xref: /illumos-gate/usr/src/uts/common/fs/zfs/dbuf.c (revision fab9be40d6bb364713294f6f6c925ccc58bacb24)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
49 
50 uint_t zfs_dbuf_evict_key;
51 
52 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
53 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
54 
55 #ifndef __lint
56 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
57     dmu_buf_evict_func_t *evict_func_sync,
58     dmu_buf_evict_func_t *evict_func_async,
59     dmu_buf_t **clear_on_evict_dbufp);
60 #endif /* ! __lint */
61 
62 /*
63  * Global data structures and functions for the dbuf cache.
64  */
65 static kmem_cache_t *dbuf_kmem_cache;
66 static taskq_t *dbu_evict_taskq;
67 
68 static kthread_t *dbuf_cache_evict_thread;
69 static kmutex_t dbuf_evict_lock;
70 static kcondvar_t dbuf_evict_cv;
71 static boolean_t dbuf_evict_thread_exit;
72 
73 /*
74  * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
75  * are not currently held but have been recently released. These dbufs
76  * are not eligible for arc eviction until they are aged out of the cache.
77  * Dbufs are added to the dbuf cache once the last hold is released. If a
78  * dbuf is later accessed and still exists in the dbuf cache, then it will
79  * be removed from the cache and later re-added to the head of the cache.
80  * Dbufs that are aged out of the cache will be immediately destroyed and
81  * become eligible for arc eviction.
82  */
83 static multilist_t dbuf_cache;
84 static refcount_t dbuf_cache_size;
85 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024;
86 
87 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
88 int dbuf_cache_max_shift = 5;
89 
90 /*
91  * The dbuf cache uses a three-stage eviction policy:
92  *	- A low water marker designates when the dbuf eviction thread
93  *	should stop evicting from the dbuf cache.
94  *	- When we reach the maximum size (aka mid water mark), we
95  *	signal the eviction thread to run.
96  *	- The high water mark indicates when the eviction thread
97  *	is unable to keep up with the incoming load and eviction must
98  *	happen in the context of the calling thread.
99  *
100  * The dbuf cache:
101  *                                                 (max size)
102  *                                      low water   mid water   hi water
103  * +----------------------------------------+----------+----------+
104  * |                                        |          |          |
105  * |                                        |          |          |
106  * |                                        |          |          |
107  * |                                        |          |          |
108  * +----------------------------------------+----------+----------+
109  *                                        stop        signal     evict
110  *                                      evicting     eviction   directly
111  *                                                    thread
112  *
113  * The high and low water marks indicate the operating range for the eviction
114  * thread. The low water mark is, by default, 90% of the total size of the
115  * cache and the high water mark is at 110% (both of these percentages can be
116  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
117  * respectively). The eviction thread will try to ensure that the cache remains
118  * within this range by waking up every second and checking if the cache is
119  * above the low water mark. The thread can also be woken up by callers adding
120  * elements into the cache if the cache is larger than the mid water (i.e max
121  * cache size). Once the eviction thread is woken up and eviction is required,
122  * it will continue evicting buffers until it's able to reduce the cache size
123  * to the low water mark. If the cache size continues to grow and hits the high
124  * water mark, then callers adding elments to the cache will begin to evict
125  * directly from the cache until the cache is no longer above the high water
126  * mark.
127  */
128 
129 /*
130  * The percentage above and below the maximum cache size.
131  */
132 uint_t dbuf_cache_hiwater_pct = 10;
133 uint_t dbuf_cache_lowater_pct = 10;
134 
135 /* ARGSUSED */
136 static int
137 dbuf_cons(void *vdb, void *unused, int kmflag)
138 {
139 	dmu_buf_impl_t *db = vdb;
140 	bzero(db, sizeof (dmu_buf_impl_t));
141 
142 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
143 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
144 	multilist_link_init(&db->db_cache_link);
145 	refcount_create(&db->db_holds);
146 
147 	return (0);
148 }
149 
150 /* ARGSUSED */
151 static void
152 dbuf_dest(void *vdb, void *unused)
153 {
154 	dmu_buf_impl_t *db = vdb;
155 	mutex_destroy(&db->db_mtx);
156 	cv_destroy(&db->db_changed);
157 	ASSERT(!multilist_link_active(&db->db_cache_link));
158 	refcount_destroy(&db->db_holds);
159 }
160 
161 /*
162  * dbuf hash table routines
163  */
164 static dbuf_hash_table_t dbuf_hash_table;
165 
166 static uint64_t dbuf_hash_count;
167 
168 static uint64_t
169 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
170 {
171 	uintptr_t osv = (uintptr_t)os;
172 	uint64_t crc = -1ULL;
173 
174 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
175 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
176 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
177 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
178 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
179 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
180 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
181 
182 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
183 
184 	return (crc);
185 }
186 
187 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
188 	((dbuf)->db.db_object == (obj) &&		\
189 	(dbuf)->db_objset == (os) &&			\
190 	(dbuf)->db_level == (level) &&			\
191 	(dbuf)->db_blkid == (blkid))
192 
193 dmu_buf_impl_t *
194 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
195 {
196 	dbuf_hash_table_t *h = &dbuf_hash_table;
197 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
198 	uint64_t idx = hv & h->hash_table_mask;
199 	dmu_buf_impl_t *db;
200 
201 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
202 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
203 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
204 			mutex_enter(&db->db_mtx);
205 			if (db->db_state != DB_EVICTING) {
206 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
207 				return (db);
208 			}
209 			mutex_exit(&db->db_mtx);
210 		}
211 	}
212 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
213 	return (NULL);
214 }
215 
216 static dmu_buf_impl_t *
217 dbuf_find_bonus(objset_t *os, uint64_t object)
218 {
219 	dnode_t *dn;
220 	dmu_buf_impl_t *db = NULL;
221 
222 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
223 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
224 		if (dn->dn_bonus != NULL) {
225 			db = dn->dn_bonus;
226 			mutex_enter(&db->db_mtx);
227 		}
228 		rw_exit(&dn->dn_struct_rwlock);
229 		dnode_rele(dn, FTAG);
230 	}
231 	return (db);
232 }
233 
234 /*
235  * Insert an entry into the hash table.  If there is already an element
236  * equal to elem in the hash table, then the already existing element
237  * will be returned and the new element will not be inserted.
238  * Otherwise returns NULL.
239  */
240 static dmu_buf_impl_t *
241 dbuf_hash_insert(dmu_buf_impl_t *db)
242 {
243 	dbuf_hash_table_t *h = &dbuf_hash_table;
244 	objset_t *os = db->db_objset;
245 	uint64_t obj = db->db.db_object;
246 	int level = db->db_level;
247 	uint64_t blkid = db->db_blkid;
248 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
249 	uint64_t idx = hv & h->hash_table_mask;
250 	dmu_buf_impl_t *dbf;
251 
252 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
253 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
254 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
255 			mutex_enter(&dbf->db_mtx);
256 			if (dbf->db_state != DB_EVICTING) {
257 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
258 				return (dbf);
259 			}
260 			mutex_exit(&dbf->db_mtx);
261 		}
262 	}
263 
264 	mutex_enter(&db->db_mtx);
265 	db->db_hash_next = h->hash_table[idx];
266 	h->hash_table[idx] = db;
267 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
268 	atomic_inc_64(&dbuf_hash_count);
269 
270 	return (NULL);
271 }
272 
273 /*
274  * Remove an entry from the hash table.  It must be in the EVICTING state.
275  */
276 static void
277 dbuf_hash_remove(dmu_buf_impl_t *db)
278 {
279 	dbuf_hash_table_t *h = &dbuf_hash_table;
280 	uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
281 	    db->db_level, db->db_blkid);
282 	uint64_t idx = hv & h->hash_table_mask;
283 	dmu_buf_impl_t *dbf, **dbp;
284 
285 	/*
286 	 * We musn't hold db_mtx to maintain lock ordering:
287 	 * DBUF_HASH_MUTEX > db_mtx.
288 	 */
289 	ASSERT(refcount_is_zero(&db->db_holds));
290 	ASSERT(db->db_state == DB_EVICTING);
291 	ASSERT(!MUTEX_HELD(&db->db_mtx));
292 
293 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
294 	dbp = &h->hash_table[idx];
295 	while ((dbf = *dbp) != db) {
296 		dbp = &dbf->db_hash_next;
297 		ASSERT(dbf != NULL);
298 	}
299 	*dbp = db->db_hash_next;
300 	db->db_hash_next = NULL;
301 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
302 	atomic_dec_64(&dbuf_hash_count);
303 }
304 
305 typedef enum {
306 	DBVU_EVICTING,
307 	DBVU_NOT_EVICTING
308 } dbvu_verify_type_t;
309 
310 static void
311 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
312 {
313 #ifdef ZFS_DEBUG
314 	int64_t holds;
315 
316 	if (db->db_user == NULL)
317 		return;
318 
319 	/* Only data blocks support the attachment of user data. */
320 	ASSERT(db->db_level == 0);
321 
322 	/* Clients must resolve a dbuf before attaching user data. */
323 	ASSERT(db->db.db_data != NULL);
324 	ASSERT3U(db->db_state, ==, DB_CACHED);
325 
326 	holds = refcount_count(&db->db_holds);
327 	if (verify_type == DBVU_EVICTING) {
328 		/*
329 		 * Immediate eviction occurs when holds == dirtycnt.
330 		 * For normal eviction buffers, holds is zero on
331 		 * eviction, except when dbuf_fix_old_data() calls
332 		 * dbuf_clear_data().  However, the hold count can grow
333 		 * during eviction even though db_mtx is held (see
334 		 * dmu_bonus_hold() for an example), so we can only
335 		 * test the generic invariant that holds >= dirtycnt.
336 		 */
337 		ASSERT3U(holds, >=, db->db_dirtycnt);
338 	} else {
339 		if (db->db_user_immediate_evict == TRUE)
340 			ASSERT3U(holds, >=, db->db_dirtycnt);
341 		else
342 			ASSERT3U(holds, >, 0);
343 	}
344 #endif
345 }
346 
347 static void
348 dbuf_evict_user(dmu_buf_impl_t *db)
349 {
350 	dmu_buf_user_t *dbu = db->db_user;
351 
352 	ASSERT(MUTEX_HELD(&db->db_mtx));
353 
354 	if (dbu == NULL)
355 		return;
356 
357 	dbuf_verify_user(db, DBVU_EVICTING);
358 	db->db_user = NULL;
359 
360 #ifdef ZFS_DEBUG
361 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
362 		*dbu->dbu_clear_on_evict_dbufp = NULL;
363 #endif
364 
365 	/*
366 	 * There are two eviction callbacks - one that we call synchronously
367 	 * and one that we invoke via a taskq.  The async one is useful for
368 	 * avoiding lock order reversals and limiting stack depth.
369 	 *
370 	 * Note that if we have a sync callback but no async callback,
371 	 * it's likely that the sync callback will free the structure
372 	 * containing the dbu.  In that case we need to take care to not
373 	 * dereference dbu after calling the sync evict func.
374 	 */
375 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
376 
377 	if (dbu->dbu_evict_func_sync != NULL)
378 		dbu->dbu_evict_func_sync(dbu);
379 
380 	if (has_async) {
381 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
382 		    dbu, 0, &dbu->dbu_tqent);
383 	}
384 }
385 
386 boolean_t
387 dbuf_is_metadata(dmu_buf_impl_t *db)
388 {
389 	if (db->db_level > 0) {
390 		return (B_TRUE);
391 	} else {
392 		boolean_t is_metadata;
393 
394 		DB_DNODE_ENTER(db);
395 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
396 		DB_DNODE_EXIT(db);
397 
398 		return (is_metadata);
399 	}
400 }
401 
402 /*
403  * This function *must* return indices evenly distributed between all
404  * sublists of the multilist. This is needed due to how the dbuf eviction
405  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
406  * distributed between all sublists and uses this assumption when
407  * deciding which sublist to evict from and how much to evict from it.
408  */
409 unsigned int
410 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
411 {
412 	dmu_buf_impl_t *db = obj;
413 
414 	/*
415 	 * The assumption here, is the hash value for a given
416 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
417 	 * (i.e. it's objset, object, level and blkid fields don't change).
418 	 * Thus, we don't need to store the dbuf's sublist index
419 	 * on insertion, as this index can be recalculated on removal.
420 	 *
421 	 * Also, the low order bits of the hash value are thought to be
422 	 * distributed evenly. Otherwise, in the case that the multilist
423 	 * has a power of two number of sublists, each sublists' usage
424 	 * would not be evenly distributed.
425 	 */
426 	return (dbuf_hash(db->db_objset, db->db.db_object,
427 	    db->db_level, db->db_blkid) %
428 	    multilist_get_num_sublists(ml));
429 }
430 
431 static inline boolean_t
432 dbuf_cache_above_hiwater(void)
433 {
434 	uint64_t dbuf_cache_hiwater_bytes =
435 	    (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
436 
437 	return (refcount_count(&dbuf_cache_size) >
438 	    dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
439 }
440 
441 static inline boolean_t
442 dbuf_cache_above_lowater(void)
443 {
444 	uint64_t dbuf_cache_lowater_bytes =
445 	    (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
446 
447 	return (refcount_count(&dbuf_cache_size) >
448 	    dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
449 }
450 
451 /*
452  * Evict the oldest eligible dbuf from the dbuf cache.
453  */
454 static void
455 dbuf_evict_one(void)
456 {
457 	int idx = multilist_get_random_index(&dbuf_cache);
458 	multilist_sublist_t *mls = multilist_sublist_lock(&dbuf_cache, idx);
459 
460 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
461 
462 	/*
463 	 * Set the thread's tsd to indicate that it's processing evictions.
464 	 * Once a thread stops evicting from the dbuf cache it will
465 	 * reset its tsd to NULL.
466 	 */
467 	ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
468 	(void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
469 
470 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
471 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
472 		db = multilist_sublist_prev(mls, db);
473 	}
474 
475 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
476 	    multilist_sublist_t *, mls);
477 
478 	if (db != NULL) {
479 		multilist_sublist_remove(mls, db);
480 		multilist_sublist_unlock(mls);
481 		(void) refcount_remove_many(&dbuf_cache_size,
482 		    db->db.db_size, db);
483 		dbuf_destroy(db);
484 	} else {
485 		multilist_sublist_unlock(mls);
486 	}
487 	(void) tsd_set(zfs_dbuf_evict_key, NULL);
488 }
489 
490 /*
491  * The dbuf evict thread is responsible for aging out dbufs from the
492  * cache. Once the cache has reached it's maximum size, dbufs are removed
493  * and destroyed. The eviction thread will continue running until the size
494  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
495  * out of the cache it is destroyed and becomes eligible for arc eviction.
496  */
497 static void
498 dbuf_evict_thread(void)
499 {
500 	callb_cpr_t cpr;
501 
502 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
503 
504 	mutex_enter(&dbuf_evict_lock);
505 	while (!dbuf_evict_thread_exit) {
506 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
507 			CALLB_CPR_SAFE_BEGIN(&cpr);
508 			(void) cv_timedwait_hires(&dbuf_evict_cv,
509 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
510 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
511 		}
512 		mutex_exit(&dbuf_evict_lock);
513 
514 		/*
515 		 * Keep evicting as long as we're above the low water mark
516 		 * for the cache. We do this without holding the locks to
517 		 * minimize lock contention.
518 		 */
519 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
520 			dbuf_evict_one();
521 		}
522 
523 		mutex_enter(&dbuf_evict_lock);
524 	}
525 
526 	dbuf_evict_thread_exit = B_FALSE;
527 	cv_broadcast(&dbuf_evict_cv);
528 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
529 	thread_exit();
530 }
531 
532 /*
533  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
534  * If the dbuf cache is at its high water mark, then evict a dbuf from the
535  * dbuf cache using the callers context.
536  */
537 static void
538 dbuf_evict_notify(void)
539 {
540 
541 	/*
542 	 * We use thread specific data to track when a thread has
543 	 * started processing evictions. This allows us to avoid deeply
544 	 * nested stacks that would have a call flow similar to this:
545 	 *
546 	 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
547 	 *	^						|
548 	 *	|						|
549 	 *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
550 	 *
551 	 * The dbuf_eviction_thread will always have its tsd set until
552 	 * that thread exits. All other threads will only set their tsd
553 	 * if they are participating in the eviction process. This only
554 	 * happens if the eviction thread is unable to process evictions
555 	 * fast enough. To keep the dbuf cache size in check, other threads
556 	 * can evict from the dbuf cache directly. Those threads will set
557 	 * their tsd values so that we ensure that they only evict one dbuf
558 	 * from the dbuf cache.
559 	 */
560 	if (tsd_get(zfs_dbuf_evict_key) != NULL)
561 		return;
562 
563 	if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
564 		boolean_t evict_now = B_FALSE;
565 
566 		mutex_enter(&dbuf_evict_lock);
567 		if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
568 			evict_now = dbuf_cache_above_hiwater();
569 			cv_signal(&dbuf_evict_cv);
570 		}
571 		mutex_exit(&dbuf_evict_lock);
572 
573 		if (evict_now) {
574 			dbuf_evict_one();
575 		}
576 	}
577 }
578 
579 void
580 dbuf_init(void)
581 {
582 	uint64_t hsize = 1ULL << 16;
583 	dbuf_hash_table_t *h = &dbuf_hash_table;
584 	int i;
585 
586 	/*
587 	 * The hash table is big enough to fill all of physical memory
588 	 * with an average 4K block size.  The table will take up
589 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
590 	 */
591 	while (hsize * 4096 < physmem * PAGESIZE)
592 		hsize <<= 1;
593 
594 retry:
595 	h->hash_table_mask = hsize - 1;
596 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
597 	if (h->hash_table == NULL) {
598 		/* XXX - we should really return an error instead of assert */
599 		ASSERT(hsize > (1ULL << 10));
600 		hsize >>= 1;
601 		goto retry;
602 	}
603 
604 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
605 	    sizeof (dmu_buf_impl_t),
606 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
607 
608 	for (i = 0; i < DBUF_MUTEXES; i++)
609 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
610 
611 	/*
612 	 * Setup the parameters for the dbuf cache. We cap the size of the
613 	 * dbuf cache to 1/32nd (default) of the size of the ARC.
614 	 */
615 	dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
616 	    arc_max_bytes() >> dbuf_cache_max_shift);
617 
618 	/*
619 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
620 	 * configuration is not required.
621 	 */
622 	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
623 
624 	multilist_create(&dbuf_cache, sizeof (dmu_buf_impl_t),
625 	    offsetof(dmu_buf_impl_t, db_cache_link),
626 	    zfs_arc_num_sublists_per_state,
627 	    dbuf_cache_multilist_index_func);
628 	refcount_create(&dbuf_cache_size);
629 
630 	tsd_create(&zfs_dbuf_evict_key, NULL);
631 	dbuf_evict_thread_exit = B_FALSE;
632 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
633 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
634 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
635 	    NULL, 0, &p0, TS_RUN, minclsyspri);
636 }
637 
638 void
639 dbuf_fini(void)
640 {
641 	dbuf_hash_table_t *h = &dbuf_hash_table;
642 	int i;
643 
644 	for (i = 0; i < DBUF_MUTEXES; i++)
645 		mutex_destroy(&h->hash_mutexes[i]);
646 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
647 	kmem_cache_destroy(dbuf_kmem_cache);
648 	taskq_destroy(dbu_evict_taskq);
649 
650 	mutex_enter(&dbuf_evict_lock);
651 	dbuf_evict_thread_exit = B_TRUE;
652 	while (dbuf_evict_thread_exit) {
653 		cv_signal(&dbuf_evict_cv);
654 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
655 	}
656 	mutex_exit(&dbuf_evict_lock);
657 	tsd_destroy(&zfs_dbuf_evict_key);
658 
659 	mutex_destroy(&dbuf_evict_lock);
660 	cv_destroy(&dbuf_evict_cv);
661 
662 	refcount_destroy(&dbuf_cache_size);
663 	multilist_destroy(&dbuf_cache);
664 }
665 
666 /*
667  * Other stuff.
668  */
669 
670 #ifdef ZFS_DEBUG
671 static void
672 dbuf_verify(dmu_buf_impl_t *db)
673 {
674 	dnode_t *dn;
675 	dbuf_dirty_record_t *dr;
676 
677 	ASSERT(MUTEX_HELD(&db->db_mtx));
678 
679 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
680 		return;
681 
682 	ASSERT(db->db_objset != NULL);
683 	DB_DNODE_ENTER(db);
684 	dn = DB_DNODE(db);
685 	if (dn == NULL) {
686 		ASSERT(db->db_parent == NULL);
687 		ASSERT(db->db_blkptr == NULL);
688 	} else {
689 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
690 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
691 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
692 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
693 		    db->db_blkid == DMU_SPILL_BLKID ||
694 		    !avl_is_empty(&dn->dn_dbufs));
695 	}
696 	if (db->db_blkid == DMU_BONUS_BLKID) {
697 		ASSERT(dn != NULL);
698 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
699 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
700 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
701 		ASSERT(dn != NULL);
702 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
703 		ASSERT0(db->db.db_offset);
704 	} else {
705 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
706 	}
707 
708 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
709 		ASSERT(dr->dr_dbuf == db);
710 
711 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
712 		ASSERT(dr->dr_dbuf == db);
713 
714 	/*
715 	 * We can't assert that db_size matches dn_datablksz because it
716 	 * can be momentarily different when another thread is doing
717 	 * dnode_set_blksz().
718 	 */
719 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
720 		dr = db->db_data_pending;
721 		/*
722 		 * It should only be modified in syncing context, so
723 		 * make sure we only have one copy of the data.
724 		 */
725 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
726 	}
727 
728 	/* verify db->db_blkptr */
729 	if (db->db_blkptr) {
730 		if (db->db_parent == dn->dn_dbuf) {
731 			/* db is pointed to by the dnode */
732 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
733 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
734 				ASSERT(db->db_parent == NULL);
735 			else
736 				ASSERT(db->db_parent != NULL);
737 			if (db->db_blkid != DMU_SPILL_BLKID)
738 				ASSERT3P(db->db_blkptr, ==,
739 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
740 		} else {
741 			/* db is pointed to by an indirect block */
742 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
743 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
744 			ASSERT3U(db->db_parent->db.db_object, ==,
745 			    db->db.db_object);
746 			/*
747 			 * dnode_grow_indblksz() can make this fail if we don't
748 			 * have the struct_rwlock.  XXX indblksz no longer
749 			 * grows.  safe to do this now?
750 			 */
751 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
752 				ASSERT3P(db->db_blkptr, ==,
753 				    ((blkptr_t *)db->db_parent->db.db_data +
754 				    db->db_blkid % epb));
755 			}
756 		}
757 	}
758 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
759 	    (db->db_buf == NULL || db->db_buf->b_data) &&
760 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
761 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
762 		/*
763 		 * If the blkptr isn't set but they have nonzero data,
764 		 * it had better be dirty, otherwise we'll lose that
765 		 * data when we evict this buffer.
766 		 *
767 		 * There is an exception to this rule for indirect blocks; in
768 		 * this case, if the indirect block is a hole, we fill in a few
769 		 * fields on each of the child blocks (importantly, birth time)
770 		 * to prevent hole birth times from being lost when you
771 		 * partially fill in a hole.
772 		 */
773 		if (db->db_dirtycnt == 0) {
774 			if (db->db_level == 0) {
775 				uint64_t *buf = db->db.db_data;
776 				int i;
777 
778 				for (i = 0; i < db->db.db_size >> 3; i++) {
779 					ASSERT(buf[i] == 0);
780 				}
781 			} else {
782 				blkptr_t *bps = db->db.db_data;
783 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
784 				    db->db.db_size);
785 				/*
786 				 * We want to verify that all the blkptrs in the
787 				 * indirect block are holes, but we may have
788 				 * automatically set up a few fields for them.
789 				 * We iterate through each blkptr and verify
790 				 * they only have those fields set.
791 				 */
792 				for (int i = 0;
793 				    i < db->db.db_size / sizeof (blkptr_t);
794 				    i++) {
795 					blkptr_t *bp = &bps[i];
796 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
797 					    &bp->blk_cksum));
798 					ASSERT(
799 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
800 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
801 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
802 					ASSERT0(bp->blk_fill);
803 					ASSERT0(bp->blk_pad[0]);
804 					ASSERT0(bp->blk_pad[1]);
805 					ASSERT(!BP_IS_EMBEDDED(bp));
806 					ASSERT(BP_IS_HOLE(bp));
807 					ASSERT0(bp->blk_phys_birth);
808 				}
809 			}
810 		}
811 	}
812 	DB_DNODE_EXIT(db);
813 }
814 #endif
815 
816 static void
817 dbuf_clear_data(dmu_buf_impl_t *db)
818 {
819 	ASSERT(MUTEX_HELD(&db->db_mtx));
820 	dbuf_evict_user(db);
821 	ASSERT3P(db->db_buf, ==, NULL);
822 	db->db.db_data = NULL;
823 	if (db->db_state != DB_NOFILL)
824 		db->db_state = DB_UNCACHED;
825 }
826 
827 static void
828 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
829 {
830 	ASSERT(MUTEX_HELD(&db->db_mtx));
831 	ASSERT(buf != NULL);
832 
833 	db->db_buf = buf;
834 	ASSERT(buf->b_data != NULL);
835 	db->db.db_data = buf->b_data;
836 }
837 
838 /*
839  * Loan out an arc_buf for read.  Return the loaned arc_buf.
840  */
841 arc_buf_t *
842 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
843 {
844 	arc_buf_t *abuf;
845 
846 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
847 	mutex_enter(&db->db_mtx);
848 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
849 		int blksz = db->db.db_size;
850 		spa_t *spa = db->db_objset->os_spa;
851 
852 		mutex_exit(&db->db_mtx);
853 		abuf = arc_loan_buf(spa, blksz);
854 		bcopy(db->db.db_data, abuf->b_data, blksz);
855 	} else {
856 		abuf = db->db_buf;
857 		arc_loan_inuse_buf(abuf, db);
858 		db->db_buf = NULL;
859 		dbuf_clear_data(db);
860 		mutex_exit(&db->db_mtx);
861 	}
862 	return (abuf);
863 }
864 
865 /*
866  * Calculate which level n block references the data at the level 0 offset
867  * provided.
868  */
869 uint64_t
870 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
871 {
872 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
873 		/*
874 		 * The level n blkid is equal to the level 0 blkid divided by
875 		 * the number of level 0s in a level n block.
876 		 *
877 		 * The level 0 blkid is offset >> datablkshift =
878 		 * offset / 2^datablkshift.
879 		 *
880 		 * The number of level 0s in a level n is the number of block
881 		 * pointers in an indirect block, raised to the power of level.
882 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
883 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
884 		 *
885 		 * Thus, the level n blkid is: offset /
886 		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
887 		 * = offset / 2^(datablkshift + level *
888 		 *   (indblkshift - SPA_BLKPTRSHIFT))
889 		 * = offset >> (datablkshift + level *
890 		 *   (indblkshift - SPA_BLKPTRSHIFT))
891 		 */
892 		return (offset >> (dn->dn_datablkshift + level *
893 		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
894 	} else {
895 		ASSERT3U(offset, <, dn->dn_datablksz);
896 		return (0);
897 	}
898 }
899 
900 static void
901 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
902 {
903 	dmu_buf_impl_t *db = vdb;
904 
905 	mutex_enter(&db->db_mtx);
906 	ASSERT3U(db->db_state, ==, DB_READ);
907 	/*
908 	 * All reads are synchronous, so we must have a hold on the dbuf
909 	 */
910 	ASSERT(refcount_count(&db->db_holds) > 0);
911 	ASSERT(db->db_buf == NULL);
912 	ASSERT(db->db.db_data == NULL);
913 	if (db->db_level == 0 && db->db_freed_in_flight) {
914 		/* we were freed in flight; disregard any error */
915 		arc_release(buf, db);
916 		bzero(buf->b_data, db->db.db_size);
917 		arc_buf_freeze(buf);
918 		db->db_freed_in_flight = FALSE;
919 		dbuf_set_data(db, buf);
920 		db->db_state = DB_CACHED;
921 	} else if (zio == NULL || zio->io_error == 0) {
922 		dbuf_set_data(db, buf);
923 		db->db_state = DB_CACHED;
924 	} else {
925 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
926 		ASSERT3P(db->db_buf, ==, NULL);
927 		arc_buf_destroy(buf, db);
928 		db->db_state = DB_UNCACHED;
929 	}
930 	cv_broadcast(&db->db_changed);
931 	dbuf_rele_and_unlock(db, NULL);
932 }
933 
934 static void
935 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
936 {
937 	dnode_t *dn;
938 	zbookmark_phys_t zb;
939 	arc_flags_t aflags = ARC_FLAG_NOWAIT;
940 
941 	DB_DNODE_ENTER(db);
942 	dn = DB_DNODE(db);
943 	ASSERT(!refcount_is_zero(&db->db_holds));
944 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
945 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
946 	ASSERT(MUTEX_HELD(&db->db_mtx));
947 	ASSERT(db->db_state == DB_UNCACHED);
948 	ASSERT(db->db_buf == NULL);
949 
950 	if (db->db_blkid == DMU_BONUS_BLKID) {
951 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
952 
953 		ASSERT3U(bonuslen, <=, db->db.db_size);
954 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
955 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
956 		if (bonuslen < DN_MAX_BONUSLEN)
957 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
958 		if (bonuslen)
959 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
960 		DB_DNODE_EXIT(db);
961 		db->db_state = DB_CACHED;
962 		mutex_exit(&db->db_mtx);
963 		return;
964 	}
965 
966 	/*
967 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
968 	 * processes the delete record and clears the bp while we are waiting
969 	 * for the dn_mtx (resulting in a "no" from block_freed).
970 	 */
971 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
972 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
973 	    BP_IS_HOLE(db->db_blkptr)))) {
974 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
975 
976 		dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa,
977 		    db->db.db_size, db, type));
978 		bzero(db->db.db_data, db->db.db_size);
979 
980 		if (db->db_blkptr != NULL && db->db_level > 0 &&
981 		    BP_IS_HOLE(db->db_blkptr) &&
982 		    db->db_blkptr->blk_birth != 0) {
983 			blkptr_t *bps = db->db.db_data;
984 			for (int i = 0; i < ((1 <<
985 			    DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
986 			    i++) {
987 				blkptr_t *bp = &bps[i];
988 				ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
989 				    1 << dn->dn_indblkshift);
990 				BP_SET_LSIZE(bp,
991 				    BP_GET_LEVEL(db->db_blkptr) == 1 ?
992 				    dn->dn_datablksz :
993 				    BP_GET_LSIZE(db->db_blkptr));
994 				BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
995 				BP_SET_LEVEL(bp,
996 				    BP_GET_LEVEL(db->db_blkptr) - 1);
997 				BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
998 			}
999 		}
1000 		DB_DNODE_EXIT(db);
1001 		db->db_state = DB_CACHED;
1002 		mutex_exit(&db->db_mtx);
1003 		return;
1004 	}
1005 
1006 	DB_DNODE_EXIT(db);
1007 
1008 	db->db_state = DB_READ;
1009 	mutex_exit(&db->db_mtx);
1010 
1011 	if (DBUF_IS_L2CACHEABLE(db))
1012 		aflags |= ARC_FLAG_L2CACHE;
1013 
1014 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1015 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1016 	    db->db.db_object, db->db_level, db->db_blkid);
1017 
1018 	dbuf_add_ref(db, NULL);
1019 
1020 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1021 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1022 	    (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1023 	    &aflags, &zb);
1024 }
1025 
1026 int
1027 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1028 {
1029 	int err = 0;
1030 	boolean_t havepzio = (zio != NULL);
1031 	boolean_t prefetch;
1032 	dnode_t *dn;
1033 
1034 	/*
1035 	 * We don't have to hold the mutex to check db_state because it
1036 	 * can't be freed while we have a hold on the buffer.
1037 	 */
1038 	ASSERT(!refcount_is_zero(&db->db_holds));
1039 
1040 	if (db->db_state == DB_NOFILL)
1041 		return (SET_ERROR(EIO));
1042 
1043 	DB_DNODE_ENTER(db);
1044 	dn = DB_DNODE(db);
1045 	if ((flags & DB_RF_HAVESTRUCT) == 0)
1046 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1047 
1048 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1049 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1050 	    DBUF_IS_CACHEABLE(db);
1051 
1052 	mutex_enter(&db->db_mtx);
1053 	if (db->db_state == DB_CACHED) {
1054 		mutex_exit(&db->db_mtx);
1055 		if (prefetch)
1056 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1057 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1058 			rw_exit(&dn->dn_struct_rwlock);
1059 		DB_DNODE_EXIT(db);
1060 	} else if (db->db_state == DB_UNCACHED) {
1061 		spa_t *spa = dn->dn_objset->os_spa;
1062 
1063 		if (zio == NULL)
1064 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1065 		dbuf_read_impl(db, zio, flags);
1066 
1067 		/* dbuf_read_impl has dropped db_mtx for us */
1068 
1069 		if (prefetch)
1070 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1071 
1072 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1073 			rw_exit(&dn->dn_struct_rwlock);
1074 		DB_DNODE_EXIT(db);
1075 
1076 		if (!havepzio)
1077 			err = zio_wait(zio);
1078 	} else {
1079 		/*
1080 		 * Another reader came in while the dbuf was in flight
1081 		 * between UNCACHED and CACHED.  Either a writer will finish
1082 		 * writing the buffer (sending the dbuf to CACHED) or the
1083 		 * first reader's request will reach the read_done callback
1084 		 * and send the dbuf to CACHED.  Otherwise, a failure
1085 		 * occurred and the dbuf went to UNCACHED.
1086 		 */
1087 		mutex_exit(&db->db_mtx);
1088 		if (prefetch)
1089 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1090 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1091 			rw_exit(&dn->dn_struct_rwlock);
1092 		DB_DNODE_EXIT(db);
1093 
1094 		/* Skip the wait per the caller's request. */
1095 		mutex_enter(&db->db_mtx);
1096 		if ((flags & DB_RF_NEVERWAIT) == 0) {
1097 			while (db->db_state == DB_READ ||
1098 			    db->db_state == DB_FILL) {
1099 				ASSERT(db->db_state == DB_READ ||
1100 				    (flags & DB_RF_HAVESTRUCT) == 0);
1101 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1102 				    db, zio_t *, zio);
1103 				cv_wait(&db->db_changed, &db->db_mtx);
1104 			}
1105 			if (db->db_state == DB_UNCACHED)
1106 				err = SET_ERROR(EIO);
1107 		}
1108 		mutex_exit(&db->db_mtx);
1109 	}
1110 
1111 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
1112 	return (err);
1113 }
1114 
1115 static void
1116 dbuf_noread(dmu_buf_impl_t *db)
1117 {
1118 	ASSERT(!refcount_is_zero(&db->db_holds));
1119 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1120 	mutex_enter(&db->db_mtx);
1121 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1122 		cv_wait(&db->db_changed, &db->db_mtx);
1123 	if (db->db_state == DB_UNCACHED) {
1124 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1125 		spa_t *spa = db->db_objset->os_spa;
1126 
1127 		ASSERT(db->db_buf == NULL);
1128 		ASSERT(db->db.db_data == NULL);
1129 		dbuf_set_data(db, arc_alloc_buf(spa, db->db.db_size, db, type));
1130 		db->db_state = DB_FILL;
1131 	} else if (db->db_state == DB_NOFILL) {
1132 		dbuf_clear_data(db);
1133 	} else {
1134 		ASSERT3U(db->db_state, ==, DB_CACHED);
1135 	}
1136 	mutex_exit(&db->db_mtx);
1137 }
1138 
1139 /*
1140  * This is our just-in-time copy function.  It makes a copy of
1141  * buffers, that have been modified in a previous transaction
1142  * group, before we modify them in the current active group.
1143  *
1144  * This function is used in two places: when we are dirtying a
1145  * buffer for the first time in a txg, and when we are freeing
1146  * a range in a dnode that includes this buffer.
1147  *
1148  * Note that when we are called from dbuf_free_range() we do
1149  * not put a hold on the buffer, we just traverse the active
1150  * dbuf list for the dnode.
1151  */
1152 static void
1153 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1154 {
1155 	dbuf_dirty_record_t *dr = db->db_last_dirty;
1156 
1157 	ASSERT(MUTEX_HELD(&db->db_mtx));
1158 	ASSERT(db->db.db_data != NULL);
1159 	ASSERT(db->db_level == 0);
1160 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1161 
1162 	if (dr == NULL ||
1163 	    (dr->dt.dl.dr_data !=
1164 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1165 		return;
1166 
1167 	/*
1168 	 * If the last dirty record for this dbuf has not yet synced
1169 	 * and its referencing the dbuf data, either:
1170 	 *	reset the reference to point to a new copy,
1171 	 * or (if there a no active holders)
1172 	 *	just null out the current db_data pointer.
1173 	 */
1174 	ASSERT(dr->dr_txg >= txg - 2);
1175 	if (db->db_blkid == DMU_BONUS_BLKID) {
1176 		/* Note that the data bufs here are zio_bufs */
1177 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1178 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1179 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1180 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1181 		int size = db->db.db_size;
1182 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1183 		spa_t *spa = db->db_objset->os_spa;
1184 
1185 		dr->dt.dl.dr_data = arc_alloc_buf(spa, size, db, type);
1186 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1187 	} else {
1188 		db->db_buf = NULL;
1189 		dbuf_clear_data(db);
1190 	}
1191 }
1192 
1193 void
1194 dbuf_unoverride(dbuf_dirty_record_t *dr)
1195 {
1196 	dmu_buf_impl_t *db = dr->dr_dbuf;
1197 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1198 	uint64_t txg = dr->dr_txg;
1199 
1200 	ASSERT(MUTEX_HELD(&db->db_mtx));
1201 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1202 	ASSERT(db->db_level == 0);
1203 
1204 	if (db->db_blkid == DMU_BONUS_BLKID ||
1205 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1206 		return;
1207 
1208 	ASSERT(db->db_data_pending != dr);
1209 
1210 	/* free this block */
1211 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1212 		zio_free(db->db_objset->os_spa, txg, bp);
1213 
1214 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1215 	dr->dt.dl.dr_nopwrite = B_FALSE;
1216 
1217 	/*
1218 	 * Release the already-written buffer, so we leave it in
1219 	 * a consistent dirty state.  Note that all callers are
1220 	 * modifying the buffer, so they will immediately do
1221 	 * another (redundant) arc_release().  Therefore, leave
1222 	 * the buf thawed to save the effort of freezing &
1223 	 * immediately re-thawing it.
1224 	 */
1225 	arc_release(dr->dt.dl.dr_data, db);
1226 }
1227 
1228 /*
1229  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1230  * data blocks in the free range, so that any future readers will find
1231  * empty blocks.
1232  */
1233 void
1234 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1235     dmu_tx_t *tx)
1236 {
1237 	dmu_buf_impl_t db_search;
1238 	dmu_buf_impl_t *db, *db_next;
1239 	uint64_t txg = tx->tx_txg;
1240 	avl_index_t where;
1241 
1242 	if (end_blkid > dn->dn_maxblkid &&
1243 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1244 		end_blkid = dn->dn_maxblkid;
1245 	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1246 
1247 	db_search.db_level = 0;
1248 	db_search.db_blkid = start_blkid;
1249 	db_search.db_state = DB_SEARCH;
1250 
1251 	mutex_enter(&dn->dn_dbufs_mtx);
1252 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1253 	ASSERT3P(db, ==, NULL);
1254 
1255 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1256 
1257 	for (; db != NULL; db = db_next) {
1258 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1259 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1260 
1261 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1262 			break;
1263 		}
1264 		ASSERT3U(db->db_blkid, >=, start_blkid);
1265 
1266 		/* found a level 0 buffer in the range */
1267 		mutex_enter(&db->db_mtx);
1268 		if (dbuf_undirty(db, tx)) {
1269 			/* mutex has been dropped and dbuf destroyed */
1270 			continue;
1271 		}
1272 
1273 		if (db->db_state == DB_UNCACHED ||
1274 		    db->db_state == DB_NOFILL ||
1275 		    db->db_state == DB_EVICTING) {
1276 			ASSERT(db->db.db_data == NULL);
1277 			mutex_exit(&db->db_mtx);
1278 			continue;
1279 		}
1280 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1281 			/* will be handled in dbuf_read_done or dbuf_rele */
1282 			db->db_freed_in_flight = TRUE;
1283 			mutex_exit(&db->db_mtx);
1284 			continue;
1285 		}
1286 		if (refcount_count(&db->db_holds) == 0) {
1287 			ASSERT(db->db_buf);
1288 			dbuf_destroy(db);
1289 			continue;
1290 		}
1291 		/* The dbuf is referenced */
1292 
1293 		if (db->db_last_dirty != NULL) {
1294 			dbuf_dirty_record_t *dr = db->db_last_dirty;
1295 
1296 			if (dr->dr_txg == txg) {
1297 				/*
1298 				 * This buffer is "in-use", re-adjust the file
1299 				 * size to reflect that this buffer may
1300 				 * contain new data when we sync.
1301 				 */
1302 				if (db->db_blkid != DMU_SPILL_BLKID &&
1303 				    db->db_blkid > dn->dn_maxblkid)
1304 					dn->dn_maxblkid = db->db_blkid;
1305 				dbuf_unoverride(dr);
1306 			} else {
1307 				/*
1308 				 * This dbuf is not dirty in the open context.
1309 				 * Either uncache it (if its not referenced in
1310 				 * the open context) or reset its contents to
1311 				 * empty.
1312 				 */
1313 				dbuf_fix_old_data(db, txg);
1314 			}
1315 		}
1316 		/* clear the contents if its cached */
1317 		if (db->db_state == DB_CACHED) {
1318 			ASSERT(db->db.db_data != NULL);
1319 			arc_release(db->db_buf, db);
1320 			bzero(db->db.db_data, db->db.db_size);
1321 			arc_buf_freeze(db->db_buf);
1322 		}
1323 
1324 		mutex_exit(&db->db_mtx);
1325 	}
1326 	mutex_exit(&dn->dn_dbufs_mtx);
1327 }
1328 
1329 static int
1330 dbuf_block_freeable(dmu_buf_impl_t *db)
1331 {
1332 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1333 	uint64_t birth_txg = 0;
1334 
1335 	/*
1336 	 * We don't need any locking to protect db_blkptr:
1337 	 * If it's syncing, then db_last_dirty will be set
1338 	 * so we'll ignore db_blkptr.
1339 	 *
1340 	 * This logic ensures that only block births for
1341 	 * filled blocks are considered.
1342 	 */
1343 	ASSERT(MUTEX_HELD(&db->db_mtx));
1344 	if (db->db_last_dirty && (db->db_blkptr == NULL ||
1345 	    !BP_IS_HOLE(db->db_blkptr))) {
1346 		birth_txg = db->db_last_dirty->dr_txg;
1347 	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1348 		birth_txg = db->db_blkptr->blk_birth;
1349 	}
1350 
1351 	/*
1352 	 * If this block don't exist or is in a snapshot, it can't be freed.
1353 	 * Don't pass the bp to dsl_dataset_block_freeable() since we
1354 	 * are holding the db_mtx lock and might deadlock if we are
1355 	 * prefetching a dedup-ed block.
1356 	 */
1357 	if (birth_txg != 0)
1358 		return (ds == NULL ||
1359 		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
1360 	else
1361 		return (B_FALSE);
1362 }
1363 
1364 void
1365 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1366 {
1367 	arc_buf_t *buf, *obuf;
1368 	int osize = db->db.db_size;
1369 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1370 	dnode_t *dn;
1371 
1372 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1373 
1374 	DB_DNODE_ENTER(db);
1375 	dn = DB_DNODE(db);
1376 
1377 	/* XXX does *this* func really need the lock? */
1378 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1379 
1380 	/*
1381 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1382 	 * is OK, because there can be no other references to the db
1383 	 * when we are changing its size, so no concurrent DB_FILL can
1384 	 * be happening.
1385 	 */
1386 	/*
1387 	 * XXX we should be doing a dbuf_read, checking the return
1388 	 * value and returning that up to our callers
1389 	 */
1390 	dmu_buf_will_dirty(&db->db, tx);
1391 
1392 	/* create the data buffer for the new block */
1393 	buf = arc_alloc_buf(dn->dn_objset->os_spa, size, db, type);
1394 
1395 	/* copy old block data to the new block */
1396 	obuf = db->db_buf;
1397 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1398 	/* zero the remainder */
1399 	if (size > osize)
1400 		bzero((uint8_t *)buf->b_data + osize, size - osize);
1401 
1402 	mutex_enter(&db->db_mtx);
1403 	dbuf_set_data(db, buf);
1404 	arc_buf_destroy(obuf, db);
1405 	db->db.db_size = size;
1406 
1407 	if (db->db_level == 0) {
1408 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1409 		db->db_last_dirty->dt.dl.dr_data = buf;
1410 	}
1411 	mutex_exit(&db->db_mtx);
1412 
1413 	dnode_willuse_space(dn, size-osize, tx);
1414 	DB_DNODE_EXIT(db);
1415 }
1416 
1417 void
1418 dbuf_release_bp(dmu_buf_impl_t *db)
1419 {
1420 	objset_t *os = db->db_objset;
1421 
1422 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1423 	ASSERT(arc_released(os->os_phys_buf) ||
1424 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1425 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1426 
1427 	(void) arc_release(db->db_buf, db);
1428 }
1429 
1430 /*
1431  * We already have a dirty record for this TXG, and we are being
1432  * dirtied again.
1433  */
1434 static void
1435 dbuf_redirty(dbuf_dirty_record_t *dr)
1436 {
1437 	dmu_buf_impl_t *db = dr->dr_dbuf;
1438 
1439 	ASSERT(MUTEX_HELD(&db->db_mtx));
1440 
1441 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1442 		/*
1443 		 * If this buffer has already been written out,
1444 		 * we now need to reset its state.
1445 		 */
1446 		dbuf_unoverride(dr);
1447 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1448 		    db->db_state != DB_NOFILL) {
1449 			/* Already released on initial dirty, so just thaw. */
1450 			ASSERT(arc_released(db->db_buf));
1451 			arc_buf_thaw(db->db_buf);
1452 		}
1453 	}
1454 }
1455 
1456 dbuf_dirty_record_t *
1457 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1458 {
1459 	dnode_t *dn;
1460 	objset_t *os;
1461 	dbuf_dirty_record_t **drp, *dr;
1462 	int drop_struct_lock = FALSE;
1463 	boolean_t do_free_accounting = B_FALSE;
1464 	int txgoff = tx->tx_txg & TXG_MASK;
1465 
1466 	ASSERT(tx->tx_txg != 0);
1467 	ASSERT(!refcount_is_zero(&db->db_holds));
1468 	DMU_TX_DIRTY_BUF(tx, db);
1469 
1470 	DB_DNODE_ENTER(db);
1471 	dn = DB_DNODE(db);
1472 	/*
1473 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1474 	 * objects may be dirtied in syncing context, but only if they
1475 	 * were already pre-dirtied in open context.
1476 	 */
1477 #ifdef DEBUG
1478 	if (dn->dn_objset->os_dsl_dataset != NULL) {
1479 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1480 		    RW_READER, FTAG);
1481 	}
1482 	ASSERT(!dmu_tx_is_syncing(tx) ||
1483 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1484 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1485 	    dn->dn_objset->os_dsl_dataset == NULL);
1486 	if (dn->dn_objset->os_dsl_dataset != NULL)
1487 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1488 #endif
1489 	/*
1490 	 * We make this assert for private objects as well, but after we
1491 	 * check if we're already dirty.  They are allowed to re-dirty
1492 	 * in syncing context.
1493 	 */
1494 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1495 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1496 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1497 
1498 	mutex_enter(&db->db_mtx);
1499 	/*
1500 	 * XXX make this true for indirects too?  The problem is that
1501 	 * transactions created with dmu_tx_create_assigned() from
1502 	 * syncing context don't bother holding ahead.
1503 	 */
1504 	ASSERT(db->db_level != 0 ||
1505 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1506 	    db->db_state == DB_NOFILL);
1507 
1508 	mutex_enter(&dn->dn_mtx);
1509 	/*
1510 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1511 	 * initialize the objset.
1512 	 */
1513 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1514 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1515 			rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1516 			    RW_READER, FTAG);
1517 		}
1518 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1519 			dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1520 			    DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1521 			ASSERT(dn->dn_dirtyctx_firstset == NULL);
1522 			dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1523 		}
1524 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1525 			rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1526 			    FTAG);
1527 		}
1528 	}
1529 	mutex_exit(&dn->dn_mtx);
1530 
1531 	if (db->db_blkid == DMU_SPILL_BLKID)
1532 		dn->dn_have_spill = B_TRUE;
1533 
1534 	/*
1535 	 * If this buffer is already dirty, we're done.
1536 	 */
1537 	drp = &db->db_last_dirty;
1538 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1539 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1540 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1541 		drp = &dr->dr_next;
1542 	if (dr && dr->dr_txg == tx->tx_txg) {
1543 		DB_DNODE_EXIT(db);
1544 
1545 		dbuf_redirty(dr);
1546 		mutex_exit(&db->db_mtx);
1547 		return (dr);
1548 	}
1549 
1550 	/*
1551 	 * Only valid if not already dirty.
1552 	 */
1553 	ASSERT(dn->dn_object == 0 ||
1554 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1555 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1556 
1557 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1558 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1559 	    dn->dn_phys->dn_nlevels > db->db_level ||
1560 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1561 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1562 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1563 
1564 	/*
1565 	 * We should only be dirtying in syncing context if it's the
1566 	 * mos or we're initializing the os or it's a special object.
1567 	 * However, we are allowed to dirty in syncing context provided
1568 	 * we already dirtied it in open context.  Hence we must make
1569 	 * this assertion only if we're not already dirty.
1570 	 */
1571 	os = dn->dn_objset;
1572 #ifdef DEBUG
1573 	if (dn->dn_objset->os_dsl_dataset != NULL)
1574 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1575 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1576 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1577 	if (dn->dn_objset->os_dsl_dataset != NULL)
1578 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1579 #endif
1580 	ASSERT(db->db.db_size != 0);
1581 
1582 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1583 
1584 	if (db->db_blkid != DMU_BONUS_BLKID) {
1585 		/*
1586 		 * Update the accounting.
1587 		 * Note: we delay "free accounting" until after we drop
1588 		 * the db_mtx.  This keeps us from grabbing other locks
1589 		 * (and possibly deadlocking) in bp_get_dsize() while
1590 		 * also holding the db_mtx.
1591 		 */
1592 		dnode_willuse_space(dn, db->db.db_size, tx);
1593 		do_free_accounting = dbuf_block_freeable(db);
1594 	}
1595 
1596 	/*
1597 	 * If this buffer is dirty in an old transaction group we need
1598 	 * to make a copy of it so that the changes we make in this
1599 	 * transaction group won't leak out when we sync the older txg.
1600 	 */
1601 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1602 	if (db->db_level == 0) {
1603 		void *data_old = db->db_buf;
1604 
1605 		if (db->db_state != DB_NOFILL) {
1606 			if (db->db_blkid == DMU_BONUS_BLKID) {
1607 				dbuf_fix_old_data(db, tx->tx_txg);
1608 				data_old = db->db.db_data;
1609 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1610 				/*
1611 				 * Release the data buffer from the cache so
1612 				 * that we can modify it without impacting
1613 				 * possible other users of this cached data
1614 				 * block.  Note that indirect blocks and
1615 				 * private objects are not released until the
1616 				 * syncing state (since they are only modified
1617 				 * then).
1618 				 */
1619 				arc_release(db->db_buf, db);
1620 				dbuf_fix_old_data(db, tx->tx_txg);
1621 				data_old = db->db_buf;
1622 			}
1623 			ASSERT(data_old != NULL);
1624 		}
1625 		dr->dt.dl.dr_data = data_old;
1626 	} else {
1627 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1628 		list_create(&dr->dt.di.dr_children,
1629 		    sizeof (dbuf_dirty_record_t),
1630 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1631 	}
1632 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1633 		dr->dr_accounted = db->db.db_size;
1634 	dr->dr_dbuf = db;
1635 	dr->dr_txg = tx->tx_txg;
1636 	dr->dr_next = *drp;
1637 	*drp = dr;
1638 
1639 	/*
1640 	 * We could have been freed_in_flight between the dbuf_noread
1641 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1642 	 * happened after the free.
1643 	 */
1644 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1645 	    db->db_blkid != DMU_SPILL_BLKID) {
1646 		mutex_enter(&dn->dn_mtx);
1647 		if (dn->dn_free_ranges[txgoff] != NULL) {
1648 			range_tree_clear(dn->dn_free_ranges[txgoff],
1649 			    db->db_blkid, 1);
1650 		}
1651 		mutex_exit(&dn->dn_mtx);
1652 		db->db_freed_in_flight = FALSE;
1653 	}
1654 
1655 	/*
1656 	 * This buffer is now part of this txg
1657 	 */
1658 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1659 	db->db_dirtycnt += 1;
1660 	ASSERT3U(db->db_dirtycnt, <=, 3);
1661 
1662 	mutex_exit(&db->db_mtx);
1663 
1664 	if (db->db_blkid == DMU_BONUS_BLKID ||
1665 	    db->db_blkid == DMU_SPILL_BLKID) {
1666 		mutex_enter(&dn->dn_mtx);
1667 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1668 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1669 		mutex_exit(&dn->dn_mtx);
1670 		dnode_setdirty(dn, tx);
1671 		DB_DNODE_EXIT(db);
1672 		return (dr);
1673 	}
1674 
1675 	/*
1676 	 * The dn_struct_rwlock prevents db_blkptr from changing
1677 	 * due to a write from syncing context completing
1678 	 * while we are running, so we want to acquire it before
1679 	 * looking at db_blkptr.
1680 	 */
1681 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1682 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1683 		drop_struct_lock = TRUE;
1684 	}
1685 
1686 	if (do_free_accounting) {
1687 		blkptr_t *bp = db->db_blkptr;
1688 		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1689 		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1690 		/*
1691 		 * This is only a guess -- if the dbuf is dirty
1692 		 * in a previous txg, we don't know how much
1693 		 * space it will use on disk yet.  We should
1694 		 * really have the struct_rwlock to access
1695 		 * db_blkptr, but since this is just a guess,
1696 		 * it's OK if we get an odd answer.
1697 		 */
1698 		ddt_prefetch(os->os_spa, bp);
1699 		dnode_willuse_space(dn, -willfree, tx);
1700 	}
1701 
1702 	if (db->db_level == 0) {
1703 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1704 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1705 	}
1706 
1707 	if (db->db_level+1 < dn->dn_nlevels) {
1708 		dmu_buf_impl_t *parent = db->db_parent;
1709 		dbuf_dirty_record_t *di;
1710 		int parent_held = FALSE;
1711 
1712 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1713 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1714 
1715 			parent = dbuf_hold_level(dn, db->db_level+1,
1716 			    db->db_blkid >> epbs, FTAG);
1717 			ASSERT(parent != NULL);
1718 			parent_held = TRUE;
1719 		}
1720 		if (drop_struct_lock)
1721 			rw_exit(&dn->dn_struct_rwlock);
1722 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1723 		di = dbuf_dirty(parent, tx);
1724 		if (parent_held)
1725 			dbuf_rele(parent, FTAG);
1726 
1727 		mutex_enter(&db->db_mtx);
1728 		/*
1729 		 * Since we've dropped the mutex, it's possible that
1730 		 * dbuf_undirty() might have changed this out from under us.
1731 		 */
1732 		if (db->db_last_dirty == dr ||
1733 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1734 			mutex_enter(&di->dt.di.dr_mtx);
1735 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1736 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1737 			list_insert_tail(&di->dt.di.dr_children, dr);
1738 			mutex_exit(&di->dt.di.dr_mtx);
1739 			dr->dr_parent = di;
1740 		}
1741 		mutex_exit(&db->db_mtx);
1742 	} else {
1743 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1744 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1745 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1746 		mutex_enter(&dn->dn_mtx);
1747 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1748 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1749 		mutex_exit(&dn->dn_mtx);
1750 		if (drop_struct_lock)
1751 			rw_exit(&dn->dn_struct_rwlock);
1752 	}
1753 
1754 	dnode_setdirty(dn, tx);
1755 	DB_DNODE_EXIT(db);
1756 	return (dr);
1757 }
1758 
1759 /*
1760  * Undirty a buffer in the transaction group referenced by the given
1761  * transaction.  Return whether this evicted the dbuf.
1762  */
1763 static boolean_t
1764 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1765 {
1766 	dnode_t *dn;
1767 	uint64_t txg = tx->tx_txg;
1768 	dbuf_dirty_record_t *dr, **drp;
1769 
1770 	ASSERT(txg != 0);
1771 
1772 	/*
1773 	 * Due to our use of dn_nlevels below, this can only be called
1774 	 * in open context, unless we are operating on the MOS.
1775 	 * From syncing context, dn_nlevels may be different from the
1776 	 * dn_nlevels used when dbuf was dirtied.
1777 	 */
1778 	ASSERT(db->db_objset ==
1779 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1780 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1781 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1782 	ASSERT0(db->db_level);
1783 	ASSERT(MUTEX_HELD(&db->db_mtx));
1784 
1785 	/*
1786 	 * If this buffer is not dirty, we're done.
1787 	 */
1788 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1789 		if (dr->dr_txg <= txg)
1790 			break;
1791 	if (dr == NULL || dr->dr_txg < txg)
1792 		return (B_FALSE);
1793 	ASSERT(dr->dr_txg == txg);
1794 	ASSERT(dr->dr_dbuf == db);
1795 
1796 	DB_DNODE_ENTER(db);
1797 	dn = DB_DNODE(db);
1798 
1799 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1800 
1801 	ASSERT(db->db.db_size != 0);
1802 
1803 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1804 	    dr->dr_accounted, txg);
1805 
1806 	*drp = dr->dr_next;
1807 
1808 	/*
1809 	 * Note that there are three places in dbuf_dirty()
1810 	 * where this dirty record may be put on a list.
1811 	 * Make sure to do a list_remove corresponding to
1812 	 * every one of those list_insert calls.
1813 	 */
1814 	if (dr->dr_parent) {
1815 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1816 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1817 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1818 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1819 	    db->db_level + 1 == dn->dn_nlevels) {
1820 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1821 		mutex_enter(&dn->dn_mtx);
1822 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1823 		mutex_exit(&dn->dn_mtx);
1824 	}
1825 	DB_DNODE_EXIT(db);
1826 
1827 	if (db->db_state != DB_NOFILL) {
1828 		dbuf_unoverride(dr);
1829 
1830 		ASSERT(db->db_buf != NULL);
1831 		ASSERT(dr->dt.dl.dr_data != NULL);
1832 		if (dr->dt.dl.dr_data != db->db_buf)
1833 			arc_buf_destroy(dr->dt.dl.dr_data, db);
1834 	}
1835 
1836 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1837 
1838 	ASSERT(db->db_dirtycnt > 0);
1839 	db->db_dirtycnt -= 1;
1840 
1841 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1842 		ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1843 		dbuf_destroy(db);
1844 		return (B_TRUE);
1845 	}
1846 
1847 	return (B_FALSE);
1848 }
1849 
1850 void
1851 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1852 {
1853 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1854 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1855 
1856 	ASSERT(tx->tx_txg != 0);
1857 	ASSERT(!refcount_is_zero(&db->db_holds));
1858 
1859 	/*
1860 	 * Quick check for dirtyness.  For already dirty blocks, this
1861 	 * reduces runtime of this function by >90%, and overall performance
1862 	 * by 50% for some workloads (e.g. file deletion with indirect blocks
1863 	 * cached).
1864 	 */
1865 	mutex_enter(&db->db_mtx);
1866 	dbuf_dirty_record_t *dr;
1867 	for (dr = db->db_last_dirty;
1868 	    dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1869 		/*
1870 		 * It's possible that it is already dirty but not cached,
1871 		 * because there are some calls to dbuf_dirty() that don't
1872 		 * go through dmu_buf_will_dirty().
1873 		 */
1874 		if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1875 			/* This dbuf is already dirty and cached. */
1876 			dbuf_redirty(dr);
1877 			mutex_exit(&db->db_mtx);
1878 			return;
1879 		}
1880 	}
1881 	mutex_exit(&db->db_mtx);
1882 
1883 	DB_DNODE_ENTER(db);
1884 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1885 		rf |= DB_RF_HAVESTRUCT;
1886 	DB_DNODE_EXIT(db);
1887 	(void) dbuf_read(db, NULL, rf);
1888 	(void) dbuf_dirty(db, tx);
1889 }
1890 
1891 void
1892 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1893 {
1894 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1895 
1896 	db->db_state = DB_NOFILL;
1897 
1898 	dmu_buf_will_fill(db_fake, tx);
1899 }
1900 
1901 void
1902 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1903 {
1904 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1905 
1906 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1907 	ASSERT(tx->tx_txg != 0);
1908 	ASSERT(db->db_level == 0);
1909 	ASSERT(!refcount_is_zero(&db->db_holds));
1910 
1911 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1912 	    dmu_tx_private_ok(tx));
1913 
1914 	dbuf_noread(db);
1915 	(void) dbuf_dirty(db, tx);
1916 }
1917 
1918 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1919 /* ARGSUSED */
1920 void
1921 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1922 {
1923 	mutex_enter(&db->db_mtx);
1924 	DBUF_VERIFY(db);
1925 
1926 	if (db->db_state == DB_FILL) {
1927 		if (db->db_level == 0 && db->db_freed_in_flight) {
1928 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1929 			/* we were freed while filling */
1930 			/* XXX dbuf_undirty? */
1931 			bzero(db->db.db_data, db->db.db_size);
1932 			db->db_freed_in_flight = FALSE;
1933 		}
1934 		db->db_state = DB_CACHED;
1935 		cv_broadcast(&db->db_changed);
1936 	}
1937 	mutex_exit(&db->db_mtx);
1938 }
1939 
1940 void
1941 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1942     bp_embedded_type_t etype, enum zio_compress comp,
1943     int uncompressed_size, int compressed_size, int byteorder,
1944     dmu_tx_t *tx)
1945 {
1946 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1947 	struct dirty_leaf *dl;
1948 	dmu_object_type_t type;
1949 
1950 	if (etype == BP_EMBEDDED_TYPE_DATA) {
1951 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1952 		    SPA_FEATURE_EMBEDDED_DATA));
1953 	}
1954 
1955 	DB_DNODE_ENTER(db);
1956 	type = DB_DNODE(db)->dn_type;
1957 	DB_DNODE_EXIT(db);
1958 
1959 	ASSERT0(db->db_level);
1960 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1961 
1962 	dmu_buf_will_not_fill(dbuf, tx);
1963 
1964 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1965 	dl = &db->db_last_dirty->dt.dl;
1966 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1967 	    data, comp, uncompressed_size, compressed_size);
1968 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1969 	BP_SET_TYPE(&dl->dr_overridden_by, type);
1970 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1971 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1972 
1973 	dl->dr_override_state = DR_OVERRIDDEN;
1974 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1975 }
1976 
1977 /*
1978  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1979  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1980  */
1981 void
1982 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1983 {
1984 	ASSERT(!refcount_is_zero(&db->db_holds));
1985 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1986 	ASSERT(db->db_level == 0);
1987 	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1988 	ASSERT(buf != NULL);
1989 	ASSERT(arc_buf_size(buf) == db->db.db_size);
1990 	ASSERT(tx->tx_txg != 0);
1991 
1992 	arc_return_buf(buf, db);
1993 	ASSERT(arc_released(buf));
1994 
1995 	mutex_enter(&db->db_mtx);
1996 
1997 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1998 		cv_wait(&db->db_changed, &db->db_mtx);
1999 
2000 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2001 
2002 	if (db->db_state == DB_CACHED &&
2003 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2004 		mutex_exit(&db->db_mtx);
2005 		(void) dbuf_dirty(db, tx);
2006 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2007 		arc_buf_destroy(buf, db);
2008 		xuio_stat_wbuf_copied();
2009 		return;
2010 	}
2011 
2012 	xuio_stat_wbuf_nocopy();
2013 	if (db->db_state == DB_CACHED) {
2014 		dbuf_dirty_record_t *dr = db->db_last_dirty;
2015 
2016 		ASSERT(db->db_buf != NULL);
2017 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2018 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
2019 			if (!arc_released(db->db_buf)) {
2020 				ASSERT(dr->dt.dl.dr_override_state ==
2021 				    DR_OVERRIDDEN);
2022 				arc_release(db->db_buf, db);
2023 			}
2024 			dr->dt.dl.dr_data = buf;
2025 			arc_buf_destroy(db->db_buf, db);
2026 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2027 			arc_release(db->db_buf, db);
2028 			arc_buf_destroy(db->db_buf, db);
2029 		}
2030 		db->db_buf = NULL;
2031 	}
2032 	ASSERT(db->db_buf == NULL);
2033 	dbuf_set_data(db, buf);
2034 	db->db_state = DB_FILL;
2035 	mutex_exit(&db->db_mtx);
2036 	(void) dbuf_dirty(db, tx);
2037 	dmu_buf_fill_done(&db->db, tx);
2038 }
2039 
2040 void
2041 dbuf_destroy(dmu_buf_impl_t *db)
2042 {
2043 	dnode_t *dn;
2044 	dmu_buf_impl_t *parent = db->db_parent;
2045 	dmu_buf_impl_t *dndb;
2046 
2047 	ASSERT(MUTEX_HELD(&db->db_mtx));
2048 	ASSERT(refcount_is_zero(&db->db_holds));
2049 
2050 	if (db->db_buf != NULL) {
2051 		arc_buf_destroy(db->db_buf, db);
2052 		db->db_buf = NULL;
2053 	}
2054 
2055 	if (db->db_blkid == DMU_BONUS_BLKID) {
2056 		ASSERT(db->db.db_data != NULL);
2057 		zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2058 		arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2059 		db->db_state = DB_UNCACHED;
2060 	}
2061 
2062 	dbuf_clear_data(db);
2063 
2064 	if (multilist_link_active(&db->db_cache_link)) {
2065 		multilist_remove(&dbuf_cache, db);
2066 		(void) refcount_remove_many(&dbuf_cache_size,
2067 		    db->db.db_size, db);
2068 	}
2069 
2070 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2071 	ASSERT(db->db_data_pending == NULL);
2072 
2073 	db->db_state = DB_EVICTING;
2074 	db->db_blkptr = NULL;
2075 
2076 	/*
2077 	 * Now that db_state is DB_EVICTING, nobody else can find this via
2078 	 * the hash table.  We can now drop db_mtx, which allows us to
2079 	 * acquire the dn_dbufs_mtx.
2080 	 */
2081 	mutex_exit(&db->db_mtx);
2082 
2083 	DB_DNODE_ENTER(db);
2084 	dn = DB_DNODE(db);
2085 	dndb = dn->dn_dbuf;
2086 	if (db->db_blkid != DMU_BONUS_BLKID) {
2087 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2088 		if (needlock)
2089 			mutex_enter(&dn->dn_dbufs_mtx);
2090 		avl_remove(&dn->dn_dbufs, db);
2091 		atomic_dec_32(&dn->dn_dbufs_count);
2092 		membar_producer();
2093 		DB_DNODE_EXIT(db);
2094 		if (needlock)
2095 			mutex_exit(&dn->dn_dbufs_mtx);
2096 		/*
2097 		 * Decrementing the dbuf count means that the hold corresponding
2098 		 * to the removed dbuf is no longer discounted in dnode_move(),
2099 		 * so the dnode cannot be moved until after we release the hold.
2100 		 * The membar_producer() ensures visibility of the decremented
2101 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2102 		 * release any lock.
2103 		 */
2104 		dnode_rele(dn, db);
2105 		db->db_dnode_handle = NULL;
2106 
2107 		dbuf_hash_remove(db);
2108 	} else {
2109 		DB_DNODE_EXIT(db);
2110 	}
2111 
2112 	ASSERT(refcount_is_zero(&db->db_holds));
2113 
2114 	db->db_parent = NULL;
2115 
2116 	ASSERT(db->db_buf == NULL);
2117 	ASSERT(db->db.db_data == NULL);
2118 	ASSERT(db->db_hash_next == NULL);
2119 	ASSERT(db->db_blkptr == NULL);
2120 	ASSERT(db->db_data_pending == NULL);
2121 	ASSERT(!multilist_link_active(&db->db_cache_link));
2122 
2123 	kmem_cache_free(dbuf_kmem_cache, db);
2124 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2125 
2126 	/*
2127 	 * If this dbuf is referenced from an indirect dbuf,
2128 	 * decrement the ref count on the indirect dbuf.
2129 	 */
2130 	if (parent && parent != dndb)
2131 		dbuf_rele(parent, db);
2132 }
2133 
2134 /*
2135  * Note: While bpp will always be updated if the function returns success,
2136  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2137  * this happens when the dnode is the meta-dnode, or a userused or groupused
2138  * object.
2139  */
2140 static int
2141 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2142     dmu_buf_impl_t **parentp, blkptr_t **bpp)
2143 {
2144 	int nlevels, epbs;
2145 
2146 	*parentp = NULL;
2147 	*bpp = NULL;
2148 
2149 	ASSERT(blkid != DMU_BONUS_BLKID);
2150 
2151 	if (blkid == DMU_SPILL_BLKID) {
2152 		mutex_enter(&dn->dn_mtx);
2153 		if (dn->dn_have_spill &&
2154 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2155 			*bpp = &dn->dn_phys->dn_spill;
2156 		else
2157 			*bpp = NULL;
2158 		dbuf_add_ref(dn->dn_dbuf, NULL);
2159 		*parentp = dn->dn_dbuf;
2160 		mutex_exit(&dn->dn_mtx);
2161 		return (0);
2162 	}
2163 
2164 	if (dn->dn_phys->dn_nlevels == 0)
2165 		nlevels = 1;
2166 	else
2167 		nlevels = dn->dn_phys->dn_nlevels;
2168 
2169 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2170 
2171 	ASSERT3U(level * epbs, <, 64);
2172 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2173 	if (level >= nlevels ||
2174 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2175 		/* the buffer has no parent yet */
2176 		return (SET_ERROR(ENOENT));
2177 	} else if (level < nlevels-1) {
2178 		/* this block is referenced from an indirect block */
2179 		int err = dbuf_hold_impl(dn, level+1,
2180 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2181 		if (err)
2182 			return (err);
2183 		err = dbuf_read(*parentp, NULL,
2184 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2185 		if (err) {
2186 			dbuf_rele(*parentp, NULL);
2187 			*parentp = NULL;
2188 			return (err);
2189 		}
2190 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2191 		    (blkid & ((1ULL << epbs) - 1));
2192 		return (0);
2193 	} else {
2194 		/* the block is referenced from the dnode */
2195 		ASSERT3U(level, ==, nlevels-1);
2196 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2197 		    blkid < dn->dn_phys->dn_nblkptr);
2198 		if (dn->dn_dbuf) {
2199 			dbuf_add_ref(dn->dn_dbuf, NULL);
2200 			*parentp = dn->dn_dbuf;
2201 		}
2202 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
2203 		return (0);
2204 	}
2205 }
2206 
2207 static dmu_buf_impl_t *
2208 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2209     dmu_buf_impl_t *parent, blkptr_t *blkptr)
2210 {
2211 	objset_t *os = dn->dn_objset;
2212 	dmu_buf_impl_t *db, *odb;
2213 
2214 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2215 	ASSERT(dn->dn_type != DMU_OT_NONE);
2216 
2217 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2218 
2219 	db->db_objset = os;
2220 	db->db.db_object = dn->dn_object;
2221 	db->db_level = level;
2222 	db->db_blkid = blkid;
2223 	db->db_last_dirty = NULL;
2224 	db->db_dirtycnt = 0;
2225 	db->db_dnode_handle = dn->dn_handle;
2226 	db->db_parent = parent;
2227 	db->db_blkptr = blkptr;
2228 
2229 	db->db_user = NULL;
2230 	db->db_user_immediate_evict = FALSE;
2231 	db->db_freed_in_flight = FALSE;
2232 	db->db_pending_evict = FALSE;
2233 
2234 	if (blkid == DMU_BONUS_BLKID) {
2235 		ASSERT3P(parent, ==, dn->dn_dbuf);
2236 		db->db.db_size = DN_MAX_BONUSLEN -
2237 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2238 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2239 		db->db.db_offset = DMU_BONUS_BLKID;
2240 		db->db_state = DB_UNCACHED;
2241 		/* the bonus dbuf is not placed in the hash table */
2242 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2243 		return (db);
2244 	} else if (blkid == DMU_SPILL_BLKID) {
2245 		db->db.db_size = (blkptr != NULL) ?
2246 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2247 		db->db.db_offset = 0;
2248 	} else {
2249 		int blocksize =
2250 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2251 		db->db.db_size = blocksize;
2252 		db->db.db_offset = db->db_blkid * blocksize;
2253 	}
2254 
2255 	/*
2256 	 * Hold the dn_dbufs_mtx while we get the new dbuf
2257 	 * in the hash table *and* added to the dbufs list.
2258 	 * This prevents a possible deadlock with someone
2259 	 * trying to look up this dbuf before its added to the
2260 	 * dn_dbufs list.
2261 	 */
2262 	mutex_enter(&dn->dn_dbufs_mtx);
2263 	db->db_state = DB_EVICTING;
2264 	if ((odb = dbuf_hash_insert(db)) != NULL) {
2265 		/* someone else inserted it first */
2266 		kmem_cache_free(dbuf_kmem_cache, db);
2267 		mutex_exit(&dn->dn_dbufs_mtx);
2268 		return (odb);
2269 	}
2270 	avl_add(&dn->dn_dbufs, db);
2271 
2272 	db->db_state = DB_UNCACHED;
2273 	mutex_exit(&dn->dn_dbufs_mtx);
2274 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2275 
2276 	if (parent && parent != dn->dn_dbuf)
2277 		dbuf_add_ref(parent, db);
2278 
2279 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2280 	    refcount_count(&dn->dn_holds) > 0);
2281 	(void) refcount_add(&dn->dn_holds, db);
2282 	atomic_inc_32(&dn->dn_dbufs_count);
2283 
2284 	dprintf_dbuf(db, "db=%p\n", db);
2285 
2286 	return (db);
2287 }
2288 
2289 typedef struct dbuf_prefetch_arg {
2290 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
2291 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2292 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2293 	int dpa_curlevel; /* The current level that we're reading */
2294 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2295 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2296 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2297 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2298 } dbuf_prefetch_arg_t;
2299 
2300 /*
2301  * Actually issue the prefetch read for the block given.
2302  */
2303 static void
2304 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2305 {
2306 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2307 		return;
2308 
2309 	arc_flags_t aflags =
2310 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2311 
2312 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2313 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2314 	ASSERT(dpa->dpa_zio != NULL);
2315 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2316 	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2317 	    &aflags, &dpa->dpa_zb);
2318 }
2319 
2320 /*
2321  * Called when an indirect block above our prefetch target is read in.  This
2322  * will either read in the next indirect block down the tree or issue the actual
2323  * prefetch if the next block down is our target.
2324  */
2325 static void
2326 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2327 {
2328 	dbuf_prefetch_arg_t *dpa = private;
2329 
2330 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2331 	ASSERT3S(dpa->dpa_curlevel, >, 0);
2332 
2333 	/*
2334 	 * The dpa_dnode is only valid if we are called with a NULL
2335 	 * zio. This indicates that the arc_read() returned without
2336 	 * first calling zio_read() to issue a physical read. Once
2337 	 * a physical read is made the dpa_dnode must be invalidated
2338 	 * as the locks guarding it may have been dropped. If the
2339 	 * dpa_dnode is still valid, then we want to add it to the dbuf
2340 	 * cache. To do so, we must hold the dbuf associated with the block
2341 	 * we just prefetched, read its contents so that we associate it
2342 	 * with an arc_buf_t, and then release it.
2343 	 */
2344 	if (zio != NULL) {
2345 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2346 		if (zio->io_flags & ZIO_FLAG_RAW) {
2347 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2348 		} else {
2349 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2350 		}
2351 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2352 
2353 		dpa->dpa_dnode = NULL;
2354 	} else if (dpa->dpa_dnode != NULL) {
2355 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2356 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
2357 		    dpa->dpa_zb.zb_level));
2358 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2359 		    dpa->dpa_curlevel, curblkid, FTAG);
2360 		(void) dbuf_read(db, NULL,
2361 		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2362 		dbuf_rele(db, FTAG);
2363 	}
2364 
2365 	dpa->dpa_curlevel--;
2366 
2367 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2368 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2369 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2370 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2371 	if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2372 		kmem_free(dpa, sizeof (*dpa));
2373 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2374 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2375 		dbuf_issue_final_prefetch(dpa, bp);
2376 		kmem_free(dpa, sizeof (*dpa));
2377 	} else {
2378 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2379 		zbookmark_phys_t zb;
2380 
2381 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2382 
2383 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2384 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2385 
2386 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2387 		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2388 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2389 		    &iter_aflags, &zb);
2390 	}
2391 
2392 	arc_buf_destroy(abuf, private);
2393 }
2394 
2395 /*
2396  * Issue prefetch reads for the given block on the given level.  If the indirect
2397  * blocks above that block are not in memory, we will read them in
2398  * asynchronously.  As a result, this call never blocks waiting for a read to
2399  * complete.
2400  */
2401 void
2402 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2403     arc_flags_t aflags)
2404 {
2405 	blkptr_t bp;
2406 	int epbs, nlevels, curlevel;
2407 	uint64_t curblkid;
2408 
2409 	ASSERT(blkid != DMU_BONUS_BLKID);
2410 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2411 
2412 	if (blkid > dn->dn_maxblkid)
2413 		return;
2414 
2415 	if (dnode_block_freed(dn, blkid))
2416 		return;
2417 
2418 	/*
2419 	 * This dnode hasn't been written to disk yet, so there's nothing to
2420 	 * prefetch.
2421 	 */
2422 	nlevels = dn->dn_phys->dn_nlevels;
2423 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2424 		return;
2425 
2426 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2427 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2428 		return;
2429 
2430 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2431 	    level, blkid);
2432 	if (db != NULL) {
2433 		mutex_exit(&db->db_mtx);
2434 		/*
2435 		 * This dbuf already exists.  It is either CACHED, or
2436 		 * (we assume) about to be read or filled.
2437 		 */
2438 		return;
2439 	}
2440 
2441 	/*
2442 	 * Find the closest ancestor (indirect block) of the target block
2443 	 * that is present in the cache.  In this indirect block, we will
2444 	 * find the bp that is at curlevel, curblkid.
2445 	 */
2446 	curlevel = level;
2447 	curblkid = blkid;
2448 	while (curlevel < nlevels - 1) {
2449 		int parent_level = curlevel + 1;
2450 		uint64_t parent_blkid = curblkid >> epbs;
2451 		dmu_buf_impl_t *db;
2452 
2453 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2454 		    FALSE, TRUE, FTAG, &db) == 0) {
2455 			blkptr_t *bpp = db->db_buf->b_data;
2456 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2457 			dbuf_rele(db, FTAG);
2458 			break;
2459 		}
2460 
2461 		curlevel = parent_level;
2462 		curblkid = parent_blkid;
2463 	}
2464 
2465 	if (curlevel == nlevels - 1) {
2466 		/* No cached indirect blocks found. */
2467 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2468 		bp = dn->dn_phys->dn_blkptr[curblkid];
2469 	}
2470 	if (BP_IS_HOLE(&bp))
2471 		return;
2472 
2473 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2474 
2475 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2476 	    ZIO_FLAG_CANFAIL);
2477 
2478 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2479 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2480 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2481 	    dn->dn_object, level, blkid);
2482 	dpa->dpa_curlevel = curlevel;
2483 	dpa->dpa_prio = prio;
2484 	dpa->dpa_aflags = aflags;
2485 	dpa->dpa_spa = dn->dn_objset->os_spa;
2486 	dpa->dpa_dnode = dn;
2487 	dpa->dpa_epbs = epbs;
2488 	dpa->dpa_zio = pio;
2489 
2490 	/*
2491 	 * If we have the indirect just above us, no need to do the asynchronous
2492 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2493 	 * a higher level, though, we want to issue the prefetches for all the
2494 	 * indirect blocks asynchronously, so we can go on with whatever we were
2495 	 * doing.
2496 	 */
2497 	if (curlevel == level) {
2498 		ASSERT3U(curblkid, ==, blkid);
2499 		dbuf_issue_final_prefetch(dpa, &bp);
2500 		kmem_free(dpa, sizeof (*dpa));
2501 	} else {
2502 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2503 		zbookmark_phys_t zb;
2504 
2505 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2506 		    dn->dn_object, curlevel, curblkid);
2507 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2508 		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2509 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2510 		    &iter_aflags, &zb);
2511 	}
2512 	/*
2513 	 * We use pio here instead of dpa_zio since it's possible that
2514 	 * dpa may have already been freed.
2515 	 */
2516 	zio_nowait(pio);
2517 }
2518 
2519 /*
2520  * Returns with db_holds incremented, and db_mtx not held.
2521  * Note: dn_struct_rwlock must be held.
2522  */
2523 int
2524 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2525     boolean_t fail_sparse, boolean_t fail_uncached,
2526     void *tag, dmu_buf_impl_t **dbp)
2527 {
2528 	dmu_buf_impl_t *db, *parent = NULL;
2529 
2530 	ASSERT(blkid != DMU_BONUS_BLKID);
2531 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2532 	ASSERT3U(dn->dn_nlevels, >, level);
2533 
2534 	*dbp = NULL;
2535 top:
2536 	/* dbuf_find() returns with db_mtx held */
2537 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2538 
2539 	if (db == NULL) {
2540 		blkptr_t *bp = NULL;
2541 		int err;
2542 
2543 		if (fail_uncached)
2544 			return (SET_ERROR(ENOENT));
2545 
2546 		ASSERT3P(parent, ==, NULL);
2547 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2548 		if (fail_sparse) {
2549 			if (err == 0 && bp && BP_IS_HOLE(bp))
2550 				err = SET_ERROR(ENOENT);
2551 			if (err) {
2552 				if (parent)
2553 					dbuf_rele(parent, NULL);
2554 				return (err);
2555 			}
2556 		}
2557 		if (err && err != ENOENT)
2558 			return (err);
2559 		db = dbuf_create(dn, level, blkid, parent, bp);
2560 	}
2561 
2562 	if (fail_uncached && db->db_state != DB_CACHED) {
2563 		mutex_exit(&db->db_mtx);
2564 		return (SET_ERROR(ENOENT));
2565 	}
2566 
2567 	if (db->db_buf != NULL)
2568 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2569 
2570 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2571 
2572 	/*
2573 	 * If this buffer is currently syncing out, and we are are
2574 	 * still referencing it from db_data, we need to make a copy
2575 	 * of it in case we decide we want to dirty it again in this txg.
2576 	 */
2577 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2578 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2579 	    db->db_state == DB_CACHED && db->db_data_pending) {
2580 		dbuf_dirty_record_t *dr = db->db_data_pending;
2581 
2582 		if (dr->dt.dl.dr_data == db->db_buf) {
2583 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2584 
2585 			dbuf_set_data(db,
2586 			    arc_alloc_buf(dn->dn_objset->os_spa,
2587 			    db->db.db_size, db, type));
2588 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2589 			    db->db.db_size);
2590 		}
2591 	}
2592 
2593 	if (multilist_link_active(&db->db_cache_link)) {
2594 		ASSERT(refcount_is_zero(&db->db_holds));
2595 		multilist_remove(&dbuf_cache, db);
2596 		(void) refcount_remove_many(&dbuf_cache_size,
2597 		    db->db.db_size, db);
2598 	}
2599 	(void) refcount_add(&db->db_holds, tag);
2600 	DBUF_VERIFY(db);
2601 	mutex_exit(&db->db_mtx);
2602 
2603 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2604 	if (parent)
2605 		dbuf_rele(parent, NULL);
2606 
2607 	ASSERT3P(DB_DNODE(db), ==, dn);
2608 	ASSERT3U(db->db_blkid, ==, blkid);
2609 	ASSERT3U(db->db_level, ==, level);
2610 	*dbp = db;
2611 
2612 	return (0);
2613 }
2614 
2615 dmu_buf_impl_t *
2616 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2617 {
2618 	return (dbuf_hold_level(dn, 0, blkid, tag));
2619 }
2620 
2621 dmu_buf_impl_t *
2622 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2623 {
2624 	dmu_buf_impl_t *db;
2625 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2626 	return (err ? NULL : db);
2627 }
2628 
2629 void
2630 dbuf_create_bonus(dnode_t *dn)
2631 {
2632 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2633 
2634 	ASSERT(dn->dn_bonus == NULL);
2635 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2636 }
2637 
2638 int
2639 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2640 {
2641 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2642 	dnode_t *dn;
2643 
2644 	if (db->db_blkid != DMU_SPILL_BLKID)
2645 		return (SET_ERROR(ENOTSUP));
2646 	if (blksz == 0)
2647 		blksz = SPA_MINBLOCKSIZE;
2648 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2649 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2650 
2651 	DB_DNODE_ENTER(db);
2652 	dn = DB_DNODE(db);
2653 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2654 	dbuf_new_size(db, blksz, tx);
2655 	rw_exit(&dn->dn_struct_rwlock);
2656 	DB_DNODE_EXIT(db);
2657 
2658 	return (0);
2659 }
2660 
2661 void
2662 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2663 {
2664 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2665 }
2666 
2667 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2668 void
2669 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2670 {
2671 	int64_t holds = refcount_add(&db->db_holds, tag);
2672 	ASSERT3S(holds, >, 1);
2673 }
2674 
2675 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2676 boolean_t
2677 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2678     void *tag)
2679 {
2680 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2681 	dmu_buf_impl_t *found_db;
2682 	boolean_t result = B_FALSE;
2683 
2684 	if (db->db_blkid == DMU_BONUS_BLKID)
2685 		found_db = dbuf_find_bonus(os, obj);
2686 	else
2687 		found_db = dbuf_find(os, obj, 0, blkid);
2688 
2689 	if (found_db != NULL) {
2690 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2691 			(void) refcount_add(&db->db_holds, tag);
2692 			result = B_TRUE;
2693 		}
2694 		mutex_exit(&db->db_mtx);
2695 	}
2696 	return (result);
2697 }
2698 
2699 /*
2700  * If you call dbuf_rele() you had better not be referencing the dnode handle
2701  * unless you have some other direct or indirect hold on the dnode. (An indirect
2702  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2703  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2704  * dnode's parent dbuf evicting its dnode handles.
2705  */
2706 void
2707 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2708 {
2709 	mutex_enter(&db->db_mtx);
2710 	dbuf_rele_and_unlock(db, tag);
2711 }
2712 
2713 void
2714 dmu_buf_rele(dmu_buf_t *db, void *tag)
2715 {
2716 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2717 }
2718 
2719 /*
2720  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2721  * db_dirtycnt and db_holds to be updated atomically.
2722  */
2723 void
2724 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2725 {
2726 	int64_t holds;
2727 
2728 	ASSERT(MUTEX_HELD(&db->db_mtx));
2729 	DBUF_VERIFY(db);
2730 
2731 	/*
2732 	 * Remove the reference to the dbuf before removing its hold on the
2733 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2734 	 * buffer has a corresponding dnode hold.
2735 	 */
2736 	holds = refcount_remove(&db->db_holds, tag);
2737 	ASSERT(holds >= 0);
2738 
2739 	/*
2740 	 * We can't freeze indirects if there is a possibility that they
2741 	 * may be modified in the current syncing context.
2742 	 */
2743 	if (db->db_buf != NULL &&
2744 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2745 		arc_buf_freeze(db->db_buf);
2746 	}
2747 
2748 	if (holds == db->db_dirtycnt &&
2749 	    db->db_level == 0 && db->db_user_immediate_evict)
2750 		dbuf_evict_user(db);
2751 
2752 	if (holds == 0) {
2753 		if (db->db_blkid == DMU_BONUS_BLKID) {
2754 			dnode_t *dn;
2755 			boolean_t evict_dbuf = db->db_pending_evict;
2756 
2757 			/*
2758 			 * If the dnode moves here, we cannot cross this
2759 			 * barrier until the move completes.
2760 			 */
2761 			DB_DNODE_ENTER(db);
2762 
2763 			dn = DB_DNODE(db);
2764 			atomic_dec_32(&dn->dn_dbufs_count);
2765 
2766 			/*
2767 			 * Decrementing the dbuf count means that the bonus
2768 			 * buffer's dnode hold is no longer discounted in
2769 			 * dnode_move(). The dnode cannot move until after
2770 			 * the dnode_rele() below.
2771 			 */
2772 			DB_DNODE_EXIT(db);
2773 
2774 			/*
2775 			 * Do not reference db after its lock is dropped.
2776 			 * Another thread may evict it.
2777 			 */
2778 			mutex_exit(&db->db_mtx);
2779 
2780 			if (evict_dbuf)
2781 				dnode_evict_bonus(dn);
2782 
2783 			dnode_rele(dn, db);
2784 		} else if (db->db_buf == NULL) {
2785 			/*
2786 			 * This is a special case: we never associated this
2787 			 * dbuf with any data allocated from the ARC.
2788 			 */
2789 			ASSERT(db->db_state == DB_UNCACHED ||
2790 			    db->db_state == DB_NOFILL);
2791 			dbuf_destroy(db);
2792 		} else if (arc_released(db->db_buf)) {
2793 			/*
2794 			 * This dbuf has anonymous data associated with it.
2795 			 */
2796 			dbuf_destroy(db);
2797 		} else {
2798 			boolean_t do_arc_evict = B_FALSE;
2799 			blkptr_t bp;
2800 			spa_t *spa = dmu_objset_spa(db->db_objset);
2801 
2802 			if (!DBUF_IS_CACHEABLE(db) &&
2803 			    db->db_blkptr != NULL &&
2804 			    !BP_IS_HOLE(db->db_blkptr) &&
2805 			    !BP_IS_EMBEDDED(db->db_blkptr)) {
2806 				do_arc_evict = B_TRUE;
2807 				bp = *db->db_blkptr;
2808 			}
2809 
2810 			if (!DBUF_IS_CACHEABLE(db) ||
2811 			    db->db_pending_evict) {
2812 				dbuf_destroy(db);
2813 			} else if (!multilist_link_active(&db->db_cache_link)) {
2814 				multilist_insert(&dbuf_cache, db);
2815 				(void) refcount_add_many(&dbuf_cache_size,
2816 				    db->db.db_size, db);
2817 				mutex_exit(&db->db_mtx);
2818 
2819 				dbuf_evict_notify();
2820 			}
2821 
2822 			if (do_arc_evict)
2823 				arc_freed(spa, &bp);
2824 		}
2825 	} else {
2826 		mutex_exit(&db->db_mtx);
2827 	}
2828 
2829 }
2830 
2831 #pragma weak dmu_buf_refcount = dbuf_refcount
2832 uint64_t
2833 dbuf_refcount(dmu_buf_impl_t *db)
2834 {
2835 	return (refcount_count(&db->db_holds));
2836 }
2837 
2838 void *
2839 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2840     dmu_buf_user_t *new_user)
2841 {
2842 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2843 
2844 	mutex_enter(&db->db_mtx);
2845 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2846 	if (db->db_user == old_user)
2847 		db->db_user = new_user;
2848 	else
2849 		old_user = db->db_user;
2850 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2851 	mutex_exit(&db->db_mtx);
2852 
2853 	return (old_user);
2854 }
2855 
2856 void *
2857 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2858 {
2859 	return (dmu_buf_replace_user(db_fake, NULL, user));
2860 }
2861 
2862 void *
2863 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2864 {
2865 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2866 
2867 	db->db_user_immediate_evict = TRUE;
2868 	return (dmu_buf_set_user(db_fake, user));
2869 }
2870 
2871 void *
2872 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2873 {
2874 	return (dmu_buf_replace_user(db_fake, user, NULL));
2875 }
2876 
2877 void *
2878 dmu_buf_get_user(dmu_buf_t *db_fake)
2879 {
2880 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2881 
2882 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2883 	return (db->db_user);
2884 }
2885 
2886 void
2887 dmu_buf_user_evict_wait()
2888 {
2889 	taskq_wait(dbu_evict_taskq);
2890 }
2891 
2892 boolean_t
2893 dmu_buf_freeable(dmu_buf_t *dbuf)
2894 {
2895 	boolean_t res = B_FALSE;
2896 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2897 
2898 	if (db->db_blkptr)
2899 		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2900 		    db->db_blkptr, db->db_blkptr->blk_birth);
2901 
2902 	return (res);
2903 }
2904 
2905 blkptr_t *
2906 dmu_buf_get_blkptr(dmu_buf_t *db)
2907 {
2908 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2909 	return (dbi->db_blkptr);
2910 }
2911 
2912 objset_t *
2913 dmu_buf_get_objset(dmu_buf_t *db)
2914 {
2915 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2916 	return (dbi->db_objset);
2917 }
2918 
2919 dnode_t *
2920 dmu_buf_dnode_enter(dmu_buf_t *db)
2921 {
2922 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2923 	DB_DNODE_ENTER(dbi);
2924 	return (DB_DNODE(dbi));
2925 }
2926 
2927 void
2928 dmu_buf_dnode_exit(dmu_buf_t *db)
2929 {
2930 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2931 	DB_DNODE_EXIT(dbi);
2932 }
2933 
2934 static void
2935 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2936 {
2937 	/* ASSERT(dmu_tx_is_syncing(tx) */
2938 	ASSERT(MUTEX_HELD(&db->db_mtx));
2939 
2940 	if (db->db_blkptr != NULL)
2941 		return;
2942 
2943 	if (db->db_blkid == DMU_SPILL_BLKID) {
2944 		db->db_blkptr = &dn->dn_phys->dn_spill;
2945 		BP_ZERO(db->db_blkptr);
2946 		return;
2947 	}
2948 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2949 		/*
2950 		 * This buffer was allocated at a time when there was
2951 		 * no available blkptrs from the dnode, or it was
2952 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2953 		 */
2954 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2955 		ASSERT(db->db_parent == NULL);
2956 		db->db_parent = dn->dn_dbuf;
2957 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2958 		DBUF_VERIFY(db);
2959 	} else {
2960 		dmu_buf_impl_t *parent = db->db_parent;
2961 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2962 
2963 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2964 		if (parent == NULL) {
2965 			mutex_exit(&db->db_mtx);
2966 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2967 			parent = dbuf_hold_level(dn, db->db_level + 1,
2968 			    db->db_blkid >> epbs, db);
2969 			rw_exit(&dn->dn_struct_rwlock);
2970 			mutex_enter(&db->db_mtx);
2971 			db->db_parent = parent;
2972 		}
2973 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2974 		    (db->db_blkid & ((1ULL << epbs) - 1));
2975 		DBUF_VERIFY(db);
2976 	}
2977 }
2978 
2979 static void
2980 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2981 {
2982 	dmu_buf_impl_t *db = dr->dr_dbuf;
2983 	dnode_t *dn;
2984 	zio_t *zio;
2985 
2986 	ASSERT(dmu_tx_is_syncing(tx));
2987 
2988 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2989 
2990 	mutex_enter(&db->db_mtx);
2991 
2992 	ASSERT(db->db_level > 0);
2993 	DBUF_VERIFY(db);
2994 
2995 	/* Read the block if it hasn't been read yet. */
2996 	if (db->db_buf == NULL) {
2997 		mutex_exit(&db->db_mtx);
2998 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2999 		mutex_enter(&db->db_mtx);
3000 	}
3001 	ASSERT3U(db->db_state, ==, DB_CACHED);
3002 	ASSERT(db->db_buf != NULL);
3003 
3004 	DB_DNODE_ENTER(db);
3005 	dn = DB_DNODE(db);
3006 	/* Indirect block size must match what the dnode thinks it is. */
3007 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3008 	dbuf_check_blkptr(dn, db);
3009 	DB_DNODE_EXIT(db);
3010 
3011 	/* Provide the pending dirty record to child dbufs */
3012 	db->db_data_pending = dr;
3013 
3014 	mutex_exit(&db->db_mtx);
3015 	dbuf_write(dr, db->db_buf, tx);
3016 
3017 	zio = dr->dr_zio;
3018 	mutex_enter(&dr->dt.di.dr_mtx);
3019 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3020 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3021 	mutex_exit(&dr->dt.di.dr_mtx);
3022 	zio_nowait(zio);
3023 }
3024 
3025 static void
3026 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3027 {
3028 	arc_buf_t **datap = &dr->dt.dl.dr_data;
3029 	dmu_buf_impl_t *db = dr->dr_dbuf;
3030 	dnode_t *dn;
3031 	objset_t *os;
3032 	uint64_t txg = tx->tx_txg;
3033 
3034 	ASSERT(dmu_tx_is_syncing(tx));
3035 
3036 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3037 
3038 	mutex_enter(&db->db_mtx);
3039 	/*
3040 	 * To be synced, we must be dirtied.  But we
3041 	 * might have been freed after the dirty.
3042 	 */
3043 	if (db->db_state == DB_UNCACHED) {
3044 		/* This buffer has been freed since it was dirtied */
3045 		ASSERT(db->db.db_data == NULL);
3046 	} else if (db->db_state == DB_FILL) {
3047 		/* This buffer was freed and is now being re-filled */
3048 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3049 	} else {
3050 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3051 	}
3052 	DBUF_VERIFY(db);
3053 
3054 	DB_DNODE_ENTER(db);
3055 	dn = DB_DNODE(db);
3056 
3057 	if (db->db_blkid == DMU_SPILL_BLKID) {
3058 		mutex_enter(&dn->dn_mtx);
3059 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3060 		mutex_exit(&dn->dn_mtx);
3061 	}
3062 
3063 	/*
3064 	 * If this is a bonus buffer, simply copy the bonus data into the
3065 	 * dnode.  It will be written out when the dnode is synced (and it
3066 	 * will be synced, since it must have been dirty for dbuf_sync to
3067 	 * be called).
3068 	 */
3069 	if (db->db_blkid == DMU_BONUS_BLKID) {
3070 		dbuf_dirty_record_t **drp;
3071 
3072 		ASSERT(*datap != NULL);
3073 		ASSERT0(db->db_level);
3074 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3075 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3076 		DB_DNODE_EXIT(db);
3077 
3078 		if (*datap != db->db.db_data) {
3079 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
3080 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3081 		}
3082 		db->db_data_pending = NULL;
3083 		drp = &db->db_last_dirty;
3084 		while (*drp != dr)
3085 			drp = &(*drp)->dr_next;
3086 		ASSERT(dr->dr_next == NULL);
3087 		ASSERT(dr->dr_dbuf == db);
3088 		*drp = dr->dr_next;
3089 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
3090 		ASSERT(db->db_dirtycnt > 0);
3091 		db->db_dirtycnt -= 1;
3092 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3093 		return;
3094 	}
3095 
3096 	os = dn->dn_objset;
3097 
3098 	/*
3099 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
3100 	 * operation to sneak in. As a result, we need to ensure that we
3101 	 * don't check the dr_override_state until we have returned from
3102 	 * dbuf_check_blkptr.
3103 	 */
3104 	dbuf_check_blkptr(dn, db);
3105 
3106 	/*
3107 	 * If this buffer is in the middle of an immediate write,
3108 	 * wait for the synchronous IO to complete.
3109 	 */
3110 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3111 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3112 		cv_wait(&db->db_changed, &db->db_mtx);
3113 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3114 	}
3115 
3116 	if (db->db_state != DB_NOFILL &&
3117 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3118 	    refcount_count(&db->db_holds) > 1 &&
3119 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3120 	    *datap == db->db_buf) {
3121 		/*
3122 		 * If this buffer is currently "in use" (i.e., there
3123 		 * are active holds and db_data still references it),
3124 		 * then make a copy before we start the write so that
3125 		 * any modifications from the open txg will not leak
3126 		 * into this write.
3127 		 *
3128 		 * NOTE: this copy does not need to be made for
3129 		 * objects only modified in the syncing context (e.g.
3130 		 * DNONE_DNODE blocks).
3131 		 */
3132 		int blksz = arc_buf_size(*datap);
3133 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3134 		*datap = arc_alloc_buf(os->os_spa, blksz, db, type);
3135 		bcopy(db->db.db_data, (*datap)->b_data, blksz);
3136 	}
3137 	db->db_data_pending = dr;
3138 
3139 	mutex_exit(&db->db_mtx);
3140 
3141 	dbuf_write(dr, *datap, tx);
3142 
3143 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3144 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3145 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3146 		DB_DNODE_EXIT(db);
3147 	} else {
3148 		/*
3149 		 * Although zio_nowait() does not "wait for an IO", it does
3150 		 * initiate the IO. If this is an empty write it seems plausible
3151 		 * that the IO could actually be completed before the nowait
3152 		 * returns. We need to DB_DNODE_EXIT() first in case
3153 		 * zio_nowait() invalidates the dbuf.
3154 		 */
3155 		DB_DNODE_EXIT(db);
3156 		zio_nowait(dr->dr_zio);
3157 	}
3158 }
3159 
3160 void
3161 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3162 {
3163 	dbuf_dirty_record_t *dr;
3164 
3165 	while (dr = list_head(list)) {
3166 		if (dr->dr_zio != NULL) {
3167 			/*
3168 			 * If we find an already initialized zio then we
3169 			 * are processing the meta-dnode, and we have finished.
3170 			 * The dbufs for all dnodes are put back on the list
3171 			 * during processing, so that we can zio_wait()
3172 			 * these IOs after initiating all child IOs.
3173 			 */
3174 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3175 			    DMU_META_DNODE_OBJECT);
3176 			break;
3177 		}
3178 		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3179 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3180 			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3181 		}
3182 		list_remove(list, dr);
3183 		if (dr->dr_dbuf->db_level > 0)
3184 			dbuf_sync_indirect(dr, tx);
3185 		else
3186 			dbuf_sync_leaf(dr, tx);
3187 	}
3188 }
3189 
3190 /* ARGSUSED */
3191 static void
3192 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3193 {
3194 	dmu_buf_impl_t *db = vdb;
3195 	dnode_t *dn;
3196 	blkptr_t *bp = zio->io_bp;
3197 	blkptr_t *bp_orig = &zio->io_bp_orig;
3198 	spa_t *spa = zio->io_spa;
3199 	int64_t delta;
3200 	uint64_t fill = 0;
3201 	int i;
3202 
3203 	ASSERT3P(db->db_blkptr, !=, NULL);
3204 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3205 
3206 	DB_DNODE_ENTER(db);
3207 	dn = DB_DNODE(db);
3208 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3209 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3210 	zio->io_prev_space_delta = delta;
3211 
3212 	if (bp->blk_birth != 0) {
3213 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3214 		    BP_GET_TYPE(bp) == dn->dn_type) ||
3215 		    (db->db_blkid == DMU_SPILL_BLKID &&
3216 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3217 		    BP_IS_EMBEDDED(bp));
3218 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3219 	}
3220 
3221 	mutex_enter(&db->db_mtx);
3222 
3223 #ifdef ZFS_DEBUG
3224 	if (db->db_blkid == DMU_SPILL_BLKID) {
3225 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3226 		ASSERT(!(BP_IS_HOLE(bp)) &&
3227 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3228 	}
3229 #endif
3230 
3231 	if (db->db_level == 0) {
3232 		mutex_enter(&dn->dn_mtx);
3233 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3234 		    db->db_blkid != DMU_SPILL_BLKID)
3235 			dn->dn_phys->dn_maxblkid = db->db_blkid;
3236 		mutex_exit(&dn->dn_mtx);
3237 
3238 		if (dn->dn_type == DMU_OT_DNODE) {
3239 			dnode_phys_t *dnp = db->db.db_data;
3240 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3241 			    i--, dnp++) {
3242 				if (dnp->dn_type != DMU_OT_NONE)
3243 					fill++;
3244 			}
3245 		} else {
3246 			if (BP_IS_HOLE(bp)) {
3247 				fill = 0;
3248 			} else {
3249 				fill = 1;
3250 			}
3251 		}
3252 	} else {
3253 		blkptr_t *ibp = db->db.db_data;
3254 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3255 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3256 			if (BP_IS_HOLE(ibp))
3257 				continue;
3258 			fill += BP_GET_FILL(ibp);
3259 		}
3260 	}
3261 	DB_DNODE_EXIT(db);
3262 
3263 	if (!BP_IS_EMBEDDED(bp))
3264 		bp->blk_fill = fill;
3265 
3266 	mutex_exit(&db->db_mtx);
3267 
3268 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3269 	*db->db_blkptr = *bp;
3270 	rw_exit(&dn->dn_struct_rwlock);
3271 }
3272 
3273 /* ARGSUSED */
3274 /*
3275  * This function gets called just prior to running through the compression
3276  * stage of the zio pipeline. If we're an indirect block comprised of only
3277  * holes, then we want this indirect to be compressed away to a hole. In
3278  * order to do that we must zero out any information about the holes that
3279  * this indirect points to prior to before we try to compress it.
3280  */
3281 static void
3282 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3283 {
3284 	dmu_buf_impl_t *db = vdb;
3285 	dnode_t *dn;
3286 	blkptr_t *bp;
3287 	uint64_t i;
3288 	int epbs;
3289 
3290 	ASSERT3U(db->db_level, >, 0);
3291 	DB_DNODE_ENTER(db);
3292 	dn = DB_DNODE(db);
3293 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3294 
3295 	/* Determine if all our children are holes */
3296 	for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3297 		if (!BP_IS_HOLE(bp))
3298 			break;
3299 	}
3300 
3301 	/*
3302 	 * If all the children are holes, then zero them all out so that
3303 	 * we may get compressed away.
3304 	 */
3305 	if (i == 1 << epbs) {
3306 		/* didn't find any non-holes */
3307 		bzero(db->db.db_data, db->db.db_size);
3308 	}
3309 	DB_DNODE_EXIT(db);
3310 }
3311 
3312 /*
3313  * The SPA will call this callback several times for each zio - once
3314  * for every physical child i/o (zio->io_phys_children times).  This
3315  * allows the DMU to monitor the progress of each logical i/o.  For example,
3316  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3317  * block.  There may be a long delay before all copies/fragments are completed,
3318  * so this callback allows us to retire dirty space gradually, as the physical
3319  * i/os complete.
3320  */
3321 /* ARGSUSED */
3322 static void
3323 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3324 {
3325 	dmu_buf_impl_t *db = arg;
3326 	objset_t *os = db->db_objset;
3327 	dsl_pool_t *dp = dmu_objset_pool(os);
3328 	dbuf_dirty_record_t *dr;
3329 	int delta = 0;
3330 
3331 	dr = db->db_data_pending;
3332 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3333 
3334 	/*
3335 	 * The callback will be called io_phys_children times.  Retire one
3336 	 * portion of our dirty space each time we are called.  Any rounding
3337 	 * error will be cleaned up by dsl_pool_sync()'s call to
3338 	 * dsl_pool_undirty_space().
3339 	 */
3340 	delta = dr->dr_accounted / zio->io_phys_children;
3341 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
3342 }
3343 
3344 /* ARGSUSED */
3345 static void
3346 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3347 {
3348 	dmu_buf_impl_t *db = vdb;
3349 	blkptr_t *bp_orig = &zio->io_bp_orig;
3350 	blkptr_t *bp = db->db_blkptr;
3351 	objset_t *os = db->db_objset;
3352 	dmu_tx_t *tx = os->os_synctx;
3353 	dbuf_dirty_record_t **drp, *dr;
3354 
3355 	ASSERT0(zio->io_error);
3356 	ASSERT(db->db_blkptr == bp);
3357 
3358 	/*
3359 	 * For nopwrites and rewrites we ensure that the bp matches our
3360 	 * original and bypass all the accounting.
3361 	 */
3362 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3363 		ASSERT(BP_EQUAL(bp, bp_orig));
3364 	} else {
3365 		dsl_dataset_t *ds = os->os_dsl_dataset;
3366 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3367 		dsl_dataset_block_born(ds, bp, tx);
3368 	}
3369 
3370 	mutex_enter(&db->db_mtx);
3371 
3372 	DBUF_VERIFY(db);
3373 
3374 	drp = &db->db_last_dirty;
3375 	while ((dr = *drp) != db->db_data_pending)
3376 		drp = &dr->dr_next;
3377 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3378 	ASSERT(dr->dr_dbuf == db);
3379 	ASSERT(dr->dr_next == NULL);
3380 	*drp = dr->dr_next;
3381 
3382 #ifdef ZFS_DEBUG
3383 	if (db->db_blkid == DMU_SPILL_BLKID) {
3384 		dnode_t *dn;
3385 
3386 		DB_DNODE_ENTER(db);
3387 		dn = DB_DNODE(db);
3388 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3389 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3390 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3391 		DB_DNODE_EXIT(db);
3392 	}
3393 #endif
3394 
3395 	if (db->db_level == 0) {
3396 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3397 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3398 		if (db->db_state != DB_NOFILL) {
3399 			if (dr->dt.dl.dr_data != db->db_buf)
3400 				arc_buf_destroy(dr->dt.dl.dr_data, db);
3401 		}
3402 	} else {
3403 		dnode_t *dn;
3404 
3405 		DB_DNODE_ENTER(db);
3406 		dn = DB_DNODE(db);
3407 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3408 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3409 		if (!BP_IS_HOLE(db->db_blkptr)) {
3410 			int epbs =
3411 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3412 			ASSERT3U(db->db_blkid, <=,
3413 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3414 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3415 			    db->db.db_size);
3416 		}
3417 		DB_DNODE_EXIT(db);
3418 		mutex_destroy(&dr->dt.di.dr_mtx);
3419 		list_destroy(&dr->dt.di.dr_children);
3420 	}
3421 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3422 
3423 	cv_broadcast(&db->db_changed);
3424 	ASSERT(db->db_dirtycnt > 0);
3425 	db->db_dirtycnt -= 1;
3426 	db->db_data_pending = NULL;
3427 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3428 }
3429 
3430 static void
3431 dbuf_write_nofill_ready(zio_t *zio)
3432 {
3433 	dbuf_write_ready(zio, NULL, zio->io_private);
3434 }
3435 
3436 static void
3437 dbuf_write_nofill_done(zio_t *zio)
3438 {
3439 	dbuf_write_done(zio, NULL, zio->io_private);
3440 }
3441 
3442 static void
3443 dbuf_write_override_ready(zio_t *zio)
3444 {
3445 	dbuf_dirty_record_t *dr = zio->io_private;
3446 	dmu_buf_impl_t *db = dr->dr_dbuf;
3447 
3448 	dbuf_write_ready(zio, NULL, db);
3449 }
3450 
3451 static void
3452 dbuf_write_override_done(zio_t *zio)
3453 {
3454 	dbuf_dirty_record_t *dr = zio->io_private;
3455 	dmu_buf_impl_t *db = dr->dr_dbuf;
3456 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3457 
3458 	mutex_enter(&db->db_mtx);
3459 	if (!BP_EQUAL(zio->io_bp, obp)) {
3460 		if (!BP_IS_HOLE(obp))
3461 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3462 		arc_release(dr->dt.dl.dr_data, db);
3463 	}
3464 	mutex_exit(&db->db_mtx);
3465 
3466 	dbuf_write_done(zio, NULL, db);
3467 }
3468 
3469 /* Issue I/O to commit a dirty buffer to disk. */
3470 static void
3471 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3472 {
3473 	dmu_buf_impl_t *db = dr->dr_dbuf;
3474 	dnode_t *dn;
3475 	objset_t *os;
3476 	dmu_buf_impl_t *parent = db->db_parent;
3477 	uint64_t txg = tx->tx_txg;
3478 	zbookmark_phys_t zb;
3479 	zio_prop_t zp;
3480 	zio_t *zio;
3481 	int wp_flag = 0;
3482 
3483 	ASSERT(dmu_tx_is_syncing(tx));
3484 
3485 	DB_DNODE_ENTER(db);
3486 	dn = DB_DNODE(db);
3487 	os = dn->dn_objset;
3488 
3489 	if (db->db_state != DB_NOFILL) {
3490 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3491 			/*
3492 			 * Private object buffers are released here rather
3493 			 * than in dbuf_dirty() since they are only modified
3494 			 * in the syncing context and we don't want the
3495 			 * overhead of making multiple copies of the data.
3496 			 */
3497 			if (BP_IS_HOLE(db->db_blkptr)) {
3498 				arc_buf_thaw(data);
3499 			} else {
3500 				dbuf_release_bp(db);
3501 			}
3502 		}
3503 	}
3504 
3505 	if (parent != dn->dn_dbuf) {
3506 		/* Our parent is an indirect block. */
3507 		/* We have a dirty parent that has been scheduled for write. */
3508 		ASSERT(parent && parent->db_data_pending);
3509 		/* Our parent's buffer is one level closer to the dnode. */
3510 		ASSERT(db->db_level == parent->db_level-1);
3511 		/*
3512 		 * We're about to modify our parent's db_data by modifying
3513 		 * our block pointer, so the parent must be released.
3514 		 */
3515 		ASSERT(arc_released(parent->db_buf));
3516 		zio = parent->db_data_pending->dr_zio;
3517 	} else {
3518 		/* Our parent is the dnode itself. */
3519 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3520 		    db->db_blkid != DMU_SPILL_BLKID) ||
3521 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3522 		if (db->db_blkid != DMU_SPILL_BLKID)
3523 			ASSERT3P(db->db_blkptr, ==,
3524 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3525 		zio = dn->dn_zio;
3526 	}
3527 
3528 	ASSERT(db->db_level == 0 || data == db->db_buf);
3529 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3530 	ASSERT(zio);
3531 
3532 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3533 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3534 	    db->db.db_object, db->db_level, db->db_blkid);
3535 
3536 	if (db->db_blkid == DMU_SPILL_BLKID)
3537 		wp_flag = WP_SPILL;
3538 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3539 
3540 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3541 	DB_DNODE_EXIT(db);
3542 
3543 	/*
3544 	 * We copy the blkptr now (rather than when we instantiate the dirty
3545 	 * record), because its value can change between open context and
3546 	 * syncing context. We do not need to hold dn_struct_rwlock to read
3547 	 * db_blkptr because we are in syncing context.
3548 	 */
3549 	dr->dr_bp_copy = *db->db_blkptr;
3550 
3551 	if (db->db_level == 0 &&
3552 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3553 		/*
3554 		 * The BP for this block has been provided by open context
3555 		 * (by dmu_sync() or dmu_buf_write_embedded()).
3556 		 */
3557 		void *contents = (data != NULL) ? data->b_data : NULL;
3558 
3559 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3560 		    &dr->dr_bp_copy, contents, db->db.db_size, &zp,
3561 		    dbuf_write_override_ready, NULL, NULL,
3562 		    dbuf_write_override_done,
3563 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3564 		mutex_enter(&db->db_mtx);
3565 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3566 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3567 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3568 		mutex_exit(&db->db_mtx);
3569 	} else if (db->db_state == DB_NOFILL) {
3570 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3571 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3572 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3573 		    &dr->dr_bp_copy, NULL, db->db.db_size, &zp,
3574 		    dbuf_write_nofill_ready, NULL, NULL,
3575 		    dbuf_write_nofill_done, db,
3576 		    ZIO_PRIORITY_ASYNC_WRITE,
3577 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3578 	} else {
3579 		ASSERT(arc_released(data));
3580 
3581 		/*
3582 		 * For indirect blocks, we want to setup the children
3583 		 * ready callback so that we can properly handle an indirect
3584 		 * block that only contains holes.
3585 		 */
3586 		arc_done_func_t *children_ready_cb = NULL;
3587 		if (db->db_level != 0)
3588 			children_ready_cb = dbuf_write_children_ready;
3589 
3590 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3591 		    &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3592 		    &zp, dbuf_write_ready, children_ready_cb,
3593 		    dbuf_write_physdone, dbuf_write_done, db,
3594 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3595 	}
3596 }
3597