1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 50 uint_t zfs_dbuf_evict_key; 51 52 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 53 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 54 55 #ifndef __lint 56 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 57 dmu_buf_evict_func_t *evict_func, dmu_buf_t **clear_on_evict_dbufp); 58 #endif /* ! __lint */ 59 60 /* 61 * Global data structures and functions for the dbuf cache. 62 */ 63 static kmem_cache_t *dbuf_kmem_cache; 64 static taskq_t *dbu_evict_taskq; 65 66 static kthread_t *dbuf_cache_evict_thread; 67 static kmutex_t dbuf_evict_lock; 68 static kcondvar_t dbuf_evict_cv; 69 static boolean_t dbuf_evict_thread_exit; 70 71 /* 72 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 73 * are not currently held but have been recently released. These dbufs 74 * are not eligible for arc eviction until they are aged out of the cache. 75 * Dbufs are added to the dbuf cache once the last hold is released. If a 76 * dbuf is later accessed and still exists in the dbuf cache, then it will 77 * be removed from the cache and later re-added to the head of the cache. 78 * Dbufs that are aged out of the cache will be immediately destroyed and 79 * become eligible for arc eviction. 80 */ 81 static multilist_t dbuf_cache; 82 static refcount_t dbuf_cache_size; 83 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024; 84 85 /* Cap the size of the dbuf cache to log2 fraction of arc size. */ 86 int dbuf_cache_max_shift = 5; 87 88 /* 89 * The dbuf cache uses a three-stage eviction policy: 90 * - A low water marker designates when the dbuf eviction thread 91 * should stop evicting from the dbuf cache. 92 * - When we reach the maximum size (aka mid water mark), we 93 * signal the eviction thread to run. 94 * - The high water mark indicates when the eviction thread 95 * is unable to keep up with the incoming load and eviction must 96 * happen in the context of the calling thread. 97 * 98 * The dbuf cache: 99 * (max size) 100 * low water mid water hi water 101 * +----------------------------------------+----------+----------+ 102 * | | | | 103 * | | | | 104 * | | | | 105 * | | | | 106 * +----------------------------------------+----------+----------+ 107 * stop signal evict 108 * evicting eviction directly 109 * thread 110 * 111 * The high and low water marks indicate the operating range for the eviction 112 * thread. The low water mark is, by default, 90% of the total size of the 113 * cache and the high water mark is at 110% (both of these percentages can be 114 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 115 * respectively). The eviction thread will try to ensure that the cache remains 116 * within this range by waking up every second and checking if the cache is 117 * above the low water mark. The thread can also be woken up by callers adding 118 * elements into the cache if the cache is larger than the mid water (i.e max 119 * cache size). Once the eviction thread is woken up and eviction is required, 120 * it will continue evicting buffers until it's able to reduce the cache size 121 * to the low water mark. If the cache size continues to grow and hits the high 122 * water mark, then callers adding elments to the cache will begin to evict 123 * directly from the cache until the cache is no longer above the high water 124 * mark. 125 */ 126 127 /* 128 * The percentage above and below the maximum cache size. 129 */ 130 uint_t dbuf_cache_hiwater_pct = 10; 131 uint_t dbuf_cache_lowater_pct = 10; 132 133 /* ARGSUSED */ 134 static int 135 dbuf_cons(void *vdb, void *unused, int kmflag) 136 { 137 dmu_buf_impl_t *db = vdb; 138 bzero(db, sizeof (dmu_buf_impl_t)); 139 140 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 141 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 142 multilist_link_init(&db->db_cache_link); 143 refcount_create(&db->db_holds); 144 145 return (0); 146 } 147 148 /* ARGSUSED */ 149 static void 150 dbuf_dest(void *vdb, void *unused) 151 { 152 dmu_buf_impl_t *db = vdb; 153 mutex_destroy(&db->db_mtx); 154 cv_destroy(&db->db_changed); 155 ASSERT(!multilist_link_active(&db->db_cache_link)); 156 refcount_destroy(&db->db_holds); 157 } 158 159 /* 160 * dbuf hash table routines 161 */ 162 static dbuf_hash_table_t dbuf_hash_table; 163 164 static uint64_t dbuf_hash_count; 165 166 static uint64_t 167 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 168 { 169 uintptr_t osv = (uintptr_t)os; 170 uint64_t crc = -1ULL; 171 172 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 173 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 174 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 175 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 176 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 177 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 178 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 179 180 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 181 182 return (crc); 183 } 184 185 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 186 ((dbuf)->db.db_object == (obj) && \ 187 (dbuf)->db_objset == (os) && \ 188 (dbuf)->db_level == (level) && \ 189 (dbuf)->db_blkid == (blkid)) 190 191 dmu_buf_impl_t * 192 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 193 { 194 dbuf_hash_table_t *h = &dbuf_hash_table; 195 uint64_t hv = dbuf_hash(os, obj, level, blkid); 196 uint64_t idx = hv & h->hash_table_mask; 197 dmu_buf_impl_t *db; 198 199 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 200 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 201 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 202 mutex_enter(&db->db_mtx); 203 if (db->db_state != DB_EVICTING) { 204 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 205 return (db); 206 } 207 mutex_exit(&db->db_mtx); 208 } 209 } 210 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 211 return (NULL); 212 } 213 214 static dmu_buf_impl_t * 215 dbuf_find_bonus(objset_t *os, uint64_t object) 216 { 217 dnode_t *dn; 218 dmu_buf_impl_t *db = NULL; 219 220 if (dnode_hold(os, object, FTAG, &dn) == 0) { 221 rw_enter(&dn->dn_struct_rwlock, RW_READER); 222 if (dn->dn_bonus != NULL) { 223 db = dn->dn_bonus; 224 mutex_enter(&db->db_mtx); 225 } 226 rw_exit(&dn->dn_struct_rwlock); 227 dnode_rele(dn, FTAG); 228 } 229 return (db); 230 } 231 232 /* 233 * Insert an entry into the hash table. If there is already an element 234 * equal to elem in the hash table, then the already existing element 235 * will be returned and the new element will not be inserted. 236 * Otherwise returns NULL. 237 */ 238 static dmu_buf_impl_t * 239 dbuf_hash_insert(dmu_buf_impl_t *db) 240 { 241 dbuf_hash_table_t *h = &dbuf_hash_table; 242 objset_t *os = db->db_objset; 243 uint64_t obj = db->db.db_object; 244 int level = db->db_level; 245 uint64_t blkid = db->db_blkid; 246 uint64_t hv = dbuf_hash(os, obj, level, blkid); 247 uint64_t idx = hv & h->hash_table_mask; 248 dmu_buf_impl_t *dbf; 249 250 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 251 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 252 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 253 mutex_enter(&dbf->db_mtx); 254 if (dbf->db_state != DB_EVICTING) { 255 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 256 return (dbf); 257 } 258 mutex_exit(&dbf->db_mtx); 259 } 260 } 261 262 mutex_enter(&db->db_mtx); 263 db->db_hash_next = h->hash_table[idx]; 264 h->hash_table[idx] = db; 265 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 266 atomic_inc_64(&dbuf_hash_count); 267 268 return (NULL); 269 } 270 271 /* 272 * Remove an entry from the hash table. It must be in the EVICTING state. 273 */ 274 static void 275 dbuf_hash_remove(dmu_buf_impl_t *db) 276 { 277 dbuf_hash_table_t *h = &dbuf_hash_table; 278 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 279 db->db_level, db->db_blkid); 280 uint64_t idx = hv & h->hash_table_mask; 281 dmu_buf_impl_t *dbf, **dbp; 282 283 /* 284 * We musn't hold db_mtx to maintain lock ordering: 285 * DBUF_HASH_MUTEX > db_mtx. 286 */ 287 ASSERT(refcount_is_zero(&db->db_holds)); 288 ASSERT(db->db_state == DB_EVICTING); 289 ASSERT(!MUTEX_HELD(&db->db_mtx)); 290 291 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 292 dbp = &h->hash_table[idx]; 293 while ((dbf = *dbp) != db) { 294 dbp = &dbf->db_hash_next; 295 ASSERT(dbf != NULL); 296 } 297 *dbp = db->db_hash_next; 298 db->db_hash_next = NULL; 299 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 300 atomic_dec_64(&dbuf_hash_count); 301 } 302 303 typedef enum { 304 DBVU_EVICTING, 305 DBVU_NOT_EVICTING 306 } dbvu_verify_type_t; 307 308 static void 309 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 310 { 311 #ifdef ZFS_DEBUG 312 int64_t holds; 313 314 if (db->db_user == NULL) 315 return; 316 317 /* Only data blocks support the attachment of user data. */ 318 ASSERT(db->db_level == 0); 319 320 /* Clients must resolve a dbuf before attaching user data. */ 321 ASSERT(db->db.db_data != NULL); 322 ASSERT3U(db->db_state, ==, DB_CACHED); 323 324 holds = refcount_count(&db->db_holds); 325 if (verify_type == DBVU_EVICTING) { 326 /* 327 * Immediate eviction occurs when holds == dirtycnt. 328 * For normal eviction buffers, holds is zero on 329 * eviction, except when dbuf_fix_old_data() calls 330 * dbuf_clear_data(). However, the hold count can grow 331 * during eviction even though db_mtx is held (see 332 * dmu_bonus_hold() for an example), so we can only 333 * test the generic invariant that holds >= dirtycnt. 334 */ 335 ASSERT3U(holds, >=, db->db_dirtycnt); 336 } else { 337 if (db->db_user_immediate_evict == TRUE) 338 ASSERT3U(holds, >=, db->db_dirtycnt); 339 else 340 ASSERT3U(holds, >, 0); 341 } 342 #endif 343 } 344 345 static void 346 dbuf_evict_user(dmu_buf_impl_t *db) 347 { 348 dmu_buf_user_t *dbu = db->db_user; 349 350 ASSERT(MUTEX_HELD(&db->db_mtx)); 351 352 if (dbu == NULL) 353 return; 354 355 dbuf_verify_user(db, DBVU_EVICTING); 356 db->db_user = NULL; 357 358 #ifdef ZFS_DEBUG 359 if (dbu->dbu_clear_on_evict_dbufp != NULL) 360 *dbu->dbu_clear_on_evict_dbufp = NULL; 361 #endif 362 363 /* 364 * Invoke the callback from a taskq to avoid lock order reversals 365 * and limit stack depth. 366 */ 367 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func, dbu, 0, 368 &dbu->dbu_tqent); 369 } 370 371 boolean_t 372 dbuf_is_metadata(dmu_buf_impl_t *db) 373 { 374 if (db->db_level > 0) { 375 return (B_TRUE); 376 } else { 377 boolean_t is_metadata; 378 379 DB_DNODE_ENTER(db); 380 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 381 DB_DNODE_EXIT(db); 382 383 return (is_metadata); 384 } 385 } 386 387 /* 388 * This function *must* return indices evenly distributed between all 389 * sublists of the multilist. This is needed due to how the dbuf eviction 390 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 391 * distributed between all sublists and uses this assumption when 392 * deciding which sublist to evict from and how much to evict from it. 393 */ 394 unsigned int 395 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 396 { 397 dmu_buf_impl_t *db = obj; 398 399 /* 400 * The assumption here, is the hash value for a given 401 * dmu_buf_impl_t will remain constant throughout it's lifetime 402 * (i.e. it's objset, object, level and blkid fields don't change). 403 * Thus, we don't need to store the dbuf's sublist index 404 * on insertion, as this index can be recalculated on removal. 405 * 406 * Also, the low order bits of the hash value are thought to be 407 * distributed evenly. Otherwise, in the case that the multilist 408 * has a power of two number of sublists, each sublists' usage 409 * would not be evenly distributed. 410 */ 411 return (dbuf_hash(db->db_objset, db->db.db_object, 412 db->db_level, db->db_blkid) % 413 multilist_get_num_sublists(ml)); 414 } 415 416 static inline boolean_t 417 dbuf_cache_above_hiwater(void) 418 { 419 uint64_t dbuf_cache_hiwater_bytes = 420 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 421 422 return (refcount_count(&dbuf_cache_size) > 423 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 424 } 425 426 static inline boolean_t 427 dbuf_cache_above_lowater(void) 428 { 429 uint64_t dbuf_cache_lowater_bytes = 430 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 431 432 return (refcount_count(&dbuf_cache_size) > 433 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 434 } 435 436 /* 437 * Evict the oldest eligible dbuf from the dbuf cache. 438 */ 439 static void 440 dbuf_evict_one(void) 441 { 442 int idx = multilist_get_random_index(&dbuf_cache); 443 multilist_sublist_t *mls = multilist_sublist_lock(&dbuf_cache, idx); 444 445 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 446 447 /* 448 * Set the thread's tsd to indicate that it's processing evictions. 449 * Once a thread stops evicting from the dbuf cache it will 450 * reset its tsd to NULL. 451 */ 452 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL); 453 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE); 454 455 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 456 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 457 db = multilist_sublist_prev(mls, db); 458 } 459 460 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 461 multilist_sublist_t *, mls); 462 463 if (db != NULL) { 464 multilist_sublist_remove(mls, db); 465 multilist_sublist_unlock(mls); 466 (void) refcount_remove_many(&dbuf_cache_size, 467 db->db.db_size, db); 468 dbuf_destroy(db); 469 } else { 470 multilist_sublist_unlock(mls); 471 } 472 (void) tsd_set(zfs_dbuf_evict_key, NULL); 473 } 474 475 /* 476 * The dbuf evict thread is responsible for aging out dbufs from the 477 * cache. Once the cache has reached it's maximum size, dbufs are removed 478 * and destroyed. The eviction thread will continue running until the size 479 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 480 * out of the cache it is destroyed and becomes eligible for arc eviction. 481 */ 482 static void 483 dbuf_evict_thread(void) 484 { 485 callb_cpr_t cpr; 486 487 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 488 489 mutex_enter(&dbuf_evict_lock); 490 while (!dbuf_evict_thread_exit) { 491 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 492 CALLB_CPR_SAFE_BEGIN(&cpr); 493 (void) cv_timedwait_hires(&dbuf_evict_cv, 494 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 495 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 496 } 497 mutex_exit(&dbuf_evict_lock); 498 499 /* 500 * Keep evicting as long as we're above the low water mark 501 * for the cache. We do this without holding the locks to 502 * minimize lock contention. 503 */ 504 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 505 dbuf_evict_one(); 506 } 507 508 mutex_enter(&dbuf_evict_lock); 509 } 510 511 dbuf_evict_thread_exit = B_FALSE; 512 cv_broadcast(&dbuf_evict_cv); 513 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 514 thread_exit(); 515 } 516 517 /* 518 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 519 * If the dbuf cache is at its high water mark, then evict a dbuf from the 520 * dbuf cache using the callers context. 521 */ 522 static void 523 dbuf_evict_notify(void) 524 { 525 526 /* 527 * We use thread specific data to track when a thread has 528 * started processing evictions. This allows us to avoid deeply 529 * nested stacks that would have a call flow similar to this: 530 * 531 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 532 * ^ | 533 * | | 534 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 535 * 536 * The dbuf_eviction_thread will always have its tsd set until 537 * that thread exits. All other threads will only set their tsd 538 * if they are participating in the eviction process. This only 539 * happens if the eviction thread is unable to process evictions 540 * fast enough. To keep the dbuf cache size in check, other threads 541 * can evict from the dbuf cache directly. Those threads will set 542 * their tsd values so that we ensure that they only evict one dbuf 543 * from the dbuf cache. 544 */ 545 if (tsd_get(zfs_dbuf_evict_key) != NULL) 546 return; 547 548 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 549 boolean_t evict_now = B_FALSE; 550 551 mutex_enter(&dbuf_evict_lock); 552 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 553 evict_now = dbuf_cache_above_hiwater(); 554 cv_signal(&dbuf_evict_cv); 555 } 556 mutex_exit(&dbuf_evict_lock); 557 558 if (evict_now) { 559 dbuf_evict_one(); 560 } 561 } 562 } 563 564 void 565 dbuf_init(void) 566 { 567 uint64_t hsize = 1ULL << 16; 568 dbuf_hash_table_t *h = &dbuf_hash_table; 569 int i; 570 571 /* 572 * The hash table is big enough to fill all of physical memory 573 * with an average 4K block size. The table will take up 574 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 575 */ 576 while (hsize * 4096 < physmem * PAGESIZE) 577 hsize <<= 1; 578 579 retry: 580 h->hash_table_mask = hsize - 1; 581 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 582 if (h->hash_table == NULL) { 583 /* XXX - we should really return an error instead of assert */ 584 ASSERT(hsize > (1ULL << 10)); 585 hsize >>= 1; 586 goto retry; 587 } 588 589 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 590 sizeof (dmu_buf_impl_t), 591 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 592 593 for (i = 0; i < DBUF_MUTEXES; i++) 594 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 595 596 /* 597 * Setup the parameters for the dbuf cache. We cap the size of the 598 * dbuf cache to 1/32nd (default) of the size of the ARC. 599 */ 600 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes, 601 arc_max_bytes() >> dbuf_cache_max_shift); 602 603 /* 604 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 605 * configuration is not required. 606 */ 607 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 608 609 multilist_create(&dbuf_cache, sizeof (dmu_buf_impl_t), 610 offsetof(dmu_buf_impl_t, db_cache_link), 611 zfs_arc_num_sublists_per_state, 612 dbuf_cache_multilist_index_func); 613 refcount_create(&dbuf_cache_size); 614 615 tsd_create(&zfs_dbuf_evict_key, NULL); 616 dbuf_evict_thread_exit = B_FALSE; 617 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 618 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 619 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 620 NULL, 0, &p0, TS_RUN, minclsyspri); 621 } 622 623 void 624 dbuf_fini(void) 625 { 626 dbuf_hash_table_t *h = &dbuf_hash_table; 627 int i; 628 629 for (i = 0; i < DBUF_MUTEXES; i++) 630 mutex_destroy(&h->hash_mutexes[i]); 631 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 632 kmem_cache_destroy(dbuf_kmem_cache); 633 taskq_destroy(dbu_evict_taskq); 634 635 mutex_enter(&dbuf_evict_lock); 636 dbuf_evict_thread_exit = B_TRUE; 637 while (dbuf_evict_thread_exit) { 638 cv_signal(&dbuf_evict_cv); 639 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 640 } 641 mutex_exit(&dbuf_evict_lock); 642 tsd_destroy(&zfs_dbuf_evict_key); 643 644 mutex_destroy(&dbuf_evict_lock); 645 cv_destroy(&dbuf_evict_cv); 646 647 refcount_destroy(&dbuf_cache_size); 648 multilist_destroy(&dbuf_cache); 649 } 650 651 /* 652 * Other stuff. 653 */ 654 655 #ifdef ZFS_DEBUG 656 static void 657 dbuf_verify(dmu_buf_impl_t *db) 658 { 659 dnode_t *dn; 660 dbuf_dirty_record_t *dr; 661 662 ASSERT(MUTEX_HELD(&db->db_mtx)); 663 664 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 665 return; 666 667 ASSERT(db->db_objset != NULL); 668 DB_DNODE_ENTER(db); 669 dn = DB_DNODE(db); 670 if (dn == NULL) { 671 ASSERT(db->db_parent == NULL); 672 ASSERT(db->db_blkptr == NULL); 673 } else { 674 ASSERT3U(db->db.db_object, ==, dn->dn_object); 675 ASSERT3P(db->db_objset, ==, dn->dn_objset); 676 ASSERT3U(db->db_level, <, dn->dn_nlevels); 677 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 678 db->db_blkid == DMU_SPILL_BLKID || 679 !avl_is_empty(&dn->dn_dbufs)); 680 } 681 if (db->db_blkid == DMU_BONUS_BLKID) { 682 ASSERT(dn != NULL); 683 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 684 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 685 } else if (db->db_blkid == DMU_SPILL_BLKID) { 686 ASSERT(dn != NULL); 687 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 688 ASSERT0(db->db.db_offset); 689 } else { 690 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 691 } 692 693 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 694 ASSERT(dr->dr_dbuf == db); 695 696 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 697 ASSERT(dr->dr_dbuf == db); 698 699 /* 700 * We can't assert that db_size matches dn_datablksz because it 701 * can be momentarily different when another thread is doing 702 * dnode_set_blksz(). 703 */ 704 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 705 dr = db->db_data_pending; 706 /* 707 * It should only be modified in syncing context, so 708 * make sure we only have one copy of the data. 709 */ 710 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 711 } 712 713 /* verify db->db_blkptr */ 714 if (db->db_blkptr) { 715 if (db->db_parent == dn->dn_dbuf) { 716 /* db is pointed to by the dnode */ 717 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 718 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 719 ASSERT(db->db_parent == NULL); 720 else 721 ASSERT(db->db_parent != NULL); 722 if (db->db_blkid != DMU_SPILL_BLKID) 723 ASSERT3P(db->db_blkptr, ==, 724 &dn->dn_phys->dn_blkptr[db->db_blkid]); 725 } else { 726 /* db is pointed to by an indirect block */ 727 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 728 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 729 ASSERT3U(db->db_parent->db.db_object, ==, 730 db->db.db_object); 731 /* 732 * dnode_grow_indblksz() can make this fail if we don't 733 * have the struct_rwlock. XXX indblksz no longer 734 * grows. safe to do this now? 735 */ 736 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 737 ASSERT3P(db->db_blkptr, ==, 738 ((blkptr_t *)db->db_parent->db.db_data + 739 db->db_blkid % epb)); 740 } 741 } 742 } 743 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 744 (db->db_buf == NULL || db->db_buf->b_data) && 745 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 746 db->db_state != DB_FILL && !dn->dn_free_txg) { 747 /* 748 * If the blkptr isn't set but they have nonzero data, 749 * it had better be dirty, otherwise we'll lose that 750 * data when we evict this buffer. 751 * 752 * There is an exception to this rule for indirect blocks; in 753 * this case, if the indirect block is a hole, we fill in a few 754 * fields on each of the child blocks (importantly, birth time) 755 * to prevent hole birth times from being lost when you 756 * partially fill in a hole. 757 */ 758 if (db->db_dirtycnt == 0) { 759 if (db->db_level == 0) { 760 uint64_t *buf = db->db.db_data; 761 int i; 762 763 for (i = 0; i < db->db.db_size >> 3; i++) { 764 ASSERT(buf[i] == 0); 765 } 766 } else { 767 blkptr_t *bps = db->db.db_data; 768 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 769 db->db.db_size); 770 /* 771 * We want to verify that all the blkptrs in the 772 * indirect block are holes, but we may have 773 * automatically set up a few fields for them. 774 * We iterate through each blkptr and verify 775 * they only have those fields set. 776 */ 777 for (int i = 0; 778 i < db->db.db_size / sizeof (blkptr_t); 779 i++) { 780 blkptr_t *bp = &bps[i]; 781 ASSERT(ZIO_CHECKSUM_IS_ZERO( 782 &bp->blk_cksum)); 783 ASSERT( 784 DVA_IS_EMPTY(&bp->blk_dva[0]) && 785 DVA_IS_EMPTY(&bp->blk_dva[1]) && 786 DVA_IS_EMPTY(&bp->blk_dva[2])); 787 ASSERT0(bp->blk_fill); 788 ASSERT0(bp->blk_pad[0]); 789 ASSERT0(bp->blk_pad[1]); 790 ASSERT(!BP_IS_EMBEDDED(bp)); 791 ASSERT(BP_IS_HOLE(bp)); 792 ASSERT0(bp->blk_phys_birth); 793 } 794 } 795 } 796 } 797 DB_DNODE_EXIT(db); 798 } 799 #endif 800 801 static void 802 dbuf_clear_data(dmu_buf_impl_t *db) 803 { 804 ASSERT(MUTEX_HELD(&db->db_mtx)); 805 dbuf_evict_user(db); 806 ASSERT3P(db->db_buf, ==, NULL); 807 db->db.db_data = NULL; 808 if (db->db_state != DB_NOFILL) 809 db->db_state = DB_UNCACHED; 810 } 811 812 static void 813 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 814 { 815 ASSERT(MUTEX_HELD(&db->db_mtx)); 816 ASSERT(buf != NULL); 817 818 db->db_buf = buf; 819 ASSERT(buf->b_data != NULL); 820 db->db.db_data = buf->b_data; 821 } 822 823 /* 824 * Loan out an arc_buf for read. Return the loaned arc_buf. 825 */ 826 arc_buf_t * 827 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 828 { 829 arc_buf_t *abuf; 830 831 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 832 mutex_enter(&db->db_mtx); 833 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 834 int blksz = db->db.db_size; 835 spa_t *spa = db->db_objset->os_spa; 836 837 mutex_exit(&db->db_mtx); 838 abuf = arc_loan_buf(spa, blksz); 839 bcopy(db->db.db_data, abuf->b_data, blksz); 840 } else { 841 abuf = db->db_buf; 842 arc_loan_inuse_buf(abuf, db); 843 db->db_buf = NULL; 844 dbuf_clear_data(db); 845 mutex_exit(&db->db_mtx); 846 } 847 return (abuf); 848 } 849 850 /* 851 * Calculate which level n block references the data at the level 0 offset 852 * provided. 853 */ 854 uint64_t 855 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 856 { 857 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 858 /* 859 * The level n blkid is equal to the level 0 blkid divided by 860 * the number of level 0s in a level n block. 861 * 862 * The level 0 blkid is offset >> datablkshift = 863 * offset / 2^datablkshift. 864 * 865 * The number of level 0s in a level n is the number of block 866 * pointers in an indirect block, raised to the power of level. 867 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 868 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 869 * 870 * Thus, the level n blkid is: offset / 871 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 872 * = offset / 2^(datablkshift + level * 873 * (indblkshift - SPA_BLKPTRSHIFT)) 874 * = offset >> (datablkshift + level * 875 * (indblkshift - SPA_BLKPTRSHIFT)) 876 */ 877 return (offset >> (dn->dn_datablkshift + level * 878 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 879 } else { 880 ASSERT3U(offset, <, dn->dn_datablksz); 881 return (0); 882 } 883 } 884 885 static void 886 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 887 { 888 dmu_buf_impl_t *db = vdb; 889 890 mutex_enter(&db->db_mtx); 891 ASSERT3U(db->db_state, ==, DB_READ); 892 /* 893 * All reads are synchronous, so we must have a hold on the dbuf 894 */ 895 ASSERT(refcount_count(&db->db_holds) > 0); 896 ASSERT(db->db_buf == NULL); 897 ASSERT(db->db.db_data == NULL); 898 if (db->db_level == 0 && db->db_freed_in_flight) { 899 /* we were freed in flight; disregard any error */ 900 arc_release(buf, db); 901 bzero(buf->b_data, db->db.db_size); 902 arc_buf_freeze(buf); 903 db->db_freed_in_flight = FALSE; 904 dbuf_set_data(db, buf); 905 db->db_state = DB_CACHED; 906 } else if (zio == NULL || zio->io_error == 0) { 907 dbuf_set_data(db, buf); 908 db->db_state = DB_CACHED; 909 } else { 910 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 911 ASSERT3P(db->db_buf, ==, NULL); 912 arc_buf_destroy(buf, db); 913 db->db_state = DB_UNCACHED; 914 } 915 cv_broadcast(&db->db_changed); 916 dbuf_rele_and_unlock(db, NULL); 917 } 918 919 static void 920 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 921 { 922 dnode_t *dn; 923 zbookmark_phys_t zb; 924 arc_flags_t aflags = ARC_FLAG_NOWAIT; 925 926 DB_DNODE_ENTER(db); 927 dn = DB_DNODE(db); 928 ASSERT(!refcount_is_zero(&db->db_holds)); 929 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 930 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 931 ASSERT(MUTEX_HELD(&db->db_mtx)); 932 ASSERT(db->db_state == DB_UNCACHED); 933 ASSERT(db->db_buf == NULL); 934 935 if (db->db_blkid == DMU_BONUS_BLKID) { 936 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 937 938 ASSERT3U(bonuslen, <=, db->db.db_size); 939 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 940 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 941 if (bonuslen < DN_MAX_BONUSLEN) 942 bzero(db->db.db_data, DN_MAX_BONUSLEN); 943 if (bonuslen) 944 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 945 DB_DNODE_EXIT(db); 946 db->db_state = DB_CACHED; 947 mutex_exit(&db->db_mtx); 948 return; 949 } 950 951 /* 952 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 953 * processes the delete record and clears the bp while we are waiting 954 * for the dn_mtx (resulting in a "no" from block_freed). 955 */ 956 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 957 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 958 BP_IS_HOLE(db->db_blkptr)))) { 959 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 960 961 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, 962 db->db.db_size, db, type)); 963 bzero(db->db.db_data, db->db.db_size); 964 965 if (db->db_blkptr != NULL && db->db_level > 0 && 966 BP_IS_HOLE(db->db_blkptr) && 967 db->db_blkptr->blk_birth != 0) { 968 blkptr_t *bps = db->db.db_data; 969 for (int i = 0; i < ((1 << 970 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 971 i++) { 972 blkptr_t *bp = &bps[i]; 973 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 974 1 << dn->dn_indblkshift); 975 BP_SET_LSIZE(bp, 976 BP_GET_LEVEL(db->db_blkptr) == 1 ? 977 dn->dn_datablksz : 978 BP_GET_LSIZE(db->db_blkptr)); 979 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 980 BP_SET_LEVEL(bp, 981 BP_GET_LEVEL(db->db_blkptr) - 1); 982 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 983 } 984 } 985 DB_DNODE_EXIT(db); 986 db->db_state = DB_CACHED; 987 mutex_exit(&db->db_mtx); 988 return; 989 } 990 991 DB_DNODE_EXIT(db); 992 993 db->db_state = DB_READ; 994 mutex_exit(&db->db_mtx); 995 996 if (DBUF_IS_L2CACHEABLE(db)) 997 aflags |= ARC_FLAG_L2CACHE; 998 999 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 1000 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 1001 db->db.db_object, db->db_level, db->db_blkid); 1002 1003 dbuf_add_ref(db, NULL); 1004 1005 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 1006 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 1007 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 1008 &aflags, &zb); 1009 } 1010 1011 int 1012 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1013 { 1014 int err = 0; 1015 boolean_t havepzio = (zio != NULL); 1016 boolean_t prefetch; 1017 dnode_t *dn; 1018 1019 /* 1020 * We don't have to hold the mutex to check db_state because it 1021 * can't be freed while we have a hold on the buffer. 1022 */ 1023 ASSERT(!refcount_is_zero(&db->db_holds)); 1024 1025 if (db->db_state == DB_NOFILL) 1026 return (SET_ERROR(EIO)); 1027 1028 DB_DNODE_ENTER(db); 1029 dn = DB_DNODE(db); 1030 if ((flags & DB_RF_HAVESTRUCT) == 0) 1031 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1032 1033 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1034 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1035 DBUF_IS_CACHEABLE(db); 1036 1037 mutex_enter(&db->db_mtx); 1038 if (db->db_state == DB_CACHED) { 1039 mutex_exit(&db->db_mtx); 1040 if (prefetch) 1041 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1042 if ((flags & DB_RF_HAVESTRUCT) == 0) 1043 rw_exit(&dn->dn_struct_rwlock); 1044 DB_DNODE_EXIT(db); 1045 } else if (db->db_state == DB_UNCACHED) { 1046 spa_t *spa = dn->dn_objset->os_spa; 1047 1048 if (zio == NULL) 1049 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1050 dbuf_read_impl(db, zio, flags); 1051 1052 /* dbuf_read_impl has dropped db_mtx for us */ 1053 1054 if (prefetch) 1055 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1056 1057 if ((flags & DB_RF_HAVESTRUCT) == 0) 1058 rw_exit(&dn->dn_struct_rwlock); 1059 DB_DNODE_EXIT(db); 1060 1061 if (!havepzio) 1062 err = zio_wait(zio); 1063 } else { 1064 /* 1065 * Another reader came in while the dbuf was in flight 1066 * between UNCACHED and CACHED. Either a writer will finish 1067 * writing the buffer (sending the dbuf to CACHED) or the 1068 * first reader's request will reach the read_done callback 1069 * and send the dbuf to CACHED. Otherwise, a failure 1070 * occurred and the dbuf went to UNCACHED. 1071 */ 1072 mutex_exit(&db->db_mtx); 1073 if (prefetch) 1074 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1075 if ((flags & DB_RF_HAVESTRUCT) == 0) 1076 rw_exit(&dn->dn_struct_rwlock); 1077 DB_DNODE_EXIT(db); 1078 1079 /* Skip the wait per the caller's request. */ 1080 mutex_enter(&db->db_mtx); 1081 if ((flags & DB_RF_NEVERWAIT) == 0) { 1082 while (db->db_state == DB_READ || 1083 db->db_state == DB_FILL) { 1084 ASSERT(db->db_state == DB_READ || 1085 (flags & DB_RF_HAVESTRUCT) == 0); 1086 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1087 db, zio_t *, zio); 1088 cv_wait(&db->db_changed, &db->db_mtx); 1089 } 1090 if (db->db_state == DB_UNCACHED) 1091 err = SET_ERROR(EIO); 1092 } 1093 mutex_exit(&db->db_mtx); 1094 } 1095 1096 ASSERT(err || havepzio || db->db_state == DB_CACHED); 1097 return (err); 1098 } 1099 1100 static void 1101 dbuf_noread(dmu_buf_impl_t *db) 1102 { 1103 ASSERT(!refcount_is_zero(&db->db_holds)); 1104 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1105 mutex_enter(&db->db_mtx); 1106 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1107 cv_wait(&db->db_changed, &db->db_mtx); 1108 if (db->db_state == DB_UNCACHED) { 1109 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1110 spa_t *spa = db->db_objset->os_spa; 1111 1112 ASSERT(db->db_buf == NULL); 1113 ASSERT(db->db.db_data == NULL); 1114 dbuf_set_data(db, arc_alloc_buf(spa, db->db.db_size, db, type)); 1115 db->db_state = DB_FILL; 1116 } else if (db->db_state == DB_NOFILL) { 1117 dbuf_clear_data(db); 1118 } else { 1119 ASSERT3U(db->db_state, ==, DB_CACHED); 1120 } 1121 mutex_exit(&db->db_mtx); 1122 } 1123 1124 /* 1125 * This is our just-in-time copy function. It makes a copy of 1126 * buffers, that have been modified in a previous transaction 1127 * group, before we modify them in the current active group. 1128 * 1129 * This function is used in two places: when we are dirtying a 1130 * buffer for the first time in a txg, and when we are freeing 1131 * a range in a dnode that includes this buffer. 1132 * 1133 * Note that when we are called from dbuf_free_range() we do 1134 * not put a hold on the buffer, we just traverse the active 1135 * dbuf list for the dnode. 1136 */ 1137 static void 1138 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1139 { 1140 dbuf_dirty_record_t *dr = db->db_last_dirty; 1141 1142 ASSERT(MUTEX_HELD(&db->db_mtx)); 1143 ASSERT(db->db.db_data != NULL); 1144 ASSERT(db->db_level == 0); 1145 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1146 1147 if (dr == NULL || 1148 (dr->dt.dl.dr_data != 1149 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1150 return; 1151 1152 /* 1153 * If the last dirty record for this dbuf has not yet synced 1154 * and its referencing the dbuf data, either: 1155 * reset the reference to point to a new copy, 1156 * or (if there a no active holders) 1157 * just null out the current db_data pointer. 1158 */ 1159 ASSERT(dr->dr_txg >= txg - 2); 1160 if (db->db_blkid == DMU_BONUS_BLKID) { 1161 /* Note that the data bufs here are zio_bufs */ 1162 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 1163 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1164 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 1165 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1166 int size = db->db.db_size; 1167 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1168 spa_t *spa = db->db_objset->os_spa; 1169 1170 dr->dt.dl.dr_data = arc_alloc_buf(spa, size, db, type); 1171 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1172 } else { 1173 db->db_buf = NULL; 1174 dbuf_clear_data(db); 1175 } 1176 } 1177 1178 void 1179 dbuf_unoverride(dbuf_dirty_record_t *dr) 1180 { 1181 dmu_buf_impl_t *db = dr->dr_dbuf; 1182 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1183 uint64_t txg = dr->dr_txg; 1184 1185 ASSERT(MUTEX_HELD(&db->db_mtx)); 1186 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1187 ASSERT(db->db_level == 0); 1188 1189 if (db->db_blkid == DMU_BONUS_BLKID || 1190 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1191 return; 1192 1193 ASSERT(db->db_data_pending != dr); 1194 1195 /* free this block */ 1196 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1197 zio_free(db->db_objset->os_spa, txg, bp); 1198 1199 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1200 dr->dt.dl.dr_nopwrite = B_FALSE; 1201 1202 /* 1203 * Release the already-written buffer, so we leave it in 1204 * a consistent dirty state. Note that all callers are 1205 * modifying the buffer, so they will immediately do 1206 * another (redundant) arc_release(). Therefore, leave 1207 * the buf thawed to save the effort of freezing & 1208 * immediately re-thawing it. 1209 */ 1210 arc_release(dr->dt.dl.dr_data, db); 1211 } 1212 1213 /* 1214 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1215 * data blocks in the free range, so that any future readers will find 1216 * empty blocks. 1217 */ 1218 void 1219 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1220 dmu_tx_t *tx) 1221 { 1222 dmu_buf_impl_t db_search; 1223 dmu_buf_impl_t *db, *db_next; 1224 uint64_t txg = tx->tx_txg; 1225 avl_index_t where; 1226 1227 if (end_blkid > dn->dn_maxblkid && 1228 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1229 end_blkid = dn->dn_maxblkid; 1230 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1231 1232 db_search.db_level = 0; 1233 db_search.db_blkid = start_blkid; 1234 db_search.db_state = DB_SEARCH; 1235 1236 mutex_enter(&dn->dn_dbufs_mtx); 1237 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1238 ASSERT3P(db, ==, NULL); 1239 1240 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1241 1242 for (; db != NULL; db = db_next) { 1243 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1244 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1245 1246 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1247 break; 1248 } 1249 ASSERT3U(db->db_blkid, >=, start_blkid); 1250 1251 /* found a level 0 buffer in the range */ 1252 mutex_enter(&db->db_mtx); 1253 if (dbuf_undirty(db, tx)) { 1254 /* mutex has been dropped and dbuf destroyed */ 1255 continue; 1256 } 1257 1258 if (db->db_state == DB_UNCACHED || 1259 db->db_state == DB_NOFILL || 1260 db->db_state == DB_EVICTING) { 1261 ASSERT(db->db.db_data == NULL); 1262 mutex_exit(&db->db_mtx); 1263 continue; 1264 } 1265 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1266 /* will be handled in dbuf_read_done or dbuf_rele */ 1267 db->db_freed_in_flight = TRUE; 1268 mutex_exit(&db->db_mtx); 1269 continue; 1270 } 1271 if (refcount_count(&db->db_holds) == 0) { 1272 ASSERT(db->db_buf); 1273 dbuf_destroy(db); 1274 continue; 1275 } 1276 /* The dbuf is referenced */ 1277 1278 if (db->db_last_dirty != NULL) { 1279 dbuf_dirty_record_t *dr = db->db_last_dirty; 1280 1281 if (dr->dr_txg == txg) { 1282 /* 1283 * This buffer is "in-use", re-adjust the file 1284 * size to reflect that this buffer may 1285 * contain new data when we sync. 1286 */ 1287 if (db->db_blkid != DMU_SPILL_BLKID && 1288 db->db_blkid > dn->dn_maxblkid) 1289 dn->dn_maxblkid = db->db_blkid; 1290 dbuf_unoverride(dr); 1291 } else { 1292 /* 1293 * This dbuf is not dirty in the open context. 1294 * Either uncache it (if its not referenced in 1295 * the open context) or reset its contents to 1296 * empty. 1297 */ 1298 dbuf_fix_old_data(db, txg); 1299 } 1300 } 1301 /* clear the contents if its cached */ 1302 if (db->db_state == DB_CACHED) { 1303 ASSERT(db->db.db_data != NULL); 1304 arc_release(db->db_buf, db); 1305 bzero(db->db.db_data, db->db.db_size); 1306 arc_buf_freeze(db->db_buf); 1307 } 1308 1309 mutex_exit(&db->db_mtx); 1310 } 1311 mutex_exit(&dn->dn_dbufs_mtx); 1312 } 1313 1314 static int 1315 dbuf_block_freeable(dmu_buf_impl_t *db) 1316 { 1317 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 1318 uint64_t birth_txg = 0; 1319 1320 /* 1321 * We don't need any locking to protect db_blkptr: 1322 * If it's syncing, then db_last_dirty will be set 1323 * so we'll ignore db_blkptr. 1324 * 1325 * This logic ensures that only block births for 1326 * filled blocks are considered. 1327 */ 1328 ASSERT(MUTEX_HELD(&db->db_mtx)); 1329 if (db->db_last_dirty && (db->db_blkptr == NULL || 1330 !BP_IS_HOLE(db->db_blkptr))) { 1331 birth_txg = db->db_last_dirty->dr_txg; 1332 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1333 birth_txg = db->db_blkptr->blk_birth; 1334 } 1335 1336 /* 1337 * If this block don't exist or is in a snapshot, it can't be freed. 1338 * Don't pass the bp to dsl_dataset_block_freeable() since we 1339 * are holding the db_mtx lock and might deadlock if we are 1340 * prefetching a dedup-ed block. 1341 */ 1342 if (birth_txg != 0) 1343 return (ds == NULL || 1344 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 1345 else 1346 return (B_FALSE); 1347 } 1348 1349 void 1350 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1351 { 1352 arc_buf_t *buf, *obuf; 1353 int osize = db->db.db_size; 1354 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1355 dnode_t *dn; 1356 1357 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1358 1359 DB_DNODE_ENTER(db); 1360 dn = DB_DNODE(db); 1361 1362 /* XXX does *this* func really need the lock? */ 1363 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1364 1365 /* 1366 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1367 * is OK, because there can be no other references to the db 1368 * when we are changing its size, so no concurrent DB_FILL can 1369 * be happening. 1370 */ 1371 /* 1372 * XXX we should be doing a dbuf_read, checking the return 1373 * value and returning that up to our callers 1374 */ 1375 dmu_buf_will_dirty(&db->db, tx); 1376 1377 /* create the data buffer for the new block */ 1378 buf = arc_alloc_buf(dn->dn_objset->os_spa, size, db, type); 1379 1380 /* copy old block data to the new block */ 1381 obuf = db->db_buf; 1382 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1383 /* zero the remainder */ 1384 if (size > osize) 1385 bzero((uint8_t *)buf->b_data + osize, size - osize); 1386 1387 mutex_enter(&db->db_mtx); 1388 dbuf_set_data(db, buf); 1389 arc_buf_destroy(obuf, db); 1390 db->db.db_size = size; 1391 1392 if (db->db_level == 0) { 1393 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1394 db->db_last_dirty->dt.dl.dr_data = buf; 1395 } 1396 mutex_exit(&db->db_mtx); 1397 1398 dnode_willuse_space(dn, size-osize, tx); 1399 DB_DNODE_EXIT(db); 1400 } 1401 1402 void 1403 dbuf_release_bp(dmu_buf_impl_t *db) 1404 { 1405 objset_t *os = db->db_objset; 1406 1407 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1408 ASSERT(arc_released(os->os_phys_buf) || 1409 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1410 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1411 1412 (void) arc_release(db->db_buf, db); 1413 } 1414 1415 /* 1416 * We already have a dirty record for this TXG, and we are being 1417 * dirtied again. 1418 */ 1419 static void 1420 dbuf_redirty(dbuf_dirty_record_t *dr) 1421 { 1422 dmu_buf_impl_t *db = dr->dr_dbuf; 1423 1424 ASSERT(MUTEX_HELD(&db->db_mtx)); 1425 1426 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1427 /* 1428 * If this buffer has already been written out, 1429 * we now need to reset its state. 1430 */ 1431 dbuf_unoverride(dr); 1432 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1433 db->db_state != DB_NOFILL) { 1434 /* Already released on initial dirty, so just thaw. */ 1435 ASSERT(arc_released(db->db_buf)); 1436 arc_buf_thaw(db->db_buf); 1437 } 1438 } 1439 } 1440 1441 dbuf_dirty_record_t * 1442 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1443 { 1444 dnode_t *dn; 1445 objset_t *os; 1446 dbuf_dirty_record_t **drp, *dr; 1447 int drop_struct_lock = FALSE; 1448 boolean_t do_free_accounting = B_FALSE; 1449 int txgoff = tx->tx_txg & TXG_MASK; 1450 1451 ASSERT(tx->tx_txg != 0); 1452 ASSERT(!refcount_is_zero(&db->db_holds)); 1453 DMU_TX_DIRTY_BUF(tx, db); 1454 1455 DB_DNODE_ENTER(db); 1456 dn = DB_DNODE(db); 1457 /* 1458 * Shouldn't dirty a regular buffer in syncing context. Private 1459 * objects may be dirtied in syncing context, but only if they 1460 * were already pre-dirtied in open context. 1461 */ 1462 #ifdef DEBUG 1463 if (dn->dn_objset->os_dsl_dataset != NULL) { 1464 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1465 RW_READER, FTAG); 1466 } 1467 ASSERT(!dmu_tx_is_syncing(tx) || 1468 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1469 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1470 dn->dn_objset->os_dsl_dataset == NULL); 1471 if (dn->dn_objset->os_dsl_dataset != NULL) 1472 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 1473 #endif 1474 /* 1475 * We make this assert for private objects as well, but after we 1476 * check if we're already dirty. They are allowed to re-dirty 1477 * in syncing context. 1478 */ 1479 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1480 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1481 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1482 1483 mutex_enter(&db->db_mtx); 1484 /* 1485 * XXX make this true for indirects too? The problem is that 1486 * transactions created with dmu_tx_create_assigned() from 1487 * syncing context don't bother holding ahead. 1488 */ 1489 ASSERT(db->db_level != 0 || 1490 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1491 db->db_state == DB_NOFILL); 1492 1493 mutex_enter(&dn->dn_mtx); 1494 /* 1495 * Don't set dirtyctx to SYNC if we're just modifying this as we 1496 * initialize the objset. 1497 */ 1498 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 1499 if (dn->dn_objset->os_dsl_dataset != NULL) { 1500 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1501 RW_READER, FTAG); 1502 } 1503 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1504 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? 1505 DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1506 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1507 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1508 } 1509 if (dn->dn_objset->os_dsl_dataset != NULL) { 1510 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1511 FTAG); 1512 } 1513 } 1514 mutex_exit(&dn->dn_mtx); 1515 1516 if (db->db_blkid == DMU_SPILL_BLKID) 1517 dn->dn_have_spill = B_TRUE; 1518 1519 /* 1520 * If this buffer is already dirty, we're done. 1521 */ 1522 drp = &db->db_last_dirty; 1523 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1524 db->db.db_object == DMU_META_DNODE_OBJECT); 1525 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1526 drp = &dr->dr_next; 1527 if (dr && dr->dr_txg == tx->tx_txg) { 1528 DB_DNODE_EXIT(db); 1529 1530 dbuf_redirty(dr); 1531 mutex_exit(&db->db_mtx); 1532 return (dr); 1533 } 1534 1535 /* 1536 * Only valid if not already dirty. 1537 */ 1538 ASSERT(dn->dn_object == 0 || 1539 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1540 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1541 1542 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1543 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1544 dn->dn_phys->dn_nlevels > db->db_level || 1545 dn->dn_next_nlevels[txgoff] > db->db_level || 1546 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1547 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1548 1549 /* 1550 * We should only be dirtying in syncing context if it's the 1551 * mos or we're initializing the os or it's a special object. 1552 * However, we are allowed to dirty in syncing context provided 1553 * we already dirtied it in open context. Hence we must make 1554 * this assertion only if we're not already dirty. 1555 */ 1556 os = dn->dn_objset; 1557 #ifdef DEBUG 1558 if (dn->dn_objset->os_dsl_dataset != NULL) 1559 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 1560 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1561 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1562 if (dn->dn_objset->os_dsl_dataset != NULL) 1563 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 1564 #endif 1565 ASSERT(db->db.db_size != 0); 1566 1567 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1568 1569 if (db->db_blkid != DMU_BONUS_BLKID) { 1570 /* 1571 * Update the accounting. 1572 * Note: we delay "free accounting" until after we drop 1573 * the db_mtx. This keeps us from grabbing other locks 1574 * (and possibly deadlocking) in bp_get_dsize() while 1575 * also holding the db_mtx. 1576 */ 1577 dnode_willuse_space(dn, db->db.db_size, tx); 1578 do_free_accounting = dbuf_block_freeable(db); 1579 } 1580 1581 /* 1582 * If this buffer is dirty in an old transaction group we need 1583 * to make a copy of it so that the changes we make in this 1584 * transaction group won't leak out when we sync the older txg. 1585 */ 1586 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1587 if (db->db_level == 0) { 1588 void *data_old = db->db_buf; 1589 1590 if (db->db_state != DB_NOFILL) { 1591 if (db->db_blkid == DMU_BONUS_BLKID) { 1592 dbuf_fix_old_data(db, tx->tx_txg); 1593 data_old = db->db.db_data; 1594 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1595 /* 1596 * Release the data buffer from the cache so 1597 * that we can modify it without impacting 1598 * possible other users of this cached data 1599 * block. Note that indirect blocks and 1600 * private objects are not released until the 1601 * syncing state (since they are only modified 1602 * then). 1603 */ 1604 arc_release(db->db_buf, db); 1605 dbuf_fix_old_data(db, tx->tx_txg); 1606 data_old = db->db_buf; 1607 } 1608 ASSERT(data_old != NULL); 1609 } 1610 dr->dt.dl.dr_data = data_old; 1611 } else { 1612 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1613 list_create(&dr->dt.di.dr_children, 1614 sizeof (dbuf_dirty_record_t), 1615 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1616 } 1617 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1618 dr->dr_accounted = db->db.db_size; 1619 dr->dr_dbuf = db; 1620 dr->dr_txg = tx->tx_txg; 1621 dr->dr_next = *drp; 1622 *drp = dr; 1623 1624 /* 1625 * We could have been freed_in_flight between the dbuf_noread 1626 * and dbuf_dirty. We win, as though the dbuf_noread() had 1627 * happened after the free. 1628 */ 1629 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1630 db->db_blkid != DMU_SPILL_BLKID) { 1631 mutex_enter(&dn->dn_mtx); 1632 if (dn->dn_free_ranges[txgoff] != NULL) { 1633 range_tree_clear(dn->dn_free_ranges[txgoff], 1634 db->db_blkid, 1); 1635 } 1636 mutex_exit(&dn->dn_mtx); 1637 db->db_freed_in_flight = FALSE; 1638 } 1639 1640 /* 1641 * This buffer is now part of this txg 1642 */ 1643 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1644 db->db_dirtycnt += 1; 1645 ASSERT3U(db->db_dirtycnt, <=, 3); 1646 1647 mutex_exit(&db->db_mtx); 1648 1649 if (db->db_blkid == DMU_BONUS_BLKID || 1650 db->db_blkid == DMU_SPILL_BLKID) { 1651 mutex_enter(&dn->dn_mtx); 1652 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1653 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1654 mutex_exit(&dn->dn_mtx); 1655 dnode_setdirty(dn, tx); 1656 DB_DNODE_EXIT(db); 1657 return (dr); 1658 } 1659 1660 /* 1661 * The dn_struct_rwlock prevents db_blkptr from changing 1662 * due to a write from syncing context completing 1663 * while we are running, so we want to acquire it before 1664 * looking at db_blkptr. 1665 */ 1666 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1667 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1668 drop_struct_lock = TRUE; 1669 } 1670 1671 if (do_free_accounting) { 1672 blkptr_t *bp = db->db_blkptr; 1673 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1674 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1675 /* 1676 * This is only a guess -- if the dbuf is dirty 1677 * in a previous txg, we don't know how much 1678 * space it will use on disk yet. We should 1679 * really have the struct_rwlock to access 1680 * db_blkptr, but since this is just a guess, 1681 * it's OK if we get an odd answer. 1682 */ 1683 ddt_prefetch(os->os_spa, bp); 1684 dnode_willuse_space(dn, -willfree, tx); 1685 } 1686 1687 if (db->db_level == 0) { 1688 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1689 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1690 } 1691 1692 if (db->db_level+1 < dn->dn_nlevels) { 1693 dmu_buf_impl_t *parent = db->db_parent; 1694 dbuf_dirty_record_t *di; 1695 int parent_held = FALSE; 1696 1697 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1698 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1699 1700 parent = dbuf_hold_level(dn, db->db_level+1, 1701 db->db_blkid >> epbs, FTAG); 1702 ASSERT(parent != NULL); 1703 parent_held = TRUE; 1704 } 1705 if (drop_struct_lock) 1706 rw_exit(&dn->dn_struct_rwlock); 1707 ASSERT3U(db->db_level+1, ==, parent->db_level); 1708 di = dbuf_dirty(parent, tx); 1709 if (parent_held) 1710 dbuf_rele(parent, FTAG); 1711 1712 mutex_enter(&db->db_mtx); 1713 /* 1714 * Since we've dropped the mutex, it's possible that 1715 * dbuf_undirty() might have changed this out from under us. 1716 */ 1717 if (db->db_last_dirty == dr || 1718 dn->dn_object == DMU_META_DNODE_OBJECT) { 1719 mutex_enter(&di->dt.di.dr_mtx); 1720 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1721 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1722 list_insert_tail(&di->dt.di.dr_children, dr); 1723 mutex_exit(&di->dt.di.dr_mtx); 1724 dr->dr_parent = di; 1725 } 1726 mutex_exit(&db->db_mtx); 1727 } else { 1728 ASSERT(db->db_level+1 == dn->dn_nlevels); 1729 ASSERT(db->db_blkid < dn->dn_nblkptr); 1730 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1731 mutex_enter(&dn->dn_mtx); 1732 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1733 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1734 mutex_exit(&dn->dn_mtx); 1735 if (drop_struct_lock) 1736 rw_exit(&dn->dn_struct_rwlock); 1737 } 1738 1739 dnode_setdirty(dn, tx); 1740 DB_DNODE_EXIT(db); 1741 return (dr); 1742 } 1743 1744 /* 1745 * Undirty a buffer in the transaction group referenced by the given 1746 * transaction. Return whether this evicted the dbuf. 1747 */ 1748 static boolean_t 1749 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1750 { 1751 dnode_t *dn; 1752 uint64_t txg = tx->tx_txg; 1753 dbuf_dirty_record_t *dr, **drp; 1754 1755 ASSERT(txg != 0); 1756 1757 /* 1758 * Due to our use of dn_nlevels below, this can only be called 1759 * in open context, unless we are operating on the MOS. 1760 * From syncing context, dn_nlevels may be different from the 1761 * dn_nlevels used when dbuf was dirtied. 1762 */ 1763 ASSERT(db->db_objset == 1764 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1765 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1766 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1767 ASSERT0(db->db_level); 1768 ASSERT(MUTEX_HELD(&db->db_mtx)); 1769 1770 /* 1771 * If this buffer is not dirty, we're done. 1772 */ 1773 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1774 if (dr->dr_txg <= txg) 1775 break; 1776 if (dr == NULL || dr->dr_txg < txg) 1777 return (B_FALSE); 1778 ASSERT(dr->dr_txg == txg); 1779 ASSERT(dr->dr_dbuf == db); 1780 1781 DB_DNODE_ENTER(db); 1782 dn = DB_DNODE(db); 1783 1784 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1785 1786 ASSERT(db->db.db_size != 0); 1787 1788 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1789 dr->dr_accounted, txg); 1790 1791 *drp = dr->dr_next; 1792 1793 /* 1794 * Note that there are three places in dbuf_dirty() 1795 * where this dirty record may be put on a list. 1796 * Make sure to do a list_remove corresponding to 1797 * every one of those list_insert calls. 1798 */ 1799 if (dr->dr_parent) { 1800 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1801 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1802 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1803 } else if (db->db_blkid == DMU_SPILL_BLKID || 1804 db->db_level + 1 == dn->dn_nlevels) { 1805 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1806 mutex_enter(&dn->dn_mtx); 1807 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1808 mutex_exit(&dn->dn_mtx); 1809 } 1810 DB_DNODE_EXIT(db); 1811 1812 if (db->db_state != DB_NOFILL) { 1813 dbuf_unoverride(dr); 1814 1815 ASSERT(db->db_buf != NULL); 1816 ASSERT(dr->dt.dl.dr_data != NULL); 1817 if (dr->dt.dl.dr_data != db->db_buf) 1818 arc_buf_destroy(dr->dt.dl.dr_data, db); 1819 } 1820 1821 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1822 1823 ASSERT(db->db_dirtycnt > 0); 1824 db->db_dirtycnt -= 1; 1825 1826 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1827 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 1828 dbuf_destroy(db); 1829 return (B_TRUE); 1830 } 1831 1832 return (B_FALSE); 1833 } 1834 1835 void 1836 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1837 { 1838 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1839 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1840 1841 ASSERT(tx->tx_txg != 0); 1842 ASSERT(!refcount_is_zero(&db->db_holds)); 1843 1844 /* 1845 * Quick check for dirtyness. For already dirty blocks, this 1846 * reduces runtime of this function by >90%, and overall performance 1847 * by 50% for some workloads (e.g. file deletion with indirect blocks 1848 * cached). 1849 */ 1850 mutex_enter(&db->db_mtx); 1851 dbuf_dirty_record_t *dr; 1852 for (dr = db->db_last_dirty; 1853 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 1854 /* 1855 * It's possible that it is already dirty but not cached, 1856 * because there are some calls to dbuf_dirty() that don't 1857 * go through dmu_buf_will_dirty(). 1858 */ 1859 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 1860 /* This dbuf is already dirty and cached. */ 1861 dbuf_redirty(dr); 1862 mutex_exit(&db->db_mtx); 1863 return; 1864 } 1865 } 1866 mutex_exit(&db->db_mtx); 1867 1868 DB_DNODE_ENTER(db); 1869 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1870 rf |= DB_RF_HAVESTRUCT; 1871 DB_DNODE_EXIT(db); 1872 (void) dbuf_read(db, NULL, rf); 1873 (void) dbuf_dirty(db, tx); 1874 } 1875 1876 void 1877 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1878 { 1879 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1880 1881 db->db_state = DB_NOFILL; 1882 1883 dmu_buf_will_fill(db_fake, tx); 1884 } 1885 1886 void 1887 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1888 { 1889 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1890 1891 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1892 ASSERT(tx->tx_txg != 0); 1893 ASSERT(db->db_level == 0); 1894 ASSERT(!refcount_is_zero(&db->db_holds)); 1895 1896 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1897 dmu_tx_private_ok(tx)); 1898 1899 dbuf_noread(db); 1900 (void) dbuf_dirty(db, tx); 1901 } 1902 1903 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1904 /* ARGSUSED */ 1905 void 1906 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1907 { 1908 mutex_enter(&db->db_mtx); 1909 DBUF_VERIFY(db); 1910 1911 if (db->db_state == DB_FILL) { 1912 if (db->db_level == 0 && db->db_freed_in_flight) { 1913 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1914 /* we were freed while filling */ 1915 /* XXX dbuf_undirty? */ 1916 bzero(db->db.db_data, db->db.db_size); 1917 db->db_freed_in_flight = FALSE; 1918 } 1919 db->db_state = DB_CACHED; 1920 cv_broadcast(&db->db_changed); 1921 } 1922 mutex_exit(&db->db_mtx); 1923 } 1924 1925 void 1926 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1927 bp_embedded_type_t etype, enum zio_compress comp, 1928 int uncompressed_size, int compressed_size, int byteorder, 1929 dmu_tx_t *tx) 1930 { 1931 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1932 struct dirty_leaf *dl; 1933 dmu_object_type_t type; 1934 1935 if (etype == BP_EMBEDDED_TYPE_DATA) { 1936 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 1937 SPA_FEATURE_EMBEDDED_DATA)); 1938 } 1939 1940 DB_DNODE_ENTER(db); 1941 type = DB_DNODE(db)->dn_type; 1942 DB_DNODE_EXIT(db); 1943 1944 ASSERT0(db->db_level); 1945 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1946 1947 dmu_buf_will_not_fill(dbuf, tx); 1948 1949 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1950 dl = &db->db_last_dirty->dt.dl; 1951 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1952 data, comp, uncompressed_size, compressed_size); 1953 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1954 BP_SET_TYPE(&dl->dr_overridden_by, type); 1955 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1956 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1957 1958 dl->dr_override_state = DR_OVERRIDDEN; 1959 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1960 } 1961 1962 /* 1963 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1964 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1965 */ 1966 void 1967 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1968 { 1969 ASSERT(!refcount_is_zero(&db->db_holds)); 1970 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1971 ASSERT(db->db_level == 0); 1972 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); 1973 ASSERT(buf != NULL); 1974 ASSERT(arc_buf_size(buf) == db->db.db_size); 1975 ASSERT(tx->tx_txg != 0); 1976 1977 arc_return_buf(buf, db); 1978 ASSERT(arc_released(buf)); 1979 1980 mutex_enter(&db->db_mtx); 1981 1982 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1983 cv_wait(&db->db_changed, &db->db_mtx); 1984 1985 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1986 1987 if (db->db_state == DB_CACHED && 1988 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1989 mutex_exit(&db->db_mtx); 1990 (void) dbuf_dirty(db, tx); 1991 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1992 arc_buf_destroy(buf, db); 1993 xuio_stat_wbuf_copied(); 1994 return; 1995 } 1996 1997 xuio_stat_wbuf_nocopy(); 1998 if (db->db_state == DB_CACHED) { 1999 dbuf_dirty_record_t *dr = db->db_last_dirty; 2000 2001 ASSERT(db->db_buf != NULL); 2002 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2003 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2004 if (!arc_released(db->db_buf)) { 2005 ASSERT(dr->dt.dl.dr_override_state == 2006 DR_OVERRIDDEN); 2007 arc_release(db->db_buf, db); 2008 } 2009 dr->dt.dl.dr_data = buf; 2010 arc_buf_destroy(db->db_buf, db); 2011 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2012 arc_release(db->db_buf, db); 2013 arc_buf_destroy(db->db_buf, db); 2014 } 2015 db->db_buf = NULL; 2016 } 2017 ASSERT(db->db_buf == NULL); 2018 dbuf_set_data(db, buf); 2019 db->db_state = DB_FILL; 2020 mutex_exit(&db->db_mtx); 2021 (void) dbuf_dirty(db, tx); 2022 dmu_buf_fill_done(&db->db, tx); 2023 } 2024 2025 void 2026 dbuf_destroy(dmu_buf_impl_t *db) 2027 { 2028 dnode_t *dn; 2029 dmu_buf_impl_t *parent = db->db_parent; 2030 dmu_buf_impl_t *dndb; 2031 2032 ASSERT(MUTEX_HELD(&db->db_mtx)); 2033 ASSERT(refcount_is_zero(&db->db_holds)); 2034 2035 if (db->db_buf != NULL) { 2036 arc_buf_destroy(db->db_buf, db); 2037 db->db_buf = NULL; 2038 } 2039 2040 if (db->db_blkid == DMU_BONUS_BLKID) { 2041 ASSERT(db->db.db_data != NULL); 2042 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 2043 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2044 db->db_state = DB_UNCACHED; 2045 } 2046 2047 dbuf_clear_data(db); 2048 2049 if (multilist_link_active(&db->db_cache_link)) { 2050 multilist_remove(&dbuf_cache, db); 2051 (void) refcount_remove_many(&dbuf_cache_size, 2052 db->db.db_size, db); 2053 } 2054 2055 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2056 ASSERT(db->db_data_pending == NULL); 2057 2058 db->db_state = DB_EVICTING; 2059 db->db_blkptr = NULL; 2060 2061 /* 2062 * Now that db_state is DB_EVICTING, nobody else can find this via 2063 * the hash table. We can now drop db_mtx, which allows us to 2064 * acquire the dn_dbufs_mtx. 2065 */ 2066 mutex_exit(&db->db_mtx); 2067 2068 DB_DNODE_ENTER(db); 2069 dn = DB_DNODE(db); 2070 dndb = dn->dn_dbuf; 2071 if (db->db_blkid != DMU_BONUS_BLKID) { 2072 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2073 if (needlock) 2074 mutex_enter(&dn->dn_dbufs_mtx); 2075 avl_remove(&dn->dn_dbufs, db); 2076 atomic_dec_32(&dn->dn_dbufs_count); 2077 membar_producer(); 2078 DB_DNODE_EXIT(db); 2079 if (needlock) 2080 mutex_exit(&dn->dn_dbufs_mtx); 2081 /* 2082 * Decrementing the dbuf count means that the hold corresponding 2083 * to the removed dbuf is no longer discounted in dnode_move(), 2084 * so the dnode cannot be moved until after we release the hold. 2085 * The membar_producer() ensures visibility of the decremented 2086 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2087 * release any lock. 2088 */ 2089 dnode_rele(dn, db); 2090 db->db_dnode_handle = NULL; 2091 2092 dbuf_hash_remove(db); 2093 } else { 2094 DB_DNODE_EXIT(db); 2095 } 2096 2097 ASSERT(refcount_is_zero(&db->db_holds)); 2098 2099 db->db_parent = NULL; 2100 2101 ASSERT(db->db_buf == NULL); 2102 ASSERT(db->db.db_data == NULL); 2103 ASSERT(db->db_hash_next == NULL); 2104 ASSERT(db->db_blkptr == NULL); 2105 ASSERT(db->db_data_pending == NULL); 2106 ASSERT(!multilist_link_active(&db->db_cache_link)); 2107 2108 kmem_cache_free(dbuf_kmem_cache, db); 2109 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2110 2111 /* 2112 * If this dbuf is referenced from an indirect dbuf, 2113 * decrement the ref count on the indirect dbuf. 2114 */ 2115 if (parent && parent != dndb) 2116 dbuf_rele(parent, db); 2117 } 2118 2119 /* 2120 * Note: While bpp will always be updated if the function returns success, 2121 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2122 * this happens when the dnode is the meta-dnode, or a userused or groupused 2123 * object. 2124 */ 2125 static int 2126 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2127 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2128 { 2129 int nlevels, epbs; 2130 2131 *parentp = NULL; 2132 *bpp = NULL; 2133 2134 ASSERT(blkid != DMU_BONUS_BLKID); 2135 2136 if (blkid == DMU_SPILL_BLKID) { 2137 mutex_enter(&dn->dn_mtx); 2138 if (dn->dn_have_spill && 2139 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2140 *bpp = &dn->dn_phys->dn_spill; 2141 else 2142 *bpp = NULL; 2143 dbuf_add_ref(dn->dn_dbuf, NULL); 2144 *parentp = dn->dn_dbuf; 2145 mutex_exit(&dn->dn_mtx); 2146 return (0); 2147 } 2148 2149 if (dn->dn_phys->dn_nlevels == 0) 2150 nlevels = 1; 2151 else 2152 nlevels = dn->dn_phys->dn_nlevels; 2153 2154 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2155 2156 ASSERT3U(level * epbs, <, 64); 2157 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2158 if (level >= nlevels || 2159 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2160 /* the buffer has no parent yet */ 2161 return (SET_ERROR(ENOENT)); 2162 } else if (level < nlevels-1) { 2163 /* this block is referenced from an indirect block */ 2164 int err = dbuf_hold_impl(dn, level+1, 2165 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2166 if (err) 2167 return (err); 2168 err = dbuf_read(*parentp, NULL, 2169 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2170 if (err) { 2171 dbuf_rele(*parentp, NULL); 2172 *parentp = NULL; 2173 return (err); 2174 } 2175 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2176 (blkid & ((1ULL << epbs) - 1)); 2177 return (0); 2178 } else { 2179 /* the block is referenced from the dnode */ 2180 ASSERT3U(level, ==, nlevels-1); 2181 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2182 blkid < dn->dn_phys->dn_nblkptr); 2183 if (dn->dn_dbuf) { 2184 dbuf_add_ref(dn->dn_dbuf, NULL); 2185 *parentp = dn->dn_dbuf; 2186 } 2187 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2188 return (0); 2189 } 2190 } 2191 2192 static dmu_buf_impl_t * 2193 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2194 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2195 { 2196 objset_t *os = dn->dn_objset; 2197 dmu_buf_impl_t *db, *odb; 2198 2199 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2200 ASSERT(dn->dn_type != DMU_OT_NONE); 2201 2202 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2203 2204 db->db_objset = os; 2205 db->db.db_object = dn->dn_object; 2206 db->db_level = level; 2207 db->db_blkid = blkid; 2208 db->db_last_dirty = NULL; 2209 db->db_dirtycnt = 0; 2210 db->db_dnode_handle = dn->dn_handle; 2211 db->db_parent = parent; 2212 db->db_blkptr = blkptr; 2213 2214 db->db_user = NULL; 2215 db->db_user_immediate_evict = FALSE; 2216 db->db_freed_in_flight = FALSE; 2217 db->db_pending_evict = FALSE; 2218 2219 if (blkid == DMU_BONUS_BLKID) { 2220 ASSERT3P(parent, ==, dn->dn_dbuf); 2221 db->db.db_size = DN_MAX_BONUSLEN - 2222 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2223 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2224 db->db.db_offset = DMU_BONUS_BLKID; 2225 db->db_state = DB_UNCACHED; 2226 /* the bonus dbuf is not placed in the hash table */ 2227 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2228 return (db); 2229 } else if (blkid == DMU_SPILL_BLKID) { 2230 db->db.db_size = (blkptr != NULL) ? 2231 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2232 db->db.db_offset = 0; 2233 } else { 2234 int blocksize = 2235 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2236 db->db.db_size = blocksize; 2237 db->db.db_offset = db->db_blkid * blocksize; 2238 } 2239 2240 /* 2241 * Hold the dn_dbufs_mtx while we get the new dbuf 2242 * in the hash table *and* added to the dbufs list. 2243 * This prevents a possible deadlock with someone 2244 * trying to look up this dbuf before its added to the 2245 * dn_dbufs list. 2246 */ 2247 mutex_enter(&dn->dn_dbufs_mtx); 2248 db->db_state = DB_EVICTING; 2249 if ((odb = dbuf_hash_insert(db)) != NULL) { 2250 /* someone else inserted it first */ 2251 kmem_cache_free(dbuf_kmem_cache, db); 2252 mutex_exit(&dn->dn_dbufs_mtx); 2253 return (odb); 2254 } 2255 avl_add(&dn->dn_dbufs, db); 2256 2257 db->db_state = DB_UNCACHED; 2258 mutex_exit(&dn->dn_dbufs_mtx); 2259 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2260 2261 if (parent && parent != dn->dn_dbuf) 2262 dbuf_add_ref(parent, db); 2263 2264 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2265 refcount_count(&dn->dn_holds) > 0); 2266 (void) refcount_add(&dn->dn_holds, db); 2267 atomic_inc_32(&dn->dn_dbufs_count); 2268 2269 dprintf_dbuf(db, "db=%p\n", db); 2270 2271 return (db); 2272 } 2273 2274 typedef struct dbuf_prefetch_arg { 2275 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2276 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2277 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2278 int dpa_curlevel; /* The current level that we're reading */ 2279 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2280 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2281 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2282 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2283 } dbuf_prefetch_arg_t; 2284 2285 /* 2286 * Actually issue the prefetch read for the block given. 2287 */ 2288 static void 2289 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2290 { 2291 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2292 return; 2293 2294 arc_flags_t aflags = 2295 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2296 2297 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2298 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2299 ASSERT(dpa->dpa_zio != NULL); 2300 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2301 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2302 &aflags, &dpa->dpa_zb); 2303 } 2304 2305 /* 2306 * Called when an indirect block above our prefetch target is read in. This 2307 * will either read in the next indirect block down the tree or issue the actual 2308 * prefetch if the next block down is our target. 2309 */ 2310 static void 2311 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) 2312 { 2313 dbuf_prefetch_arg_t *dpa = private; 2314 2315 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2316 ASSERT3S(dpa->dpa_curlevel, >, 0); 2317 2318 /* 2319 * The dpa_dnode is only valid if we are called with a NULL 2320 * zio. This indicates that the arc_read() returned without 2321 * first calling zio_read() to issue a physical read. Once 2322 * a physical read is made the dpa_dnode must be invalidated 2323 * as the locks guarding it may have been dropped. If the 2324 * dpa_dnode is still valid, then we want to add it to the dbuf 2325 * cache. To do so, we must hold the dbuf associated with the block 2326 * we just prefetched, read its contents so that we associate it 2327 * with an arc_buf_t, and then release it. 2328 */ 2329 if (zio != NULL) { 2330 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2331 if (zio->io_flags & ZIO_FLAG_RAW) { 2332 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2333 } else { 2334 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2335 } 2336 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2337 2338 dpa->dpa_dnode = NULL; 2339 } else if (dpa->dpa_dnode != NULL) { 2340 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2341 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2342 dpa->dpa_zb.zb_level)); 2343 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2344 dpa->dpa_curlevel, curblkid, FTAG); 2345 (void) dbuf_read(db, NULL, 2346 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2347 dbuf_rele(db, FTAG); 2348 } 2349 2350 dpa->dpa_curlevel--; 2351 2352 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2353 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2354 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2355 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2356 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) { 2357 kmem_free(dpa, sizeof (*dpa)); 2358 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2359 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2360 dbuf_issue_final_prefetch(dpa, bp); 2361 kmem_free(dpa, sizeof (*dpa)); 2362 } else { 2363 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2364 zbookmark_phys_t zb; 2365 2366 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2367 2368 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2369 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2370 2371 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2372 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2373 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2374 &iter_aflags, &zb); 2375 } 2376 2377 arc_buf_destroy(abuf, private); 2378 } 2379 2380 /* 2381 * Issue prefetch reads for the given block on the given level. If the indirect 2382 * blocks above that block are not in memory, we will read them in 2383 * asynchronously. As a result, this call never blocks waiting for a read to 2384 * complete. 2385 */ 2386 void 2387 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2388 arc_flags_t aflags) 2389 { 2390 blkptr_t bp; 2391 int epbs, nlevels, curlevel; 2392 uint64_t curblkid; 2393 2394 ASSERT(blkid != DMU_BONUS_BLKID); 2395 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2396 2397 if (blkid > dn->dn_maxblkid) 2398 return; 2399 2400 if (dnode_block_freed(dn, blkid)) 2401 return; 2402 2403 /* 2404 * This dnode hasn't been written to disk yet, so there's nothing to 2405 * prefetch. 2406 */ 2407 nlevels = dn->dn_phys->dn_nlevels; 2408 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2409 return; 2410 2411 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2412 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2413 return; 2414 2415 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2416 level, blkid); 2417 if (db != NULL) { 2418 mutex_exit(&db->db_mtx); 2419 /* 2420 * This dbuf already exists. It is either CACHED, or 2421 * (we assume) about to be read or filled. 2422 */ 2423 return; 2424 } 2425 2426 /* 2427 * Find the closest ancestor (indirect block) of the target block 2428 * that is present in the cache. In this indirect block, we will 2429 * find the bp that is at curlevel, curblkid. 2430 */ 2431 curlevel = level; 2432 curblkid = blkid; 2433 while (curlevel < nlevels - 1) { 2434 int parent_level = curlevel + 1; 2435 uint64_t parent_blkid = curblkid >> epbs; 2436 dmu_buf_impl_t *db; 2437 2438 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2439 FALSE, TRUE, FTAG, &db) == 0) { 2440 blkptr_t *bpp = db->db_buf->b_data; 2441 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2442 dbuf_rele(db, FTAG); 2443 break; 2444 } 2445 2446 curlevel = parent_level; 2447 curblkid = parent_blkid; 2448 } 2449 2450 if (curlevel == nlevels - 1) { 2451 /* No cached indirect blocks found. */ 2452 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2453 bp = dn->dn_phys->dn_blkptr[curblkid]; 2454 } 2455 if (BP_IS_HOLE(&bp)) 2456 return; 2457 2458 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2459 2460 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2461 ZIO_FLAG_CANFAIL); 2462 2463 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2464 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2465 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2466 dn->dn_object, level, blkid); 2467 dpa->dpa_curlevel = curlevel; 2468 dpa->dpa_prio = prio; 2469 dpa->dpa_aflags = aflags; 2470 dpa->dpa_spa = dn->dn_objset->os_spa; 2471 dpa->dpa_dnode = dn; 2472 dpa->dpa_epbs = epbs; 2473 dpa->dpa_zio = pio; 2474 2475 /* 2476 * If we have the indirect just above us, no need to do the asynchronous 2477 * prefetch chain; we'll just run the last step ourselves. If we're at 2478 * a higher level, though, we want to issue the prefetches for all the 2479 * indirect blocks asynchronously, so we can go on with whatever we were 2480 * doing. 2481 */ 2482 if (curlevel == level) { 2483 ASSERT3U(curblkid, ==, blkid); 2484 dbuf_issue_final_prefetch(dpa, &bp); 2485 kmem_free(dpa, sizeof (*dpa)); 2486 } else { 2487 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2488 zbookmark_phys_t zb; 2489 2490 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2491 dn->dn_object, curlevel, curblkid); 2492 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2493 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2494 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2495 &iter_aflags, &zb); 2496 } 2497 /* 2498 * We use pio here instead of dpa_zio since it's possible that 2499 * dpa may have already been freed. 2500 */ 2501 zio_nowait(pio); 2502 } 2503 2504 /* 2505 * Returns with db_holds incremented, and db_mtx not held. 2506 * Note: dn_struct_rwlock must be held. 2507 */ 2508 int 2509 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2510 boolean_t fail_sparse, boolean_t fail_uncached, 2511 void *tag, dmu_buf_impl_t **dbp) 2512 { 2513 dmu_buf_impl_t *db, *parent = NULL; 2514 2515 ASSERT(blkid != DMU_BONUS_BLKID); 2516 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2517 ASSERT3U(dn->dn_nlevels, >, level); 2518 2519 *dbp = NULL; 2520 top: 2521 /* dbuf_find() returns with db_mtx held */ 2522 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2523 2524 if (db == NULL) { 2525 blkptr_t *bp = NULL; 2526 int err; 2527 2528 if (fail_uncached) 2529 return (SET_ERROR(ENOENT)); 2530 2531 ASSERT3P(parent, ==, NULL); 2532 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2533 if (fail_sparse) { 2534 if (err == 0 && bp && BP_IS_HOLE(bp)) 2535 err = SET_ERROR(ENOENT); 2536 if (err) { 2537 if (parent) 2538 dbuf_rele(parent, NULL); 2539 return (err); 2540 } 2541 } 2542 if (err && err != ENOENT) 2543 return (err); 2544 db = dbuf_create(dn, level, blkid, parent, bp); 2545 } 2546 2547 if (fail_uncached && db->db_state != DB_CACHED) { 2548 mutex_exit(&db->db_mtx); 2549 return (SET_ERROR(ENOENT)); 2550 } 2551 2552 if (db->db_buf != NULL) 2553 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2554 2555 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2556 2557 /* 2558 * If this buffer is currently syncing out, and we are are 2559 * still referencing it from db_data, we need to make a copy 2560 * of it in case we decide we want to dirty it again in this txg. 2561 */ 2562 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2563 dn->dn_object != DMU_META_DNODE_OBJECT && 2564 db->db_state == DB_CACHED && db->db_data_pending) { 2565 dbuf_dirty_record_t *dr = db->db_data_pending; 2566 2567 if (dr->dt.dl.dr_data == db->db_buf) { 2568 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2569 2570 dbuf_set_data(db, 2571 arc_alloc_buf(dn->dn_objset->os_spa, 2572 db->db.db_size, db, type)); 2573 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2574 db->db.db_size); 2575 } 2576 } 2577 2578 if (multilist_link_active(&db->db_cache_link)) { 2579 ASSERT(refcount_is_zero(&db->db_holds)); 2580 multilist_remove(&dbuf_cache, db); 2581 (void) refcount_remove_many(&dbuf_cache_size, 2582 db->db.db_size, db); 2583 } 2584 (void) refcount_add(&db->db_holds, tag); 2585 DBUF_VERIFY(db); 2586 mutex_exit(&db->db_mtx); 2587 2588 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2589 if (parent) 2590 dbuf_rele(parent, NULL); 2591 2592 ASSERT3P(DB_DNODE(db), ==, dn); 2593 ASSERT3U(db->db_blkid, ==, blkid); 2594 ASSERT3U(db->db_level, ==, level); 2595 *dbp = db; 2596 2597 return (0); 2598 } 2599 2600 dmu_buf_impl_t * 2601 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2602 { 2603 return (dbuf_hold_level(dn, 0, blkid, tag)); 2604 } 2605 2606 dmu_buf_impl_t * 2607 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2608 { 2609 dmu_buf_impl_t *db; 2610 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2611 return (err ? NULL : db); 2612 } 2613 2614 void 2615 dbuf_create_bonus(dnode_t *dn) 2616 { 2617 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2618 2619 ASSERT(dn->dn_bonus == NULL); 2620 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2621 } 2622 2623 int 2624 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2625 { 2626 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2627 dnode_t *dn; 2628 2629 if (db->db_blkid != DMU_SPILL_BLKID) 2630 return (SET_ERROR(ENOTSUP)); 2631 if (blksz == 0) 2632 blksz = SPA_MINBLOCKSIZE; 2633 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2634 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2635 2636 DB_DNODE_ENTER(db); 2637 dn = DB_DNODE(db); 2638 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2639 dbuf_new_size(db, blksz, tx); 2640 rw_exit(&dn->dn_struct_rwlock); 2641 DB_DNODE_EXIT(db); 2642 2643 return (0); 2644 } 2645 2646 void 2647 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2648 { 2649 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2650 } 2651 2652 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2653 void 2654 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2655 { 2656 int64_t holds = refcount_add(&db->db_holds, tag); 2657 ASSERT3S(holds, >, 1); 2658 } 2659 2660 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2661 boolean_t 2662 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2663 void *tag) 2664 { 2665 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2666 dmu_buf_impl_t *found_db; 2667 boolean_t result = B_FALSE; 2668 2669 if (db->db_blkid == DMU_BONUS_BLKID) 2670 found_db = dbuf_find_bonus(os, obj); 2671 else 2672 found_db = dbuf_find(os, obj, 0, blkid); 2673 2674 if (found_db != NULL) { 2675 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 2676 (void) refcount_add(&db->db_holds, tag); 2677 result = B_TRUE; 2678 } 2679 mutex_exit(&db->db_mtx); 2680 } 2681 return (result); 2682 } 2683 2684 /* 2685 * If you call dbuf_rele() you had better not be referencing the dnode handle 2686 * unless you have some other direct or indirect hold on the dnode. (An indirect 2687 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2688 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2689 * dnode's parent dbuf evicting its dnode handles. 2690 */ 2691 void 2692 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2693 { 2694 mutex_enter(&db->db_mtx); 2695 dbuf_rele_and_unlock(db, tag); 2696 } 2697 2698 void 2699 dmu_buf_rele(dmu_buf_t *db, void *tag) 2700 { 2701 dbuf_rele((dmu_buf_impl_t *)db, tag); 2702 } 2703 2704 /* 2705 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2706 * db_dirtycnt and db_holds to be updated atomically. 2707 */ 2708 void 2709 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2710 { 2711 int64_t holds; 2712 2713 ASSERT(MUTEX_HELD(&db->db_mtx)); 2714 DBUF_VERIFY(db); 2715 2716 /* 2717 * Remove the reference to the dbuf before removing its hold on the 2718 * dnode so we can guarantee in dnode_move() that a referenced bonus 2719 * buffer has a corresponding dnode hold. 2720 */ 2721 holds = refcount_remove(&db->db_holds, tag); 2722 ASSERT(holds >= 0); 2723 2724 /* 2725 * We can't freeze indirects if there is a possibility that they 2726 * may be modified in the current syncing context. 2727 */ 2728 if (db->db_buf != NULL && 2729 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 2730 arc_buf_freeze(db->db_buf); 2731 } 2732 2733 if (holds == db->db_dirtycnt && 2734 db->db_level == 0 && db->db_user_immediate_evict) 2735 dbuf_evict_user(db); 2736 2737 if (holds == 0) { 2738 if (db->db_blkid == DMU_BONUS_BLKID) { 2739 dnode_t *dn; 2740 boolean_t evict_dbuf = db->db_pending_evict; 2741 2742 /* 2743 * If the dnode moves here, we cannot cross this 2744 * barrier until the move completes. 2745 */ 2746 DB_DNODE_ENTER(db); 2747 2748 dn = DB_DNODE(db); 2749 atomic_dec_32(&dn->dn_dbufs_count); 2750 2751 /* 2752 * Decrementing the dbuf count means that the bonus 2753 * buffer's dnode hold is no longer discounted in 2754 * dnode_move(). The dnode cannot move until after 2755 * the dnode_rele() below. 2756 */ 2757 DB_DNODE_EXIT(db); 2758 2759 /* 2760 * Do not reference db after its lock is dropped. 2761 * Another thread may evict it. 2762 */ 2763 mutex_exit(&db->db_mtx); 2764 2765 if (evict_dbuf) 2766 dnode_evict_bonus(dn); 2767 2768 dnode_rele(dn, db); 2769 } else if (db->db_buf == NULL) { 2770 /* 2771 * This is a special case: we never associated this 2772 * dbuf with any data allocated from the ARC. 2773 */ 2774 ASSERT(db->db_state == DB_UNCACHED || 2775 db->db_state == DB_NOFILL); 2776 dbuf_destroy(db); 2777 } else if (arc_released(db->db_buf)) { 2778 /* 2779 * This dbuf has anonymous data associated with it. 2780 */ 2781 dbuf_destroy(db); 2782 } else { 2783 boolean_t do_arc_evict = B_FALSE; 2784 blkptr_t bp; 2785 spa_t *spa = dmu_objset_spa(db->db_objset); 2786 2787 if (!DBUF_IS_CACHEABLE(db) && 2788 db->db_blkptr != NULL && 2789 !BP_IS_HOLE(db->db_blkptr) && 2790 !BP_IS_EMBEDDED(db->db_blkptr)) { 2791 do_arc_evict = B_TRUE; 2792 bp = *db->db_blkptr; 2793 } 2794 2795 if (!DBUF_IS_CACHEABLE(db) || 2796 db->db_pending_evict) { 2797 dbuf_destroy(db); 2798 } else if (!multilist_link_active(&db->db_cache_link)) { 2799 multilist_insert(&dbuf_cache, db); 2800 (void) refcount_add_many(&dbuf_cache_size, 2801 db->db.db_size, db); 2802 mutex_exit(&db->db_mtx); 2803 2804 dbuf_evict_notify(); 2805 } 2806 2807 if (do_arc_evict) 2808 arc_freed(spa, &bp); 2809 } 2810 } else { 2811 mutex_exit(&db->db_mtx); 2812 } 2813 2814 } 2815 2816 #pragma weak dmu_buf_refcount = dbuf_refcount 2817 uint64_t 2818 dbuf_refcount(dmu_buf_impl_t *db) 2819 { 2820 return (refcount_count(&db->db_holds)); 2821 } 2822 2823 void * 2824 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 2825 dmu_buf_user_t *new_user) 2826 { 2827 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2828 2829 mutex_enter(&db->db_mtx); 2830 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2831 if (db->db_user == old_user) 2832 db->db_user = new_user; 2833 else 2834 old_user = db->db_user; 2835 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2836 mutex_exit(&db->db_mtx); 2837 2838 return (old_user); 2839 } 2840 2841 void * 2842 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2843 { 2844 return (dmu_buf_replace_user(db_fake, NULL, user)); 2845 } 2846 2847 void * 2848 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2849 { 2850 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2851 2852 db->db_user_immediate_evict = TRUE; 2853 return (dmu_buf_set_user(db_fake, user)); 2854 } 2855 2856 void * 2857 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2858 { 2859 return (dmu_buf_replace_user(db_fake, user, NULL)); 2860 } 2861 2862 void * 2863 dmu_buf_get_user(dmu_buf_t *db_fake) 2864 { 2865 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2866 2867 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2868 return (db->db_user); 2869 } 2870 2871 void 2872 dmu_buf_user_evict_wait() 2873 { 2874 taskq_wait(dbu_evict_taskq); 2875 } 2876 2877 boolean_t 2878 dmu_buf_freeable(dmu_buf_t *dbuf) 2879 { 2880 boolean_t res = B_FALSE; 2881 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2882 2883 if (db->db_blkptr) 2884 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2885 db->db_blkptr, db->db_blkptr->blk_birth); 2886 2887 return (res); 2888 } 2889 2890 blkptr_t * 2891 dmu_buf_get_blkptr(dmu_buf_t *db) 2892 { 2893 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2894 return (dbi->db_blkptr); 2895 } 2896 2897 objset_t * 2898 dmu_buf_get_objset(dmu_buf_t *db) 2899 { 2900 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2901 return (dbi->db_objset); 2902 } 2903 2904 dnode_t * 2905 dmu_buf_dnode_enter(dmu_buf_t *db) 2906 { 2907 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2908 DB_DNODE_ENTER(dbi); 2909 return (DB_DNODE(dbi)); 2910 } 2911 2912 void 2913 dmu_buf_dnode_exit(dmu_buf_t *db) 2914 { 2915 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2916 DB_DNODE_EXIT(dbi); 2917 } 2918 2919 static void 2920 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2921 { 2922 /* ASSERT(dmu_tx_is_syncing(tx) */ 2923 ASSERT(MUTEX_HELD(&db->db_mtx)); 2924 2925 if (db->db_blkptr != NULL) 2926 return; 2927 2928 if (db->db_blkid == DMU_SPILL_BLKID) { 2929 db->db_blkptr = &dn->dn_phys->dn_spill; 2930 BP_ZERO(db->db_blkptr); 2931 return; 2932 } 2933 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2934 /* 2935 * This buffer was allocated at a time when there was 2936 * no available blkptrs from the dnode, or it was 2937 * inappropriate to hook it in (i.e., nlevels mis-match). 2938 */ 2939 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2940 ASSERT(db->db_parent == NULL); 2941 db->db_parent = dn->dn_dbuf; 2942 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2943 DBUF_VERIFY(db); 2944 } else { 2945 dmu_buf_impl_t *parent = db->db_parent; 2946 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2947 2948 ASSERT(dn->dn_phys->dn_nlevels > 1); 2949 if (parent == NULL) { 2950 mutex_exit(&db->db_mtx); 2951 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2952 parent = dbuf_hold_level(dn, db->db_level + 1, 2953 db->db_blkid >> epbs, db); 2954 rw_exit(&dn->dn_struct_rwlock); 2955 mutex_enter(&db->db_mtx); 2956 db->db_parent = parent; 2957 } 2958 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2959 (db->db_blkid & ((1ULL << epbs) - 1)); 2960 DBUF_VERIFY(db); 2961 } 2962 } 2963 2964 static void 2965 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2966 { 2967 dmu_buf_impl_t *db = dr->dr_dbuf; 2968 dnode_t *dn; 2969 zio_t *zio; 2970 2971 ASSERT(dmu_tx_is_syncing(tx)); 2972 2973 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2974 2975 mutex_enter(&db->db_mtx); 2976 2977 ASSERT(db->db_level > 0); 2978 DBUF_VERIFY(db); 2979 2980 /* Read the block if it hasn't been read yet. */ 2981 if (db->db_buf == NULL) { 2982 mutex_exit(&db->db_mtx); 2983 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2984 mutex_enter(&db->db_mtx); 2985 } 2986 ASSERT3U(db->db_state, ==, DB_CACHED); 2987 ASSERT(db->db_buf != NULL); 2988 2989 DB_DNODE_ENTER(db); 2990 dn = DB_DNODE(db); 2991 /* Indirect block size must match what the dnode thinks it is. */ 2992 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2993 dbuf_check_blkptr(dn, db); 2994 DB_DNODE_EXIT(db); 2995 2996 /* Provide the pending dirty record to child dbufs */ 2997 db->db_data_pending = dr; 2998 2999 mutex_exit(&db->db_mtx); 3000 dbuf_write(dr, db->db_buf, tx); 3001 3002 zio = dr->dr_zio; 3003 mutex_enter(&dr->dt.di.dr_mtx); 3004 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 3005 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3006 mutex_exit(&dr->dt.di.dr_mtx); 3007 zio_nowait(zio); 3008 } 3009 3010 static void 3011 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3012 { 3013 arc_buf_t **datap = &dr->dt.dl.dr_data; 3014 dmu_buf_impl_t *db = dr->dr_dbuf; 3015 dnode_t *dn; 3016 objset_t *os; 3017 uint64_t txg = tx->tx_txg; 3018 3019 ASSERT(dmu_tx_is_syncing(tx)); 3020 3021 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3022 3023 mutex_enter(&db->db_mtx); 3024 /* 3025 * To be synced, we must be dirtied. But we 3026 * might have been freed after the dirty. 3027 */ 3028 if (db->db_state == DB_UNCACHED) { 3029 /* This buffer has been freed since it was dirtied */ 3030 ASSERT(db->db.db_data == NULL); 3031 } else if (db->db_state == DB_FILL) { 3032 /* This buffer was freed and is now being re-filled */ 3033 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3034 } else { 3035 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3036 } 3037 DBUF_VERIFY(db); 3038 3039 DB_DNODE_ENTER(db); 3040 dn = DB_DNODE(db); 3041 3042 if (db->db_blkid == DMU_SPILL_BLKID) { 3043 mutex_enter(&dn->dn_mtx); 3044 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 3045 mutex_exit(&dn->dn_mtx); 3046 } 3047 3048 /* 3049 * If this is a bonus buffer, simply copy the bonus data into the 3050 * dnode. It will be written out when the dnode is synced (and it 3051 * will be synced, since it must have been dirty for dbuf_sync to 3052 * be called). 3053 */ 3054 if (db->db_blkid == DMU_BONUS_BLKID) { 3055 dbuf_dirty_record_t **drp; 3056 3057 ASSERT(*datap != NULL); 3058 ASSERT0(db->db_level); 3059 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 3060 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 3061 DB_DNODE_EXIT(db); 3062 3063 if (*datap != db->db.db_data) { 3064 zio_buf_free(*datap, DN_MAX_BONUSLEN); 3065 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 3066 } 3067 db->db_data_pending = NULL; 3068 drp = &db->db_last_dirty; 3069 while (*drp != dr) 3070 drp = &(*drp)->dr_next; 3071 ASSERT(dr->dr_next == NULL); 3072 ASSERT(dr->dr_dbuf == db); 3073 *drp = dr->dr_next; 3074 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3075 ASSERT(db->db_dirtycnt > 0); 3076 db->db_dirtycnt -= 1; 3077 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 3078 return; 3079 } 3080 3081 os = dn->dn_objset; 3082 3083 /* 3084 * This function may have dropped the db_mtx lock allowing a dmu_sync 3085 * operation to sneak in. As a result, we need to ensure that we 3086 * don't check the dr_override_state until we have returned from 3087 * dbuf_check_blkptr. 3088 */ 3089 dbuf_check_blkptr(dn, db); 3090 3091 /* 3092 * If this buffer is in the middle of an immediate write, 3093 * wait for the synchronous IO to complete. 3094 */ 3095 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 3096 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 3097 cv_wait(&db->db_changed, &db->db_mtx); 3098 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 3099 } 3100 3101 if (db->db_state != DB_NOFILL && 3102 dn->dn_object != DMU_META_DNODE_OBJECT && 3103 refcount_count(&db->db_holds) > 1 && 3104 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 3105 *datap == db->db_buf) { 3106 /* 3107 * If this buffer is currently "in use" (i.e., there 3108 * are active holds and db_data still references it), 3109 * then make a copy before we start the write so that 3110 * any modifications from the open txg will not leak 3111 * into this write. 3112 * 3113 * NOTE: this copy does not need to be made for 3114 * objects only modified in the syncing context (e.g. 3115 * DNONE_DNODE blocks). 3116 */ 3117 int blksz = arc_buf_size(*datap); 3118 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 3119 *datap = arc_alloc_buf(os->os_spa, blksz, db, type); 3120 bcopy(db->db.db_data, (*datap)->b_data, blksz); 3121 } 3122 db->db_data_pending = dr; 3123 3124 mutex_exit(&db->db_mtx); 3125 3126 dbuf_write(dr, *datap, tx); 3127 3128 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3129 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 3130 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 3131 DB_DNODE_EXIT(db); 3132 } else { 3133 /* 3134 * Although zio_nowait() does not "wait for an IO", it does 3135 * initiate the IO. If this is an empty write it seems plausible 3136 * that the IO could actually be completed before the nowait 3137 * returns. We need to DB_DNODE_EXIT() first in case 3138 * zio_nowait() invalidates the dbuf. 3139 */ 3140 DB_DNODE_EXIT(db); 3141 zio_nowait(dr->dr_zio); 3142 } 3143 } 3144 3145 void 3146 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 3147 { 3148 dbuf_dirty_record_t *dr; 3149 3150 while (dr = list_head(list)) { 3151 if (dr->dr_zio != NULL) { 3152 /* 3153 * If we find an already initialized zio then we 3154 * are processing the meta-dnode, and we have finished. 3155 * The dbufs for all dnodes are put back on the list 3156 * during processing, so that we can zio_wait() 3157 * these IOs after initiating all child IOs. 3158 */ 3159 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 3160 DMU_META_DNODE_OBJECT); 3161 break; 3162 } 3163 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 3164 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 3165 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 3166 } 3167 list_remove(list, dr); 3168 if (dr->dr_dbuf->db_level > 0) 3169 dbuf_sync_indirect(dr, tx); 3170 else 3171 dbuf_sync_leaf(dr, tx); 3172 } 3173 } 3174 3175 /* ARGSUSED */ 3176 static void 3177 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3178 { 3179 dmu_buf_impl_t *db = vdb; 3180 dnode_t *dn; 3181 blkptr_t *bp = zio->io_bp; 3182 blkptr_t *bp_orig = &zio->io_bp_orig; 3183 spa_t *spa = zio->io_spa; 3184 int64_t delta; 3185 uint64_t fill = 0; 3186 int i; 3187 3188 ASSERT3P(db->db_blkptr, !=, NULL); 3189 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 3190 3191 DB_DNODE_ENTER(db); 3192 dn = DB_DNODE(db); 3193 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 3194 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 3195 zio->io_prev_space_delta = delta; 3196 3197 if (bp->blk_birth != 0) { 3198 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 3199 BP_GET_TYPE(bp) == dn->dn_type) || 3200 (db->db_blkid == DMU_SPILL_BLKID && 3201 BP_GET_TYPE(bp) == dn->dn_bonustype) || 3202 BP_IS_EMBEDDED(bp)); 3203 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 3204 } 3205 3206 mutex_enter(&db->db_mtx); 3207 3208 #ifdef ZFS_DEBUG 3209 if (db->db_blkid == DMU_SPILL_BLKID) { 3210 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3211 ASSERT(!(BP_IS_HOLE(bp)) && 3212 db->db_blkptr == &dn->dn_phys->dn_spill); 3213 } 3214 #endif 3215 3216 if (db->db_level == 0) { 3217 mutex_enter(&dn->dn_mtx); 3218 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 3219 db->db_blkid != DMU_SPILL_BLKID) 3220 dn->dn_phys->dn_maxblkid = db->db_blkid; 3221 mutex_exit(&dn->dn_mtx); 3222 3223 if (dn->dn_type == DMU_OT_DNODE) { 3224 dnode_phys_t *dnp = db->db.db_data; 3225 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 3226 i--, dnp++) { 3227 if (dnp->dn_type != DMU_OT_NONE) 3228 fill++; 3229 } 3230 } else { 3231 if (BP_IS_HOLE(bp)) { 3232 fill = 0; 3233 } else { 3234 fill = 1; 3235 } 3236 } 3237 } else { 3238 blkptr_t *ibp = db->db.db_data; 3239 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3240 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 3241 if (BP_IS_HOLE(ibp)) 3242 continue; 3243 fill += BP_GET_FILL(ibp); 3244 } 3245 } 3246 DB_DNODE_EXIT(db); 3247 3248 if (!BP_IS_EMBEDDED(bp)) 3249 bp->blk_fill = fill; 3250 3251 mutex_exit(&db->db_mtx); 3252 3253 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3254 *db->db_blkptr = *bp; 3255 rw_exit(&dn->dn_struct_rwlock); 3256 } 3257 3258 /* ARGSUSED */ 3259 /* 3260 * This function gets called just prior to running through the compression 3261 * stage of the zio pipeline. If we're an indirect block comprised of only 3262 * holes, then we want this indirect to be compressed away to a hole. In 3263 * order to do that we must zero out any information about the holes that 3264 * this indirect points to prior to before we try to compress it. 3265 */ 3266 static void 3267 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3268 { 3269 dmu_buf_impl_t *db = vdb; 3270 dnode_t *dn; 3271 blkptr_t *bp; 3272 uint64_t i; 3273 int epbs; 3274 3275 ASSERT3U(db->db_level, >, 0); 3276 DB_DNODE_ENTER(db); 3277 dn = DB_DNODE(db); 3278 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3279 3280 /* Determine if all our children are holes */ 3281 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { 3282 if (!BP_IS_HOLE(bp)) 3283 break; 3284 } 3285 3286 /* 3287 * If all the children are holes, then zero them all out so that 3288 * we may get compressed away. 3289 */ 3290 if (i == 1 << epbs) { 3291 /* didn't find any non-holes */ 3292 bzero(db->db.db_data, db->db.db_size); 3293 } 3294 DB_DNODE_EXIT(db); 3295 } 3296 3297 /* 3298 * The SPA will call this callback several times for each zio - once 3299 * for every physical child i/o (zio->io_phys_children times). This 3300 * allows the DMU to monitor the progress of each logical i/o. For example, 3301 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 3302 * block. There may be a long delay before all copies/fragments are completed, 3303 * so this callback allows us to retire dirty space gradually, as the physical 3304 * i/os complete. 3305 */ 3306 /* ARGSUSED */ 3307 static void 3308 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 3309 { 3310 dmu_buf_impl_t *db = arg; 3311 objset_t *os = db->db_objset; 3312 dsl_pool_t *dp = dmu_objset_pool(os); 3313 dbuf_dirty_record_t *dr; 3314 int delta = 0; 3315 3316 dr = db->db_data_pending; 3317 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 3318 3319 /* 3320 * The callback will be called io_phys_children times. Retire one 3321 * portion of our dirty space each time we are called. Any rounding 3322 * error will be cleaned up by dsl_pool_sync()'s call to 3323 * dsl_pool_undirty_space(). 3324 */ 3325 delta = dr->dr_accounted / zio->io_phys_children; 3326 dsl_pool_undirty_space(dp, delta, zio->io_txg); 3327 } 3328 3329 /* ARGSUSED */ 3330 static void 3331 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 3332 { 3333 dmu_buf_impl_t *db = vdb; 3334 blkptr_t *bp_orig = &zio->io_bp_orig; 3335 blkptr_t *bp = db->db_blkptr; 3336 objset_t *os = db->db_objset; 3337 dmu_tx_t *tx = os->os_synctx; 3338 dbuf_dirty_record_t **drp, *dr; 3339 3340 ASSERT0(zio->io_error); 3341 ASSERT(db->db_blkptr == bp); 3342 3343 /* 3344 * For nopwrites and rewrites we ensure that the bp matches our 3345 * original and bypass all the accounting. 3346 */ 3347 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 3348 ASSERT(BP_EQUAL(bp, bp_orig)); 3349 } else { 3350 dsl_dataset_t *ds = os->os_dsl_dataset; 3351 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 3352 dsl_dataset_block_born(ds, bp, tx); 3353 } 3354 3355 mutex_enter(&db->db_mtx); 3356 3357 DBUF_VERIFY(db); 3358 3359 drp = &db->db_last_dirty; 3360 while ((dr = *drp) != db->db_data_pending) 3361 drp = &dr->dr_next; 3362 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3363 ASSERT(dr->dr_dbuf == db); 3364 ASSERT(dr->dr_next == NULL); 3365 *drp = dr->dr_next; 3366 3367 #ifdef ZFS_DEBUG 3368 if (db->db_blkid == DMU_SPILL_BLKID) { 3369 dnode_t *dn; 3370 3371 DB_DNODE_ENTER(db); 3372 dn = DB_DNODE(db); 3373 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3374 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3375 db->db_blkptr == &dn->dn_phys->dn_spill); 3376 DB_DNODE_EXIT(db); 3377 } 3378 #endif 3379 3380 if (db->db_level == 0) { 3381 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3382 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3383 if (db->db_state != DB_NOFILL) { 3384 if (dr->dt.dl.dr_data != db->db_buf) 3385 arc_buf_destroy(dr->dt.dl.dr_data, db); 3386 } 3387 } else { 3388 dnode_t *dn; 3389 3390 DB_DNODE_ENTER(db); 3391 dn = DB_DNODE(db); 3392 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3393 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3394 if (!BP_IS_HOLE(db->db_blkptr)) { 3395 int epbs = 3396 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3397 ASSERT3U(db->db_blkid, <=, 3398 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3399 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3400 db->db.db_size); 3401 } 3402 DB_DNODE_EXIT(db); 3403 mutex_destroy(&dr->dt.di.dr_mtx); 3404 list_destroy(&dr->dt.di.dr_children); 3405 } 3406 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3407 3408 cv_broadcast(&db->db_changed); 3409 ASSERT(db->db_dirtycnt > 0); 3410 db->db_dirtycnt -= 1; 3411 db->db_data_pending = NULL; 3412 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 3413 } 3414 3415 static void 3416 dbuf_write_nofill_ready(zio_t *zio) 3417 { 3418 dbuf_write_ready(zio, NULL, zio->io_private); 3419 } 3420 3421 static void 3422 dbuf_write_nofill_done(zio_t *zio) 3423 { 3424 dbuf_write_done(zio, NULL, zio->io_private); 3425 } 3426 3427 static void 3428 dbuf_write_override_ready(zio_t *zio) 3429 { 3430 dbuf_dirty_record_t *dr = zio->io_private; 3431 dmu_buf_impl_t *db = dr->dr_dbuf; 3432 3433 dbuf_write_ready(zio, NULL, db); 3434 } 3435 3436 static void 3437 dbuf_write_override_done(zio_t *zio) 3438 { 3439 dbuf_dirty_record_t *dr = zio->io_private; 3440 dmu_buf_impl_t *db = dr->dr_dbuf; 3441 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3442 3443 mutex_enter(&db->db_mtx); 3444 if (!BP_EQUAL(zio->io_bp, obp)) { 3445 if (!BP_IS_HOLE(obp)) 3446 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3447 arc_release(dr->dt.dl.dr_data, db); 3448 } 3449 mutex_exit(&db->db_mtx); 3450 3451 dbuf_write_done(zio, NULL, db); 3452 } 3453 3454 /* Issue I/O to commit a dirty buffer to disk. */ 3455 static void 3456 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 3457 { 3458 dmu_buf_impl_t *db = dr->dr_dbuf; 3459 dnode_t *dn; 3460 objset_t *os; 3461 dmu_buf_impl_t *parent = db->db_parent; 3462 uint64_t txg = tx->tx_txg; 3463 zbookmark_phys_t zb; 3464 zio_prop_t zp; 3465 zio_t *zio; 3466 int wp_flag = 0; 3467 3468 ASSERT(dmu_tx_is_syncing(tx)); 3469 3470 DB_DNODE_ENTER(db); 3471 dn = DB_DNODE(db); 3472 os = dn->dn_objset; 3473 3474 if (db->db_state != DB_NOFILL) { 3475 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 3476 /* 3477 * Private object buffers are released here rather 3478 * than in dbuf_dirty() since they are only modified 3479 * in the syncing context and we don't want the 3480 * overhead of making multiple copies of the data. 3481 */ 3482 if (BP_IS_HOLE(db->db_blkptr)) { 3483 arc_buf_thaw(data); 3484 } else { 3485 dbuf_release_bp(db); 3486 } 3487 } 3488 } 3489 3490 if (parent != dn->dn_dbuf) { 3491 /* Our parent is an indirect block. */ 3492 /* We have a dirty parent that has been scheduled for write. */ 3493 ASSERT(parent && parent->db_data_pending); 3494 /* Our parent's buffer is one level closer to the dnode. */ 3495 ASSERT(db->db_level == parent->db_level-1); 3496 /* 3497 * We're about to modify our parent's db_data by modifying 3498 * our block pointer, so the parent must be released. 3499 */ 3500 ASSERT(arc_released(parent->db_buf)); 3501 zio = parent->db_data_pending->dr_zio; 3502 } else { 3503 /* Our parent is the dnode itself. */ 3504 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 3505 db->db_blkid != DMU_SPILL_BLKID) || 3506 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 3507 if (db->db_blkid != DMU_SPILL_BLKID) 3508 ASSERT3P(db->db_blkptr, ==, 3509 &dn->dn_phys->dn_blkptr[db->db_blkid]); 3510 zio = dn->dn_zio; 3511 } 3512 3513 ASSERT(db->db_level == 0 || data == db->db_buf); 3514 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 3515 ASSERT(zio); 3516 3517 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 3518 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 3519 db->db.db_object, db->db_level, db->db_blkid); 3520 3521 if (db->db_blkid == DMU_SPILL_BLKID) 3522 wp_flag = WP_SPILL; 3523 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 3524 3525 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 3526 DB_DNODE_EXIT(db); 3527 3528 /* 3529 * We copy the blkptr now (rather than when we instantiate the dirty 3530 * record), because its value can change between open context and 3531 * syncing context. We do not need to hold dn_struct_rwlock to read 3532 * db_blkptr because we are in syncing context. 3533 */ 3534 dr->dr_bp_copy = *db->db_blkptr; 3535 3536 if (db->db_level == 0 && 3537 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 3538 /* 3539 * The BP for this block has been provided by open context 3540 * (by dmu_sync() or dmu_buf_write_embedded()). 3541 */ 3542 void *contents = (data != NULL) ? data->b_data : NULL; 3543 3544 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3545 &dr->dr_bp_copy, contents, db->db.db_size, &zp, 3546 dbuf_write_override_ready, NULL, NULL, 3547 dbuf_write_override_done, 3548 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3549 mutex_enter(&db->db_mtx); 3550 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 3551 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 3552 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 3553 mutex_exit(&db->db_mtx); 3554 } else if (db->db_state == DB_NOFILL) { 3555 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 3556 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 3557 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3558 &dr->dr_bp_copy, NULL, db->db.db_size, &zp, 3559 dbuf_write_nofill_ready, NULL, NULL, 3560 dbuf_write_nofill_done, db, 3561 ZIO_PRIORITY_ASYNC_WRITE, 3562 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 3563 } else { 3564 ASSERT(arc_released(data)); 3565 3566 /* 3567 * For indirect blocks, we want to setup the children 3568 * ready callback so that we can properly handle an indirect 3569 * block that only contains holes. 3570 */ 3571 arc_done_func_t *children_ready_cb = NULL; 3572 if (db->db_level != 0) 3573 children_ready_cb = dbuf_write_children_ready; 3574 3575 dr->dr_zio = arc_write(zio, os->os_spa, txg, 3576 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 3577 &zp, dbuf_write_ready, children_ready_cb, 3578 dbuf_write_physdone, dbuf_write_done, db, 3579 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3580 } 3581 } 3582