i++) { 965 int tocpy; 966 int bufoff; 967 dmu_buf_t *db = dbp[i]; 968 969 ASSERT(size > 0); 970 971 bufoff = offset - db->db_offset; 972 tocpy = (int)MIN(db->db_size - bufoff, size); 973 974 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 975 976 if (tocpy == db->db_size) 977 dmu_buf_will_fill(db, tx); 978 else 979 dmu_buf_will_dirty(db, tx); 980 981 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 982 983 if (tocpy == db->db_size) 984 dmu_buf_fill_done(db, tx); 985 986 offset += tocpy; 987 size -= tocpy; 988 buf = (char *)buf + tocpy; 989 } 990 } 991 992 void 993 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 994 const void *buf, dmu_tx_t *tx) 995 { 996 dmu_buf_t **dbp; 997 int numbufs; 998 999 if (size == 0) 1000 return; 1001 1002 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 1003 FALSE, FTAG, &numbufs, &dbp)); 1004 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1005 dmu_buf_rele_array(dbp, numbufs, FTAG); 1006 } 1007 1008 void 1009 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1010 const void *buf, dmu_tx_t *tx) 1011 { 1012 dmu_buf_t **dbp; 1013 int numbufs; 1014 1015 if (size == 0) 1016 return; 1017 1018 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1019 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1020 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1021 dmu_buf_rele_array(dbp, numbufs, FTAG); 1022 } 1023 1024 static int 1025 dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn, 1026 uint64_t last_removal_txg, uint64_t offset) 1027 { 1028 uint64_t l1blkid = dbuf_whichblock(dn, 1, offset); 1029 int err = 0; 1030 1031 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1032 dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1033 ASSERT3P(dbuf, !=, NULL); 1034 1035 /* 1036 * If the block hasn't been written yet, this default will ensure 1037 * we don't try to remap it. 1038 */ 1039 uint64_t birth = UINT64_MAX; 1040 ASSERT3U(last_removal_txg, !=, UINT64_MAX); 1041 if (dbuf->db_blkptr != NULL) 1042 birth = dbuf->db_blkptr->blk_birth; 1043 rw_exit(&dn->dn_struct_rwlock); 1044 1045 /* 1046 * If this L1 was already written after the last removal, then we've 1047 * already tried to remap it. 1048 */ 1049 if (birth <= last_removal_txg && 1050 dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 && 1051 dbuf_can_remap(dbuf)) { 1052 dmu_tx_t *tx = dmu_tx_create(os); 1053 dmu_tx_hold_remap_l1indirect(tx, dn->dn_object); 1054 err = dmu_tx_assign(tx, TXG_WAIT); 1055 if (err == 0) { 1056 (void) dbuf_dirty(dbuf, tx); 1057 dmu_tx_commit(tx); 1058 } else { 1059 dmu_tx_abort(tx); 1060 } 1061 } 1062 1063 dbuf_rele(dbuf, FTAG); 1064 1065 delay(zfs_object_remap_one_indirect_delay_ticks); 1066 1067 return (err); 1068 } 1069 1070 /* 1071 * Remap all blockpointers in the object, if possible, so that they reference 1072 * only concrete vdevs. 1073 * 1074 * To do this, iterate over the L0 blockpointers and remap any that reference 1075 * an indirect vdev. Note that we only examine L0 blockpointers; since we 1076 * cannot guarantee that we can remap all blockpointer anyways (due to split 1077 * blocks), we do not want to make the code unnecessarily complicated to 1078 * catch the unlikely case that there is an L1 block on an indirect vdev that 1079 * contains no indirect blockpointers. 1080 */ 1081 int 1082 dmu_object_remap_indirects(objset_t *os, uint64_t object, 1083 uint64_t last_removal_txg) 1084 { 1085 uint64_t offset, l1span; 1086 int err; 1087 dnode_t *dn; 1088 1089 err = dnode_hold(os, object, FTAG, &dn); 1090 if (err != 0) { 1091 return (err); 1092 } 1093 1094 if (dn->dn_nlevels <= 1) { 1095 if (issig(JUSTLOOKING) && issig(FORREAL)) { 1096 err = SET_ERROR(EINTR); 1097 } 1098 1099 /* 1100 * If the dnode has no indirect blocks, we cannot dirty them. 1101 * We still want to remap the blkptr(s) in the dnode if 1102 * appropriate, so mark it as dirty. 1103 */ 1104 if (err == 0 && dnode_needs_remap(dn)) { 1105 dmu_tx_t *tx = dmu_tx_create(os); 1106 dmu_tx_hold_bonus(tx, dn->dn_object); 1107 if ((err = dmu_tx_assign(tx, TXG_WAIT)) == 0) { 1108 dnode_setdirty(dn, tx); 1109 dmu_tx_commit(tx); 1110 } else { 1111 dmu_tx_abort(tx); 1112 } 1113 } 1114 1115 dnode_rele(dn, FTAG); 1116 return (err); 1117 } 1118 1119 offset = 0; 1120 l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT + 1121 dn->dn_datablkshift); 1122 /* 1123 * Find the next L1 indirect that is not a hole. 1124 */ 1125 while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) { 1126 if (issig(JUSTLOOKING) && issig(FORREAL)) { 1127 err = SET_ERROR(EINTR); 1128 break; 1129 } 1130 if ((err = dmu_object_remap_one_indirect(os, dn, 1131 last_removal_txg, offset)) != 0) { 1132 break; 1133 } 1134 offset += l1span; 1135 } 1136 1137 dnode_rele(dn, FTAG); 1138 return (err); 1139 } 1140 1141 void 1142 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1143 dmu_tx_t *tx) 1144 { 1145 dmu_buf_t **dbp; 1146 int numbufs, i; 1147 1148 if (size == 0) 1149 return; 1150 1151 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1152 FALSE, FTAG, &numbufs, &dbp)); 1153 1154 for (i = 0; i < numbufs; i++) { 1155 dmu_buf_t *db = dbp[i]; 1156 1157 dmu_buf_will_not_fill(db, tx); 1158 } 1159 dmu_buf_rele_array(dbp, numbufs, FTAG); 1160 } 1161 1162 void 1163 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1164 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1165 int compressed_size, int byteorder, dmu_tx_t *tx) 1166 { 1167 dmu_buf_t *db; 1168 1169 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1170 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1171 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1172 FTAG, &db)); 1173 1174 dmu_buf_write_embedded(db, 1175 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1176 uncompressed_size, compressed_size, byteorder, tx); 1177 1178 dmu_buf_rele(db, FTAG); 1179 } 1180 1181 /* 1182 * DMU support for xuio 1183 */ 1184 kstat_t *xuio_ksp = NULL; 1185 1186 int 1187 dmu_xuio_init(xuio_t *xuio, int nblk) 1188 { 1189 dmu_xuio_t *priv; 1190 uio_t *uio = &xuio->xu_uio; 1191 1192 uio->uio_iovcnt = nblk; 1193 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 1194 1195 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 1196 priv->cnt = nblk; 1197 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 1198 priv->iovp = uio->uio_iov; 1199 XUIO_XUZC_PRIV(xuio) = priv; 1200 1201 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1202 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 1203 else 1204 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 1205 1206 return (0); 1207 } 1208 1209 void 1210 dmu_xuio_fini(xuio_t *xuio) 1211 { 1212 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1213 int nblk = priv->cnt; 1214 1215 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 1216 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 1217 kmem_free(priv, sizeof (dmu_xuio_t)); 1218 1219 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1220 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 1221 else 1222 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 1223 } 1224 1225 /* 1226 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 1227 * and increase priv->next by 1. 1228 */ 1229 int 1230 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 1231 { 1232 struct iovec *iov; 1233 uio_t *uio = &xuio->xu_uio; 1234 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1235 int i = priv->next++; 1236 1237 ASSERT(i < priv->cnt); 1238 ASSERT(off + n <= arc_buf_lsize(abuf)); 1239 iov = uio->uio_iov + i; 1240 iov->iov_base = (char *)abuf->b_data + off; 1241 iov->iov_len = n; 1242 priv->bufs[i] = abuf; 1243 return (0); 1244 } 1245 1246 int 1247 dmu_xuio_cnt(xuio_t *xuio) 1248 { 1249 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1250 return (priv->cnt); 1251 } 1252 1253 arc_buf_t * 1254 dmu_xuio_arcbuf(xuio_t *xuio, int i) 1255 { 1256 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1257 1258 ASSERT(i < priv->cnt); 1259 return (priv->bufs[i]); 1260 } 1261 1262 void 1263 dmu_xuio_clear(xuio_t *xuio, int i) 1264 { 1265 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1266 1267 ASSERT(i < priv->cnt); 1268 priv->bufs[i] = NULL; 1269 } 1270 1271 static void 1272 xuio_stat_init(void) 1273 { 1274 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 1275 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 1276 KSTAT_FLAG_VIRTUAL); 1277 if (xuio_ksp != NULL) { 1278 xuio_ksp->ks_data = &xuio_stats; 1279 kstat_install(xuio_ksp); 1280 } 1281 } 1282 1283 static void 1284 xuio_stat_fini(void) 1285 { 1286 if (xuio_ksp != NULL) { 1287 kstat_delete(xuio_ksp); 1288 xuio_ksp = NULL; 1289 } 1290 } 1291 1292 void 1293 xuio_stat_wbuf_copied(void) 1294 { 1295 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1296 } 1297 1298 void 1299 xuio_stat_wbuf_nocopy(void) 1300 { 1301 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1302 } 1303 1304 #ifdef _KERNEL 1305 int 1306 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1307 { 1308 dmu_buf_t **dbp; 1309 int numbufs, i, err; 1310 xuio_t *xuio = NULL; 1311 1312 /* 1313 * NB: we could do this block-at-a-time, but it's nice 1314 * to be reading in parallel. 1315 */ 1316 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1317 TRUE, FTAG, &numbufs, &dbp, 0); 1318 if (err) 1319 return (err); 1320 1321 if (uio->uio_extflg == UIO_XUIO) 1322 xuio = (xuio_t *)uio; 1323 1324 for (i = 0; i < numbufs; i++) { 1325 int tocpy; 1326 int bufoff; 1327 dmu_buf_t *db = dbp[i]; 1328 1329 ASSERT(size > 0); 1330 1331 bufoff = uio->uio_loffset - db->db_offset; 1332 tocpy = (int)MIN(db->db_size - bufoff, size); 1333 1334 if (xuio) { 1335 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1336 arc_buf_t *dbuf_abuf = dbi->db_buf; 1337 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1338 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1339 if (!err) { 1340 uio->uio_resid -= tocpy; 1341 uio->uio_loffset += tocpy; 1342 } 1343 1344 if (abuf == dbuf_abuf) 1345 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1346 else 1347 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1348 } else { 1349 err = uiomove((char *)db->db_data + bufoff, tocpy, 1350 UIO_READ, uio); 1351 } 1352 if (err) 1353 break; 1354 1355 size -= tocpy; 1356 } 1357 dmu_buf_rele_array(dbp, numbufs, FTAG); 1358 1359 return (err); 1360 } 1361 1362 /* 1363 * Read 'size' bytes into the uio buffer. 1364 * From object zdb->db_object. 1365 * Starting at offset uio->uio_loffset. 1366 * 1367 * If the caller already has a dbuf in the target object 1368 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1369 * because we don't have to find the dnode_t for the object. 1370 */ 1371 int 1372 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1373 { 1374 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1375 dnode_t *dn; 1376 int err; 1377 1378 if (size == 0) 1379 return (0); 1380 1381 DB_DNODE_ENTER(db); 1382 dn = DB_DNODE(db); 1383 err = dmu_read_uio_dnode(dn, uio, size); 1384 DB_DNODE_EXIT(db); 1385 1386 return (err); 1387 } 1388 1389 /* 1390 * Read 'size' bytes into the uio buffer. 1391 * From the specified object 1392 * Starting at offset uio->uio_loffset. 1393 */ 1394 int 1395 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1396 { 1397 dnode_t *dn; 1398 int err; 1399 1400 if (size == 0) 1401 return (0); 1402 1403 err = dnode_hold(os, object, FTAG, &dn); 1404 if (err) 1405 return (err); 1406 1407 err = dmu_read_uio_dnode(dn, uio, size); 1408 1409 dnode_rele(dn, FTAG); 1410 1411 return (err); 1412 } 1413 1414 int 1415 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1416 { 1417 dmu_buf_t **dbp; 1418 int numbufs; 1419 int err = 0; 1420 int i; 1421 1422 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1423 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1424 if (err) 1425 return (err); 1426 1427 for (i = 0; i < numbufs; i++) { 1428 int tocpy; 1429 int bufoff; 1430 dmu_buf_t *db = dbp[i]; 1431 1432 ASSERT(size > 0); 1433 1434 bufoff = uio->uio_loffset - db->db_offset; 1435 tocpy = (int)MIN(db->db_size - bufoff, size); 1436 1437 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1438 1439 if (tocpy == db->db_size) 1440 dmu_buf_will_fill(db, tx); 1441 else 1442 dmu_buf_will_dirty(db, tx); 1443 1444 /* 1445 * XXX uiomove could block forever (eg. nfs-backed 1446 * pages). There needs to be a uiolockdown() function 1447 * to lock the pages in memory, so that uiomove won't 1448 * block. 1449 */ 1450 err = uiomove((char *)db->db_data + bufoff, tocpy, 1451 UIO_WRITE, uio); 1452 1453 if (tocpy == db->db_size) 1454 dmu_buf_fill_done(db, tx); 1455 1456 if (err) 1457 break; 1458 1459 size -= tocpy; 1460 } 1461 1462 dmu_buf_rele_array(dbp, numbufs, FTAG); 1463 return (err); 1464 } 1465 1466 /* 1467 * Write 'size' bytes from the uio buffer. 1468 * To object zdb->db_object. 1469 * Starting at offset uio->uio_loffset. 1470 * 1471 * If the caller already has a dbuf in the target object 1472 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1473 * because we don't have to find the dnode_t for the object. 1474 */ 1475 int 1476 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1477 dmu_tx_t *tx) 1478 { 1479 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1480 dnode_t *dn; 1481 int err; 1482 1483 if (size == 0) 1484 return (0); 1485 1486 DB_DNODE_ENTER(db); 1487 dn = DB_DNODE(db); 1488 err = dmu_write_uio_dnode(dn, uio, size, tx); 1489 DB_DNODE_EXIT(db); 1490 1491 return (err); 1492 } 1493 1494 /* 1495 * Write 'size' bytes from the uio buffer. 1496 * To the specified object. 1497 * Starting at offset uio->uio_loffset. 1498 */ 1499 int 1500 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1501 dmu_tx_t *tx) 1502 { 1503 dnode_t *dn; 1504 int err; 1505 1506 if (size == 0) 1507 return (0); 1508 1509 err = dnode_hold(os, object, FTAG, &dn); 1510 if (err) 1511 return (err); 1512 1513 err = dmu_write_uio_dnode(dn, uio, size, tx); 1514 1515 dnode_rele(dn, FTAG); 1516 1517 return (err); 1518 } 1519 1520 int 1521 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1522 page_t *pp, dmu_tx_t *tx) 1523 { 1524 dmu_buf_t **dbp; 1525 int numbufs, i; 1526 int err; 1527 1528 if (size == 0) 1529 return (0); 1530 1531 err = dmu_buf_hold_array(os, object, offset, size, 1532 FALSE, FTAG, &numbufs, &dbp); 1533 if (err) 1534 return (err); 1535 1536 for (i = 0; i < numbufs; i++) { 1537 int tocpy, copied, thiscpy; 1538 int bufoff; 1539 dmu_buf_t *db = dbp[i]; 1540 caddr_t va; 1541 1542 ASSERT(size > 0); 1543 ASSERT3U(db->db_size, >=, PAGESIZE); 1544 1545 bufoff = offset - db->db_offset; 1546 tocpy = (int)MIN(db->db_size - bufoff, size); 1547 1548 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1549 1550 if (tocpy == db->db_size) 1551 dmu_buf_will_fill(db, tx); 1552 else 1553 dmu_buf_will_dirty(db, tx); 1554 1555 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1556 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1557 thiscpy = MIN(PAGESIZE, tocpy - copied); 1558 va = zfs_map_page(pp, S_READ); 1559 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1560 zfs_unmap_page(pp, va); 1561 pp = pp->p_next; 1562 bufoff += PAGESIZE; 1563 } 1564 1565 if (tocpy == db->db_size) 1566 dmu_buf_fill_done(db, tx); 1567 1568 offset += tocpy; 1569 size -= tocpy; 1570 } 1571 dmu_buf_rele_array(dbp, numbufs, FTAG); 1572 return (err); 1573 } 1574 #endif 1575 1576 /* 1577 * Allocate a loaned anonymous arc buffer. 1578 */ 1579 arc_buf_t * 1580 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1581 { 1582 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1583 1584 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1585 } 1586 1587 /* 1588 * Free a loaned arc buffer. 1589 */ 1590 void 1591 dmu_return_arcbuf(arc_buf_t *buf) 1592 { 1593 arc_return_buf(buf, FTAG); 1594 arc_buf_destroy(buf, FTAG); 1595 } 1596 1597 /* 1598 * When possible directly assign passed loaned arc buffer to a dbuf. 1599 * If this is not possible copy the contents of passed arc buf via 1600 * dmu_write(). 1601 */ 1602 void 1603 dmu_assign_arcbuf_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, 1604 dmu_tx_t *tx) 1605 { 1606 dmu_buf_impl_t *db; 1607 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1608 uint64_t blkid; 1609 1610 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1611 blkid = dbuf_whichblock(dn, 0, offset); 1612 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1613 rw_exit(&dn->dn_struct_rwlock); 1614 1615 /* 1616 * We can only assign if the offset is aligned, the arc buf is the 1617 * same size as the dbuf, and the dbuf is not metadata. 1618 */ 1619 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1620 dbuf_assign_arcbuf(db, buf, tx); 1621 dbuf_rele(db, FTAG); 1622 } else { 1623 objset_t *os; 1624 uint64_t object; 1625 1626 /* compressed bufs must always be assignable to their dbuf */ 1627 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1628 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1629 1630 os = dn->dn_objset; 1631 object = dn->dn_object; 1632 1633 dbuf_rele(db, FTAG); 1634 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1635 dmu_return_arcbuf(buf); 1636 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1637 } 1638 } 1639 1640 void 1641 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1642 dmu_tx_t *tx) 1643 { 1644 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1645 1646 DB_DNODE_ENTER(dbuf); 1647 dmu_assign_arcbuf_dnode(DB_DNODE(dbuf), offset, buf, tx); 1648 DB_DNODE_EXIT(dbuf); 1649 } 1650 1651 typedef struct { 1652 dbuf_dirty_record_t *dsa_dr; 1653 dmu_sync_cb_t *dsa_done; 1654 zgd_t *dsa_zgd; 1655 dmu_tx_t *dsa_tx; 1656 } dmu_sync_arg_t; 1657 1658 /* ARGSUSED */ 1659 static void 1660 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1661 { 1662 dmu_sync_arg_t *dsa = varg; 1663 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1664 blkptr_t *bp = zio->io_bp; 1665 1666 if (zio->io_error == 0) { 1667 if (BP_IS_HOLE(bp)) { 1668 /* 1669 * A block of zeros may compress to a hole, but the 1670 * block size still needs to be known for replay. 1671 */ 1672 BP_SET_LSIZE(bp, db->db_size); 1673 } else if (!BP_IS_EMBEDDED(bp)) { 1674 ASSERT(BP_GET_LEVEL(bp) == 0); 1675 bp->blk_fill = 1; 1676 } 1677 } 1678 } 1679 1680 static void 1681 dmu_sync_late_arrival_ready(zio_t *zio) 1682 { 1683 dmu_sync_ready(zio, NULL, zio->io_private); 1684 } 1685 1686 /* ARGSUSED */ 1687 static void 1688 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1689 { 1690 dmu_sync_arg_t *dsa = varg; 1691 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1692 dmu_buf_impl_t *db = dr->dr_dbuf; 1693 1694 mutex_enter(&db->db_mtx); 1695 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1696 if (zio->io_error == 0) { 1697 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1698 if (dr->dt.dl.dr_nopwrite) { 1699 blkptr_t *bp = zio->io_bp; 1700 blkptr_t *bp_orig = &zio->io_bp_orig; 1701 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1702 1703 ASSERT(BP_EQUAL(bp, bp_orig)); 1704 VERIFY(BP_EQUAL(bp, db->db_blkptr)); 1705 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1706 ASSERT(zio_checksum_table[chksum].ci_flags & 1707 ZCHECKSUM_FLAG_NOPWRITE); 1708 } 1709 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1710 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1711 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1712 1713 /* 1714 * Old style holes are filled with all zeros, whereas 1715 * new-style holes maintain their lsize, type, level, 1716 * and birth time (see zio_write_compress). While we 1717 * need to reset the BP_SET_LSIZE() call that happened 1718 * in dmu_sync_ready for old style holes, we do *not* 1719 * want to wipe out the information contained in new 1720 * style holes. Thus, only zero out the block pointer if 1721 * it's an old style hole. 1722 */ 1723 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1724 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1725 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1726 } else { 1727 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1728 } 1729 cv_broadcast(&db->db_changed); 1730 mutex_exit(&db->db_mtx); 1731 1732 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1733 1734 kmem_free(dsa, sizeof (*dsa)); 1735 } 1736 1737 static void 1738 dmu_sync_late_arrival_done(zio_t *zio) 1739 { 1740 blkptr_t *bp = zio->io_bp; 1741 dmu_sync_arg_t *dsa = zio->io_private; 1742 blkptr_t *bp_orig = &zio->io_bp_orig; 1743 1744 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1745 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); 1746 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1747 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1748 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1749 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1750 } 1751 1752 dmu_tx_commit(dsa->dsa_tx); 1753 1754 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1755 1756 abd_put(zio->io_abd); 1757 kmem_free(dsa, sizeof (*dsa)); 1758 } 1759 1760 static int 1761 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1762 zio_prop_t *zp, zbookmark_phys_t *zb) 1763 { 1764 dmu_sync_arg_t *dsa; 1765 dmu_tx_t *tx; 1766 1767 tx = dmu_tx_create(os); 1768 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1769 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1770 dmu_tx_abort(tx); 1771 /* Make zl_get_data do txg_waited_synced() */ 1772 return (SET_ERROR(EIO)); 1773 } 1774 1775 /* 1776 * In order to prevent the zgd's lwb from being free'd prior to 1777 * dmu_sync_late_arrival_done() being called, we have to ensure 1778 * the lwb's "max txg" takes this tx's txg into account. 1779 */ 1780 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); 1781 1782 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1783 dsa->dsa_dr = NULL; 1784 dsa->dsa_done = done; 1785 dsa->dsa_zgd = zgd; 1786 dsa->dsa_tx = tx; 1787 1788 /* 1789 * Since we are currently syncing this txg, it's nontrivial to 1790 * determine what BP to nopwrite against, so we disable nopwrite. 1791 * 1792 * When syncing, the db_blkptr is initially the BP of the previous 1793 * txg. We can not nopwrite against it because it will be changed 1794 * (this is similar to the non-late-arrival case where the dbuf is 1795 * dirty in a future txg). 1796 * 1797 * Then dbuf_write_ready() sets bp_blkptr to the location we will write. 1798 * We can not nopwrite against it because although the BP will not 1799 * (typically) be changed, the data has not yet been persisted to this 1800 * location. 1801 * 1802 * Finally, when dbuf_write_done() is called, it is theoretically 1803 * possible to always nopwrite, because the data that was written in 1804 * this txg is the same data that we are trying to write. However we 1805 * would need to check that this dbuf is not dirty in any future 1806 * txg's (as we do in the normal dmu_sync() path). For simplicity, we 1807 * don't nopwrite in this case. 1808 */ 1809 zp->zp_nopwrite = B_FALSE; 1810 1811 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1812 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), 1813 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, 1814 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, 1815 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1816 1817 return (0); 1818 } 1819 1820 /* 1821 * Intent log support: sync the block associated with db to disk. 1822 * N.B. and XXX: the caller is responsible for making sure that the 1823 * data isn't changing while dmu_sync() is writing it. 1824 * 1825 * Return values: 1826 * 1827 * EEXIST: this txg has already been synced, so there's nothing to do. 1828 * The caller should not log the write. 1829 * 1830 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1831 * The caller should not log the write. 1832 * 1833 * EALREADY: this block is already in the process of being synced. 1834 * The caller should track its progress (somehow). 1835 * 1836 * EIO: could not do the I/O. 1837 * The caller should do a txg_wait_synced(). 1838 * 1839 * 0: the I/O has been initiated. 1840 * The caller should log this blkptr in the done callback. 1841 * It is possible that the I/O will fail, in which case 1842 * the error will be reported to the done callback and 1843 * propagated to pio from zio_done(). 1844 */ 1845 int 1846 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1847 { 1848 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1849 objset_t *os = db->db_objset; 1850 dsl_dataset_t *ds = os->os_dsl_dataset; 1851 dbuf_dirty_record_t *dr; 1852 dmu_sync_arg_t *dsa; 1853 zbookmark_phys_t zb; 1854 zio_prop_t zp; 1855 dnode_t *dn; 1856 1857 ASSERT(pio != NULL); 1858 ASSERT(txg != 0); 1859 1860 SET_BOOKMARK(&zb, ds->ds_object, 1861 db->db.db_object, db->db_level, db->db_blkid); 1862 1863 DB_DNODE_ENTER(db); 1864 dn = DB_DNODE(db); 1865 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1866 DB_DNODE_EXIT(db); 1867 1868 /* 1869 * If we're frozen (running ziltest), we always need to generate a bp. 1870 */ 1871 if (txg > spa_freeze_txg(os->os_spa)) 1872 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1873 1874 /* 1875 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1876 * and us. If we determine that this txg is not yet syncing, 1877 * but it begins to sync a moment later, that's OK because the 1878 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1879 */ 1880 mutex_enter(&db->db_mtx); 1881 1882 if (txg <= spa_last_synced_txg(os->os_spa)) { 1883 /* 1884 * This txg has already synced. There's nothing to do. 1885 */ 1886 mutex_exit(&db->db_mtx); 1887 return (SET_ERROR(EEXIST)); 1888 } 1889 1890 if (txg <= spa_syncing_txg(os->os_spa)) { 1891 /* 1892 * This txg is currently syncing, so we can't mess with 1893 * the dirty record anymore; just write a new log block. 1894 */ 1895 mutex_exit(&db->db_mtx); 1896 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1897 } 1898 1899 dr = db->db_last_dirty; 1900 while (dr && dr->dr_txg != txg) 1901 dr = dr->dr_next; 1902 1903 if (dr == NULL) { 1904 /* 1905 * There's no dr for this dbuf, so it must have been freed. 1906 * There's no need to log writes to freed blocks, so we're done. 1907 */ 1908 mutex_exit(&db->db_mtx); 1909 return (SET_ERROR(ENOENT)); 1910 } 1911 1912 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1913 1914 if (db->db_blkptr != NULL) { 1915 /* 1916 * We need to fill in zgd_bp with the current blkptr so that 1917 * the nopwrite code can check if we're writing the same 1918 * data that's already on disk. We can only nopwrite if we 1919 * are sure that after making the copy, db_blkptr will not 1920 * change until our i/o completes. We ensure this by 1921 * holding the db_mtx, and only allowing nopwrite if the 1922 * block is not already dirty (see below). This is verified 1923 * by dmu_sync_done(), which VERIFYs that the db_blkptr has 1924 * not changed. 1925 */ 1926 *zgd->zgd_bp = *db->db_blkptr; 1927 } 1928 1929 /* 1930 * Assume the on-disk data is X, the current syncing data (in 1931 * txg - 1) is Y, and the current in-memory data is Z (currently 1932 * in dmu_sync). 1933 * 1934 * We usually want to perform a nopwrite if X and Z are the 1935 * same. However, if Y is different (i.e. the BP is going to 1936 * change before this write takes effect), then a nopwrite will 1937 * be incorrect - we would override with X, which could have 1938 * been freed when Y was written. 1939 * 1940 * (Note that this is not a concern when we are nop-writing from 1941 * syncing context, because X and Y must be identical, because 1942 * all previous txgs have been synced.) 1943 * 1944 * Therefore, we disable nopwrite if the current BP could change 1945 * before this TXG. There are two ways it could change: by 1946 * being dirty (dr_next is non-NULL), or by being freed 1947 * (dnode_block_freed()). This behavior is verified by 1948 * zio_done(), which VERIFYs that the override BP is identical 1949 * to the on-disk BP. 1950 */ 1951 DB_DNODE_ENTER(db); 1952 dn = DB_DNODE(db); 1953 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1954 zp.zp_nopwrite = B_FALSE; 1955 DB_DNODE_EXIT(db); 1956 1957 ASSERT(dr->dr_txg == txg); 1958 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1959 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1960 /* 1961 * We have already issued a sync write for this buffer, 1962 * or this buffer has already been synced. It could not 1963 * have been dirtied since, or we would have cleared the state. 1964 */ 1965 mutex_exit(&db->db_mtx); 1966 return (SET_ERROR(EALREADY)); 1967 } 1968 1969 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1970 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1971 mutex_exit(&db->db_mtx); 1972 1973 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1974 dsa->dsa_dr = dr; 1975 dsa->dsa_done = done; 1976 dsa->dsa_zgd = zgd; 1977 dsa->dsa_tx = NULL; 1978 1979 zio_nowait(arc_write(pio, os->os_spa, txg, 1980 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1981 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 1982 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1983 1984 return (0); 1985 } 1986 1987 int 1988 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1989 dmu_tx_t *tx) 1990 { 1991 dnode_t *dn; 1992 int err; 1993 1994 err = dnode_hold(os, object, FTAG, &dn); 1995 if (err) 1996 return (err); 1997 err = dnode_set_blksz(dn, size, ibs, tx); 1998 dnode_rele(dn, FTAG); 1999 return (err); 2000 } 2001 2002 void 2003 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 2004 dmu_tx_t *tx) 2005 { 2006 dnode_t *dn; 2007 2008 /* 2009 * Send streams include each object's checksum function. This 2010 * check ensures that the receiving system can understand the 2011 * checksum function transmitted. 2012 */ 2013 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 2014 2015 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 2016 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 2017 dn->dn_checksum = checksum; 2018 dnode_setdirty(dn, tx); 2019 dnode_rele(dn, FTAG); 2020 } 2021 2022 void 2023 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 2024 dmu_tx_t *tx) 2025 { 2026 dnode_t *dn; 2027 2028 /* 2029 * Send streams include each object's compression function. This 2030 * check ensures that the receiving system can understand the 2031 * compression function transmitted. 2032 */ 2033 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 2034 2035 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 2036 dn->dn_compress = compress; 2037 dnode_setdirty(dn, tx); 2038 dnode_rele(dn, FTAG); 2039 } 2040 2041 int zfs_mdcomp_disable = 0; 2042 2043 /* 2044 * When the "redundant_metadata" property is set to "most", only indirect 2045 * blocks of this level and higher will have an additional ditto block. 2046 */ 2047 int zfs_redundant_metadata_most_ditto_level = 2; 2048 2049 void 2050 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 2051 { 2052 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 2053 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 2054 (wp & WP_SPILL)); 2055 enum zio_checksum checksum = os->os_checksum; 2056 enum zio_compress compress = os->os_compress; 2057 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 2058 boolean_t dedup = B_FALSE; 2059 boolean_t nopwrite = B_FALSE; 2060 boolean_t dedup_verify = os->os_dedup_verify; 2061 int copies = os->os_copies; 2062 2063 /* 2064 * We maintain different write policies for each of the following 2065 * types of data: 2066 * 1. metadata 2067 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 2068 * 3. all other level 0 blocks 2069 */ 2070 if (ismd) { 2071 if (zfs_mdcomp_disable) { 2072 compress = ZIO_COMPRESS_EMPTY; 2073 } else { 2074 /* 2075 * XXX -- we should design a compression algorithm 2076 * that specializes in arrays of bps. 2077 */ 2078 compress = zio_compress_select(os->os_spa, 2079 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 2080 } 2081 2082 /* 2083 * Metadata always gets checksummed. If the data 2084 * checksum is multi-bit correctable, and it's not a 2085 * ZBT-style checksum, then it's suitable for metadata 2086 * as well. Otherwise, the metadata checksum defaults 2087 * to fletcher4. 2088 */ 2089 if (!(zio_checksum_table[checksum].ci_flags & 2090 ZCHECKSUM_FLAG_METADATA) || 2091 (zio_checksum_table[checksum].ci_flags & 2092 ZCHECKSUM_FLAG_EMBEDDED)) 2093 checksum = ZIO_CHECKSUM_FLETCHER_4; 2094 2095 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 2096 (os->os_redundant_metadata == 2097 ZFS_REDUNDANT_METADATA_MOST && 2098 (level >= zfs_redundant_metadata_most_ditto_level || 2099 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 2100 copies++; 2101 } else if (wp & WP_NOFILL) { 2102 ASSERT(level == 0); 2103 2104 /* 2105 * If we're writing preallocated blocks, we aren't actually 2106 * writing them so don't set any policy properties. These 2107 * blocks are currently only used by an external subsystem 2108 * outside of zfs (i.e. dump) and not written by the zio 2109 * pipeline. 2110 */ 2111 compress = ZIO_COMPRESS_OFF; 2112 checksum = ZIO_CHECKSUM_NOPARITY; 2113 } else { 2114 compress = zio_compress_select(os->os_spa, dn->dn_compress, 2115 compress); 2116 2117 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 2118 zio_checksum_select(dn->dn_checksum, checksum) : 2119 dedup_checksum; 2120 2121 /* 2122 * Determine dedup setting. If we are in dmu_sync(), 2123 * we won't actually dedup now because that's all 2124 * done in syncing context; but we do want to use the 2125 * dedup checkum. If the checksum is not strong 2126 * enough to ensure unique signatures, force 2127 * dedup_verify. 2128 */ 2129 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 2130 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 2131 if (!(zio_checksum_table[checksum].ci_flags & 2132 ZCHECKSUM_FLAG_DEDUP)) 2133 dedup_verify = B_TRUE; 2134 } 2135 2136 /* 2137 * Enable nopwrite if we have secure enough checksum 2138 * algorithm (see comment in zio_nop_write) and 2139 * compression is enabled. We don't enable nopwrite if 2140 * dedup is enabled as the two features are mutually 2141 * exclusive. 2142 */ 2143 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 2144 ZCHECKSUM_FLAG_NOPWRITE) && 2145 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 2146 } 2147 2148 zp->zp_checksum = checksum; 2149 zp->zp_compress = compress; 2150 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); 2151 2152 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2153 zp->zp_level = level; 2154 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2155 zp->zp_dedup = dedup; 2156 zp->zp_dedup_verify = dedup && dedup_verify; 2157 zp->zp_nopwrite = nopwrite; 2158 } 2159 2160 int 2161 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2162 { 2163 dnode_t *dn; 2164 int err; 2165 2166 /* 2167 * Sync any current changes before 2168 * we go trundling through the block pointers. 2169 */ 2170 err = dmu_object_wait_synced(os, object); 2171 if (err) { 2172 return (err); 2173 } 2174 2175 err = dnode_hold(os, object, FTAG, &dn); 2176 if (err) { 2177 return (err); 2178 } 2179 2180 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2181 dnode_rele(dn, FTAG); 2182 2183 return (err); 2184 } 2185 2186 /* 2187 * Given the ZFS object, if it contains any dirty nodes 2188 * this function flushes all dirty blocks to disk. This 2189 * ensures the DMU object info is updated. A more efficient 2190 * future version might just find the TXG with the maximum 2191 * ID and wait for that to be synced. 2192 */ 2193 int 2194 dmu_object_wait_synced(objset_t *os, uint64_t object) 2195 { 2196 dnode_t *dn; 2197 int error, i; 2198 2199 error = dnode_hold(os, object, FTAG, &dn); 2200 if (error) { 2201 return (error); 2202 } 2203 2204 for (i = 0; i < TXG_SIZE; i++) { 2205 if (list_link_active(&dn->dn_dirty_link[i])) { 2206 break; 2207 } 2208 } 2209 dnode_rele(dn, FTAG); 2210 if (i != TXG_SIZE) { 2211 txg_wait_synced(dmu_objset_pool(os), 0); 2212 } 2213 2214 return (0); 2215 } 2216 2217 void 2218 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2219 { 2220 dnode_phys_t *dnp; 2221 2222 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2223 mutex_enter(&dn->dn_mtx); 2224 2225 dnp = dn->dn_phys; 2226 2227 doi->doi_data_block_size = dn->dn_datablksz; 2228 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2229 1ULL << dn->dn_indblkshift : 0; 2230 doi->doi_type = dn->dn_type; 2231 doi->doi_bonus_type = dn->dn_bonustype; 2232 doi->doi_bonus_size = dn->dn_bonuslen; 2233 doi->doi_indirection = dn->dn_nlevels; 2234 doi->doi_checksum = dn->dn_checksum; 2235 doi->doi_compress = dn->dn_compress; 2236 doi->doi_nblkptr = dn->dn_nblkptr; 2237 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2238 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2239 doi->doi_fill_count = 0; 2240 for (int i = 0; i < dnp->dn_nblkptr; i++) 2241 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2242 2243 mutex_exit(&dn->dn_mtx); 2244 rw_exit(&dn->dn_struct_rwlock); 2245 } 2246 2247 /* 2248 * Get information on a DMU object. 2249 * If doi is NULL, just indicates whether the object exists. 2250 */ 2251 int 2252 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2253 { 2254 dnode_t *dn; 2255 int err = dnode_hold(os, object, FTAG, &dn); 2256 2257 if (err) 2258 return (err); 2259 2260 if (doi != NULL) 2261 dmu_object_info_from_dnode(dn, doi); 2262 2263 dnode_rele(dn, FTAG); 2264 return (0); 2265 } 2266 2267 /* 2268 * As above, but faster; can be used when you have a held dbuf in hand. 2269 */ 2270 void 2271 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2272 { 2273 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2274 2275 DB_DNODE_ENTER(db); 2276 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2277 DB_DNODE_EXIT(db); 2278 } 2279 2280 /* 2281 * Faster still when you only care about the size. 2282 * This is specifically optimized for zfs_getattr(). 2283 */ 2284 void 2285 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2286 u_longlong_t *nblk512) 2287 { 2288 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2289 dnode_t *dn; 2290 2291 DB_DNODE_ENTER(db); 2292 dn = DB_DNODE(db); 2293 2294 *blksize = dn->dn_datablksz; 2295 /* add 1 for dnode space */ 2296 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2297 SPA_MINBLOCKSHIFT) + 1; 2298 DB_DNODE_EXIT(db); 2299 } 2300 2301 void 2302 byteswap_uint64_array(void *vbuf, size_t size) 2303 { 2304 uint64_t *buf = vbuf; 2305 size_t count = size >> 3; 2306 int i; 2307 2308 ASSERT((size & 7) == 0); 2309 2310 for (i = 0; i < count; i++) 2311 buf[i] = BSWAP_64(buf[i]); 2312 } 2313 2314 void 2315 byteswap_uint32_array(void *vbuf, size_t size) 2316 { 2317 uint32_t *buf = vbuf; 2318 size_t count = size >> 2; 2319 int i; 2320 2321 ASSERT((size & 3) == 0); 2322 2323 for (i = 0; i < count; i++) 2324 buf[i] = BSWAP_32(buf[i]); 2325 } 2326 2327 void 2328 byteswap_uint16_array(void *vbuf, size_t size) 2329 { 2330 uint16_t *buf = vbuf; 2331 size_t count = size >> 1; 2332 int i; 2333 2334 ASSERT((size & 1) == 0); 2335 2336 for (i = 0; i < count; i++) 2337 buf[i] = BSWAP_16(buf[i]); 2338 } 2339 2340 /* ARGSUSED */ 2341 void 2342 byteswap_uint8_array(void *vbuf, size_t size) 2343 { 2344 } 2345 2346 void 2347 dmu_init(void) 2348 { 2349 abd_init(); 2350 zfs_dbgmsg_init(); 2351 sa_cache_init(); 2352 xuio_stat_init(); 2353 dmu_objset_init(); 2354 dnode_init(); 2355 zfetch_init(); 2356 l2arc_init(); 2357 arc_init(); 2358 dbuf_init(); 2359 } 2360 2361 void 2362 dmu_fini(void) 2363 { 2364 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2365 l2arc_fini(); 2366 zfetch_fini(); 2367 dbuf_fini(); 2368 dnode_fini(); 2369 dmu_objset_fini(); 2370 xuio_stat_fini(); 2371 sa_cache_fini(); 2372 zfs_dbgmsg_fini(); 2373 abd_fini(); 2374 } 2375