1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/zfs_ioctl.h> 44 #include <sys/zap.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/zio_compress.h> 47 #include <sys/sa.h> 48 #include <sys/zfeature.h> 49 #ifdef _KERNEL 50 #include <sys/vmsystm.h> 51 #include <sys/zfs_znode.h> 52 #endif 53 54 /* 55 * Enable/disable nopwrite feature. 56 */ 57 int zfs_nopwrite_enabled = 1; 58 59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 60 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 61 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 62 { DMU_BSWAP_UINT64, TRUE, "object array" }, 63 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 64 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 65 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 66 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 67 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 68 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 69 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 70 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 71 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 72 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 73 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 74 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 75 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 76 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 77 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 78 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 79 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 80 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 81 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 82 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 83 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 84 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 85 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 86 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 87 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 88 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 89 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 90 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 91 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 92 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 93 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 94 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 95 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 96 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 97 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 98 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 99 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 100 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 101 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 102 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 103 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 104 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 105 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 106 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 107 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 108 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 109 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 110 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 111 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 112 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 113 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 114 }; 115 116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 117 { byteswap_uint8_array, "uint8" }, 118 { byteswap_uint16_array, "uint16" }, 119 { byteswap_uint32_array, "uint32" }, 120 { byteswap_uint64_array, "uint64" }, 121 { zap_byteswap, "zap" }, 122 { dnode_buf_byteswap, "dnode" }, 123 { dmu_objset_byteswap, "objset" }, 124 { zfs_znode_byteswap, "znode" }, 125 { zfs_oldacl_byteswap, "oldacl" }, 126 { zfs_acl_byteswap, "acl" } 127 }; 128 129 int 130 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 131 void *tag, dmu_buf_t **dbp) 132 { 133 dnode_t *dn; 134 uint64_t blkid; 135 dmu_buf_impl_t *db; 136 int err; 137 138 err = dnode_hold(os, object, FTAG, &dn); 139 if (err) 140 return (err); 141 blkid = dbuf_whichblock(dn, 0, offset); 142 rw_enter(&dn->dn_struct_rwlock, RW_READER); 143 db = dbuf_hold(dn, blkid, tag); 144 rw_exit(&dn->dn_struct_rwlock); 145 dnode_rele(dn, FTAG); 146 147 if (db == NULL) { 148 *dbp = NULL; 149 return (SET_ERROR(EIO)); 150 } 151 152 *dbp = &db->db; 153 return (err); 154 } 155 156 int 157 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 158 void *tag, dmu_buf_t **dbp, int flags) 159 { 160 int err; 161 int db_flags = DB_RF_CANFAIL; 162 163 if (flags & DMU_READ_NO_PREFETCH) 164 db_flags |= DB_RF_NOPREFETCH; 165 166 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 167 if (err == 0) { 168 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 169 err = dbuf_read(db, NULL, db_flags); 170 if (err != 0) { 171 dbuf_rele(db, tag); 172 *dbp = NULL; 173 } 174 } 175 176 return (err); 177 } 178 179 int 180 dmu_bonus_max(void) 181 { 182 return (DN_MAX_BONUSLEN); 183 } 184 185 int 186 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 187 { 188 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 189 dnode_t *dn; 190 int error; 191 192 DB_DNODE_ENTER(db); 193 dn = DB_DNODE(db); 194 195 if (dn->dn_bonus != db) { 196 error = SET_ERROR(EINVAL); 197 } else if (newsize < 0 || newsize > db_fake->db_size) { 198 error = SET_ERROR(EINVAL); 199 } else { 200 dnode_setbonuslen(dn, newsize, tx); 201 error = 0; 202 } 203 204 DB_DNODE_EXIT(db); 205 return (error); 206 } 207 208 int 209 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 210 { 211 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 212 dnode_t *dn; 213 int error; 214 215 DB_DNODE_ENTER(db); 216 dn = DB_DNODE(db); 217 218 if (!DMU_OT_IS_VALID(type)) { 219 error = SET_ERROR(EINVAL); 220 } else if (dn->dn_bonus != db) { 221 error = SET_ERROR(EINVAL); 222 } else { 223 dnode_setbonus_type(dn, type, tx); 224 error = 0; 225 } 226 227 DB_DNODE_EXIT(db); 228 return (error); 229 } 230 231 dmu_object_type_t 232 dmu_get_bonustype(dmu_buf_t *db_fake) 233 { 234 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 235 dnode_t *dn; 236 dmu_object_type_t type; 237 238 DB_DNODE_ENTER(db); 239 dn = DB_DNODE(db); 240 type = dn->dn_bonustype; 241 DB_DNODE_EXIT(db); 242 243 return (type); 244 } 245 246 int 247 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 248 { 249 dnode_t *dn; 250 int error; 251 252 error = dnode_hold(os, object, FTAG, &dn); 253 dbuf_rm_spill(dn, tx); 254 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 255 dnode_rm_spill(dn, tx); 256 rw_exit(&dn->dn_struct_rwlock); 257 dnode_rele(dn, FTAG); 258 return (error); 259 } 260 261 /* 262 * returns ENOENT, EIO, or 0. 263 */ 264 int 265 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 266 { 267 dnode_t *dn; 268 dmu_buf_impl_t *db; 269 int error; 270 271 error = dnode_hold(os, object, FTAG, &dn); 272 if (error) 273 return (error); 274 275 rw_enter(&dn->dn_struct_rwlock, RW_READER); 276 if (dn->dn_bonus == NULL) { 277 rw_exit(&dn->dn_struct_rwlock); 278 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 279 if (dn->dn_bonus == NULL) 280 dbuf_create_bonus(dn); 281 } 282 db = dn->dn_bonus; 283 284 /* as long as the bonus buf is held, the dnode will be held */ 285 if (refcount_add(&db->db_holds, tag) == 1) { 286 VERIFY(dnode_add_ref(dn, db)); 287 atomic_inc_32(&dn->dn_dbufs_count); 288 } 289 290 /* 291 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 292 * hold and incrementing the dbuf count to ensure that dnode_move() sees 293 * a dnode hold for every dbuf. 294 */ 295 rw_exit(&dn->dn_struct_rwlock); 296 297 dnode_rele(dn, FTAG); 298 299 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 300 301 *dbp = &db->db; 302 return (0); 303 } 304 305 /* 306 * returns ENOENT, EIO, or 0. 307 * 308 * This interface will allocate a blank spill dbuf when a spill blk 309 * doesn't already exist on the dnode. 310 * 311 * if you only want to find an already existing spill db, then 312 * dmu_spill_hold_existing() should be used. 313 */ 314 int 315 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 316 { 317 dmu_buf_impl_t *db = NULL; 318 int err; 319 320 if ((flags & DB_RF_HAVESTRUCT) == 0) 321 rw_enter(&dn->dn_struct_rwlock, RW_READER); 322 323 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 324 325 if ((flags & DB_RF_HAVESTRUCT) == 0) 326 rw_exit(&dn->dn_struct_rwlock); 327 328 ASSERT(db != NULL); 329 err = dbuf_read(db, NULL, flags); 330 if (err == 0) 331 *dbp = &db->db; 332 else 333 dbuf_rele(db, tag); 334 return (err); 335 } 336 337 int 338 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 339 { 340 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 341 dnode_t *dn; 342 int err; 343 344 DB_DNODE_ENTER(db); 345 dn = DB_DNODE(db); 346 347 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 348 err = SET_ERROR(EINVAL); 349 } else { 350 rw_enter(&dn->dn_struct_rwlock, RW_READER); 351 352 if (!dn->dn_have_spill) { 353 err = SET_ERROR(ENOENT); 354 } else { 355 err = dmu_spill_hold_by_dnode(dn, 356 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 357 } 358 359 rw_exit(&dn->dn_struct_rwlock); 360 } 361 362 DB_DNODE_EXIT(db); 363 return (err); 364 } 365 366 int 367 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 368 { 369 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 370 dnode_t *dn; 371 int err; 372 373 DB_DNODE_ENTER(db); 374 dn = DB_DNODE(db); 375 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 376 DB_DNODE_EXIT(db); 377 378 return (err); 379 } 380 381 /* 382 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 383 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 384 * and can induce severe lock contention when writing to several files 385 * whose dnodes are in the same block. 386 */ 387 static int 388 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 389 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 390 { 391 dmu_buf_t **dbp; 392 uint64_t blkid, nblks, i; 393 uint32_t dbuf_flags; 394 int err; 395 zio_t *zio; 396 397 ASSERT(length <= DMU_MAX_ACCESS); 398 399 /* 400 * Note: We directly notify the prefetch code of this read, so that 401 * we can tell it about the multi-block read. dbuf_read() only knows 402 * about the one block it is accessing. 403 */ 404 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 405 DB_RF_NOPREFETCH; 406 407 rw_enter(&dn->dn_struct_rwlock, RW_READER); 408 if (dn->dn_datablkshift) { 409 int blkshift = dn->dn_datablkshift; 410 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 411 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 412 } else { 413 if (offset + length > dn->dn_datablksz) { 414 zfs_panic_recover("zfs: accessing past end of object " 415 "%llx/%llx (size=%u access=%llu+%llu)", 416 (longlong_t)dn->dn_objset-> 417 os_dsl_dataset->ds_object, 418 (longlong_t)dn->dn_object, dn->dn_datablksz, 419 (longlong_t)offset, (longlong_t)length); 420 rw_exit(&dn->dn_struct_rwlock); 421 return (SET_ERROR(EIO)); 422 } 423 nblks = 1; 424 } 425 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 426 427 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 428 blkid = dbuf_whichblock(dn, 0, offset); 429 for (i = 0; i < nblks; i++) { 430 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 431 if (db == NULL) { 432 rw_exit(&dn->dn_struct_rwlock); 433 dmu_buf_rele_array(dbp, nblks, tag); 434 zio_nowait(zio); 435 return (SET_ERROR(EIO)); 436 } 437 438 /* initiate async i/o */ 439 if (read) 440 (void) dbuf_read(db, zio, dbuf_flags); 441 dbp[i] = &db->db; 442 } 443 444 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 445 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 446 dmu_zfetch(&dn->dn_zfetch, blkid, nblks, 447 read && DNODE_IS_CACHEABLE(dn)); 448 } 449 rw_exit(&dn->dn_struct_rwlock); 450 451 /* wait for async i/o */ 452 err = zio_wait(zio); 453 if (err) { 454 dmu_buf_rele_array(dbp, nblks, tag); 455 return (err); 456 } 457 458 /* wait for other io to complete */ 459 if (read) { 460 for (i = 0; i < nblks; i++) { 461 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 462 mutex_enter(&db->db_mtx); 463 while (db->db_state == DB_READ || 464 db->db_state == DB_FILL) 465 cv_wait(&db->db_changed, &db->db_mtx); 466 if (db->db_state == DB_UNCACHED) 467 err = SET_ERROR(EIO); 468 mutex_exit(&db->db_mtx); 469 if (err) { 470 dmu_buf_rele_array(dbp, nblks, tag); 471 return (err); 472 } 473 } 474 } 475 476 *numbufsp = nblks; 477 *dbpp = dbp; 478 return (0); 479 } 480 481 static int 482 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 483 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 484 { 485 dnode_t *dn; 486 int err; 487 488 err = dnode_hold(os, object, FTAG, &dn); 489 if (err) 490 return (err); 491 492 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 493 numbufsp, dbpp, DMU_READ_PREFETCH); 494 495 dnode_rele(dn, FTAG); 496 497 return (err); 498 } 499 500 int 501 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 502 uint64_t length, boolean_t read, void *tag, int *numbufsp, 503 dmu_buf_t ***dbpp) 504 { 505 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 506 dnode_t *dn; 507 int err; 508 509 DB_DNODE_ENTER(db); 510 dn = DB_DNODE(db); 511 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 512 numbufsp, dbpp, DMU_READ_PREFETCH); 513 DB_DNODE_EXIT(db); 514 515 return (err); 516 } 517 518 void 519 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 520 { 521 int i; 522 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 523 524 if (numbufs == 0) 525 return; 526 527 for (i = 0; i < numbufs; i++) { 528 if (dbp[i]) 529 dbuf_rele(dbp[i], tag); 530 } 531 532 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 533 } 534 535 /* 536 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 537 * indirect blocks prefeteched will be those that point to the blocks containing 538 * the data starting at offset, and continuing to offset + len. 539 * 540 * Note that if the indirect blocks above the blocks being prefetched are not in 541 * cache, they will be asychronously read in. 542 */ 543 void 544 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 545 uint64_t len, zio_priority_t pri) 546 { 547 dnode_t *dn; 548 uint64_t blkid; 549 int nblks, err; 550 551 if (len == 0) { /* they're interested in the bonus buffer */ 552 dn = DMU_META_DNODE(os); 553 554 if (object == 0 || object >= DN_MAX_OBJECT) 555 return; 556 557 rw_enter(&dn->dn_struct_rwlock, RW_READER); 558 blkid = dbuf_whichblock(dn, level, 559 object * sizeof (dnode_phys_t)); 560 dbuf_prefetch(dn, level, blkid, pri, 0); 561 rw_exit(&dn->dn_struct_rwlock); 562 return; 563 } 564 565 /* 566 * XXX - Note, if the dnode for the requested object is not 567 * already cached, we will do a *synchronous* read in the 568 * dnode_hold() call. The same is true for any indirects. 569 */ 570 err = dnode_hold(os, object, FTAG, &dn); 571 if (err != 0) 572 return; 573 574 rw_enter(&dn->dn_struct_rwlock, RW_READER); 575 /* 576 * offset + len - 1 is the last byte we want to prefetch for, and offset 577 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 578 * last block we want to prefetch, and dbuf_whichblock(dn, level, 579 * offset) is the first. Then the number we need to prefetch is the 580 * last - first + 1. 581 */ 582 if (level > 0 || dn->dn_datablkshift != 0) { 583 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 584 dbuf_whichblock(dn, level, offset) + 1; 585 } else { 586 nblks = (offset < dn->dn_datablksz); 587 } 588 589 if (nblks != 0) { 590 blkid = dbuf_whichblock(dn, level, offset); 591 for (int i = 0; i < nblks; i++) 592 dbuf_prefetch(dn, level, blkid + i, pri, 0); 593 } 594 595 rw_exit(&dn->dn_struct_rwlock); 596 597 dnode_rele(dn, FTAG); 598 } 599 600 /* 601 * Get the next "chunk" of file data to free. We traverse the file from 602 * the end so that the file gets shorter over time (if we crashes in the 603 * middle, this will leave us in a better state). We find allocated file 604 * data by simply searching the allocated level 1 indirects. 605 * 606 * On input, *start should be the first offset that does not need to be 607 * freed (e.g. "offset + length"). On return, *start will be the first 608 * offset that should be freed. 609 */ 610 static int 611 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 612 { 613 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 614 /* bytes of data covered by a level-1 indirect block */ 615 uint64_t iblkrange = 616 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 617 618 ASSERT3U(minimum, <=, *start); 619 620 if (*start - minimum <= iblkrange * maxblks) { 621 *start = minimum; 622 return (0); 623 } 624 ASSERT(ISP2(iblkrange)); 625 626 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 627 int err; 628 629 /* 630 * dnode_next_offset(BACKWARDS) will find an allocated L1 631 * indirect block at or before the input offset. We must 632 * decrement *start so that it is at the end of the region 633 * to search. 634 */ 635 (*start)--; 636 err = dnode_next_offset(dn, 637 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 638 639 /* if there are no indirect blocks before start, we are done */ 640 if (err == ESRCH) { 641 *start = minimum; 642 break; 643 } else if (err != 0) { 644 return (err); 645 } 646 647 /* set start to the beginning of this L1 indirect */ 648 *start = P2ALIGN(*start, iblkrange); 649 } 650 if (*start < minimum) 651 *start = minimum; 652 return (0); 653 } 654 655 static int 656 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 657 uint64_t length) 658 { 659 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 660 int err; 661 662 if (offset >= object_size) 663 return (0); 664 665 if (length == DMU_OBJECT_END || offset + length > object_size) 666 length = object_size - offset; 667 668 while (length != 0) { 669 uint64_t chunk_end, chunk_begin; 670 671 chunk_end = chunk_begin = offset + length; 672 673 /* move chunk_begin backwards to the beginning of this chunk */ 674 err = get_next_chunk(dn, &chunk_begin, offset); 675 if (err) 676 return (err); 677 ASSERT3U(chunk_begin, >=, offset); 678 ASSERT3U(chunk_begin, <=, chunk_end); 679 680 dmu_tx_t *tx = dmu_tx_create(os); 681 dmu_tx_hold_free(tx, dn->dn_object, 682 chunk_begin, chunk_end - chunk_begin); 683 684 /* 685 * Mark this transaction as typically resulting in a net 686 * reduction in space used. 687 */ 688 dmu_tx_mark_netfree(tx); 689 err = dmu_tx_assign(tx, TXG_WAIT); 690 if (err) { 691 dmu_tx_abort(tx); 692 return (err); 693 } 694 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx); 695 dmu_tx_commit(tx); 696 697 length -= chunk_end - chunk_begin; 698 } 699 return (0); 700 } 701 702 int 703 dmu_free_long_range(objset_t *os, uint64_t object, 704 uint64_t offset, uint64_t length) 705 { 706 dnode_t *dn; 707 int err; 708 709 err = dnode_hold(os, object, FTAG, &dn); 710 if (err != 0) 711 return (err); 712 err = dmu_free_long_range_impl(os, dn, offset, length); 713 714 /* 715 * It is important to zero out the maxblkid when freeing the entire 716 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 717 * will take the fast path, and (b) dnode_reallocate() can verify 718 * that the entire file has been freed. 719 */ 720 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 721 dn->dn_maxblkid = 0; 722 723 dnode_rele(dn, FTAG); 724 return (err); 725 } 726 727 int 728 dmu_free_long_object(objset_t *os, uint64_t object) 729 { 730 dmu_tx_t *tx; 731 int err; 732 733 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 734 if (err != 0) 735 return (err); 736 737 tx = dmu_tx_create(os); 738 dmu_tx_hold_bonus(tx, object); 739 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 740 dmu_tx_mark_netfree(tx); 741 err = dmu_tx_assign(tx, TXG_WAIT); 742 if (err == 0) { 743 err = dmu_object_free(os, object, tx); 744 dmu_tx_commit(tx); 745 } else { 746 dmu_tx_abort(tx); 747 } 748 749 return (err); 750 } 751 752 int 753 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 754 uint64_t size, dmu_tx_t *tx) 755 { 756 dnode_t *dn; 757 int err = dnode_hold(os, object, FTAG, &dn); 758 if (err) 759 return (err); 760 ASSERT(offset < UINT64_MAX); 761 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 762 dnode_free_range(dn, offset, size, tx); 763 dnode_rele(dn, FTAG); 764 return (0); 765 } 766 767 int 768 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 769 void *buf, uint32_t flags) 770 { 771 dnode_t *dn; 772 dmu_buf_t **dbp; 773 int numbufs, err; 774 775 err = dnode_hold(os, object, FTAG, &dn); 776 if (err) 777 return (err); 778 779 /* 780 * Deal with odd block sizes, where there can't be data past the first 781 * block. If we ever do the tail block optimization, we will need to 782 * handle that here as well. 783 */ 784 if (dn->dn_maxblkid == 0) { 785 int newsz = offset > dn->dn_datablksz ? 0 : 786 MIN(size, dn->dn_datablksz - offset); 787 bzero((char *)buf + newsz, size - newsz); 788 size = newsz; 789 } 790 791 while (size > 0) { 792 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 793 int i; 794 795 /* 796 * NB: we could do this block-at-a-time, but it's nice 797 * to be reading in parallel. 798 */ 799 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 800 TRUE, FTAG, &numbufs, &dbp, flags); 801 if (err) 802 break; 803 804 for (i = 0; i < numbufs; i++) { 805 int tocpy; 806 int bufoff; 807 dmu_buf_t *db = dbp[i]; 808 809 ASSERT(size > 0); 810 811 bufoff = offset - db->db_offset; 812 tocpy = (int)MIN(db->db_size - bufoff, size); 813 814 bcopy((char *)db->db_data + bufoff, buf, tocpy); 815 816 offset += tocpy; 817 size -= tocpy; 818 buf = (char *)buf + tocpy; 819 } 820 dmu_buf_rele_array(dbp, numbufs, FTAG); 821 } 822 dnode_rele(dn, FTAG); 823 return (err); 824 } 825 826 void 827 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 828 const void *buf, dmu_tx_t *tx) 829 { 830 dmu_buf_t **dbp; 831 int numbufs, i; 832 833 if (size == 0) 834 return; 835 836 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 837 FALSE, FTAG, &numbufs, &dbp)); 838 839 for (i = 0; i < numbufs; i++) { 840 int tocpy; 841 int bufoff; 842 dmu_buf_t *db = dbp[i]; 843 844 ASSERT(size > 0); 845 846 bufoff = offset - db->db_offset; 847 tocpy = (int)MIN(db->db_size - bufoff, size); 848 849 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 850 851 if (tocpy == db->db_size) 852 dmu_buf_will_fill(db, tx); 853 else 854 dmu_buf_will_dirty(db, tx); 855 856 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 857 858 if (tocpy == db->db_size) 859 dmu_buf_fill_done(db, tx); 860 861 offset += tocpy; 862 size -= tocpy; 863 buf = (char *)buf + tocpy; 864 } 865 dmu_buf_rele_array(dbp, numbufs, FTAG); 866 } 867 868 void 869 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 870 dmu_tx_t *tx) 871 { 872 dmu_buf_t **dbp; 873 int numbufs, i; 874 875 if (size == 0) 876 return; 877 878 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 879 FALSE, FTAG, &numbufs, &dbp)); 880 881 for (i = 0; i < numbufs; i++) { 882 dmu_buf_t *db = dbp[i]; 883 884 dmu_buf_will_not_fill(db, tx); 885 } 886 dmu_buf_rele_array(dbp, numbufs, FTAG); 887 } 888 889 void 890 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 891 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 892 int compressed_size, int byteorder, dmu_tx_t *tx) 893 { 894 dmu_buf_t *db; 895 896 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 897 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 898 VERIFY0(dmu_buf_hold_noread(os, object, offset, 899 FTAG, &db)); 900 901 dmu_buf_write_embedded(db, 902 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 903 uncompressed_size, compressed_size, byteorder, tx); 904 905 dmu_buf_rele(db, FTAG); 906 } 907 908 /* 909 * DMU support for xuio 910 */ 911 kstat_t *xuio_ksp = NULL; 912 913 int 914 dmu_xuio_init(xuio_t *xuio, int nblk) 915 { 916 dmu_xuio_t *priv; 917 uio_t *uio = &xuio->xu_uio; 918 919 uio->uio_iovcnt = nblk; 920 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 921 922 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 923 priv->cnt = nblk; 924 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 925 priv->iovp = uio->uio_iov; 926 XUIO_XUZC_PRIV(xuio) = priv; 927 928 if (XUIO_XUZC_RW(xuio) == UIO_READ) 929 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 930 else 931 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 932 933 return (0); 934 } 935 936 void 937 dmu_xuio_fini(xuio_t *xuio) 938 { 939 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 940 int nblk = priv->cnt; 941 942 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 943 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 944 kmem_free(priv, sizeof (dmu_xuio_t)); 945 946 if (XUIO_XUZC_RW(xuio) == UIO_READ) 947 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 948 else 949 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 950 } 951 952 /* 953 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 954 * and increase priv->next by 1. 955 */ 956 int 957 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 958 { 959 struct iovec *iov; 960 uio_t *uio = &xuio->xu_uio; 961 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 962 int i = priv->next++; 963 964 ASSERT(i < priv->cnt); 965 ASSERT(off + n <= arc_buf_size(abuf)); 966 iov = uio->uio_iov + i; 967 iov->iov_base = (char *)abuf->b_data + off; 968 iov->iov_len = n; 969 priv->bufs[i] = abuf; 970 return (0); 971 } 972 973 int 974 dmu_xuio_cnt(xuio_t *xuio) 975 { 976 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 977 return (priv->cnt); 978 } 979 980 arc_buf_t * 981 dmu_xuio_arcbuf(xuio_t *xuio, int i) 982 { 983 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 984 985 ASSERT(i < priv->cnt); 986 return (priv->bufs[i]); 987 } 988 989 void 990 dmu_xuio_clear(xuio_t *xuio, int i) 991 { 992 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 993 994 ASSERT(i < priv->cnt); 995 priv->bufs[i] = NULL; 996 } 997 998 static void 999 xuio_stat_init(void) 1000 { 1001 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 1002 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 1003 KSTAT_FLAG_VIRTUAL); 1004 if (xuio_ksp != NULL) { 1005 xuio_ksp->ks_data = &xuio_stats; 1006 kstat_install(xuio_ksp); 1007 } 1008 } 1009 1010 static void 1011 xuio_stat_fini(void) 1012 { 1013 if (xuio_ksp != NULL) { 1014 kstat_delete(xuio_ksp); 1015 xuio_ksp = NULL; 1016 } 1017 } 1018 1019 void 1020 xuio_stat_wbuf_copied() 1021 { 1022 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1023 } 1024 1025 void 1026 xuio_stat_wbuf_nocopy() 1027 { 1028 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1029 } 1030 1031 #ifdef _KERNEL 1032 static int 1033 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1034 { 1035 dmu_buf_t **dbp; 1036 int numbufs, i, err; 1037 xuio_t *xuio = NULL; 1038 1039 /* 1040 * NB: we could do this block-at-a-time, but it's nice 1041 * to be reading in parallel. 1042 */ 1043 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1044 TRUE, FTAG, &numbufs, &dbp, 0); 1045 if (err) 1046 return (err); 1047 1048 if (uio->uio_extflg == UIO_XUIO) 1049 xuio = (xuio_t *)uio; 1050 1051 for (i = 0; i < numbufs; i++) { 1052 int tocpy; 1053 int bufoff; 1054 dmu_buf_t *db = dbp[i]; 1055 1056 ASSERT(size > 0); 1057 1058 bufoff = uio->uio_loffset - db->db_offset; 1059 tocpy = (int)MIN(db->db_size - bufoff, size); 1060 1061 if (xuio) { 1062 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1063 arc_buf_t *dbuf_abuf = dbi->db_buf; 1064 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1065 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1066 if (!err) { 1067 uio->uio_resid -= tocpy; 1068 uio->uio_loffset += tocpy; 1069 } 1070 1071 if (abuf == dbuf_abuf) 1072 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1073 else 1074 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1075 } else { 1076 err = uiomove((char *)db->db_data + bufoff, tocpy, 1077 UIO_READ, uio); 1078 } 1079 if (err) 1080 break; 1081 1082 size -= tocpy; 1083 } 1084 dmu_buf_rele_array(dbp, numbufs, FTAG); 1085 1086 return (err); 1087 } 1088 1089 /* 1090 * Read 'size' bytes into the uio buffer. 1091 * From object zdb->db_object. 1092 * Starting at offset uio->uio_loffset. 1093 * 1094 * If the caller already has a dbuf in the target object 1095 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1096 * because we don't have to find the dnode_t for the object. 1097 */ 1098 int 1099 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1100 { 1101 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1102 dnode_t *dn; 1103 int err; 1104 1105 if (size == 0) 1106 return (0); 1107 1108 DB_DNODE_ENTER(db); 1109 dn = DB_DNODE(db); 1110 err = dmu_read_uio_dnode(dn, uio, size); 1111 DB_DNODE_EXIT(db); 1112 1113 return (err); 1114 } 1115 1116 /* 1117 * Read 'size' bytes into the uio buffer. 1118 * From the specified object 1119 * Starting at offset uio->uio_loffset. 1120 */ 1121 int 1122 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1123 { 1124 dnode_t *dn; 1125 int err; 1126 1127 if (size == 0) 1128 return (0); 1129 1130 err = dnode_hold(os, object, FTAG, &dn); 1131 if (err) 1132 return (err); 1133 1134 err = dmu_read_uio_dnode(dn, uio, size); 1135 1136 dnode_rele(dn, FTAG); 1137 1138 return (err); 1139 } 1140 1141 static int 1142 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1143 { 1144 dmu_buf_t **dbp; 1145 int numbufs; 1146 int err = 0; 1147 int i; 1148 1149 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1150 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1151 if (err) 1152 return (err); 1153 1154 for (i = 0; i < numbufs; i++) { 1155 int tocpy; 1156 int bufoff; 1157 dmu_buf_t *db = dbp[i]; 1158 1159 ASSERT(size > 0); 1160 1161 bufoff = uio->uio_loffset - db->db_offset; 1162 tocpy = (int)MIN(db->db_size - bufoff, size); 1163 1164 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1165 1166 if (tocpy == db->db_size) 1167 dmu_buf_will_fill(db, tx); 1168 else 1169 dmu_buf_will_dirty(db, tx); 1170 1171 /* 1172 * XXX uiomove could block forever (eg. nfs-backed 1173 * pages). There needs to be a uiolockdown() function 1174 * to lock the pages in memory, so that uiomove won't 1175 * block. 1176 */ 1177 err = uiomove((char *)db->db_data + bufoff, tocpy, 1178 UIO_WRITE, uio); 1179 1180 if (tocpy == db->db_size) 1181 dmu_buf_fill_done(db, tx); 1182 1183 if (err) 1184 break; 1185 1186 size -= tocpy; 1187 } 1188 1189 dmu_buf_rele_array(dbp, numbufs, FTAG); 1190 return (err); 1191 } 1192 1193 /* 1194 * Write 'size' bytes from the uio buffer. 1195 * To object zdb->db_object. 1196 * Starting at offset uio->uio_loffset. 1197 * 1198 * If the caller already has a dbuf in the target object 1199 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1200 * because we don't have to find the dnode_t for the object. 1201 */ 1202 int 1203 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1204 dmu_tx_t *tx) 1205 { 1206 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1207 dnode_t *dn; 1208 int err; 1209 1210 if (size == 0) 1211 return (0); 1212 1213 DB_DNODE_ENTER(db); 1214 dn = DB_DNODE(db); 1215 err = dmu_write_uio_dnode(dn, uio, size, tx); 1216 DB_DNODE_EXIT(db); 1217 1218 return (err); 1219 } 1220 1221 /* 1222 * Write 'size' bytes from the uio buffer. 1223 * To the specified object. 1224 * Starting at offset uio->uio_loffset. 1225 */ 1226 int 1227 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1228 dmu_tx_t *tx) 1229 { 1230 dnode_t *dn; 1231 int err; 1232 1233 if (size == 0) 1234 return (0); 1235 1236 err = dnode_hold(os, object, FTAG, &dn); 1237 if (err) 1238 return (err); 1239 1240 err = dmu_write_uio_dnode(dn, uio, size, tx); 1241 1242 dnode_rele(dn, FTAG); 1243 1244 return (err); 1245 } 1246 1247 int 1248 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1249 page_t *pp, dmu_tx_t *tx) 1250 { 1251 dmu_buf_t **dbp; 1252 int numbufs, i; 1253 int err; 1254 1255 if (size == 0) 1256 return (0); 1257 1258 err = dmu_buf_hold_array(os, object, offset, size, 1259 FALSE, FTAG, &numbufs, &dbp); 1260 if (err) 1261 return (err); 1262 1263 for (i = 0; i < numbufs; i++) { 1264 int tocpy, copied, thiscpy; 1265 int bufoff; 1266 dmu_buf_t *db = dbp[i]; 1267 caddr_t va; 1268 1269 ASSERT(size > 0); 1270 ASSERT3U(db->db_size, >=, PAGESIZE); 1271 1272 bufoff = offset - db->db_offset; 1273 tocpy = (int)MIN(db->db_size - bufoff, size); 1274 1275 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1276 1277 if (tocpy == db->db_size) 1278 dmu_buf_will_fill(db, tx); 1279 else 1280 dmu_buf_will_dirty(db, tx); 1281 1282 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1283 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1284 thiscpy = MIN(PAGESIZE, tocpy - copied); 1285 va = zfs_map_page(pp, S_READ); 1286 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1287 zfs_unmap_page(pp, va); 1288 pp = pp->p_next; 1289 bufoff += PAGESIZE; 1290 } 1291 1292 if (tocpy == db->db_size) 1293 dmu_buf_fill_done(db, tx); 1294 1295 offset += tocpy; 1296 size -= tocpy; 1297 } 1298 dmu_buf_rele_array(dbp, numbufs, FTAG); 1299 return (err); 1300 } 1301 #endif 1302 1303 /* 1304 * Allocate a loaned anonymous arc buffer. 1305 */ 1306 arc_buf_t * 1307 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1308 { 1309 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1310 1311 return (arc_loan_buf(db->db_objset->os_spa, size)); 1312 } 1313 1314 /* 1315 * Free a loaned arc buffer. 1316 */ 1317 void 1318 dmu_return_arcbuf(arc_buf_t *buf) 1319 { 1320 arc_return_buf(buf, FTAG); 1321 arc_buf_destroy(buf, FTAG); 1322 } 1323 1324 /* 1325 * When possible directly assign passed loaned arc buffer to a dbuf. 1326 * If this is not possible copy the contents of passed arc buf via 1327 * dmu_write(). 1328 */ 1329 void 1330 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1331 dmu_tx_t *tx) 1332 { 1333 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1334 dnode_t *dn; 1335 dmu_buf_impl_t *db; 1336 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1337 uint64_t blkid; 1338 1339 DB_DNODE_ENTER(dbuf); 1340 dn = DB_DNODE(dbuf); 1341 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1342 blkid = dbuf_whichblock(dn, 0, offset); 1343 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1344 rw_exit(&dn->dn_struct_rwlock); 1345 DB_DNODE_EXIT(dbuf); 1346 1347 /* 1348 * We can only assign if the offset is aligned, the arc buf is the 1349 * same size as the dbuf, and the dbuf is not metadata. It 1350 * can't be metadata because the loaned arc buf comes from the 1351 * user-data kmem arena. 1352 */ 1353 if (offset == db->db.db_offset && blksz == db->db.db_size && 1354 DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) { 1355 dbuf_assign_arcbuf(db, buf, tx); 1356 dbuf_rele(db, FTAG); 1357 } else { 1358 objset_t *os; 1359 uint64_t object; 1360 1361 DB_DNODE_ENTER(dbuf); 1362 dn = DB_DNODE(dbuf); 1363 os = dn->dn_objset; 1364 object = dn->dn_object; 1365 DB_DNODE_EXIT(dbuf); 1366 1367 dbuf_rele(db, FTAG); 1368 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1369 dmu_return_arcbuf(buf); 1370 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1371 } 1372 } 1373 1374 typedef struct { 1375 dbuf_dirty_record_t *dsa_dr; 1376 dmu_sync_cb_t *dsa_done; 1377 zgd_t *dsa_zgd; 1378 dmu_tx_t *dsa_tx; 1379 } dmu_sync_arg_t; 1380 1381 /* ARGSUSED */ 1382 static void 1383 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1384 { 1385 dmu_sync_arg_t *dsa = varg; 1386 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1387 blkptr_t *bp = zio->io_bp; 1388 1389 if (zio->io_error == 0) { 1390 if (BP_IS_HOLE(bp)) { 1391 /* 1392 * A block of zeros may compress to a hole, but the 1393 * block size still needs to be known for replay. 1394 */ 1395 BP_SET_LSIZE(bp, db->db_size); 1396 } else if (!BP_IS_EMBEDDED(bp)) { 1397 ASSERT(BP_GET_LEVEL(bp) == 0); 1398 bp->blk_fill = 1; 1399 } 1400 } 1401 } 1402 1403 static void 1404 dmu_sync_late_arrival_ready(zio_t *zio) 1405 { 1406 dmu_sync_ready(zio, NULL, zio->io_private); 1407 } 1408 1409 /* ARGSUSED */ 1410 static void 1411 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1412 { 1413 dmu_sync_arg_t *dsa = varg; 1414 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1415 dmu_buf_impl_t *db = dr->dr_dbuf; 1416 1417 mutex_enter(&db->db_mtx); 1418 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1419 if (zio->io_error == 0) { 1420 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1421 if (dr->dt.dl.dr_nopwrite) { 1422 blkptr_t *bp = zio->io_bp; 1423 blkptr_t *bp_orig = &zio->io_bp_orig; 1424 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1425 1426 ASSERT(BP_EQUAL(bp, bp_orig)); 1427 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1428 ASSERT(zio_checksum_table[chksum].ci_flags & 1429 ZCHECKSUM_FLAG_NOPWRITE); 1430 } 1431 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1432 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1433 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1434 1435 /* 1436 * Old style holes are filled with all zeros, whereas 1437 * new-style holes maintain their lsize, type, level, 1438 * and birth time (see zio_write_compress). While we 1439 * need to reset the BP_SET_LSIZE() call that happened 1440 * in dmu_sync_ready for old style holes, we do *not* 1441 * want to wipe out the information contained in new 1442 * style holes. Thus, only zero out the block pointer if 1443 * it's an old style hole. 1444 */ 1445 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1446 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1447 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1448 } else { 1449 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1450 } 1451 cv_broadcast(&db->db_changed); 1452 mutex_exit(&db->db_mtx); 1453 1454 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1455 1456 kmem_free(dsa, sizeof (*dsa)); 1457 } 1458 1459 static void 1460 dmu_sync_late_arrival_done(zio_t *zio) 1461 { 1462 blkptr_t *bp = zio->io_bp; 1463 dmu_sync_arg_t *dsa = zio->io_private; 1464 blkptr_t *bp_orig = &zio->io_bp_orig; 1465 1466 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1467 /* 1468 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1469 * then there is nothing to do here. Otherwise, free the 1470 * newly allocated block in this txg. 1471 */ 1472 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1473 ASSERT(BP_EQUAL(bp, bp_orig)); 1474 } else { 1475 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1476 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1477 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1478 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1479 } 1480 } 1481 1482 dmu_tx_commit(dsa->dsa_tx); 1483 1484 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1485 1486 kmem_free(dsa, sizeof (*dsa)); 1487 } 1488 1489 static int 1490 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1491 zio_prop_t *zp, zbookmark_phys_t *zb) 1492 { 1493 dmu_sync_arg_t *dsa; 1494 dmu_tx_t *tx; 1495 1496 tx = dmu_tx_create(os); 1497 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1498 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1499 dmu_tx_abort(tx); 1500 /* Make zl_get_data do txg_waited_synced() */ 1501 return (SET_ERROR(EIO)); 1502 } 1503 1504 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1505 dsa->dsa_dr = NULL; 1506 dsa->dsa_done = done; 1507 dsa->dsa_zgd = zgd; 1508 dsa->dsa_tx = tx; 1509 1510 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), 1511 zgd->zgd_bp, zgd->zgd_db->db_data, zgd->zgd_db->db_size, 1512 zp, dmu_sync_late_arrival_ready, NULL, 1513 NULL, dmu_sync_late_arrival_done, dsa, ZIO_PRIORITY_SYNC_WRITE, 1514 ZIO_FLAG_CANFAIL, zb)); 1515 1516 return (0); 1517 } 1518 1519 /* 1520 * Intent log support: sync the block associated with db to disk. 1521 * N.B. and XXX: the caller is responsible for making sure that the 1522 * data isn't changing while dmu_sync() is writing it. 1523 * 1524 * Return values: 1525 * 1526 * EEXIST: this txg has already been synced, so there's nothing to do. 1527 * The caller should not log the write. 1528 * 1529 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1530 * The caller should not log the write. 1531 * 1532 * EALREADY: this block is already in the process of being synced. 1533 * The caller should track its progress (somehow). 1534 * 1535 * EIO: could not do the I/O. 1536 * The caller should do a txg_wait_synced(). 1537 * 1538 * 0: the I/O has been initiated. 1539 * The caller should log this blkptr in the done callback. 1540 * It is possible that the I/O will fail, in which case 1541 * the error will be reported to the done callback and 1542 * propagated to pio from zio_done(). 1543 */ 1544 int 1545 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1546 { 1547 blkptr_t *bp = zgd->zgd_bp; 1548 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1549 objset_t *os = db->db_objset; 1550 dsl_dataset_t *ds = os->os_dsl_dataset; 1551 dbuf_dirty_record_t *dr; 1552 dmu_sync_arg_t *dsa; 1553 zbookmark_phys_t zb; 1554 zio_prop_t zp; 1555 dnode_t *dn; 1556 1557 ASSERT(pio != NULL); 1558 ASSERT(txg != 0); 1559 1560 SET_BOOKMARK(&zb, ds->ds_object, 1561 db->db.db_object, db->db_level, db->db_blkid); 1562 1563 DB_DNODE_ENTER(db); 1564 dn = DB_DNODE(db); 1565 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1566 DB_DNODE_EXIT(db); 1567 1568 /* 1569 * If we're frozen (running ziltest), we always need to generate a bp. 1570 */ 1571 if (txg > spa_freeze_txg(os->os_spa)) 1572 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1573 1574 /* 1575 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1576 * and us. If we determine that this txg is not yet syncing, 1577 * but it begins to sync a moment later, that's OK because the 1578 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1579 */ 1580 mutex_enter(&db->db_mtx); 1581 1582 if (txg <= spa_last_synced_txg(os->os_spa)) { 1583 /* 1584 * This txg has already synced. There's nothing to do. 1585 */ 1586 mutex_exit(&db->db_mtx); 1587 return (SET_ERROR(EEXIST)); 1588 } 1589 1590 if (txg <= spa_syncing_txg(os->os_spa)) { 1591 /* 1592 * This txg is currently syncing, so we can't mess with 1593 * the dirty record anymore; just write a new log block. 1594 */ 1595 mutex_exit(&db->db_mtx); 1596 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1597 } 1598 1599 dr = db->db_last_dirty; 1600 while (dr && dr->dr_txg != txg) 1601 dr = dr->dr_next; 1602 1603 if (dr == NULL) { 1604 /* 1605 * There's no dr for this dbuf, so it must have been freed. 1606 * There's no need to log writes to freed blocks, so we're done. 1607 */ 1608 mutex_exit(&db->db_mtx); 1609 return (SET_ERROR(ENOENT)); 1610 } 1611 1612 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1613 1614 /* 1615 * Assume the on-disk data is X, the current syncing data (in 1616 * txg - 1) is Y, and the current in-memory data is Z (currently 1617 * in dmu_sync). 1618 * 1619 * We usually want to perform a nopwrite if X and Z are the 1620 * same. However, if Y is different (i.e. the BP is going to 1621 * change before this write takes effect), then a nopwrite will 1622 * be incorrect - we would override with X, which could have 1623 * been freed when Y was written. 1624 * 1625 * (Note that this is not a concern when we are nop-writing from 1626 * syncing context, because X and Y must be identical, because 1627 * all previous txgs have been synced.) 1628 * 1629 * Therefore, we disable nopwrite if the current BP could change 1630 * before this TXG. There are two ways it could change: by 1631 * being dirty (dr_next is non-NULL), or by being freed 1632 * (dnode_block_freed()). This behavior is verified by 1633 * zio_done(), which VERIFYs that the override BP is identical 1634 * to the on-disk BP. 1635 */ 1636 DB_DNODE_ENTER(db); 1637 dn = DB_DNODE(db); 1638 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1639 zp.zp_nopwrite = B_FALSE; 1640 DB_DNODE_EXIT(db); 1641 1642 ASSERT(dr->dr_txg == txg); 1643 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1644 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1645 /* 1646 * We have already issued a sync write for this buffer, 1647 * or this buffer has already been synced. It could not 1648 * have been dirtied since, or we would have cleared the state. 1649 */ 1650 mutex_exit(&db->db_mtx); 1651 return (SET_ERROR(EALREADY)); 1652 } 1653 1654 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1655 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1656 mutex_exit(&db->db_mtx); 1657 1658 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1659 dsa->dsa_dr = dr; 1660 dsa->dsa_done = done; 1661 dsa->dsa_zgd = zgd; 1662 dsa->dsa_tx = NULL; 1663 1664 zio_nowait(arc_write(pio, os->os_spa, txg, 1665 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1666 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 1667 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1668 1669 return (0); 1670 } 1671 1672 int 1673 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1674 dmu_tx_t *tx) 1675 { 1676 dnode_t *dn; 1677 int err; 1678 1679 err = dnode_hold(os, object, FTAG, &dn); 1680 if (err) 1681 return (err); 1682 err = dnode_set_blksz(dn, size, ibs, tx); 1683 dnode_rele(dn, FTAG); 1684 return (err); 1685 } 1686 1687 void 1688 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1689 dmu_tx_t *tx) 1690 { 1691 dnode_t *dn; 1692 1693 /* 1694 * Send streams include each object's checksum function. This 1695 * check ensures that the receiving system can understand the 1696 * checksum function transmitted. 1697 */ 1698 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1699 1700 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1701 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1702 dn->dn_checksum = checksum; 1703 dnode_setdirty(dn, tx); 1704 dnode_rele(dn, FTAG); 1705 } 1706 1707 void 1708 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1709 dmu_tx_t *tx) 1710 { 1711 dnode_t *dn; 1712 1713 /* 1714 * Send streams include each object's compression function. This 1715 * check ensures that the receiving system can understand the 1716 * compression function transmitted. 1717 */ 1718 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1719 1720 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1721 dn->dn_compress = compress; 1722 dnode_setdirty(dn, tx); 1723 dnode_rele(dn, FTAG); 1724 } 1725 1726 int zfs_mdcomp_disable = 0; 1727 1728 /* 1729 * When the "redundant_metadata" property is set to "most", only indirect 1730 * blocks of this level and higher will have an additional ditto block. 1731 */ 1732 int zfs_redundant_metadata_most_ditto_level = 2; 1733 1734 void 1735 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1736 { 1737 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1738 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1739 (wp & WP_SPILL)); 1740 enum zio_checksum checksum = os->os_checksum; 1741 enum zio_compress compress = os->os_compress; 1742 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1743 boolean_t dedup = B_FALSE; 1744 boolean_t nopwrite = B_FALSE; 1745 boolean_t dedup_verify = os->os_dedup_verify; 1746 int copies = os->os_copies; 1747 1748 /* 1749 * We maintain different write policies for each of the following 1750 * types of data: 1751 * 1. metadata 1752 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1753 * 3. all other level 0 blocks 1754 */ 1755 if (ismd) { 1756 if (zfs_mdcomp_disable) { 1757 compress = ZIO_COMPRESS_EMPTY; 1758 } else { 1759 /* 1760 * XXX -- we should design a compression algorithm 1761 * that specializes in arrays of bps. 1762 */ 1763 compress = zio_compress_select(os->os_spa, 1764 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1765 } 1766 1767 /* 1768 * Metadata always gets checksummed. If the data 1769 * checksum is multi-bit correctable, and it's not a 1770 * ZBT-style checksum, then it's suitable for metadata 1771 * as well. Otherwise, the metadata checksum defaults 1772 * to fletcher4. 1773 */ 1774 if (!(zio_checksum_table[checksum].ci_flags & 1775 ZCHECKSUM_FLAG_METADATA) || 1776 (zio_checksum_table[checksum].ci_flags & 1777 ZCHECKSUM_FLAG_EMBEDDED)) 1778 checksum = ZIO_CHECKSUM_FLETCHER_4; 1779 1780 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1781 (os->os_redundant_metadata == 1782 ZFS_REDUNDANT_METADATA_MOST && 1783 (level >= zfs_redundant_metadata_most_ditto_level || 1784 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1785 copies++; 1786 } else if (wp & WP_NOFILL) { 1787 ASSERT(level == 0); 1788 1789 /* 1790 * If we're writing preallocated blocks, we aren't actually 1791 * writing them so don't set any policy properties. These 1792 * blocks are currently only used by an external subsystem 1793 * outside of zfs (i.e. dump) and not written by the zio 1794 * pipeline. 1795 */ 1796 compress = ZIO_COMPRESS_OFF; 1797 checksum = ZIO_CHECKSUM_NOPARITY; 1798 } else { 1799 compress = zio_compress_select(os->os_spa, dn->dn_compress, 1800 compress); 1801 1802 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1803 zio_checksum_select(dn->dn_checksum, checksum) : 1804 dedup_checksum; 1805 1806 /* 1807 * Determine dedup setting. If we are in dmu_sync(), 1808 * we won't actually dedup now because that's all 1809 * done in syncing context; but we do want to use the 1810 * dedup checkum. If the checksum is not strong 1811 * enough to ensure unique signatures, force 1812 * dedup_verify. 1813 */ 1814 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1815 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1816 if (!(zio_checksum_table[checksum].ci_flags & 1817 ZCHECKSUM_FLAG_DEDUP)) 1818 dedup_verify = B_TRUE; 1819 } 1820 1821 /* 1822 * Enable nopwrite if we have secure enough checksum 1823 * algorithm (see comment in zio_nop_write) and 1824 * compression is enabled. We don't enable nopwrite if 1825 * dedup is enabled as the two features are mutually 1826 * exclusive. 1827 */ 1828 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 1829 ZCHECKSUM_FLAG_NOPWRITE) && 1830 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1831 } 1832 1833 zp->zp_checksum = checksum; 1834 zp->zp_compress = compress; 1835 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1836 zp->zp_level = level; 1837 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 1838 zp->zp_dedup = dedup; 1839 zp->zp_dedup_verify = dedup && dedup_verify; 1840 zp->zp_nopwrite = nopwrite; 1841 } 1842 1843 int 1844 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1845 { 1846 dnode_t *dn; 1847 int err; 1848 1849 /* 1850 * Sync any current changes before 1851 * we go trundling through the block pointers. 1852 */ 1853 err = dmu_object_wait_synced(os, object); 1854 if (err) { 1855 return (err); 1856 } 1857 1858 err = dnode_hold(os, object, FTAG, &dn); 1859 if (err) { 1860 return (err); 1861 } 1862 1863 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1864 dnode_rele(dn, FTAG); 1865 1866 return (err); 1867 } 1868 1869 /* 1870 * Given the ZFS object, if it contains any dirty nodes 1871 * this function flushes all dirty blocks to disk. This 1872 * ensures the DMU object info is updated. A more efficient 1873 * future version might just find the TXG with the maximum 1874 * ID and wait for that to be synced. 1875 */ 1876 int 1877 dmu_object_wait_synced(objset_t *os, uint64_t object) 1878 { 1879 dnode_t *dn; 1880 int error, i; 1881 1882 error = dnode_hold(os, object, FTAG, &dn); 1883 if (error) { 1884 return (error); 1885 } 1886 1887 for (i = 0; i < TXG_SIZE; i++) { 1888 if (list_link_active(&dn->dn_dirty_link[i])) { 1889 break; 1890 } 1891 } 1892 dnode_rele(dn, FTAG); 1893 if (i != TXG_SIZE) { 1894 txg_wait_synced(dmu_objset_pool(os), 0); 1895 } 1896 1897 return (0); 1898 } 1899 1900 void 1901 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1902 { 1903 dnode_phys_t *dnp; 1904 1905 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1906 mutex_enter(&dn->dn_mtx); 1907 1908 dnp = dn->dn_phys; 1909 1910 doi->doi_data_block_size = dn->dn_datablksz; 1911 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1912 1ULL << dn->dn_indblkshift : 0; 1913 doi->doi_type = dn->dn_type; 1914 doi->doi_bonus_type = dn->dn_bonustype; 1915 doi->doi_bonus_size = dn->dn_bonuslen; 1916 doi->doi_indirection = dn->dn_nlevels; 1917 doi->doi_checksum = dn->dn_checksum; 1918 doi->doi_compress = dn->dn_compress; 1919 doi->doi_nblkptr = dn->dn_nblkptr; 1920 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1921 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 1922 doi->doi_fill_count = 0; 1923 for (int i = 0; i < dnp->dn_nblkptr; i++) 1924 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 1925 1926 mutex_exit(&dn->dn_mtx); 1927 rw_exit(&dn->dn_struct_rwlock); 1928 } 1929 1930 /* 1931 * Get information on a DMU object. 1932 * If doi is NULL, just indicates whether the object exists. 1933 */ 1934 int 1935 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1936 { 1937 dnode_t *dn; 1938 int err = dnode_hold(os, object, FTAG, &dn); 1939 1940 if (err) 1941 return (err); 1942 1943 if (doi != NULL) 1944 dmu_object_info_from_dnode(dn, doi); 1945 1946 dnode_rele(dn, FTAG); 1947 return (0); 1948 } 1949 1950 /* 1951 * As above, but faster; can be used when you have a held dbuf in hand. 1952 */ 1953 void 1954 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1955 { 1956 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1957 1958 DB_DNODE_ENTER(db); 1959 dmu_object_info_from_dnode(DB_DNODE(db), doi); 1960 DB_DNODE_EXIT(db); 1961 } 1962 1963 /* 1964 * Faster still when you only care about the size. 1965 * This is specifically optimized for zfs_getattr(). 1966 */ 1967 void 1968 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 1969 u_longlong_t *nblk512) 1970 { 1971 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1972 dnode_t *dn; 1973 1974 DB_DNODE_ENTER(db); 1975 dn = DB_DNODE(db); 1976 1977 *blksize = dn->dn_datablksz; 1978 /* add 1 for dnode space */ 1979 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1980 SPA_MINBLOCKSHIFT) + 1; 1981 DB_DNODE_EXIT(db); 1982 } 1983 1984 void 1985 byteswap_uint64_array(void *vbuf, size_t size) 1986 { 1987 uint64_t *buf = vbuf; 1988 size_t count = size >> 3; 1989 int i; 1990 1991 ASSERT((size & 7) == 0); 1992 1993 for (i = 0; i < count; i++) 1994 buf[i] = BSWAP_64(buf[i]); 1995 } 1996 1997 void 1998 byteswap_uint32_array(void *vbuf, size_t size) 1999 { 2000 uint32_t *buf = vbuf; 2001 size_t count = size >> 2; 2002 int i; 2003 2004 ASSERT((size & 3) == 0); 2005 2006 for (i = 0; i < count; i++) 2007 buf[i] = BSWAP_32(buf[i]); 2008 } 2009 2010 void 2011 byteswap_uint16_array(void *vbuf, size_t size) 2012 { 2013 uint16_t *buf = vbuf; 2014 size_t count = size >> 1; 2015 int i; 2016 2017 ASSERT((size & 1) == 0); 2018 2019 for (i = 0; i < count; i++) 2020 buf[i] = BSWAP_16(buf[i]); 2021 } 2022 2023 /* ARGSUSED */ 2024 void 2025 byteswap_uint8_array(void *vbuf, size_t size) 2026 { 2027 } 2028 2029 void 2030 dmu_init(void) 2031 { 2032 zfs_dbgmsg_init(); 2033 sa_cache_init(); 2034 xuio_stat_init(); 2035 dmu_objset_init(); 2036 dnode_init(); 2037 zfetch_init(); 2038 l2arc_init(); 2039 arc_init(); 2040 dbuf_init(); 2041 } 2042 2043 void 2044 dmu_fini(void) 2045 { 2046 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2047 l2arc_fini(); 2048 zfetch_fini(); 2049 dbuf_fini(); 2050 dnode_fini(); 2051 dmu_objset_fini(); 2052 xuio_stat_fini(); 2053 sa_cache_fini(); 2054 zfs_dbgmsg_fini(); 2055 } 2056