1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 50 uint_t zfs_dbuf_evict_key; 51 52 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 53 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 54 55 #ifndef __lint 56 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 57 dmu_buf_evict_func_t *evict_func_sync, 58 dmu_buf_evict_func_t *evict_func_async, 59 dmu_buf_t **clear_on_evict_dbufp); 60 #endif /* ! __lint */ 61 62 /* 63 * Global data structures and functions for the dbuf cache. 64 */ 65 static kmem_cache_t *dbuf_kmem_cache; 66 static taskq_t *dbu_evict_taskq; 67 68 static kthread_t *dbuf_cache_evict_thread; 69 static kmutex_t dbuf_evict_lock; 70 static kcondvar_t dbuf_evict_cv; 71 static boolean_t dbuf_evict_thread_exit; 72 73 /* 74 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 75 * are not currently held but have been recently released. These dbufs 76 * are not eligible for arc eviction until they are aged out of the cache. 77 * Dbufs are added to the dbuf cache once the last hold is released. If a 78 * dbuf is later accessed and still exists in the dbuf cache, then it will 79 * be removed from the cache and later re-added to the head of the cache. 80 * Dbufs that are aged out of the cache will be immediately destroyed and 81 * become eligible for arc eviction. 82 */ 83 static multilist_t dbuf_cache; 84 static refcount_t dbuf_cache_size; 85 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024; 86 87 /* Cap the size of the dbuf cache to log2 fraction of arc size. */ 88 int dbuf_cache_max_shift = 5; 89 90 /* 91 * The dbuf cache uses a three-stage eviction policy: 92 * - A low water marker designates when the dbuf eviction thread 93 * should stop evicting from the dbuf cache. 94 * - When we reach the maximum size (aka mid water mark), we 95 * signal the eviction thread to run. 96 * - The high water mark indicates when the eviction thread 97 * is unable to keep up with the incoming load and eviction must 98 * happen in the context of the calling thread. 99 * 100 * The dbuf cache: 101 * (max size) 102 * low water mid water hi water 103 * +----------------------------------------+----------+----------+ 104 * | | | | 105 * | | | | 106 * | | | | 107 * | | | | 108 * +----------------------------------------+----------+----------+ 109 * stop signal evict 110 * evicting eviction directly 111 * thread 112 * 113 * The high and low water marks indicate the operating range for the eviction 114 * thread. The low water mark is, by default, 90% of the total size of the 115 * cache and the high water mark is at 110% (both of these percentages can be 116 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 117 * respectively). The eviction thread will try to ensure that the cache remains 118 * within this range by waking up every second and checking if the cache is 119 * above the low water mark. The thread can also be woken up by callers adding 120 * elements into the cache if the cache is larger than the mid water (i.e max 121 * cache size). Once the eviction thread is woken up and eviction is required, 122 * it will continue evicting buffers until it's able to reduce the cache size 123 * to the low water mark. If the cache size continues to grow and hits the high 124 * water mark, then callers adding elments to the cache will begin to evict 125 * directly from the cache until the cache is no longer above the high water 126 * mark. 127 */ 128 129 /* 130 * The percentage above and below the maximum cache size. 131 */ 132 uint_t dbuf_cache_hiwater_pct = 10; 133 uint_t dbuf_cache_lowater_pct = 10; 134 135 /* ARGSUSED */ 136 static int 137 dbuf_cons(void *vdb, void *unused, int kmflag) 138 { 139 dmu_buf_impl_t *db = vdb; 140 bzero(db, sizeof (dmu_buf_impl_t)); 141 142 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 143 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 144 multilist_link_init(&db->db_cache_link); 145 refcount_create(&db->db_holds); 146 147 return (0); 148 } 149 150 /* ARGSUSED */ 151 static void 152 dbuf_dest(void *vdb, void *unused) 153 { 154 dmu_buf_impl_t *db = vdb; 155 mutex_destroy(&db->db_mtx); 156 cv_destroy(&db->db_changed); 157 ASSERT(!multilist_link_active(&db->db_cache_link)); 158 refcount_destroy(&db->db_holds); 159 } 160 161 /* 162 * dbuf hash table routines 163 */ 164 static dbuf_hash_table_t dbuf_hash_table; 165 166 static uint64_t dbuf_hash_count; 167 168 static uint64_t 169 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 170 { 171 uintptr_t osv = (uintptr_t)os; 172 uint64_t crc = -1ULL; 173 174 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 175 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 176 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 177 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 178 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 179 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 180 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 181 182 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 183 184 return (crc); 185 } 186 187 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 188 ((dbuf)->db.db_object == (obj) && \ 189 (dbuf)->db_objset == (os) && \ 190 (dbuf)->db_level == (level) && \ 191 (dbuf)->db_blkid == (blkid)) 192 193 dmu_buf_impl_t * 194 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 195 { 196 dbuf_hash_table_t *h = &dbuf_hash_table; 197 uint64_t hv = dbuf_hash(os, obj, level, blkid); 198 uint64_t idx = hv & h->hash_table_mask; 199 dmu_buf_impl_t *db; 200 201 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 202 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 203 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 204 mutex_enter(&db->db_mtx); 205 if (db->db_state != DB_EVICTING) { 206 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 207 return (db); 208 } 209 mutex_exit(&db->db_mtx); 210 } 211 } 212 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 213 return (NULL); 214 } 215 216 static dmu_buf_impl_t * 217 dbuf_find_bonus(objset_t *os, uint64_t object) 218 { 219 dnode_t *dn; 220 dmu_buf_impl_t *db = NULL; 221 222 if (dnode_hold(os, object, FTAG, &dn) == 0) { 223 rw_enter(&dn->dn_struct_rwlock, RW_READER); 224 if (dn->dn_bonus != NULL) { 225 db = dn->dn_bonus; 226 mutex_enter(&db->db_mtx); 227 } 228 rw_exit(&dn->dn_struct_rwlock); 229 dnode_rele(dn, FTAG); 230 } 231 return (db); 232 } 233 234 /* 235 * Insert an entry into the hash table. If there is already an element 236 * equal to elem in the hash table, then the already existing element 237 * will be returned and the new element will not be inserted. 238 * Otherwise returns NULL. 239 */ 240 static dmu_buf_impl_t * 241 dbuf_hash_insert(dmu_buf_impl_t *db) 242 { 243 dbuf_hash_table_t *h = &dbuf_hash_table; 244 objset_t *os = db->db_objset; 245 uint64_t obj = db->db.db_object; 246 int level = db->db_level; 247 uint64_t blkid = db->db_blkid; 248 uint64_t hv = dbuf_hash(os, obj, level, blkid); 249 uint64_t idx = hv & h->hash_table_mask; 250 dmu_buf_impl_t *dbf; 251 252 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 253 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 254 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 255 mutex_enter(&dbf->db_mtx); 256 if (dbf->db_state != DB_EVICTING) { 257 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 258 return (dbf); 259 } 260 mutex_exit(&dbf->db_mtx); 261 } 262 } 263 264 mutex_enter(&db->db_mtx); 265 db->db_hash_next = h->hash_table[idx]; 266 h->hash_table[idx] = db; 267 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 268 atomic_inc_64(&dbuf_hash_count); 269 270 return (NULL); 271 } 272 273 /* 274 * Remove an entry from the hash table. It must be in the EVICTING state. 275 */ 276 static void 277 dbuf_hash_remove(dmu_buf_impl_t *db) 278 { 279 dbuf_hash_table_t *h = &dbuf_hash_table; 280 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 281 db->db_level, db->db_blkid); 282 uint64_t idx = hv & h->hash_table_mask; 283 dmu_buf_impl_t *dbf, **dbp; 284 285 /* 286 * We musn't hold db_mtx to maintain lock ordering: 287 * DBUF_HASH_MUTEX > db_mtx. 288 */ 289 ASSERT(refcount_is_zero(&db->db_holds)); 290 ASSERT(db->db_state == DB_EVICTING); 291 ASSERT(!MUTEX_HELD(&db->db_mtx)); 292 293 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 294 dbp = &h->hash_table[idx]; 295 while ((dbf = *dbp) != db) { 296 dbp = &dbf->db_hash_next; 297 ASSERT(dbf != NULL); 298 } 299 *dbp = db->db_hash_next; 300 db->db_hash_next = NULL; 301 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 302 atomic_dec_64(&dbuf_hash_count); 303 } 304 305 typedef enum { 306 DBVU_EVICTING, 307 DBVU_NOT_EVICTING 308 } dbvu_verify_type_t; 309 310 static void 311 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 312 { 313 #ifdef ZFS_DEBUG 314 int64_t holds; 315 316 if (db->db_user == NULL) 317 return; 318 319 /* Only data blocks support the attachment of user data. */ 320 ASSERT(db->db_level == 0); 321 322 /* Clients must resolve a dbuf before attaching user data. */ 323 ASSERT(db->db.db_data != NULL); 324 ASSERT3U(db->db_state, ==, DB_CACHED); 325 326 holds = refcount_count(&db->db_holds); 327 if (verify_type == DBVU_EVICTING) { 328 /* 329 * Immediate eviction occurs when holds == dirtycnt. 330 * For normal eviction buffers, holds is zero on 331 * eviction, except when dbuf_fix_old_data() calls 332 * dbuf_clear_data(). However, the hold count can grow 333 * during eviction even though db_mtx is held (see 334 * dmu_bonus_hold() for an example), so we can only 335 * test the generic invariant that holds >= dirtycnt. 336 */ 337 ASSERT3U(holds, >=, db->db_dirtycnt); 338 } else { 339 if (db->db_user_immediate_evict == TRUE) 340 ASSERT3U(holds, >=, db->db_dirtycnt); 341 else 342 ASSERT3U(holds, >, 0); 343 } 344 #endif 345 } 346 347 static void 348 dbuf_evict_user(dmu_buf_impl_t *db) 349 { 350 dmu_buf_user_t *dbu = db->db_user; 351 352 ASSERT(MUTEX_HELD(&db->db_mtx)); 353 354 if (dbu == NULL) 355 return; 356 357 dbuf_verify_user(db, DBVU_EVICTING); 358 db->db_user = NULL; 359 360 #ifdef ZFS_DEBUG 361 if (dbu->dbu_clear_on_evict_dbufp != NULL) 362 *dbu->dbu_clear_on_evict_dbufp = NULL; 363 #endif 364 365 /* 366 * There are two eviction callbacks - one that we call synchronously 367 * and one that we invoke via a taskq. The async one is useful for 368 * avoiding lock order reversals and limiting stack depth. 369 * 370 * Note that if we have a sync callback but no async callback, 371 * it's likely that the sync callback will free the structure 372 * containing the dbu. In that case we need to take care to not 373 * dereference dbu after calling the sync evict func. 374 */ 375 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 376 377 if (dbu->dbu_evict_func_sync != NULL) 378 dbu->dbu_evict_func_sync(dbu); 379 380 if (has_async) { 381 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 382 dbu, 0, &dbu->dbu_tqent); 383 } 384 } 385 386 boolean_t 387 dbuf_is_metadata(dmu_buf_impl_t *db) 388 { 389 if (db->db_level > 0) { 390 return (B_TRUE); 391 } else { 392 boolean_t is_metadata; 393 394 DB_DNODE_ENTER(db); 395 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 396 DB_DNODE_EXIT(db); 397 398 return (is_metadata); 399 } 400 } 401 402 /* 403 * This function *must* return indices evenly distributed between all 404 * sublists of the multilist. This is needed due to how the dbuf eviction 405 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 406 * distributed between all sublists and uses this assumption when 407 * deciding which sublist to evict from and how much to evict from it. 408 */ 409 unsigned int 410 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 411 { 412 dmu_buf_impl_t *db = obj; 413 414 /* 415 * The assumption here, is the hash value for a given 416 * dmu_buf_impl_t will remain constant throughout it's lifetime 417 * (i.e. it's objset, object, level and blkid fields don't change). 418 * Thus, we don't need to store the dbuf's sublist index 419 * on insertion, as this index can be recalculated on removal. 420 * 421 * Also, the low order bits of the hash value are thought to be 422 * distributed evenly. Otherwise, in the case that the multilist 423 * has a power of two number of sublists, each sublists' usage 424 * would not be evenly distributed. 425 */ 426 return (dbuf_hash(db->db_objset, db->db.db_object, 427 db->db_level, db->db_blkid) % 428 multilist_get_num_sublists(ml)); 429 } 430 431 static inline boolean_t 432 dbuf_cache_above_hiwater(void) 433 { 434 uint64_t dbuf_cache_hiwater_bytes = 435 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 436 437 return (refcount_count(&dbuf_cache_size) > 438 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 439 } 440 441 static inline boolean_t 442 dbuf_cache_above_lowater(void) 443 { 444 uint64_t dbuf_cache_lowater_bytes = 445 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 446 447 return (refcount_count(&dbuf_cache_size) > 448 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 449 } 450 451 /* 452 * Evict the oldest eligible dbuf from the dbuf cache. 453 */ 454 static void 455 dbuf_evict_one(void) 456 { 457 int idx = multilist_get_random_index(&dbuf_cache); 458 multilist_sublist_t *mls = multilist_sublist_lock(&dbuf_cache, idx); 459 460 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 461 462 /* 463 * Set the thread's tsd to indicate that it's processing evictions. 464 * Once a thread stops evicting from the dbuf cache it will 465 * reset its tsd to NULL. 466 */ 467 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL); 468 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE); 469 470 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 471 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 472 db = multilist_sublist_prev(mls, db); 473 } 474 475 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 476 multilist_sublist_t *, mls); 477 478 if (db != NULL) { 479 multilist_sublist_remove(mls, db); 480 multilist_sublist_unlock(mls); 481 (void) refcount_remove_many(&dbuf_cache_size, 482 db->db.db_size, db); 483 dbuf_destroy(db); 484 } else { 485 multilist_sublist_unlock(mls); 486 } 487 (void) tsd_set(zfs_dbuf_evict_key, NULL); 488 } 489 490 /* 491 * The dbuf evict thread is responsible for aging out dbufs from the 492 * cache. Once the cache has reached it's maximum size, dbufs are removed 493 * and destroyed. The eviction thread will continue running until the size 494 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 495 * out of the cache it is destroyed and becomes eligible for arc eviction. 496 */ 497 static void 498 dbuf_evict_thread(void) 499 { 500 callb_cpr_t cpr; 501 502 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 503 504 mutex_enter(&dbuf_evict_lock); 505 while (!dbuf_evict_thread_exit) { 506 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 507 CALLB_CPR_SAFE_BEGIN(&cpr); 508 (void) cv_timedwait_hires(&dbuf_evict_cv, 509 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 510 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 511 } 512 mutex_exit(&dbuf_evict_lock); 513 514 /* 515 * Keep evicting as long as we're above the low water mark 516 * for the cache. We do this without holding the locks to 517 * minimize lock contention. 518 */ 519 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 520 dbuf_evict_one(); 521 } 522 523 mutex_enter(&dbuf_evict_lock); 524 } 525 526 dbuf_evict_thread_exit = B_FALSE; 527 cv_broadcast(&dbuf_evict_cv); 528 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 529 thread_exit(); 530 } 531 532 /* 533 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 534 * If the dbuf cache is at its high water mark, then evict a dbuf from the 535 * dbuf cache using the callers context. 536 */ 537 static void 538 dbuf_evict_notify(void) 539 { 540 541 /* 542 * We use thread specific data to track when a thread has 543 * started processing evictions. This allows us to avoid deeply 544 * nested stacks that would have a call flow similar to this: 545 * 546 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 547 * ^ | 548 * | | 549 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 550 * 551 * The dbuf_eviction_thread will always have its tsd set until 552 * that thread exits. All other threads will only set their tsd 553 * if they are participating in the eviction process. This only 554 * happens if the eviction thread is unable to process evictions 555 * fast enough. To keep the dbuf cache size in check, other threads 556 * can evict from the dbuf cache directly. Those threads will set 557 * their tsd values so that we ensure that they only evict one dbuf 558 * from the dbuf cache. 559 */ 560 if (tsd_get(zfs_dbuf_evict_key) != NULL) 561 return; 562 563 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 564 boolean_t evict_now = B_FALSE; 565 566 mutex_enter(&dbuf_evict_lock); 567 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 568 evict_now = dbuf_cache_above_hiwater(); 569 cv_signal(&dbuf_evict_cv); 570 } 571 mutex_exit(&dbuf_evict_lock); 572 573 if (evict_now) { 574 dbuf_evict_one(); 575 } 576 } 577 } 578 579 void 580 dbuf_init(void) 581 { 582 uint64_t hsize = 1ULL << 16; 583 dbuf_hash_table_t *h = &dbuf_hash_table; 584 int i; 585 586 /* 587 * The hash table is big enough to fill all of physical memory 588 * with an average 4K block size. The table will take up 589 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 590 */ 591 while (hsize * 4096 < physmem * PAGESIZE) 592 hsize <<= 1; 593 594 retry: 595 h->hash_table_mask = hsize - 1; 596 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 597 if (h->hash_table == NULL) { 598 /* XXX - we should really return an error instead of assert */ 599 ASSERT(hsize > (1ULL << 10)); 600 hsize >>= 1; 601 goto retry; 602 } 603 604 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 605 sizeof (dmu_buf_impl_t), 606 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 607 608 for (i = 0; i < DBUF_MUTEXES; i++) 609 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 610 611 /* 612 * Setup the parameters for the dbuf cache. We cap the size of the 613 * dbuf cache to 1/32nd (default) of the size of the ARC. 614 */ 615 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes, 616 arc_max_bytes() >> dbuf_cache_max_shift); 617 618 /* 619 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 620 * configuration is not required. 621 */ 622 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 623 624 multilist_create(&dbuf_cache, sizeof (dmu_buf_impl_t), 625 offsetof(dmu_buf_impl_t, db_cache_link), 626 zfs_arc_num_sublists_per_state, 627 dbuf_cache_multilist_index_func); 628 refcount_create(&dbuf_cache_size); 629 630 tsd_create(&zfs_dbuf_evict_key, NULL); 631 dbuf_evict_thread_exit = B_FALSE; 632 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 633 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 634 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 635 NULL, 0, &p0, TS_RUN, minclsyspri); 636 } 637 638 void 639 dbuf_fini(void) 640 { 641 dbuf_hash_table_t *h = &dbuf_hash_table; 642 int i; 643 644 for (i = 0; i < DBUF_MUTEXES; i++) 645 mutex_destroy(&h->hash_mutexes[i]); 646 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 647 kmem_cache_destroy(dbuf_kmem_cache); 648 taskq_destroy(dbu_evict_taskq); 649 650 mutex_enter(&dbuf_evict_lock); 651 dbuf_evict_thread_exit = B_TRUE; 652 while (dbuf_evict_thread_exit) { 653 cv_signal(&dbuf_evict_cv); 654 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 655 } 656 mutex_exit(&dbuf_evict_lock); 657 tsd_destroy(&zfs_dbuf_evict_key); 658 659 mutex_destroy(&dbuf_evict_lock); 660 cv_destroy(&dbuf_evict_cv); 661 662 refcount_destroy(&dbuf_cache_size); 663 multilist_destroy(&dbuf_cache); 664 } 665 666 /* 667 * Other stuff. 668 */ 669 670 #ifdef ZFS_DEBUG 671 static void 672 dbuf_verify(dmu_buf_impl_t *db) 673 { 674 dnode_t *dn; 675 dbuf_dirty_record_t *dr; 676 677 ASSERT(MUTEX_HELD(&db->db_mtx)); 678 679 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 680 return; 681 682 ASSERT(db->db_objset != NULL); 683 DB_DNODE_ENTER(db); 684 dn = DB_DNODE(db); 685 if (dn == NULL) { 686 ASSERT(db->db_parent == NULL); 687 ASSERT(db->db_blkptr == NULL); 688 } else { 689 ASSERT3U(db->db.db_object, ==, dn->dn_object); 690 ASSERT3P(db->db_objset, ==, dn->dn_objset); 691 ASSERT3U(db->db_level, <, dn->dn_nlevels); 692 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 693 db->db_blkid == DMU_SPILL_BLKID || 694 !avl_is_empty(&dn->dn_dbufs)); 695 } 696 if (db->db_blkid == DMU_BONUS_BLKID) { 697 ASSERT(dn != NULL); 698 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 699 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 700 } else if (db->db_blkid == DMU_SPILL_BLKID) { 701 ASSERT(dn != NULL); 702 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 703 ASSERT0(db->db.db_offset); 704 } else { 705 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 706 } 707 708 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 709 ASSERT(dr->dr_dbuf == db); 710 711 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 712 ASSERT(dr->dr_dbuf == db); 713 714 /* 715 * We can't assert that db_size matches dn_datablksz because it 716 * can be momentarily different when another thread is doing 717 * dnode_set_blksz(). 718 */ 719 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 720 dr = db->db_data_pending; 721 /* 722 * It should only be modified in syncing context, so 723 * make sure we only have one copy of the data. 724 */ 725 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 726 } 727 728 /* verify db->db_blkptr */ 729 if (db->db_blkptr) { 730 if (db->db_parent == dn->dn_dbuf) { 731 /* db is pointed to by the dnode */ 732 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 733 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 734 ASSERT(db->db_parent == NULL); 735 else 736 ASSERT(db->db_parent != NULL); 737 if (db->db_blkid != DMU_SPILL_BLKID) 738 ASSERT3P(db->db_blkptr, ==, 739 &dn->dn_phys->dn_blkptr[db->db_blkid]); 740 } else { 741 /* db is pointed to by an indirect block */ 742 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 743 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 744 ASSERT3U(db->db_parent->db.db_object, ==, 745 db->db.db_object); 746 /* 747 * dnode_grow_indblksz() can make this fail if we don't 748 * have the struct_rwlock. XXX indblksz no longer 749 * grows. safe to do this now? 750 */ 751 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 752 ASSERT3P(db->db_blkptr, ==, 753 ((blkptr_t *)db->db_parent->db.db_data + 754 db->db_blkid % epb)); 755 } 756 } 757 } 758 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 759 (db->db_buf == NULL || db->db_buf->b_data) && 760 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 761 db->db_state != DB_FILL && !dn->dn_free_txg) { 762 /* 763 * If the blkptr isn't set but they have nonzero data, 764 * it had better be dirty, otherwise we'll lose that 765 * data when we evict this buffer. 766 * 767 * There is an exception to this rule for indirect blocks; in 768 * this case, if the indirect block is a hole, we fill in a few 769 * fields on each of the child blocks (importantly, birth time) 770 * to prevent hole birth times from being lost when you 771 * partially fill in a hole. 772 */ 773 if (db->db_dirtycnt == 0) { 774 if (db->db_level == 0) { 775 uint64_t *buf = db->db.db_data; 776 int i; 777 778 for (i = 0; i < db->db.db_size >> 3; i++) { 779 ASSERT(buf[i] == 0); 780 } 781 } else { 782 blkptr_t *bps = db->db.db_data; 783 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 784 db->db.db_size); 785 /* 786 * We want to verify that all the blkptrs in the 787 * indirect block are holes, but we may have 788 * automatically set up a few fields for them. 789 * We iterate through each blkptr and verify 790 * they only have those fields set. 791 */ 792 for (int i = 0; 793 i < db->db.db_size / sizeof (blkptr_t); 794 i++) { 795 blkptr_t *bp = &bps[i]; 796 ASSERT(ZIO_CHECKSUM_IS_ZERO( 797 &bp->blk_cksum)); 798 ASSERT( 799 DVA_IS_EMPTY(&bp->blk_dva[0]) && 800 DVA_IS_EMPTY(&bp->blk_dva[1]) && 801 DVA_IS_EMPTY(&bp->blk_dva[2])); 802 ASSERT0(bp->blk_fill); 803 ASSERT0(bp->blk_pad[0]); 804 ASSERT0(bp->blk_pad[1]); 805 ASSERT(!BP_IS_EMBEDDED(bp)); 806 ASSERT(BP_IS_HOLE(bp)); 807 ASSERT0(bp->blk_phys_birth); 808 } 809 } 810 } 811 } 812 DB_DNODE_EXIT(db); 813 } 814 #endif 815 816 static void 817 dbuf_clear_data(dmu_buf_impl_t *db) 818 { 819 ASSERT(MUTEX_HELD(&db->db_mtx)); 820 dbuf_evict_user(db); 821 ASSERT3P(db->db_buf, ==, NULL); 822 db->db.db_data = NULL; 823 if (db->db_state != DB_NOFILL) 824 db->db_state = DB_UNCACHED; 825 } 826 827 static void 828 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 829 { 830 ASSERT(MUTEX_HELD(&db->db_mtx)); 831 ASSERT(buf != NULL); 832 833 db->db_buf = buf; 834 ASSERT(buf->b_data != NULL); 835 db->db.db_data = buf->b_data; 836 } 837 838 /* 839 * Loan out an arc_buf for read. Return the loaned arc_buf. 840 */ 841 arc_buf_t * 842 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 843 { 844 arc_buf_t *abuf; 845 846 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 847 mutex_enter(&db->db_mtx); 848 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 849 int blksz = db->db.db_size; 850 spa_t *spa = db->db_objset->os_spa; 851 852 mutex_exit(&db->db_mtx); 853 abuf = arc_loan_buf(spa, blksz); 854 bcopy(db->db.db_data, abuf->b_data, blksz); 855 } else { 856 abuf = db->db_buf; 857 arc_loan_inuse_buf(abuf, db); 858 db->db_buf = NULL; 859 dbuf_clear_data(db); 860 mutex_exit(&db->db_mtx); 861 } 862 return (abuf); 863 } 864 865 /* 866 * Calculate which level n block references the data at the level 0 offset 867 * provided. 868 */ 869 uint64_t 870 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 871 { 872 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 873 /* 874 * The level n blkid is equal to the level 0 blkid divided by 875 * the number of level 0s in a level n block. 876 * 877 * The level 0 blkid is offset >> datablkshift = 878 * offset / 2^datablkshift. 879 * 880 * The number of level 0s in a level n is the number of block 881 * pointers in an indirect block, raised to the power of level. 882 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 883 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 884 * 885 * Thus, the level n blkid is: offset / 886 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 887 * = offset / 2^(datablkshift + level * 888 * (indblkshift - SPA_BLKPTRSHIFT)) 889 * = offset >> (datablkshift + level * 890 * (indblkshift - SPA_BLKPTRSHIFT)) 891 */ 892 return (offset >> (dn->dn_datablkshift + level * 893 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 894 } else { 895 ASSERT3U(offset, <, dn->dn_datablksz); 896 return (0); 897 } 898 } 899 900 static void 901 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 902 { 903 dmu_buf_impl_t *db = vdb; 904 905 mutex_enter(&db->db_mtx); 906 ASSERT3U(db->db_state, ==, DB_READ); 907 /* 908 * All reads are synchronous, so we must have a hold on the dbuf 909 */ 910 ASSERT(refcount_count(&db->db_holds) > 0); 911 ASSERT(db->db_buf == NULL); 912 ASSERT(db->db.db_data == NULL); 913 if (db->db_level == 0 && db->db_freed_in_flight) { 914 /* we were freed in flight; disregard any error */ 915 arc_release(buf, db); 916 bzero(buf->b_data, db->db.db_size); 917 arc_buf_freeze(buf); 918 db->db_freed_in_flight = FALSE; 919 dbuf_set_data(db, buf); 920 db->db_state = DB_CACHED; 921 } else if (zio == NULL || zio->io_error == 0) { 922 dbuf_set_data(db, buf); 923 db->db_state = DB_CACHED; 924 } else { 925 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 926 ASSERT3P(db->db_buf, ==, NULL); 927 arc_buf_destroy(buf, db); 928 db->db_state = DB_UNCACHED; 929 } 930 cv_broadcast(&db->db_changed); 931 dbuf_rele_and_unlock(db, NULL); 932 } 933 934 static void 935 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 936 { 937 dnode_t *dn; 938 zbookmark_phys_t zb; 939 arc_flags_t aflags = ARC_FLAG_NOWAIT; 940 941 DB_DNODE_ENTER(db); 942 dn = DB_DNODE(db); 943 ASSERT(!refcount_is_zero(&db->db_holds)); 944 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 945 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 946 ASSERT(MUTEX_HELD(&db->db_mtx)); 947 ASSERT(db->db_state == DB_UNCACHED); 948 ASSERT(db->db_buf == NULL); 949 950 if (db->db_blkid == DMU_BONUS_BLKID) { 951 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 952 953 ASSERT3U(bonuslen, <=, db->db.db_size); 954 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 955 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 956 if (bonuslen < DN_MAX_BONUSLEN) 957 bzero(db->db.db_data, DN_MAX_BONUSLEN); 958 if (bonuslen) 959 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 960 DB_DNODE_EXIT(db); 961 db->db_state = DB_CACHED; 962 mutex_exit(&db->db_mtx); 963 return; 964 } 965 966 /* 967 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 968 * processes the delete record and clears the bp while we are waiting 969 * for the dn_mtx (resulting in a "no" from block_freed). 970 */ 971 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 972 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 973 BP_IS_HOLE(db->db_blkptr)))) { 974 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 975 976 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, 977 db->db.db_size, db, type)); 978 bzero(db->db.db_data, db->db.db_size); 979 980 if (db->db_blkptr != NULL && db->db_level > 0 && 981 BP_IS_HOLE(db->db_blkptr) && 982 db->db_blkptr->blk_birth != 0) { 983 blkptr_t *bps = db->db.db_data; 984 for (int i = 0; i < ((1 << 985 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 986 i++) { 987 blkptr_t *bp = &bps[i]; 988 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 989 1 << dn->dn_indblkshift); 990 BP_SET_LSIZE(bp, 991 BP_GET_LEVEL(db->db_blkptr) == 1 ? 992 dn->dn_datablksz : 993 BP_GET_LSIZE(db->db_blkptr)); 994 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 995 BP_SET_LEVEL(bp, 996 BP_GET_LEVEL(db->db_blkptr) - 1); 997 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 998 } 999 } 1000 DB_DNODE_EXIT(db); 1001 db->db_state = DB_CACHED; 1002 mutex_exit(&db->db_mtx); 1003 return; 1004 } 1005 1006 DB_DNODE_EXIT(db); 1007 1008 db->db_state = DB_READ; 1009 mutex_exit(&db->db_mtx); 1010 1011 if (DBUF_IS_L2CACHEABLE(db)) 1012 aflags |= ARC_FLAG_L2CACHE; 1013 1014 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 1015 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 1016 db->db.db_object, db->db_level, db->db_blkid); 1017 1018 dbuf_add_ref(db, NULL); 1019 1020 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 1021 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 1022 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 1023 &aflags, &zb); 1024 } 1025 1026 int 1027 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1028 { 1029 int err = 0; 1030 boolean_t havepzio = (zio != NULL); 1031 boolean_t prefetch; 1032 dnode_t *dn; 1033 1034 /* 1035 * We don't have to hold the mutex to check db_state because it 1036 * can't be freed while we have a hold on the buffer. 1037 */ 1038 ASSERT(!refcount_is_zero(&db->db_holds)); 1039 1040 if (db->db_state == DB_NOFILL) 1041 return (SET_ERROR(EIO)); 1042 1043 DB_DNODE_ENTER(db); 1044 dn = DB_DNODE(db); 1045 if ((flags & DB_RF_HAVESTRUCT) == 0) 1046 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1047 1048 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1049 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1050 DBUF_IS_CACHEABLE(db); 1051 1052 mutex_enter(&db->db_mtx); 1053 if (db->db_state == DB_CACHED) { 1054 mutex_exit(&db->db_mtx); 1055 if (prefetch) 1056 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1057 if ((flags & DB_RF_HAVESTRUCT) == 0) 1058 rw_exit(&dn->dn_struct_rwlock); 1059 DB_DNODE_EXIT(db); 1060 } else if (db->db_state == DB_UNCACHED) { 1061 spa_t *spa = dn->dn_objset->os_spa; 1062 1063 if (zio == NULL) 1064 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1065 dbuf_read_impl(db, zio, flags); 1066 1067 /* dbuf_read_impl has dropped db_mtx for us */ 1068 1069 if (prefetch) 1070 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1071 1072 if ((flags & DB_RF_HAVESTRUCT) == 0) 1073 rw_exit(&dn->dn_struct_rwlock); 1074 DB_DNODE_EXIT(db); 1075 1076 if (!havepzio) 1077 err = zio_wait(zio); 1078 } else { 1079 /* 1080 * Another reader came in while the dbuf was in flight 1081 * between UNCACHED and CACHED. Either a writer will finish 1082 * writing the buffer (sending the dbuf to CACHED) or the 1083 * first reader's request will reach the read_done callback 1084 * and send the dbuf to CACHED. Otherwise, a failure 1085 * occurred and the dbuf went to UNCACHED. 1086 */ 1087 mutex_exit(&db->db_mtx); 1088 if (prefetch) 1089 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1090 if ((flags & DB_RF_HAVESTRUCT) == 0) 1091 rw_exit(&dn->dn_struct_rwlock); 1092 DB_DNODE_EXIT(db); 1093 1094 /* Skip the wait per the caller's request. */ 1095 mutex_enter(&db->db_mtx); 1096 if ((flags & DB_RF_NEVERWAIT) == 0) { 1097 while (db->db_state == DB_READ || 1098 db->db_state == DB_FILL) { 1099 ASSERT(db->db_state == DB_READ || 1100 (flags & DB_RF_HAVESTRUCT) == 0); 1101 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1102 db, zio_t *, zio); 1103 cv_wait(&db->db_changed, &db->db_mtx); 1104 } 1105 if (db->db_state == DB_UNCACHED) 1106 err = SET_ERROR(EIO); 1107 } 1108 mutex_exit(&db->db_mtx); 1109 } 1110 1111 ASSERT(err || havepzio || db->db_state == DB_CACHED); 1112 return (err); 1113 } 1114 1115 static void 1116 dbuf_noread(dmu_buf_impl_t *db) 1117 { 1118 ASSERT(!refcount_is_zero(&db->db_holds)); 1119 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1120 mutex_enter(&db->db_mtx); 1121 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1122 cv_wait(&db->db_changed, &db->db_mtx); 1123 if (db->db_state == DB_UNCACHED) { 1124 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1125 spa_t *spa = db->db_objset->os_spa; 1126 1127 ASSERT(db->db_buf == NULL); 1128 ASSERT(db->db.db_data == NULL); 1129 dbuf_set_data(db, arc_alloc_buf(spa, db->db.db_size, db, type)); 1130 db->db_state = DB_FILL; 1131 } else if (db->db_state == DB_NOFILL) { 1132 dbuf_clear_data(db); 1133 } else { 1134 ASSERT3U(db->db_state, ==, DB_CACHED); 1135 } 1136 mutex_exit(&db->db_mtx); 1137 } 1138 1139 /* 1140 * This is our just-in-time copy function. It makes a copy of 1141 * buffers, that have been modified in a previous transaction 1142 * group, before we modify them in the current active group. 1143 * 1144 * This function is used in two places: when we are dirtying a 1145 * buffer for the first time in a txg, and when we are freeing 1146 * a range in a dnode that includes this buffer. 1147 * 1148 * Note that when we are called from dbuf_free_range() we do 1149 * not put a hold on the buffer, we just traverse the active 1150 * dbuf list for the dnode. 1151 */ 1152 static void 1153 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1154 { 1155 dbuf_dirty_record_t *dr = db->db_last_dirty; 1156 1157 ASSERT(MUTEX_HELD(&db->db_mtx)); 1158 ASSERT(db->db.db_data != NULL); 1159 ASSERT(db->db_level == 0); 1160 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1161 1162 if (dr == NULL || 1163 (dr->dt.dl.dr_data != 1164 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1165 return; 1166 1167 /* 1168 * If the last dirty record for this dbuf has not yet synced 1169 * and its referencing the dbuf data, either: 1170 * reset the reference to point to a new copy, 1171 * or (if there a no active holders) 1172 * just null out the current db_data pointer. 1173 */ 1174 ASSERT(dr->dr_txg >= txg - 2); 1175 if (db->db_blkid == DMU_BONUS_BLKID) { 1176 /* Note that the data bufs here are zio_bufs */ 1177 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 1178 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1179 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 1180 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1181 int size = db->db.db_size; 1182 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1183 spa_t *spa = db->db_objset->os_spa; 1184 1185 dr->dt.dl.dr_data = arc_alloc_buf(spa, size, db, type); 1186 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1187 } else { 1188 db->db_buf = NULL; 1189 dbuf_clear_data(db); 1190 } 1191 } 1192 1193 void 1194 dbuf_unoverride(dbuf_dirty_record_t *dr) 1195 { 1196 dmu_buf_impl_t *db = dr->dr_dbuf; 1197 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1198 uint64_t txg = dr->dr_txg; 1199 1200 ASSERT(MUTEX_HELD(&db->db_mtx)); 1201 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1202 ASSERT(db->db_level == 0); 1203 1204 if (db->db_blkid == DMU_BONUS_BLKID || 1205 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1206 return; 1207 1208 ASSERT(db->db_data_pending != dr); 1209 1210 /* free this block */ 1211 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1212 zio_free(db->db_objset->os_spa, txg, bp); 1213 1214 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1215 dr->dt.dl.dr_nopwrite = B_FALSE; 1216 1217 /* 1218 * Release the already-written buffer, so we leave it in 1219 * a consistent dirty state. Note that all callers are 1220 * modifying the buffer, so they will immediately do 1221 * another (redundant) arc_release(). Therefore, leave 1222 * the buf thawed to save the effort of freezing & 1223 * immediately re-thawing it. 1224 */ 1225 arc_release(dr->dt.dl.dr_data, db); 1226 } 1227 1228 /* 1229 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1230 * data blocks in the free range, so that any future readers will find 1231 * empty blocks. 1232 */ 1233 void 1234 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1235 dmu_tx_t *tx) 1236 { 1237 dmu_buf_impl_t db_search; 1238 dmu_buf_impl_t *db, *db_next; 1239 uint64_t txg = tx->tx_txg; 1240 avl_index_t where; 1241 1242 if (end_blkid > dn->dn_maxblkid && 1243 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1244 end_blkid = dn->dn_maxblkid; 1245 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1246 1247 db_search.db_level = 0; 1248 db_search.db_blkid = start_blkid; 1249 db_search.db_state = DB_SEARCH; 1250 1251 mutex_enter(&dn->dn_dbufs_mtx); 1252 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1253 ASSERT3P(db, ==, NULL); 1254 1255 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1256 1257 for (; db != NULL; db = db_next) { 1258 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1259 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1260 1261 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1262 break; 1263 } 1264 ASSERT3U(db->db_blkid, >=, start_blkid); 1265 1266 /* found a level 0 buffer in the range */ 1267 mutex_enter(&db->db_mtx); 1268 if (dbuf_undirty(db, tx)) { 1269 /* mutex has been dropped and dbuf destroyed */ 1270 continue; 1271 } 1272 1273 if (db->db_state == DB_UNCACHED || 1274 db->db_state == DB_NOFILL || 1275 db->db_state == DB_EVICTING) { 1276 ASSERT(db->db.db_data == NULL); 1277 mutex_exit(&db->db_mtx); 1278 continue; 1279 } 1280 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1281 /* will be handled in dbuf_read_done or dbuf_rele */ 1282 db->db_freed_in_flight = TRUE; 1283 mutex_exit(&db->db_mtx); 1284 continue; 1285 } 1286 if (refcount_count(&db->db_holds) == 0) { 1287 ASSERT(db->db_buf); 1288 dbuf_destroy(db); 1289 continue; 1290 } 1291 /* The dbuf is referenced */ 1292 1293 if (db->db_last_dirty != NULL) { 1294 dbuf_dirty_record_t *dr = db->db_last_dirty; 1295 1296 if (dr->dr_txg == txg) { 1297 /* 1298 * This buffer is "in-use", re-adjust the file 1299 * size to reflect that this buffer may 1300 * contain new data when we sync. 1301 */ 1302 if (db->db_blkid != DMU_SPILL_BLKID && 1303 db->db_blkid > dn->dn_maxblkid) 1304 dn->dn_maxblkid = db->db_blkid; 1305 dbuf_unoverride(dr); 1306 } else { 1307 /* 1308 * This dbuf is not dirty in the open context. 1309 * Either uncache it (if its not referenced in 1310 * the open context) or reset its contents to 1311 * empty. 1312 */ 1313 dbuf_fix_old_data(db, txg); 1314 } 1315 } 1316 /* clear the contents if its cached */ 1317 if (db->db_state == DB_CACHED) { 1318 ASSERT(db->db.db_data != NULL); 1319 arc_release(db->db_buf, db); 1320 bzero(db->db.db_data, db->db.db_size); 1321 arc_buf_freeze(db->db_buf); 1322 } 1323 1324 mutex_exit(&db->db_mtx); 1325 } 1326 mutex_exit(&dn->dn_dbufs_mtx); 1327 } 1328 1329 static int 1330 dbuf_block_freeable(dmu_buf_impl_t *db) 1331 { 1332 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 1333 uint64_t birth_txg = 0; 1334 1335 /* 1336 * We don't need any locking to protect db_blkptr: 1337 * If it's syncing, then db_last_dirty will be set 1338 * so we'll ignore db_blkptr. 1339 * 1340 * This logic ensures that only block births for 1341 * filled blocks are considered. 1342 */ 1343 ASSERT(MUTEX_HELD(&db->db_mtx)); 1344 if (db->db_last_dirty && (db->db_blkptr == NULL || 1345 !BP_IS_HOLE(db->db_blkptr))) { 1346 birth_txg = db->db_last_dirty->dr_txg; 1347 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1348 birth_txg = db->db_blkptr->blk_birth; 1349 } 1350 1351 /* 1352 * If this block don't exist or is in a snapshot, it can't be freed. 1353 * Don't pass the bp to dsl_dataset_block_freeable() since we 1354 * are holding the db_mtx lock and might deadlock if we are 1355 * prefetching a dedup-ed block. 1356 */ 1357 if (birth_txg != 0) 1358 return (ds == NULL || 1359 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 1360 else 1361 return (B_FALSE); 1362 } 1363 1364 void 1365 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1366 { 1367 arc_buf_t *buf, *obuf; 1368 int osize = db->db.db_size; 1369 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1370 dnode_t *dn; 1371 1372 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1373 1374 DB_DNODE_ENTER(db); 1375 dn = DB_DNODE(db); 1376 1377 /* XXX does *this* func really need the lock? */ 1378 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1379 1380 /* 1381 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1382 * is OK, because there can be no other references to the db 1383 * when we are changing its size, so no concurrent DB_FILL can 1384 * be happening. 1385 */ 1386 /* 1387 * XXX we should be doing a dbuf_read, checking the return 1388 * value and returning that up to our callers 1389 */ 1390 dmu_buf_will_dirty(&db->db, tx); 1391 1392 /* create the data buffer for the new block */ 1393 buf = arc_alloc_buf(dn->dn_objset->os_spa, size, db, type); 1394 1395 /* copy old block data to the new block */ 1396 obuf = db->db_buf; 1397 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1398 /* zero the remainder */ 1399 if (size > osize) 1400 bzero((uint8_t *)buf->b_data + osize, size - osize); 1401 1402 mutex_enter(&db->db_mtx); 1403 dbuf_set_data(db, buf); 1404 arc_buf_destroy(obuf, db); 1405 db->db.db_size = size; 1406 1407 if (db->db_level == 0) { 1408 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1409 db->db_last_dirty->dt.dl.dr_data = buf; 1410 } 1411 mutex_exit(&db->db_mtx); 1412 1413 dnode_willuse_space(dn, size-osize, tx); 1414 DB_DNODE_EXIT(db); 1415 } 1416 1417 void 1418 dbuf_release_bp(dmu_buf_impl_t *db) 1419 { 1420 objset_t *os = db->db_objset; 1421 1422 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1423 ASSERT(arc_released(os->os_phys_buf) || 1424 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1425 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1426 1427 (void) arc_release(db->db_buf, db); 1428 } 1429 1430 /* 1431 * We already have a dirty record for this TXG, and we are being 1432 * dirtied again. 1433 */ 1434 static void 1435 dbuf_redirty(dbuf_dirty_record_t *dr) 1436 { 1437 dmu_buf_impl_t *db = dr->dr_dbuf; 1438 1439 ASSERT(MUTEX_HELD(&db->db_mtx)); 1440 1441 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1442 /* 1443 * If this buffer has already been written out, 1444 * we now need to reset its state. 1445 */ 1446 dbuf_unoverride(dr); 1447 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1448 db->db_state != DB_NOFILL) { 1449 /* Already released on initial dirty, so just thaw. */ 1450 ASSERT(arc_released(db->db_buf)); 1451 arc_buf_thaw(db->db_buf); 1452 } 1453 } 1454 } 1455 1456 dbuf_dirty_record_t * 1457 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1458 { 1459 dnode_t *dn; 1460 objset_t *os; 1461 dbuf_dirty_record_t **drp, *dr; 1462 int drop_struct_lock = FALSE; 1463 boolean_t do_free_accounting = B_FALSE; 1464 int txgoff = tx->tx_txg & TXG_MASK; 1465 1466 ASSERT(tx->tx_txg != 0); 1467 ASSERT(!refcount_is_zero(&db->db_holds)); 1468 DMU_TX_DIRTY_BUF(tx, db); 1469 1470 DB_DNODE_ENTER(db); 1471 dn = DB_DNODE(db); 1472 /* 1473 * Shouldn't dirty a regular buffer in syncing context. Private 1474 * objects may be dirtied in syncing context, but only if they 1475 * were already pre-dirtied in open context. 1476 */ 1477 #ifdef DEBUG 1478 if (dn->dn_objset->os_dsl_dataset != NULL) { 1479 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1480 RW_READER, FTAG); 1481 } 1482 ASSERT(!dmu_tx_is_syncing(tx) || 1483 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1484 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1485 dn->dn_objset->os_dsl_dataset == NULL); 1486 if (dn->dn_objset->os_dsl_dataset != NULL) 1487 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 1488 #endif 1489 /* 1490 * We make this assert for private objects as well, but after we 1491 * check if we're already dirty. They are allowed to re-dirty 1492 * in syncing context. 1493 */ 1494 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1495 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1496 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1497 1498 mutex_enter(&db->db_mtx); 1499 /* 1500 * XXX make this true for indirects too? The problem is that 1501 * transactions created with dmu_tx_create_assigned() from 1502 * syncing context don't bother holding ahead. 1503 */ 1504 ASSERT(db->db_level != 0 || 1505 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1506 db->db_state == DB_NOFILL); 1507 1508 mutex_enter(&dn->dn_mtx); 1509 /* 1510 * Don't set dirtyctx to SYNC if we're just modifying this as we 1511 * initialize the objset. 1512 */ 1513 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 1514 if (dn->dn_objset->os_dsl_dataset != NULL) { 1515 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1516 RW_READER, FTAG); 1517 } 1518 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1519 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? 1520 DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1521 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1522 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1523 } 1524 if (dn->dn_objset->os_dsl_dataset != NULL) { 1525 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1526 FTAG); 1527 } 1528 } 1529 mutex_exit(&dn->dn_mtx); 1530 1531 if (db->db_blkid == DMU_SPILL_BLKID) 1532 dn->dn_have_spill = B_TRUE; 1533 1534 /* 1535 * If this buffer is already dirty, we're done. 1536 */ 1537 drp = &db->db_last_dirty; 1538 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1539 db->db.db_object == DMU_META_DNODE_OBJECT); 1540 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1541 drp = &dr->dr_next; 1542 if (dr && dr->dr_txg == tx->tx_txg) { 1543 DB_DNODE_EXIT(db); 1544 1545 dbuf_redirty(dr); 1546 mutex_exit(&db->db_mtx); 1547 return (dr); 1548 } 1549 1550 /* 1551 * Only valid if not already dirty. 1552 */ 1553 ASSERT(dn->dn_object == 0 || 1554 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1555 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1556 1557 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1558 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1559 dn->dn_phys->dn_nlevels > db->db_level || 1560 dn->dn_next_nlevels[txgoff] > db->db_level || 1561 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1562 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1563 1564 /* 1565 * We should only be dirtying in syncing context if it's the 1566 * mos or we're initializing the os or it's a special object. 1567 * However, we are allowed to dirty in syncing context provided 1568 * we already dirtied it in open context. Hence we must make 1569 * this assertion only if we're not already dirty. 1570 */ 1571 os = dn->dn_objset; 1572 #ifdef DEBUG 1573 if (dn->dn_objset->os_dsl_dataset != NULL) 1574 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 1575 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1576 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1577 if (dn->dn_objset->os_dsl_dataset != NULL) 1578 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 1579 #endif 1580 ASSERT(db->db.db_size != 0); 1581 1582 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1583 1584 if (db->db_blkid != DMU_BONUS_BLKID) { 1585 /* 1586 * Update the accounting. 1587 * Note: we delay "free accounting" until after we drop 1588 * the db_mtx. This keeps us from grabbing other locks 1589 * (and possibly deadlocking) in bp_get_dsize() while 1590 * also holding the db_mtx. 1591 */ 1592 dnode_willuse_space(dn, db->db.db_size, tx); 1593 do_free_accounting = dbuf_block_freeable(db); 1594 } 1595 1596 /* 1597 * If this buffer is dirty in an old transaction group we need 1598 * to make a copy of it so that the changes we make in this 1599 * transaction group won't leak out when we sync the older txg. 1600 */ 1601 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1602 if (db->db_level == 0) { 1603 void *data_old = db->db_buf; 1604 1605 if (db->db_state != DB_NOFILL) { 1606 if (db->db_blkid == DMU_BONUS_BLKID) { 1607 dbuf_fix_old_data(db, tx->tx_txg); 1608 data_old = db->db.db_data; 1609 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1610 /* 1611 * Release the data buffer from the cache so 1612 * that we can modify it without impacting 1613 * possible other users of this cached data 1614 * block. Note that indirect blocks and 1615 * private objects are not released until the 1616 * syncing state (since they are only modified 1617 * then). 1618 */ 1619 arc_release(db->db_buf, db); 1620 dbuf_fix_old_data(db, tx->tx_txg); 1621 data_old = db->db_buf; 1622 } 1623 ASSERT(data_old != NULL); 1624 } 1625 dr->dt.dl.dr_data = data_old; 1626 } else { 1627 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1628 list_create(&dr->dt.di.dr_children, 1629 sizeof (dbuf_dirty_record_t), 1630 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1631 } 1632 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1633 dr->dr_accounted = db->db.db_size; 1634 dr->dr_dbuf = db; 1635 dr->dr_txg = tx->tx_txg; 1636 dr->dr_next = *drp; 1637 *drp = dr; 1638 1639 /* 1640 * We could have been freed_in_flight between the dbuf_noread 1641 * and dbuf_dirty. We win, as though the dbuf_noread() had 1642 * happened after the free. 1643 */ 1644 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1645 db->db_blkid != DMU_SPILL_BLKID) { 1646 mutex_enter(&dn->dn_mtx); 1647 if (dn->dn_free_ranges[txgoff] != NULL) { 1648 range_tree_clear(dn->dn_free_ranges[txgoff], 1649 db->db_blkid, 1); 1650 } 1651 mutex_exit(&dn->dn_mtx); 1652 db->db_freed_in_flight = FALSE; 1653 } 1654 1655 /* 1656 * This buffer is now part of this txg 1657 */ 1658 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1659 db->db_dirtycnt += 1; 1660 ASSERT3U(db->db_dirtycnt, <=, 3); 1661 1662 mutex_exit(&db->db_mtx); 1663 1664 if (db->db_blkid == DMU_BONUS_BLKID || 1665 db->db_blkid == DMU_SPILL_BLKID) { 1666 mutex_enter(&dn->dn_mtx); 1667 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1668 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1669 mutex_exit(&dn->dn_mtx); 1670 dnode_setdirty(dn, tx); 1671 DB_DNODE_EXIT(db); 1672 return (dr); 1673 } 1674 1675 /* 1676 * The dn_struct_rwlock prevents db_blkptr from changing 1677 * due to a write from syncing context completing 1678 * while we are running, so we want to acquire it before 1679 * looking at db_blkptr. 1680 */ 1681 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1682 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1683 drop_struct_lock = TRUE; 1684 } 1685 1686 if (do_free_accounting) { 1687 blkptr_t *bp = db->db_blkptr; 1688 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1689 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1690 /* 1691 * This is only a guess -- if the dbuf is dirty 1692 * in a previous txg, we don't know how much 1693 * space it will use on disk yet. We should 1694 * really have the struct_rwlock to access 1695 * db_blkptr, but since this is just a guess, 1696 * it's OK if we get an odd answer. 1697 */ 1698 ddt_prefetch(os->os_spa, bp); 1699 dnode_willuse_space(dn, -willfree, tx); 1700 } 1701 1702 if (db->db_level == 0) { 1703 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1704 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1705 } 1706 1707 if (db->db_level+1 < dn->dn_nlevels) { 1708 dmu_buf_impl_t *parent = db->db_parent; 1709 dbuf_dirty_record_t *di; 1710 int parent_held = FALSE; 1711 1712 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1713 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1714 1715 parent = dbuf_hold_level(dn, db->db_level+1, 1716 db->db_blkid >> epbs, FTAG); 1717 ASSERT(parent != NULL); 1718 parent_held = TRUE; 1719 } 1720 if (drop_struct_lock) 1721 rw_exit(&dn->dn_struct_rwlock); 1722 ASSERT3U(db->db_level+1, ==, parent->db_level); 1723 di = dbuf_dirty(parent, tx); 1724 if (parent_held) 1725 dbuf_rele(parent, FTAG); 1726 1727 mutex_enter(&db->db_mtx); 1728 /* 1729 * Since we've dropped the mutex, it's possible that 1730 * dbuf_undirty() might have changed this out from under us. 1731 */ 1732 if (db->db_last_dirty == dr || 1733 dn->dn_object == DMU_META_DNODE_OBJECT) { 1734 mutex_enter(&di->dt.di.dr_mtx); 1735 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1736 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1737 list_insert_tail(&di->dt.di.dr_children, dr); 1738 mutex_exit(&di->dt.di.dr_mtx); 1739 dr->dr_parent = di; 1740 } 1741 mutex_exit(&db->db_mtx); 1742 } else { 1743 ASSERT(db->db_level+1 == dn->dn_nlevels); 1744 ASSERT(db->db_blkid < dn->dn_nblkptr); 1745 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1746 mutex_enter(&dn->dn_mtx); 1747 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1748 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1749 mutex_exit(&dn->dn_mtx); 1750 if (drop_struct_lock) 1751 rw_exit(&dn->dn_struct_rwlock); 1752 } 1753 1754 dnode_setdirty(dn, tx); 1755 DB_DNODE_EXIT(db); 1756 return (dr); 1757 } 1758 1759 /* 1760 * Undirty a buffer in the transaction group referenced by the given 1761 * transaction. Return whether this evicted the dbuf. 1762 */ 1763 static boolean_t 1764 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1765 { 1766 dnode_t *dn; 1767 uint64_t txg = tx->tx_txg; 1768 dbuf_dirty_record_t *dr, **drp; 1769 1770 ASSERT(txg != 0); 1771 1772 /* 1773 * Due to our use of dn_nlevels below, this can only be called 1774 * in open context, unless we are operating on the MOS. 1775 * From syncing context, dn_nlevels may be different from the 1776 * dn_nlevels used when dbuf was dirtied. 1777 */ 1778 ASSERT(db->db_objset == 1779 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1780 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1781 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1782 ASSERT0(db->db_level); 1783 ASSERT(MUTEX_HELD(&db->db_mtx)); 1784 1785 /* 1786 * If this buffer is not dirty, we're done. 1787 */ 1788 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1789 if (dr->dr_txg <= txg) 1790 break; 1791 if (dr == NULL || dr->dr_txg < txg) 1792 return (B_FALSE); 1793 ASSERT(dr->dr_txg == txg); 1794 ASSERT(dr->dr_dbuf == db); 1795 1796 DB_DNODE_ENTER(db); 1797 dn = DB_DNODE(db); 1798 1799 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1800 1801 ASSERT(db->db.db_size != 0); 1802 1803 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1804 dr->dr_accounted, txg); 1805 1806 *drp = dr->dr_next; 1807 1808 /* 1809 * Note that there are three places in dbuf_dirty() 1810 * where this dirty record may be put on a list. 1811 * Make sure to do a list_remove corresponding to 1812 * every one of those list_insert calls. 1813 */ 1814 if (dr->dr_parent) { 1815 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1816 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1817 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1818 } else if (db->db_blkid == DMU_SPILL_BLKID || 1819 db->db_level + 1 == dn->dn_nlevels) { 1820 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1821 mutex_enter(&dn->dn_mtx); 1822 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1823 mutex_exit(&dn->dn_mtx); 1824 } 1825 DB_DNODE_EXIT(db); 1826 1827 if (db->db_state != DB_NOFILL) { 1828 dbuf_unoverride(dr); 1829 1830 ASSERT(db->db_buf != NULL); 1831 ASSERT(dr->dt.dl.dr_data != NULL); 1832 if (dr->dt.dl.dr_data != db->db_buf) 1833 arc_buf_destroy(dr->dt.dl.dr_data, db); 1834 } 1835 1836 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1837 1838 ASSERT(db->db_dirtycnt > 0); 1839 db->db_dirtycnt -= 1; 1840 1841 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1842 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 1843 dbuf_destroy(db); 1844 return (B_TRUE); 1845 } 1846 1847 return (B_FALSE); 1848 } 1849 1850 void 1851 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1852 { 1853 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1854 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1855 1856 ASSERT(tx->tx_txg != 0); 1857 ASSERT(!refcount_is_zero(&db->db_holds)); 1858 1859 /* 1860 * Quick check for dirtyness. For already dirty blocks, this 1861 * reduces runtime of this function by >90%, and overall performance 1862 * by 50% for some workloads (e.g. file deletion with indirect blocks 1863 * cached). 1864 */ 1865 mutex_enter(&db->db_mtx); 1866 dbuf_dirty_record_t *dr; 1867 for (dr = db->db_last_dirty; 1868 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 1869 /* 1870 * It's possible that it is already dirty but not cached, 1871 * because there are some calls to dbuf_dirty() that don't 1872 * go through dmu_buf_will_dirty(). 1873 */ 1874 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 1875 /* This dbuf is already dirty and cached. */ 1876 dbuf_redirty(dr); 1877 mutex_exit(&db->db_mtx); 1878 return; 1879 } 1880 } 1881 mutex_exit(&db->db_mtx); 1882 1883 DB_DNODE_ENTER(db); 1884 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1885 rf |= DB_RF_HAVESTRUCT; 1886 DB_DNODE_EXIT(db); 1887 (void) dbuf_read(db, NULL, rf); 1888 (void) dbuf_dirty(db, tx); 1889 } 1890 1891 void 1892 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1893 { 1894 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1895 1896 db->db_state = DB_NOFILL; 1897 1898 dmu_buf_will_fill(db_fake, tx); 1899 } 1900 1901 void 1902 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1903 { 1904 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1905 1906 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1907 ASSERT(tx->tx_txg != 0); 1908 ASSERT(db->db_level == 0); 1909 ASSERT(!refcount_is_zero(&db->db_holds)); 1910 1911 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1912 dmu_tx_private_ok(tx)); 1913 1914 dbuf_noread(db); 1915 (void) dbuf_dirty(db, tx); 1916 } 1917 1918 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1919 /* ARGSUSED */ 1920 void 1921 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1922 { 1923 mutex_enter(&db->db_mtx); 1924 DBUF_VERIFY(db); 1925 1926 if (db->db_state == DB_FILL) { 1927 if (db->db_level == 0 && db->db_freed_in_flight) { 1928 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1929 /* we were freed while filling */ 1930 /* XXX dbuf_undirty? */ 1931 bzero(db->db.db_data, db->db.db_size); 1932 db->db_freed_in_flight = FALSE; 1933 } 1934 db->db_state = DB_CACHED; 1935 cv_broadcast(&db->db_changed); 1936 } 1937 mutex_exit(&db->db_mtx); 1938 } 1939 1940 void 1941 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1942 bp_embedded_type_t etype, enum zio_compress comp, 1943 int uncompressed_size, int compressed_size, int byteorder, 1944 dmu_tx_t *tx) 1945 { 1946 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1947 struct dirty_leaf *dl; 1948 dmu_object_type_t type; 1949 1950 if (etype == BP_EMBEDDED_TYPE_DATA) { 1951 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 1952 SPA_FEATURE_EMBEDDED_DATA)); 1953 } 1954 1955 DB_DNODE_ENTER(db); 1956 type = DB_DNODE(db)->dn_type; 1957 DB_DNODE_EXIT(db); 1958 1959 ASSERT0(db->db_level); 1960 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1961 1962 dmu_buf_will_not_fill(dbuf, tx); 1963 1964 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1965 dl = &db->db_last_dirty->dt.dl; 1966 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1967 data, comp, uncompressed_size, compressed_size); 1968 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1969 BP_SET_TYPE(&dl->dr_overridden_by, type); 1970 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1971 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1972 1973 dl->dr_override_state = DR_OVERRIDDEN; 1974 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1975 } 1976 1977 /* 1978 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1979 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1980 */ 1981 void 1982 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1983 { 1984 ASSERT(!refcount_is_zero(&db->db_holds)); 1985 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1986 ASSERT(db->db_level == 0); 1987 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); 1988 ASSERT(buf != NULL); 1989 ASSERT(arc_buf_size(buf) == db->db.db_size); 1990 ASSERT(tx->tx_txg != 0); 1991 1992 arc_return_buf(buf, db); 1993 ASSERT(arc_released(buf)); 1994 1995 mutex_enter(&db->db_mtx); 1996 1997 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1998 cv_wait(&db->db_changed, &db->db_mtx); 1999 2000 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2001 2002 if (db->db_state == DB_CACHED && 2003 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2004 mutex_exit(&db->db_mtx); 2005 (void) dbuf_dirty(db, tx); 2006 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2007 arc_buf_destroy(buf, db); 2008 xuio_stat_wbuf_copied(); 2009 return; 2010 } 2011 2012 xuio_stat_wbuf_nocopy(); 2013 if (db->db_state == DB_CACHED) { 2014 dbuf_dirty_record_t *dr = db->db_last_dirty; 2015 2016 ASSERT(db->db_buf != NULL); 2017 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2018 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2019 if (!arc_released(db->db_buf)) { 2020 ASSERT(dr->dt.dl.dr_override_state == 2021 DR_OVERRIDDEN); 2022 arc_release(db->db_buf, db); 2023 } 2024 dr->dt.dl.dr_data = buf; 2025 arc_buf_destroy(db->db_buf, db); 2026 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2027 arc_release(db->db_buf, db); 2028 arc_buf_destroy(db->db_buf, db); 2029 } 2030 db->db_buf = NULL; 2031 } 2032 ASSERT(db->db_buf == NULL); 2033 dbuf_set_data(db, buf); 2034 db->db_state = DB_FILL; 2035 mutex_exit(&db->db_mtx); 2036 (void) dbuf_dirty(db, tx); 2037 dmu_buf_fill_done(&db->db, tx); 2038 } 2039 2040 void 2041 dbuf_destroy(dmu_buf_impl_t *db) 2042 { 2043 dnode_t *dn; 2044 dmu_buf_impl_t *parent = db->db_parent; 2045 dmu_buf_impl_t *dndb; 2046 2047 ASSERT(MUTEX_HELD(&db->db_mtx)); 2048 ASSERT(refcount_is_zero(&db->db_holds)); 2049 2050 if (db->db_buf != NULL) { 2051 arc_buf_destroy(db->db_buf, db); 2052 db->db_buf = NULL; 2053 } 2054 2055 if (db->db_blkid == DMU_BONUS_BLKID) { 2056 ASSERT(db->db.db_data != NULL); 2057 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 2058 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2059 db->db_state = DB_UNCACHED; 2060 } 2061 2062 dbuf_clear_data(db); 2063 2064 if (multilist_link_active(&db->db_cache_link)) { 2065 multilist_remove(&dbuf_cache, db); 2066 (void) refcount_remove_many(&dbuf_cache_size, 2067 db->db.db_size, db); 2068 } 2069 2070 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2071 ASSERT(db->db_data_pending == NULL); 2072 2073 db->db_state = DB_EVICTING; 2074 db->db_blkptr = NULL; 2075 2076 /* 2077 * Now that db_state is DB_EVICTING, nobody else can find this via 2078 * the hash table. We can now drop db_mtx, which allows us to 2079 * acquire the dn_dbufs_mtx. 2080 */ 2081 mutex_exit(&db->db_mtx); 2082 2083 DB_DNODE_ENTER(db); 2084 dn = DB_DNODE(db); 2085 dndb = dn->dn_dbuf; 2086 if (db->db_blkid != DMU_BONUS_BLKID) { 2087 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2088 if (needlock) 2089 mutex_enter(&dn->dn_dbufs_mtx); 2090 avl_remove(&dn->dn_dbufs, db); 2091 atomic_dec_32(&dn->dn_dbufs_count); 2092 membar_producer(); 2093 DB_DNODE_EXIT(db); 2094 if (needlock) 2095 mutex_exit(&dn->dn_dbufs_mtx); 2096 /* 2097 * Decrementing the dbuf count means that the hold corresponding 2098 * to the removed dbuf is no longer discounted in dnode_move(), 2099 * so the dnode cannot be moved until after we release the hold. 2100 * The membar_producer() ensures visibility of the decremented 2101 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2102 * release any lock. 2103 */ 2104 dnode_rele(dn, db); 2105 db->db_dnode_handle = NULL; 2106 2107 dbuf_hash_remove(db); 2108 } else { 2109 DB_DNODE_EXIT(db); 2110 } 2111 2112 ASSERT(refcount_is_zero(&db->db_holds)); 2113 2114 db->db_parent = NULL; 2115 2116 ASSERT(db->db_buf == NULL); 2117 ASSERT(db->db.db_data == NULL); 2118 ASSERT(db->db_hash_next == NULL); 2119 ASSERT(db->db_blkptr == NULL); 2120 ASSERT(db->db_data_pending == NULL); 2121 ASSERT(!multilist_link_active(&db->db_cache_link)); 2122 2123 kmem_cache_free(dbuf_kmem_cache, db); 2124 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2125 2126 /* 2127 * If this dbuf is referenced from an indirect dbuf, 2128 * decrement the ref count on the indirect dbuf. 2129 */ 2130 if (parent && parent != dndb) 2131 dbuf_rele(parent, db); 2132 } 2133 2134 /* 2135 * Note: While bpp will always be updated if the function returns success, 2136 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2137 * this happens when the dnode is the meta-dnode, or a userused or groupused 2138 * object. 2139 */ 2140 static int 2141 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2142 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2143 { 2144 int nlevels, epbs; 2145 2146 *parentp = NULL; 2147 *bpp = NULL; 2148 2149 ASSERT(blkid != DMU_BONUS_BLKID); 2150 2151 if (blkid == DMU_SPILL_BLKID) { 2152 mutex_enter(&dn->dn_mtx); 2153 if (dn->dn_have_spill && 2154 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2155 *bpp = &dn->dn_phys->dn_spill; 2156 else 2157 *bpp = NULL; 2158 dbuf_add_ref(dn->dn_dbuf, NULL); 2159 *parentp = dn->dn_dbuf; 2160 mutex_exit(&dn->dn_mtx); 2161 return (0); 2162 } 2163 2164 if (dn->dn_phys->dn_nlevels == 0) 2165 nlevels = 1; 2166 else 2167 nlevels = dn->dn_phys->dn_nlevels; 2168 2169 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2170 2171 ASSERT3U(level * epbs, <, 64); 2172 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2173 if (level >= nlevels || 2174 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2175 /* the buffer has no parent yet */ 2176 return (SET_ERROR(ENOENT)); 2177 } else if (level < nlevels-1) { 2178 /* this block is referenced from an indirect block */ 2179 int err = dbuf_hold_impl(dn, level+1, 2180 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2181 if (err) 2182 return (err); 2183 err = dbuf_read(*parentp, NULL, 2184 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2185 if (err) { 2186 dbuf_rele(*parentp, NULL); 2187 *parentp = NULL; 2188 return (err); 2189 } 2190 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2191 (blkid & ((1ULL << epbs) - 1)); 2192 return (0); 2193 } else { 2194 /* the block is referenced from the dnode */ 2195 ASSERT3U(level, ==, nlevels-1); 2196 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2197 blkid < dn->dn_phys->dn_nblkptr); 2198 if (dn->dn_dbuf) { 2199 dbuf_add_ref(dn->dn_dbuf, NULL); 2200 *parentp = dn->dn_dbuf; 2201 } 2202 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2203 return (0); 2204 } 2205 } 2206 2207 static dmu_buf_impl_t * 2208 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2209 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2210 { 2211 objset_t *os = dn->dn_objset; 2212 dmu_buf_impl_t *db, *odb; 2213 2214 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2215 ASSERT(dn->dn_type != DMU_OT_NONE); 2216 2217 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2218 2219 db->db_objset = os; 2220 db->db.db_object = dn->dn_object; 2221 db->db_level = level; 2222 db->db_blkid = blkid; 2223 db->db_last_dirty = NULL; 2224 db->db_dirtycnt = 0; 2225 db->db_dnode_handle = dn->dn_handle; 2226 db->db_parent = parent; 2227 db->db_blkptr = blkptr; 2228 2229 db->db_user = NULL; 2230 db->db_user_immediate_evict = FALSE; 2231 db->db_freed_in_flight = FALSE; 2232 db->db_pending_evict = FALSE; 2233 2234 if (blkid == DMU_BONUS_BLKID) { 2235 ASSERT3P(parent, ==, dn->dn_dbuf); 2236 db->db.db_size = DN_MAX_BONUSLEN - 2237 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2238 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2239 db->db.db_offset = DMU_BONUS_BLKID; 2240 db->db_state = DB_UNCACHED; 2241 /* the bonus dbuf is not placed in the hash table */ 2242 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2243 return (db); 2244 } else if (blkid == DMU_SPILL_BLKID) { 2245 db->db.db_size = (blkptr != NULL) ? 2246 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2247 db->db.db_offset = 0; 2248 } else { 2249 int blocksize = 2250 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2251 db->db.db_size = blocksize; 2252 db->db.db_offset = db->db_blkid * blocksize; 2253 } 2254 2255 /* 2256 * Hold the dn_dbufs_mtx while we get the new dbuf 2257 * in the hash table *and* added to the dbufs list. 2258 * This prevents a possible deadlock with someone 2259 * trying to look up this dbuf before its added to the 2260 * dn_dbufs list. 2261 */ 2262 mutex_enter(&dn->dn_dbufs_mtx); 2263 db->db_state = DB_EVICTING; 2264 if ((odb = dbuf_hash_insert(db)) != NULL) { 2265 /* someone else inserted it first */ 2266 kmem_cache_free(dbuf_kmem_cache, db); 2267 mutex_exit(&dn->dn_dbufs_mtx); 2268 return (odb); 2269 } 2270 avl_add(&dn->dn_dbufs, db); 2271 2272 db->db_state = DB_UNCACHED; 2273 mutex_exit(&dn->dn_dbufs_mtx); 2274 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2275 2276 if (parent && parent != dn->dn_dbuf) 2277 dbuf_add_ref(parent, db); 2278 2279 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2280 refcount_count(&dn->dn_holds) > 0); 2281 (void) refcount_add(&dn->dn_holds, db); 2282 atomic_inc_32(&dn->dn_dbufs_count); 2283 2284 dprintf_dbuf(db, "db=%p\n", db); 2285 2286 return (db); 2287 } 2288 2289 typedef struct dbuf_prefetch_arg { 2290 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2291 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2292 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2293 int dpa_curlevel; /* The current level that we're reading */ 2294 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2295 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2296 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2297 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2298 } dbuf_prefetch_arg_t; 2299 2300 /* 2301 * Actually issue the prefetch read for the block given. 2302 */ 2303 static void 2304 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2305 { 2306 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2307 return; 2308 2309 arc_flags_t aflags = 2310 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2311 2312 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2313 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2314 ASSERT(dpa->dpa_zio != NULL); 2315 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2316 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2317 &aflags, &dpa->dpa_zb); 2318 } 2319 2320 /* 2321 * Called when an indirect block above our prefetch target is read in. This 2322 * will either read in the next indirect block down the tree or issue the actual 2323 * prefetch if the next block down is our target. 2324 */ 2325 static void 2326 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) 2327 { 2328 dbuf_prefetch_arg_t *dpa = private; 2329 2330 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2331 ASSERT3S(dpa->dpa_curlevel, >, 0); 2332 2333 /* 2334 * The dpa_dnode is only valid if we are called with a NULL 2335 * zio. This indicates that the arc_read() returned without 2336 * first calling zio_read() to issue a physical read. Once 2337 * a physical read is made the dpa_dnode must be invalidated 2338 * as the locks guarding it may have been dropped. If the 2339 * dpa_dnode is still valid, then we want to add it to the dbuf 2340 * cache. To do so, we must hold the dbuf associated with the block 2341 * we just prefetched, read its contents so that we associate it 2342 * with an arc_buf_t, and then release it. 2343 */ 2344 if (zio != NULL) { 2345 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2346 if (zio->io_flags & ZIO_FLAG_RAW) { 2347 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2348 } else { 2349 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2350 } 2351 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2352 2353 dpa->dpa_dnode = NULL; 2354 } else if (dpa->dpa_dnode != NULL) { 2355 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2356 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2357 dpa->dpa_zb.zb_level)); 2358 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2359 dpa->dpa_curlevel, curblkid, FTAG); 2360 (void) dbuf_read(db, NULL, 2361 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2362 dbuf_rele(db, FTAG); 2363 } 2364 2365 dpa->dpa_curlevel--; 2366 2367 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2368 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2369 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2370 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2371 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) { 2372 kmem_free(dpa, sizeof (*dpa)); 2373 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2374 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2375 dbuf_issue_final_prefetch(dpa, bp); 2376 kmem_free(dpa, sizeof (*dpa)); 2377 } else { 2378 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2379 zbookmark_phys_t zb; 2380 2381 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2382 2383 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2384 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2385 2386 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2387 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2388 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2389 &iter_aflags, &zb); 2390 } 2391 2392 arc_buf_destroy(abuf, private); 2393 } 2394 2395 /* 2396 * Issue prefetch reads for the given block on the given level. If the indirect 2397 * blocks above that block are not in memory, we will read them in 2398 * asynchronously. As a result, this call never blocks waiting for a read to 2399 * complete. 2400 */ 2401 void 2402 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2403 arc_flags_t aflags) 2404 { 2405 blkptr_t bp; 2406 int epbs, nlevels, curlevel; 2407 uint64_t curblkid; 2408 2409 ASSERT(blkid != DMU_BONUS_BLKID); 2410 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2411 2412 if (blkid > dn->dn_maxblkid) 2413 return; 2414 2415 if (dnode_block_freed(dn, blkid)) 2416 return; 2417 2418 /* 2419 * This dnode hasn't been written to disk yet, so there's nothing to 2420 * prefetch. 2421 */ 2422 nlevels = dn->dn_phys->dn_nlevels; 2423 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2424 return; 2425 2426 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2427 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2428 return; 2429 2430 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2431 level, blkid); 2432 if (db != NULL) { 2433 mutex_exit(&db->db_mtx); 2434 /* 2435 * This dbuf already exists. It is either CACHED, or 2436 * (we assume) about to be read or filled. 2437 */ 2438 return; 2439 } 2440 2441 /* 2442 * Find the closest ancestor (indirect block) of the target block 2443 * that is present in the cache. In this indirect block, we will 2444 * find the bp that is at curlevel, curblkid. 2445 */ 2446 curlevel = level; 2447 curblkid = blkid; 2448 while (curlevel < nlevels - 1) { 2449 int parent_level = curlevel + 1; 2450 uint64_t parent_blkid = curblkid >> epbs; 2451 dmu_buf_impl_t *db; 2452 2453 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2454 FALSE, TRUE, FTAG, &db) == 0) { 2455 blkptr_t *bpp = db->db_buf->b_data; 2456 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2457 dbuf_rele(db, FTAG); 2458 break; 2459 } 2460 2461 curlevel = parent_level; 2462 curblkid = parent_blkid; 2463 } 2464 2465 if (curlevel == nlevels - 1) { 2466 /* No cached indirect blocks found. */ 2467 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2468 bp = dn->dn_phys->dn_blkptr[curblkid]; 2469 } 2470 if (BP_IS_HOLE(&bp)) 2471 return; 2472 2473 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2474 2475 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2476 ZIO_FLAG_CANFAIL); 2477 2478 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2479 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2480 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2481 dn->dn_object, level, blkid); 2482 dpa->dpa_curlevel = curlevel; 2483 dpa->dpa_prio = prio; 2484 dpa->dpa_aflags = aflags; 2485 dpa->dpa_spa = dn->dn_objset->os_spa; 2486 dpa->dpa_dnode = dn; 2487 dpa->dpa_epbs = epbs; 2488 dpa->dpa_zio = pio; 2489 2490 /* 2491 * If we have the indirect just above us, no need to do the asynchronous 2492 * prefetch chain; we'll just run the last step ourselves. If we're at 2493 * a higher level, though, we want to issue the prefetches for all the 2494 * indirect blocks asynchronously, so we can go on with whatever we were 2495 * doing. 2496 */ 2497 if (curlevel == level) { 2498 ASSERT3U(curblkid, ==, blkid); 2499 dbuf_issue_final_prefetch(dpa, &bp); 2500 kmem_free(dpa, sizeof (*dpa)); 2501 } else { 2502 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2503 zbookmark_phys_t zb; 2504 2505 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2506 dn->dn_object, curlevel, curblkid); 2507 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2508 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2509 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2510 &iter_aflags, &zb); 2511 } 2512 /* 2513 * We use pio here instead of dpa_zio since it's possible that 2514 * dpa may have already been freed. 2515 */ 2516 zio_nowait(pio); 2517 } 2518 2519 /* 2520 * Returns with db_holds incremented, and db_mtx not held. 2521 * Note: dn_struct_rwlock must be held. 2522 */ 2523 int 2524 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2525 boolean_t fail_sparse, boolean_t fail_uncached, 2526 void *tag, dmu_buf_impl_t **dbp) 2527 { 2528 dmu_buf_impl_t *db, *parent = NULL; 2529 2530 ASSERT(blkid != DMU_BONUS_BLKID); 2531 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2532 ASSERT3U(dn->dn_nlevels, >, level); 2533 2534 *dbp = NULL; 2535 top: 2536 /* dbuf_find() returns with db_mtx held */ 2537 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2538 2539 if (db == NULL) { 2540 blkptr_t *bp = NULL; 2541 int err; 2542 2543 if (fail_uncached) 2544 return (SET_ERROR(ENOENT)); 2545 2546 ASSERT3P(parent, ==, NULL); 2547 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2548 if (fail_sparse) { 2549 if (err == 0 && bp && BP_IS_HOLE(bp)) 2550 err = SET_ERROR(ENOENT); 2551 if (err) { 2552 if (parent) 2553 dbuf_rele(parent, NULL); 2554 return (err); 2555 } 2556 } 2557 if (err && err != ENOENT) 2558 return (err); 2559 db = dbuf_create(dn, level, blkid, parent, bp); 2560 } 2561 2562 if (fail_uncached && db->db_state != DB_CACHED) { 2563 mutex_exit(&db->db_mtx); 2564 return (SET_ERROR(ENOENT)); 2565 } 2566 2567 if (db->db_buf != NULL) 2568 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2569 2570 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2571 2572 /* 2573 * If this buffer is currently syncing out, and we are are 2574 * still referencing it from db_data, we need to make a copy 2575 * of it in case we decide we want to dirty it again in this txg. 2576 */ 2577 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2578 dn->dn_object != DMU_META_DNODE_OBJECT && 2579 db->db_state == DB_CACHED && db->db_data_pending) { 2580 dbuf_dirty_record_t *dr = db->db_data_pending; 2581 2582 if (dr->dt.dl.dr_data == db->db_buf) { 2583 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2584 2585 dbuf_set_data(db, 2586 arc_alloc_buf(dn->dn_objset->os_spa, 2587 db->db.db_size, db, type)); 2588 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2589 db->db.db_size); 2590 } 2591 } 2592 2593 if (multilist_link_active(&db->db_cache_link)) { 2594 ASSERT(refcount_is_zero(&db->db_holds)); 2595 multilist_remove(&dbuf_cache, db); 2596 (void) refcount_remove_many(&dbuf_cache_size, 2597 db->db.db_size, db); 2598 } 2599 (void) refcount_add(&db->db_holds, tag); 2600 DBUF_VERIFY(db); 2601 mutex_exit(&db->db_mtx); 2602 2603 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2604 if (parent) 2605 dbuf_rele(parent, NULL); 2606 2607 ASSERT3P(DB_DNODE(db), ==, dn); 2608 ASSERT3U(db->db_blkid, ==, blkid); 2609 ASSERT3U(db->db_level, ==, level); 2610 *dbp = db; 2611 2612 return (0); 2613 } 2614 2615 dmu_buf_impl_t * 2616 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2617 { 2618 return (dbuf_hold_level(dn, 0, blkid, tag)); 2619 } 2620 2621 dmu_buf_impl_t * 2622 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2623 { 2624 dmu_buf_impl_t *db; 2625 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2626 return (err ? NULL : db); 2627 } 2628 2629 void 2630 dbuf_create_bonus(dnode_t *dn) 2631 { 2632 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2633 2634 ASSERT(dn->dn_bonus == NULL); 2635 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2636 } 2637 2638 int 2639 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2640 { 2641 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2642 dnode_t *dn; 2643 2644 if (db->db_blkid != DMU_SPILL_BLKID) 2645 return (SET_ERROR(ENOTSUP)); 2646 if (blksz == 0) 2647 blksz = SPA_MINBLOCKSIZE; 2648 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2649 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2650 2651 DB_DNODE_ENTER(db); 2652 dn = DB_DNODE(db); 2653 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2654 dbuf_new_size(db, blksz, tx); 2655 rw_exit(&dn->dn_struct_rwlock); 2656 DB_DNODE_EXIT(db); 2657 2658 return (0); 2659 } 2660 2661 void 2662 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2663 { 2664 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2665 } 2666 2667 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2668 void 2669 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2670 { 2671 int64_t holds = refcount_add(&db->db_holds, tag); 2672 ASSERT3S(holds, >, 1); 2673 } 2674 2675 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2676 boolean_t 2677 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2678 void *tag) 2679 { 2680 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2681 dmu_buf_impl_t *found_db; 2682 boolean_t result = B_FALSE; 2683 2684 if (db->db_blkid == DMU_BONUS_BLKID) 2685 found_db = dbuf_find_bonus(os, obj); 2686 else 2687 found_db = dbuf_find(os, obj, 0, blkid); 2688 2689 if (found_db != NULL) { 2690 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 2691 (void) refcount_add(&db->db_holds, tag); 2692 result = B_TRUE; 2693 } 2694 mutex_exit(&db->db_mtx); 2695 } 2696 return (result); 2697 } 2698 2699 /* 2700 * If you call dbuf_rele() you had better not be referencing the dnode handle 2701 * unless you have some other direct or indirect hold on the dnode. (An indirect 2702 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2703 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2704 * dnode's parent dbuf evicting its dnode handles. 2705 */ 2706 void 2707 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2708 { 2709 mutex_enter(&db->db_mtx); 2710 dbuf_rele_and_unlock(db, tag); 2711 } 2712 2713 void 2714 dmu_buf_rele(dmu_buf_t *db, void *tag) 2715 { 2716 dbuf_rele((dmu_buf_impl_t *)db, tag); 2717 } 2718 2719 /* 2720 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2721 * db_dirtycnt and db_holds to be updated atomically. 2722 */ 2723 void 2724 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2725 { 2726 int64_t holds; 2727 2728 ASSERT(MUTEX_HELD(&db->db_mtx)); 2729 DBUF_VERIFY(db); 2730 2731 /* 2732 * Remove the reference to the dbuf before removing its hold on the 2733 * dnode so we can guarantee in dnode_move() that a referenced bonus 2734 * buffer has a corresponding dnode hold. 2735 */ 2736 holds = refcount_remove(&db->db_holds, tag); 2737 ASSERT(holds >= 0); 2738 2739 /* 2740 * We can't freeze indirects if there is a possibility that they 2741 * may be modified in the current syncing context. 2742 */ 2743 if (db->db_buf != NULL && 2744 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 2745 arc_buf_freeze(db->db_buf); 2746 } 2747 2748 if (holds == db->db_dirtycnt && 2749 db->db_level == 0 && db->db_user_immediate_evict) 2750 dbuf_evict_user(db); 2751 2752 if (holds == 0) { 2753 if (db->db_blkid == DMU_BONUS_BLKID) { 2754 dnode_t *dn; 2755 boolean_t evict_dbuf = db->db_pending_evict; 2756 2757 /* 2758 * If the dnode moves here, we cannot cross this 2759 * barrier until the move completes. 2760 */ 2761 DB_DNODE_ENTER(db); 2762 2763 dn = DB_DNODE(db); 2764 atomic_dec_32(&dn->dn_dbufs_count); 2765 2766 /* 2767 * Decrementing the dbuf count means that the bonus 2768 * buffer's dnode hold is no longer discounted in 2769 * dnode_move(). The dnode cannot move until after 2770 * the dnode_rele() below. 2771 */ 2772 DB_DNODE_EXIT(db); 2773 2774 /* 2775 * Do not reference db after its lock is dropped. 2776 * Another thread may evict it. 2777 */ 2778 mutex_exit(&db->db_mtx); 2779 2780 if (evict_dbuf) 2781 dnode_evict_bonus(dn); 2782 2783 dnode_rele(dn, db); 2784 } else if (db->db_buf == NULL) { 2785 /* 2786 * This is a special case: we never associated this 2787 * dbuf with any data allocated from the ARC. 2788 */ 2789 ASSERT(db->db_state == DB_UNCACHED || 2790 db->db_state == DB_NOFILL); 2791 dbuf_destroy(db); 2792 } else if (arc_released(db->db_buf)) { 2793 /* 2794 * This dbuf has anonymous data associated with it. 2795 */ 2796 dbuf_destroy(db); 2797 } else { 2798 boolean_t do_arc_evict = B_FALSE; 2799 blkptr_t bp; 2800 spa_t *spa = dmu_objset_spa(db->db_objset); 2801 2802 if (!DBUF_IS_CACHEABLE(db) && 2803 db->db_blkptr != NULL && 2804 !BP_IS_HOLE(db->db_blkptr) && 2805 !BP_IS_EMBEDDED(db->db_blkptr)) { 2806 do_arc_evict = B_TRUE; 2807 bp = *db->db_blkptr; 2808 } 2809 2810 if (!DBUF_IS_CACHEABLE(db) || 2811 db->db_pending_evict) { 2812 dbuf_destroy(db); 2813 } else if (!multilist_link_active(&db->db_cache_link)) { 2814 multilist_insert(&dbuf_cache, db); 2815 (void) refcount_add_many(&dbuf_cache_size, 2816 db->db.db_size, db); 2817 mutex_exit(&db->db_mtx); 2818 2819 dbuf_evict_notify(); 2820 } 2821 2822 if (do_arc_evict) 2823 arc_freed(spa, &bp); 2824 } 2825 } else { 2826 mutex_exit(&db->db_mtx); 2827 } 2828 2829 } 2830 2831 #pragma weak dmu_buf_refcount = dbuf_refcount 2832 uint64_t 2833 dbuf_refcount(dmu_buf_impl_t *db) 2834 { 2835 return (refcount_count(&db->db_holds)); 2836 } 2837 2838 void * 2839 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 2840 dmu_buf_user_t *new_user) 2841 { 2842 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2843 2844 mutex_enter(&db->db_mtx); 2845 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2846 if (db->db_user == old_user) 2847 db->db_user = new_user; 2848 else 2849 old_user = db->db_user; 2850 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2851 mutex_exit(&db->db_mtx); 2852 2853 return (old_user); 2854 } 2855 2856 void * 2857 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2858 { 2859 return (dmu_buf_replace_user(db_fake, NULL, user)); 2860 } 2861 2862 void * 2863 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2864 { 2865 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2866 2867 db->db_user_immediate_evict = TRUE; 2868 return (dmu_buf_set_user(db_fake, user)); 2869 } 2870 2871 void * 2872 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2873 { 2874 return (dmu_buf_replace_user(db_fake, user, NULL)); 2875 } 2876 2877 void * 2878 dmu_buf_get_user(dmu_buf_t *db_fake) 2879 { 2880 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2881 2882 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2883 return (db->db_user); 2884 } 2885 2886 void 2887 dmu_buf_user_evict_wait() 2888 { 2889 taskq_wait(dbu_evict_taskq); 2890 } 2891 2892 boolean_t 2893 dmu_buf_freeable(dmu_buf_t *dbuf) 2894 { 2895 boolean_t res = B_FALSE; 2896 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2897 2898 if (db->db_blkptr) 2899 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2900 db->db_blkptr, db->db_blkptr->blk_birth); 2901 2902 return (res); 2903 } 2904 2905 blkptr_t * 2906 dmu_buf_get_blkptr(dmu_buf_t *db) 2907 { 2908 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2909 return (dbi->db_blkptr); 2910 } 2911 2912 objset_t * 2913 dmu_buf_get_objset(dmu_buf_t *db) 2914 { 2915 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2916 return (dbi->db_objset); 2917 } 2918 2919 dnode_t * 2920 dmu_buf_dnode_enter(dmu_buf_t *db) 2921 { 2922 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2923 DB_DNODE_ENTER(dbi); 2924 return (DB_DNODE(dbi)); 2925 } 2926 2927 void 2928 dmu_buf_dnode_exit(dmu_buf_t *db) 2929 { 2930 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2931 DB_DNODE_EXIT(dbi); 2932 } 2933 2934 static void 2935 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2936 { 2937 /* ASSERT(dmu_tx_is_syncing(tx) */ 2938 ASSERT(MUTEX_HELD(&db->db_mtx)); 2939 2940 if (db->db_blkptr != NULL) 2941 return; 2942 2943 if (db->db_blkid == DMU_SPILL_BLKID) { 2944 db->db_blkptr = &dn->dn_phys->dn_spill; 2945 BP_ZERO(db->db_blkptr); 2946 return; 2947 } 2948 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2949 /* 2950 * This buffer was allocated at a time when there was 2951 * no available blkptrs from the dnode, or it was 2952 * inappropriate to hook it in (i.e., nlevels mis-match). 2953 */ 2954 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2955 ASSERT(db->db_parent == NULL); 2956 db->db_parent = dn->dn_dbuf; 2957 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2958 DBUF_VERIFY(db); 2959 } else { 2960 dmu_buf_impl_t *parent = db->db_parent; 2961 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2962 2963 ASSERT(dn->dn_phys->dn_nlevels > 1); 2964 if (parent == NULL) { 2965 mutex_exit(&db->db_mtx); 2966 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2967 parent = dbuf_hold_level(dn, db->db_level + 1, 2968 db->db_blkid >> epbs, db); 2969 rw_exit(&dn->dn_struct_rwlock); 2970 mutex_enter(&db->db_mtx); 2971 db->db_parent = parent; 2972 } 2973 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2974 (db->db_blkid & ((1ULL << epbs) - 1)); 2975 DBUF_VERIFY(db); 2976 } 2977 } 2978 2979 static void 2980 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2981 { 2982 dmu_buf_impl_t *db = dr->dr_dbuf; 2983 dnode_t *dn; 2984 zio_t *zio; 2985 2986 ASSERT(dmu_tx_is_syncing(tx)); 2987 2988 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2989 2990 mutex_enter(&db->db_mtx); 2991 2992 ASSERT(db->db_level > 0); 2993 DBUF_VERIFY(db); 2994 2995 /* Read the block if it hasn't been read yet. */ 2996 if (db->db_buf == NULL) { 2997 mutex_exit(&db->db_mtx); 2998 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2999 mutex_enter(&db->db_mtx); 3000 } 3001 ASSERT3U(db->db_state, ==, DB_CACHED); 3002 ASSERT(db->db_buf != NULL); 3003 3004 DB_DNODE_ENTER(db); 3005 dn = DB_DNODE(db); 3006 /* Indirect block size must match what the dnode thinks it is. */ 3007 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3008 dbuf_check_blkptr(dn, db); 3009 DB_DNODE_EXIT(db); 3010 3011 /* Provide the pending dirty record to child dbufs */ 3012 db->db_data_pending = dr; 3013 3014 mutex_exit(&db->db_mtx); 3015 dbuf_write(dr, db->db_buf, tx); 3016 3017 zio = dr->dr_zio; 3018 mutex_enter(&dr->dt.di.dr_mtx); 3019 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 3020 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3021 mutex_exit(&dr->dt.di.dr_mtx); 3022 zio_nowait(zio); 3023 } 3024 3025 static void 3026 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3027 { 3028 arc_buf_t **datap = &dr->dt.dl.dr_data; 3029 dmu_buf_impl_t *db = dr->dr_dbuf; 3030 dnode_t *dn; 3031 objset_t *os; 3032 uint64_t txg = tx->tx_txg; 3033 3034 ASSERT(dmu_tx_is_syncing(tx)); 3035 3036 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3037 3038 mutex_enter(&db->db_mtx); 3039 /* 3040 * To be synced, we must be dirtied. But we 3041 * might have been freed after the dirty. 3042 */ 3043 if (db->db_state == DB_UNCACHED) { 3044 /* This buffer has been freed since it was dirtied */ 3045 ASSERT(db->db.db_data == NULL); 3046 } else if (db->db_state == DB_FILL) { 3047 /* This buffer was freed and is now being re-filled */ 3048 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3049 } else { 3050 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3051 } 3052 DBUF_VERIFY(db); 3053 3054 DB_DNODE_ENTER(db); 3055 dn = DB_DNODE(db); 3056 3057 if (db->db_blkid == DMU_SPILL_BLKID) { 3058 mutex_enter(&dn->dn_mtx); 3059 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 3060 mutex_exit(&dn->dn_mtx); 3061 } 3062 3063 /* 3064 * If this is a bonus buffer, simply copy the bonus data into the 3065 * dnode. It will be written out when the dnode is synced (and it 3066 * will be synced, since it must have been dirty for dbuf_sync to 3067 * be called). 3068 */ 3069 if (db->db_blkid == DMU_BONUS_BLKID) { 3070 dbuf_dirty_record_t **drp; 3071 3072 ASSERT(*datap != NULL); 3073 ASSERT0(db->db_level); 3074 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 3075 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 3076 DB_DNODE_EXIT(db); 3077 3078 if (*datap != db->db.db_data) { 3079 zio_buf_free(*datap, DN_MAX_BONUSLEN); 3080 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 3081 } 3082 db->db_data_pending = NULL; 3083 drp = &db->db_last_dirty; 3084 while (*drp != dr) 3085 drp = &(*drp)->dr_next; 3086 ASSERT(dr->dr_next == NULL); 3087 ASSERT(dr->dr_dbuf == db); 3088 *drp = dr->dr_next; 3089 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3090 ASSERT(db->db_dirtycnt > 0); 3091 db->db_dirtycnt -= 1; 3092 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 3093 return; 3094 } 3095 3096 os = dn->dn_objset; 3097 3098 /* 3099 * This function may have dropped the db_mtx lock allowing a dmu_sync 3100 * operation to sneak in. As a result, we need to ensure that we 3101 * don't check the dr_override_state until we have returned from 3102 * dbuf_check_blkptr. 3103 */ 3104 dbuf_check_blkptr(dn, db); 3105 3106 /* 3107 * If this buffer is in the middle of an immediate write, 3108 * wait for the synchronous IO to complete. 3109 */ 3110 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 3111 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 3112 cv_wait(&db->db_changed, &db->db_mtx); 3113 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 3114 } 3115 3116 if (db->db_state != DB_NOFILL && 3117 dn->dn_object != DMU_META_DNODE_OBJECT && 3118 refcount_count(&db->db_holds) > 1 && 3119 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 3120 *datap == db->db_buf) { 3121 /* 3122 * If this buffer is currently "in use" (i.e., there 3123 * are active holds and db_data still references it), 3124 * then make a copy before we start the write so that 3125 * any modifications from the open txg will not leak 3126 * into this write. 3127 * 3128 * NOTE: this copy does not need to be made for 3129 * objects only modified in the syncing context (e.g. 3130 * DNONE_DNODE blocks). 3131 */ 3132 int blksz = arc_buf_size(*datap); 3133 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 3134 *datap = arc_alloc_buf(os->os_spa, blksz, db, type); 3135 bcopy(db->db.db_data, (*datap)->b_data, blksz); 3136 } 3137 db->db_data_pending = dr; 3138 3139 mutex_exit(&db->db_mtx); 3140 3141 dbuf_write(dr, *datap, tx); 3142 3143 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3144 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 3145 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 3146 DB_DNODE_EXIT(db); 3147 } else { 3148 /* 3149 * Although zio_nowait() does not "wait for an IO", it does 3150 * initiate the IO. If this is an empty write it seems plausible 3151 * that the IO could actually be completed before the nowait 3152 * returns. We need to DB_DNODE_EXIT() first in case 3153 * zio_nowait() invalidates the dbuf. 3154 */ 3155 DB_DNODE_EXIT(db); 3156 zio_nowait(dr->dr_zio); 3157 } 3158 } 3159 3160 void 3161 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 3162 { 3163 dbuf_dirty_record_t *dr; 3164 3165 while (dr = list_head(list)) { 3166 if (dr->dr_zio != NULL) { 3167 /* 3168 * If we find an already initialized zio then we 3169 * are processing the meta-dnode, and we have finished. 3170 * The dbufs for all dnodes are put back on the list 3171 * during processing, so that we can zio_wait() 3172 * these IOs after initiating all child IOs. 3173 */ 3174 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 3175 DMU_META_DNODE_OBJECT); 3176 break; 3177 } 3178 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 3179 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 3180 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 3181 } 3182 list_remove(list, dr); 3183 if (dr->dr_dbuf->db_level > 0) 3184 dbuf_sync_indirect(dr, tx); 3185 else 3186 dbuf_sync_leaf(dr, tx); 3187 } 3188 } 3189 3190 /* ARGSUSED */ 3191 static void 3192 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3193 { 3194 dmu_buf_impl_t *db = vdb; 3195 dnode_t *dn; 3196 blkptr_t *bp = zio->io_bp; 3197 blkptr_t *bp_orig = &zio->io_bp_orig; 3198 spa_t *spa = zio->io_spa; 3199 int64_t delta; 3200 uint64_t fill = 0; 3201 int i; 3202 3203 ASSERT3P(db->db_blkptr, !=, NULL); 3204 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 3205 3206 DB_DNODE_ENTER(db); 3207 dn = DB_DNODE(db); 3208 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 3209 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 3210 zio->io_prev_space_delta = delta; 3211 3212 if (bp->blk_birth != 0) { 3213 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 3214 BP_GET_TYPE(bp) == dn->dn_type) || 3215 (db->db_blkid == DMU_SPILL_BLKID && 3216 BP_GET_TYPE(bp) == dn->dn_bonustype) || 3217 BP_IS_EMBEDDED(bp)); 3218 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 3219 } 3220 3221 mutex_enter(&db->db_mtx); 3222 3223 #ifdef ZFS_DEBUG 3224 if (db->db_blkid == DMU_SPILL_BLKID) { 3225 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3226 ASSERT(!(BP_IS_HOLE(bp)) && 3227 db->db_blkptr == &dn->dn_phys->dn_spill); 3228 } 3229 #endif 3230 3231 if (db->db_level == 0) { 3232 mutex_enter(&dn->dn_mtx); 3233 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 3234 db->db_blkid != DMU_SPILL_BLKID) 3235 dn->dn_phys->dn_maxblkid = db->db_blkid; 3236 mutex_exit(&dn->dn_mtx); 3237 3238 if (dn->dn_type == DMU_OT_DNODE) { 3239 dnode_phys_t *dnp = db->db.db_data; 3240 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 3241 i--, dnp++) { 3242 if (dnp->dn_type != DMU_OT_NONE) 3243 fill++; 3244 } 3245 } else { 3246 if (BP_IS_HOLE(bp)) { 3247 fill = 0; 3248 } else { 3249 fill = 1; 3250 } 3251 } 3252 } else { 3253 blkptr_t *ibp = db->db.db_data; 3254 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3255 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 3256 if (BP_IS_HOLE(ibp)) 3257 continue; 3258 fill += BP_GET_FILL(ibp); 3259 } 3260 } 3261 DB_DNODE_EXIT(db); 3262 3263 if (!BP_IS_EMBEDDED(bp)) 3264 bp->blk_fill = fill; 3265 3266 mutex_exit(&db->db_mtx); 3267 3268 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3269 *db->db_blkptr = *bp; 3270 rw_exit(&dn->dn_struct_rwlock); 3271 } 3272 3273 /* ARGSUSED */ 3274 /* 3275 * This function gets called just prior to running through the compression 3276 * stage of the zio pipeline. If we're an indirect block comprised of only 3277 * holes, then we want this indirect to be compressed away to a hole. In 3278 * order to do that we must zero out any information about the holes that 3279 * this indirect points to prior to before we try to compress it. 3280 */ 3281 static void 3282 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3283 { 3284 dmu_buf_impl_t *db = vdb; 3285 dnode_t *dn; 3286 blkptr_t *bp; 3287 uint64_t i; 3288 int epbs; 3289 3290 ASSERT3U(db->db_level, >, 0); 3291 DB_DNODE_ENTER(db); 3292 dn = DB_DNODE(db); 3293 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3294 3295 /* Determine if all our children are holes */ 3296 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { 3297 if (!BP_IS_HOLE(bp)) 3298 break; 3299 } 3300 3301 /* 3302 * If all the children are holes, then zero them all out so that 3303 * we may get compressed away. 3304 */ 3305 if (i == 1 << epbs) { 3306 /* didn't find any non-holes */ 3307 bzero(db->db.db_data, db->db.db_size); 3308 } 3309 DB_DNODE_EXIT(db); 3310 } 3311 3312 /* 3313 * The SPA will call this callback several times for each zio - once 3314 * for every physical child i/o (zio->io_phys_children times). This 3315 * allows the DMU to monitor the progress of each logical i/o. For example, 3316 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 3317 * block. There may be a long delay before all copies/fragments are completed, 3318 * so this callback allows us to retire dirty space gradually, as the physical 3319 * i/os complete. 3320 */ 3321 /* ARGSUSED */ 3322 static void 3323 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 3324 { 3325 dmu_buf_impl_t *db = arg; 3326 objset_t *os = db->db_objset; 3327 dsl_pool_t *dp = dmu_objset_pool(os); 3328 dbuf_dirty_record_t *dr; 3329 int delta = 0; 3330 3331 dr = db->db_data_pending; 3332 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 3333 3334 /* 3335 * The callback will be called io_phys_children times. Retire one 3336 * portion of our dirty space each time we are called. Any rounding 3337 * error will be cleaned up by dsl_pool_sync()'s call to 3338 * dsl_pool_undirty_space(). 3339 */ 3340 delta = dr->dr_accounted / zio->io_phys_children; 3341 dsl_pool_undirty_space(dp, delta, zio->io_txg); 3342 } 3343 3344 /* ARGSUSED */ 3345 static void 3346 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 3347 { 3348 dmu_buf_impl_t *db = vdb; 3349 blkptr_t *bp_orig = &zio->io_bp_orig; 3350 blkptr_t *bp = db->db_blkptr; 3351 objset_t *os = db->db_objset; 3352 dmu_tx_t *tx = os->os_synctx; 3353 dbuf_dirty_record_t **drp, *dr; 3354 3355 ASSERT0(zio->io_error); 3356 ASSERT(db->db_blkptr == bp); 3357 3358 /* 3359 * For nopwrites and rewrites we ensure that the bp matches our 3360 * original and bypass all the accounting. 3361 */ 3362 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 3363 ASSERT(BP_EQUAL(bp, bp_orig)); 3364 } else { 3365 dsl_dataset_t *ds = os->os_dsl_dataset; 3366 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 3367 dsl_dataset_block_born(ds, bp, tx); 3368 } 3369 3370 mutex_enter(&db->db_mtx); 3371 3372 DBUF_VERIFY(db); 3373 3374 drp = &db->db_last_dirty; 3375 while ((dr = *drp) != db->db_data_pending) 3376 drp = &dr->dr_next; 3377 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3378 ASSERT(dr->dr_dbuf == db); 3379 ASSERT(dr->dr_next == NULL); 3380 *drp = dr->dr_next; 3381 3382 #ifdef ZFS_DEBUG 3383 if (db->db_blkid == DMU_SPILL_BLKID) { 3384 dnode_t *dn; 3385 3386 DB_DNODE_ENTER(db); 3387 dn = DB_DNODE(db); 3388 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3389 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3390 db->db_blkptr == &dn->dn_phys->dn_spill); 3391 DB_DNODE_EXIT(db); 3392 } 3393 #endif 3394 3395 if (db->db_level == 0) { 3396 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3397 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3398 if (db->db_state != DB_NOFILL) { 3399 if (dr->dt.dl.dr_data != db->db_buf) 3400 arc_buf_destroy(dr->dt.dl.dr_data, db); 3401 } 3402 } else { 3403 dnode_t *dn; 3404 3405 DB_DNODE_ENTER(db); 3406 dn = DB_DNODE(db); 3407 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3408 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3409 if (!BP_IS_HOLE(db->db_blkptr)) { 3410 int epbs = 3411 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3412 ASSERT3U(db->db_blkid, <=, 3413 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3414 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3415 db->db.db_size); 3416 } 3417 DB_DNODE_EXIT(db); 3418 mutex_destroy(&dr->dt.di.dr_mtx); 3419 list_destroy(&dr->dt.di.dr_children); 3420 } 3421 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3422 3423 cv_broadcast(&db->db_changed); 3424 ASSERT(db->db_dirtycnt > 0); 3425 db->db_dirtycnt -= 1; 3426 db->db_data_pending = NULL; 3427 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 3428 } 3429 3430 static void 3431 dbuf_write_nofill_ready(zio_t *zio) 3432 { 3433 dbuf_write_ready(zio, NULL, zio->io_private); 3434 } 3435 3436 static void 3437 dbuf_write_nofill_done(zio_t *zio) 3438 { 3439 dbuf_write_done(zio, NULL, zio->io_private); 3440 } 3441 3442 static void 3443 dbuf_write_override_ready(zio_t *zio) 3444 { 3445 dbuf_dirty_record_t *dr = zio->io_private; 3446 dmu_buf_impl_t *db = dr->dr_dbuf; 3447 3448 dbuf_write_ready(zio, NULL, db); 3449 } 3450 3451 static void 3452 dbuf_write_override_done(zio_t *zio) 3453 { 3454 dbuf_dirty_record_t *dr = zio->io_private; 3455 dmu_buf_impl_t *db = dr->dr_dbuf; 3456 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3457 3458 mutex_enter(&db->db_mtx); 3459 if (!BP_EQUAL(zio->io_bp, obp)) { 3460 if (!BP_IS_HOLE(obp)) 3461 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3462 arc_release(dr->dt.dl.dr_data, db); 3463 } 3464 mutex_exit(&db->db_mtx); 3465 3466 dbuf_write_done(zio, NULL, db); 3467 } 3468 3469 /* Issue I/O to commit a dirty buffer to disk. */ 3470 static void 3471 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 3472 { 3473 dmu_buf_impl_t *db = dr->dr_dbuf; 3474 dnode_t *dn; 3475 objset_t *os; 3476 dmu_buf_impl_t *parent = db->db_parent; 3477 uint64_t txg = tx->tx_txg; 3478 zbookmark_phys_t zb; 3479 zio_prop_t zp; 3480 zio_t *zio; 3481 int wp_flag = 0; 3482 3483 ASSERT(dmu_tx_is_syncing(tx)); 3484 3485 DB_DNODE_ENTER(db); 3486 dn = DB_DNODE(db); 3487 os = dn->dn_objset; 3488 3489 if (db->db_state != DB_NOFILL) { 3490 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 3491 /* 3492 * Private object buffers are released here rather 3493 * than in dbuf_dirty() since they are only modified 3494 * in the syncing context and we don't want the 3495 * overhead of making multiple copies of the data. 3496 */ 3497 if (BP_IS_HOLE(db->db_blkptr)) { 3498 arc_buf_thaw(data); 3499 } else { 3500 dbuf_release_bp(db); 3501 } 3502 } 3503 } 3504 3505 if (parent != dn->dn_dbuf) { 3506 /* Our parent is an indirect block. */ 3507 /* We have a dirty parent that has been scheduled for write. */ 3508 ASSERT(parent && parent->db_data_pending); 3509 /* Our parent's buffer is one level closer to the dnode. */ 3510 ASSERT(db->db_level == parent->db_level-1); 3511 /* 3512 * We're about to modify our parent's db_data by modifying 3513 * our block pointer, so the parent must be released. 3514 */ 3515 ASSERT(arc_released(parent->db_buf)); 3516 zio = parent->db_data_pending->dr_zio; 3517 } else { 3518 /* Our parent is the dnode itself. */ 3519 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 3520 db->db_blkid != DMU_SPILL_BLKID) || 3521 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 3522 if (db->db_blkid != DMU_SPILL_BLKID) 3523 ASSERT3P(db->db_blkptr, ==, 3524 &dn->dn_phys->dn_blkptr[db->db_blkid]); 3525 zio = dn->dn_zio; 3526 } 3527 3528 ASSERT(db->db_level == 0 || data == db->db_buf); 3529 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 3530 ASSERT(zio); 3531 3532 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 3533 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 3534 db->db.db_object, db->db_level, db->db_blkid); 3535 3536 if (db->db_blkid == DMU_SPILL_BLKID) 3537 wp_flag = WP_SPILL; 3538 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 3539 3540 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 3541 DB_DNODE_EXIT(db); 3542 3543 /* 3544 * We copy the blkptr now (rather than when we instantiate the dirty 3545 * record), because its value can change between open context and 3546 * syncing context. We do not need to hold dn_struct_rwlock to read 3547 * db_blkptr because we are in syncing context. 3548 */ 3549 dr->dr_bp_copy = *db->db_blkptr; 3550 3551 if (db->db_level == 0 && 3552 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 3553 /* 3554 * The BP for this block has been provided by open context 3555 * (by dmu_sync() or dmu_buf_write_embedded()). 3556 */ 3557 void *contents = (data != NULL) ? data->b_data : NULL; 3558 3559 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3560 &dr->dr_bp_copy, contents, db->db.db_size, &zp, 3561 dbuf_write_override_ready, NULL, NULL, 3562 dbuf_write_override_done, 3563 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3564 mutex_enter(&db->db_mtx); 3565 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 3566 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 3567 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 3568 mutex_exit(&db->db_mtx); 3569 } else if (db->db_state == DB_NOFILL) { 3570 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 3571 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 3572 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3573 &dr->dr_bp_copy, NULL, db->db.db_size, &zp, 3574 dbuf_write_nofill_ready, NULL, NULL, 3575 dbuf_write_nofill_done, db, 3576 ZIO_PRIORITY_ASYNC_WRITE, 3577 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 3578 } else { 3579 ASSERT(arc_released(data)); 3580 3581 /* 3582 * For indirect blocks, we want to setup the children 3583 * ready callback so that we can properly handle an indirect 3584 * block that only contains holes. 3585 */ 3586 arc_done_func_t *children_ready_cb = NULL; 3587 if (db->db_level != 0) 3588 children_ready_cb = dbuf_write_children_ready; 3589 3590 dr->dr_zio = arc_write(zio, os->os_spa, txg, 3591 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 3592 &zp, dbuf_write_ready, children_ready_cb, 3593 dbuf_write_physdone, dbuf_write_done, db, 3594 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3595 } 3596 } 3597