1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/zfs_ioctl.h> 44 #include <sys/zap.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/zio_compress.h> 47 #include <sys/sa.h> 48 #include <sys/zfeature.h> 49 #ifdef _KERNEL 50 #include <sys/vmsystm.h> 51 #include <sys/zfs_znode.h> 52 #endif 53 54 /* 55 * Enable/disable nopwrite feature. 56 */ 57 int zfs_nopwrite_enabled = 1; 58 59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 60 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 61 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 62 { DMU_BSWAP_UINT64, TRUE, "object array" }, 63 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 64 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 65 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 66 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 67 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 68 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 69 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 70 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 71 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 72 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 73 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 74 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 75 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 76 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 77 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 78 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 79 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 80 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 81 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 82 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 83 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 84 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 85 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 86 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 87 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 88 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 89 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 90 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 91 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 92 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 93 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 94 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 95 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 96 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 97 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 98 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 99 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 100 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 101 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 102 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 103 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 104 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 105 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 106 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 107 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 108 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 109 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 110 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 111 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 112 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 113 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 114 }; 115 116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 117 { byteswap_uint8_array, "uint8" }, 118 { byteswap_uint16_array, "uint16" }, 119 { byteswap_uint32_array, "uint32" }, 120 { byteswap_uint64_array, "uint64" }, 121 { zap_byteswap, "zap" }, 122 { dnode_buf_byteswap, "dnode" }, 123 { dmu_objset_byteswap, "objset" }, 124 { zfs_znode_byteswap, "znode" }, 125 { zfs_oldacl_byteswap, "oldacl" }, 126 { zfs_acl_byteswap, "acl" } 127 }; 128 129 int 130 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 131 void *tag, dmu_buf_t **dbp) 132 { 133 uint64_t blkid; 134 dmu_buf_impl_t *db; 135 136 blkid = dbuf_whichblock(dn, 0, offset); 137 rw_enter(&dn->dn_struct_rwlock, RW_READER); 138 db = dbuf_hold(dn, blkid, tag); 139 rw_exit(&dn->dn_struct_rwlock); 140 141 if (db == NULL) { 142 *dbp = NULL; 143 return (SET_ERROR(EIO)); 144 } 145 146 *dbp = &db->db; 147 return (0); 148 } 149 int 150 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 151 void *tag, dmu_buf_t **dbp) 152 { 153 dnode_t *dn; 154 uint64_t blkid; 155 dmu_buf_impl_t *db; 156 int err; 157 158 err = dnode_hold(os, object, FTAG, &dn); 159 if (err) 160 return (err); 161 blkid = dbuf_whichblock(dn, 0, offset); 162 rw_enter(&dn->dn_struct_rwlock, RW_READER); 163 db = dbuf_hold(dn, blkid, tag); 164 rw_exit(&dn->dn_struct_rwlock); 165 dnode_rele(dn, FTAG); 166 167 if (db == NULL) { 168 *dbp = NULL; 169 return (SET_ERROR(EIO)); 170 } 171 172 *dbp = &db->db; 173 return (err); 174 } 175 176 int 177 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 178 void *tag, dmu_buf_t **dbp, int flags) 179 { 180 int err; 181 int db_flags = DB_RF_CANFAIL; 182 183 if (flags & DMU_READ_NO_PREFETCH) 184 db_flags |= DB_RF_NOPREFETCH; 185 186 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 187 if (err == 0) { 188 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 189 err = dbuf_read(db, NULL, db_flags); 190 if (err != 0) { 191 dbuf_rele(db, tag); 192 *dbp = NULL; 193 } 194 } 195 196 return (err); 197 } 198 199 int 200 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 201 void *tag, dmu_buf_t **dbp, int flags) 202 { 203 int err; 204 int db_flags = DB_RF_CANFAIL; 205 206 if (flags & DMU_READ_NO_PREFETCH) 207 db_flags |= DB_RF_NOPREFETCH; 208 209 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 210 if (err == 0) { 211 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 212 err = dbuf_read(db, NULL, db_flags); 213 if (err != 0) { 214 dbuf_rele(db, tag); 215 *dbp = NULL; 216 } 217 } 218 219 return (err); 220 } 221 222 int 223 dmu_bonus_max(void) 224 { 225 return (DN_MAX_BONUSLEN); 226 } 227 228 int 229 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 230 { 231 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 232 dnode_t *dn; 233 int error; 234 235 DB_DNODE_ENTER(db); 236 dn = DB_DNODE(db); 237 238 if (dn->dn_bonus != db) { 239 error = SET_ERROR(EINVAL); 240 } else if (newsize < 0 || newsize > db_fake->db_size) { 241 error = SET_ERROR(EINVAL); 242 } else { 243 dnode_setbonuslen(dn, newsize, tx); 244 error = 0; 245 } 246 247 DB_DNODE_EXIT(db); 248 return (error); 249 } 250 251 int 252 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 253 { 254 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 255 dnode_t *dn; 256 int error; 257 258 DB_DNODE_ENTER(db); 259 dn = DB_DNODE(db); 260 261 if (!DMU_OT_IS_VALID(type)) { 262 error = SET_ERROR(EINVAL); 263 } else if (dn->dn_bonus != db) { 264 error = SET_ERROR(EINVAL); 265 } else { 266 dnode_setbonus_type(dn, type, tx); 267 error = 0; 268 } 269 270 DB_DNODE_EXIT(db); 271 return (error); 272 } 273 274 dmu_object_type_t 275 dmu_get_bonustype(dmu_buf_t *db_fake) 276 { 277 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 278 dnode_t *dn; 279 dmu_object_type_t type; 280 281 DB_DNODE_ENTER(db); 282 dn = DB_DNODE(db); 283 type = dn->dn_bonustype; 284 DB_DNODE_EXIT(db); 285 286 return (type); 287 } 288 289 int 290 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 291 { 292 dnode_t *dn; 293 int error; 294 295 error = dnode_hold(os, object, FTAG, &dn); 296 dbuf_rm_spill(dn, tx); 297 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 298 dnode_rm_spill(dn, tx); 299 rw_exit(&dn->dn_struct_rwlock); 300 dnode_rele(dn, FTAG); 301 return (error); 302 } 303 304 /* 305 * returns ENOENT, EIO, or 0. 306 */ 307 int 308 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 309 { 310 dnode_t *dn; 311 dmu_buf_impl_t *db; 312 int error; 313 314 error = dnode_hold(os, object, FTAG, &dn); 315 if (error) 316 return (error); 317 318 rw_enter(&dn->dn_struct_rwlock, RW_READER); 319 if (dn->dn_bonus == NULL) { 320 rw_exit(&dn->dn_struct_rwlock); 321 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 322 if (dn->dn_bonus == NULL) 323 dbuf_create_bonus(dn); 324 } 325 db = dn->dn_bonus; 326 327 /* as long as the bonus buf is held, the dnode will be held */ 328 if (refcount_add(&db->db_holds, tag) == 1) { 329 VERIFY(dnode_add_ref(dn, db)); 330 atomic_inc_32(&dn->dn_dbufs_count); 331 } 332 333 /* 334 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 335 * hold and incrementing the dbuf count to ensure that dnode_move() sees 336 * a dnode hold for every dbuf. 337 */ 338 rw_exit(&dn->dn_struct_rwlock); 339 340 dnode_rele(dn, FTAG); 341 342 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 343 344 *dbp = &db->db; 345 return (0); 346 } 347 348 /* 349 * returns ENOENT, EIO, or 0. 350 * 351 * This interface will allocate a blank spill dbuf when a spill blk 352 * doesn't already exist on the dnode. 353 * 354 * if you only want to find an already existing spill db, then 355 * dmu_spill_hold_existing() should be used. 356 */ 357 int 358 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 359 { 360 dmu_buf_impl_t *db = NULL; 361 int err; 362 363 if ((flags & DB_RF_HAVESTRUCT) == 0) 364 rw_enter(&dn->dn_struct_rwlock, RW_READER); 365 366 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 367 368 if ((flags & DB_RF_HAVESTRUCT) == 0) 369 rw_exit(&dn->dn_struct_rwlock); 370 371 ASSERT(db != NULL); 372 err = dbuf_read(db, NULL, flags); 373 if (err == 0) 374 *dbp = &db->db; 375 else 376 dbuf_rele(db, tag); 377 return (err); 378 } 379 380 int 381 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 382 { 383 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 384 dnode_t *dn; 385 int err; 386 387 DB_DNODE_ENTER(db); 388 dn = DB_DNODE(db); 389 390 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 391 err = SET_ERROR(EINVAL); 392 } else { 393 rw_enter(&dn->dn_struct_rwlock, RW_READER); 394 395 if (!dn->dn_have_spill) { 396 err = SET_ERROR(ENOENT); 397 } else { 398 err = dmu_spill_hold_by_dnode(dn, 399 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 400 } 401 402 rw_exit(&dn->dn_struct_rwlock); 403 } 404 405 DB_DNODE_EXIT(db); 406 return (err); 407 } 408 409 int 410 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 411 { 412 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 413 dnode_t *dn; 414 int err; 415 416 DB_DNODE_ENTER(db); 417 dn = DB_DNODE(db); 418 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 419 DB_DNODE_EXIT(db); 420 421 return (err); 422 } 423 424 /* 425 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 426 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 427 * and can induce severe lock contention when writing to several files 428 * whose dnodes are in the same block. 429 */ 430 static int 431 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 432 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 433 { 434 dmu_buf_t **dbp; 435 uint64_t blkid, nblks, i; 436 uint32_t dbuf_flags; 437 int err; 438 zio_t *zio; 439 440 ASSERT(length <= DMU_MAX_ACCESS); 441 442 /* 443 * Note: We directly notify the prefetch code of this read, so that 444 * we can tell it about the multi-block read. dbuf_read() only knows 445 * about the one block it is accessing. 446 */ 447 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 448 DB_RF_NOPREFETCH; 449 450 rw_enter(&dn->dn_struct_rwlock, RW_READER); 451 if (dn->dn_datablkshift) { 452 int blkshift = dn->dn_datablkshift; 453 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 454 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 455 } else { 456 if (offset + length > dn->dn_datablksz) { 457 zfs_panic_recover("zfs: accessing past end of object " 458 "%llx/%llx (size=%u access=%llu+%llu)", 459 (longlong_t)dn->dn_objset-> 460 os_dsl_dataset->ds_object, 461 (longlong_t)dn->dn_object, dn->dn_datablksz, 462 (longlong_t)offset, (longlong_t)length); 463 rw_exit(&dn->dn_struct_rwlock); 464 return (SET_ERROR(EIO)); 465 } 466 nblks = 1; 467 } 468 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 469 470 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 471 blkid = dbuf_whichblock(dn, 0, offset); 472 for (i = 0; i < nblks; i++) { 473 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 474 if (db == NULL) { 475 rw_exit(&dn->dn_struct_rwlock); 476 dmu_buf_rele_array(dbp, nblks, tag); 477 zio_nowait(zio); 478 return (SET_ERROR(EIO)); 479 } 480 481 /* initiate async i/o */ 482 if (read) 483 (void) dbuf_read(db, zio, dbuf_flags); 484 dbp[i] = &db->db; 485 } 486 487 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 488 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 489 dmu_zfetch(&dn->dn_zfetch, blkid, nblks, 490 read && DNODE_IS_CACHEABLE(dn)); 491 } 492 rw_exit(&dn->dn_struct_rwlock); 493 494 /* wait for async i/o */ 495 err = zio_wait(zio); 496 if (err) { 497 dmu_buf_rele_array(dbp, nblks, tag); 498 return (err); 499 } 500 501 /* wait for other io to complete */ 502 if (read) { 503 for (i = 0; i < nblks; i++) { 504 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 505 mutex_enter(&db->db_mtx); 506 while (db->db_state == DB_READ || 507 db->db_state == DB_FILL) 508 cv_wait(&db->db_changed, &db->db_mtx); 509 if (db->db_state == DB_UNCACHED) 510 err = SET_ERROR(EIO); 511 mutex_exit(&db->db_mtx); 512 if (err) { 513 dmu_buf_rele_array(dbp, nblks, tag); 514 return (err); 515 } 516 } 517 } 518 519 *numbufsp = nblks; 520 *dbpp = dbp; 521 return (0); 522 } 523 524 static int 525 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 526 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 527 { 528 dnode_t *dn; 529 int err; 530 531 err = dnode_hold(os, object, FTAG, &dn); 532 if (err) 533 return (err); 534 535 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 536 numbufsp, dbpp, DMU_READ_PREFETCH); 537 538 dnode_rele(dn, FTAG); 539 540 return (err); 541 } 542 543 int 544 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 545 uint64_t length, boolean_t read, void *tag, int *numbufsp, 546 dmu_buf_t ***dbpp) 547 { 548 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 549 dnode_t *dn; 550 int err; 551 552 DB_DNODE_ENTER(db); 553 dn = DB_DNODE(db); 554 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 555 numbufsp, dbpp, DMU_READ_PREFETCH); 556 DB_DNODE_EXIT(db); 557 558 return (err); 559 } 560 561 void 562 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 563 { 564 int i; 565 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 566 567 if (numbufs == 0) 568 return; 569 570 for (i = 0; i < numbufs; i++) { 571 if (dbp[i]) 572 dbuf_rele(dbp[i], tag); 573 } 574 575 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 576 } 577 578 /* 579 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 580 * indirect blocks prefeteched will be those that point to the blocks containing 581 * the data starting at offset, and continuing to offset + len. 582 * 583 * Note that if the indirect blocks above the blocks being prefetched are not in 584 * cache, they will be asychronously read in. 585 */ 586 void 587 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 588 uint64_t len, zio_priority_t pri) 589 { 590 dnode_t *dn; 591 uint64_t blkid; 592 int nblks, err; 593 594 if (len == 0) { /* they're interested in the bonus buffer */ 595 dn = DMU_META_DNODE(os); 596 597 if (object == 0 || object >= DN_MAX_OBJECT) 598 return; 599 600 rw_enter(&dn->dn_struct_rwlock, RW_READER); 601 blkid = dbuf_whichblock(dn, level, 602 object * sizeof (dnode_phys_t)); 603 dbuf_prefetch(dn, level, blkid, pri, 0); 604 rw_exit(&dn->dn_struct_rwlock); 605 return; 606 } 607 608 /* 609 * XXX - Note, if the dnode for the requested object is not 610 * already cached, we will do a *synchronous* read in the 611 * dnode_hold() call. The same is true for any indirects. 612 */ 613 err = dnode_hold(os, object, FTAG, &dn); 614 if (err != 0) 615 return; 616 617 rw_enter(&dn->dn_struct_rwlock, RW_READER); 618 /* 619 * offset + len - 1 is the last byte we want to prefetch for, and offset 620 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 621 * last block we want to prefetch, and dbuf_whichblock(dn, level, 622 * offset) is the first. Then the number we need to prefetch is the 623 * last - first + 1. 624 */ 625 if (level > 0 || dn->dn_datablkshift != 0) { 626 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 627 dbuf_whichblock(dn, level, offset) + 1; 628 } else { 629 nblks = (offset < dn->dn_datablksz); 630 } 631 632 if (nblks != 0) { 633 blkid = dbuf_whichblock(dn, level, offset); 634 for (int i = 0; i < nblks; i++) 635 dbuf_prefetch(dn, level, blkid + i, pri, 0); 636 } 637 638 rw_exit(&dn->dn_struct_rwlock); 639 640 dnode_rele(dn, FTAG); 641 } 642 643 /* 644 * Get the next "chunk" of file data to free. We traverse the file from 645 * the end so that the file gets shorter over time (if we crashes in the 646 * middle, this will leave us in a better state). We find allocated file 647 * data by simply searching the allocated level 1 indirects. 648 * 649 * On input, *start should be the first offset that does not need to be 650 * freed (e.g. "offset + length"). On return, *start will be the first 651 * offset that should be freed. 652 */ 653 static int 654 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 655 { 656 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 657 /* bytes of data covered by a level-1 indirect block */ 658 uint64_t iblkrange = 659 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 660 661 ASSERT3U(minimum, <=, *start); 662 663 if (*start - minimum <= iblkrange * maxblks) { 664 *start = minimum; 665 return (0); 666 } 667 ASSERT(ISP2(iblkrange)); 668 669 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 670 int err; 671 672 /* 673 * dnode_next_offset(BACKWARDS) will find an allocated L1 674 * indirect block at or before the input offset. We must 675 * decrement *start so that it is at the end of the region 676 * to search. 677 */ 678 (*start)--; 679 err = dnode_next_offset(dn, 680 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 681 682 /* if there are no indirect blocks before start, we are done */ 683 if (err == ESRCH) { 684 *start = minimum; 685 break; 686 } else if (err != 0) { 687 return (err); 688 } 689 690 /* set start to the beginning of this L1 indirect */ 691 *start = P2ALIGN(*start, iblkrange); 692 } 693 if (*start < minimum) 694 *start = minimum; 695 return (0); 696 } 697 698 static int 699 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 700 uint64_t length) 701 { 702 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 703 int err; 704 705 if (offset >= object_size) 706 return (0); 707 708 if (length == DMU_OBJECT_END || offset + length > object_size) 709 length = object_size - offset; 710 711 while (length != 0) { 712 uint64_t chunk_end, chunk_begin; 713 714 chunk_end = chunk_begin = offset + length; 715 716 /* move chunk_begin backwards to the beginning of this chunk */ 717 err = get_next_chunk(dn, &chunk_begin, offset); 718 if (err) 719 return (err); 720 ASSERT3U(chunk_begin, >=, offset); 721 ASSERT3U(chunk_begin, <=, chunk_end); 722 723 dmu_tx_t *tx = dmu_tx_create(os); 724 dmu_tx_hold_free(tx, dn->dn_object, 725 chunk_begin, chunk_end - chunk_begin); 726 727 /* 728 * Mark this transaction as typically resulting in a net 729 * reduction in space used. 730 */ 731 dmu_tx_mark_netfree(tx); 732 err = dmu_tx_assign(tx, TXG_WAIT); 733 if (err) { 734 dmu_tx_abort(tx); 735 return (err); 736 } 737 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx); 738 dmu_tx_commit(tx); 739 740 length -= chunk_end - chunk_begin; 741 } 742 return (0); 743 } 744 745 int 746 dmu_free_long_range(objset_t *os, uint64_t object, 747 uint64_t offset, uint64_t length) 748 { 749 dnode_t *dn; 750 int err; 751 752 err = dnode_hold(os, object, FTAG, &dn); 753 if (err != 0) 754 return (err); 755 err = dmu_free_long_range_impl(os, dn, offset, length); 756 757 /* 758 * It is important to zero out the maxblkid when freeing the entire 759 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 760 * will take the fast path, and (b) dnode_reallocate() can verify 761 * that the entire file has been freed. 762 */ 763 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 764 dn->dn_maxblkid = 0; 765 766 dnode_rele(dn, FTAG); 767 return (err); 768 } 769 770 int 771 dmu_free_long_object(objset_t *os, uint64_t object) 772 { 773 dmu_tx_t *tx; 774 int err; 775 776 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 777 if (err != 0) 778 return (err); 779 780 tx = dmu_tx_create(os); 781 dmu_tx_hold_bonus(tx, object); 782 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 783 dmu_tx_mark_netfree(tx); 784 err = dmu_tx_assign(tx, TXG_WAIT); 785 if (err == 0) { 786 err = dmu_object_free(os, object, tx); 787 dmu_tx_commit(tx); 788 } else { 789 dmu_tx_abort(tx); 790 } 791 792 return (err); 793 } 794 795 int 796 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 797 uint64_t size, dmu_tx_t *tx) 798 { 799 dnode_t *dn; 800 int err = dnode_hold(os, object, FTAG, &dn); 801 if (err) 802 return (err); 803 ASSERT(offset < UINT64_MAX); 804 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 805 dnode_free_range(dn, offset, size, tx); 806 dnode_rele(dn, FTAG); 807 return (0); 808 } 809 810 int 811 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 812 void *buf, uint32_t flags) 813 { 814 dnode_t *dn; 815 dmu_buf_t **dbp; 816 int numbufs, err; 817 818 err = dnode_hold(os, object, FTAG, &dn); 819 if (err) 820 return (err); 821 822 /* 823 * Deal with odd block sizes, where there can't be data past the first 824 * block. If we ever do the tail block optimization, we will need to 825 * handle that here as well. 826 */ 827 if (dn->dn_maxblkid == 0) { 828 int newsz = offset > dn->dn_datablksz ? 0 : 829 MIN(size, dn->dn_datablksz - offset); 830 bzero((char *)buf + newsz, size - newsz); 831 size = newsz; 832 } 833 834 while (size > 0) { 835 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 836 int i; 837 838 /* 839 * NB: we could do this block-at-a-time, but it's nice 840 * to be reading in parallel. 841 */ 842 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 843 TRUE, FTAG, &numbufs, &dbp, flags); 844 if (err) 845 break; 846 847 for (i = 0; i < numbufs; i++) { 848 int tocpy; 849 int bufoff; 850 dmu_buf_t *db = dbp[i]; 851 852 ASSERT(size > 0); 853 854 bufoff = offset - db->db_offset; 855 tocpy = (int)MIN(db->db_size - bufoff, size); 856 857 bcopy((char *)db->db_data + bufoff, buf, tocpy); 858 859 offset += tocpy; 860 size -= tocpy; 861 buf = (char *)buf + tocpy; 862 } 863 dmu_buf_rele_array(dbp, numbufs, FTAG); 864 } 865 dnode_rele(dn, FTAG); 866 return (err); 867 } 868 869 void 870 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 871 const void *buf, dmu_tx_t *tx) 872 { 873 dmu_buf_t **dbp; 874 int numbufs, i; 875 876 if (size == 0) 877 return; 878 879 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 880 FALSE, FTAG, &numbufs, &dbp)); 881 882 for (i = 0; i < numbufs; i++) { 883 int tocpy; 884 int bufoff; 885 dmu_buf_t *db = dbp[i]; 886 887 ASSERT(size > 0); 888 889 bufoff = offset - db->db_offset; 890 tocpy = (int)MIN(db->db_size - bufoff, size); 891 892 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 893 894 if (tocpy == db->db_size) 895 dmu_buf_will_fill(db, tx); 896 else 897 dmu_buf_will_dirty(db, tx); 898 899 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 900 901 if (tocpy == db->db_size) 902 dmu_buf_fill_done(db, tx); 903 904 offset += tocpy; 905 size -= tocpy; 906 buf = (char *)buf + tocpy; 907 } 908 dmu_buf_rele_array(dbp, numbufs, FTAG); 909 } 910 911 void 912 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 913 dmu_tx_t *tx) 914 { 915 dmu_buf_t **dbp; 916 int numbufs, i; 917 918 if (size == 0) 919 return; 920 921 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 922 FALSE, FTAG, &numbufs, &dbp)); 923 924 for (i = 0; i < numbufs; i++) { 925 dmu_buf_t *db = dbp[i]; 926 927 dmu_buf_will_not_fill(db, tx); 928 } 929 dmu_buf_rele_array(dbp, numbufs, FTAG); 930 } 931 932 void 933 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 934 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 935 int compressed_size, int byteorder, dmu_tx_t *tx) 936 { 937 dmu_buf_t *db; 938 939 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 940 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 941 VERIFY0(dmu_buf_hold_noread(os, object, offset, 942 FTAG, &db)); 943 944 dmu_buf_write_embedded(db, 945 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 946 uncompressed_size, compressed_size, byteorder, tx); 947 948 dmu_buf_rele(db, FTAG); 949 } 950 951 /* 952 * DMU support for xuio 953 */ 954 kstat_t *xuio_ksp = NULL; 955 956 int 957 dmu_xuio_init(xuio_t *xuio, int nblk) 958 { 959 dmu_xuio_t *priv; 960 uio_t *uio = &xuio->xu_uio; 961 962 uio->uio_iovcnt = nblk; 963 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 964 965 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 966 priv->cnt = nblk; 967 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 968 priv->iovp = uio->uio_iov; 969 XUIO_XUZC_PRIV(xuio) = priv; 970 971 if (XUIO_XUZC_RW(xuio) == UIO_READ) 972 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 973 else 974 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 975 976 return (0); 977 } 978 979 void 980 dmu_xuio_fini(xuio_t *xuio) 981 { 982 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 983 int nblk = priv->cnt; 984 985 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 986 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 987 kmem_free(priv, sizeof (dmu_xuio_t)); 988 989 if (XUIO_XUZC_RW(xuio) == UIO_READ) 990 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 991 else 992 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 993 } 994 995 /* 996 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 997 * and increase priv->next by 1. 998 */ 999 int 1000 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 1001 { 1002 struct iovec *iov; 1003 uio_t *uio = &xuio->xu_uio; 1004 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1005 int i = priv->next++; 1006 1007 ASSERT(i < priv->cnt); 1008 ASSERT(off + n <= arc_buf_size(abuf)); 1009 iov = uio->uio_iov + i; 1010 iov->iov_base = (char *)abuf->b_data + off; 1011 iov->iov_len = n; 1012 priv->bufs[i] = abuf; 1013 return (0); 1014 } 1015 1016 int 1017 dmu_xuio_cnt(xuio_t *xuio) 1018 { 1019 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1020 return (priv->cnt); 1021 } 1022 1023 arc_buf_t * 1024 dmu_xuio_arcbuf(xuio_t *xuio, int i) 1025 { 1026 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1027 1028 ASSERT(i < priv->cnt); 1029 return (priv->bufs[i]); 1030 } 1031 1032 void 1033 dmu_xuio_clear(xuio_t *xuio, int i) 1034 { 1035 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1036 1037 ASSERT(i < priv->cnt); 1038 priv->bufs[i] = NULL; 1039 } 1040 1041 static void 1042 xuio_stat_init(void) 1043 { 1044 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 1045 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 1046 KSTAT_FLAG_VIRTUAL); 1047 if (xuio_ksp != NULL) { 1048 xuio_ksp->ks_data = &xuio_stats; 1049 kstat_install(xuio_ksp); 1050 } 1051 } 1052 1053 static void 1054 xuio_stat_fini(void) 1055 { 1056 if (xuio_ksp != NULL) { 1057 kstat_delete(xuio_ksp); 1058 xuio_ksp = NULL; 1059 } 1060 } 1061 1062 void 1063 xuio_stat_wbuf_copied() 1064 { 1065 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1066 } 1067 1068 void 1069 xuio_stat_wbuf_nocopy() 1070 { 1071 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1072 } 1073 1074 #ifdef _KERNEL 1075 static int 1076 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1077 { 1078 dmu_buf_t **dbp; 1079 int numbufs, i, err; 1080 xuio_t *xuio = NULL; 1081 1082 /* 1083 * NB: we could do this block-at-a-time, but it's nice 1084 * to be reading in parallel. 1085 */ 1086 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1087 TRUE, FTAG, &numbufs, &dbp, 0); 1088 if (err) 1089 return (err); 1090 1091 if (uio->uio_extflg == UIO_XUIO) 1092 xuio = (xuio_t *)uio; 1093 1094 for (i = 0; i < numbufs; i++) { 1095 int tocpy; 1096 int bufoff; 1097 dmu_buf_t *db = dbp[i]; 1098 1099 ASSERT(size > 0); 1100 1101 bufoff = uio->uio_loffset - db->db_offset; 1102 tocpy = (int)MIN(db->db_size - bufoff, size); 1103 1104 if (xuio) { 1105 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1106 arc_buf_t *dbuf_abuf = dbi->db_buf; 1107 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1108 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1109 if (!err) { 1110 uio->uio_resid -= tocpy; 1111 uio->uio_loffset += tocpy; 1112 } 1113 1114 if (abuf == dbuf_abuf) 1115 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1116 else 1117 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1118 } else { 1119 err = uiomove((char *)db->db_data + bufoff, tocpy, 1120 UIO_READ, uio); 1121 } 1122 if (err) 1123 break; 1124 1125 size -= tocpy; 1126 } 1127 dmu_buf_rele_array(dbp, numbufs, FTAG); 1128 1129 return (err); 1130 } 1131 1132 /* 1133 * Read 'size' bytes into the uio buffer. 1134 * From object zdb->db_object. 1135 * Starting at offset uio->uio_loffset. 1136 * 1137 * If the caller already has a dbuf in the target object 1138 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1139 * because we don't have to find the dnode_t for the object. 1140 */ 1141 int 1142 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1143 { 1144 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1145 dnode_t *dn; 1146 int err; 1147 1148 if (size == 0) 1149 return (0); 1150 1151 DB_DNODE_ENTER(db); 1152 dn = DB_DNODE(db); 1153 err = dmu_read_uio_dnode(dn, uio, size); 1154 DB_DNODE_EXIT(db); 1155 1156 return (err); 1157 } 1158 1159 /* 1160 * Read 'size' bytes into the uio buffer. 1161 * From the specified object 1162 * Starting at offset uio->uio_loffset. 1163 */ 1164 int 1165 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1166 { 1167 dnode_t *dn; 1168 int err; 1169 1170 if (size == 0) 1171 return (0); 1172 1173 err = dnode_hold(os, object, FTAG, &dn); 1174 if (err) 1175 return (err); 1176 1177 err = dmu_read_uio_dnode(dn, uio, size); 1178 1179 dnode_rele(dn, FTAG); 1180 1181 return (err); 1182 } 1183 1184 static int 1185 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1186 { 1187 dmu_buf_t **dbp; 1188 int numbufs; 1189 int err = 0; 1190 int i; 1191 1192 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1193 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1194 if (err) 1195 return (err); 1196 1197 for (i = 0; i < numbufs; i++) { 1198 int tocpy; 1199 int bufoff; 1200 dmu_buf_t *db = dbp[i]; 1201 1202 ASSERT(size > 0); 1203 1204 bufoff = uio->uio_loffset - db->db_offset; 1205 tocpy = (int)MIN(db->db_size - bufoff, size); 1206 1207 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1208 1209 if (tocpy == db->db_size) 1210 dmu_buf_will_fill(db, tx); 1211 else 1212 dmu_buf_will_dirty(db, tx); 1213 1214 /* 1215 * XXX uiomove could block forever (eg. nfs-backed 1216 * pages). There needs to be a uiolockdown() function 1217 * to lock the pages in memory, so that uiomove won't 1218 * block. 1219 */ 1220 err = uiomove((char *)db->db_data + bufoff, tocpy, 1221 UIO_WRITE, uio); 1222 1223 if (tocpy == db->db_size) 1224 dmu_buf_fill_done(db, tx); 1225 1226 if (err) 1227 break; 1228 1229 size -= tocpy; 1230 } 1231 1232 dmu_buf_rele_array(dbp, numbufs, FTAG); 1233 return (err); 1234 } 1235 1236 /* 1237 * Write 'size' bytes from the uio buffer. 1238 * To object zdb->db_object. 1239 * Starting at offset uio->uio_loffset. 1240 * 1241 * If the caller already has a dbuf in the target object 1242 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1243 * because we don't have to find the dnode_t for the object. 1244 */ 1245 int 1246 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1247 dmu_tx_t *tx) 1248 { 1249 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1250 dnode_t *dn; 1251 int err; 1252 1253 if (size == 0) 1254 return (0); 1255 1256 DB_DNODE_ENTER(db); 1257 dn = DB_DNODE(db); 1258 err = dmu_write_uio_dnode(dn, uio, size, tx); 1259 DB_DNODE_EXIT(db); 1260 1261 return (err); 1262 } 1263 1264 /* 1265 * Write 'size' bytes from the uio buffer. 1266 * To the specified object. 1267 * Starting at offset uio->uio_loffset. 1268 */ 1269 int 1270 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1271 dmu_tx_t *tx) 1272 { 1273 dnode_t *dn; 1274 int err; 1275 1276 if (size == 0) 1277 return (0); 1278 1279 err = dnode_hold(os, object, FTAG, &dn); 1280 if (err) 1281 return (err); 1282 1283 err = dmu_write_uio_dnode(dn, uio, size, tx); 1284 1285 dnode_rele(dn, FTAG); 1286 1287 return (err); 1288 } 1289 1290 int 1291 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1292 page_t *pp, dmu_tx_t *tx) 1293 { 1294 dmu_buf_t **dbp; 1295 int numbufs, i; 1296 int err; 1297 1298 if (size == 0) 1299 return (0); 1300 1301 err = dmu_buf_hold_array(os, object, offset, size, 1302 FALSE, FTAG, &numbufs, &dbp); 1303 if (err) 1304 return (err); 1305 1306 for (i = 0; i < numbufs; i++) { 1307 int tocpy, copied, thiscpy; 1308 int bufoff; 1309 dmu_buf_t *db = dbp[i]; 1310 caddr_t va; 1311 1312 ASSERT(size > 0); 1313 ASSERT3U(db->db_size, >=, PAGESIZE); 1314 1315 bufoff = offset - db->db_offset; 1316 tocpy = (int)MIN(db->db_size - bufoff, size); 1317 1318 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1319 1320 if (tocpy == db->db_size) 1321 dmu_buf_will_fill(db, tx); 1322 else 1323 dmu_buf_will_dirty(db, tx); 1324 1325 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1326 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1327 thiscpy = MIN(PAGESIZE, tocpy - copied); 1328 va = zfs_map_page(pp, S_READ); 1329 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1330 zfs_unmap_page(pp, va); 1331 pp = pp->p_next; 1332 bufoff += PAGESIZE; 1333 } 1334 1335 if (tocpy == db->db_size) 1336 dmu_buf_fill_done(db, tx); 1337 1338 offset += tocpy; 1339 size -= tocpy; 1340 } 1341 dmu_buf_rele_array(dbp, numbufs, FTAG); 1342 return (err); 1343 } 1344 #endif 1345 1346 /* 1347 * Allocate a loaned anonymous arc buffer. 1348 */ 1349 arc_buf_t * 1350 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1351 { 1352 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1353 1354 return (arc_loan_buf(db->db_objset->os_spa, size)); 1355 } 1356 1357 /* 1358 * Free a loaned arc buffer. 1359 */ 1360 void 1361 dmu_return_arcbuf(arc_buf_t *buf) 1362 { 1363 arc_return_buf(buf, FTAG); 1364 arc_buf_destroy(buf, FTAG); 1365 } 1366 1367 /* 1368 * When possible directly assign passed loaned arc buffer to a dbuf. 1369 * If this is not possible copy the contents of passed arc buf via 1370 * dmu_write(). 1371 */ 1372 void 1373 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1374 dmu_tx_t *tx) 1375 { 1376 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1377 dnode_t *dn; 1378 dmu_buf_impl_t *db; 1379 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1380 uint64_t blkid; 1381 1382 DB_DNODE_ENTER(dbuf); 1383 dn = DB_DNODE(dbuf); 1384 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1385 blkid = dbuf_whichblock(dn, 0, offset); 1386 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1387 rw_exit(&dn->dn_struct_rwlock); 1388 DB_DNODE_EXIT(dbuf); 1389 1390 /* 1391 * We can only assign if the offset is aligned, the arc buf is the 1392 * same size as the dbuf, and the dbuf is not metadata. It 1393 * can't be metadata because the loaned arc buf comes from the 1394 * user-data kmem arena. 1395 */ 1396 if (offset == db->db.db_offset && blksz == db->db.db_size && 1397 DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) { 1398 dbuf_assign_arcbuf(db, buf, tx); 1399 dbuf_rele(db, FTAG); 1400 } else { 1401 objset_t *os; 1402 uint64_t object; 1403 1404 DB_DNODE_ENTER(dbuf); 1405 dn = DB_DNODE(dbuf); 1406 os = dn->dn_objset; 1407 object = dn->dn_object; 1408 DB_DNODE_EXIT(dbuf); 1409 1410 dbuf_rele(db, FTAG); 1411 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1412 dmu_return_arcbuf(buf); 1413 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1414 } 1415 } 1416 1417 typedef struct { 1418 dbuf_dirty_record_t *dsa_dr; 1419 dmu_sync_cb_t *dsa_done; 1420 zgd_t *dsa_zgd; 1421 dmu_tx_t *dsa_tx; 1422 } dmu_sync_arg_t; 1423 1424 /* ARGSUSED */ 1425 static void 1426 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1427 { 1428 dmu_sync_arg_t *dsa = varg; 1429 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1430 blkptr_t *bp = zio->io_bp; 1431 1432 if (zio->io_error == 0) { 1433 if (BP_IS_HOLE(bp)) { 1434 /* 1435 * A block of zeros may compress to a hole, but the 1436 * block size still needs to be known for replay. 1437 */ 1438 BP_SET_LSIZE(bp, db->db_size); 1439 } else if (!BP_IS_EMBEDDED(bp)) { 1440 ASSERT(BP_GET_LEVEL(bp) == 0); 1441 bp->blk_fill = 1; 1442 } 1443 } 1444 } 1445 1446 static void 1447 dmu_sync_late_arrival_ready(zio_t *zio) 1448 { 1449 dmu_sync_ready(zio, NULL, zio->io_private); 1450 } 1451 1452 /* ARGSUSED */ 1453 static void 1454 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1455 { 1456 dmu_sync_arg_t *dsa = varg; 1457 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1458 dmu_buf_impl_t *db = dr->dr_dbuf; 1459 1460 mutex_enter(&db->db_mtx); 1461 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1462 if (zio->io_error == 0) { 1463 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1464 if (dr->dt.dl.dr_nopwrite) { 1465 blkptr_t *bp = zio->io_bp; 1466 blkptr_t *bp_orig = &zio->io_bp_orig; 1467 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1468 1469 ASSERT(BP_EQUAL(bp, bp_orig)); 1470 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1471 ASSERT(zio_checksum_table[chksum].ci_flags & 1472 ZCHECKSUM_FLAG_NOPWRITE); 1473 } 1474 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1475 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1476 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1477 1478 /* 1479 * Old style holes are filled with all zeros, whereas 1480 * new-style holes maintain their lsize, type, level, 1481 * and birth time (see zio_write_compress). While we 1482 * need to reset the BP_SET_LSIZE() call that happened 1483 * in dmu_sync_ready for old style holes, we do *not* 1484 * want to wipe out the information contained in new 1485 * style holes. Thus, only zero out the block pointer if 1486 * it's an old style hole. 1487 */ 1488 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1489 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1490 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1491 } else { 1492 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1493 } 1494 cv_broadcast(&db->db_changed); 1495 mutex_exit(&db->db_mtx); 1496 1497 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1498 1499 kmem_free(dsa, sizeof (*dsa)); 1500 } 1501 1502 static void 1503 dmu_sync_late_arrival_done(zio_t *zio) 1504 { 1505 blkptr_t *bp = zio->io_bp; 1506 dmu_sync_arg_t *dsa = zio->io_private; 1507 blkptr_t *bp_orig = &zio->io_bp_orig; 1508 1509 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1510 /* 1511 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1512 * then there is nothing to do here. Otherwise, free the 1513 * newly allocated block in this txg. 1514 */ 1515 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1516 ASSERT(BP_EQUAL(bp, bp_orig)); 1517 } else { 1518 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1519 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1520 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1521 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1522 } 1523 } 1524 1525 dmu_tx_commit(dsa->dsa_tx); 1526 1527 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1528 1529 kmem_free(dsa, sizeof (*dsa)); 1530 } 1531 1532 static int 1533 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1534 zio_prop_t *zp, zbookmark_phys_t *zb) 1535 { 1536 dmu_sync_arg_t *dsa; 1537 dmu_tx_t *tx; 1538 1539 tx = dmu_tx_create(os); 1540 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1541 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1542 dmu_tx_abort(tx); 1543 /* Make zl_get_data do txg_waited_synced() */ 1544 return (SET_ERROR(EIO)); 1545 } 1546 1547 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1548 dsa->dsa_dr = NULL; 1549 dsa->dsa_done = done; 1550 dsa->dsa_zgd = zgd; 1551 dsa->dsa_tx = tx; 1552 1553 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), 1554 zgd->zgd_bp, zgd->zgd_db->db_data, zgd->zgd_db->db_size, 1555 zp, dmu_sync_late_arrival_ready, NULL, 1556 NULL, dmu_sync_late_arrival_done, dsa, ZIO_PRIORITY_SYNC_WRITE, 1557 ZIO_FLAG_CANFAIL, zb)); 1558 1559 return (0); 1560 } 1561 1562 /* 1563 * Intent log support: sync the block associated with db to disk. 1564 * N.B. and XXX: the caller is responsible for making sure that the 1565 * data isn't changing while dmu_sync() is writing it. 1566 * 1567 * Return values: 1568 * 1569 * EEXIST: this txg has already been synced, so there's nothing to do. 1570 * The caller should not log the write. 1571 * 1572 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1573 * The caller should not log the write. 1574 * 1575 * EALREADY: this block is already in the process of being synced. 1576 * The caller should track its progress (somehow). 1577 * 1578 * EIO: could not do the I/O. 1579 * The caller should do a txg_wait_synced(). 1580 * 1581 * 0: the I/O has been initiated. 1582 * The caller should log this blkptr in the done callback. 1583 * It is possible that the I/O will fail, in which case 1584 * the error will be reported to the done callback and 1585 * propagated to pio from zio_done(). 1586 */ 1587 int 1588 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1589 { 1590 blkptr_t *bp = zgd->zgd_bp; 1591 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1592 objset_t *os = db->db_objset; 1593 dsl_dataset_t *ds = os->os_dsl_dataset; 1594 dbuf_dirty_record_t *dr; 1595 dmu_sync_arg_t *dsa; 1596 zbookmark_phys_t zb; 1597 zio_prop_t zp; 1598 dnode_t *dn; 1599 1600 ASSERT(pio != NULL); 1601 ASSERT(txg != 0); 1602 1603 SET_BOOKMARK(&zb, ds->ds_object, 1604 db->db.db_object, db->db_level, db->db_blkid); 1605 1606 DB_DNODE_ENTER(db); 1607 dn = DB_DNODE(db); 1608 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1609 DB_DNODE_EXIT(db); 1610 1611 /* 1612 * If we're frozen (running ziltest), we always need to generate a bp. 1613 */ 1614 if (txg > spa_freeze_txg(os->os_spa)) 1615 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1616 1617 /* 1618 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1619 * and us. If we determine that this txg is not yet syncing, 1620 * but it begins to sync a moment later, that's OK because the 1621 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1622 */ 1623 mutex_enter(&db->db_mtx); 1624 1625 if (txg <= spa_last_synced_txg(os->os_spa)) { 1626 /* 1627 * This txg has already synced. There's nothing to do. 1628 */ 1629 mutex_exit(&db->db_mtx); 1630 return (SET_ERROR(EEXIST)); 1631 } 1632 1633 if (txg <= spa_syncing_txg(os->os_spa)) { 1634 /* 1635 * This txg is currently syncing, so we can't mess with 1636 * the dirty record anymore; just write a new log block. 1637 */ 1638 mutex_exit(&db->db_mtx); 1639 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1640 } 1641 1642 dr = db->db_last_dirty; 1643 while (dr && dr->dr_txg != txg) 1644 dr = dr->dr_next; 1645 1646 if (dr == NULL) { 1647 /* 1648 * There's no dr for this dbuf, so it must have been freed. 1649 * There's no need to log writes to freed blocks, so we're done. 1650 */ 1651 mutex_exit(&db->db_mtx); 1652 return (SET_ERROR(ENOENT)); 1653 } 1654 1655 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1656 1657 /* 1658 * Assume the on-disk data is X, the current syncing data (in 1659 * txg - 1) is Y, and the current in-memory data is Z (currently 1660 * in dmu_sync). 1661 * 1662 * We usually want to perform a nopwrite if X and Z are the 1663 * same. However, if Y is different (i.e. the BP is going to 1664 * change before this write takes effect), then a nopwrite will 1665 * be incorrect - we would override with X, which could have 1666 * been freed when Y was written. 1667 * 1668 * (Note that this is not a concern when we are nop-writing from 1669 * syncing context, because X and Y must be identical, because 1670 * all previous txgs have been synced.) 1671 * 1672 * Therefore, we disable nopwrite if the current BP could change 1673 * before this TXG. There are two ways it could change: by 1674 * being dirty (dr_next is non-NULL), or by being freed 1675 * (dnode_block_freed()). This behavior is verified by 1676 * zio_done(), which VERIFYs that the override BP is identical 1677 * to the on-disk BP. 1678 */ 1679 DB_DNODE_ENTER(db); 1680 dn = DB_DNODE(db); 1681 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1682 zp.zp_nopwrite = B_FALSE; 1683 DB_DNODE_EXIT(db); 1684 1685 ASSERT(dr->dr_txg == txg); 1686 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1687 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1688 /* 1689 * We have already issued a sync write for this buffer, 1690 * or this buffer has already been synced. It could not 1691 * have been dirtied since, or we would have cleared the state. 1692 */ 1693 mutex_exit(&db->db_mtx); 1694 return (SET_ERROR(EALREADY)); 1695 } 1696 1697 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1698 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1699 mutex_exit(&db->db_mtx); 1700 1701 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1702 dsa->dsa_dr = dr; 1703 dsa->dsa_done = done; 1704 dsa->dsa_zgd = zgd; 1705 dsa->dsa_tx = NULL; 1706 1707 zio_nowait(arc_write(pio, os->os_spa, txg, 1708 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1709 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 1710 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1711 1712 return (0); 1713 } 1714 1715 int 1716 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1717 dmu_tx_t *tx) 1718 { 1719 dnode_t *dn; 1720 int err; 1721 1722 err = dnode_hold(os, object, FTAG, &dn); 1723 if (err) 1724 return (err); 1725 err = dnode_set_blksz(dn, size, ibs, tx); 1726 dnode_rele(dn, FTAG); 1727 return (err); 1728 } 1729 1730 void 1731 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1732 dmu_tx_t *tx) 1733 { 1734 dnode_t *dn; 1735 1736 /* 1737 * Send streams include each object's checksum function. This 1738 * check ensures that the receiving system can understand the 1739 * checksum function transmitted. 1740 */ 1741 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1742 1743 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1744 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1745 dn->dn_checksum = checksum; 1746 dnode_setdirty(dn, tx); 1747 dnode_rele(dn, FTAG); 1748 } 1749 1750 void 1751 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1752 dmu_tx_t *tx) 1753 { 1754 dnode_t *dn; 1755 1756 /* 1757 * Send streams include each object's compression function. This 1758 * check ensures that the receiving system can understand the 1759 * compression function transmitted. 1760 */ 1761 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1762 1763 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1764 dn->dn_compress = compress; 1765 dnode_setdirty(dn, tx); 1766 dnode_rele(dn, FTAG); 1767 } 1768 1769 int zfs_mdcomp_disable = 0; 1770 1771 /* 1772 * When the "redundant_metadata" property is set to "most", only indirect 1773 * blocks of this level and higher will have an additional ditto block. 1774 */ 1775 int zfs_redundant_metadata_most_ditto_level = 2; 1776 1777 void 1778 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1779 { 1780 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1781 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1782 (wp & WP_SPILL)); 1783 enum zio_checksum checksum = os->os_checksum; 1784 enum zio_compress compress = os->os_compress; 1785 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1786 boolean_t dedup = B_FALSE; 1787 boolean_t nopwrite = B_FALSE; 1788 boolean_t dedup_verify = os->os_dedup_verify; 1789 int copies = os->os_copies; 1790 1791 /* 1792 * We maintain different write policies for each of the following 1793 * types of data: 1794 * 1. metadata 1795 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1796 * 3. all other level 0 blocks 1797 */ 1798 if (ismd) { 1799 if (zfs_mdcomp_disable) { 1800 compress = ZIO_COMPRESS_EMPTY; 1801 } else { 1802 /* 1803 * XXX -- we should design a compression algorithm 1804 * that specializes in arrays of bps. 1805 */ 1806 compress = zio_compress_select(os->os_spa, 1807 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1808 } 1809 1810 /* 1811 * Metadata always gets checksummed. If the data 1812 * checksum is multi-bit correctable, and it's not a 1813 * ZBT-style checksum, then it's suitable for metadata 1814 * as well. Otherwise, the metadata checksum defaults 1815 * to fletcher4. 1816 */ 1817 if (!(zio_checksum_table[checksum].ci_flags & 1818 ZCHECKSUM_FLAG_METADATA) || 1819 (zio_checksum_table[checksum].ci_flags & 1820 ZCHECKSUM_FLAG_EMBEDDED)) 1821 checksum = ZIO_CHECKSUM_FLETCHER_4; 1822 1823 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1824 (os->os_redundant_metadata == 1825 ZFS_REDUNDANT_METADATA_MOST && 1826 (level >= zfs_redundant_metadata_most_ditto_level || 1827 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1828 copies++; 1829 } else if (wp & WP_NOFILL) { 1830 ASSERT(level == 0); 1831 1832 /* 1833 * If we're writing preallocated blocks, we aren't actually 1834 * writing them so don't set any policy properties. These 1835 * blocks are currently only used by an external subsystem 1836 * outside of zfs (i.e. dump) and not written by the zio 1837 * pipeline. 1838 */ 1839 compress = ZIO_COMPRESS_OFF; 1840 checksum = ZIO_CHECKSUM_NOPARITY; 1841 } else { 1842 compress = zio_compress_select(os->os_spa, dn->dn_compress, 1843 compress); 1844 1845 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1846 zio_checksum_select(dn->dn_checksum, checksum) : 1847 dedup_checksum; 1848 1849 /* 1850 * Determine dedup setting. If we are in dmu_sync(), 1851 * we won't actually dedup now because that's all 1852 * done in syncing context; but we do want to use the 1853 * dedup checkum. If the checksum is not strong 1854 * enough to ensure unique signatures, force 1855 * dedup_verify. 1856 */ 1857 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1858 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1859 if (!(zio_checksum_table[checksum].ci_flags & 1860 ZCHECKSUM_FLAG_DEDUP)) 1861 dedup_verify = B_TRUE; 1862 } 1863 1864 /* 1865 * Enable nopwrite if we have secure enough checksum 1866 * algorithm (see comment in zio_nop_write) and 1867 * compression is enabled. We don't enable nopwrite if 1868 * dedup is enabled as the two features are mutually 1869 * exclusive. 1870 */ 1871 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 1872 ZCHECKSUM_FLAG_NOPWRITE) && 1873 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1874 } 1875 1876 zp->zp_checksum = checksum; 1877 zp->zp_compress = compress; 1878 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1879 zp->zp_level = level; 1880 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 1881 zp->zp_dedup = dedup; 1882 zp->zp_dedup_verify = dedup && dedup_verify; 1883 zp->zp_nopwrite = nopwrite; 1884 } 1885 1886 int 1887 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1888 { 1889 dnode_t *dn; 1890 int err; 1891 1892 /* 1893 * Sync any current changes before 1894 * we go trundling through the block pointers. 1895 */ 1896 err = dmu_object_wait_synced(os, object); 1897 if (err) { 1898 return (err); 1899 } 1900 1901 err = dnode_hold(os, object, FTAG, &dn); 1902 if (err) { 1903 return (err); 1904 } 1905 1906 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1907 dnode_rele(dn, FTAG); 1908 1909 return (err); 1910 } 1911 1912 /* 1913 * Given the ZFS object, if it contains any dirty nodes 1914 * this function flushes all dirty blocks to disk. This 1915 * ensures the DMU object info is updated. A more efficient 1916 * future version might just find the TXG with the maximum 1917 * ID and wait for that to be synced. 1918 */ 1919 int 1920 dmu_object_wait_synced(objset_t *os, uint64_t object) 1921 { 1922 dnode_t *dn; 1923 int error, i; 1924 1925 error = dnode_hold(os, object, FTAG, &dn); 1926 if (error) { 1927 return (error); 1928 } 1929 1930 for (i = 0; i < TXG_SIZE; i++) { 1931 if (list_link_active(&dn->dn_dirty_link[i])) { 1932 break; 1933 } 1934 } 1935 dnode_rele(dn, FTAG); 1936 if (i != TXG_SIZE) { 1937 txg_wait_synced(dmu_objset_pool(os), 0); 1938 } 1939 1940 return (0); 1941 } 1942 1943 void 1944 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1945 { 1946 dnode_phys_t *dnp; 1947 1948 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1949 mutex_enter(&dn->dn_mtx); 1950 1951 dnp = dn->dn_phys; 1952 1953 doi->doi_data_block_size = dn->dn_datablksz; 1954 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1955 1ULL << dn->dn_indblkshift : 0; 1956 doi->doi_type = dn->dn_type; 1957 doi->doi_bonus_type = dn->dn_bonustype; 1958 doi->doi_bonus_size = dn->dn_bonuslen; 1959 doi->doi_indirection = dn->dn_nlevels; 1960 doi->doi_checksum = dn->dn_checksum; 1961 doi->doi_compress = dn->dn_compress; 1962 doi->doi_nblkptr = dn->dn_nblkptr; 1963 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1964 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 1965 doi->doi_fill_count = 0; 1966 for (int i = 0; i < dnp->dn_nblkptr; i++) 1967 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 1968 1969 mutex_exit(&dn->dn_mtx); 1970 rw_exit(&dn->dn_struct_rwlock); 1971 } 1972 1973 /* 1974 * Get information on a DMU object. 1975 * If doi is NULL, just indicates whether the object exists. 1976 */ 1977 int 1978 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1979 { 1980 dnode_t *dn; 1981 int err = dnode_hold(os, object, FTAG, &dn); 1982 1983 if (err) 1984 return (err); 1985 1986 if (doi != NULL) 1987 dmu_object_info_from_dnode(dn, doi); 1988 1989 dnode_rele(dn, FTAG); 1990 return (0); 1991 } 1992 1993 /* 1994 * As above, but faster; can be used when you have a held dbuf in hand. 1995 */ 1996 void 1997 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1998 { 1999 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2000 2001 DB_DNODE_ENTER(db); 2002 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2003 DB_DNODE_EXIT(db); 2004 } 2005 2006 /* 2007 * Faster still when you only care about the size. 2008 * This is specifically optimized for zfs_getattr(). 2009 */ 2010 void 2011 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2012 u_longlong_t *nblk512) 2013 { 2014 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2015 dnode_t *dn; 2016 2017 DB_DNODE_ENTER(db); 2018 dn = DB_DNODE(db); 2019 2020 *blksize = dn->dn_datablksz; 2021 /* add 1 for dnode space */ 2022 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2023 SPA_MINBLOCKSHIFT) + 1; 2024 DB_DNODE_EXIT(db); 2025 } 2026 2027 void 2028 byteswap_uint64_array(void *vbuf, size_t size) 2029 { 2030 uint64_t *buf = vbuf; 2031 size_t count = size >> 3; 2032 int i; 2033 2034 ASSERT((size & 7) == 0); 2035 2036 for (i = 0; i < count; i++) 2037 buf[i] = BSWAP_64(buf[i]); 2038 } 2039 2040 void 2041 byteswap_uint32_array(void *vbuf, size_t size) 2042 { 2043 uint32_t *buf = vbuf; 2044 size_t count = size >> 2; 2045 int i; 2046 2047 ASSERT((size & 3) == 0); 2048 2049 for (i = 0; i < count; i++) 2050 buf[i] = BSWAP_32(buf[i]); 2051 } 2052 2053 void 2054 byteswap_uint16_array(void *vbuf, size_t size) 2055 { 2056 uint16_t *buf = vbuf; 2057 size_t count = size >> 1; 2058 int i; 2059 2060 ASSERT((size & 1) == 0); 2061 2062 for (i = 0; i < count; i++) 2063 buf[i] = BSWAP_16(buf[i]); 2064 } 2065 2066 /* ARGSUSED */ 2067 void 2068 byteswap_uint8_array(void *vbuf, size_t size) 2069 { 2070 } 2071 2072 void 2073 dmu_init(void) 2074 { 2075 zfs_dbgmsg_init(); 2076 sa_cache_init(); 2077 xuio_stat_init(); 2078 dmu_objset_init(); 2079 dnode_init(); 2080 zfetch_init(); 2081 l2arc_init(); 2082 arc_init(); 2083 dbuf_init(); 2084 } 2085 2086 void 2087 dmu_fini(void) 2088 { 2089 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2090 l2arc_fini(); 2091 zfetch_fini(); 2092 dbuf_fini(); 2093 dnode_fini(); 2094 dmu_objset_fini(); 2095 xuio_stat_fini(); 2096 sa_cache_fini(); 2097 zfs_dbgmsg_fini(); 2098 } 2099