1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 28 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 29 * Copyright (c) 2018 DilOS 30 */ 31 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dbuf.h> 36 #include <sys/dnode.h> 37 #include <sys/zfs_context.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dmu_traverse.h> 40 #include <sys/dsl_dataset.h> 41 #include <sys/dsl_dir.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dmu_zfetch.h> 46 #include <sys/zfs_ioctl.h> 47 #include <sys/zap.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/zio_compress.h> 50 #include <sys/sa.h> 51 #include <sys/zfeature.h> 52 #include <sys/abd.h> 53 #ifdef _KERNEL 54 #include <sys/vmsystm.h> 55 #include <sys/zfs_znode.h> 56 #endif 57 58 static xuio_stats_t xuio_stats = { 59 { "onloan_read_buf", KSTAT_DATA_UINT64 }, 60 { "onloan_write_buf", KSTAT_DATA_UINT64 }, 61 { "read_buf_copied", KSTAT_DATA_UINT64 }, 62 { "read_buf_nocopy", KSTAT_DATA_UINT64 }, 63 { "write_buf_copied", KSTAT_DATA_UINT64 }, 64 { "write_buf_nocopy", KSTAT_DATA_UINT64 } 65 }; 66 67 #define XUIOSTAT_INCR(stat, val) \ 68 atomic_add_64(&xuio_stats.stat.value.ui64, (val)) 69 #define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1) 70 71 /* 72 * Enable/disable nopwrite feature. 73 */ 74 int zfs_nopwrite_enabled = 1; 75 76 /* 77 * Tunable to control percentage of dirtied blocks from frees in one TXG. 78 * After this threshold is crossed, additional dirty blocks from frees 79 * wait until the next TXG. 80 * A value of zero will disable this throttle. 81 */ 82 uint32_t zfs_per_txg_dirty_frees_percent = 30; 83 84 /* 85 * This can be used for testing, to ensure that certain actions happen 86 * while in the middle of a remap (which might otherwise complete too 87 * quickly). 88 */ 89 int zfs_object_remap_one_indirect_delay_ticks = 0; 90 91 /* 92 * Limit the amount we can prefetch with one call to this amount. This 93 * helps to limit the amount of memory that can be used by prefetching. 94 * Larger objects should be prefetched a bit at a time. 95 */ 96 uint64_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE; 97 98 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 99 { DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" }, 100 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" }, 101 { DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" }, 102 { DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" }, 103 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" }, 104 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" }, 105 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" }, 106 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" }, 107 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" }, 108 { DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" }, 109 { DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" }, 110 { DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" }, 111 { DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" }, 112 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map" }, 113 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" }, 114 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" }, 115 { DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" }, 116 { DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" }, 117 { DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" }, 118 { DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" }, 119 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" }, 120 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" }, 121 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" }, 122 { DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" }, 123 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" }, 124 { DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" }, 125 { DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" }, 126 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" }, 127 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" }, 128 { DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" }, 129 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" }, 130 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" }, 131 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" }, 132 { DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" }, 133 { DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" }, 134 { DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" }, 135 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" }, 136 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones" }, 137 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" }, 138 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used"}, 139 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/proj quota"}, 140 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags" }, 141 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" }, 142 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" }, 143 { DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" }, 144 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" }, 145 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" }, 146 { DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" }, 147 { DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" }, 148 { DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" }, 149 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" }, 150 { DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" }, 151 { DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" }, 152 { DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" } 153 }; 154 155 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 156 { byteswap_uint8_array, "uint8" }, 157 { byteswap_uint16_array, "uint16" }, 158 { byteswap_uint32_array, "uint32" }, 159 { byteswap_uint64_array, "uint64" }, 160 { zap_byteswap, "zap" }, 161 { dnode_buf_byteswap, "dnode" }, 162 { dmu_objset_byteswap, "objset" }, 163 { zfs_znode_byteswap, "znode" }, 164 { zfs_oldacl_byteswap, "oldacl" }, 165 { zfs_acl_byteswap, "acl" } 166 }; 167 168 int 169 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 170 void *tag, dmu_buf_t **dbp) 171 { 172 uint64_t blkid; 173 dmu_buf_impl_t *db; 174 175 blkid = dbuf_whichblock(dn, 0, offset); 176 rw_enter(&dn->dn_struct_rwlock, RW_READER); 177 db = dbuf_hold(dn, blkid, tag); 178 rw_exit(&dn->dn_struct_rwlock); 179 180 if (db == NULL) { 181 *dbp = NULL; 182 return (SET_ERROR(EIO)); 183 } 184 185 *dbp = &db->db; 186 return (0); 187 } 188 int 189 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 190 void *tag, dmu_buf_t **dbp) 191 { 192 dnode_t *dn; 193 uint64_t blkid; 194 dmu_buf_impl_t *db; 195 int err; 196 197 err = dnode_hold(os, object, FTAG, &dn); 198 if (err) 199 return (err); 200 blkid = dbuf_whichblock(dn, 0, offset); 201 rw_enter(&dn->dn_struct_rwlock, RW_READER); 202 db = dbuf_hold(dn, blkid, tag); 203 rw_exit(&dn->dn_struct_rwlock); 204 dnode_rele(dn, FTAG); 205 206 if (db == NULL) { 207 *dbp = NULL; 208 return (SET_ERROR(EIO)); 209 } 210 211 *dbp = &db->db; 212 return (err); 213 } 214 215 int 216 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 217 void *tag, dmu_buf_t **dbp, int flags) 218 { 219 int err; 220 int db_flags = DB_RF_CANFAIL; 221 222 if (flags & DMU_READ_NO_PREFETCH) 223 db_flags |= DB_RF_NOPREFETCH; 224 if (flags & DMU_READ_NO_DECRYPT) 225 db_flags |= DB_RF_NO_DECRYPT; 226 227 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 228 if (err == 0) { 229 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 230 err = dbuf_read(db, NULL, db_flags); 231 if (err != 0) { 232 dbuf_rele(db, tag); 233 *dbp = NULL; 234 } 235 } 236 237 return (err); 238 } 239 240 int 241 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 242 void *tag, dmu_buf_t **dbp, int flags) 243 { 244 int err; 245 int db_flags = DB_RF_CANFAIL; 246 247 if (flags & DMU_READ_NO_PREFETCH) 248 db_flags |= DB_RF_NOPREFETCH; 249 if (flags & DMU_READ_NO_DECRYPT) 250 db_flags |= DB_RF_NO_DECRYPT; 251 252 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 253 if (err == 0) { 254 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 255 err = dbuf_read(db, NULL, db_flags); 256 if (err != 0) { 257 dbuf_rele(db, tag); 258 *dbp = NULL; 259 } 260 } 261 262 return (err); 263 } 264 265 int 266 dmu_bonus_max(void) 267 { 268 return (DN_OLD_MAX_BONUSLEN); 269 } 270 271 int 272 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 273 { 274 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 275 dnode_t *dn; 276 int error; 277 278 DB_DNODE_ENTER(db); 279 dn = DB_DNODE(db); 280 281 if (dn->dn_bonus != db) { 282 error = SET_ERROR(EINVAL); 283 } else if (newsize < 0 || newsize > db_fake->db_size) { 284 error = SET_ERROR(EINVAL); 285 } else { 286 dnode_setbonuslen(dn, newsize, tx); 287 error = 0; 288 } 289 290 DB_DNODE_EXIT(db); 291 return (error); 292 } 293 294 int 295 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 296 { 297 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 298 dnode_t *dn; 299 int error; 300 301 DB_DNODE_ENTER(db); 302 dn = DB_DNODE(db); 303 304 if (!DMU_OT_IS_VALID(type)) { 305 error = SET_ERROR(EINVAL); 306 } else if (dn->dn_bonus != db) { 307 error = SET_ERROR(EINVAL); 308 } else { 309 dnode_setbonus_type(dn, type, tx); 310 error = 0; 311 } 312 313 DB_DNODE_EXIT(db); 314 return (error); 315 } 316 317 dmu_object_type_t 318 dmu_get_bonustype(dmu_buf_t *db_fake) 319 { 320 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 321 dnode_t *dn; 322 dmu_object_type_t type; 323 324 DB_DNODE_ENTER(db); 325 dn = DB_DNODE(db); 326 type = dn->dn_bonustype; 327 DB_DNODE_EXIT(db); 328 329 return (type); 330 } 331 332 int 333 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 334 { 335 dnode_t *dn; 336 int error; 337 338 error = dnode_hold(os, object, FTAG, &dn); 339 dbuf_rm_spill(dn, tx); 340 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 341 dnode_rm_spill(dn, tx); 342 rw_exit(&dn->dn_struct_rwlock); 343 dnode_rele(dn, FTAG); 344 return (error); 345 } 346 347 /* 348 * Lookup and hold the bonus buffer for the provided dnode. If the dnode 349 * has not yet been allocated a new bonus dbuf a will be allocated. 350 * Returns ENOENT, EIO, or 0. 351 */ 352 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp, 353 uint32_t flags) 354 { 355 dmu_buf_impl_t *db; 356 int error; 357 uint32_t db_flags = DB_RF_MUST_SUCCEED; 358 359 if (flags & DMU_READ_NO_PREFETCH) 360 db_flags |= DB_RF_NOPREFETCH; 361 if (flags & DMU_READ_NO_DECRYPT) 362 db_flags |= DB_RF_NO_DECRYPT; 363 364 rw_enter(&dn->dn_struct_rwlock, RW_READER); 365 if (dn->dn_bonus == NULL) { 366 rw_exit(&dn->dn_struct_rwlock); 367 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 368 if (dn->dn_bonus == NULL) 369 dbuf_create_bonus(dn); 370 } 371 db = dn->dn_bonus; 372 373 /* as long as the bonus buf is held, the dnode will be held */ 374 if (zfs_refcount_add(&db->db_holds, tag) == 1) { 375 VERIFY(dnode_add_ref(dn, db)); 376 atomic_inc_32(&dn->dn_dbufs_count); 377 } 378 379 /* 380 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 381 * hold and incrementing the dbuf count to ensure that dnode_move() sees 382 * a dnode hold for every dbuf. 383 */ 384 rw_exit(&dn->dn_struct_rwlock); 385 386 error = dbuf_read(db, NULL, db_flags); 387 if (error) { 388 dnode_evict_bonus(dn); 389 dbuf_rele(db, tag); 390 *dbp = NULL; 391 return (error); 392 } 393 394 *dbp = &db->db; 395 return (0); 396 } 397 398 /* 399 * returns ENOENT, EIO, or 0. 400 */ 401 int 402 dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag, uint32_t flags, 403 dmu_buf_t **dbp) 404 { 405 dnode_t *dn; 406 dmu_buf_impl_t *db; 407 int error; 408 uint32_t db_flags = DB_RF_MUST_SUCCEED; 409 410 if (flags & DMU_READ_NO_PREFETCH) 411 db_flags |= DB_RF_NOPREFETCH; 412 if (flags & DMU_READ_NO_DECRYPT) 413 db_flags |= DB_RF_NO_DECRYPT; 414 415 error = dnode_hold(os, object, FTAG, &dn); 416 if (error) 417 return (error); 418 419 rw_enter(&dn->dn_struct_rwlock, RW_READER); 420 if (dn->dn_bonus == NULL) { 421 rw_exit(&dn->dn_struct_rwlock); 422 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 423 if (dn->dn_bonus == NULL) 424 dbuf_create_bonus(dn); 425 } 426 db = dn->dn_bonus; 427 428 /* as long as the bonus buf is held, the dnode will be held */ 429 if (zfs_refcount_add(&db->db_holds, tag) == 1) { 430 VERIFY(dnode_add_ref(dn, db)); 431 atomic_inc_32(&dn->dn_dbufs_count); 432 } 433 434 /* 435 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 436 * hold and incrementing the dbuf count to ensure that dnode_move() sees 437 * a dnode hold for every dbuf. 438 */ 439 rw_exit(&dn->dn_struct_rwlock); 440 441 dnode_rele(dn, FTAG); 442 443 error = dbuf_read(db, NULL, db_flags); 444 if (error) { 445 dnode_evict_bonus(dn); 446 dbuf_rele(db, tag); 447 *dbp = NULL; 448 return (error); 449 } 450 451 *dbp = &db->db; 452 return (0); 453 } 454 455 int 456 dmu_bonus_hold(objset_t *os, uint64_t obj, void *tag, dmu_buf_t **dbp) 457 { 458 return (dmu_bonus_hold_impl(os, obj, tag, DMU_READ_NO_PREFETCH, dbp)); 459 } 460 461 /* 462 * returns ENOENT, EIO, or 0. 463 * 464 * This interface will allocate a blank spill dbuf when a spill blk 465 * doesn't already exist on the dnode. 466 * 467 * if you only want to find an already existing spill db, then 468 * dmu_spill_hold_existing() should be used. 469 */ 470 int 471 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 472 { 473 dmu_buf_impl_t *db = NULL; 474 int err; 475 476 if ((flags & DB_RF_HAVESTRUCT) == 0) 477 rw_enter(&dn->dn_struct_rwlock, RW_READER); 478 479 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 480 481 if ((flags & DB_RF_HAVESTRUCT) == 0) 482 rw_exit(&dn->dn_struct_rwlock); 483 484 ASSERT(db != NULL); 485 err = dbuf_read(db, NULL, flags); 486 if (err == 0) 487 *dbp = &db->db; 488 else 489 dbuf_rele(db, tag); 490 return (err); 491 } 492 493 int 494 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 495 { 496 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 497 dnode_t *dn; 498 int err; 499 500 DB_DNODE_ENTER(db); 501 dn = DB_DNODE(db); 502 503 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 504 err = SET_ERROR(EINVAL); 505 } else { 506 rw_enter(&dn->dn_struct_rwlock, RW_READER); 507 508 if (!dn->dn_have_spill) { 509 err = SET_ERROR(ENOENT); 510 } else { 511 err = dmu_spill_hold_by_dnode(dn, 512 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 513 } 514 515 rw_exit(&dn->dn_struct_rwlock); 516 } 517 518 DB_DNODE_EXIT(db); 519 return (err); 520 } 521 522 int 523 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag, 524 dmu_buf_t **dbp) 525 { 526 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 527 dnode_t *dn; 528 int err; 529 uint32_t db_flags = DB_RF_CANFAIL; 530 531 if (flags & DMU_READ_NO_DECRYPT) 532 db_flags |= DB_RF_NO_DECRYPT; 533 534 DB_DNODE_ENTER(db); 535 dn = DB_DNODE(db); 536 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp); 537 DB_DNODE_EXIT(db); 538 539 return (err); 540 } 541 542 /* 543 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 544 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 545 * and can induce severe lock contention when writing to several files 546 * whose dnodes are in the same block. 547 */ 548 int 549 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 550 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 551 { 552 dmu_buf_t **dbp; 553 uint64_t blkid, nblks, i; 554 uint32_t dbuf_flags; 555 int err; 556 zio_t *zio; 557 558 ASSERT(length <= DMU_MAX_ACCESS); 559 560 /* 561 * Note: We directly notify the prefetch code of this read, so that 562 * we can tell it about the multi-block read. dbuf_read() only knows 563 * about the one block it is accessing. 564 */ 565 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 566 DB_RF_NOPREFETCH; 567 568 rw_enter(&dn->dn_struct_rwlock, RW_READER); 569 if (dn->dn_datablkshift) { 570 int blkshift = dn->dn_datablkshift; 571 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 572 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 573 } else { 574 if (offset + length > dn->dn_datablksz) { 575 zfs_panic_recover("zfs: accessing past end of object " 576 "%llx/%llx (size=%u access=%llu+%llu)", 577 (longlong_t)dn->dn_objset-> 578 os_dsl_dataset->ds_object, 579 (longlong_t)dn->dn_object, dn->dn_datablksz, 580 (longlong_t)offset, (longlong_t)length); 581 rw_exit(&dn->dn_struct_rwlock); 582 return (SET_ERROR(EIO)); 583 } 584 nblks = 1; 585 } 586 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 587 588 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 589 blkid = dbuf_whichblock(dn, 0, offset); 590 for (i = 0; i < nblks; i++) { 591 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 592 if (db == NULL) { 593 rw_exit(&dn->dn_struct_rwlock); 594 dmu_buf_rele_array(dbp, nblks, tag); 595 zio_nowait(zio); 596 return (SET_ERROR(EIO)); 597 } 598 599 /* initiate async i/o */ 600 if (read) 601 (void) dbuf_read(db, zio, dbuf_flags); 602 dbp[i] = &db->db; 603 } 604 605 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 606 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 607 dmu_zfetch(&dn->dn_zfetch, blkid, nblks, 608 read && DNODE_IS_CACHEABLE(dn)); 609 } 610 rw_exit(&dn->dn_struct_rwlock); 611 612 /* wait for async i/o */ 613 err = zio_wait(zio); 614 if (err) { 615 dmu_buf_rele_array(dbp, nblks, tag); 616 return (err); 617 } 618 619 /* wait for other io to complete */ 620 if (read) { 621 for (i = 0; i < nblks; i++) { 622 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 623 mutex_enter(&db->db_mtx); 624 while (db->db_state == DB_READ || 625 db->db_state == DB_FILL) 626 cv_wait(&db->db_changed, &db->db_mtx); 627 if (db->db_state == DB_UNCACHED) 628 err = SET_ERROR(EIO); 629 mutex_exit(&db->db_mtx); 630 if (err) { 631 dmu_buf_rele_array(dbp, nblks, tag); 632 return (err); 633 } 634 } 635 } 636 637 *numbufsp = nblks; 638 *dbpp = dbp; 639 return (0); 640 } 641 642 static int 643 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 644 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 645 { 646 dnode_t *dn; 647 int err; 648 649 err = dnode_hold(os, object, FTAG, &dn); 650 if (err) 651 return (err); 652 653 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 654 numbufsp, dbpp, DMU_READ_PREFETCH); 655 656 dnode_rele(dn, FTAG); 657 658 return (err); 659 } 660 661 int 662 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 663 uint64_t length, boolean_t read, void *tag, int *numbufsp, 664 dmu_buf_t ***dbpp) 665 { 666 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 667 dnode_t *dn; 668 int err; 669 670 DB_DNODE_ENTER(db); 671 dn = DB_DNODE(db); 672 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 673 numbufsp, dbpp, DMU_READ_PREFETCH); 674 DB_DNODE_EXIT(db); 675 676 return (err); 677 } 678 679 void 680 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 681 { 682 int i; 683 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 684 685 if (numbufs == 0) 686 return; 687 688 for (i = 0; i < numbufs; i++) { 689 if (dbp[i]) 690 dbuf_rele(dbp[i], tag); 691 } 692 693 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 694 } 695 696 /* 697 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 698 * indirect blocks prefeteched will be those that point to the blocks containing 699 * the data starting at offset, and continuing to offset + len. 700 * 701 * Note that if the indirect blocks above the blocks being prefetched are not 702 * in cache, they will be asychronously read in. 703 */ 704 void 705 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 706 uint64_t len, zio_priority_t pri) 707 { 708 dnode_t *dn; 709 uint64_t blkid; 710 int nblks, err; 711 712 if (len == 0) { /* they're interested in the bonus buffer */ 713 dn = DMU_META_DNODE(os); 714 715 if (object == 0 || object >= DN_MAX_OBJECT) 716 return; 717 718 rw_enter(&dn->dn_struct_rwlock, RW_READER); 719 blkid = dbuf_whichblock(dn, level, 720 object * sizeof (dnode_phys_t)); 721 dbuf_prefetch(dn, level, blkid, pri, 0); 722 rw_exit(&dn->dn_struct_rwlock); 723 return; 724 } 725 726 /* 727 * See comment before the definition of dmu_prefetch_max. 728 */ 729 len = MIN(len, dmu_prefetch_max); 730 731 /* 732 * XXX - Note, if the dnode for the requested object is not 733 * already cached, we will do a *synchronous* read in the 734 * dnode_hold() call. The same is true for any indirects. 735 */ 736 err = dnode_hold(os, object, FTAG, &dn); 737 if (err != 0) 738 return; 739 740 rw_enter(&dn->dn_struct_rwlock, RW_READER); 741 /* 742 * offset + len - 1 is the last byte we want to prefetch for, and offset 743 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 744 * last block we want to prefetch, and dbuf_whichblock(dn, level, 745 * offset) is the first. Then the number we need to prefetch is the 746 * last - first + 1. 747 */ 748 if (level > 0 || dn->dn_datablkshift != 0) { 749 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 750 dbuf_whichblock(dn, level, offset) + 1; 751 } else { 752 nblks = (offset < dn->dn_datablksz); 753 } 754 755 if (nblks != 0) { 756 blkid = dbuf_whichblock(dn, level, offset); 757 for (int i = 0; i < nblks; i++) 758 dbuf_prefetch(dn, level, blkid + i, pri, 0); 759 } 760 761 rw_exit(&dn->dn_struct_rwlock); 762 763 dnode_rele(dn, FTAG); 764 } 765 766 /* 767 * Get the next "chunk" of file data to free. We traverse the file from 768 * the end so that the file gets shorter over time (if we crashes in the 769 * middle, this will leave us in a better state). We find allocated file 770 * data by simply searching the allocated level 1 indirects. 771 * 772 * On input, *start should be the first offset that does not need to be 773 * freed (e.g. "offset + length"). On return, *start will be the first 774 * offset that should be freed. 775 */ 776 static int 777 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 778 { 779 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 780 /* bytes of data covered by a level-1 indirect block */ 781 uint64_t iblkrange = 782 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 783 784 ASSERT3U(minimum, <=, *start); 785 786 if (*start - minimum <= iblkrange * maxblks) { 787 *start = minimum; 788 return (0); 789 } 790 ASSERT(ISP2(iblkrange)); 791 792 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 793 int err; 794 795 /* 796 * dnode_next_offset(BACKWARDS) will find an allocated L1 797 * indirect block at or before the input offset. We must 798 * decrement *start so that it is at the end of the region 799 * to search. 800 */ 801 (*start)--; 802 err = dnode_next_offset(dn, 803 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 804 805 /* if there are no indirect blocks before start, we are done */ 806 if (err == ESRCH) { 807 *start = minimum; 808 break; 809 } else if (err != 0) { 810 return (err); 811 } 812 813 /* set start to the beginning of this L1 indirect */ 814 *start = P2ALIGN(*start, iblkrange); 815 } 816 if (*start < minimum) 817 *start = minimum; 818 return (0); 819 } 820 821 /* 822 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 823 * otherwise return false. 824 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 825 */ 826 /*ARGSUSED*/ 827 static boolean_t 828 dmu_objset_zfs_unmounting(objset_t *os) 829 { 830 #ifdef _KERNEL 831 if (dmu_objset_type(os) == DMU_OST_ZFS) 832 return (zfs_get_vfs_flag_unmounted(os)); 833 #endif 834 return (B_FALSE); 835 } 836 837 static int 838 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 839 uint64_t length) 840 { 841 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 842 int err; 843 uint64_t dirty_frees_threshold; 844 dsl_pool_t *dp = dmu_objset_pool(os); 845 846 if (offset >= object_size) 847 return (0); 848 849 if (zfs_per_txg_dirty_frees_percent <= 100) 850 dirty_frees_threshold = 851 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 852 else 853 dirty_frees_threshold = zfs_dirty_data_max / 4; 854 855 if (length == DMU_OBJECT_END || offset + length > object_size) 856 length = object_size - offset; 857 858 while (length != 0) { 859 uint64_t chunk_end, chunk_begin, chunk_len; 860 uint64_t long_free_dirty_all_txgs = 0; 861 dmu_tx_t *tx; 862 863 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 864 return (SET_ERROR(EINTR)); 865 866 chunk_end = chunk_begin = offset + length; 867 868 /* move chunk_begin backwards to the beginning of this chunk */ 869 err = get_next_chunk(dn, &chunk_begin, offset); 870 if (err) 871 return (err); 872 ASSERT3U(chunk_begin, >=, offset); 873 ASSERT3U(chunk_begin, <=, chunk_end); 874 875 chunk_len = chunk_end - chunk_begin; 876 877 mutex_enter(&dp->dp_lock); 878 for (int t = 0; t < TXG_SIZE; t++) { 879 long_free_dirty_all_txgs += 880 dp->dp_long_free_dirty_pertxg[t]; 881 } 882 mutex_exit(&dp->dp_lock); 883 884 /* 885 * To avoid filling up a TXG with just frees wait for 886 * the next TXG to open before freeing more chunks if 887 * we have reached the threshold of frees 888 */ 889 if (dirty_frees_threshold != 0 && 890 long_free_dirty_all_txgs >= dirty_frees_threshold) { 891 txg_wait_open(dp, 0, B_TRUE); 892 continue; 893 } 894 895 tx = dmu_tx_create(os); 896 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 897 898 /* 899 * Mark this transaction as typically resulting in a net 900 * reduction in space used. 901 */ 902 dmu_tx_mark_netfree(tx); 903 err = dmu_tx_assign(tx, TXG_WAIT); 904 if (err) { 905 dmu_tx_abort(tx); 906 return (err); 907 } 908 909 mutex_enter(&dp->dp_lock); 910 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] += 911 chunk_len; 912 mutex_exit(&dp->dp_lock); 913 DTRACE_PROBE3(free__long__range, 914 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len, 915 uint64_t, dmu_tx_get_txg(tx)); 916 dnode_free_range(dn, chunk_begin, chunk_len, tx); 917 918 dmu_tx_commit(tx); 919 920 length -= chunk_len; 921 } 922 return (0); 923 } 924 925 int 926 dmu_free_long_range(objset_t *os, uint64_t object, 927 uint64_t offset, uint64_t length) 928 { 929 dnode_t *dn; 930 int err; 931 932 err = dnode_hold(os, object, FTAG, &dn); 933 if (err != 0) 934 return (err); 935 err = dmu_free_long_range_impl(os, dn, offset, length); 936 937 /* 938 * It is important to zero out the maxblkid when freeing the entire 939 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 940 * will take the fast path, and (b) dnode_reallocate() can verify 941 * that the entire file has been freed. 942 */ 943 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 944 dn->dn_maxblkid = 0; 945 946 dnode_rele(dn, FTAG); 947 return (err); 948 } 949 950 int 951 dmu_free_long_object(objset_t *os, uint64_t object) 952 { 953 dmu_tx_t *tx; 954 int err; 955 956 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 957 if (err != 0) 958 return (err); 959 960 tx = dmu_tx_create(os); 961 dmu_tx_hold_bonus(tx, object); 962 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 963 dmu_tx_mark_netfree(tx); 964 err = dmu_tx_assign(tx, TXG_WAIT); 965 if (err == 0) { 966 if (err == 0) 967 err = dmu_object_free(os, object, tx); 968 969 dmu_tx_commit(tx); 970 } else { 971 dmu_tx_abort(tx); 972 } 973 974 return (err); 975 } 976 977 int 978 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 979 uint64_t size, dmu_tx_t *tx) 980 { 981 dnode_t *dn; 982 int err = dnode_hold(os, object, FTAG, &dn); 983 if (err) 984 return (err); 985 ASSERT(offset < UINT64_MAX); 986 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset); 987 dnode_free_range(dn, offset, size, tx); 988 dnode_rele(dn, FTAG); 989 return (0); 990 } 991 992 static int 993 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 994 void *buf, uint32_t flags) 995 { 996 dmu_buf_t **dbp; 997 int numbufs, err = 0; 998 999 /* 1000 * Deal with odd block sizes, where there can't be data past the first 1001 * block. If we ever do the tail block optimization, we will need to 1002 * handle that here as well. 1003 */ 1004 if (dn->dn_maxblkid == 0) { 1005 int newsz = offset > dn->dn_datablksz ? 0 : 1006 MIN(size, dn->dn_datablksz - offset); 1007 bzero((char *)buf + newsz, size - newsz); 1008 size = newsz; 1009 } 1010 1011 while (size > 0) { 1012 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 1013 int i; 1014 1015 /* 1016 * NB: we could do this block-at-a-time, but it's nice 1017 * to be reading in parallel. 1018 */ 1019 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 1020 TRUE, FTAG, &numbufs, &dbp, flags); 1021 if (err) 1022 break; 1023 1024 for (i = 0; i < numbufs; i++) { 1025 int tocpy; 1026 int bufoff; 1027 dmu_buf_t *db = dbp[i]; 1028 1029 ASSERT(size > 0); 1030 1031 bufoff = offset - db->db_offset; 1032 tocpy = (int)MIN(db->db_size - bufoff, size); 1033 1034 bcopy((char *)db->db_data + bufoff, buf, tocpy); 1035 1036 offset += tocpy; 1037 size -= tocpy; 1038 buf = (char *)buf + tocpy; 1039 } 1040 dmu_buf_rele_array(dbp, numbufs, FTAG); 1041 } 1042 return (err); 1043 } 1044 1045 int 1046 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1047 void *buf, uint32_t flags) 1048 { 1049 dnode_t *dn; 1050 int err; 1051 1052 err = dnode_hold(os, object, FTAG, &dn); 1053 if (err != 0) 1054 return (err); 1055 1056 err = dmu_read_impl(dn, offset, size, buf, flags); 1057 dnode_rele(dn, FTAG); 1058 return (err); 1059 } 1060 1061 int 1062 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 1063 uint32_t flags) 1064 { 1065 return (dmu_read_impl(dn, offset, size, buf, flags)); 1066 } 1067 1068 static void 1069 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 1070 const void *buf, dmu_tx_t *tx) 1071 { 1072 int i; 1073 1074 for (i = 0; i < numbufs; i++) { 1075 int tocpy; 1076 int bufoff; 1077 dmu_buf_t *db = dbp[i]; 1078 1079 ASSERT(size > 0); 1080 1081 bufoff = offset - db->db_offset; 1082 tocpy = (int)MIN(db->db_size - bufoff, size); 1083 1084 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1085 1086 if (tocpy == db->db_size) 1087 dmu_buf_will_fill(db, tx); 1088 else 1089 dmu_buf_will_dirty(db, tx); 1090 1091 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 1092 1093 if (tocpy == db->db_size) 1094 dmu_buf_fill_done(db, tx); 1095 1096 offset += tocpy; 1097 size -= tocpy; 1098 buf = (char *)buf + tocpy; 1099 } 1100 } 1101 1102 void 1103 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1104 const void *buf, dmu_tx_t *tx) 1105 { 1106 dmu_buf_t **dbp; 1107 int numbufs; 1108 1109 if (size == 0) 1110 return; 1111 1112 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 1113 FALSE, FTAG, &numbufs, &dbp)); 1114 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1115 dmu_buf_rele_array(dbp, numbufs, FTAG); 1116 } 1117 1118 void 1119 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1120 const void *buf, dmu_tx_t *tx) 1121 { 1122 dmu_buf_t **dbp; 1123 int numbufs; 1124 1125 if (size == 0) 1126 return; 1127 1128 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1129 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1130 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1131 dmu_buf_rele_array(dbp, numbufs, FTAG); 1132 } 1133 1134 static int 1135 dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn, 1136 uint64_t last_removal_txg, uint64_t offset) 1137 { 1138 uint64_t l1blkid = dbuf_whichblock(dn, 1, offset); 1139 int err = 0; 1140 1141 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1142 dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1143 ASSERT3P(dbuf, !=, NULL); 1144 1145 /* 1146 * If the block hasn't been written yet, this default will ensure 1147 * we don't try to remap it. 1148 */ 1149 uint64_t birth = UINT64_MAX; 1150 ASSERT3U(last_removal_txg, !=, UINT64_MAX); 1151 if (dbuf->db_blkptr != NULL) 1152 birth = dbuf->db_blkptr->blk_birth; 1153 rw_exit(&dn->dn_struct_rwlock); 1154 1155 /* 1156 * If this L1 was already written after the last removal, then we've 1157 * already tried to remap it. 1158 */ 1159 if (birth <= last_removal_txg && 1160 dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 && 1161 dbuf_can_remap(dbuf)) { 1162 dmu_tx_t *tx = dmu_tx_create(os); 1163 dmu_tx_hold_remap_l1indirect(tx, dn->dn_object); 1164 err = dmu_tx_assign(tx, TXG_WAIT); 1165 if (err == 0) { 1166 (void) dbuf_dirty(dbuf, tx); 1167 dmu_tx_commit(tx); 1168 } else { 1169 dmu_tx_abort(tx); 1170 } 1171 } 1172 1173 dbuf_rele(dbuf, FTAG); 1174 1175 delay(zfs_object_remap_one_indirect_delay_ticks); 1176 1177 return (err); 1178 } 1179 1180 /* 1181 * Remap all blockpointers in the object, if possible, so that they reference 1182 * only concrete vdevs. 1183 * 1184 * To do this, iterate over the L0 blockpointers and remap any that reference 1185 * an indirect vdev. Note that we only examine L0 blockpointers; since we 1186 * cannot guarantee that we can remap all blockpointer anyways (due to split 1187 * blocks), we do not want to make the code unnecessarily complicated to 1188 * catch the unlikely case that there is an L1 block on an indirect vdev that 1189 * contains no indirect blockpointers. 1190 */ 1191 int 1192 dmu_object_remap_indirects(objset_t *os, uint64_t object, 1193 uint64_t last_removal_txg) 1194 { 1195 uint64_t offset, l1span; 1196 int err; 1197 dnode_t *dn; 1198 1199 err = dnode_hold(os, object, FTAG, &dn); 1200 if (err != 0) { 1201 return (err); 1202 } 1203 1204 if (dn->dn_nlevels <= 1) { 1205 if (issig(JUSTLOOKING) && issig(FORREAL)) { 1206 err = SET_ERROR(EINTR); 1207 } 1208 1209 /* 1210 * If the dnode has no indirect blocks, we cannot dirty them. 1211 * We still want to remap the blkptr(s) in the dnode if 1212 * appropriate, so mark it as dirty. 1213 */ 1214 if (err == 0 && dnode_needs_remap(dn)) { 1215 dmu_tx_t *tx = dmu_tx_create(os); 1216 dmu_tx_hold_bonus(tx, dn->dn_object); 1217 if ((err = dmu_tx_assign(tx, TXG_WAIT)) == 0) { 1218 dnode_setdirty(dn, tx); 1219 dmu_tx_commit(tx); 1220 } else { 1221 dmu_tx_abort(tx); 1222 } 1223 } 1224 1225 dnode_rele(dn, FTAG); 1226 return (err); 1227 } 1228 1229 offset = 0; 1230 l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT + 1231 dn->dn_datablkshift); 1232 /* 1233 * Find the next L1 indirect that is not a hole. 1234 */ 1235 while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) { 1236 if (issig(JUSTLOOKING) && issig(FORREAL)) { 1237 err = SET_ERROR(EINTR); 1238 break; 1239 } 1240 if ((err = dmu_object_remap_one_indirect(os, dn, 1241 last_removal_txg, offset)) != 0) { 1242 break; 1243 } 1244 offset += l1span; 1245 } 1246 1247 dnode_rele(dn, FTAG); 1248 return (err); 1249 } 1250 1251 void 1252 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1253 dmu_tx_t *tx) 1254 { 1255 dmu_buf_t **dbp; 1256 int numbufs, i; 1257 1258 if (size == 0) 1259 return; 1260 1261 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1262 FALSE, FTAG, &numbufs, &dbp)); 1263 1264 for (i = 0; i < numbufs; i++) { 1265 dmu_buf_t *db = dbp[i]; 1266 1267 dmu_buf_will_not_fill(db, tx); 1268 } 1269 dmu_buf_rele_array(dbp, numbufs, FTAG); 1270 } 1271 1272 void 1273 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1274 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1275 int compressed_size, int byteorder, dmu_tx_t *tx) 1276 { 1277 dmu_buf_t *db; 1278 1279 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1280 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1281 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1282 FTAG, &db)); 1283 1284 dmu_buf_write_embedded(db, 1285 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1286 uncompressed_size, compressed_size, byteorder, tx); 1287 1288 dmu_buf_rele(db, FTAG); 1289 } 1290 1291 /* 1292 * DMU support for xuio 1293 */ 1294 kstat_t *xuio_ksp = NULL; 1295 1296 int 1297 dmu_xuio_init(xuio_t *xuio, int nblk) 1298 { 1299 dmu_xuio_t *priv; 1300 uio_t *uio = &xuio->xu_uio; 1301 1302 uio->uio_iovcnt = nblk; 1303 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 1304 1305 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 1306 priv->cnt = nblk; 1307 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 1308 priv->iovp = uio->uio_iov; 1309 XUIO_XUZC_PRIV(xuio) = priv; 1310 1311 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1312 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 1313 else 1314 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 1315 1316 return (0); 1317 } 1318 1319 void 1320 dmu_xuio_fini(xuio_t *xuio) 1321 { 1322 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1323 int nblk = priv->cnt; 1324 1325 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 1326 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 1327 kmem_free(priv, sizeof (dmu_xuio_t)); 1328 1329 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1330 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 1331 else 1332 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 1333 } 1334 1335 /* 1336 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 1337 * and increase priv->next by 1. 1338 */ 1339 int 1340 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 1341 { 1342 struct iovec *iov; 1343 uio_t *uio = &xuio->xu_uio; 1344 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1345 int i = priv->next++; 1346 1347 ASSERT(i < priv->cnt); 1348 ASSERT(off + n <= arc_buf_lsize(abuf)); 1349 iov = uio->uio_iov + i; 1350 iov->iov_base = (char *)abuf->b_data + off; 1351 iov->iov_len = n; 1352 priv->bufs[i] = abuf; 1353 return (0); 1354 } 1355 1356 int 1357 dmu_xuio_cnt(xuio_t *xuio) 1358 { 1359 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1360 return (priv->cnt); 1361 } 1362 1363 arc_buf_t * 1364 dmu_xuio_arcbuf(xuio_t *xuio, int i) 1365 { 1366 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1367 1368 ASSERT(i < priv->cnt); 1369 return (priv->bufs[i]); 1370 } 1371 1372 void 1373 dmu_xuio_clear(xuio_t *xuio, int i) 1374 { 1375 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1376 1377 ASSERT(i < priv->cnt); 1378 priv->bufs[i] = NULL; 1379 } 1380 1381 static void 1382 xuio_stat_init(void) 1383 { 1384 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 1385 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 1386 KSTAT_FLAG_VIRTUAL); 1387 if (xuio_ksp != NULL) { 1388 xuio_ksp->ks_data = &xuio_stats; 1389 kstat_install(xuio_ksp); 1390 } 1391 } 1392 1393 static void 1394 xuio_stat_fini(void) 1395 { 1396 if (xuio_ksp != NULL) { 1397 kstat_delete(xuio_ksp); 1398 xuio_ksp = NULL; 1399 } 1400 } 1401 1402 void 1403 xuio_stat_wbuf_copied(void) 1404 { 1405 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1406 } 1407 1408 void 1409 xuio_stat_wbuf_nocopy(void) 1410 { 1411 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1412 } 1413 1414 #ifdef _KERNEL 1415 int 1416 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1417 { 1418 dmu_buf_t **dbp; 1419 int numbufs, i, err; 1420 xuio_t *xuio = NULL; 1421 1422 /* 1423 * NB: we could do this block-at-a-time, but it's nice 1424 * to be reading in parallel. 1425 */ 1426 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1427 TRUE, FTAG, &numbufs, &dbp, 0); 1428 if (err) 1429 return (err); 1430 1431 if (uio->uio_extflg == UIO_XUIO) 1432 xuio = (xuio_t *)uio; 1433 1434 for (i = 0; i < numbufs; i++) { 1435 int tocpy; 1436 int bufoff; 1437 dmu_buf_t *db = dbp[i]; 1438 1439 ASSERT(size > 0); 1440 1441 bufoff = uio->uio_loffset - db->db_offset; 1442 tocpy = (int)MIN(db->db_size - bufoff, size); 1443 1444 if (xuio) { 1445 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1446 arc_buf_t *dbuf_abuf = dbi->db_buf; 1447 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1448 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1449 if (!err) { 1450 uio->uio_resid -= tocpy; 1451 uio->uio_loffset += tocpy; 1452 } 1453 1454 if (abuf == dbuf_abuf) 1455 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1456 else 1457 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1458 } else { 1459 err = uiomove((char *)db->db_data + bufoff, tocpy, 1460 UIO_READ, uio); 1461 } 1462 if (err) 1463 break; 1464 1465 size -= tocpy; 1466 } 1467 dmu_buf_rele_array(dbp, numbufs, FTAG); 1468 1469 return (err); 1470 } 1471 1472 /* 1473 * Read 'size' bytes into the uio buffer. 1474 * From object zdb->db_object. 1475 * Starting at offset uio->uio_loffset. 1476 * 1477 * If the caller already has a dbuf in the target object 1478 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1479 * because we don't have to find the dnode_t for the object. 1480 */ 1481 int 1482 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1483 { 1484 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1485 dnode_t *dn; 1486 int err; 1487 1488 if (size == 0) 1489 return (0); 1490 1491 DB_DNODE_ENTER(db); 1492 dn = DB_DNODE(db); 1493 err = dmu_read_uio_dnode(dn, uio, size); 1494 DB_DNODE_EXIT(db); 1495 1496 return (err); 1497 } 1498 1499 /* 1500 * Read 'size' bytes into the uio buffer. 1501 * From the specified object 1502 * Starting at offset uio->uio_loffset. 1503 */ 1504 int 1505 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1506 { 1507 dnode_t *dn; 1508 int err; 1509 1510 if (size == 0) 1511 return (0); 1512 1513 err = dnode_hold(os, object, FTAG, &dn); 1514 if (err) 1515 return (err); 1516 1517 err = dmu_read_uio_dnode(dn, uio, size); 1518 1519 dnode_rele(dn, FTAG); 1520 1521 return (err); 1522 } 1523 1524 int 1525 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1526 { 1527 dmu_buf_t **dbp; 1528 int numbufs; 1529 int err = 0; 1530 int i; 1531 1532 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1533 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1534 if (err) 1535 return (err); 1536 1537 for (i = 0; i < numbufs; i++) { 1538 int tocpy; 1539 int bufoff; 1540 dmu_buf_t *db = dbp[i]; 1541 1542 ASSERT(size > 0); 1543 1544 bufoff = uio->uio_loffset - db->db_offset; 1545 tocpy = (int)MIN(db->db_size - bufoff, size); 1546 1547 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1548 1549 if (tocpy == db->db_size) 1550 dmu_buf_will_fill(db, tx); 1551 else 1552 dmu_buf_will_dirty(db, tx); 1553 1554 /* 1555 * XXX uiomove could block forever (eg. nfs-backed 1556 * pages). There needs to be a uiolockdown() function 1557 * to lock the pages in memory, so that uiomove won't 1558 * block. 1559 */ 1560 err = uiomove((char *)db->db_data + bufoff, tocpy, 1561 UIO_WRITE, uio); 1562 1563 if (tocpy == db->db_size) 1564 dmu_buf_fill_done(db, tx); 1565 1566 if (err) 1567 break; 1568 1569 size -= tocpy; 1570 } 1571 1572 dmu_buf_rele_array(dbp, numbufs, FTAG); 1573 return (err); 1574 } 1575 1576 /* 1577 * Write 'size' bytes from the uio buffer. 1578 * To object zdb->db_object. 1579 * Starting at offset uio->uio_loffset. 1580 * 1581 * If the caller already has a dbuf in the target object 1582 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1583 * because we don't have to find the dnode_t for the object. 1584 */ 1585 int 1586 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1587 dmu_tx_t *tx) 1588 { 1589 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1590 dnode_t *dn; 1591 int err; 1592 1593 if (size == 0) 1594 return (0); 1595 1596 DB_DNODE_ENTER(db); 1597 dn = DB_DNODE(db); 1598 err = dmu_write_uio_dnode(dn, uio, size, tx); 1599 DB_DNODE_EXIT(db); 1600 1601 return (err); 1602 } 1603 1604 /* 1605 * Write 'size' bytes from the uio buffer. 1606 * To the specified object. 1607 * Starting at offset uio->uio_loffset. 1608 */ 1609 int 1610 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1611 dmu_tx_t *tx) 1612 { 1613 dnode_t *dn; 1614 int err; 1615 1616 if (size == 0) 1617 return (0); 1618 1619 err = dnode_hold(os, object, FTAG, &dn); 1620 if (err) 1621 return (err); 1622 1623 err = dmu_write_uio_dnode(dn, uio, size, tx); 1624 1625 dnode_rele(dn, FTAG); 1626 1627 return (err); 1628 } 1629 1630 int 1631 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1632 page_t *pp, dmu_tx_t *tx) 1633 { 1634 dmu_buf_t **dbp; 1635 int numbufs, i; 1636 int err; 1637 1638 if (size == 0) 1639 return (0); 1640 1641 err = dmu_buf_hold_array(os, object, offset, size, 1642 FALSE, FTAG, &numbufs, &dbp); 1643 if (err) 1644 return (err); 1645 1646 for (i = 0; i < numbufs; i++) { 1647 int tocpy, copied, thiscpy; 1648 int bufoff; 1649 dmu_buf_t *db = dbp[i]; 1650 caddr_t va; 1651 1652 ASSERT(size > 0); 1653 ASSERT3U(db->db_size, >=, PAGESIZE); 1654 1655 bufoff = offset - db->db_offset; 1656 tocpy = (int)MIN(db->db_size - bufoff, size); 1657 1658 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1659 1660 if (tocpy == db->db_size) 1661 dmu_buf_will_fill(db, tx); 1662 else 1663 dmu_buf_will_dirty(db, tx); 1664 1665 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1666 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1667 thiscpy = MIN(PAGESIZE, tocpy - copied); 1668 va = zfs_map_page(pp, S_READ); 1669 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1670 zfs_unmap_page(pp, va); 1671 pp = pp->p_next; 1672 bufoff += PAGESIZE; 1673 } 1674 1675 if (tocpy == db->db_size) 1676 dmu_buf_fill_done(db, tx); 1677 1678 offset += tocpy; 1679 size -= tocpy; 1680 } 1681 dmu_buf_rele_array(dbp, numbufs, FTAG); 1682 return (err); 1683 } 1684 #endif 1685 1686 /* 1687 * Allocate a loaned anonymous arc buffer. 1688 */ 1689 arc_buf_t * 1690 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1691 { 1692 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1693 1694 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1695 } 1696 1697 /* 1698 * Free a loaned arc buffer. 1699 */ 1700 void 1701 dmu_return_arcbuf(arc_buf_t *buf) 1702 { 1703 arc_return_buf(buf, FTAG); 1704 arc_buf_destroy(buf, FTAG); 1705 } 1706 1707 void 1708 dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset, 1709 dmu_buf_t *handle, dmu_tx_t *tx) 1710 { 1711 dmu_buf_t *dst_handle; 1712 dmu_buf_impl_t *dstdb; 1713 dmu_buf_impl_t *srcdb = (dmu_buf_impl_t *)handle; 1714 dmu_object_type_t type; 1715 arc_buf_t *abuf; 1716 uint64_t datalen; 1717 boolean_t byteorder; 1718 uint8_t salt[ZIO_DATA_SALT_LEN]; 1719 uint8_t iv[ZIO_DATA_IV_LEN]; 1720 uint8_t mac[ZIO_DATA_MAC_LEN]; 1721 1722 ASSERT3P(srcdb->db_buf, !=, NULL); 1723 1724 /* hold the db that we want to write to */ 1725 VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &dst_handle, 1726 DMU_READ_NO_DECRYPT)); 1727 dstdb = (dmu_buf_impl_t *)dst_handle; 1728 datalen = arc_buf_size(srcdb->db_buf); 1729 1730 DB_DNODE_ENTER(dstdb); 1731 type = DB_DNODE(dstdb)->dn_type; 1732 DB_DNODE_EXIT(dstdb); 1733 1734 /* allocated an arc buffer that matches the type of srcdb->db_buf */ 1735 if (arc_is_encrypted(srcdb->db_buf)) { 1736 arc_get_raw_params(srcdb->db_buf, &byteorder, salt, iv, mac); 1737 abuf = arc_loan_raw_buf(os->os_spa, dmu_objset_id(os), 1738 byteorder, salt, iv, mac, type, 1739 datalen, arc_buf_lsize(srcdb->db_buf), 1740 arc_get_compression(srcdb->db_buf)); 1741 } else { 1742 /* we won't get a compressed db back from dmu_buf_hold() */ 1743 ASSERT3U(arc_get_compression(srcdb->db_buf), 1744 ==, ZIO_COMPRESS_OFF); 1745 abuf = arc_loan_buf(os->os_spa, 1746 DMU_OT_IS_METADATA(type), datalen); 1747 } 1748 1749 ASSERT3U(datalen, ==, arc_buf_size(abuf)); 1750 1751 /* copy the data to the new buffer and assign it to the dstdb */ 1752 bcopy(srcdb->db_buf->b_data, abuf->b_data, datalen); 1753 dbuf_assign_arcbuf(dstdb, abuf, tx); 1754 dmu_buf_rele(dst_handle, FTAG); 1755 } 1756 1757 /* 1758 * When possible directly assign passed loaned arc buffer to a dbuf. 1759 * If this is not possible copy the contents of passed arc buf via 1760 * dmu_write(). 1761 */ 1762 int 1763 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, 1764 dmu_tx_t *tx) 1765 { 1766 dmu_buf_impl_t *db; 1767 objset_t *os = dn->dn_objset; 1768 uint64_t object = dn->dn_object; 1769 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1770 uint64_t blkid; 1771 1772 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1773 blkid = dbuf_whichblock(dn, 0, offset); 1774 db = dbuf_hold(dn, blkid, FTAG); 1775 if (db == NULL) 1776 return (SET_ERROR(EIO)); 1777 rw_exit(&dn->dn_struct_rwlock); 1778 1779 /* 1780 * We can only assign if the offset is aligned, the arc buf is the 1781 * same size as the dbuf, and the dbuf is not metadata. 1782 */ 1783 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1784 dbuf_assign_arcbuf(db, buf, tx); 1785 dbuf_rele(db, FTAG); 1786 } else { 1787 /* compressed bufs must always be assignable to their dbuf */ 1788 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1789 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1790 1791 os = dn->dn_objset; 1792 object = dn->dn_object; 1793 dbuf_rele(db, FTAG); 1794 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1795 dmu_return_arcbuf(buf); 1796 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1797 } 1798 1799 return (0); 1800 } 1801 1802 int 1803 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1804 dmu_tx_t *tx) 1805 { 1806 int err; 1807 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1808 1809 DB_DNODE_ENTER(dbuf); 1810 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx); 1811 DB_DNODE_EXIT(dbuf); 1812 1813 return (err); 1814 } 1815 1816 typedef struct { 1817 dbuf_dirty_record_t *dsa_dr; 1818 dmu_sync_cb_t *dsa_done; 1819 zgd_t *dsa_zgd; 1820 dmu_tx_t *dsa_tx; 1821 } dmu_sync_arg_t; 1822 1823 /* ARGSUSED */ 1824 static void 1825 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1826 { 1827 dmu_sync_arg_t *dsa = varg; 1828 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1829 blkptr_t *bp = zio->io_bp; 1830 1831 if (zio->io_error == 0) { 1832 if (BP_IS_HOLE(bp)) { 1833 /* 1834 * A block of zeros may compress to a hole, but the 1835 * block size still needs to be known for replay. 1836 */ 1837 BP_SET_LSIZE(bp, db->db_size); 1838 } else if (!BP_IS_EMBEDDED(bp)) { 1839 ASSERT(BP_GET_LEVEL(bp) == 0); 1840 BP_SET_FILL(bp, 1); 1841 } 1842 } 1843 } 1844 1845 static void 1846 dmu_sync_late_arrival_ready(zio_t *zio) 1847 { 1848 dmu_sync_ready(zio, NULL, zio->io_private); 1849 } 1850 1851 /* ARGSUSED */ 1852 static void 1853 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1854 { 1855 dmu_sync_arg_t *dsa = varg; 1856 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1857 dmu_buf_impl_t *db = dr->dr_dbuf; 1858 zgd_t *zgd = dsa->dsa_zgd; 1859 1860 /* 1861 * Record the vdev(s) backing this blkptr so they can be flushed after 1862 * the writes for the lwb have completed. 1863 */ 1864 if (zio->io_error == 0) { 1865 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1866 } 1867 1868 mutex_enter(&db->db_mtx); 1869 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1870 if (zio->io_error == 0) { 1871 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1872 if (dr->dt.dl.dr_nopwrite) { 1873 blkptr_t *bp = zio->io_bp; 1874 blkptr_t *bp_orig = &zio->io_bp_orig; 1875 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1876 1877 ASSERT(BP_EQUAL(bp, bp_orig)); 1878 VERIFY(BP_EQUAL(bp, db->db_blkptr)); 1879 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1880 ASSERT(zio_checksum_table[chksum].ci_flags & 1881 ZCHECKSUM_FLAG_NOPWRITE); 1882 } 1883 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1884 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1885 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1886 1887 /* 1888 * Old style holes are filled with all zeros, whereas 1889 * new-style holes maintain their lsize, type, level, 1890 * and birth time (see zio_write_compress). While we 1891 * need to reset the BP_SET_LSIZE() call that happened 1892 * in dmu_sync_ready for old style holes, we do *not* 1893 * want to wipe out the information contained in new 1894 * style holes. Thus, only zero out the block pointer if 1895 * it's an old style hole. 1896 */ 1897 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1898 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1899 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1900 } else { 1901 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1902 } 1903 cv_broadcast(&db->db_changed); 1904 mutex_exit(&db->db_mtx); 1905 1906 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1907 1908 kmem_free(dsa, sizeof (*dsa)); 1909 } 1910 1911 static void 1912 dmu_sync_late_arrival_done(zio_t *zio) 1913 { 1914 blkptr_t *bp = zio->io_bp; 1915 dmu_sync_arg_t *dsa = zio->io_private; 1916 blkptr_t *bp_orig = &zio->io_bp_orig; 1917 zgd_t *zgd = dsa->dsa_zgd; 1918 1919 if (zio->io_error == 0) { 1920 /* 1921 * Record the vdev(s) backing this blkptr so they can be 1922 * flushed after the writes for the lwb have completed. 1923 */ 1924 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1925 1926 if (!BP_IS_HOLE(bp)) { 1927 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); 1928 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1929 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1930 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1931 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1932 } 1933 } 1934 1935 dmu_tx_commit(dsa->dsa_tx); 1936 1937 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1938 1939 abd_put(zio->io_abd); 1940 kmem_free(dsa, sizeof (*dsa)); 1941 } 1942 1943 static int 1944 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1945 zio_prop_t *zp, zbookmark_phys_t *zb) 1946 { 1947 dmu_sync_arg_t *dsa; 1948 dmu_tx_t *tx; 1949 1950 tx = dmu_tx_create(os); 1951 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1952 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1953 dmu_tx_abort(tx); 1954 /* Make zl_get_data do txg_waited_synced() */ 1955 return (SET_ERROR(EIO)); 1956 } 1957 1958 /* 1959 * In order to prevent the zgd's lwb from being free'd prior to 1960 * dmu_sync_late_arrival_done() being called, we have to ensure 1961 * the lwb's "max txg" takes this tx's txg into account. 1962 */ 1963 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); 1964 1965 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1966 dsa->dsa_dr = NULL; 1967 dsa->dsa_done = done; 1968 dsa->dsa_zgd = zgd; 1969 dsa->dsa_tx = tx; 1970 1971 /* 1972 * Since we are currently syncing this txg, it's nontrivial to 1973 * determine what BP to nopwrite against, so we disable nopwrite. 1974 * 1975 * When syncing, the db_blkptr is initially the BP of the previous 1976 * txg. We can not nopwrite against it because it will be changed 1977 * (this is similar to the non-late-arrival case where the dbuf is 1978 * dirty in a future txg). 1979 * 1980 * Then dbuf_write_ready() sets bp_blkptr to the location we will write. 1981 * We can not nopwrite against it because although the BP will not 1982 * (typically) be changed, the data has not yet been persisted to this 1983 * location. 1984 * 1985 * Finally, when dbuf_write_done() is called, it is theoretically 1986 * possible to always nopwrite, because the data that was written in 1987 * this txg is the same data that we are trying to write. However we 1988 * would need to check that this dbuf is not dirty in any future 1989 * txg's (as we do in the normal dmu_sync() path). For simplicity, we 1990 * don't nopwrite in this case. 1991 */ 1992 zp->zp_nopwrite = B_FALSE; 1993 1994 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1995 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), 1996 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, 1997 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, 1998 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1999 2000 return (0); 2001 } 2002 2003 /* 2004 * Intent log support: sync the block associated with db to disk. 2005 * N.B. and XXX: the caller is responsible for making sure that the 2006 * data isn't changing while dmu_sync() is writing it. 2007 * 2008 * Return values: 2009 * 2010 * EEXIST: this txg has already been synced, so there's nothing to do. 2011 * The caller should not log the write. 2012 * 2013 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 2014 * The caller should not log the write. 2015 * 2016 * EALREADY: this block is already in the process of being synced. 2017 * The caller should track its progress (somehow). 2018 * 2019 * EIO: could not do the I/O. 2020 * The caller should do a txg_wait_synced(). 2021 * 2022 * 0: the I/O has been initiated. 2023 * The caller should log this blkptr in the done callback. 2024 * It is possible that the I/O will fail, in which case 2025 * the error will be reported to the done callback and 2026 * propagated to pio from zio_done(). 2027 */ 2028 int 2029 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 2030 { 2031 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 2032 objset_t *os = db->db_objset; 2033 dsl_dataset_t *ds = os->os_dsl_dataset; 2034 dbuf_dirty_record_t *dr; 2035 dmu_sync_arg_t *dsa; 2036 zbookmark_phys_t zb; 2037 zio_prop_t zp; 2038 dnode_t *dn; 2039 2040 ASSERT(pio != NULL); 2041 ASSERT(txg != 0); 2042 2043 SET_BOOKMARK(&zb, ds->ds_object, 2044 db->db.db_object, db->db_level, db->db_blkid); 2045 2046 DB_DNODE_ENTER(db); 2047 dn = DB_DNODE(db); 2048 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 2049 DB_DNODE_EXIT(db); 2050 2051 /* 2052 * If we're frozen (running ziltest), we always need to generate a bp. 2053 */ 2054 if (txg > spa_freeze_txg(os->os_spa)) 2055 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 2056 2057 /* 2058 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 2059 * and us. If we determine that this txg is not yet syncing, 2060 * but it begins to sync a moment later, that's OK because the 2061 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 2062 */ 2063 mutex_enter(&db->db_mtx); 2064 2065 if (txg <= spa_last_synced_txg(os->os_spa)) { 2066 /* 2067 * This txg has already synced. There's nothing to do. 2068 */ 2069 mutex_exit(&db->db_mtx); 2070 return (SET_ERROR(EEXIST)); 2071 } 2072 2073 if (txg <= spa_syncing_txg(os->os_spa)) { 2074 /* 2075 * This txg is currently syncing, so we can't mess with 2076 * the dirty record anymore; just write a new log block. 2077 */ 2078 mutex_exit(&db->db_mtx); 2079 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 2080 } 2081 2082 dr = db->db_last_dirty; 2083 while (dr && dr->dr_txg != txg) 2084 dr = dr->dr_next; 2085 2086 if (dr == NULL) { 2087 /* 2088 * There's no dr for this dbuf, so it must have been freed. 2089 * There's no need to log writes to freed blocks, so we're done. 2090 */ 2091 mutex_exit(&db->db_mtx); 2092 return (SET_ERROR(ENOENT)); 2093 } 2094 2095 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 2096 2097 if (db->db_blkptr != NULL) { 2098 /* 2099 * We need to fill in zgd_bp with the current blkptr so that 2100 * the nopwrite code can check if we're writing the same 2101 * data that's already on disk. We can only nopwrite if we 2102 * are sure that after making the copy, db_blkptr will not 2103 * change until our i/o completes. We ensure this by 2104 * holding the db_mtx, and only allowing nopwrite if the 2105 * block is not already dirty (see below). This is verified 2106 * by dmu_sync_done(), which VERIFYs that the db_blkptr has 2107 * not changed. 2108 */ 2109 *zgd->zgd_bp = *db->db_blkptr; 2110 } 2111 2112 /* 2113 * Assume the on-disk data is X, the current syncing data (in 2114 * txg - 1) is Y, and the current in-memory data is Z (currently 2115 * in dmu_sync). 2116 * 2117 * We usually want to perform a nopwrite if X and Z are the 2118 * same. However, if Y is different (i.e. the BP is going to 2119 * change before this write takes effect), then a nopwrite will 2120 * be incorrect - we would override with X, which could have 2121 * been freed when Y was written. 2122 * 2123 * (Note that this is not a concern when we are nop-writing from 2124 * syncing context, because X and Y must be identical, because 2125 * all previous txgs have been synced.) 2126 * 2127 * Therefore, we disable nopwrite if the current BP could change 2128 * before this TXG. There are two ways it could change: by 2129 * being dirty (dr_next is non-NULL), or by being freed 2130 * (dnode_block_freed()). This behavior is verified by 2131 * zio_done(), which VERIFYs that the override BP is identical 2132 * to the on-disk BP. 2133 */ 2134 DB_DNODE_ENTER(db); 2135 dn = DB_DNODE(db); 2136 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 2137 zp.zp_nopwrite = B_FALSE; 2138 DB_DNODE_EXIT(db); 2139 2140 ASSERT(dr->dr_txg == txg); 2141 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 2142 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 2143 /* 2144 * We have already issued a sync write for this buffer, 2145 * or this buffer has already been synced. It could not 2146 * have been dirtied since, or we would have cleared the state. 2147 */ 2148 mutex_exit(&db->db_mtx); 2149 return (SET_ERROR(EALREADY)); 2150 } 2151 2152 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 2153 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 2154 mutex_exit(&db->db_mtx); 2155 2156 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 2157 dsa->dsa_dr = dr; 2158 dsa->dsa_done = done; 2159 dsa->dsa_zgd = zgd; 2160 dsa->dsa_tx = NULL; 2161 2162 zio_nowait(arc_write(pio, os->os_spa, txg, 2163 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 2164 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 2165 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 2166 2167 return (0); 2168 } 2169 2170 int 2171 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx) 2172 { 2173 dnode_t *dn; 2174 int err; 2175 2176 err = dnode_hold(os, object, FTAG, &dn); 2177 if (err) 2178 return (err); 2179 err = dnode_set_nlevels(dn, nlevels, tx); 2180 dnode_rele(dn, FTAG); 2181 return (err); 2182 } 2183 2184 int 2185 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 2186 dmu_tx_t *tx) 2187 { 2188 dnode_t *dn; 2189 int err; 2190 2191 err = dnode_hold(os, object, FTAG, &dn); 2192 if (err) 2193 return (err); 2194 err = dnode_set_blksz(dn, size, ibs, tx); 2195 dnode_rele(dn, FTAG); 2196 return (err); 2197 } 2198 2199 int 2200 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, 2201 dmu_tx_t *tx) 2202 { 2203 dnode_t *dn; 2204 int err; 2205 2206 err = dnode_hold(os, object, FTAG, &dn); 2207 if (err) 2208 return (err); 2209 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2210 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE); 2211 rw_exit(&dn->dn_struct_rwlock); 2212 dnode_rele(dn, FTAG); 2213 return (0); 2214 } 2215 2216 void 2217 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 2218 dmu_tx_t *tx) 2219 { 2220 dnode_t *dn; 2221 2222 /* 2223 * Send streams include each object's checksum function. This 2224 * check ensures that the receiving system can understand the 2225 * checksum function transmitted. 2226 */ 2227 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 2228 2229 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 2230 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 2231 dn->dn_checksum = checksum; 2232 dnode_setdirty(dn, tx); 2233 dnode_rele(dn, FTAG); 2234 } 2235 2236 void 2237 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 2238 dmu_tx_t *tx) 2239 { 2240 dnode_t *dn; 2241 2242 /* 2243 * Send streams include each object's compression function. This 2244 * check ensures that the receiving system can understand the 2245 * compression function transmitted. 2246 */ 2247 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 2248 2249 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 2250 dn->dn_compress = compress; 2251 dnode_setdirty(dn, tx); 2252 dnode_rele(dn, FTAG); 2253 } 2254 2255 /* 2256 * When the "redundant_metadata" property is set to "most", only indirect 2257 * blocks of this level and higher will have an additional ditto block. 2258 */ 2259 int zfs_redundant_metadata_most_ditto_level = 2; 2260 2261 void 2262 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 2263 { 2264 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 2265 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 2266 (wp & WP_SPILL)); 2267 enum zio_checksum checksum = os->os_checksum; 2268 enum zio_compress compress = os->os_compress; 2269 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 2270 boolean_t dedup = B_FALSE; 2271 boolean_t nopwrite = B_FALSE; 2272 boolean_t dedup_verify = os->os_dedup_verify; 2273 boolean_t encrypt = B_FALSE; 2274 int copies = os->os_copies; 2275 2276 /* 2277 * We maintain different write policies for each of the following 2278 * types of data: 2279 * 1. metadata 2280 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 2281 * 3. all other level 0 blocks 2282 */ 2283 if (ismd) { 2284 /* 2285 * XXX -- we should design a compression algorithm 2286 * that specializes in arrays of bps. 2287 */ 2288 compress = zio_compress_select(os->os_spa, 2289 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 2290 2291 /* 2292 * Metadata always gets checksummed. If the data 2293 * checksum is multi-bit correctable, and it's not a 2294 * ZBT-style checksum, then it's suitable for metadata 2295 * as well. Otherwise, the metadata checksum defaults 2296 * to fletcher4. 2297 */ 2298 if (!(zio_checksum_table[checksum].ci_flags & 2299 ZCHECKSUM_FLAG_METADATA) || 2300 (zio_checksum_table[checksum].ci_flags & 2301 ZCHECKSUM_FLAG_EMBEDDED)) 2302 checksum = ZIO_CHECKSUM_FLETCHER_4; 2303 2304 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 2305 (os->os_redundant_metadata == 2306 ZFS_REDUNDANT_METADATA_MOST && 2307 (level >= zfs_redundant_metadata_most_ditto_level || 2308 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 2309 copies++; 2310 } else if (wp & WP_NOFILL) { 2311 ASSERT(level == 0); 2312 2313 /* 2314 * If we're writing preallocated blocks, we aren't actually 2315 * writing them so don't set any policy properties. These 2316 * blocks are currently only used by an external subsystem 2317 * outside of zfs (i.e. dump) and not written by the zio 2318 * pipeline. 2319 */ 2320 compress = ZIO_COMPRESS_OFF; 2321 checksum = ZIO_CHECKSUM_NOPARITY; 2322 } else { 2323 compress = zio_compress_select(os->os_spa, dn->dn_compress, 2324 compress); 2325 2326 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 2327 zio_checksum_select(dn->dn_checksum, checksum) : 2328 dedup_checksum; 2329 2330 /* 2331 * Determine dedup setting. If we are in dmu_sync(), 2332 * we won't actually dedup now because that's all 2333 * done in syncing context; but we do want to use the 2334 * dedup checkum. If the checksum is not strong 2335 * enough to ensure unique signatures, force 2336 * dedup_verify. 2337 */ 2338 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 2339 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 2340 if (!(zio_checksum_table[checksum].ci_flags & 2341 ZCHECKSUM_FLAG_DEDUP)) 2342 dedup_verify = B_TRUE; 2343 } 2344 2345 /* 2346 * Enable nopwrite if we have secure enough checksum 2347 * algorithm (see comment in zio_nop_write) and 2348 * compression is enabled. We don't enable nopwrite if 2349 * dedup is enabled as the two features are mutually 2350 * exclusive. 2351 */ 2352 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 2353 ZCHECKSUM_FLAG_NOPWRITE) && 2354 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 2355 } 2356 2357 /* 2358 * All objects in an encrypted objset are protected from modification 2359 * via a MAC. Encrypted objects store their IV and salt in the last DVA 2360 * in the bp, so we cannot use all copies. Encrypted objects are also 2361 * not subject to nopwrite since writing the same data will still 2362 * result in a new ciphertext. Only encrypted blocks can be dedup'd 2363 * to avoid ambiguity in the dedup code since the DDT does not store 2364 * object types. 2365 */ 2366 if (os->os_encrypted && (wp & WP_NOFILL) == 0) { 2367 encrypt = B_TRUE; 2368 2369 if (DMU_OT_IS_ENCRYPTED(type)) { 2370 copies = MIN(copies, SPA_DVAS_PER_BP - 1); 2371 nopwrite = B_FALSE; 2372 } else { 2373 dedup = B_FALSE; 2374 } 2375 2376 if (level <= 0 && 2377 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) { 2378 compress = ZIO_COMPRESS_EMPTY; 2379 } 2380 } 2381 2382 zp->zp_compress = compress; 2383 zp->zp_checksum = checksum; 2384 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2385 zp->zp_level = level; 2386 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2387 zp->zp_dedup = dedup; 2388 zp->zp_dedup_verify = dedup && dedup_verify; 2389 zp->zp_nopwrite = nopwrite; 2390 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ? 2391 os->os_zpl_special_smallblock : 0; 2392 zp->zp_encrypt = encrypt; 2393 zp->zp_byteorder = ZFS_HOST_BYTEORDER; 2394 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN); 2395 bzero(zp->zp_iv, ZIO_DATA_IV_LEN); 2396 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN); 2397 } 2398 2399 int 2400 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2401 { 2402 dnode_t *dn; 2403 int err; 2404 2405 /* 2406 * Sync any current changes before 2407 * we go trundling through the block pointers. 2408 */ 2409 err = dmu_object_wait_synced(os, object); 2410 if (err) { 2411 return (err); 2412 } 2413 2414 err = dnode_hold(os, object, FTAG, &dn); 2415 if (err) { 2416 return (err); 2417 } 2418 2419 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2420 dnode_rele(dn, FTAG); 2421 2422 return (err); 2423 } 2424 2425 /* 2426 * Given the ZFS object, if it contains any dirty nodes 2427 * this function flushes all dirty blocks to disk. This 2428 * ensures the DMU object info is updated. A more efficient 2429 * future version might just find the TXG with the maximum 2430 * ID and wait for that to be synced. 2431 */ 2432 int 2433 dmu_object_wait_synced(objset_t *os, uint64_t object) 2434 { 2435 dnode_t *dn; 2436 int error, i; 2437 2438 error = dnode_hold(os, object, FTAG, &dn); 2439 if (error) { 2440 return (error); 2441 } 2442 2443 for (i = 0; i < TXG_SIZE; i++) { 2444 if (list_link_active(&dn->dn_dirty_link[i])) { 2445 break; 2446 } 2447 } 2448 dnode_rele(dn, FTAG); 2449 if (i != TXG_SIZE) { 2450 txg_wait_synced(dmu_objset_pool(os), 0); 2451 } 2452 2453 return (0); 2454 } 2455 2456 void 2457 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2458 { 2459 dnode_phys_t *dnp; 2460 2461 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2462 mutex_enter(&dn->dn_mtx); 2463 2464 dnp = dn->dn_phys; 2465 2466 doi->doi_data_block_size = dn->dn_datablksz; 2467 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2468 1ULL << dn->dn_indblkshift : 0; 2469 doi->doi_type = dn->dn_type; 2470 doi->doi_bonus_type = dn->dn_bonustype; 2471 doi->doi_bonus_size = dn->dn_bonuslen; 2472 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT; 2473 doi->doi_indirection = dn->dn_nlevels; 2474 doi->doi_checksum = dn->dn_checksum; 2475 doi->doi_compress = dn->dn_compress; 2476 doi->doi_nblkptr = dn->dn_nblkptr; 2477 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2478 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2479 doi->doi_fill_count = 0; 2480 for (int i = 0; i < dnp->dn_nblkptr; i++) 2481 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2482 2483 mutex_exit(&dn->dn_mtx); 2484 rw_exit(&dn->dn_struct_rwlock); 2485 } 2486 2487 /* 2488 * Get information on a DMU object. 2489 * If doi is NULL, just indicates whether the object exists. 2490 */ 2491 int 2492 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2493 { 2494 dnode_t *dn; 2495 int err = dnode_hold(os, object, FTAG, &dn); 2496 2497 if (err) 2498 return (err); 2499 2500 if (doi != NULL) 2501 dmu_object_info_from_dnode(dn, doi); 2502 2503 dnode_rele(dn, FTAG); 2504 return (0); 2505 } 2506 2507 /* 2508 * As above, but faster; can be used when you have a held dbuf in hand. 2509 */ 2510 void 2511 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2512 { 2513 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2514 2515 DB_DNODE_ENTER(db); 2516 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2517 DB_DNODE_EXIT(db); 2518 } 2519 2520 /* 2521 * Faster still when you only care about the size. 2522 * This is specifically optimized for zfs_getattr(). 2523 */ 2524 void 2525 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2526 u_longlong_t *nblk512) 2527 { 2528 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2529 dnode_t *dn; 2530 2531 DB_DNODE_ENTER(db); 2532 dn = DB_DNODE(db); 2533 2534 *blksize = dn->dn_datablksz; 2535 /* add in number of slots used for the dnode itself */ 2536 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2537 SPA_MINBLOCKSHIFT) + dn->dn_num_slots; 2538 DB_DNODE_EXIT(db); 2539 } 2540 2541 void 2542 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize) 2543 { 2544 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2545 dnode_t *dn; 2546 2547 DB_DNODE_ENTER(db); 2548 dn = DB_DNODE(db); 2549 *dnsize = dn->dn_num_slots << DNODE_SHIFT; 2550 DB_DNODE_EXIT(db); 2551 } 2552 2553 void 2554 byteswap_uint64_array(void *vbuf, size_t size) 2555 { 2556 uint64_t *buf = vbuf; 2557 size_t count = size >> 3; 2558 int i; 2559 2560 ASSERT((size & 7) == 0); 2561 2562 for (i = 0; i < count; i++) 2563 buf[i] = BSWAP_64(buf[i]); 2564 } 2565 2566 void 2567 byteswap_uint32_array(void *vbuf, size_t size) 2568 { 2569 uint32_t *buf = vbuf; 2570 size_t count = size >> 2; 2571 int i; 2572 2573 ASSERT((size & 3) == 0); 2574 2575 for (i = 0; i < count; i++) 2576 buf[i] = BSWAP_32(buf[i]); 2577 } 2578 2579 void 2580 byteswap_uint16_array(void *vbuf, size_t size) 2581 { 2582 uint16_t *buf = vbuf; 2583 size_t count = size >> 1; 2584 int i; 2585 2586 ASSERT((size & 1) == 0); 2587 2588 for (i = 0; i < count; i++) 2589 buf[i] = BSWAP_16(buf[i]); 2590 } 2591 2592 /* ARGSUSED */ 2593 void 2594 byteswap_uint8_array(void *vbuf, size_t size) 2595 { 2596 } 2597 2598 void 2599 dmu_init(void) 2600 { 2601 abd_init(); 2602 zfs_dbgmsg_init(); 2603 sa_cache_init(); 2604 xuio_stat_init(); 2605 dmu_objset_init(); 2606 dnode_init(); 2607 zfetch_init(); 2608 l2arc_init(); 2609 arc_init(); 2610 dbuf_init(); 2611 } 2612 2613 void 2614 dmu_fini(void) 2615 { 2616 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2617 l2arc_fini(); 2618 zfetch_fini(); 2619 dbuf_fini(); 2620 dnode_fini(); 2621 dmu_objset_fini(); 2622 xuio_stat_fini(); 2623 sa_cache_fini(); 2624 zfs_dbgmsg_fini(); 2625 abd_fini(); 2626 } 2627