1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 28 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 29 * Copyright (c) 2018 DilOS 30 */ 31 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dbuf.h> 36 #include <sys/dnode.h> 37 #include <sys/zfs_context.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dmu_traverse.h> 40 #include <sys/dsl_dataset.h> 41 #include <sys/dsl_dir.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/dsl_synctask.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dmu_zfetch.h> 46 #include <sys/zfs_ioctl.h> 47 #include <sys/zap.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/zio_compress.h> 50 #include <sys/sa.h> 51 #include <sys/zfeature.h> 52 #include <sys/abd.h> 53 #ifdef _KERNEL 54 #include <sys/vmsystm.h> 55 #include <sys/zfs_znode.h> 56 #endif 57 58 static xuio_stats_t xuio_stats = { 59 { "onloan_read_buf", KSTAT_DATA_UINT64 }, 60 { "onloan_write_buf", KSTAT_DATA_UINT64 }, 61 { "read_buf_copied", KSTAT_DATA_UINT64 }, 62 { "read_buf_nocopy", KSTAT_DATA_UINT64 }, 63 { "write_buf_copied", KSTAT_DATA_UINT64 }, 64 { "write_buf_nocopy", KSTAT_DATA_UINT64 } 65 }; 66 67 #define XUIOSTAT_INCR(stat, val) \ 68 atomic_add_64(&xuio_stats.stat.value.ui64, (val)) 69 #define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1) 70 71 /* 72 * Enable/disable nopwrite feature. 73 */ 74 int zfs_nopwrite_enabled = 1; 75 76 /* 77 * Tunable to control percentage of dirtied blocks from frees in one TXG. 78 * After this threshold is crossed, additional dirty blocks from frees 79 * wait until the next TXG. 80 * A value of zero will disable this throttle. 81 */ 82 uint32_t zfs_per_txg_dirty_frees_percent = 30; 83 84 /* 85 * This can be used for testing, to ensure that certain actions happen 86 * while in the middle of a remap (which might otherwise complete too 87 * quickly). 88 */ 89 int zfs_object_remap_one_indirect_delay_ticks = 0; 90 91 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 92 { DMU_BSWAP_UINT8, TRUE, FALSE, "unallocated" }, 93 { DMU_BSWAP_ZAP, TRUE, TRUE, "object directory" }, 94 { DMU_BSWAP_UINT64, TRUE, TRUE, "object array" }, 95 { DMU_BSWAP_UINT8, TRUE, FALSE, "packed nvlist" }, 96 { DMU_BSWAP_UINT64, TRUE, FALSE, "packed nvlist size" }, 97 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj" }, 98 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj header" }, 99 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map header" }, 100 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map" }, 101 { DMU_BSWAP_UINT64, TRUE, FALSE, "ZIL intent log" }, 102 { DMU_BSWAP_DNODE, TRUE, FALSE, "DMU dnode" }, 103 { DMU_BSWAP_OBJSET, TRUE, TRUE, "DMU objset" }, 104 { DMU_BSWAP_UINT64, TRUE, TRUE, "DSL directory" }, 105 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL directory child map" }, 106 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL dataset snap map" }, 107 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL props" }, 108 { DMU_BSWAP_UINT64, TRUE, TRUE, "DSL dataset" }, 109 { DMU_BSWAP_ZNODE, TRUE, FALSE, "ZFS znode" }, 110 { DMU_BSWAP_OLDACL, TRUE, FALSE, "ZFS V0 ACL" }, 111 { DMU_BSWAP_UINT8, FALSE, FALSE, "ZFS plain file" }, 112 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS directory" }, 113 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS master node" }, 114 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS delete queue" }, 115 { DMU_BSWAP_UINT8, FALSE, FALSE, "zvol object" }, 116 { DMU_BSWAP_ZAP, TRUE, FALSE, "zvol prop" }, 117 { DMU_BSWAP_UINT8, FALSE, FALSE, "other uint8[]" }, 118 { DMU_BSWAP_UINT64, FALSE, FALSE, "other uint64[]" }, 119 { DMU_BSWAP_ZAP, TRUE, FALSE, "other ZAP" }, 120 { DMU_BSWAP_ZAP, TRUE, FALSE, "persistent error log" }, 121 { DMU_BSWAP_UINT8, TRUE, FALSE, "SPA history" }, 122 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA history offsets" }, 123 { DMU_BSWAP_ZAP, TRUE, TRUE, "Pool properties" }, 124 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL permissions" }, 125 { DMU_BSWAP_ACL, TRUE, FALSE, "ZFS ACL" }, 126 { DMU_BSWAP_UINT8, TRUE, FALSE, "ZFS SYSACL" }, 127 { DMU_BSWAP_UINT8, TRUE, FALSE, "FUID table" }, 128 { DMU_BSWAP_UINT64, TRUE, FALSE, "FUID table size" }, 129 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL dataset next clones" }, 130 { DMU_BSWAP_ZAP, TRUE, FALSE, "scan work queue" }, 131 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS user/group used" }, 132 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS user/group quota" }, 133 { DMU_BSWAP_ZAP, TRUE, TRUE, "snapshot refcount tags" }, 134 { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT ZAP algorithm" }, 135 { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT statistics" }, 136 { DMU_BSWAP_UINT8, TRUE, FALSE, "System attributes" }, 137 { DMU_BSWAP_ZAP, TRUE, FALSE, "SA master node" }, 138 { DMU_BSWAP_ZAP, TRUE, FALSE, "SA attr registration" }, 139 { DMU_BSWAP_ZAP, TRUE, FALSE, "SA attr layouts" }, 140 { DMU_BSWAP_ZAP, TRUE, FALSE, "scan translations" }, 141 { DMU_BSWAP_UINT8, FALSE, FALSE, "deduplicated block" }, 142 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL deadlist map" }, 143 { DMU_BSWAP_UINT64, TRUE, TRUE, "DSL deadlist map hdr" }, 144 { DMU_BSWAP_ZAP, TRUE, TRUE, "DSL dir clones" }, 145 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj subobj" } 146 }; 147 148 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 149 { byteswap_uint8_array, "uint8" }, 150 { byteswap_uint16_array, "uint16" }, 151 { byteswap_uint32_array, "uint32" }, 152 { byteswap_uint64_array, "uint64" }, 153 { zap_byteswap, "zap" }, 154 { dnode_buf_byteswap, "dnode" }, 155 { dmu_objset_byteswap, "objset" }, 156 { zfs_znode_byteswap, "znode" }, 157 { zfs_oldacl_byteswap, "oldacl" }, 158 { zfs_acl_byteswap, "acl" } 159 }; 160 161 int 162 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 163 void *tag, dmu_buf_t **dbp) 164 { 165 uint64_t blkid; 166 dmu_buf_impl_t *db; 167 168 blkid = dbuf_whichblock(dn, 0, offset); 169 rw_enter(&dn->dn_struct_rwlock, RW_READER); 170 db = dbuf_hold(dn, blkid, tag); 171 rw_exit(&dn->dn_struct_rwlock); 172 173 if (db == NULL) { 174 *dbp = NULL; 175 return (SET_ERROR(EIO)); 176 } 177 178 *dbp = &db->db; 179 return (0); 180 } 181 int 182 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 183 void *tag, dmu_buf_t **dbp) 184 { 185 dnode_t *dn; 186 uint64_t blkid; 187 dmu_buf_impl_t *db; 188 int err; 189 190 err = dnode_hold(os, object, FTAG, &dn); 191 if (err) 192 return (err); 193 blkid = dbuf_whichblock(dn, 0, offset); 194 rw_enter(&dn->dn_struct_rwlock, RW_READER); 195 db = dbuf_hold(dn, blkid, tag); 196 rw_exit(&dn->dn_struct_rwlock); 197 dnode_rele(dn, FTAG); 198 199 if (db == NULL) { 200 *dbp = NULL; 201 return (SET_ERROR(EIO)); 202 } 203 204 *dbp = &db->db; 205 return (err); 206 } 207 208 int 209 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 210 void *tag, dmu_buf_t **dbp, int flags) 211 { 212 int err; 213 int db_flags = DB_RF_CANFAIL; 214 215 if (flags & DMU_READ_NO_PREFETCH) 216 db_flags |= DB_RF_NOPREFETCH; 217 218 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 219 if (err == 0) { 220 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 221 err = dbuf_read(db, NULL, db_flags); 222 if (err != 0) { 223 dbuf_rele(db, tag); 224 *dbp = NULL; 225 } 226 } 227 228 return (err); 229 } 230 231 int 232 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 233 void *tag, dmu_buf_t **dbp, int flags) 234 { 235 int err; 236 int db_flags = DB_RF_CANFAIL; 237 238 if (flags & DMU_READ_NO_PREFETCH) 239 db_flags |= DB_RF_NOPREFETCH; 240 241 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 242 if (err == 0) { 243 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 244 err = dbuf_read(db, NULL, db_flags); 245 if (err != 0) { 246 dbuf_rele(db, tag); 247 *dbp = NULL; 248 } 249 } 250 251 return (err); 252 } 253 254 int 255 dmu_bonus_max(void) 256 { 257 return (DN_MAX_BONUSLEN); 258 } 259 260 int 261 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 262 { 263 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 264 dnode_t *dn; 265 int error; 266 267 DB_DNODE_ENTER(db); 268 dn = DB_DNODE(db); 269 270 if (dn->dn_bonus != db) { 271 error = SET_ERROR(EINVAL); 272 } else if (newsize < 0 || newsize > db_fake->db_size) { 273 error = SET_ERROR(EINVAL); 274 } else { 275 dnode_setbonuslen(dn, newsize, tx); 276 error = 0; 277 } 278 279 DB_DNODE_EXIT(db); 280 return (error); 281 } 282 283 int 284 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 285 { 286 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 287 dnode_t *dn; 288 int error; 289 290 DB_DNODE_ENTER(db); 291 dn = DB_DNODE(db); 292 293 if (!DMU_OT_IS_VALID(type)) { 294 error = SET_ERROR(EINVAL); 295 } else if (dn->dn_bonus != db) { 296 error = SET_ERROR(EINVAL); 297 } else { 298 dnode_setbonus_type(dn, type, tx); 299 error = 0; 300 } 301 302 DB_DNODE_EXIT(db); 303 return (error); 304 } 305 306 dmu_object_type_t 307 dmu_get_bonustype(dmu_buf_t *db_fake) 308 { 309 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 310 dnode_t *dn; 311 dmu_object_type_t type; 312 313 DB_DNODE_ENTER(db); 314 dn = DB_DNODE(db); 315 type = dn->dn_bonustype; 316 DB_DNODE_EXIT(db); 317 318 return (type); 319 } 320 321 int 322 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 323 { 324 dnode_t *dn; 325 int error; 326 327 error = dnode_hold(os, object, FTAG, &dn); 328 dbuf_rm_spill(dn, tx); 329 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 330 dnode_rm_spill(dn, tx); 331 rw_exit(&dn->dn_struct_rwlock); 332 dnode_rele(dn, FTAG); 333 return (error); 334 } 335 336 /* 337 * returns ENOENT, EIO, or 0. 338 */ 339 int 340 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 341 { 342 dnode_t *dn; 343 dmu_buf_impl_t *db; 344 int error; 345 346 error = dnode_hold(os, object, FTAG, &dn); 347 if (error) 348 return (error); 349 350 rw_enter(&dn->dn_struct_rwlock, RW_READER); 351 if (dn->dn_bonus == NULL) { 352 rw_exit(&dn->dn_struct_rwlock); 353 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 354 if (dn->dn_bonus == NULL) 355 dbuf_create_bonus(dn); 356 } 357 db = dn->dn_bonus; 358 359 /* as long as the bonus buf is held, the dnode will be held */ 360 if (refcount_add(&db->db_holds, tag) == 1) { 361 VERIFY(dnode_add_ref(dn, db)); 362 atomic_inc_32(&dn->dn_dbufs_count); 363 } 364 365 /* 366 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 367 * hold and incrementing the dbuf count to ensure that dnode_move() sees 368 * a dnode hold for every dbuf. 369 */ 370 rw_exit(&dn->dn_struct_rwlock); 371 372 dnode_rele(dn, FTAG); 373 374 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 375 376 *dbp = &db->db; 377 return (0); 378 } 379 380 /* 381 * returns ENOENT, EIO, or 0. 382 * 383 * This interface will allocate a blank spill dbuf when a spill blk 384 * doesn't already exist on the dnode. 385 * 386 * if you only want to find an already existing spill db, then 387 * dmu_spill_hold_existing() should be used. 388 */ 389 int 390 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 391 { 392 dmu_buf_impl_t *db = NULL; 393 int err; 394 395 if ((flags & DB_RF_HAVESTRUCT) == 0) 396 rw_enter(&dn->dn_struct_rwlock, RW_READER); 397 398 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 399 400 if ((flags & DB_RF_HAVESTRUCT) == 0) 401 rw_exit(&dn->dn_struct_rwlock); 402 403 ASSERT(db != NULL); 404 err = dbuf_read(db, NULL, flags); 405 if (err == 0) 406 *dbp = &db->db; 407 else 408 dbuf_rele(db, tag); 409 return (err); 410 } 411 412 int 413 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 414 { 415 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 416 dnode_t *dn; 417 int err; 418 419 DB_DNODE_ENTER(db); 420 dn = DB_DNODE(db); 421 422 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 423 err = SET_ERROR(EINVAL); 424 } else { 425 rw_enter(&dn->dn_struct_rwlock, RW_READER); 426 427 if (!dn->dn_have_spill) { 428 err = SET_ERROR(ENOENT); 429 } else { 430 err = dmu_spill_hold_by_dnode(dn, 431 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 432 } 433 434 rw_exit(&dn->dn_struct_rwlock); 435 } 436 437 DB_DNODE_EXIT(db); 438 return (err); 439 } 440 441 int 442 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 443 { 444 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 445 dnode_t *dn; 446 int err; 447 448 DB_DNODE_ENTER(db); 449 dn = DB_DNODE(db); 450 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 451 DB_DNODE_EXIT(db); 452 453 return (err); 454 } 455 456 /* 457 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 458 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 459 * and can induce severe lock contention when writing to several files 460 * whose dnodes are in the same block. 461 */ 462 int 463 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 464 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 465 { 466 dmu_buf_t **dbp; 467 uint64_t blkid, nblks, i; 468 uint32_t dbuf_flags; 469 int err; 470 zio_t *zio; 471 472 ASSERT(length <= DMU_MAX_ACCESS); 473 474 /* 475 * Note: We directly notify the prefetch code of this read, so that 476 * we can tell it about the multi-block read. dbuf_read() only knows 477 * about the one block it is accessing. 478 */ 479 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 480 DB_RF_NOPREFETCH; 481 482 rw_enter(&dn->dn_struct_rwlock, RW_READER); 483 if (dn->dn_datablkshift) { 484 int blkshift = dn->dn_datablkshift; 485 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 486 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 487 } else { 488 if (offset + length > dn->dn_datablksz) { 489 zfs_panic_recover("zfs: accessing past end of object " 490 "%llx/%llx (size=%u access=%llu+%llu)", 491 (longlong_t)dn->dn_objset-> 492 os_dsl_dataset->ds_object, 493 (longlong_t)dn->dn_object, dn->dn_datablksz, 494 (longlong_t)offset, (longlong_t)length); 495 rw_exit(&dn->dn_struct_rwlock); 496 return (SET_ERROR(EIO)); 497 } 498 nblks = 1; 499 } 500 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 501 502 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 503 blkid = dbuf_whichblock(dn, 0, offset); 504 for (i = 0; i < nblks; i++) { 505 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 506 if (db == NULL) { 507 rw_exit(&dn->dn_struct_rwlock); 508 dmu_buf_rele_array(dbp, nblks, tag); 509 zio_nowait(zio); 510 return (SET_ERROR(EIO)); 511 } 512 513 /* initiate async i/o */ 514 if (read) 515 (void) dbuf_read(db, zio, dbuf_flags); 516 dbp[i] = &db->db; 517 } 518 519 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 520 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 521 dmu_zfetch(&dn->dn_zfetch, blkid, nblks, 522 read && DNODE_IS_CACHEABLE(dn)); 523 } 524 rw_exit(&dn->dn_struct_rwlock); 525 526 /* wait for async i/o */ 527 err = zio_wait(zio); 528 if (err) { 529 dmu_buf_rele_array(dbp, nblks, tag); 530 return (err); 531 } 532 533 /* wait for other io to complete */ 534 if (read) { 535 for (i = 0; i < nblks; i++) { 536 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 537 mutex_enter(&db->db_mtx); 538 while (db->db_state == DB_READ || 539 db->db_state == DB_FILL) 540 cv_wait(&db->db_changed, &db->db_mtx); 541 if (db->db_state == DB_UNCACHED) 542 err = SET_ERROR(EIO); 543 mutex_exit(&db->db_mtx); 544 if (err) { 545 dmu_buf_rele_array(dbp, nblks, tag); 546 return (err); 547 } 548 } 549 } 550 551 *numbufsp = nblks; 552 *dbpp = dbp; 553 return (0); 554 } 555 556 static int 557 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 558 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 559 { 560 dnode_t *dn; 561 int err; 562 563 err = dnode_hold(os, object, FTAG, &dn); 564 if (err) 565 return (err); 566 567 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 568 numbufsp, dbpp, DMU_READ_PREFETCH); 569 570 dnode_rele(dn, FTAG); 571 572 return (err); 573 } 574 575 int 576 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 577 uint64_t length, boolean_t read, void *tag, int *numbufsp, 578 dmu_buf_t ***dbpp) 579 { 580 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 581 dnode_t *dn; 582 int err; 583 584 DB_DNODE_ENTER(db); 585 dn = DB_DNODE(db); 586 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 587 numbufsp, dbpp, DMU_READ_PREFETCH); 588 DB_DNODE_EXIT(db); 589 590 return (err); 591 } 592 593 void 594 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 595 { 596 int i; 597 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 598 599 if (numbufs == 0) 600 return; 601 602 for (i = 0; i < numbufs; i++) { 603 if (dbp[i]) 604 dbuf_rele(dbp[i], tag); 605 } 606 607 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 608 } 609 610 /* 611 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 612 * indirect blocks prefeteched will be those that point to the blocks containing 613 * the data starting at offset, and continuing to offset + len. 614 * 615 * Note that if the indirect blocks above the blocks being prefetched are not in 616 * cache, they will be asychronously read in. 617 */ 618 void 619 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 620 uint64_t len, zio_priority_t pri) 621 { 622 dnode_t *dn; 623 uint64_t blkid; 624 int nblks, err; 625 626 if (len == 0) { /* they're interested in the bonus buffer */ 627 dn = DMU_META_DNODE(os); 628 629 if (object == 0 || object >= DN_MAX_OBJECT) 630 return; 631 632 rw_enter(&dn->dn_struct_rwlock, RW_READER); 633 blkid = dbuf_whichblock(dn, level, 634 object * sizeof (dnode_phys_t)); 635 dbuf_prefetch(dn, level, blkid, pri, 0); 636 rw_exit(&dn->dn_struct_rwlock); 637 return; 638 } 639 640 /* 641 * XXX - Note, if the dnode for the requested object is not 642 * already cached, we will do a *synchronous* read in the 643 * dnode_hold() call. The same is true for any indirects. 644 */ 645 err = dnode_hold(os, object, FTAG, &dn); 646 if (err != 0) 647 return; 648 649 rw_enter(&dn->dn_struct_rwlock, RW_READER); 650 /* 651 * offset + len - 1 is the last byte we want to prefetch for, and offset 652 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 653 * last block we want to prefetch, and dbuf_whichblock(dn, level, 654 * offset) is the first. Then the number we need to prefetch is the 655 * last - first + 1. 656 */ 657 if (level > 0 || dn->dn_datablkshift != 0) { 658 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 659 dbuf_whichblock(dn, level, offset) + 1; 660 } else { 661 nblks = (offset < dn->dn_datablksz); 662 } 663 664 if (nblks != 0) { 665 blkid = dbuf_whichblock(dn, level, offset); 666 for (int i = 0; i < nblks; i++) 667 dbuf_prefetch(dn, level, blkid + i, pri, 0); 668 } 669 670 rw_exit(&dn->dn_struct_rwlock); 671 672 dnode_rele(dn, FTAG); 673 } 674 675 /* 676 * Get the next "chunk" of file data to free. We traverse the file from 677 * the end so that the file gets shorter over time (if we crashes in the 678 * middle, this will leave us in a better state). We find allocated file 679 * data by simply searching the allocated level 1 indirects. 680 * 681 * On input, *start should be the first offset that does not need to be 682 * freed (e.g. "offset + length"). On return, *start will be the first 683 * offset that should be freed. 684 */ 685 static int 686 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 687 { 688 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 689 /* bytes of data covered by a level-1 indirect block */ 690 uint64_t iblkrange = 691 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 692 693 ASSERT3U(minimum, <=, *start); 694 695 if (*start - minimum <= iblkrange * maxblks) { 696 *start = minimum; 697 return (0); 698 } 699 ASSERT(ISP2(iblkrange)); 700 701 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 702 int err; 703 704 /* 705 * dnode_next_offset(BACKWARDS) will find an allocated L1 706 * indirect block at or before the input offset. We must 707 * decrement *start so that it is at the end of the region 708 * to search. 709 */ 710 (*start)--; 711 err = dnode_next_offset(dn, 712 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 713 714 /* if there are no indirect blocks before start, we are done */ 715 if (err == ESRCH) { 716 *start = minimum; 717 break; 718 } else if (err != 0) { 719 return (err); 720 } 721 722 /* set start to the beginning of this L1 indirect */ 723 *start = P2ALIGN(*start, iblkrange); 724 } 725 if (*start < minimum) 726 *start = minimum; 727 return (0); 728 } 729 730 /* 731 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 732 * otherwise return false. 733 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 734 */ 735 /*ARGSUSED*/ 736 static boolean_t 737 dmu_objset_zfs_unmounting(objset_t *os) 738 { 739 #ifdef _KERNEL 740 if (dmu_objset_type(os) == DMU_OST_ZFS) 741 return (zfs_get_vfs_flag_unmounted(os)); 742 #endif 743 return (B_FALSE); 744 } 745 746 static int 747 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 748 uint64_t length) 749 { 750 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 751 int err; 752 uint64_t dirty_frees_threshold; 753 dsl_pool_t *dp = dmu_objset_pool(os); 754 755 if (offset >= object_size) 756 return (0); 757 758 if (zfs_per_txg_dirty_frees_percent <= 100) 759 dirty_frees_threshold = 760 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 761 else 762 dirty_frees_threshold = zfs_dirty_data_max / 4; 763 764 if (length == DMU_OBJECT_END || offset + length > object_size) 765 length = object_size - offset; 766 767 while (length != 0) { 768 uint64_t chunk_end, chunk_begin, chunk_len; 769 uint64_t long_free_dirty_all_txgs = 0; 770 dmu_tx_t *tx; 771 772 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 773 return (SET_ERROR(EINTR)); 774 775 chunk_end = chunk_begin = offset + length; 776 777 /* move chunk_begin backwards to the beginning of this chunk */ 778 err = get_next_chunk(dn, &chunk_begin, offset); 779 if (err) 780 return (err); 781 ASSERT3U(chunk_begin, >=, offset); 782 ASSERT3U(chunk_begin, <=, chunk_end); 783 784 chunk_len = chunk_end - chunk_begin; 785 786 mutex_enter(&dp->dp_lock); 787 for (int t = 0; t < TXG_SIZE; t++) { 788 long_free_dirty_all_txgs += 789 dp->dp_long_free_dirty_pertxg[t]; 790 } 791 mutex_exit(&dp->dp_lock); 792 793 /* 794 * To avoid filling up a TXG with just frees wait for 795 * the next TXG to open before freeing more chunks if 796 * we have reached the threshold of frees 797 */ 798 if (dirty_frees_threshold != 0 && 799 long_free_dirty_all_txgs >= dirty_frees_threshold) { 800 txg_wait_open(dp, 0); 801 continue; 802 } 803 804 tx = dmu_tx_create(os); 805 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 806 807 /* 808 * Mark this transaction as typically resulting in a net 809 * reduction in space used. 810 */ 811 dmu_tx_mark_netfree(tx); 812 err = dmu_tx_assign(tx, TXG_WAIT); 813 if (err) { 814 dmu_tx_abort(tx); 815 return (err); 816 } 817 818 mutex_enter(&dp->dp_lock); 819 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] += 820 chunk_len; 821 mutex_exit(&dp->dp_lock); 822 DTRACE_PROBE3(free__long__range, 823 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len, 824 uint64_t, dmu_tx_get_txg(tx)); 825 dnode_free_range(dn, chunk_begin, chunk_len, tx); 826 dmu_tx_commit(tx); 827 828 length -= chunk_len; 829 } 830 return (0); 831 } 832 833 int 834 dmu_free_long_range(objset_t *os, uint64_t object, 835 uint64_t offset, uint64_t length) 836 { 837 dnode_t *dn; 838 int err; 839 840 err = dnode_hold(os, object, FTAG, &dn); 841 if (err != 0) 842 return (err); 843 err = dmu_free_long_range_impl(os, dn, offset, length); 844 845 /* 846 * It is important to zero out the maxblkid when freeing the entire 847 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 848 * will take the fast path, and (b) dnode_reallocate() can verify 849 * that the entire file has been freed. 850 */ 851 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 852 dn->dn_maxblkid = 0; 853 854 dnode_rele(dn, FTAG); 855 return (err); 856 } 857 858 int 859 dmu_free_long_object(objset_t *os, uint64_t object) 860 { 861 dmu_tx_t *tx; 862 int err; 863 864 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 865 if (err != 0) 866 return (err); 867 868 tx = dmu_tx_create(os); 869 dmu_tx_hold_bonus(tx, object); 870 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 871 dmu_tx_mark_netfree(tx); 872 err = dmu_tx_assign(tx, TXG_WAIT); 873 if (err == 0) { 874 err = dmu_object_free(os, object, tx); 875 dmu_tx_commit(tx); 876 } else { 877 dmu_tx_abort(tx); 878 } 879 880 return (err); 881 } 882 883 int 884 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 885 uint64_t size, dmu_tx_t *tx) 886 { 887 dnode_t *dn; 888 int err = dnode_hold(os, object, FTAG, &dn); 889 if (err) 890 return (err); 891 ASSERT(offset < UINT64_MAX); 892 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 893 dnode_free_range(dn, offset, size, tx); 894 dnode_rele(dn, FTAG); 895 return (0); 896 } 897 898 static int 899 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 900 void *buf, uint32_t flags) 901 { 902 dmu_buf_t **dbp; 903 int numbufs, err = 0; 904 905 /* 906 * Deal with odd block sizes, where there can't be data past the first 907 * block. If we ever do the tail block optimization, we will need to 908 * handle that here as well. 909 */ 910 if (dn->dn_maxblkid == 0) { 911 int newsz = offset > dn->dn_datablksz ? 0 : 912 MIN(size, dn->dn_datablksz - offset); 913 bzero((char *)buf + newsz, size - newsz); 914 size = newsz; 915 } 916 917 while (size > 0) { 918 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 919 int i; 920 921 /* 922 * NB: we could do this block-at-a-time, but it's nice 923 * to be reading in parallel. 924 */ 925 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 926 TRUE, FTAG, &numbufs, &dbp, flags); 927 if (err) 928 break; 929 930 for (i = 0; i < numbufs; i++) { 931 int tocpy; 932 int bufoff; 933 dmu_buf_t *db = dbp[i]; 934 935 ASSERT(size > 0); 936 937 bufoff = offset - db->db_offset; 938 tocpy = (int)MIN(db->db_size - bufoff, size); 939 940 bcopy((char *)db->db_data + bufoff, buf, tocpy); 941 942 offset += tocpy; 943 size -= tocpy; 944 buf = (char *)buf + tocpy; 945 } 946 dmu_buf_rele_array(dbp, numbufs, FTAG); 947 } 948 return (err); 949 } 950 951 int 952 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 953 void *buf, uint32_t flags) 954 { 955 dnode_t *dn; 956 int err; 957 958 err = dnode_hold(os, object, FTAG, &dn); 959 if (err != 0) 960 return (err); 961 962 err = dmu_read_impl(dn, offset, size, buf, flags); 963 dnode_rele(dn, FTAG); 964 return (err); 965 } 966 967 int 968 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 969 uint32_t flags) 970 { 971 return (dmu_read_impl(dn, offset, size, buf, flags)); 972 } 973 974 static void 975 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 976 const void *buf, dmu_tx_t *tx) 977 { 978 int i; 979 980 for (i = 0; i < numbufs; i++) { 981 int tocpy; 982 int bufoff; 983 dmu_buf_t *db = dbp[i]; 984 985 ASSERT(size > 0); 986 987 bufoff = offset - db->db_offset; 988 tocpy = (int)MIN(db->db_size - bufoff, size); 989 990 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 991 992 if (tocpy == db->db_size) 993 dmu_buf_will_fill(db, tx); 994 else 995 dmu_buf_will_dirty(db, tx); 996 997 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 998 999 if (tocpy == db->db_size) 1000 dmu_buf_fill_done(db, tx); 1001 1002 offset += tocpy; 1003 size -= tocpy; 1004 buf = (char *)buf + tocpy; 1005 } 1006 } 1007 1008 void 1009 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1010 const void *buf, dmu_tx_t *tx) 1011 { 1012 dmu_buf_t **dbp; 1013 int numbufs; 1014 1015 if (size == 0) 1016 return; 1017 1018 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 1019 FALSE, FTAG, &numbufs, &dbp)); 1020 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1021 dmu_buf_rele_array(dbp, numbufs, FTAG); 1022 } 1023 1024 void 1025 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1026 const void *buf, dmu_tx_t *tx) 1027 { 1028 dmu_buf_t **dbp; 1029 int numbufs; 1030 1031 if (size == 0) 1032 return; 1033 1034 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1035 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1036 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1037 dmu_buf_rele_array(dbp, numbufs, FTAG); 1038 } 1039 1040 static int 1041 dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn, 1042 uint64_t last_removal_txg, uint64_t offset) 1043 { 1044 uint64_t l1blkid = dbuf_whichblock(dn, 1, offset); 1045 int err = 0; 1046 1047 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1048 dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1049 ASSERT3P(dbuf, !=, NULL); 1050 1051 /* 1052 * If the block hasn't been written yet, this default will ensure 1053 * we don't try to remap it. 1054 */ 1055 uint64_t birth = UINT64_MAX; 1056 ASSERT3U(last_removal_txg, !=, UINT64_MAX); 1057 if (dbuf->db_blkptr != NULL) 1058 birth = dbuf->db_blkptr->blk_birth; 1059 rw_exit(&dn->dn_struct_rwlock); 1060 1061 /* 1062 * If this L1 was already written after the last removal, then we've 1063 * already tried to remap it. 1064 */ 1065 if (birth <= last_removal_txg && 1066 dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 && 1067 dbuf_can_remap(dbuf)) { 1068 dmu_tx_t *tx = dmu_tx_create(os); 1069 dmu_tx_hold_remap_l1indirect(tx, dn->dn_object); 1070 err = dmu_tx_assign(tx, TXG_WAIT); 1071 if (err == 0) { 1072 (void) dbuf_dirty(dbuf, tx); 1073 dmu_tx_commit(tx); 1074 } else { 1075 dmu_tx_abort(tx); 1076 } 1077 } 1078 1079 dbuf_rele(dbuf, FTAG); 1080 1081 delay(zfs_object_remap_one_indirect_delay_ticks); 1082 1083 return (err); 1084 } 1085 1086 /* 1087 * Remap all blockpointers in the object, if possible, so that they reference 1088 * only concrete vdevs. 1089 * 1090 * To do this, iterate over the L0 blockpointers and remap any that reference 1091 * an indirect vdev. Note that we only examine L0 blockpointers; since we 1092 * cannot guarantee that we can remap all blockpointer anyways (due to split 1093 * blocks), we do not want to make the code unnecessarily complicated to 1094 * catch the unlikely case that there is an L1 block on an indirect vdev that 1095 * contains no indirect blockpointers. 1096 */ 1097 int 1098 dmu_object_remap_indirects(objset_t *os, uint64_t object, 1099 uint64_t last_removal_txg) 1100 { 1101 uint64_t offset, l1span; 1102 int err; 1103 dnode_t *dn; 1104 1105 err = dnode_hold(os, object, FTAG, &dn); 1106 if (err != 0) { 1107 return (err); 1108 } 1109 1110 if (dn->dn_nlevels <= 1) { 1111 if (issig(JUSTLOOKING) && issig(FORREAL)) { 1112 err = SET_ERROR(EINTR); 1113 } 1114 1115 /* 1116 * If the dnode has no indirect blocks, we cannot dirty them. 1117 * We still want to remap the blkptr(s) in the dnode if 1118 * appropriate, so mark it as dirty. 1119 */ 1120 if (err == 0 && dnode_needs_remap(dn)) { 1121 dmu_tx_t *tx = dmu_tx_create(os); 1122 dmu_tx_hold_bonus(tx, dn->dn_object); 1123 if ((err = dmu_tx_assign(tx, TXG_WAIT)) == 0) { 1124 dnode_setdirty(dn, tx); 1125 dmu_tx_commit(tx); 1126 } else { 1127 dmu_tx_abort(tx); 1128 } 1129 } 1130 1131 dnode_rele(dn, FTAG); 1132 return (err); 1133 } 1134 1135 offset = 0; 1136 l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT + 1137 dn->dn_datablkshift); 1138 /* 1139 * Find the next L1 indirect that is not a hole. 1140 */ 1141 while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) { 1142 if (issig(JUSTLOOKING) && issig(FORREAL)) { 1143 err = SET_ERROR(EINTR); 1144 break; 1145 } 1146 if ((err = dmu_object_remap_one_indirect(os, dn, 1147 last_removal_txg, offset)) != 0) { 1148 break; 1149 } 1150 offset += l1span; 1151 } 1152 1153 dnode_rele(dn, FTAG); 1154 return (err); 1155 } 1156 1157 void 1158 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1159 dmu_tx_t *tx) 1160 { 1161 dmu_buf_t **dbp; 1162 int numbufs, i; 1163 1164 if (size == 0) 1165 return; 1166 1167 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1168 FALSE, FTAG, &numbufs, &dbp)); 1169 1170 for (i = 0; i < numbufs; i++) { 1171 dmu_buf_t *db = dbp[i]; 1172 1173 dmu_buf_will_not_fill(db, tx); 1174 } 1175 dmu_buf_rele_array(dbp, numbufs, FTAG); 1176 } 1177 1178 void 1179 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1180 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1181 int compressed_size, int byteorder, dmu_tx_t *tx) 1182 { 1183 dmu_buf_t *db; 1184 1185 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1186 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1187 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1188 FTAG, &db)); 1189 1190 dmu_buf_write_embedded(db, 1191 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1192 uncompressed_size, compressed_size, byteorder, tx); 1193 1194 dmu_buf_rele(db, FTAG); 1195 } 1196 1197 /* 1198 * DMU support for xuio 1199 */ 1200 kstat_t *xuio_ksp = NULL; 1201 1202 int 1203 dmu_xuio_init(xuio_t *xuio, int nblk) 1204 { 1205 dmu_xuio_t *priv; 1206 uio_t *uio = &xuio->xu_uio; 1207 1208 uio->uio_iovcnt = nblk; 1209 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 1210 1211 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 1212 priv->cnt = nblk; 1213 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 1214 priv->iovp = uio->uio_iov; 1215 XUIO_XUZC_PRIV(xuio) = priv; 1216 1217 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1218 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 1219 else 1220 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 1221 1222 return (0); 1223 } 1224 1225 void 1226 dmu_xuio_fini(xuio_t *xuio) 1227 { 1228 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1229 int nblk = priv->cnt; 1230 1231 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 1232 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 1233 kmem_free(priv, sizeof (dmu_xuio_t)); 1234 1235 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1236 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 1237 else 1238 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 1239 } 1240 1241 /* 1242 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 1243 * and increase priv->next by 1. 1244 */ 1245 int 1246 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 1247 { 1248 struct iovec *iov; 1249 uio_t *uio = &xuio->xu_uio; 1250 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1251 int i = priv->next++; 1252 1253 ASSERT(i < priv->cnt); 1254 ASSERT(off + n <= arc_buf_lsize(abuf)); 1255 iov = uio->uio_iov + i; 1256 iov->iov_base = (char *)abuf->b_data + off; 1257 iov->iov_len = n; 1258 priv->bufs[i] = abuf; 1259 return (0); 1260 } 1261 1262 int 1263 dmu_xuio_cnt(xuio_t *xuio) 1264 { 1265 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1266 return (priv->cnt); 1267 } 1268 1269 arc_buf_t * 1270 dmu_xuio_arcbuf(xuio_t *xuio, int i) 1271 { 1272 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1273 1274 ASSERT(i < priv->cnt); 1275 return (priv->bufs[i]); 1276 } 1277 1278 void 1279 dmu_xuio_clear(xuio_t *xuio, int i) 1280 { 1281 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1282 1283 ASSERT(i < priv->cnt); 1284 priv->bufs[i] = NULL; 1285 } 1286 1287 static void 1288 xuio_stat_init(void) 1289 { 1290 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 1291 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 1292 KSTAT_FLAG_VIRTUAL); 1293 if (xuio_ksp != NULL) { 1294 xuio_ksp->ks_data = &xuio_stats; 1295 kstat_install(xuio_ksp); 1296 } 1297 } 1298 1299 static void 1300 xuio_stat_fini(void) 1301 { 1302 if (xuio_ksp != NULL) { 1303 kstat_delete(xuio_ksp); 1304 xuio_ksp = NULL; 1305 } 1306 } 1307 1308 void 1309 xuio_stat_wbuf_copied(void) 1310 { 1311 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1312 } 1313 1314 void 1315 xuio_stat_wbuf_nocopy(void) 1316 { 1317 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1318 } 1319 1320 #ifdef _KERNEL 1321 int 1322 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1323 { 1324 dmu_buf_t **dbp; 1325 int numbufs, i, err; 1326 xuio_t *xuio = NULL; 1327 1328 /* 1329 * NB: we could do this block-at-a-time, but it's nice 1330 * to be reading in parallel. 1331 */ 1332 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1333 TRUE, FTAG, &numbufs, &dbp, 0); 1334 if (err) 1335 return (err); 1336 1337 if (uio->uio_extflg == UIO_XUIO) 1338 xuio = (xuio_t *)uio; 1339 1340 for (i = 0; i < numbufs; i++) { 1341 int tocpy; 1342 int bufoff; 1343 dmu_buf_t *db = dbp[i]; 1344 1345 ASSERT(size > 0); 1346 1347 bufoff = uio->uio_loffset - db->db_offset; 1348 tocpy = (int)MIN(db->db_size - bufoff, size); 1349 1350 if (xuio) { 1351 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1352 arc_buf_t *dbuf_abuf = dbi->db_buf; 1353 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1354 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1355 if (!err) { 1356 uio->uio_resid -= tocpy; 1357 uio->uio_loffset += tocpy; 1358 } 1359 1360 if (abuf == dbuf_abuf) 1361 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1362 else 1363 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1364 } else { 1365 err = uiomove((char *)db->db_data + bufoff, tocpy, 1366 UIO_READ, uio); 1367 } 1368 if (err) 1369 break; 1370 1371 size -= tocpy; 1372 } 1373 dmu_buf_rele_array(dbp, numbufs, FTAG); 1374 1375 return (err); 1376 } 1377 1378 /* 1379 * Read 'size' bytes into the uio buffer. 1380 * From object zdb->db_object. 1381 * Starting at offset uio->uio_loffset. 1382 * 1383 * If the caller already has a dbuf in the target object 1384 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1385 * because we don't have to find the dnode_t for the object. 1386 */ 1387 int 1388 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1389 { 1390 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1391 dnode_t *dn; 1392 int err; 1393 1394 if (size == 0) 1395 return (0); 1396 1397 DB_DNODE_ENTER(db); 1398 dn = DB_DNODE(db); 1399 err = dmu_read_uio_dnode(dn, uio, size); 1400 DB_DNODE_EXIT(db); 1401 1402 return (err); 1403 } 1404 1405 /* 1406 * Read 'size' bytes into the uio buffer. 1407 * From the specified object 1408 * Starting at offset uio->uio_loffset. 1409 */ 1410 int 1411 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1412 { 1413 dnode_t *dn; 1414 int err; 1415 1416 if (size == 0) 1417 return (0); 1418 1419 err = dnode_hold(os, object, FTAG, &dn); 1420 if (err) 1421 return (err); 1422 1423 err = dmu_read_uio_dnode(dn, uio, size); 1424 1425 dnode_rele(dn, FTAG); 1426 1427 return (err); 1428 } 1429 1430 int 1431 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1432 { 1433 dmu_buf_t **dbp; 1434 int numbufs; 1435 int err = 0; 1436 int i; 1437 1438 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1439 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1440 if (err) 1441 return (err); 1442 1443 for (i = 0; i < numbufs; i++) { 1444 int tocpy; 1445 int bufoff; 1446 dmu_buf_t *db = dbp[i]; 1447 1448 ASSERT(size > 0); 1449 1450 bufoff = uio->uio_loffset - db->db_offset; 1451 tocpy = (int)MIN(db->db_size - bufoff, size); 1452 1453 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1454 1455 if (tocpy == db->db_size) 1456 dmu_buf_will_fill(db, tx); 1457 else 1458 dmu_buf_will_dirty(db, tx); 1459 1460 /* 1461 * XXX uiomove could block forever (eg. nfs-backed 1462 * pages). There needs to be a uiolockdown() function 1463 * to lock the pages in memory, so that uiomove won't 1464 * block. 1465 */ 1466 err = uiomove((char *)db->db_data + bufoff, tocpy, 1467 UIO_WRITE, uio); 1468 1469 if (tocpy == db->db_size) 1470 dmu_buf_fill_done(db, tx); 1471 1472 if (err) 1473 break; 1474 1475 size -= tocpy; 1476 } 1477 1478 dmu_buf_rele_array(dbp, numbufs, FTAG); 1479 return (err); 1480 } 1481 1482 /* 1483 * Write 'size' bytes from the uio buffer. 1484 * To object zdb->db_object. 1485 * Starting at offset uio->uio_loffset. 1486 * 1487 * If the caller already has a dbuf in the target object 1488 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1489 * because we don't have to find the dnode_t for the object. 1490 */ 1491 int 1492 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1493 dmu_tx_t *tx) 1494 { 1495 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1496 dnode_t *dn; 1497 int err; 1498 1499 if (size == 0) 1500 return (0); 1501 1502 DB_DNODE_ENTER(db); 1503 dn = DB_DNODE(db); 1504 err = dmu_write_uio_dnode(dn, uio, size, tx); 1505 DB_DNODE_EXIT(db); 1506 1507 return (err); 1508 } 1509 1510 /* 1511 * Write 'size' bytes from the uio buffer. 1512 * To the specified object. 1513 * Starting at offset uio->uio_loffset. 1514 */ 1515 int 1516 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1517 dmu_tx_t *tx) 1518 { 1519 dnode_t *dn; 1520 int err; 1521 1522 if (size == 0) 1523 return (0); 1524 1525 err = dnode_hold(os, object, FTAG, &dn); 1526 if (err) 1527 return (err); 1528 1529 err = dmu_write_uio_dnode(dn, uio, size, tx); 1530 1531 dnode_rele(dn, FTAG); 1532 1533 return (err); 1534 } 1535 1536 int 1537 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1538 page_t *pp, dmu_tx_t *tx) 1539 { 1540 dmu_buf_t **dbp; 1541 int numbufs, i; 1542 int err; 1543 1544 if (size == 0) 1545 return (0); 1546 1547 err = dmu_buf_hold_array(os, object, offset, size, 1548 FALSE, FTAG, &numbufs, &dbp); 1549 if (err) 1550 return (err); 1551 1552 for (i = 0; i < numbufs; i++) { 1553 int tocpy, copied, thiscpy; 1554 int bufoff; 1555 dmu_buf_t *db = dbp[i]; 1556 caddr_t va; 1557 1558 ASSERT(size > 0); 1559 ASSERT3U(db->db_size, >=, PAGESIZE); 1560 1561 bufoff = offset - db->db_offset; 1562 tocpy = (int)MIN(db->db_size - bufoff, size); 1563 1564 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1565 1566 if (tocpy == db->db_size) 1567 dmu_buf_will_fill(db, tx); 1568 else 1569 dmu_buf_will_dirty(db, tx); 1570 1571 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1572 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1573 thiscpy = MIN(PAGESIZE, tocpy - copied); 1574 va = zfs_map_page(pp, S_READ); 1575 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1576 zfs_unmap_page(pp, va); 1577 pp = pp->p_next; 1578 bufoff += PAGESIZE; 1579 } 1580 1581 if (tocpy == db->db_size) 1582 dmu_buf_fill_done(db, tx); 1583 1584 offset += tocpy; 1585 size -= tocpy; 1586 } 1587 dmu_buf_rele_array(dbp, numbufs, FTAG); 1588 return (err); 1589 } 1590 #endif 1591 1592 /* 1593 * Allocate a loaned anonymous arc buffer. 1594 */ 1595 arc_buf_t * 1596 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1597 { 1598 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1599 1600 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1601 } 1602 1603 /* 1604 * Free a loaned arc buffer. 1605 */ 1606 void 1607 dmu_return_arcbuf(arc_buf_t *buf) 1608 { 1609 arc_return_buf(buf, FTAG); 1610 arc_buf_destroy(buf, FTAG); 1611 } 1612 1613 /* 1614 * When possible directly assign passed loaned arc buffer to a dbuf. 1615 * If this is not possible copy the contents of passed arc buf via 1616 * dmu_write(). 1617 */ 1618 void 1619 dmu_assign_arcbuf_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, 1620 dmu_tx_t *tx) 1621 { 1622 dmu_buf_impl_t *db; 1623 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1624 uint64_t blkid; 1625 1626 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1627 blkid = dbuf_whichblock(dn, 0, offset); 1628 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1629 rw_exit(&dn->dn_struct_rwlock); 1630 1631 /* 1632 * We can only assign if the offset is aligned, the arc buf is the 1633 * same size as the dbuf, and the dbuf is not metadata. 1634 */ 1635 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1636 dbuf_assign_arcbuf(db, buf, tx); 1637 dbuf_rele(db, FTAG); 1638 } else { 1639 objset_t *os; 1640 uint64_t object; 1641 1642 /* compressed bufs must always be assignable to their dbuf */ 1643 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1644 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1645 1646 os = dn->dn_objset; 1647 object = dn->dn_object; 1648 1649 dbuf_rele(db, FTAG); 1650 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1651 dmu_return_arcbuf(buf); 1652 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1653 } 1654 } 1655 1656 void 1657 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1658 dmu_tx_t *tx) 1659 { 1660 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1661 1662 DB_DNODE_ENTER(dbuf); 1663 dmu_assign_arcbuf_dnode(DB_DNODE(dbuf), offset, buf, tx); 1664 DB_DNODE_EXIT(dbuf); 1665 } 1666 1667 typedef struct { 1668 dbuf_dirty_record_t *dsa_dr; 1669 dmu_sync_cb_t *dsa_done; 1670 zgd_t *dsa_zgd; 1671 dmu_tx_t *dsa_tx; 1672 } dmu_sync_arg_t; 1673 1674 /* ARGSUSED */ 1675 static void 1676 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1677 { 1678 dmu_sync_arg_t *dsa = varg; 1679 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1680 blkptr_t *bp = zio->io_bp; 1681 1682 if (zio->io_error == 0) { 1683 if (BP_IS_HOLE(bp)) { 1684 /* 1685 * A block of zeros may compress to a hole, but the 1686 * block size still needs to be known for replay. 1687 */ 1688 BP_SET_LSIZE(bp, db->db_size); 1689 } else if (!BP_IS_EMBEDDED(bp)) { 1690 ASSERT(BP_GET_LEVEL(bp) == 0); 1691 bp->blk_fill = 1; 1692 } 1693 } 1694 } 1695 1696 static void 1697 dmu_sync_late_arrival_ready(zio_t *zio) 1698 { 1699 dmu_sync_ready(zio, NULL, zio->io_private); 1700 } 1701 1702 /* ARGSUSED */ 1703 static void 1704 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1705 { 1706 dmu_sync_arg_t *dsa = varg; 1707 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1708 dmu_buf_impl_t *db = dr->dr_dbuf; 1709 zgd_t *zgd = dsa->dsa_zgd; 1710 1711 /* 1712 * Record the vdev(s) backing this blkptr so they can be flushed after 1713 * the writes for the lwb have completed. 1714 */ 1715 if (zio->io_error == 0) { 1716 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1717 } 1718 1719 mutex_enter(&db->db_mtx); 1720 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1721 if (zio->io_error == 0) { 1722 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1723 if (dr->dt.dl.dr_nopwrite) { 1724 blkptr_t *bp = zio->io_bp; 1725 blkptr_t *bp_orig = &zio->io_bp_orig; 1726 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1727 1728 ASSERT(BP_EQUAL(bp, bp_orig)); 1729 VERIFY(BP_EQUAL(bp, db->db_blkptr)); 1730 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1731 ASSERT(zio_checksum_table[chksum].ci_flags & 1732 ZCHECKSUM_FLAG_NOPWRITE); 1733 } 1734 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1735 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1736 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1737 1738 /* 1739 * Old style holes are filled with all zeros, whereas 1740 * new-style holes maintain their lsize, type, level, 1741 * and birth time (see zio_write_compress). While we 1742 * need to reset the BP_SET_LSIZE() call that happened 1743 * in dmu_sync_ready for old style holes, we do *not* 1744 * want to wipe out the information contained in new 1745 * style holes. Thus, only zero out the block pointer if 1746 * it's an old style hole. 1747 */ 1748 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1749 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1750 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1751 } else { 1752 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1753 } 1754 cv_broadcast(&db->db_changed); 1755 mutex_exit(&db->db_mtx); 1756 1757 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1758 1759 kmem_free(dsa, sizeof (*dsa)); 1760 } 1761 1762 static void 1763 dmu_sync_late_arrival_done(zio_t *zio) 1764 { 1765 blkptr_t *bp = zio->io_bp; 1766 dmu_sync_arg_t *dsa = zio->io_private; 1767 blkptr_t *bp_orig = &zio->io_bp_orig; 1768 zgd_t *zgd = dsa->dsa_zgd; 1769 1770 if (zio->io_error == 0) { 1771 /* 1772 * Record the vdev(s) backing this blkptr so they can be 1773 * flushed after the writes for the lwb have completed. 1774 */ 1775 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1776 1777 if (!BP_IS_HOLE(bp)) { 1778 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); 1779 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1780 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1781 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1782 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1783 } 1784 } 1785 1786 dmu_tx_commit(dsa->dsa_tx); 1787 1788 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1789 1790 abd_put(zio->io_abd); 1791 kmem_free(dsa, sizeof (*dsa)); 1792 } 1793 1794 static int 1795 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1796 zio_prop_t *zp, zbookmark_phys_t *zb) 1797 { 1798 dmu_sync_arg_t *dsa; 1799 dmu_tx_t *tx; 1800 1801 tx = dmu_tx_create(os); 1802 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1803 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1804 dmu_tx_abort(tx); 1805 /* Make zl_get_data do txg_waited_synced() */ 1806 return (SET_ERROR(EIO)); 1807 } 1808 1809 /* 1810 * In order to prevent the zgd's lwb from being free'd prior to 1811 * dmu_sync_late_arrival_done() being called, we have to ensure 1812 * the lwb's "max txg" takes this tx's txg into account. 1813 */ 1814 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); 1815 1816 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1817 dsa->dsa_dr = NULL; 1818 dsa->dsa_done = done; 1819 dsa->dsa_zgd = zgd; 1820 dsa->dsa_tx = tx; 1821 1822 /* 1823 * Since we are currently syncing this txg, it's nontrivial to 1824 * determine what BP to nopwrite against, so we disable nopwrite. 1825 * 1826 * When syncing, the db_blkptr is initially the BP of the previous 1827 * txg. We can not nopwrite against it because it will be changed 1828 * (this is similar to the non-late-arrival case where the dbuf is 1829 * dirty in a future txg). 1830 * 1831 * Then dbuf_write_ready() sets bp_blkptr to the location we will write. 1832 * We can not nopwrite against it because although the BP will not 1833 * (typically) be changed, the data has not yet been persisted to this 1834 * location. 1835 * 1836 * Finally, when dbuf_write_done() is called, it is theoretically 1837 * possible to always nopwrite, because the data that was written in 1838 * this txg is the same data that we are trying to write. However we 1839 * would need to check that this dbuf is not dirty in any future 1840 * txg's (as we do in the normal dmu_sync() path). For simplicity, we 1841 * don't nopwrite in this case. 1842 */ 1843 zp->zp_nopwrite = B_FALSE; 1844 1845 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1846 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), 1847 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, 1848 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, 1849 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1850 1851 return (0); 1852 } 1853 1854 /* 1855 * Intent log support: sync the block associated with db to disk. 1856 * N.B. and XXX: the caller is responsible for making sure that the 1857 * data isn't changing while dmu_sync() is writing it. 1858 * 1859 * Return values: 1860 * 1861 * EEXIST: this txg has already been synced, so there's nothing to do. 1862 * The caller should not log the write. 1863 * 1864 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1865 * The caller should not log the write. 1866 * 1867 * EALREADY: this block is already in the process of being synced. 1868 * The caller should track its progress (somehow). 1869 * 1870 * EIO: could not do the I/O. 1871 * The caller should do a txg_wait_synced(). 1872 * 1873 * 0: the I/O has been initiated. 1874 * The caller should log this blkptr in the done callback. 1875 * It is possible that the I/O will fail, in which case 1876 * the error will be reported to the done callback and 1877 * propagated to pio from zio_done(). 1878 */ 1879 int 1880 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1881 { 1882 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1883 objset_t *os = db->db_objset; 1884 dsl_dataset_t *ds = os->os_dsl_dataset; 1885 dbuf_dirty_record_t *dr; 1886 dmu_sync_arg_t *dsa; 1887 zbookmark_phys_t zb; 1888 zio_prop_t zp; 1889 dnode_t *dn; 1890 1891 ASSERT(pio != NULL); 1892 ASSERT(txg != 0); 1893 1894 SET_BOOKMARK(&zb, ds->ds_object, 1895 db->db.db_object, db->db_level, db->db_blkid); 1896 1897 DB_DNODE_ENTER(db); 1898 dn = DB_DNODE(db); 1899 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1900 DB_DNODE_EXIT(db); 1901 1902 /* 1903 * If we're frozen (running ziltest), we always need to generate a bp. 1904 */ 1905 if (txg > spa_freeze_txg(os->os_spa)) 1906 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1907 1908 /* 1909 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1910 * and us. If we determine that this txg is not yet syncing, 1911 * but it begins to sync a moment later, that's OK because the 1912 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1913 */ 1914 mutex_enter(&db->db_mtx); 1915 1916 if (txg <= spa_last_synced_txg(os->os_spa)) { 1917 /* 1918 * This txg has already synced. There's nothing to do. 1919 */ 1920 mutex_exit(&db->db_mtx); 1921 return (SET_ERROR(EEXIST)); 1922 } 1923 1924 if (txg <= spa_syncing_txg(os->os_spa)) { 1925 /* 1926 * This txg is currently syncing, so we can't mess with 1927 * the dirty record anymore; just write a new log block. 1928 */ 1929 mutex_exit(&db->db_mtx); 1930 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1931 } 1932 1933 dr = db->db_last_dirty; 1934 while (dr && dr->dr_txg != txg) 1935 dr = dr->dr_next; 1936 1937 if (dr == NULL) { 1938 /* 1939 * There's no dr for this dbuf, so it must have been freed. 1940 * There's no need to log writes to freed blocks, so we're done. 1941 */ 1942 mutex_exit(&db->db_mtx); 1943 return (SET_ERROR(ENOENT)); 1944 } 1945 1946 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1947 1948 if (db->db_blkptr != NULL) { 1949 /* 1950 * We need to fill in zgd_bp with the current blkptr so that 1951 * the nopwrite code can check if we're writing the same 1952 * data that's already on disk. We can only nopwrite if we 1953 * are sure that after making the copy, db_blkptr will not 1954 * change until our i/o completes. We ensure this by 1955 * holding the db_mtx, and only allowing nopwrite if the 1956 * block is not already dirty (see below). This is verified 1957 * by dmu_sync_done(), which VERIFYs that the db_blkptr has 1958 * not changed. 1959 */ 1960 *zgd->zgd_bp = *db->db_blkptr; 1961 } 1962 1963 /* 1964 * Assume the on-disk data is X, the current syncing data (in 1965 * txg - 1) is Y, and the current in-memory data is Z (currently 1966 * in dmu_sync). 1967 * 1968 * We usually want to perform a nopwrite if X and Z are the 1969 * same. However, if Y is different (i.e. the BP is going to 1970 * change before this write takes effect), then a nopwrite will 1971 * be incorrect - we would override with X, which could have 1972 * been freed when Y was written. 1973 * 1974 * (Note that this is not a concern when we are nop-writing from 1975 * syncing context, because X and Y must be identical, because 1976 * all previous txgs have been synced.) 1977 * 1978 * Therefore, we disable nopwrite if the current BP could change 1979 * before this TXG. There are two ways it could change: by 1980 * being dirty (dr_next is non-NULL), or by being freed 1981 * (dnode_block_freed()). This behavior is verified by 1982 * zio_done(), which VERIFYs that the override BP is identical 1983 * to the on-disk BP. 1984 */ 1985 DB_DNODE_ENTER(db); 1986 dn = DB_DNODE(db); 1987 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1988 zp.zp_nopwrite = B_FALSE; 1989 DB_DNODE_EXIT(db); 1990 1991 ASSERT(dr->dr_txg == txg); 1992 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1993 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1994 /* 1995 * We have already issued a sync write for this buffer, 1996 * or this buffer has already been synced. It could not 1997 * have been dirtied since, or we would have cleared the state. 1998 */ 1999 mutex_exit(&db->db_mtx); 2000 return (SET_ERROR(EALREADY)); 2001 } 2002 2003 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 2004 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 2005 mutex_exit(&db->db_mtx); 2006 2007 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 2008 dsa->dsa_dr = dr; 2009 dsa->dsa_done = done; 2010 dsa->dsa_zgd = zgd; 2011 dsa->dsa_tx = NULL; 2012 2013 zio_nowait(arc_write(pio, os->os_spa, txg, 2014 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 2015 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 2016 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 2017 2018 return (0); 2019 } 2020 2021 int 2022 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 2023 dmu_tx_t *tx) 2024 { 2025 dnode_t *dn; 2026 int err; 2027 2028 err = dnode_hold(os, object, FTAG, &dn); 2029 if (err) 2030 return (err); 2031 err = dnode_set_blksz(dn, size, ibs, tx); 2032 dnode_rele(dn, FTAG); 2033 return (err); 2034 } 2035 2036 void 2037 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 2038 dmu_tx_t *tx) 2039 { 2040 dnode_t *dn; 2041 2042 /* 2043 * Send streams include each object's checksum function. This 2044 * check ensures that the receiving system can understand the 2045 * checksum function transmitted. 2046 */ 2047 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 2048 2049 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 2050 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 2051 dn->dn_checksum = checksum; 2052 dnode_setdirty(dn, tx); 2053 dnode_rele(dn, FTAG); 2054 } 2055 2056 void 2057 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 2058 dmu_tx_t *tx) 2059 { 2060 dnode_t *dn; 2061 2062 /* 2063 * Send streams include each object's compression function. This 2064 * check ensures that the receiving system can understand the 2065 * compression function transmitted. 2066 */ 2067 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 2068 2069 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 2070 dn->dn_compress = compress; 2071 dnode_setdirty(dn, tx); 2072 dnode_rele(dn, FTAG); 2073 } 2074 2075 int zfs_mdcomp_disable = 0; 2076 2077 /* 2078 * When the "redundant_metadata" property is set to "most", only indirect 2079 * blocks of this level and higher will have an additional ditto block. 2080 */ 2081 int zfs_redundant_metadata_most_ditto_level = 2; 2082 2083 void 2084 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 2085 { 2086 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 2087 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 2088 (wp & WP_SPILL)); 2089 enum zio_checksum checksum = os->os_checksum; 2090 enum zio_compress compress = os->os_compress; 2091 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 2092 boolean_t dedup = B_FALSE; 2093 boolean_t nopwrite = B_FALSE; 2094 boolean_t dedup_verify = os->os_dedup_verify; 2095 int copies = os->os_copies; 2096 2097 /* 2098 * We maintain different write policies for each of the following 2099 * types of data: 2100 * 1. metadata 2101 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 2102 * 3. all other level 0 blocks 2103 */ 2104 if (ismd) { 2105 if (zfs_mdcomp_disable) { 2106 compress = ZIO_COMPRESS_EMPTY; 2107 } else { 2108 /* 2109 * XXX -- we should design a compression algorithm 2110 * that specializes in arrays of bps. 2111 */ 2112 compress = zio_compress_select(os->os_spa, 2113 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 2114 } 2115 2116 /* 2117 * Metadata always gets checksummed. If the data 2118 * checksum is multi-bit correctable, and it's not a 2119 * ZBT-style checksum, then it's suitable for metadata 2120 * as well. Otherwise, the metadata checksum defaults 2121 * to fletcher4. 2122 */ 2123 if (!(zio_checksum_table[checksum].ci_flags & 2124 ZCHECKSUM_FLAG_METADATA) || 2125 (zio_checksum_table[checksum].ci_flags & 2126 ZCHECKSUM_FLAG_EMBEDDED)) 2127 checksum = ZIO_CHECKSUM_FLETCHER_4; 2128 2129 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 2130 (os->os_redundant_metadata == 2131 ZFS_REDUNDANT_METADATA_MOST && 2132 (level >= zfs_redundant_metadata_most_ditto_level || 2133 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 2134 copies++; 2135 } else if (wp & WP_NOFILL) { 2136 ASSERT(level == 0); 2137 2138 /* 2139 * If we're writing preallocated blocks, we aren't actually 2140 * writing them so don't set any policy properties. These 2141 * blocks are currently only used by an external subsystem 2142 * outside of zfs (i.e. dump) and not written by the zio 2143 * pipeline. 2144 */ 2145 compress = ZIO_COMPRESS_OFF; 2146 checksum = ZIO_CHECKSUM_NOPARITY; 2147 } else { 2148 compress = zio_compress_select(os->os_spa, dn->dn_compress, 2149 compress); 2150 2151 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 2152 zio_checksum_select(dn->dn_checksum, checksum) : 2153 dedup_checksum; 2154 2155 /* 2156 * Determine dedup setting. If we are in dmu_sync(), 2157 * we won't actually dedup now because that's all 2158 * done in syncing context; but we do want to use the 2159 * dedup checkum. If the checksum is not strong 2160 * enough to ensure unique signatures, force 2161 * dedup_verify. 2162 */ 2163 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 2164 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 2165 if (!(zio_checksum_table[checksum].ci_flags & 2166 ZCHECKSUM_FLAG_DEDUP)) 2167 dedup_verify = B_TRUE; 2168 } 2169 2170 /* 2171 * Enable nopwrite if we have secure enough checksum 2172 * algorithm (see comment in zio_nop_write) and 2173 * compression is enabled. We don't enable nopwrite if 2174 * dedup is enabled as the two features are mutually 2175 * exclusive. 2176 */ 2177 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 2178 ZCHECKSUM_FLAG_NOPWRITE) && 2179 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 2180 } 2181 2182 zp->zp_checksum = checksum; 2183 zp->zp_compress = compress; 2184 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); 2185 2186 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2187 zp->zp_level = level; 2188 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2189 zp->zp_dedup = dedup; 2190 zp->zp_dedup_verify = dedup && dedup_verify; 2191 zp->zp_nopwrite = nopwrite; 2192 } 2193 2194 int 2195 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2196 { 2197 dnode_t *dn; 2198 int err; 2199 2200 /* 2201 * Sync any current changes before 2202 * we go trundling through the block pointers. 2203 */ 2204 err = dmu_object_wait_synced(os, object); 2205 if (err) { 2206 return (err); 2207 } 2208 2209 err = dnode_hold(os, object, FTAG, &dn); 2210 if (err) { 2211 return (err); 2212 } 2213 2214 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2215 dnode_rele(dn, FTAG); 2216 2217 return (err); 2218 } 2219 2220 /* 2221 * Given the ZFS object, if it contains any dirty nodes 2222 * this function flushes all dirty blocks to disk. This 2223 * ensures the DMU object info is updated. A more efficient 2224 * future version might just find the TXG with the maximum 2225 * ID and wait for that to be synced. 2226 */ 2227 int 2228 dmu_object_wait_synced(objset_t *os, uint64_t object) 2229 { 2230 dnode_t *dn; 2231 int error, i; 2232 2233 error = dnode_hold(os, object, FTAG, &dn); 2234 if (error) { 2235 return (error); 2236 } 2237 2238 for (i = 0; i < TXG_SIZE; i++) { 2239 if (list_link_active(&dn->dn_dirty_link[i])) { 2240 break; 2241 } 2242 } 2243 dnode_rele(dn, FTAG); 2244 if (i != TXG_SIZE) { 2245 txg_wait_synced(dmu_objset_pool(os), 0); 2246 } 2247 2248 return (0); 2249 } 2250 2251 void 2252 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2253 { 2254 dnode_phys_t *dnp; 2255 2256 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2257 mutex_enter(&dn->dn_mtx); 2258 2259 dnp = dn->dn_phys; 2260 2261 doi->doi_data_block_size = dn->dn_datablksz; 2262 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2263 1ULL << dn->dn_indblkshift : 0; 2264 doi->doi_type = dn->dn_type; 2265 doi->doi_bonus_type = dn->dn_bonustype; 2266 doi->doi_bonus_size = dn->dn_bonuslen; 2267 doi->doi_indirection = dn->dn_nlevels; 2268 doi->doi_checksum = dn->dn_checksum; 2269 doi->doi_compress = dn->dn_compress; 2270 doi->doi_nblkptr = dn->dn_nblkptr; 2271 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2272 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2273 doi->doi_fill_count = 0; 2274 for (int i = 0; i < dnp->dn_nblkptr; i++) 2275 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2276 2277 mutex_exit(&dn->dn_mtx); 2278 rw_exit(&dn->dn_struct_rwlock); 2279 } 2280 2281 /* 2282 * Get information on a DMU object. 2283 * If doi is NULL, just indicates whether the object exists. 2284 */ 2285 int 2286 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2287 { 2288 dnode_t *dn; 2289 int err = dnode_hold(os, object, FTAG, &dn); 2290 2291 if (err) 2292 return (err); 2293 2294 if (doi != NULL) 2295 dmu_object_info_from_dnode(dn, doi); 2296 2297 dnode_rele(dn, FTAG); 2298 return (0); 2299 } 2300 2301 /* 2302 * As above, but faster; can be used when you have a held dbuf in hand. 2303 */ 2304 void 2305 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2306 { 2307 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2308 2309 DB_DNODE_ENTER(db); 2310 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2311 DB_DNODE_EXIT(db); 2312 } 2313 2314 /* 2315 * Faster still when you only care about the size. 2316 * This is specifically optimized for zfs_getattr(). 2317 */ 2318 void 2319 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2320 u_longlong_t *nblk512) 2321 { 2322 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2323 dnode_t *dn; 2324 2325 DB_DNODE_ENTER(db); 2326 dn = DB_DNODE(db); 2327 2328 *blksize = dn->dn_datablksz; 2329 /* add 1 for dnode space */ 2330 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2331 SPA_MINBLOCKSHIFT) + 1; 2332 DB_DNODE_EXIT(db); 2333 } 2334 2335 void 2336 byteswap_uint64_array(void *vbuf, size_t size) 2337 { 2338 uint64_t *buf = vbuf; 2339 size_t count = size >> 3; 2340 int i; 2341 2342 ASSERT((size & 7) == 0); 2343 2344 for (i = 0; i < count; i++) 2345 buf[i] = BSWAP_64(buf[i]); 2346 } 2347 2348 void 2349 byteswap_uint32_array(void *vbuf, size_t size) 2350 { 2351 uint32_t *buf = vbuf; 2352 size_t count = size >> 2; 2353 int i; 2354 2355 ASSERT((size & 3) == 0); 2356 2357 for (i = 0; i < count; i++) 2358 buf[i] = BSWAP_32(buf[i]); 2359 } 2360 2361 void 2362 byteswap_uint16_array(void *vbuf, size_t size) 2363 { 2364 uint16_t *buf = vbuf; 2365 size_t count = size >> 1; 2366 int i; 2367 2368 ASSERT((size & 1) == 0); 2369 2370 for (i = 0; i < count; i++) 2371 buf[i] = BSWAP_16(buf[i]); 2372 } 2373 2374 /* ARGSUSED */ 2375 void 2376 byteswap_uint8_array(void *vbuf, size_t size) 2377 { 2378 } 2379 2380 void 2381 dmu_init(void) 2382 { 2383 abd_init(); 2384 zfs_dbgmsg_init(); 2385 sa_cache_init(); 2386 xuio_stat_init(); 2387 dmu_objset_init(); 2388 dnode_init(); 2389 zfetch_init(); 2390 l2arc_init(); 2391 arc_init(); 2392 dbuf_init(); 2393 } 2394 2395 void 2396 dmu_fini(void) 2397 { 2398 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2399 l2arc_fini(); 2400 zfetch_fini(); 2401 dbuf_fini(); 2402 dnode_fini(); 2403 dmu_objset_fini(); 2404 xuio_stat_fini(); 2405 sa_cache_fini(); 2406 zfs_dbgmsg_fini(); 2407 abd_fini(); 2408 } 2409