xref: /illumos-gate/usr/src/uts/common/fs/zfs/dmu.c (revision 20596fe40e947343459994c3b1bcb68f7c0df52e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  */
25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27 /* Copyright 2016 Nexenta Systems, Inc. All rights reserved. */
28 
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dbuf.h>
33 #include <sys/dnode.h>
34 #include <sys/zfs_context.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dmu_traverse.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/zfs_ioctl.h>
44 #include <sys/zap.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/zio_compress.h>
47 #include <sys/sa.h>
48 #include <sys/zfeature.h>
49 #include <sys/abd.h>
50 #ifdef _KERNEL
51 #include <sys/vmsystm.h>
52 #include <sys/zfs_znode.h>
53 #endif
54 
55 /*
56  * Enable/disable nopwrite feature.
57  */
58 int zfs_nopwrite_enabled = 1;
59 
60 /*
61  * Tunable to control percentage of dirtied blocks from frees in one TXG.
62  * After this threshold is crossed, additional dirty blocks from frees
63  * wait until the next TXG.
64  * A value of zero will disable this throttle.
65  */
66 uint32_t zfs_per_txg_dirty_frees_percent = 30;
67 
68 /*
69  * This can be used for testing, to ensure that certain actions happen
70  * while in the middle of a remap (which might otherwise complete too
71  * quickly).
72  */
73 int zfs_object_remap_one_indirect_delay_ticks = 0;
74 
75 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
76 	{ DMU_BSWAP_UINT8,  TRUE,  FALSE,  "unallocated"		},
77 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,   "object directory"		},
78 	{ DMU_BSWAP_UINT64, TRUE,  TRUE,   "object array"		},
79 	{ DMU_BSWAP_UINT8,  TRUE,  FALSE,  "packed nvlist"		},
80 	{ DMU_BSWAP_UINT64, TRUE,  FALSE,  "packed nvlist size"		},
81 	{ DMU_BSWAP_UINT64, TRUE,  FALSE,  "bpobj"			},
82 	{ DMU_BSWAP_UINT64, TRUE,  FALSE,  "bpobj header"		},
83 	{ DMU_BSWAP_UINT64, TRUE,  FALSE,  "SPA space map header"	},
84 	{ DMU_BSWAP_UINT64, TRUE,  FALSE,  "SPA space map"		},
85 	{ DMU_BSWAP_UINT64, TRUE,  FALSE,  "ZIL intent log"		},
86 	{ DMU_BSWAP_DNODE,  TRUE,  FALSE,  "DMU dnode"			},
87 	{ DMU_BSWAP_OBJSET, TRUE,  TRUE,   "DMU objset"			},
88 	{ DMU_BSWAP_UINT64, TRUE,  TRUE,   "DSL directory"		},
89 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,   "DSL directory child map"	},
90 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,   "DSL dataset snap map"	},
91 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,   "DSL props"			},
92 	{ DMU_BSWAP_UINT64, TRUE,  TRUE,   "DSL dataset"		},
93 	{ DMU_BSWAP_ZNODE,  TRUE,  FALSE,  "ZFS znode"			},
94 	{ DMU_BSWAP_OLDACL, TRUE,  FALSE,  "ZFS V0 ACL"			},
95 	{ DMU_BSWAP_UINT8,  FALSE, FALSE,  "ZFS plain file"		},
96 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "ZFS directory"		},
97 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "ZFS master node"		},
98 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "ZFS delete queue"		},
99 	{ DMU_BSWAP_UINT8,  FALSE, FALSE,  "zvol object"		},
100 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "zvol prop"			},
101 	{ DMU_BSWAP_UINT8,  FALSE, FALSE,  "other uint8[]"		},
102 	{ DMU_BSWAP_UINT64, FALSE, FALSE,  "other uint64[]"		},
103 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "other ZAP"			},
104 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "persistent error log"	},
105 	{ DMU_BSWAP_UINT8,  TRUE,  FALSE,  "SPA history"		},
106 	{ DMU_BSWAP_UINT64, TRUE,  FALSE,  "SPA history offsets"	},
107 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,   "Pool properties"		},
108 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,   "DSL permissions"		},
109 	{ DMU_BSWAP_ACL,    TRUE,  FALSE,  "ZFS ACL"			},
110 	{ DMU_BSWAP_UINT8,  TRUE,  FALSE,  "ZFS SYSACL"			},
111 	{ DMU_BSWAP_UINT8,  TRUE,  FALSE,  "FUID table"			},
112 	{ DMU_BSWAP_UINT64, TRUE,  FALSE,  "FUID table size"		},
113 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,   "DSL dataset next clones"	},
114 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "scan work queue"		},
115 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "ZFS user/group used"	},
116 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "ZFS user/group quota"	},
117 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,   "snapshot refcount tags"	},
118 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "DDT ZAP algorithm"		},
119 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "DDT statistics"		},
120 	{ DMU_BSWAP_UINT8,  TRUE,  FALSE,  "System attributes"		},
121 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "SA master node"		},
122 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "SA attr registration"	},
123 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "SA attr layouts"		},
124 	{ DMU_BSWAP_ZAP,    TRUE,  FALSE,  "scan translations"		},
125 	{ DMU_BSWAP_UINT8,  FALSE, FALSE,  "deduplicated block"		},
126 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,   "DSL deadlist map"		},
127 	{ DMU_BSWAP_UINT64, TRUE,  TRUE,   "DSL deadlist map hdr"	},
128 	{ DMU_BSWAP_ZAP,    TRUE,  TRUE,   "DSL dir clones"		},
129 	{ DMU_BSWAP_UINT64, TRUE,  FALSE,  "bpobj subobj"		}
130 };
131 
132 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
133 	{	byteswap_uint8_array,	"uint8"		},
134 	{	byteswap_uint16_array,	"uint16"	},
135 	{	byteswap_uint32_array,	"uint32"	},
136 	{	byteswap_uint64_array,	"uint64"	},
137 	{	zap_byteswap,		"zap"		},
138 	{	dnode_buf_byteswap,	"dnode"		},
139 	{	dmu_objset_byteswap,	"objset"	},
140 	{	zfs_znode_byteswap,	"znode"		},
141 	{	zfs_oldacl_byteswap,	"oldacl"	},
142 	{	zfs_acl_byteswap,	"acl"		}
143 };
144 
145 int
146 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
147     void *tag, dmu_buf_t **dbp)
148 {
149 	uint64_t blkid;
150 	dmu_buf_impl_t *db;
151 
152 	blkid = dbuf_whichblock(dn, 0, offset);
153 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
154 	db = dbuf_hold(dn, blkid, tag);
155 	rw_exit(&dn->dn_struct_rwlock);
156 
157 	if (db == NULL) {
158 		*dbp = NULL;
159 		return (SET_ERROR(EIO));
160 	}
161 
162 	*dbp = &db->db;
163 	return (0);
164 }
165 int
166 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
167     void *tag, dmu_buf_t **dbp)
168 {
169 	dnode_t *dn;
170 	uint64_t blkid;
171 	dmu_buf_impl_t *db;
172 	int err;
173 
174 	err = dnode_hold(os, object, FTAG, &dn);
175 	if (err)
176 		return (err);
177 	blkid = dbuf_whichblock(dn, 0, offset);
178 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
179 	db = dbuf_hold(dn, blkid, tag);
180 	rw_exit(&dn->dn_struct_rwlock);
181 	dnode_rele(dn, FTAG);
182 
183 	if (db == NULL) {
184 		*dbp = NULL;
185 		return (SET_ERROR(EIO));
186 	}
187 
188 	*dbp = &db->db;
189 	return (err);
190 }
191 
192 int
193 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
194     void *tag, dmu_buf_t **dbp, int flags)
195 {
196 	int err;
197 	int db_flags = DB_RF_CANFAIL;
198 
199 	if (flags & DMU_READ_NO_PREFETCH)
200 		db_flags |= DB_RF_NOPREFETCH;
201 
202 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
203 	if (err == 0) {
204 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
205 		err = dbuf_read(db, NULL, db_flags);
206 		if (err != 0) {
207 			dbuf_rele(db, tag);
208 			*dbp = NULL;
209 		}
210 	}
211 
212 	return (err);
213 }
214 
215 int
216 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
217     void *tag, dmu_buf_t **dbp, int flags)
218 {
219 	int err;
220 	int db_flags = DB_RF_CANFAIL;
221 
222 	if (flags & DMU_READ_NO_PREFETCH)
223 		db_flags |= DB_RF_NOPREFETCH;
224 
225 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
226 	if (err == 0) {
227 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
228 		err = dbuf_read(db, NULL, db_flags);
229 		if (err != 0) {
230 			dbuf_rele(db, tag);
231 			*dbp = NULL;
232 		}
233 	}
234 
235 	return (err);
236 }
237 
238 int
239 dmu_bonus_max(void)
240 {
241 	return (DN_MAX_BONUSLEN);
242 }
243 
244 int
245 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
246 {
247 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
248 	dnode_t *dn;
249 	int error;
250 
251 	DB_DNODE_ENTER(db);
252 	dn = DB_DNODE(db);
253 
254 	if (dn->dn_bonus != db) {
255 		error = SET_ERROR(EINVAL);
256 	} else if (newsize < 0 || newsize > db_fake->db_size) {
257 		error = SET_ERROR(EINVAL);
258 	} else {
259 		dnode_setbonuslen(dn, newsize, tx);
260 		error = 0;
261 	}
262 
263 	DB_DNODE_EXIT(db);
264 	return (error);
265 }
266 
267 int
268 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
269 {
270 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
271 	dnode_t *dn;
272 	int error;
273 
274 	DB_DNODE_ENTER(db);
275 	dn = DB_DNODE(db);
276 
277 	if (!DMU_OT_IS_VALID(type)) {
278 		error = SET_ERROR(EINVAL);
279 	} else if (dn->dn_bonus != db) {
280 		error = SET_ERROR(EINVAL);
281 	} else {
282 		dnode_setbonus_type(dn, type, tx);
283 		error = 0;
284 	}
285 
286 	DB_DNODE_EXIT(db);
287 	return (error);
288 }
289 
290 dmu_object_type_t
291 dmu_get_bonustype(dmu_buf_t *db_fake)
292 {
293 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
294 	dnode_t *dn;
295 	dmu_object_type_t type;
296 
297 	DB_DNODE_ENTER(db);
298 	dn = DB_DNODE(db);
299 	type = dn->dn_bonustype;
300 	DB_DNODE_EXIT(db);
301 
302 	return (type);
303 }
304 
305 int
306 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
307 {
308 	dnode_t *dn;
309 	int error;
310 
311 	error = dnode_hold(os, object, FTAG, &dn);
312 	dbuf_rm_spill(dn, tx);
313 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
314 	dnode_rm_spill(dn, tx);
315 	rw_exit(&dn->dn_struct_rwlock);
316 	dnode_rele(dn, FTAG);
317 	return (error);
318 }
319 
320 /*
321  * returns ENOENT, EIO, or 0.
322  */
323 int
324 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
325 {
326 	dnode_t *dn;
327 	dmu_buf_impl_t *db;
328 	int error;
329 
330 	error = dnode_hold(os, object, FTAG, &dn);
331 	if (error)
332 		return (error);
333 
334 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
335 	if (dn->dn_bonus == NULL) {
336 		rw_exit(&dn->dn_struct_rwlock);
337 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
338 		if (dn->dn_bonus == NULL)
339 			dbuf_create_bonus(dn);
340 	}
341 	db = dn->dn_bonus;
342 
343 	/* as long as the bonus buf is held, the dnode will be held */
344 	if (refcount_add(&db->db_holds, tag) == 1) {
345 		VERIFY(dnode_add_ref(dn, db));
346 		atomic_inc_32(&dn->dn_dbufs_count);
347 	}
348 
349 	/*
350 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
351 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
352 	 * a dnode hold for every dbuf.
353 	 */
354 	rw_exit(&dn->dn_struct_rwlock);
355 
356 	dnode_rele(dn, FTAG);
357 
358 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
359 
360 	*dbp = &db->db;
361 	return (0);
362 }
363 
364 /*
365  * returns ENOENT, EIO, or 0.
366  *
367  * This interface will allocate a blank spill dbuf when a spill blk
368  * doesn't already exist on the dnode.
369  *
370  * if you only want to find an already existing spill db, then
371  * dmu_spill_hold_existing() should be used.
372  */
373 int
374 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
375 {
376 	dmu_buf_impl_t *db = NULL;
377 	int err;
378 
379 	if ((flags & DB_RF_HAVESTRUCT) == 0)
380 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
381 
382 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
383 
384 	if ((flags & DB_RF_HAVESTRUCT) == 0)
385 		rw_exit(&dn->dn_struct_rwlock);
386 
387 	ASSERT(db != NULL);
388 	err = dbuf_read(db, NULL, flags);
389 	if (err == 0)
390 		*dbp = &db->db;
391 	else
392 		dbuf_rele(db, tag);
393 	return (err);
394 }
395 
396 int
397 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
398 {
399 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
400 	dnode_t *dn;
401 	int err;
402 
403 	DB_DNODE_ENTER(db);
404 	dn = DB_DNODE(db);
405 
406 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
407 		err = SET_ERROR(EINVAL);
408 	} else {
409 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
410 
411 		if (!dn->dn_have_spill) {
412 			err = SET_ERROR(ENOENT);
413 		} else {
414 			err = dmu_spill_hold_by_dnode(dn,
415 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
416 		}
417 
418 		rw_exit(&dn->dn_struct_rwlock);
419 	}
420 
421 	DB_DNODE_EXIT(db);
422 	return (err);
423 }
424 
425 int
426 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
427 {
428 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
429 	dnode_t *dn;
430 	int err;
431 
432 	DB_DNODE_ENTER(db);
433 	dn = DB_DNODE(db);
434 	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
435 	DB_DNODE_EXIT(db);
436 
437 	return (err);
438 }
439 
440 /*
441  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
442  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
443  * and can induce severe lock contention when writing to several files
444  * whose dnodes are in the same block.
445  */
446 static int
447 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
448     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
449 {
450 	dmu_buf_t **dbp;
451 	uint64_t blkid, nblks, i;
452 	uint32_t dbuf_flags;
453 	int err;
454 	zio_t *zio;
455 
456 	ASSERT(length <= DMU_MAX_ACCESS);
457 
458 	/*
459 	 * Note: We directly notify the prefetch code of this read, so that
460 	 * we can tell it about the multi-block read.  dbuf_read() only knows
461 	 * about the one block it is accessing.
462 	 */
463 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
464 	    DB_RF_NOPREFETCH;
465 
466 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
467 	if (dn->dn_datablkshift) {
468 		int blkshift = dn->dn_datablkshift;
469 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
470 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
471 	} else {
472 		if (offset + length > dn->dn_datablksz) {
473 			zfs_panic_recover("zfs: accessing past end of object "
474 			    "%llx/%llx (size=%u access=%llu+%llu)",
475 			    (longlong_t)dn->dn_objset->
476 			    os_dsl_dataset->ds_object,
477 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
478 			    (longlong_t)offset, (longlong_t)length);
479 			rw_exit(&dn->dn_struct_rwlock);
480 			return (SET_ERROR(EIO));
481 		}
482 		nblks = 1;
483 	}
484 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
485 
486 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
487 	blkid = dbuf_whichblock(dn, 0, offset);
488 	for (i = 0; i < nblks; i++) {
489 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
490 		if (db == NULL) {
491 			rw_exit(&dn->dn_struct_rwlock);
492 			dmu_buf_rele_array(dbp, nblks, tag);
493 			zio_nowait(zio);
494 			return (SET_ERROR(EIO));
495 		}
496 
497 		/* initiate async i/o */
498 		if (read)
499 			(void) dbuf_read(db, zio, dbuf_flags);
500 		dbp[i] = &db->db;
501 	}
502 
503 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
504 	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
505 		dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
506 		    read && DNODE_IS_CACHEABLE(dn));
507 	}
508 	rw_exit(&dn->dn_struct_rwlock);
509 
510 	/* wait for async i/o */
511 	err = zio_wait(zio);
512 	if (err) {
513 		dmu_buf_rele_array(dbp, nblks, tag);
514 		return (err);
515 	}
516 
517 	/* wait for other io to complete */
518 	if (read) {
519 		for (i = 0; i < nblks; i++) {
520 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
521 			mutex_enter(&db->db_mtx);
522 			while (db->db_state == DB_READ ||
523 			    db->db_state == DB_FILL)
524 				cv_wait(&db->db_changed, &db->db_mtx);
525 			if (db->db_state == DB_UNCACHED)
526 				err = SET_ERROR(EIO);
527 			mutex_exit(&db->db_mtx);
528 			if (err) {
529 				dmu_buf_rele_array(dbp, nblks, tag);
530 				return (err);
531 			}
532 		}
533 	}
534 
535 	*numbufsp = nblks;
536 	*dbpp = dbp;
537 	return (0);
538 }
539 
540 static int
541 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
542     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
543 {
544 	dnode_t *dn;
545 	int err;
546 
547 	err = dnode_hold(os, object, FTAG, &dn);
548 	if (err)
549 		return (err);
550 
551 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
552 	    numbufsp, dbpp, DMU_READ_PREFETCH);
553 
554 	dnode_rele(dn, FTAG);
555 
556 	return (err);
557 }
558 
559 int
560 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
561     uint64_t length, boolean_t read, void *tag, int *numbufsp,
562     dmu_buf_t ***dbpp)
563 {
564 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
565 	dnode_t *dn;
566 	int err;
567 
568 	DB_DNODE_ENTER(db);
569 	dn = DB_DNODE(db);
570 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
571 	    numbufsp, dbpp, DMU_READ_PREFETCH);
572 	DB_DNODE_EXIT(db);
573 
574 	return (err);
575 }
576 
577 void
578 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
579 {
580 	int i;
581 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
582 
583 	if (numbufs == 0)
584 		return;
585 
586 	for (i = 0; i < numbufs; i++) {
587 		if (dbp[i])
588 			dbuf_rele(dbp[i], tag);
589 	}
590 
591 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
592 }
593 
594 /*
595  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
596  * indirect blocks prefeteched will be those that point to the blocks containing
597  * the data starting at offset, and continuing to offset + len.
598  *
599  * Note that if the indirect blocks above the blocks being prefetched are not in
600  * cache, they will be asychronously read in.
601  */
602 void
603 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
604     uint64_t len, zio_priority_t pri)
605 {
606 	dnode_t *dn;
607 	uint64_t blkid;
608 	int nblks, err;
609 
610 	if (len == 0) {  /* they're interested in the bonus buffer */
611 		dn = DMU_META_DNODE(os);
612 
613 		if (object == 0 || object >= DN_MAX_OBJECT)
614 			return;
615 
616 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
617 		blkid = dbuf_whichblock(dn, level,
618 		    object * sizeof (dnode_phys_t));
619 		dbuf_prefetch(dn, level, blkid, pri, 0);
620 		rw_exit(&dn->dn_struct_rwlock);
621 		return;
622 	}
623 
624 	/*
625 	 * XXX - Note, if the dnode for the requested object is not
626 	 * already cached, we will do a *synchronous* read in the
627 	 * dnode_hold() call.  The same is true for any indirects.
628 	 */
629 	err = dnode_hold(os, object, FTAG, &dn);
630 	if (err != 0)
631 		return;
632 
633 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
634 	/*
635 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
636 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
637 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
638 	 * offset)  is the first.  Then the number we need to prefetch is the
639 	 * last - first + 1.
640 	 */
641 	if (level > 0 || dn->dn_datablkshift != 0) {
642 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
643 		    dbuf_whichblock(dn, level, offset) + 1;
644 	} else {
645 		nblks = (offset < dn->dn_datablksz);
646 	}
647 
648 	if (nblks != 0) {
649 		blkid = dbuf_whichblock(dn, level, offset);
650 		for (int i = 0; i < nblks; i++)
651 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
652 	}
653 
654 	rw_exit(&dn->dn_struct_rwlock);
655 
656 	dnode_rele(dn, FTAG);
657 }
658 
659 /*
660  * Get the next "chunk" of file data to free.  We traverse the file from
661  * the end so that the file gets shorter over time (if we crashes in the
662  * middle, this will leave us in a better state).  We find allocated file
663  * data by simply searching the allocated level 1 indirects.
664  *
665  * On input, *start should be the first offset that does not need to be
666  * freed (e.g. "offset + length").  On return, *start will be the first
667  * offset that should be freed.
668  */
669 static int
670 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
671 {
672 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
673 	/* bytes of data covered by a level-1 indirect block */
674 	uint64_t iblkrange =
675 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
676 
677 	ASSERT3U(minimum, <=, *start);
678 
679 	if (*start - minimum <= iblkrange * maxblks) {
680 		*start = minimum;
681 		return (0);
682 	}
683 	ASSERT(ISP2(iblkrange));
684 
685 	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
686 		int err;
687 
688 		/*
689 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
690 		 * indirect block at or before the input offset.  We must
691 		 * decrement *start so that it is at the end of the region
692 		 * to search.
693 		 */
694 		(*start)--;
695 		err = dnode_next_offset(dn,
696 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
697 
698 		/* if there are no indirect blocks before start, we are done */
699 		if (err == ESRCH) {
700 			*start = minimum;
701 			break;
702 		} else if (err != 0) {
703 			return (err);
704 		}
705 
706 		/* set start to the beginning of this L1 indirect */
707 		*start = P2ALIGN(*start, iblkrange);
708 	}
709 	if (*start < minimum)
710 		*start = minimum;
711 	return (0);
712 }
713 
714 /*
715  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
716  * otherwise return false.
717  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
718  */
719 /*ARGSUSED*/
720 static boolean_t
721 dmu_objset_zfs_unmounting(objset_t *os)
722 {
723 #ifdef _KERNEL
724 	if (dmu_objset_type(os) == DMU_OST_ZFS)
725 		return (zfs_get_vfs_flag_unmounted(os));
726 #endif
727 	return (B_FALSE);
728 }
729 
730 static int
731 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
732     uint64_t length)
733 {
734 	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
735 	int err;
736 	uint64_t dirty_frees_threshold;
737 	dsl_pool_t *dp = dmu_objset_pool(os);
738 
739 	if (offset >= object_size)
740 		return (0);
741 
742 	if (zfs_per_txg_dirty_frees_percent <= 100)
743 		dirty_frees_threshold =
744 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
745 	else
746 		dirty_frees_threshold = zfs_dirty_data_max / 4;
747 
748 	if (length == DMU_OBJECT_END || offset + length > object_size)
749 		length = object_size - offset;
750 
751 	while (length != 0) {
752 		uint64_t chunk_end, chunk_begin, chunk_len;
753 		uint64_t long_free_dirty_all_txgs = 0;
754 		dmu_tx_t *tx;
755 
756 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
757 			return (SET_ERROR(EINTR));
758 
759 		chunk_end = chunk_begin = offset + length;
760 
761 		/* move chunk_begin backwards to the beginning of this chunk */
762 		err = get_next_chunk(dn, &chunk_begin, offset);
763 		if (err)
764 			return (err);
765 		ASSERT3U(chunk_begin, >=, offset);
766 		ASSERT3U(chunk_begin, <=, chunk_end);
767 
768 		chunk_len = chunk_end - chunk_begin;
769 
770 		mutex_enter(&dp->dp_lock);
771 		for (int t = 0; t < TXG_SIZE; t++) {
772 			long_free_dirty_all_txgs +=
773 			    dp->dp_long_free_dirty_pertxg[t];
774 		}
775 		mutex_exit(&dp->dp_lock);
776 
777 		/*
778 		 * To avoid filling up a TXG with just frees wait for
779 		 * the next TXG to open before freeing more chunks if
780 		 * we have reached the threshold of frees
781 		 */
782 		if (dirty_frees_threshold != 0 &&
783 		    long_free_dirty_all_txgs >= dirty_frees_threshold) {
784 			txg_wait_open(dp, 0);
785 			continue;
786 		}
787 
788 		tx = dmu_tx_create(os);
789 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
790 
791 		/*
792 		 * Mark this transaction as typically resulting in a net
793 		 * reduction in space used.
794 		 */
795 		dmu_tx_mark_netfree(tx);
796 		err = dmu_tx_assign(tx, TXG_WAIT);
797 		if (err) {
798 			dmu_tx_abort(tx);
799 			return (err);
800 		}
801 
802 		mutex_enter(&dp->dp_lock);
803 		dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] +=
804 		    chunk_len;
805 		mutex_exit(&dp->dp_lock);
806 		DTRACE_PROBE3(free__long__range,
807 		    uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len,
808 		    uint64_t, dmu_tx_get_txg(tx));
809 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
810 		dmu_tx_commit(tx);
811 
812 		length -= chunk_len;
813 	}
814 	return (0);
815 }
816 
817 int
818 dmu_free_long_range(objset_t *os, uint64_t object,
819     uint64_t offset, uint64_t length)
820 {
821 	dnode_t *dn;
822 	int err;
823 
824 	err = dnode_hold(os, object, FTAG, &dn);
825 	if (err != 0)
826 		return (err);
827 	err = dmu_free_long_range_impl(os, dn, offset, length);
828 
829 	/*
830 	 * It is important to zero out the maxblkid when freeing the entire
831 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
832 	 * will take the fast path, and (b) dnode_reallocate() can verify
833 	 * that the entire file has been freed.
834 	 */
835 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
836 		dn->dn_maxblkid = 0;
837 
838 	dnode_rele(dn, FTAG);
839 	return (err);
840 }
841 
842 int
843 dmu_free_long_object(objset_t *os, uint64_t object)
844 {
845 	dmu_tx_t *tx;
846 	int err;
847 
848 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
849 	if (err != 0)
850 		return (err);
851 
852 	tx = dmu_tx_create(os);
853 	dmu_tx_hold_bonus(tx, object);
854 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
855 	dmu_tx_mark_netfree(tx);
856 	err = dmu_tx_assign(tx, TXG_WAIT);
857 	if (err == 0) {
858 		err = dmu_object_free(os, object, tx);
859 		dmu_tx_commit(tx);
860 	} else {
861 		dmu_tx_abort(tx);
862 	}
863 
864 	return (err);
865 }
866 
867 int
868 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
869     uint64_t size, dmu_tx_t *tx)
870 {
871 	dnode_t *dn;
872 	int err = dnode_hold(os, object, FTAG, &dn);
873 	if (err)
874 		return (err);
875 	ASSERT(offset < UINT64_MAX);
876 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
877 	dnode_free_range(dn, offset, size, tx);
878 	dnode_rele(dn, FTAG);
879 	return (0);
880 }
881 
882 static int
883 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
884     void *buf, uint32_t flags)
885 {
886 	dmu_buf_t **dbp;
887 	int numbufs, err = 0;
888 
889 	/*
890 	 * Deal with odd block sizes, where there can't be data past the first
891 	 * block.  If we ever do the tail block optimization, we will need to
892 	 * handle that here as well.
893 	 */
894 	if (dn->dn_maxblkid == 0) {
895 		int newsz = offset > dn->dn_datablksz ? 0 :
896 		    MIN(size, dn->dn_datablksz - offset);
897 		bzero((char *)buf + newsz, size - newsz);
898 		size = newsz;
899 	}
900 
901 	while (size > 0) {
902 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
903 		int i;
904 
905 		/*
906 		 * NB: we could do this block-at-a-time, but it's nice
907 		 * to be reading in parallel.
908 		 */
909 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
910 		    TRUE, FTAG, &numbufs, &dbp, flags);
911 		if (err)
912 			break;
913 
914 		for (i = 0; i < numbufs; i++) {
915 			int tocpy;
916 			int bufoff;
917 			dmu_buf_t *db = dbp[i];
918 
919 			ASSERT(size > 0);
920 
921 			bufoff = offset - db->db_offset;
922 			tocpy = (int)MIN(db->db_size - bufoff, size);
923 
924 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
925 
926 			offset += tocpy;
927 			size -= tocpy;
928 			buf = (char *)buf + tocpy;
929 		}
930 		dmu_buf_rele_array(dbp, numbufs, FTAG);
931 	}
932 	return (err);
933 }
934 
935 int
936 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
937     void *buf, uint32_t flags)
938 {
939 	dnode_t *dn;
940 	int err;
941 
942 	err = dnode_hold(os, object, FTAG, &dn);
943 	if (err != 0)
944 		return (err);
945 
946 	err = dmu_read_impl(dn, offset, size, buf, flags);
947 	dnode_rele(dn, FTAG);
948 	return (err);
949 }
950 
951 int
952 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
953     uint32_t flags)
954 {
955 	return (dmu_read_impl(dn, offset, size, buf, flags));
956 }
957 
958 static void
959 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
960     const void *buf, dmu_tx_t *tx)
961 {
962 	int i;
963 
964 	for (i = 0; i < numbufs; i++) {
965 		int tocpy;
966 		int bufoff;
967 		dmu_buf_t *db = dbp[i];
968 
969 		ASSERT(size > 0);
970 
971 		bufoff = offset - db->db_offset;
972 		tocpy = (int)MIN(db->db_size - bufoff, size);
973 
974 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
975 
976 		if (tocpy == db->db_size)
977 			dmu_buf_will_fill(db, tx);
978 		else
979 			dmu_buf_will_dirty(db, tx);
980 
981 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
982 
983 		if (tocpy == db->db_size)
984 			dmu_buf_fill_done(db, tx);
985 
986 		offset += tocpy;
987 		size -= tocpy;
988 		buf = (char *)buf + tocpy;
989 	}
990 }
991 
992 void
993 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
994     const void *buf, dmu_tx_t *tx)
995 {
996 	dmu_buf_t **dbp;
997 	int numbufs;
998 
999 	if (size == 0)
1000 		return;
1001 
1002 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1003 	    FALSE, FTAG, &numbufs, &dbp));
1004 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1005 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1006 }
1007 
1008 void
1009 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1010     const void *buf, dmu_tx_t *tx)
1011 {
1012 	dmu_buf_t **dbp;
1013 	int numbufs;
1014 
1015 	if (size == 0)
1016 		return;
1017 
1018 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1019 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1020 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1021 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1022 }
1023 
1024 static int
1025 dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn,
1026     uint64_t last_removal_txg, uint64_t offset)
1027 {
1028 	uint64_t l1blkid = dbuf_whichblock(dn, 1, offset);
1029 	int err = 0;
1030 
1031 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1032 	dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1033 	ASSERT3P(dbuf, !=, NULL);
1034 
1035 	/*
1036 	 * If the block hasn't been written yet, this default will ensure
1037 	 * we don't try to remap it.
1038 	 */
1039 	uint64_t birth = UINT64_MAX;
1040 	ASSERT3U(last_removal_txg, !=, UINT64_MAX);
1041 	if (dbuf->db_blkptr != NULL)
1042 		birth = dbuf->db_blkptr->blk_birth;
1043 	rw_exit(&dn->dn_struct_rwlock);
1044 
1045 	/*
1046 	 * If this L1 was already written after the last removal, then we've
1047 	 * already tried to remap it.
1048 	 */
1049 	if (birth <= last_removal_txg &&
1050 	    dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 &&
1051 	    dbuf_can_remap(dbuf)) {
1052 		dmu_tx_t *tx = dmu_tx_create(os);
1053 		dmu_tx_hold_remap_l1indirect(tx, dn->dn_object);
1054 		err = dmu_tx_assign(tx, TXG_WAIT);
1055 		if (err == 0) {
1056 			(void) dbuf_dirty(dbuf, tx);
1057 			dmu_tx_commit(tx);
1058 		} else {
1059 			dmu_tx_abort(tx);
1060 		}
1061 	}
1062 
1063 	dbuf_rele(dbuf, FTAG);
1064 
1065 	delay(zfs_object_remap_one_indirect_delay_ticks);
1066 
1067 	return (err);
1068 }
1069 
1070 /*
1071  * Remap all blockpointers in the object, if possible, so that they reference
1072  * only concrete vdevs.
1073  *
1074  * To do this, iterate over the L0 blockpointers and remap any that reference
1075  * an indirect vdev. Note that we only examine L0 blockpointers; since we
1076  * cannot guarantee that we can remap all blockpointer anyways (due to split
1077  * blocks), we do not want to make the code unnecessarily complicated to
1078  * catch the unlikely case that there is an L1 block on an indirect vdev that
1079  * contains no indirect blockpointers.
1080  */
1081 int
1082 dmu_object_remap_indirects(objset_t *os, uint64_t object,
1083     uint64_t last_removal_txg)
1084 {
1085 	uint64_t offset, l1span;
1086 	int err;
1087 	dnode_t *dn;
1088 
1089 	err = dnode_hold(os, object, FTAG, &dn);
1090 	if (err != 0) {
1091 		return (err);
1092 	}
1093 
1094 	if (dn->dn_nlevels <= 1) {
1095 		if (issig(JUSTLOOKING) && issig(FORREAL)) {
1096 			err = SET_ERROR(EINTR);
1097 		}
1098 
1099 		/*
1100 		 * If the dnode has no indirect blocks, we cannot dirty them.
1101 		 * We still want to remap the blkptr(s) in the dnode if
1102 		 * appropriate, so mark it as dirty.
1103 		 */
1104 		if (err == 0 && dnode_needs_remap(dn)) {
1105 			dmu_tx_t *tx = dmu_tx_create(os);
1106 			dmu_tx_hold_bonus(tx, dn->dn_object);
1107 			if ((err = dmu_tx_assign(tx, TXG_WAIT)) == 0) {
1108 				dnode_setdirty(dn, tx);
1109 				dmu_tx_commit(tx);
1110 			} else {
1111 				dmu_tx_abort(tx);
1112 			}
1113 		}
1114 
1115 		dnode_rele(dn, FTAG);
1116 		return (err);
1117 	}
1118 
1119 	offset = 0;
1120 	l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT +
1121 	    dn->dn_datablkshift);
1122 	/*
1123 	 * Find the next L1 indirect that is not a hole.
1124 	 */
1125 	while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) {
1126 		if (issig(JUSTLOOKING) && issig(FORREAL)) {
1127 			err = SET_ERROR(EINTR);
1128 			break;
1129 		}
1130 		if ((err = dmu_object_remap_one_indirect(os, dn,
1131 		    last_removal_txg, offset)) != 0) {
1132 			break;
1133 		}
1134 		offset += l1span;
1135 	}
1136 
1137 	dnode_rele(dn, FTAG);
1138 	return (err);
1139 }
1140 
1141 void
1142 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1143     dmu_tx_t *tx)
1144 {
1145 	dmu_buf_t **dbp;
1146 	int numbufs, i;
1147 
1148 	if (size == 0)
1149 		return;
1150 
1151 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1152 	    FALSE, FTAG, &numbufs, &dbp));
1153 
1154 	for (i = 0; i < numbufs; i++) {
1155 		dmu_buf_t *db = dbp[i];
1156 
1157 		dmu_buf_will_not_fill(db, tx);
1158 	}
1159 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1160 }
1161 
1162 void
1163 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1164     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1165     int compressed_size, int byteorder, dmu_tx_t *tx)
1166 {
1167 	dmu_buf_t *db;
1168 
1169 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1170 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1171 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1172 	    FTAG, &db));
1173 
1174 	dmu_buf_write_embedded(db,
1175 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1176 	    uncompressed_size, compressed_size, byteorder, tx);
1177 
1178 	dmu_buf_rele(db, FTAG);
1179 }
1180 
1181 /*
1182  * DMU support for xuio
1183  */
1184 kstat_t *xuio_ksp = NULL;
1185 
1186 int
1187 dmu_xuio_init(xuio_t *xuio, int nblk)
1188 {
1189 	dmu_xuio_t *priv;
1190 	uio_t *uio = &xuio->xu_uio;
1191 
1192 	uio->uio_iovcnt = nblk;
1193 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
1194 
1195 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
1196 	priv->cnt = nblk;
1197 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
1198 	priv->iovp = uio->uio_iov;
1199 	XUIO_XUZC_PRIV(xuio) = priv;
1200 
1201 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
1202 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1203 	else
1204 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1205 
1206 	return (0);
1207 }
1208 
1209 void
1210 dmu_xuio_fini(xuio_t *xuio)
1211 {
1212 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1213 	int nblk = priv->cnt;
1214 
1215 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1216 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1217 	kmem_free(priv, sizeof (dmu_xuio_t));
1218 
1219 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
1220 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1221 	else
1222 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1223 }
1224 
1225 /*
1226  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1227  * and increase priv->next by 1.
1228  */
1229 int
1230 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1231 {
1232 	struct iovec *iov;
1233 	uio_t *uio = &xuio->xu_uio;
1234 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1235 	int i = priv->next++;
1236 
1237 	ASSERT(i < priv->cnt);
1238 	ASSERT(off + n <= arc_buf_lsize(abuf));
1239 	iov = uio->uio_iov + i;
1240 	iov->iov_base = (char *)abuf->b_data + off;
1241 	iov->iov_len = n;
1242 	priv->bufs[i] = abuf;
1243 	return (0);
1244 }
1245 
1246 int
1247 dmu_xuio_cnt(xuio_t *xuio)
1248 {
1249 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1250 	return (priv->cnt);
1251 }
1252 
1253 arc_buf_t *
1254 dmu_xuio_arcbuf(xuio_t *xuio, int i)
1255 {
1256 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1257 
1258 	ASSERT(i < priv->cnt);
1259 	return (priv->bufs[i]);
1260 }
1261 
1262 void
1263 dmu_xuio_clear(xuio_t *xuio, int i)
1264 {
1265 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1266 
1267 	ASSERT(i < priv->cnt);
1268 	priv->bufs[i] = NULL;
1269 }
1270 
1271 static void
1272 xuio_stat_init(void)
1273 {
1274 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1275 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1276 	    KSTAT_FLAG_VIRTUAL);
1277 	if (xuio_ksp != NULL) {
1278 		xuio_ksp->ks_data = &xuio_stats;
1279 		kstat_install(xuio_ksp);
1280 	}
1281 }
1282 
1283 static void
1284 xuio_stat_fini(void)
1285 {
1286 	if (xuio_ksp != NULL) {
1287 		kstat_delete(xuio_ksp);
1288 		xuio_ksp = NULL;
1289 	}
1290 }
1291 
1292 void
1293 xuio_stat_wbuf_copied(void)
1294 {
1295 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1296 }
1297 
1298 void
1299 xuio_stat_wbuf_nocopy(void)
1300 {
1301 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1302 }
1303 
1304 #ifdef _KERNEL
1305 static int
1306 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1307 {
1308 	dmu_buf_t **dbp;
1309 	int numbufs, i, err;
1310 	xuio_t *xuio = NULL;
1311 
1312 	/*
1313 	 * NB: we could do this block-at-a-time, but it's nice
1314 	 * to be reading in parallel.
1315 	 */
1316 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1317 	    TRUE, FTAG, &numbufs, &dbp, 0);
1318 	if (err)
1319 		return (err);
1320 
1321 	if (uio->uio_extflg == UIO_XUIO)
1322 		xuio = (xuio_t *)uio;
1323 
1324 	for (i = 0; i < numbufs; i++) {
1325 		int tocpy;
1326 		int bufoff;
1327 		dmu_buf_t *db = dbp[i];
1328 
1329 		ASSERT(size > 0);
1330 
1331 		bufoff = uio->uio_loffset - db->db_offset;
1332 		tocpy = (int)MIN(db->db_size - bufoff, size);
1333 
1334 		if (xuio) {
1335 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1336 			arc_buf_t *dbuf_abuf = dbi->db_buf;
1337 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1338 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1339 			if (!err) {
1340 				uio->uio_resid -= tocpy;
1341 				uio->uio_loffset += tocpy;
1342 			}
1343 
1344 			if (abuf == dbuf_abuf)
1345 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1346 			else
1347 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1348 		} else {
1349 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1350 			    UIO_READ, uio);
1351 		}
1352 		if (err)
1353 			break;
1354 
1355 		size -= tocpy;
1356 	}
1357 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1358 
1359 	return (err);
1360 }
1361 
1362 /*
1363  * Read 'size' bytes into the uio buffer.
1364  * From object zdb->db_object.
1365  * Starting at offset uio->uio_loffset.
1366  *
1367  * If the caller already has a dbuf in the target object
1368  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1369  * because we don't have to find the dnode_t for the object.
1370  */
1371 int
1372 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1373 {
1374 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1375 	dnode_t *dn;
1376 	int err;
1377 
1378 	if (size == 0)
1379 		return (0);
1380 
1381 	DB_DNODE_ENTER(db);
1382 	dn = DB_DNODE(db);
1383 	err = dmu_read_uio_dnode(dn, uio, size);
1384 	DB_DNODE_EXIT(db);
1385 
1386 	return (err);
1387 }
1388 
1389 /*
1390  * Read 'size' bytes into the uio buffer.
1391  * From the specified object
1392  * Starting at offset uio->uio_loffset.
1393  */
1394 int
1395 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1396 {
1397 	dnode_t *dn;
1398 	int err;
1399 
1400 	if (size == 0)
1401 		return (0);
1402 
1403 	err = dnode_hold(os, object, FTAG, &dn);
1404 	if (err)
1405 		return (err);
1406 
1407 	err = dmu_read_uio_dnode(dn, uio, size);
1408 
1409 	dnode_rele(dn, FTAG);
1410 
1411 	return (err);
1412 }
1413 
1414 static int
1415 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1416 {
1417 	dmu_buf_t **dbp;
1418 	int numbufs;
1419 	int err = 0;
1420 	int i;
1421 
1422 	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1423 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1424 	if (err)
1425 		return (err);
1426 
1427 	for (i = 0; i < numbufs; i++) {
1428 		int tocpy;
1429 		int bufoff;
1430 		dmu_buf_t *db = dbp[i];
1431 
1432 		ASSERT(size > 0);
1433 
1434 		bufoff = uio->uio_loffset - db->db_offset;
1435 		tocpy = (int)MIN(db->db_size - bufoff, size);
1436 
1437 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1438 
1439 		if (tocpy == db->db_size)
1440 			dmu_buf_will_fill(db, tx);
1441 		else
1442 			dmu_buf_will_dirty(db, tx);
1443 
1444 		/*
1445 		 * XXX uiomove could block forever (eg. nfs-backed
1446 		 * pages).  There needs to be a uiolockdown() function
1447 		 * to lock the pages in memory, so that uiomove won't
1448 		 * block.
1449 		 */
1450 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1451 		    UIO_WRITE, uio);
1452 
1453 		if (tocpy == db->db_size)
1454 			dmu_buf_fill_done(db, tx);
1455 
1456 		if (err)
1457 			break;
1458 
1459 		size -= tocpy;
1460 	}
1461 
1462 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1463 	return (err);
1464 }
1465 
1466 /*
1467  * Write 'size' bytes from the uio buffer.
1468  * To object zdb->db_object.
1469  * Starting at offset uio->uio_loffset.
1470  *
1471  * If the caller already has a dbuf in the target object
1472  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1473  * because we don't have to find the dnode_t for the object.
1474  */
1475 int
1476 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1477     dmu_tx_t *tx)
1478 {
1479 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1480 	dnode_t *dn;
1481 	int err;
1482 
1483 	if (size == 0)
1484 		return (0);
1485 
1486 	DB_DNODE_ENTER(db);
1487 	dn = DB_DNODE(db);
1488 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1489 	DB_DNODE_EXIT(db);
1490 
1491 	return (err);
1492 }
1493 
1494 /*
1495  * Write 'size' bytes from the uio buffer.
1496  * To the specified object.
1497  * Starting at offset uio->uio_loffset.
1498  */
1499 int
1500 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1501     dmu_tx_t *tx)
1502 {
1503 	dnode_t *dn;
1504 	int err;
1505 
1506 	if (size == 0)
1507 		return (0);
1508 
1509 	err = dnode_hold(os, object, FTAG, &dn);
1510 	if (err)
1511 		return (err);
1512 
1513 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1514 
1515 	dnode_rele(dn, FTAG);
1516 
1517 	return (err);
1518 }
1519 
1520 int
1521 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1522     page_t *pp, dmu_tx_t *tx)
1523 {
1524 	dmu_buf_t **dbp;
1525 	int numbufs, i;
1526 	int err;
1527 
1528 	if (size == 0)
1529 		return (0);
1530 
1531 	err = dmu_buf_hold_array(os, object, offset, size,
1532 	    FALSE, FTAG, &numbufs, &dbp);
1533 	if (err)
1534 		return (err);
1535 
1536 	for (i = 0; i < numbufs; i++) {
1537 		int tocpy, copied, thiscpy;
1538 		int bufoff;
1539 		dmu_buf_t *db = dbp[i];
1540 		caddr_t va;
1541 
1542 		ASSERT(size > 0);
1543 		ASSERT3U(db->db_size, >=, PAGESIZE);
1544 
1545 		bufoff = offset - db->db_offset;
1546 		tocpy = (int)MIN(db->db_size - bufoff, size);
1547 
1548 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1549 
1550 		if (tocpy == db->db_size)
1551 			dmu_buf_will_fill(db, tx);
1552 		else
1553 			dmu_buf_will_dirty(db, tx);
1554 
1555 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1556 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1557 			thiscpy = MIN(PAGESIZE, tocpy - copied);
1558 			va = zfs_map_page(pp, S_READ);
1559 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1560 			zfs_unmap_page(pp, va);
1561 			pp = pp->p_next;
1562 			bufoff += PAGESIZE;
1563 		}
1564 
1565 		if (tocpy == db->db_size)
1566 			dmu_buf_fill_done(db, tx);
1567 
1568 		offset += tocpy;
1569 		size -= tocpy;
1570 	}
1571 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1572 	return (err);
1573 }
1574 #endif
1575 
1576 /*
1577  * Allocate a loaned anonymous arc buffer.
1578  */
1579 arc_buf_t *
1580 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1581 {
1582 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1583 
1584 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1585 }
1586 
1587 /*
1588  * Free a loaned arc buffer.
1589  */
1590 void
1591 dmu_return_arcbuf(arc_buf_t *buf)
1592 {
1593 	arc_return_buf(buf, FTAG);
1594 	arc_buf_destroy(buf, FTAG);
1595 }
1596 
1597 /*
1598  * When possible directly assign passed loaned arc buffer to a dbuf.
1599  * If this is not possible copy the contents of passed arc buf via
1600  * dmu_write().
1601  */
1602 void
1603 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1604     dmu_tx_t *tx)
1605 {
1606 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1607 	dnode_t *dn;
1608 	dmu_buf_impl_t *db;
1609 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1610 	uint64_t blkid;
1611 
1612 	DB_DNODE_ENTER(dbuf);
1613 	dn = DB_DNODE(dbuf);
1614 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1615 	blkid = dbuf_whichblock(dn, 0, offset);
1616 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1617 	rw_exit(&dn->dn_struct_rwlock);
1618 	DB_DNODE_EXIT(dbuf);
1619 
1620 	/*
1621 	 * We can only assign if the offset is aligned, the arc buf is the
1622 	 * same size as the dbuf, and the dbuf is not metadata.
1623 	 */
1624 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1625 		dbuf_assign_arcbuf(db, buf, tx);
1626 		dbuf_rele(db, FTAG);
1627 	} else {
1628 		objset_t *os;
1629 		uint64_t object;
1630 
1631 		/* compressed bufs must always be assignable to their dbuf */
1632 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1633 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1634 
1635 		DB_DNODE_ENTER(dbuf);
1636 		dn = DB_DNODE(dbuf);
1637 		os = dn->dn_objset;
1638 		object = dn->dn_object;
1639 		DB_DNODE_EXIT(dbuf);
1640 
1641 		dbuf_rele(db, FTAG);
1642 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1643 		dmu_return_arcbuf(buf);
1644 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1645 	}
1646 }
1647 
1648 typedef struct {
1649 	dbuf_dirty_record_t	*dsa_dr;
1650 	dmu_sync_cb_t		*dsa_done;
1651 	zgd_t			*dsa_zgd;
1652 	dmu_tx_t		*dsa_tx;
1653 } dmu_sync_arg_t;
1654 
1655 /* ARGSUSED */
1656 static void
1657 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1658 {
1659 	dmu_sync_arg_t *dsa = varg;
1660 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1661 	blkptr_t *bp = zio->io_bp;
1662 
1663 	if (zio->io_error == 0) {
1664 		if (BP_IS_HOLE(bp)) {
1665 			/*
1666 			 * A block of zeros may compress to a hole, but the
1667 			 * block size still needs to be known for replay.
1668 			 */
1669 			BP_SET_LSIZE(bp, db->db_size);
1670 		} else if (!BP_IS_EMBEDDED(bp)) {
1671 			ASSERT(BP_GET_LEVEL(bp) == 0);
1672 			bp->blk_fill = 1;
1673 		}
1674 	}
1675 }
1676 
1677 static void
1678 dmu_sync_late_arrival_ready(zio_t *zio)
1679 {
1680 	dmu_sync_ready(zio, NULL, zio->io_private);
1681 }
1682 
1683 /* ARGSUSED */
1684 static void
1685 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1686 {
1687 	dmu_sync_arg_t *dsa = varg;
1688 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1689 	dmu_buf_impl_t *db = dr->dr_dbuf;
1690 
1691 	mutex_enter(&db->db_mtx);
1692 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1693 	if (zio->io_error == 0) {
1694 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1695 		if (dr->dt.dl.dr_nopwrite) {
1696 			blkptr_t *bp = zio->io_bp;
1697 			blkptr_t *bp_orig = &zio->io_bp_orig;
1698 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1699 
1700 			ASSERT(BP_EQUAL(bp, bp_orig));
1701 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1702 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1703 			ASSERT(zio_checksum_table[chksum].ci_flags &
1704 			    ZCHECKSUM_FLAG_NOPWRITE);
1705 		}
1706 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1707 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1708 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1709 
1710 		/*
1711 		 * Old style holes are filled with all zeros, whereas
1712 		 * new-style holes maintain their lsize, type, level,
1713 		 * and birth time (see zio_write_compress). While we
1714 		 * need to reset the BP_SET_LSIZE() call that happened
1715 		 * in dmu_sync_ready for old style holes, we do *not*
1716 		 * want to wipe out the information contained in new
1717 		 * style holes. Thus, only zero out the block pointer if
1718 		 * it's an old style hole.
1719 		 */
1720 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1721 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1722 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1723 	} else {
1724 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1725 	}
1726 	cv_broadcast(&db->db_changed);
1727 	mutex_exit(&db->db_mtx);
1728 
1729 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1730 
1731 	kmem_free(dsa, sizeof (*dsa));
1732 }
1733 
1734 static void
1735 dmu_sync_late_arrival_done(zio_t *zio)
1736 {
1737 	blkptr_t *bp = zio->io_bp;
1738 	dmu_sync_arg_t *dsa = zio->io_private;
1739 	blkptr_t *bp_orig = &zio->io_bp_orig;
1740 
1741 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1742 		ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1743 		ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1744 		ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1745 		ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1746 		zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1747 	}
1748 
1749 	dmu_tx_commit(dsa->dsa_tx);
1750 
1751 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1752 
1753 	abd_put(zio->io_abd);
1754 	kmem_free(dsa, sizeof (*dsa));
1755 }
1756 
1757 static int
1758 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1759     zio_prop_t *zp, zbookmark_phys_t *zb)
1760 {
1761 	dmu_sync_arg_t *dsa;
1762 	dmu_tx_t *tx;
1763 
1764 	tx = dmu_tx_create(os);
1765 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1766 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1767 		dmu_tx_abort(tx);
1768 		/* Make zl_get_data do txg_waited_synced() */
1769 		return (SET_ERROR(EIO));
1770 	}
1771 
1772 	/*
1773 	 * In order to prevent the zgd's lwb from being free'd prior to
1774 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1775 	 * the lwb's "max txg" takes this tx's txg into account.
1776 	 */
1777 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1778 
1779 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1780 	dsa->dsa_dr = NULL;
1781 	dsa->dsa_done = done;
1782 	dsa->dsa_zgd = zgd;
1783 	dsa->dsa_tx = tx;
1784 
1785 	/*
1786 	 * Since we are currently syncing this txg, it's nontrivial to
1787 	 * determine what BP to nopwrite against, so we disable nopwrite.
1788 	 *
1789 	 * When syncing, the db_blkptr is initially the BP of the previous
1790 	 * txg.  We can not nopwrite against it because it will be changed
1791 	 * (this is similar to the non-late-arrival case where the dbuf is
1792 	 * dirty in a future txg).
1793 	 *
1794 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1795 	 * We can not nopwrite against it because although the BP will not
1796 	 * (typically) be changed, the data has not yet been persisted to this
1797 	 * location.
1798 	 *
1799 	 * Finally, when dbuf_write_done() is called, it is theoretically
1800 	 * possible to always nopwrite, because the data that was written in
1801 	 * this txg is the same data that we are trying to write.  However we
1802 	 * would need to check that this dbuf is not dirty in any future
1803 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1804 	 * don't nopwrite in this case.
1805 	 */
1806 	zp->zp_nopwrite = B_FALSE;
1807 
1808 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1809 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1810 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1811 	    dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1812 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1813 
1814 	return (0);
1815 }
1816 
1817 /*
1818  * Intent log support: sync the block associated with db to disk.
1819  * N.B. and XXX: the caller is responsible for making sure that the
1820  * data isn't changing while dmu_sync() is writing it.
1821  *
1822  * Return values:
1823  *
1824  *	EEXIST: this txg has already been synced, so there's nothing to do.
1825  *		The caller should not log the write.
1826  *
1827  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1828  *		The caller should not log the write.
1829  *
1830  *	EALREADY: this block is already in the process of being synced.
1831  *		The caller should track its progress (somehow).
1832  *
1833  *	EIO: could not do the I/O.
1834  *		The caller should do a txg_wait_synced().
1835  *
1836  *	0: the I/O has been initiated.
1837  *		The caller should log this blkptr in the done callback.
1838  *		It is possible that the I/O will fail, in which case
1839  *		the error will be reported to the done callback and
1840  *		propagated to pio from zio_done().
1841  */
1842 int
1843 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1844 {
1845 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1846 	objset_t *os = db->db_objset;
1847 	dsl_dataset_t *ds = os->os_dsl_dataset;
1848 	dbuf_dirty_record_t *dr;
1849 	dmu_sync_arg_t *dsa;
1850 	zbookmark_phys_t zb;
1851 	zio_prop_t zp;
1852 	dnode_t *dn;
1853 
1854 	ASSERT(pio != NULL);
1855 	ASSERT(txg != 0);
1856 
1857 	SET_BOOKMARK(&zb, ds->ds_object,
1858 	    db->db.db_object, db->db_level, db->db_blkid);
1859 
1860 	DB_DNODE_ENTER(db);
1861 	dn = DB_DNODE(db);
1862 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1863 	DB_DNODE_EXIT(db);
1864 
1865 	/*
1866 	 * If we're frozen (running ziltest), we always need to generate a bp.
1867 	 */
1868 	if (txg > spa_freeze_txg(os->os_spa))
1869 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1870 
1871 	/*
1872 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1873 	 * and us.  If we determine that this txg is not yet syncing,
1874 	 * but it begins to sync a moment later, that's OK because the
1875 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1876 	 */
1877 	mutex_enter(&db->db_mtx);
1878 
1879 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1880 		/*
1881 		 * This txg has already synced.  There's nothing to do.
1882 		 */
1883 		mutex_exit(&db->db_mtx);
1884 		return (SET_ERROR(EEXIST));
1885 	}
1886 
1887 	if (txg <= spa_syncing_txg(os->os_spa)) {
1888 		/*
1889 		 * This txg is currently syncing, so we can't mess with
1890 		 * the dirty record anymore; just write a new log block.
1891 		 */
1892 		mutex_exit(&db->db_mtx);
1893 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1894 	}
1895 
1896 	dr = db->db_last_dirty;
1897 	while (dr && dr->dr_txg != txg)
1898 		dr = dr->dr_next;
1899 
1900 	if (dr == NULL) {
1901 		/*
1902 		 * There's no dr for this dbuf, so it must have been freed.
1903 		 * There's no need to log writes to freed blocks, so we're done.
1904 		 */
1905 		mutex_exit(&db->db_mtx);
1906 		return (SET_ERROR(ENOENT));
1907 	}
1908 
1909 	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1910 
1911 	if (db->db_blkptr != NULL) {
1912 		/*
1913 		 * We need to fill in zgd_bp with the current blkptr so that
1914 		 * the nopwrite code can check if we're writing the same
1915 		 * data that's already on disk.  We can only nopwrite if we
1916 		 * are sure that after making the copy, db_blkptr will not
1917 		 * change until our i/o completes.  We ensure this by
1918 		 * holding the db_mtx, and only allowing nopwrite if the
1919 		 * block is not already dirty (see below).  This is verified
1920 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1921 		 * not changed.
1922 		 */
1923 		*zgd->zgd_bp = *db->db_blkptr;
1924 	}
1925 
1926 	/*
1927 	 * Assume the on-disk data is X, the current syncing data (in
1928 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1929 	 * in dmu_sync).
1930 	 *
1931 	 * We usually want to perform a nopwrite if X and Z are the
1932 	 * same.  However, if Y is different (i.e. the BP is going to
1933 	 * change before this write takes effect), then a nopwrite will
1934 	 * be incorrect - we would override with X, which could have
1935 	 * been freed when Y was written.
1936 	 *
1937 	 * (Note that this is not a concern when we are nop-writing from
1938 	 * syncing context, because X and Y must be identical, because
1939 	 * all previous txgs have been synced.)
1940 	 *
1941 	 * Therefore, we disable nopwrite if the current BP could change
1942 	 * before this TXG.  There are two ways it could change: by
1943 	 * being dirty (dr_next is non-NULL), or by being freed
1944 	 * (dnode_block_freed()).  This behavior is verified by
1945 	 * zio_done(), which VERIFYs that the override BP is identical
1946 	 * to the on-disk BP.
1947 	 */
1948 	DB_DNODE_ENTER(db);
1949 	dn = DB_DNODE(db);
1950 	if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1951 		zp.zp_nopwrite = B_FALSE;
1952 	DB_DNODE_EXIT(db);
1953 
1954 	ASSERT(dr->dr_txg == txg);
1955 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1956 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1957 		/*
1958 		 * We have already issued a sync write for this buffer,
1959 		 * or this buffer has already been synced.  It could not
1960 		 * have been dirtied since, or we would have cleared the state.
1961 		 */
1962 		mutex_exit(&db->db_mtx);
1963 		return (SET_ERROR(EALREADY));
1964 	}
1965 
1966 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1967 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1968 	mutex_exit(&db->db_mtx);
1969 
1970 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1971 	dsa->dsa_dr = dr;
1972 	dsa->dsa_done = done;
1973 	dsa->dsa_zgd = zgd;
1974 	dsa->dsa_tx = NULL;
1975 
1976 	zio_nowait(arc_write(pio, os->os_spa, txg,
1977 	    zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1978 	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1979 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1980 
1981 	return (0);
1982 }
1983 
1984 int
1985 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1986     dmu_tx_t *tx)
1987 {
1988 	dnode_t *dn;
1989 	int err;
1990 
1991 	err = dnode_hold(os, object, FTAG, &dn);
1992 	if (err)
1993 		return (err);
1994 	err = dnode_set_blksz(dn, size, ibs, tx);
1995 	dnode_rele(dn, FTAG);
1996 	return (err);
1997 }
1998 
1999 void
2000 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
2001     dmu_tx_t *tx)
2002 {
2003 	dnode_t *dn;
2004 
2005 	/*
2006 	 * Send streams include each object's checksum function.  This
2007 	 * check ensures that the receiving system can understand the
2008 	 * checksum function transmitted.
2009 	 */
2010 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2011 
2012 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
2013 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
2014 	dn->dn_checksum = checksum;
2015 	dnode_setdirty(dn, tx);
2016 	dnode_rele(dn, FTAG);
2017 }
2018 
2019 void
2020 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
2021     dmu_tx_t *tx)
2022 {
2023 	dnode_t *dn;
2024 
2025 	/*
2026 	 * Send streams include each object's compression function.  This
2027 	 * check ensures that the receiving system can understand the
2028 	 * compression function transmitted.
2029 	 */
2030 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2031 
2032 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
2033 	dn->dn_compress = compress;
2034 	dnode_setdirty(dn, tx);
2035 	dnode_rele(dn, FTAG);
2036 }
2037 
2038 int zfs_mdcomp_disable = 0;
2039 
2040 /*
2041  * When the "redundant_metadata" property is set to "most", only indirect
2042  * blocks of this level and higher will have an additional ditto block.
2043  */
2044 int zfs_redundant_metadata_most_ditto_level = 2;
2045 
2046 void
2047 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2048 {
2049 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2050 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2051 	    (wp & WP_SPILL));
2052 	enum zio_checksum checksum = os->os_checksum;
2053 	enum zio_compress compress = os->os_compress;
2054 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2055 	boolean_t dedup = B_FALSE;
2056 	boolean_t nopwrite = B_FALSE;
2057 	boolean_t dedup_verify = os->os_dedup_verify;
2058 	int copies = os->os_copies;
2059 
2060 	/*
2061 	 * We maintain different write policies for each of the following
2062 	 * types of data:
2063 	 *	 1. metadata
2064 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2065 	 *	 3. all other level 0 blocks
2066 	 */
2067 	if (ismd) {
2068 		if (zfs_mdcomp_disable) {
2069 			compress = ZIO_COMPRESS_EMPTY;
2070 		} else {
2071 			/*
2072 			 * XXX -- we should design a compression algorithm
2073 			 * that specializes in arrays of bps.
2074 			 */
2075 			compress = zio_compress_select(os->os_spa,
2076 			    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2077 		}
2078 
2079 		/*
2080 		 * Metadata always gets checksummed.  If the data
2081 		 * checksum is multi-bit correctable, and it's not a
2082 		 * ZBT-style checksum, then it's suitable for metadata
2083 		 * as well.  Otherwise, the metadata checksum defaults
2084 		 * to fletcher4.
2085 		 */
2086 		if (!(zio_checksum_table[checksum].ci_flags &
2087 		    ZCHECKSUM_FLAG_METADATA) ||
2088 		    (zio_checksum_table[checksum].ci_flags &
2089 		    ZCHECKSUM_FLAG_EMBEDDED))
2090 			checksum = ZIO_CHECKSUM_FLETCHER_4;
2091 
2092 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2093 		    (os->os_redundant_metadata ==
2094 		    ZFS_REDUNDANT_METADATA_MOST &&
2095 		    (level >= zfs_redundant_metadata_most_ditto_level ||
2096 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2097 			copies++;
2098 	} else if (wp & WP_NOFILL) {
2099 		ASSERT(level == 0);
2100 
2101 		/*
2102 		 * If we're writing preallocated blocks, we aren't actually
2103 		 * writing them so don't set any policy properties.  These
2104 		 * blocks are currently only used by an external subsystem
2105 		 * outside of zfs (i.e. dump) and not written by the zio
2106 		 * pipeline.
2107 		 */
2108 		compress = ZIO_COMPRESS_OFF;
2109 		checksum = ZIO_CHECKSUM_NOPARITY;
2110 	} else {
2111 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2112 		    compress);
2113 
2114 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2115 		    zio_checksum_select(dn->dn_checksum, checksum) :
2116 		    dedup_checksum;
2117 
2118 		/*
2119 		 * Determine dedup setting.  If we are in dmu_sync(),
2120 		 * we won't actually dedup now because that's all
2121 		 * done in syncing context; but we do want to use the
2122 		 * dedup checkum.  If the checksum is not strong
2123 		 * enough to ensure unique signatures, force
2124 		 * dedup_verify.
2125 		 */
2126 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2127 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2128 			if (!(zio_checksum_table[checksum].ci_flags &
2129 			    ZCHECKSUM_FLAG_DEDUP))
2130 				dedup_verify = B_TRUE;
2131 		}
2132 
2133 		/*
2134 		 * Enable nopwrite if we have secure enough checksum
2135 		 * algorithm (see comment in zio_nop_write) and
2136 		 * compression is enabled.  We don't enable nopwrite if
2137 		 * dedup is enabled as the two features are mutually
2138 		 * exclusive.
2139 		 */
2140 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2141 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2142 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2143 	}
2144 
2145 	zp->zp_checksum = checksum;
2146 	zp->zp_compress = compress;
2147 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2148 
2149 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2150 	zp->zp_level = level;
2151 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2152 	zp->zp_dedup = dedup;
2153 	zp->zp_dedup_verify = dedup && dedup_verify;
2154 	zp->zp_nopwrite = nopwrite;
2155 }
2156 
2157 int
2158 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2159 {
2160 	dnode_t *dn;
2161 	int err;
2162 
2163 	/*
2164 	 * Sync any current changes before
2165 	 * we go trundling through the block pointers.
2166 	 */
2167 	err = dmu_object_wait_synced(os, object);
2168 	if (err) {
2169 		return (err);
2170 	}
2171 
2172 	err = dnode_hold(os, object, FTAG, &dn);
2173 	if (err) {
2174 		return (err);
2175 	}
2176 
2177 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2178 	dnode_rele(dn, FTAG);
2179 
2180 	return (err);
2181 }
2182 
2183 /*
2184  * Given the ZFS object, if it contains any dirty nodes
2185  * this function flushes all dirty blocks to disk. This
2186  * ensures the DMU object info is updated. A more efficient
2187  * future version might just find the TXG with the maximum
2188  * ID and wait for that to be synced.
2189  */
2190 int
2191 dmu_object_wait_synced(objset_t *os, uint64_t object)
2192 {
2193 	dnode_t *dn;
2194 	int error, i;
2195 
2196 	error = dnode_hold(os, object, FTAG, &dn);
2197 	if (error) {
2198 		return (error);
2199 	}
2200 
2201 	for (i = 0; i < TXG_SIZE; i++) {
2202 		if (list_link_active(&dn->dn_dirty_link[i])) {
2203 			break;
2204 		}
2205 	}
2206 	dnode_rele(dn, FTAG);
2207 	if (i != TXG_SIZE) {
2208 		txg_wait_synced(dmu_objset_pool(os), 0);
2209 	}
2210 
2211 	return (0);
2212 }
2213 
2214 void
2215 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2216 {
2217 	dnode_phys_t *dnp;
2218 
2219 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2220 	mutex_enter(&dn->dn_mtx);
2221 
2222 	dnp = dn->dn_phys;
2223 
2224 	doi->doi_data_block_size = dn->dn_datablksz;
2225 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2226 	    1ULL << dn->dn_indblkshift : 0;
2227 	doi->doi_type = dn->dn_type;
2228 	doi->doi_bonus_type = dn->dn_bonustype;
2229 	doi->doi_bonus_size = dn->dn_bonuslen;
2230 	doi->doi_indirection = dn->dn_nlevels;
2231 	doi->doi_checksum = dn->dn_checksum;
2232 	doi->doi_compress = dn->dn_compress;
2233 	doi->doi_nblkptr = dn->dn_nblkptr;
2234 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2235 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2236 	doi->doi_fill_count = 0;
2237 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2238 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2239 
2240 	mutex_exit(&dn->dn_mtx);
2241 	rw_exit(&dn->dn_struct_rwlock);
2242 }
2243 
2244 /*
2245  * Get information on a DMU object.
2246  * If doi is NULL, just indicates whether the object exists.
2247  */
2248 int
2249 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2250 {
2251 	dnode_t *dn;
2252 	int err = dnode_hold(os, object, FTAG, &dn);
2253 
2254 	if (err)
2255 		return (err);
2256 
2257 	if (doi != NULL)
2258 		dmu_object_info_from_dnode(dn, doi);
2259 
2260 	dnode_rele(dn, FTAG);
2261 	return (0);
2262 }
2263 
2264 /*
2265  * As above, but faster; can be used when you have a held dbuf in hand.
2266  */
2267 void
2268 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2269 {
2270 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2271 
2272 	DB_DNODE_ENTER(db);
2273 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2274 	DB_DNODE_EXIT(db);
2275 }
2276 
2277 /*
2278  * Faster still when you only care about the size.
2279  * This is specifically optimized for zfs_getattr().
2280  */
2281 void
2282 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2283     u_longlong_t *nblk512)
2284 {
2285 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2286 	dnode_t *dn;
2287 
2288 	DB_DNODE_ENTER(db);
2289 	dn = DB_DNODE(db);
2290 
2291 	*blksize = dn->dn_datablksz;
2292 	/* add 1 for dnode space */
2293 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2294 	    SPA_MINBLOCKSHIFT) + 1;
2295 	DB_DNODE_EXIT(db);
2296 }
2297 
2298 void
2299 byteswap_uint64_array(void *vbuf, size_t size)
2300 {
2301 	uint64_t *buf = vbuf;
2302 	size_t count = size >> 3;
2303 	int i;
2304 
2305 	ASSERT((size & 7) == 0);
2306 
2307 	for (i = 0; i < count; i++)
2308 		buf[i] = BSWAP_64(buf[i]);
2309 }
2310 
2311 void
2312 byteswap_uint32_array(void *vbuf, size_t size)
2313 {
2314 	uint32_t *buf = vbuf;
2315 	size_t count = size >> 2;
2316 	int i;
2317 
2318 	ASSERT((size & 3) == 0);
2319 
2320 	for (i = 0; i < count; i++)
2321 		buf[i] = BSWAP_32(buf[i]);
2322 }
2323 
2324 void
2325 byteswap_uint16_array(void *vbuf, size_t size)
2326 {
2327 	uint16_t *buf = vbuf;
2328 	size_t count = size >> 1;
2329 	int i;
2330 
2331 	ASSERT((size & 1) == 0);
2332 
2333 	for (i = 0; i < count; i++)
2334 		buf[i] = BSWAP_16(buf[i]);
2335 }
2336 
2337 /* ARGSUSED */
2338 void
2339 byteswap_uint8_array(void *vbuf, size_t size)
2340 {
2341 }
2342 
2343 void
2344 dmu_init(void)
2345 {
2346 	abd_init();
2347 	zfs_dbgmsg_init();
2348 	sa_cache_init();
2349 	xuio_stat_init();
2350 	dmu_objset_init();
2351 	dnode_init();
2352 	zfetch_init();
2353 	l2arc_init();
2354 	arc_init();
2355 	dbuf_init();
2356 }
2357 
2358 void
2359 dmu_fini(void)
2360 {
2361 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2362 	l2arc_fini();
2363 	zfetch_fini();
2364 	dbuf_fini();
2365 	dnode_fini();
2366 	dmu_objset_fini();
2367 	xuio_stat_fini();
2368 	sa_cache_fini();
2369 	zfs_dbgmsg_fini();
2370 	abd_fini();
2371 }
2372