1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 50 uint_t zfs_dbuf_evict_key; 51 52 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 53 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 54 55 #ifndef __lint 56 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 57 dmu_buf_evict_func_t *evict_func_sync, 58 dmu_buf_evict_func_t *evict_func_async, 59 dmu_buf_t **clear_on_evict_dbufp); 60 #endif /* ! __lint */ 61 62 /* 63 * Global data structures and functions for the dbuf cache. 64 */ 65 static kmem_cache_t *dbuf_kmem_cache; 66 static taskq_t *dbu_evict_taskq; 67 68 static kthread_t *dbuf_cache_evict_thread; 69 static kmutex_t dbuf_evict_lock; 70 static kcondvar_t dbuf_evict_cv; 71 static boolean_t dbuf_evict_thread_exit; 72 73 /* 74 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 75 * are not currently held but have been recently released. These dbufs 76 * are not eligible for arc eviction until they are aged out of the cache. 77 * Dbufs are added to the dbuf cache once the last hold is released. If a 78 * dbuf is later accessed and still exists in the dbuf cache, then it will 79 * be removed from the cache and later re-added to the head of the cache. 80 * Dbufs that are aged out of the cache will be immediately destroyed and 81 * become eligible for arc eviction. 82 */ 83 static multilist_t *dbuf_cache; 84 static refcount_t dbuf_cache_size; 85 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024; 86 87 /* Cap the size of the dbuf cache to log2 fraction of arc size. */ 88 int dbuf_cache_max_shift = 5; 89 90 /* 91 * The dbuf cache uses a three-stage eviction policy: 92 * - A low water marker designates when the dbuf eviction thread 93 * should stop evicting from the dbuf cache. 94 * - When we reach the maximum size (aka mid water mark), we 95 * signal the eviction thread to run. 96 * - The high water mark indicates when the eviction thread 97 * is unable to keep up with the incoming load and eviction must 98 * happen in the context of the calling thread. 99 * 100 * The dbuf cache: 101 * (max size) 102 * low water mid water hi water 103 * +----------------------------------------+----------+----------+ 104 * | | | | 105 * | | | | 106 * | | | | 107 * | | | | 108 * +----------------------------------------+----------+----------+ 109 * stop signal evict 110 * evicting eviction directly 111 * thread 112 * 113 * The high and low water marks indicate the operating range for the eviction 114 * thread. The low water mark is, by default, 90% of the total size of the 115 * cache and the high water mark is at 110% (both of these percentages can be 116 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 117 * respectively). The eviction thread will try to ensure that the cache remains 118 * within this range by waking up every second and checking if the cache is 119 * above the low water mark. The thread can also be woken up by callers adding 120 * elements into the cache if the cache is larger than the mid water (i.e max 121 * cache size). Once the eviction thread is woken up and eviction is required, 122 * it will continue evicting buffers until it's able to reduce the cache size 123 * to the low water mark. If the cache size continues to grow and hits the high 124 * water mark, then callers adding elments to the cache will begin to evict 125 * directly from the cache until the cache is no longer above the high water 126 * mark. 127 */ 128 129 /* 130 * The percentage above and below the maximum cache size. 131 */ 132 uint_t dbuf_cache_hiwater_pct = 10; 133 uint_t dbuf_cache_lowater_pct = 10; 134 135 /* ARGSUSED */ 136 static int 137 dbuf_cons(void *vdb, void *unused, int kmflag) 138 { 139 dmu_buf_impl_t *db = vdb; 140 bzero(db, sizeof (dmu_buf_impl_t)); 141 142 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 143 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 144 multilist_link_init(&db->db_cache_link); 145 refcount_create(&db->db_holds); 146 147 return (0); 148 } 149 150 /* ARGSUSED */ 151 static void 152 dbuf_dest(void *vdb, void *unused) 153 { 154 dmu_buf_impl_t *db = vdb; 155 mutex_destroy(&db->db_mtx); 156 cv_destroy(&db->db_changed); 157 ASSERT(!multilist_link_active(&db->db_cache_link)); 158 refcount_destroy(&db->db_holds); 159 } 160 161 /* 162 * dbuf hash table routines 163 */ 164 static dbuf_hash_table_t dbuf_hash_table; 165 166 static uint64_t dbuf_hash_count; 167 168 static uint64_t 169 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 170 { 171 uintptr_t osv = (uintptr_t)os; 172 uint64_t crc = -1ULL; 173 174 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 175 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 176 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 177 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 178 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 179 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 180 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 181 182 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 183 184 return (crc); 185 } 186 187 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 188 ((dbuf)->db.db_object == (obj) && \ 189 (dbuf)->db_objset == (os) && \ 190 (dbuf)->db_level == (level) && \ 191 (dbuf)->db_blkid == (blkid)) 192 193 dmu_buf_impl_t * 194 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 195 { 196 dbuf_hash_table_t *h = &dbuf_hash_table; 197 uint64_t hv = dbuf_hash(os, obj, level, blkid); 198 uint64_t idx = hv & h->hash_table_mask; 199 dmu_buf_impl_t *db; 200 201 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 202 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 203 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 204 mutex_enter(&db->db_mtx); 205 if (db->db_state != DB_EVICTING) { 206 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 207 return (db); 208 } 209 mutex_exit(&db->db_mtx); 210 } 211 } 212 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 213 return (NULL); 214 } 215 216 static dmu_buf_impl_t * 217 dbuf_find_bonus(objset_t *os, uint64_t object) 218 { 219 dnode_t *dn; 220 dmu_buf_impl_t *db = NULL; 221 222 if (dnode_hold(os, object, FTAG, &dn) == 0) { 223 rw_enter(&dn->dn_struct_rwlock, RW_READER); 224 if (dn->dn_bonus != NULL) { 225 db = dn->dn_bonus; 226 mutex_enter(&db->db_mtx); 227 } 228 rw_exit(&dn->dn_struct_rwlock); 229 dnode_rele(dn, FTAG); 230 } 231 return (db); 232 } 233 234 /* 235 * Insert an entry into the hash table. If there is already an element 236 * equal to elem in the hash table, then the already existing element 237 * will be returned and the new element will not be inserted. 238 * Otherwise returns NULL. 239 */ 240 static dmu_buf_impl_t * 241 dbuf_hash_insert(dmu_buf_impl_t *db) 242 { 243 dbuf_hash_table_t *h = &dbuf_hash_table; 244 objset_t *os = db->db_objset; 245 uint64_t obj = db->db.db_object; 246 int level = db->db_level; 247 uint64_t blkid = db->db_blkid; 248 uint64_t hv = dbuf_hash(os, obj, level, blkid); 249 uint64_t idx = hv & h->hash_table_mask; 250 dmu_buf_impl_t *dbf; 251 252 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 253 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 254 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 255 mutex_enter(&dbf->db_mtx); 256 if (dbf->db_state != DB_EVICTING) { 257 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 258 return (dbf); 259 } 260 mutex_exit(&dbf->db_mtx); 261 } 262 } 263 264 mutex_enter(&db->db_mtx); 265 db->db_hash_next = h->hash_table[idx]; 266 h->hash_table[idx] = db; 267 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 268 atomic_inc_64(&dbuf_hash_count); 269 270 return (NULL); 271 } 272 273 /* 274 * Remove an entry from the hash table. It must be in the EVICTING state. 275 */ 276 static void 277 dbuf_hash_remove(dmu_buf_impl_t *db) 278 { 279 dbuf_hash_table_t *h = &dbuf_hash_table; 280 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 281 db->db_level, db->db_blkid); 282 uint64_t idx = hv & h->hash_table_mask; 283 dmu_buf_impl_t *dbf, **dbp; 284 285 /* 286 * We musn't hold db_mtx to maintain lock ordering: 287 * DBUF_HASH_MUTEX > db_mtx. 288 */ 289 ASSERT(refcount_is_zero(&db->db_holds)); 290 ASSERT(db->db_state == DB_EVICTING); 291 ASSERT(!MUTEX_HELD(&db->db_mtx)); 292 293 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 294 dbp = &h->hash_table[idx]; 295 while ((dbf = *dbp) != db) { 296 dbp = &dbf->db_hash_next; 297 ASSERT(dbf != NULL); 298 } 299 *dbp = db->db_hash_next; 300 db->db_hash_next = NULL; 301 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 302 atomic_dec_64(&dbuf_hash_count); 303 } 304 305 typedef enum { 306 DBVU_EVICTING, 307 DBVU_NOT_EVICTING 308 } dbvu_verify_type_t; 309 310 static void 311 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 312 { 313 #ifdef ZFS_DEBUG 314 int64_t holds; 315 316 if (db->db_user == NULL) 317 return; 318 319 /* Only data blocks support the attachment of user data. */ 320 ASSERT(db->db_level == 0); 321 322 /* Clients must resolve a dbuf before attaching user data. */ 323 ASSERT(db->db.db_data != NULL); 324 ASSERT3U(db->db_state, ==, DB_CACHED); 325 326 holds = refcount_count(&db->db_holds); 327 if (verify_type == DBVU_EVICTING) { 328 /* 329 * Immediate eviction occurs when holds == dirtycnt. 330 * For normal eviction buffers, holds is zero on 331 * eviction, except when dbuf_fix_old_data() calls 332 * dbuf_clear_data(). However, the hold count can grow 333 * during eviction even though db_mtx is held (see 334 * dmu_bonus_hold() for an example), so we can only 335 * test the generic invariant that holds >= dirtycnt. 336 */ 337 ASSERT3U(holds, >=, db->db_dirtycnt); 338 } else { 339 if (db->db_user_immediate_evict == TRUE) 340 ASSERT3U(holds, >=, db->db_dirtycnt); 341 else 342 ASSERT3U(holds, >, 0); 343 } 344 #endif 345 } 346 347 static void 348 dbuf_evict_user(dmu_buf_impl_t *db) 349 { 350 dmu_buf_user_t *dbu = db->db_user; 351 352 ASSERT(MUTEX_HELD(&db->db_mtx)); 353 354 if (dbu == NULL) 355 return; 356 357 dbuf_verify_user(db, DBVU_EVICTING); 358 db->db_user = NULL; 359 360 #ifdef ZFS_DEBUG 361 if (dbu->dbu_clear_on_evict_dbufp != NULL) 362 *dbu->dbu_clear_on_evict_dbufp = NULL; 363 #endif 364 365 /* 366 * There are two eviction callbacks - one that we call synchronously 367 * and one that we invoke via a taskq. The async one is useful for 368 * avoiding lock order reversals and limiting stack depth. 369 * 370 * Note that if we have a sync callback but no async callback, 371 * it's likely that the sync callback will free the structure 372 * containing the dbu. In that case we need to take care to not 373 * dereference dbu after calling the sync evict func. 374 */ 375 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 376 377 if (dbu->dbu_evict_func_sync != NULL) 378 dbu->dbu_evict_func_sync(dbu); 379 380 if (has_async) { 381 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 382 dbu, 0, &dbu->dbu_tqent); 383 } 384 } 385 386 boolean_t 387 dbuf_is_metadata(dmu_buf_impl_t *db) 388 { 389 if (db->db_level > 0) { 390 return (B_TRUE); 391 } else { 392 boolean_t is_metadata; 393 394 DB_DNODE_ENTER(db); 395 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 396 DB_DNODE_EXIT(db); 397 398 return (is_metadata); 399 } 400 } 401 402 /* 403 * This function *must* return indices evenly distributed between all 404 * sublists of the multilist. This is needed due to how the dbuf eviction 405 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 406 * distributed between all sublists and uses this assumption when 407 * deciding which sublist to evict from and how much to evict from it. 408 */ 409 unsigned int 410 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 411 { 412 dmu_buf_impl_t *db = obj; 413 414 /* 415 * The assumption here, is the hash value for a given 416 * dmu_buf_impl_t will remain constant throughout it's lifetime 417 * (i.e. it's objset, object, level and blkid fields don't change). 418 * Thus, we don't need to store the dbuf's sublist index 419 * on insertion, as this index can be recalculated on removal. 420 * 421 * Also, the low order bits of the hash value are thought to be 422 * distributed evenly. Otherwise, in the case that the multilist 423 * has a power of two number of sublists, each sublists' usage 424 * would not be evenly distributed. 425 */ 426 return (dbuf_hash(db->db_objset, db->db.db_object, 427 db->db_level, db->db_blkid) % 428 multilist_get_num_sublists(ml)); 429 } 430 431 static inline boolean_t 432 dbuf_cache_above_hiwater(void) 433 { 434 uint64_t dbuf_cache_hiwater_bytes = 435 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 436 437 return (refcount_count(&dbuf_cache_size) > 438 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 439 } 440 441 static inline boolean_t 442 dbuf_cache_above_lowater(void) 443 { 444 uint64_t dbuf_cache_lowater_bytes = 445 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 446 447 return (refcount_count(&dbuf_cache_size) > 448 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 449 } 450 451 /* 452 * Evict the oldest eligible dbuf from the dbuf cache. 453 */ 454 static void 455 dbuf_evict_one(void) 456 { 457 int idx = multilist_get_random_index(dbuf_cache); 458 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx); 459 460 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 461 462 /* 463 * Set the thread's tsd to indicate that it's processing evictions. 464 * Once a thread stops evicting from the dbuf cache it will 465 * reset its tsd to NULL. 466 */ 467 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL); 468 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE); 469 470 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 471 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 472 db = multilist_sublist_prev(mls, db); 473 } 474 475 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 476 multilist_sublist_t *, mls); 477 478 if (db != NULL) { 479 multilist_sublist_remove(mls, db); 480 multilist_sublist_unlock(mls); 481 (void) refcount_remove_many(&dbuf_cache_size, 482 db->db.db_size, db); 483 dbuf_destroy(db); 484 } else { 485 multilist_sublist_unlock(mls); 486 } 487 (void) tsd_set(zfs_dbuf_evict_key, NULL); 488 } 489 490 /* 491 * The dbuf evict thread is responsible for aging out dbufs from the 492 * cache. Once the cache has reached it's maximum size, dbufs are removed 493 * and destroyed. The eviction thread will continue running until the size 494 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 495 * out of the cache it is destroyed and becomes eligible for arc eviction. 496 */ 497 static void 498 dbuf_evict_thread(void) 499 { 500 callb_cpr_t cpr; 501 502 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 503 504 mutex_enter(&dbuf_evict_lock); 505 while (!dbuf_evict_thread_exit) { 506 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 507 CALLB_CPR_SAFE_BEGIN(&cpr); 508 (void) cv_timedwait_hires(&dbuf_evict_cv, 509 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 510 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 511 } 512 mutex_exit(&dbuf_evict_lock); 513 514 /* 515 * Keep evicting as long as we're above the low water mark 516 * for the cache. We do this without holding the locks to 517 * minimize lock contention. 518 */ 519 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 520 dbuf_evict_one(); 521 } 522 523 mutex_enter(&dbuf_evict_lock); 524 } 525 526 dbuf_evict_thread_exit = B_FALSE; 527 cv_broadcast(&dbuf_evict_cv); 528 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 529 thread_exit(); 530 } 531 532 /* 533 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 534 * If the dbuf cache is at its high water mark, then evict a dbuf from the 535 * dbuf cache using the callers context. 536 */ 537 static void 538 dbuf_evict_notify(void) 539 { 540 541 /* 542 * We use thread specific data to track when a thread has 543 * started processing evictions. This allows us to avoid deeply 544 * nested stacks that would have a call flow similar to this: 545 * 546 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 547 * ^ | 548 * | | 549 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 550 * 551 * The dbuf_eviction_thread will always have its tsd set until 552 * that thread exits. All other threads will only set their tsd 553 * if they are participating in the eviction process. This only 554 * happens if the eviction thread is unable to process evictions 555 * fast enough. To keep the dbuf cache size in check, other threads 556 * can evict from the dbuf cache directly. Those threads will set 557 * their tsd values so that we ensure that they only evict one dbuf 558 * from the dbuf cache. 559 */ 560 if (tsd_get(zfs_dbuf_evict_key) != NULL) 561 return; 562 563 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 564 boolean_t evict_now = B_FALSE; 565 566 mutex_enter(&dbuf_evict_lock); 567 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 568 evict_now = dbuf_cache_above_hiwater(); 569 cv_signal(&dbuf_evict_cv); 570 } 571 mutex_exit(&dbuf_evict_lock); 572 573 if (evict_now) { 574 dbuf_evict_one(); 575 } 576 } 577 } 578 579 void 580 dbuf_init(void) 581 { 582 uint64_t hsize = 1ULL << 16; 583 dbuf_hash_table_t *h = &dbuf_hash_table; 584 int i; 585 586 /* 587 * The hash table is big enough to fill all of physical memory 588 * with an average 4K block size. The table will take up 589 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 590 */ 591 while (hsize * 4096 < physmem * PAGESIZE) 592 hsize <<= 1; 593 594 retry: 595 h->hash_table_mask = hsize - 1; 596 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 597 if (h->hash_table == NULL) { 598 /* XXX - we should really return an error instead of assert */ 599 ASSERT(hsize > (1ULL << 10)); 600 hsize >>= 1; 601 goto retry; 602 } 603 604 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 605 sizeof (dmu_buf_impl_t), 606 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 607 608 for (i = 0; i < DBUF_MUTEXES; i++) 609 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 610 611 /* 612 * Setup the parameters for the dbuf cache. We cap the size of the 613 * dbuf cache to 1/32nd (default) of the size of the ARC. 614 */ 615 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes, 616 arc_max_bytes() >> dbuf_cache_max_shift); 617 618 /* 619 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 620 * configuration is not required. 621 */ 622 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 623 624 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t), 625 offsetof(dmu_buf_impl_t, db_cache_link), 626 dbuf_cache_multilist_index_func); 627 refcount_create(&dbuf_cache_size); 628 629 tsd_create(&zfs_dbuf_evict_key, NULL); 630 dbuf_evict_thread_exit = B_FALSE; 631 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 632 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 633 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 634 NULL, 0, &p0, TS_RUN, minclsyspri); 635 } 636 637 void 638 dbuf_fini(void) 639 { 640 dbuf_hash_table_t *h = &dbuf_hash_table; 641 int i; 642 643 for (i = 0; i < DBUF_MUTEXES; i++) 644 mutex_destroy(&h->hash_mutexes[i]); 645 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 646 kmem_cache_destroy(dbuf_kmem_cache); 647 taskq_destroy(dbu_evict_taskq); 648 649 mutex_enter(&dbuf_evict_lock); 650 dbuf_evict_thread_exit = B_TRUE; 651 while (dbuf_evict_thread_exit) { 652 cv_signal(&dbuf_evict_cv); 653 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 654 } 655 mutex_exit(&dbuf_evict_lock); 656 tsd_destroy(&zfs_dbuf_evict_key); 657 658 mutex_destroy(&dbuf_evict_lock); 659 cv_destroy(&dbuf_evict_cv); 660 661 refcount_destroy(&dbuf_cache_size); 662 multilist_destroy(dbuf_cache); 663 } 664 665 /* 666 * Other stuff. 667 */ 668 669 #ifdef ZFS_DEBUG 670 static void 671 dbuf_verify(dmu_buf_impl_t *db) 672 { 673 dnode_t *dn; 674 dbuf_dirty_record_t *dr; 675 676 ASSERT(MUTEX_HELD(&db->db_mtx)); 677 678 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 679 return; 680 681 ASSERT(db->db_objset != NULL); 682 DB_DNODE_ENTER(db); 683 dn = DB_DNODE(db); 684 if (dn == NULL) { 685 ASSERT(db->db_parent == NULL); 686 ASSERT(db->db_blkptr == NULL); 687 } else { 688 ASSERT3U(db->db.db_object, ==, dn->dn_object); 689 ASSERT3P(db->db_objset, ==, dn->dn_objset); 690 ASSERT3U(db->db_level, <, dn->dn_nlevels); 691 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 692 db->db_blkid == DMU_SPILL_BLKID || 693 !avl_is_empty(&dn->dn_dbufs)); 694 } 695 if (db->db_blkid == DMU_BONUS_BLKID) { 696 ASSERT(dn != NULL); 697 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 698 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 699 } else if (db->db_blkid == DMU_SPILL_BLKID) { 700 ASSERT(dn != NULL); 701 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 702 ASSERT0(db->db.db_offset); 703 } else { 704 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 705 } 706 707 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 708 ASSERT(dr->dr_dbuf == db); 709 710 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 711 ASSERT(dr->dr_dbuf == db); 712 713 /* 714 * We can't assert that db_size matches dn_datablksz because it 715 * can be momentarily different when another thread is doing 716 * dnode_set_blksz(). 717 */ 718 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 719 dr = db->db_data_pending; 720 /* 721 * It should only be modified in syncing context, so 722 * make sure we only have one copy of the data. 723 */ 724 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 725 } 726 727 /* verify db->db_blkptr */ 728 if (db->db_blkptr) { 729 if (db->db_parent == dn->dn_dbuf) { 730 /* db is pointed to by the dnode */ 731 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 732 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 733 ASSERT(db->db_parent == NULL); 734 else 735 ASSERT(db->db_parent != NULL); 736 if (db->db_blkid != DMU_SPILL_BLKID) 737 ASSERT3P(db->db_blkptr, ==, 738 &dn->dn_phys->dn_blkptr[db->db_blkid]); 739 } else { 740 /* db is pointed to by an indirect block */ 741 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 742 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 743 ASSERT3U(db->db_parent->db.db_object, ==, 744 db->db.db_object); 745 /* 746 * dnode_grow_indblksz() can make this fail if we don't 747 * have the struct_rwlock. XXX indblksz no longer 748 * grows. safe to do this now? 749 */ 750 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 751 ASSERT3P(db->db_blkptr, ==, 752 ((blkptr_t *)db->db_parent->db.db_data + 753 db->db_blkid % epb)); 754 } 755 } 756 } 757 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 758 (db->db_buf == NULL || db->db_buf->b_data) && 759 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 760 db->db_state != DB_FILL && !dn->dn_free_txg) { 761 /* 762 * If the blkptr isn't set but they have nonzero data, 763 * it had better be dirty, otherwise we'll lose that 764 * data when we evict this buffer. 765 * 766 * There is an exception to this rule for indirect blocks; in 767 * this case, if the indirect block is a hole, we fill in a few 768 * fields on each of the child blocks (importantly, birth time) 769 * to prevent hole birth times from being lost when you 770 * partially fill in a hole. 771 */ 772 if (db->db_dirtycnt == 0) { 773 if (db->db_level == 0) { 774 uint64_t *buf = db->db.db_data; 775 int i; 776 777 for (i = 0; i < db->db.db_size >> 3; i++) { 778 ASSERT(buf[i] == 0); 779 } 780 } else { 781 blkptr_t *bps = db->db.db_data; 782 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 783 db->db.db_size); 784 /* 785 * We want to verify that all the blkptrs in the 786 * indirect block are holes, but we may have 787 * automatically set up a few fields for them. 788 * We iterate through each blkptr and verify 789 * they only have those fields set. 790 */ 791 for (int i = 0; 792 i < db->db.db_size / sizeof (blkptr_t); 793 i++) { 794 blkptr_t *bp = &bps[i]; 795 ASSERT(ZIO_CHECKSUM_IS_ZERO( 796 &bp->blk_cksum)); 797 ASSERT( 798 DVA_IS_EMPTY(&bp->blk_dva[0]) && 799 DVA_IS_EMPTY(&bp->blk_dva[1]) && 800 DVA_IS_EMPTY(&bp->blk_dva[2])); 801 ASSERT0(bp->blk_fill); 802 ASSERT0(bp->blk_pad[0]); 803 ASSERT0(bp->blk_pad[1]); 804 ASSERT(!BP_IS_EMBEDDED(bp)); 805 ASSERT(BP_IS_HOLE(bp)); 806 ASSERT0(bp->blk_phys_birth); 807 } 808 } 809 } 810 } 811 DB_DNODE_EXIT(db); 812 } 813 #endif 814 815 static void 816 dbuf_clear_data(dmu_buf_impl_t *db) 817 { 818 ASSERT(MUTEX_HELD(&db->db_mtx)); 819 dbuf_evict_user(db); 820 ASSERT3P(db->db_buf, ==, NULL); 821 db->db.db_data = NULL; 822 if (db->db_state != DB_NOFILL) 823 db->db_state = DB_UNCACHED; 824 } 825 826 static void 827 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 828 { 829 ASSERT(MUTEX_HELD(&db->db_mtx)); 830 ASSERT(buf != NULL); 831 832 db->db_buf = buf; 833 ASSERT(buf->b_data != NULL); 834 db->db.db_data = buf->b_data; 835 } 836 837 /* 838 * Loan out an arc_buf for read. Return the loaned arc_buf. 839 */ 840 arc_buf_t * 841 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 842 { 843 arc_buf_t *abuf; 844 845 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 846 mutex_enter(&db->db_mtx); 847 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 848 int blksz = db->db.db_size; 849 spa_t *spa = db->db_objset->os_spa; 850 851 mutex_exit(&db->db_mtx); 852 abuf = arc_loan_buf(spa, B_FALSE, blksz); 853 bcopy(db->db.db_data, abuf->b_data, blksz); 854 } else { 855 abuf = db->db_buf; 856 arc_loan_inuse_buf(abuf, db); 857 db->db_buf = NULL; 858 dbuf_clear_data(db); 859 mutex_exit(&db->db_mtx); 860 } 861 return (abuf); 862 } 863 864 /* 865 * Calculate which level n block references the data at the level 0 offset 866 * provided. 867 */ 868 uint64_t 869 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 870 { 871 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 872 /* 873 * The level n blkid is equal to the level 0 blkid divided by 874 * the number of level 0s in a level n block. 875 * 876 * The level 0 blkid is offset >> datablkshift = 877 * offset / 2^datablkshift. 878 * 879 * The number of level 0s in a level n is the number of block 880 * pointers in an indirect block, raised to the power of level. 881 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 882 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 883 * 884 * Thus, the level n blkid is: offset / 885 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 886 * = offset / 2^(datablkshift + level * 887 * (indblkshift - SPA_BLKPTRSHIFT)) 888 * = offset >> (datablkshift + level * 889 * (indblkshift - SPA_BLKPTRSHIFT)) 890 */ 891 return (offset >> (dn->dn_datablkshift + level * 892 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 893 } else { 894 ASSERT3U(offset, <, dn->dn_datablksz); 895 return (0); 896 } 897 } 898 899 static void 900 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 901 { 902 dmu_buf_impl_t *db = vdb; 903 904 mutex_enter(&db->db_mtx); 905 ASSERT3U(db->db_state, ==, DB_READ); 906 /* 907 * All reads are synchronous, so we must have a hold on the dbuf 908 */ 909 ASSERT(refcount_count(&db->db_holds) > 0); 910 ASSERT(db->db_buf == NULL); 911 ASSERT(db->db.db_data == NULL); 912 if (db->db_level == 0 && db->db_freed_in_flight) { 913 /* we were freed in flight; disregard any error */ 914 arc_release(buf, db); 915 bzero(buf->b_data, db->db.db_size); 916 arc_buf_freeze(buf); 917 db->db_freed_in_flight = FALSE; 918 dbuf_set_data(db, buf); 919 db->db_state = DB_CACHED; 920 } else if (zio == NULL || zio->io_error == 0) { 921 dbuf_set_data(db, buf); 922 db->db_state = DB_CACHED; 923 } else { 924 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 925 ASSERT3P(db->db_buf, ==, NULL); 926 arc_buf_destroy(buf, db); 927 db->db_state = DB_UNCACHED; 928 } 929 cv_broadcast(&db->db_changed); 930 dbuf_rele_and_unlock(db, NULL); 931 } 932 933 static void 934 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 935 { 936 dnode_t *dn; 937 zbookmark_phys_t zb; 938 arc_flags_t aflags = ARC_FLAG_NOWAIT; 939 940 DB_DNODE_ENTER(db); 941 dn = DB_DNODE(db); 942 ASSERT(!refcount_is_zero(&db->db_holds)); 943 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 944 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 945 ASSERT(MUTEX_HELD(&db->db_mtx)); 946 ASSERT(db->db_state == DB_UNCACHED); 947 ASSERT(db->db_buf == NULL); 948 949 if (db->db_blkid == DMU_BONUS_BLKID) { 950 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 951 952 ASSERT3U(bonuslen, <=, db->db.db_size); 953 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 954 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 955 if (bonuslen < DN_MAX_BONUSLEN) 956 bzero(db->db.db_data, DN_MAX_BONUSLEN); 957 if (bonuslen) 958 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 959 DB_DNODE_EXIT(db); 960 db->db_state = DB_CACHED; 961 mutex_exit(&db->db_mtx); 962 return; 963 } 964 965 /* 966 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 967 * processes the delete record and clears the bp while we are waiting 968 * for the dn_mtx (resulting in a "no" from block_freed). 969 */ 970 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 971 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 972 BP_IS_HOLE(db->db_blkptr)))) { 973 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 974 975 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type, 976 db->db.db_size)); 977 bzero(db->db.db_data, db->db.db_size); 978 979 if (db->db_blkptr != NULL && db->db_level > 0 && 980 BP_IS_HOLE(db->db_blkptr) && 981 db->db_blkptr->blk_birth != 0) { 982 blkptr_t *bps = db->db.db_data; 983 for (int i = 0; i < ((1 << 984 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 985 i++) { 986 blkptr_t *bp = &bps[i]; 987 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 988 1 << dn->dn_indblkshift); 989 BP_SET_LSIZE(bp, 990 BP_GET_LEVEL(db->db_blkptr) == 1 ? 991 dn->dn_datablksz : 992 BP_GET_LSIZE(db->db_blkptr)); 993 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 994 BP_SET_LEVEL(bp, 995 BP_GET_LEVEL(db->db_blkptr) - 1); 996 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 997 } 998 } 999 DB_DNODE_EXIT(db); 1000 db->db_state = DB_CACHED; 1001 mutex_exit(&db->db_mtx); 1002 return; 1003 } 1004 1005 DB_DNODE_EXIT(db); 1006 1007 db->db_state = DB_READ; 1008 mutex_exit(&db->db_mtx); 1009 1010 if (DBUF_IS_L2CACHEABLE(db)) 1011 aflags |= ARC_FLAG_L2CACHE; 1012 1013 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 1014 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 1015 db->db.db_object, db->db_level, db->db_blkid); 1016 1017 dbuf_add_ref(db, NULL); 1018 1019 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 1020 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 1021 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 1022 &aflags, &zb); 1023 } 1024 1025 /* 1026 * This is our just-in-time copy function. It makes a copy of buffers that 1027 * have been modified in a previous transaction group before we access them in 1028 * the current active group. 1029 * 1030 * This function is used in three places: when we are dirtying a buffer for the 1031 * first time in a txg, when we are freeing a range in a dnode that includes 1032 * this buffer, and when we are accessing a buffer which was received compressed 1033 * and later referenced in a WRITE_BYREF record. 1034 * 1035 * Note that when we are called from dbuf_free_range() we do not put a hold on 1036 * the buffer, we just traverse the active dbuf list for the dnode. 1037 */ 1038 static void 1039 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1040 { 1041 dbuf_dirty_record_t *dr = db->db_last_dirty; 1042 1043 ASSERT(MUTEX_HELD(&db->db_mtx)); 1044 ASSERT(db->db.db_data != NULL); 1045 ASSERT(db->db_level == 0); 1046 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1047 1048 if (dr == NULL || 1049 (dr->dt.dl.dr_data != 1050 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1051 return; 1052 1053 /* 1054 * If the last dirty record for this dbuf has not yet synced 1055 * and its referencing the dbuf data, either: 1056 * reset the reference to point to a new copy, 1057 * or (if there a no active holders) 1058 * just null out the current db_data pointer. 1059 */ 1060 ASSERT(dr->dr_txg >= txg - 2); 1061 if (db->db_blkid == DMU_BONUS_BLKID) { 1062 /* Note that the data bufs here are zio_bufs */ 1063 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 1064 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1065 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 1066 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1067 int size = arc_buf_size(db->db_buf); 1068 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1069 spa_t *spa = db->db_objset->os_spa; 1070 enum zio_compress compress_type = 1071 arc_get_compression(db->db_buf); 1072 1073 if (compress_type == ZIO_COMPRESS_OFF) { 1074 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1075 } else { 1076 ASSERT3U(type, ==, ARC_BUFC_DATA); 1077 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1078 size, arc_buf_lsize(db->db_buf), compress_type); 1079 } 1080 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1081 } else { 1082 db->db_buf = NULL; 1083 dbuf_clear_data(db); 1084 } 1085 } 1086 1087 int 1088 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1089 { 1090 int err = 0; 1091 boolean_t havepzio = (zio != NULL); 1092 boolean_t prefetch; 1093 dnode_t *dn; 1094 1095 /* 1096 * We don't have to hold the mutex to check db_state because it 1097 * can't be freed while we have a hold on the buffer. 1098 */ 1099 ASSERT(!refcount_is_zero(&db->db_holds)); 1100 1101 if (db->db_state == DB_NOFILL) 1102 return (SET_ERROR(EIO)); 1103 1104 DB_DNODE_ENTER(db); 1105 dn = DB_DNODE(db); 1106 if ((flags & DB_RF_HAVESTRUCT) == 0) 1107 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1108 1109 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1110 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1111 DBUF_IS_CACHEABLE(db); 1112 1113 mutex_enter(&db->db_mtx); 1114 if (db->db_state == DB_CACHED) { 1115 /* 1116 * If the arc buf is compressed, we need to decompress it to 1117 * read the data. This could happen during the "zfs receive" of 1118 * a stream which is compressed and deduplicated. 1119 */ 1120 if (db->db_buf != NULL && 1121 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) { 1122 dbuf_fix_old_data(db, 1123 spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1124 err = arc_decompress(db->db_buf); 1125 dbuf_set_data(db, db->db_buf); 1126 } 1127 mutex_exit(&db->db_mtx); 1128 if (prefetch) 1129 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1130 if ((flags & DB_RF_HAVESTRUCT) == 0) 1131 rw_exit(&dn->dn_struct_rwlock); 1132 DB_DNODE_EXIT(db); 1133 } else if (db->db_state == DB_UNCACHED) { 1134 spa_t *spa = dn->dn_objset->os_spa; 1135 1136 if (zio == NULL) 1137 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1138 dbuf_read_impl(db, zio, flags); 1139 1140 /* dbuf_read_impl has dropped db_mtx for us */ 1141 1142 if (prefetch) 1143 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1144 1145 if ((flags & DB_RF_HAVESTRUCT) == 0) 1146 rw_exit(&dn->dn_struct_rwlock); 1147 DB_DNODE_EXIT(db); 1148 1149 if (!havepzio) 1150 err = zio_wait(zio); 1151 } else { 1152 /* 1153 * Another reader came in while the dbuf was in flight 1154 * between UNCACHED and CACHED. Either a writer will finish 1155 * writing the buffer (sending the dbuf to CACHED) or the 1156 * first reader's request will reach the read_done callback 1157 * and send the dbuf to CACHED. Otherwise, a failure 1158 * occurred and the dbuf went to UNCACHED. 1159 */ 1160 mutex_exit(&db->db_mtx); 1161 if (prefetch) 1162 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1163 if ((flags & DB_RF_HAVESTRUCT) == 0) 1164 rw_exit(&dn->dn_struct_rwlock); 1165 DB_DNODE_EXIT(db); 1166 1167 /* Skip the wait per the caller's request. */ 1168 mutex_enter(&db->db_mtx); 1169 if ((flags & DB_RF_NEVERWAIT) == 0) { 1170 while (db->db_state == DB_READ || 1171 db->db_state == DB_FILL) { 1172 ASSERT(db->db_state == DB_READ || 1173 (flags & DB_RF_HAVESTRUCT) == 0); 1174 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1175 db, zio_t *, zio); 1176 cv_wait(&db->db_changed, &db->db_mtx); 1177 } 1178 if (db->db_state == DB_UNCACHED) 1179 err = SET_ERROR(EIO); 1180 } 1181 mutex_exit(&db->db_mtx); 1182 } 1183 1184 ASSERT(err || havepzio || db->db_state == DB_CACHED); 1185 return (err); 1186 } 1187 1188 static void 1189 dbuf_noread(dmu_buf_impl_t *db) 1190 { 1191 ASSERT(!refcount_is_zero(&db->db_holds)); 1192 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1193 mutex_enter(&db->db_mtx); 1194 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1195 cv_wait(&db->db_changed, &db->db_mtx); 1196 if (db->db_state == DB_UNCACHED) { 1197 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1198 spa_t *spa = db->db_objset->os_spa; 1199 1200 ASSERT(db->db_buf == NULL); 1201 ASSERT(db->db.db_data == NULL); 1202 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size)); 1203 db->db_state = DB_FILL; 1204 } else if (db->db_state == DB_NOFILL) { 1205 dbuf_clear_data(db); 1206 } else { 1207 ASSERT3U(db->db_state, ==, DB_CACHED); 1208 } 1209 mutex_exit(&db->db_mtx); 1210 } 1211 1212 void 1213 dbuf_unoverride(dbuf_dirty_record_t *dr) 1214 { 1215 dmu_buf_impl_t *db = dr->dr_dbuf; 1216 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1217 uint64_t txg = dr->dr_txg; 1218 1219 ASSERT(MUTEX_HELD(&db->db_mtx)); 1220 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1221 ASSERT(db->db_level == 0); 1222 1223 if (db->db_blkid == DMU_BONUS_BLKID || 1224 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1225 return; 1226 1227 ASSERT(db->db_data_pending != dr); 1228 1229 /* free this block */ 1230 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1231 zio_free(db->db_objset->os_spa, txg, bp); 1232 1233 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1234 dr->dt.dl.dr_nopwrite = B_FALSE; 1235 1236 /* 1237 * Release the already-written buffer, so we leave it in 1238 * a consistent dirty state. Note that all callers are 1239 * modifying the buffer, so they will immediately do 1240 * another (redundant) arc_release(). Therefore, leave 1241 * the buf thawed to save the effort of freezing & 1242 * immediately re-thawing it. 1243 */ 1244 arc_release(dr->dt.dl.dr_data, db); 1245 } 1246 1247 /* 1248 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1249 * data blocks in the free range, so that any future readers will find 1250 * empty blocks. 1251 */ 1252 void 1253 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1254 dmu_tx_t *tx) 1255 { 1256 dmu_buf_impl_t db_search; 1257 dmu_buf_impl_t *db, *db_next; 1258 uint64_t txg = tx->tx_txg; 1259 avl_index_t where; 1260 1261 if (end_blkid > dn->dn_maxblkid && 1262 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1263 end_blkid = dn->dn_maxblkid; 1264 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1265 1266 db_search.db_level = 0; 1267 db_search.db_blkid = start_blkid; 1268 db_search.db_state = DB_SEARCH; 1269 1270 mutex_enter(&dn->dn_dbufs_mtx); 1271 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1272 ASSERT3P(db, ==, NULL); 1273 1274 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1275 1276 for (; db != NULL; db = db_next) { 1277 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1278 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1279 1280 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1281 break; 1282 } 1283 ASSERT3U(db->db_blkid, >=, start_blkid); 1284 1285 /* found a level 0 buffer in the range */ 1286 mutex_enter(&db->db_mtx); 1287 if (dbuf_undirty(db, tx)) { 1288 /* mutex has been dropped and dbuf destroyed */ 1289 continue; 1290 } 1291 1292 if (db->db_state == DB_UNCACHED || 1293 db->db_state == DB_NOFILL || 1294 db->db_state == DB_EVICTING) { 1295 ASSERT(db->db.db_data == NULL); 1296 mutex_exit(&db->db_mtx); 1297 continue; 1298 } 1299 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1300 /* will be handled in dbuf_read_done or dbuf_rele */ 1301 db->db_freed_in_flight = TRUE; 1302 mutex_exit(&db->db_mtx); 1303 continue; 1304 } 1305 if (refcount_count(&db->db_holds) == 0) { 1306 ASSERT(db->db_buf); 1307 dbuf_destroy(db); 1308 continue; 1309 } 1310 /* The dbuf is referenced */ 1311 1312 if (db->db_last_dirty != NULL) { 1313 dbuf_dirty_record_t *dr = db->db_last_dirty; 1314 1315 if (dr->dr_txg == txg) { 1316 /* 1317 * This buffer is "in-use", re-adjust the file 1318 * size to reflect that this buffer may 1319 * contain new data when we sync. 1320 */ 1321 if (db->db_blkid != DMU_SPILL_BLKID && 1322 db->db_blkid > dn->dn_maxblkid) 1323 dn->dn_maxblkid = db->db_blkid; 1324 dbuf_unoverride(dr); 1325 } else { 1326 /* 1327 * This dbuf is not dirty in the open context. 1328 * Either uncache it (if its not referenced in 1329 * the open context) or reset its contents to 1330 * empty. 1331 */ 1332 dbuf_fix_old_data(db, txg); 1333 } 1334 } 1335 /* clear the contents if its cached */ 1336 if (db->db_state == DB_CACHED) { 1337 ASSERT(db->db.db_data != NULL); 1338 arc_release(db->db_buf, db); 1339 bzero(db->db.db_data, db->db.db_size); 1340 arc_buf_freeze(db->db_buf); 1341 } 1342 1343 mutex_exit(&db->db_mtx); 1344 } 1345 mutex_exit(&dn->dn_dbufs_mtx); 1346 } 1347 1348 void 1349 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1350 { 1351 arc_buf_t *buf, *obuf; 1352 int osize = db->db.db_size; 1353 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1354 dnode_t *dn; 1355 1356 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1357 1358 DB_DNODE_ENTER(db); 1359 dn = DB_DNODE(db); 1360 1361 /* XXX does *this* func really need the lock? */ 1362 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1363 1364 /* 1365 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1366 * is OK, because there can be no other references to the db 1367 * when we are changing its size, so no concurrent DB_FILL can 1368 * be happening. 1369 */ 1370 /* 1371 * XXX we should be doing a dbuf_read, checking the return 1372 * value and returning that up to our callers 1373 */ 1374 dmu_buf_will_dirty(&db->db, tx); 1375 1376 /* create the data buffer for the new block */ 1377 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1378 1379 /* copy old block data to the new block */ 1380 obuf = db->db_buf; 1381 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1382 /* zero the remainder */ 1383 if (size > osize) 1384 bzero((uint8_t *)buf->b_data + osize, size - osize); 1385 1386 mutex_enter(&db->db_mtx); 1387 dbuf_set_data(db, buf); 1388 arc_buf_destroy(obuf, db); 1389 db->db.db_size = size; 1390 1391 if (db->db_level == 0) { 1392 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1393 db->db_last_dirty->dt.dl.dr_data = buf; 1394 } 1395 mutex_exit(&db->db_mtx); 1396 1397 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1398 DB_DNODE_EXIT(db); 1399 } 1400 1401 void 1402 dbuf_release_bp(dmu_buf_impl_t *db) 1403 { 1404 objset_t *os = db->db_objset; 1405 1406 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1407 ASSERT(arc_released(os->os_phys_buf) || 1408 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1409 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1410 1411 (void) arc_release(db->db_buf, db); 1412 } 1413 1414 /* 1415 * We already have a dirty record for this TXG, and we are being 1416 * dirtied again. 1417 */ 1418 static void 1419 dbuf_redirty(dbuf_dirty_record_t *dr) 1420 { 1421 dmu_buf_impl_t *db = dr->dr_dbuf; 1422 1423 ASSERT(MUTEX_HELD(&db->db_mtx)); 1424 1425 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1426 /* 1427 * If this buffer has already been written out, 1428 * we now need to reset its state. 1429 */ 1430 dbuf_unoverride(dr); 1431 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1432 db->db_state != DB_NOFILL) { 1433 /* Already released on initial dirty, so just thaw. */ 1434 ASSERT(arc_released(db->db_buf)); 1435 arc_buf_thaw(db->db_buf); 1436 } 1437 } 1438 } 1439 1440 dbuf_dirty_record_t * 1441 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1442 { 1443 dnode_t *dn; 1444 objset_t *os; 1445 dbuf_dirty_record_t **drp, *dr; 1446 int drop_struct_lock = FALSE; 1447 int txgoff = tx->tx_txg & TXG_MASK; 1448 1449 ASSERT(tx->tx_txg != 0); 1450 ASSERT(!refcount_is_zero(&db->db_holds)); 1451 DMU_TX_DIRTY_BUF(tx, db); 1452 1453 DB_DNODE_ENTER(db); 1454 dn = DB_DNODE(db); 1455 /* 1456 * Shouldn't dirty a regular buffer in syncing context. Private 1457 * objects may be dirtied in syncing context, but only if they 1458 * were already pre-dirtied in open context. 1459 */ 1460 #ifdef DEBUG 1461 if (dn->dn_objset->os_dsl_dataset != NULL) { 1462 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1463 RW_READER, FTAG); 1464 } 1465 ASSERT(!dmu_tx_is_syncing(tx) || 1466 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1467 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1468 dn->dn_objset->os_dsl_dataset == NULL); 1469 if (dn->dn_objset->os_dsl_dataset != NULL) 1470 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 1471 #endif 1472 /* 1473 * We make this assert for private objects as well, but after we 1474 * check if we're already dirty. They are allowed to re-dirty 1475 * in syncing context. 1476 */ 1477 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1478 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1479 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1480 1481 mutex_enter(&db->db_mtx); 1482 /* 1483 * XXX make this true for indirects too? The problem is that 1484 * transactions created with dmu_tx_create_assigned() from 1485 * syncing context don't bother holding ahead. 1486 */ 1487 ASSERT(db->db_level != 0 || 1488 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1489 db->db_state == DB_NOFILL); 1490 1491 mutex_enter(&dn->dn_mtx); 1492 /* 1493 * Don't set dirtyctx to SYNC if we're just modifying this as we 1494 * initialize the objset. 1495 */ 1496 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 1497 if (dn->dn_objset->os_dsl_dataset != NULL) { 1498 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1499 RW_READER, FTAG); 1500 } 1501 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1502 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? 1503 DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1504 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1505 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1506 } 1507 if (dn->dn_objset->os_dsl_dataset != NULL) { 1508 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1509 FTAG); 1510 } 1511 } 1512 mutex_exit(&dn->dn_mtx); 1513 1514 if (db->db_blkid == DMU_SPILL_BLKID) 1515 dn->dn_have_spill = B_TRUE; 1516 1517 /* 1518 * If this buffer is already dirty, we're done. 1519 */ 1520 drp = &db->db_last_dirty; 1521 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1522 db->db.db_object == DMU_META_DNODE_OBJECT); 1523 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1524 drp = &dr->dr_next; 1525 if (dr && dr->dr_txg == tx->tx_txg) { 1526 DB_DNODE_EXIT(db); 1527 1528 dbuf_redirty(dr); 1529 mutex_exit(&db->db_mtx); 1530 return (dr); 1531 } 1532 1533 /* 1534 * Only valid if not already dirty. 1535 */ 1536 ASSERT(dn->dn_object == 0 || 1537 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1538 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1539 1540 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1541 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1542 dn->dn_phys->dn_nlevels > db->db_level || 1543 dn->dn_next_nlevels[txgoff] > db->db_level || 1544 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1545 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1546 1547 /* 1548 * We should only be dirtying in syncing context if it's the 1549 * mos or we're initializing the os or it's a special object. 1550 * However, we are allowed to dirty in syncing context provided 1551 * we already dirtied it in open context. Hence we must make 1552 * this assertion only if we're not already dirty. 1553 */ 1554 os = dn->dn_objset; 1555 #ifdef DEBUG 1556 if (dn->dn_objset->os_dsl_dataset != NULL) 1557 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 1558 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1559 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1560 if (dn->dn_objset->os_dsl_dataset != NULL) 1561 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 1562 #endif 1563 ASSERT(db->db.db_size != 0); 1564 1565 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1566 1567 if (db->db_blkid != DMU_BONUS_BLKID) { 1568 dmu_objset_willuse_space(os, db->db.db_size, tx); 1569 } 1570 1571 /* 1572 * If this buffer is dirty in an old transaction group we need 1573 * to make a copy of it so that the changes we make in this 1574 * transaction group won't leak out when we sync the older txg. 1575 */ 1576 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1577 if (db->db_level == 0) { 1578 void *data_old = db->db_buf; 1579 1580 if (db->db_state != DB_NOFILL) { 1581 if (db->db_blkid == DMU_BONUS_BLKID) { 1582 dbuf_fix_old_data(db, tx->tx_txg); 1583 data_old = db->db.db_data; 1584 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1585 /* 1586 * Release the data buffer from the cache so 1587 * that we can modify it without impacting 1588 * possible other users of this cached data 1589 * block. Note that indirect blocks and 1590 * private objects are not released until the 1591 * syncing state (since they are only modified 1592 * then). 1593 */ 1594 arc_release(db->db_buf, db); 1595 dbuf_fix_old_data(db, tx->tx_txg); 1596 data_old = db->db_buf; 1597 } 1598 ASSERT(data_old != NULL); 1599 } 1600 dr->dt.dl.dr_data = data_old; 1601 } else { 1602 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1603 list_create(&dr->dt.di.dr_children, 1604 sizeof (dbuf_dirty_record_t), 1605 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1606 } 1607 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1608 dr->dr_accounted = db->db.db_size; 1609 dr->dr_dbuf = db; 1610 dr->dr_txg = tx->tx_txg; 1611 dr->dr_next = *drp; 1612 *drp = dr; 1613 1614 /* 1615 * We could have been freed_in_flight between the dbuf_noread 1616 * and dbuf_dirty. We win, as though the dbuf_noread() had 1617 * happened after the free. 1618 */ 1619 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1620 db->db_blkid != DMU_SPILL_BLKID) { 1621 mutex_enter(&dn->dn_mtx); 1622 if (dn->dn_free_ranges[txgoff] != NULL) { 1623 range_tree_clear(dn->dn_free_ranges[txgoff], 1624 db->db_blkid, 1); 1625 } 1626 mutex_exit(&dn->dn_mtx); 1627 db->db_freed_in_flight = FALSE; 1628 } 1629 1630 /* 1631 * This buffer is now part of this txg 1632 */ 1633 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1634 db->db_dirtycnt += 1; 1635 ASSERT3U(db->db_dirtycnt, <=, 3); 1636 1637 mutex_exit(&db->db_mtx); 1638 1639 if (db->db_blkid == DMU_BONUS_BLKID || 1640 db->db_blkid == DMU_SPILL_BLKID) { 1641 mutex_enter(&dn->dn_mtx); 1642 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1643 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1644 mutex_exit(&dn->dn_mtx); 1645 dnode_setdirty(dn, tx); 1646 DB_DNODE_EXIT(db); 1647 return (dr); 1648 } 1649 1650 /* 1651 * The dn_struct_rwlock prevents db_blkptr from changing 1652 * due to a write from syncing context completing 1653 * while we are running, so we want to acquire it before 1654 * looking at db_blkptr. 1655 */ 1656 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1657 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1658 drop_struct_lock = TRUE; 1659 } 1660 1661 /* 1662 * If we are overwriting a dedup BP, then unless it is snapshotted, 1663 * when we get to syncing context we will need to decrement its 1664 * refcount in the DDT. Prefetch the relevant DDT block so that 1665 * syncing context won't have to wait for the i/o. 1666 */ 1667 ddt_prefetch(os->os_spa, db->db_blkptr); 1668 1669 if (db->db_level == 0) { 1670 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1671 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1672 } 1673 1674 if (db->db_level+1 < dn->dn_nlevels) { 1675 dmu_buf_impl_t *parent = db->db_parent; 1676 dbuf_dirty_record_t *di; 1677 int parent_held = FALSE; 1678 1679 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1680 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1681 1682 parent = dbuf_hold_level(dn, db->db_level+1, 1683 db->db_blkid >> epbs, FTAG); 1684 ASSERT(parent != NULL); 1685 parent_held = TRUE; 1686 } 1687 if (drop_struct_lock) 1688 rw_exit(&dn->dn_struct_rwlock); 1689 ASSERT3U(db->db_level+1, ==, parent->db_level); 1690 di = dbuf_dirty(parent, tx); 1691 if (parent_held) 1692 dbuf_rele(parent, FTAG); 1693 1694 mutex_enter(&db->db_mtx); 1695 /* 1696 * Since we've dropped the mutex, it's possible that 1697 * dbuf_undirty() might have changed this out from under us. 1698 */ 1699 if (db->db_last_dirty == dr || 1700 dn->dn_object == DMU_META_DNODE_OBJECT) { 1701 mutex_enter(&di->dt.di.dr_mtx); 1702 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1703 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1704 list_insert_tail(&di->dt.di.dr_children, dr); 1705 mutex_exit(&di->dt.di.dr_mtx); 1706 dr->dr_parent = di; 1707 } 1708 mutex_exit(&db->db_mtx); 1709 } else { 1710 ASSERT(db->db_level+1 == dn->dn_nlevels); 1711 ASSERT(db->db_blkid < dn->dn_nblkptr); 1712 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1713 mutex_enter(&dn->dn_mtx); 1714 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1715 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1716 mutex_exit(&dn->dn_mtx); 1717 if (drop_struct_lock) 1718 rw_exit(&dn->dn_struct_rwlock); 1719 } 1720 1721 dnode_setdirty(dn, tx); 1722 DB_DNODE_EXIT(db); 1723 return (dr); 1724 } 1725 1726 /* 1727 * Undirty a buffer in the transaction group referenced by the given 1728 * transaction. Return whether this evicted the dbuf. 1729 */ 1730 static boolean_t 1731 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1732 { 1733 dnode_t *dn; 1734 uint64_t txg = tx->tx_txg; 1735 dbuf_dirty_record_t *dr, **drp; 1736 1737 ASSERT(txg != 0); 1738 1739 /* 1740 * Due to our use of dn_nlevels below, this can only be called 1741 * in open context, unless we are operating on the MOS. 1742 * From syncing context, dn_nlevels may be different from the 1743 * dn_nlevels used when dbuf was dirtied. 1744 */ 1745 ASSERT(db->db_objset == 1746 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1747 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1748 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1749 ASSERT0(db->db_level); 1750 ASSERT(MUTEX_HELD(&db->db_mtx)); 1751 1752 /* 1753 * If this buffer is not dirty, we're done. 1754 */ 1755 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1756 if (dr->dr_txg <= txg) 1757 break; 1758 if (dr == NULL || dr->dr_txg < txg) 1759 return (B_FALSE); 1760 ASSERT(dr->dr_txg == txg); 1761 ASSERT(dr->dr_dbuf == db); 1762 1763 DB_DNODE_ENTER(db); 1764 dn = DB_DNODE(db); 1765 1766 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1767 1768 ASSERT(db->db.db_size != 0); 1769 1770 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1771 dr->dr_accounted, txg); 1772 1773 *drp = dr->dr_next; 1774 1775 /* 1776 * Note that there are three places in dbuf_dirty() 1777 * where this dirty record may be put on a list. 1778 * Make sure to do a list_remove corresponding to 1779 * every one of those list_insert calls. 1780 */ 1781 if (dr->dr_parent) { 1782 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1783 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1784 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1785 } else if (db->db_blkid == DMU_SPILL_BLKID || 1786 db->db_level + 1 == dn->dn_nlevels) { 1787 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1788 mutex_enter(&dn->dn_mtx); 1789 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1790 mutex_exit(&dn->dn_mtx); 1791 } 1792 DB_DNODE_EXIT(db); 1793 1794 if (db->db_state != DB_NOFILL) { 1795 dbuf_unoverride(dr); 1796 1797 ASSERT(db->db_buf != NULL); 1798 ASSERT(dr->dt.dl.dr_data != NULL); 1799 if (dr->dt.dl.dr_data != db->db_buf) 1800 arc_buf_destroy(dr->dt.dl.dr_data, db); 1801 } 1802 1803 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1804 1805 ASSERT(db->db_dirtycnt > 0); 1806 db->db_dirtycnt -= 1; 1807 1808 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1809 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 1810 dbuf_destroy(db); 1811 return (B_TRUE); 1812 } 1813 1814 return (B_FALSE); 1815 } 1816 1817 void 1818 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1819 { 1820 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1821 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1822 1823 ASSERT(tx->tx_txg != 0); 1824 ASSERT(!refcount_is_zero(&db->db_holds)); 1825 1826 /* 1827 * Quick check for dirtyness. For already dirty blocks, this 1828 * reduces runtime of this function by >90%, and overall performance 1829 * by 50% for some workloads (e.g. file deletion with indirect blocks 1830 * cached). 1831 */ 1832 mutex_enter(&db->db_mtx); 1833 dbuf_dirty_record_t *dr; 1834 for (dr = db->db_last_dirty; 1835 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 1836 /* 1837 * It's possible that it is already dirty but not cached, 1838 * because there are some calls to dbuf_dirty() that don't 1839 * go through dmu_buf_will_dirty(). 1840 */ 1841 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 1842 /* This dbuf is already dirty and cached. */ 1843 dbuf_redirty(dr); 1844 mutex_exit(&db->db_mtx); 1845 return; 1846 } 1847 } 1848 mutex_exit(&db->db_mtx); 1849 1850 DB_DNODE_ENTER(db); 1851 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1852 rf |= DB_RF_HAVESTRUCT; 1853 DB_DNODE_EXIT(db); 1854 (void) dbuf_read(db, NULL, rf); 1855 (void) dbuf_dirty(db, tx); 1856 } 1857 1858 void 1859 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1860 { 1861 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1862 1863 db->db_state = DB_NOFILL; 1864 1865 dmu_buf_will_fill(db_fake, tx); 1866 } 1867 1868 void 1869 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1870 { 1871 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1872 1873 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1874 ASSERT(tx->tx_txg != 0); 1875 ASSERT(db->db_level == 0); 1876 ASSERT(!refcount_is_zero(&db->db_holds)); 1877 1878 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1879 dmu_tx_private_ok(tx)); 1880 1881 dbuf_noread(db); 1882 (void) dbuf_dirty(db, tx); 1883 } 1884 1885 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1886 /* ARGSUSED */ 1887 void 1888 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1889 { 1890 mutex_enter(&db->db_mtx); 1891 DBUF_VERIFY(db); 1892 1893 if (db->db_state == DB_FILL) { 1894 if (db->db_level == 0 && db->db_freed_in_flight) { 1895 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1896 /* we were freed while filling */ 1897 /* XXX dbuf_undirty? */ 1898 bzero(db->db.db_data, db->db.db_size); 1899 db->db_freed_in_flight = FALSE; 1900 } 1901 db->db_state = DB_CACHED; 1902 cv_broadcast(&db->db_changed); 1903 } 1904 mutex_exit(&db->db_mtx); 1905 } 1906 1907 void 1908 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1909 bp_embedded_type_t etype, enum zio_compress comp, 1910 int uncompressed_size, int compressed_size, int byteorder, 1911 dmu_tx_t *tx) 1912 { 1913 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1914 struct dirty_leaf *dl; 1915 dmu_object_type_t type; 1916 1917 if (etype == BP_EMBEDDED_TYPE_DATA) { 1918 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 1919 SPA_FEATURE_EMBEDDED_DATA)); 1920 } 1921 1922 DB_DNODE_ENTER(db); 1923 type = DB_DNODE(db)->dn_type; 1924 DB_DNODE_EXIT(db); 1925 1926 ASSERT0(db->db_level); 1927 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1928 1929 dmu_buf_will_not_fill(dbuf, tx); 1930 1931 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1932 dl = &db->db_last_dirty->dt.dl; 1933 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1934 data, comp, uncompressed_size, compressed_size); 1935 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1936 BP_SET_TYPE(&dl->dr_overridden_by, type); 1937 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1938 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1939 1940 dl->dr_override_state = DR_OVERRIDDEN; 1941 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1942 } 1943 1944 /* 1945 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1946 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1947 */ 1948 void 1949 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1950 { 1951 ASSERT(!refcount_is_zero(&db->db_holds)); 1952 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1953 ASSERT(db->db_level == 0); 1954 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 1955 ASSERT(buf != NULL); 1956 ASSERT(arc_buf_lsize(buf) == db->db.db_size); 1957 ASSERT(tx->tx_txg != 0); 1958 1959 arc_return_buf(buf, db); 1960 ASSERT(arc_released(buf)); 1961 1962 mutex_enter(&db->db_mtx); 1963 1964 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1965 cv_wait(&db->db_changed, &db->db_mtx); 1966 1967 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1968 1969 if (db->db_state == DB_CACHED && 1970 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1971 mutex_exit(&db->db_mtx); 1972 (void) dbuf_dirty(db, tx); 1973 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1974 arc_buf_destroy(buf, db); 1975 xuio_stat_wbuf_copied(); 1976 return; 1977 } 1978 1979 xuio_stat_wbuf_nocopy(); 1980 if (db->db_state == DB_CACHED) { 1981 dbuf_dirty_record_t *dr = db->db_last_dirty; 1982 1983 ASSERT(db->db_buf != NULL); 1984 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1985 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1986 if (!arc_released(db->db_buf)) { 1987 ASSERT(dr->dt.dl.dr_override_state == 1988 DR_OVERRIDDEN); 1989 arc_release(db->db_buf, db); 1990 } 1991 dr->dt.dl.dr_data = buf; 1992 arc_buf_destroy(db->db_buf, db); 1993 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 1994 arc_release(db->db_buf, db); 1995 arc_buf_destroy(db->db_buf, db); 1996 } 1997 db->db_buf = NULL; 1998 } 1999 ASSERT(db->db_buf == NULL); 2000 dbuf_set_data(db, buf); 2001 db->db_state = DB_FILL; 2002 mutex_exit(&db->db_mtx); 2003 (void) dbuf_dirty(db, tx); 2004 dmu_buf_fill_done(&db->db, tx); 2005 } 2006 2007 void 2008 dbuf_destroy(dmu_buf_impl_t *db) 2009 { 2010 dnode_t *dn; 2011 dmu_buf_impl_t *parent = db->db_parent; 2012 dmu_buf_impl_t *dndb; 2013 2014 ASSERT(MUTEX_HELD(&db->db_mtx)); 2015 ASSERT(refcount_is_zero(&db->db_holds)); 2016 2017 if (db->db_buf != NULL) { 2018 arc_buf_destroy(db->db_buf, db); 2019 db->db_buf = NULL; 2020 } 2021 2022 if (db->db_blkid == DMU_BONUS_BLKID) { 2023 ASSERT(db->db.db_data != NULL); 2024 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 2025 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2026 db->db_state = DB_UNCACHED; 2027 } 2028 2029 dbuf_clear_data(db); 2030 2031 if (multilist_link_active(&db->db_cache_link)) { 2032 multilist_remove(dbuf_cache, db); 2033 (void) refcount_remove_many(&dbuf_cache_size, 2034 db->db.db_size, db); 2035 } 2036 2037 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2038 ASSERT(db->db_data_pending == NULL); 2039 2040 db->db_state = DB_EVICTING; 2041 db->db_blkptr = NULL; 2042 2043 /* 2044 * Now that db_state is DB_EVICTING, nobody else can find this via 2045 * the hash table. We can now drop db_mtx, which allows us to 2046 * acquire the dn_dbufs_mtx. 2047 */ 2048 mutex_exit(&db->db_mtx); 2049 2050 DB_DNODE_ENTER(db); 2051 dn = DB_DNODE(db); 2052 dndb = dn->dn_dbuf; 2053 if (db->db_blkid != DMU_BONUS_BLKID) { 2054 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2055 if (needlock) 2056 mutex_enter(&dn->dn_dbufs_mtx); 2057 avl_remove(&dn->dn_dbufs, db); 2058 atomic_dec_32(&dn->dn_dbufs_count); 2059 membar_producer(); 2060 DB_DNODE_EXIT(db); 2061 if (needlock) 2062 mutex_exit(&dn->dn_dbufs_mtx); 2063 /* 2064 * Decrementing the dbuf count means that the hold corresponding 2065 * to the removed dbuf is no longer discounted in dnode_move(), 2066 * so the dnode cannot be moved until after we release the hold. 2067 * The membar_producer() ensures visibility of the decremented 2068 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2069 * release any lock. 2070 */ 2071 dnode_rele(dn, db); 2072 db->db_dnode_handle = NULL; 2073 2074 dbuf_hash_remove(db); 2075 } else { 2076 DB_DNODE_EXIT(db); 2077 } 2078 2079 ASSERT(refcount_is_zero(&db->db_holds)); 2080 2081 db->db_parent = NULL; 2082 2083 ASSERT(db->db_buf == NULL); 2084 ASSERT(db->db.db_data == NULL); 2085 ASSERT(db->db_hash_next == NULL); 2086 ASSERT(db->db_blkptr == NULL); 2087 ASSERT(db->db_data_pending == NULL); 2088 ASSERT(!multilist_link_active(&db->db_cache_link)); 2089 2090 kmem_cache_free(dbuf_kmem_cache, db); 2091 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2092 2093 /* 2094 * If this dbuf is referenced from an indirect dbuf, 2095 * decrement the ref count on the indirect dbuf. 2096 */ 2097 if (parent && parent != dndb) 2098 dbuf_rele(parent, db); 2099 } 2100 2101 /* 2102 * Note: While bpp will always be updated if the function returns success, 2103 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2104 * this happens when the dnode is the meta-dnode, or a userused or groupused 2105 * object. 2106 */ 2107 static int 2108 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2109 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2110 { 2111 *parentp = NULL; 2112 *bpp = NULL; 2113 2114 ASSERT(blkid != DMU_BONUS_BLKID); 2115 2116 if (blkid == DMU_SPILL_BLKID) { 2117 mutex_enter(&dn->dn_mtx); 2118 if (dn->dn_have_spill && 2119 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2120 *bpp = &dn->dn_phys->dn_spill; 2121 else 2122 *bpp = NULL; 2123 dbuf_add_ref(dn->dn_dbuf, NULL); 2124 *parentp = dn->dn_dbuf; 2125 mutex_exit(&dn->dn_mtx); 2126 return (0); 2127 } 2128 2129 int nlevels = 2130 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2131 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2132 2133 ASSERT3U(level * epbs, <, 64); 2134 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2135 /* 2136 * This assertion shouldn't trip as long as the max indirect block size 2137 * is less than 1M. The reason for this is that up to that point, 2138 * the number of levels required to address an entire object with blocks 2139 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2140 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2141 * (i.e. we can address the entire object), objects will all use at most 2142 * N-1 levels and the assertion won't overflow. However, once epbs is 2143 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2144 * enough to address an entire object, so objects will have 5 levels, 2145 * but then this assertion will overflow. 2146 * 2147 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2148 * need to redo this logic to handle overflows. 2149 */ 2150 ASSERT(level >= nlevels || 2151 ((nlevels - level - 1) * epbs) + 2152 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2153 if (level >= nlevels || 2154 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2155 ((nlevels - level - 1) * epbs)) || 2156 (fail_sparse && 2157 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2158 /* the buffer has no parent yet */ 2159 return (SET_ERROR(ENOENT)); 2160 } else if (level < nlevels-1) { 2161 /* this block is referenced from an indirect block */ 2162 int err = dbuf_hold_impl(dn, level+1, 2163 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2164 if (err) 2165 return (err); 2166 err = dbuf_read(*parentp, NULL, 2167 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2168 if (err) { 2169 dbuf_rele(*parentp, NULL); 2170 *parentp = NULL; 2171 return (err); 2172 } 2173 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2174 (blkid & ((1ULL << epbs) - 1)); 2175 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2176 ASSERT(BP_IS_HOLE(*bpp)); 2177 return (0); 2178 } else { 2179 /* the block is referenced from the dnode */ 2180 ASSERT3U(level, ==, nlevels-1); 2181 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2182 blkid < dn->dn_phys->dn_nblkptr); 2183 if (dn->dn_dbuf) { 2184 dbuf_add_ref(dn->dn_dbuf, NULL); 2185 *parentp = dn->dn_dbuf; 2186 } 2187 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2188 return (0); 2189 } 2190 } 2191 2192 static dmu_buf_impl_t * 2193 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2194 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2195 { 2196 objset_t *os = dn->dn_objset; 2197 dmu_buf_impl_t *db, *odb; 2198 2199 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2200 ASSERT(dn->dn_type != DMU_OT_NONE); 2201 2202 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2203 2204 db->db_objset = os; 2205 db->db.db_object = dn->dn_object; 2206 db->db_level = level; 2207 db->db_blkid = blkid; 2208 db->db_last_dirty = NULL; 2209 db->db_dirtycnt = 0; 2210 db->db_dnode_handle = dn->dn_handle; 2211 db->db_parent = parent; 2212 db->db_blkptr = blkptr; 2213 2214 db->db_user = NULL; 2215 db->db_user_immediate_evict = FALSE; 2216 db->db_freed_in_flight = FALSE; 2217 db->db_pending_evict = FALSE; 2218 2219 if (blkid == DMU_BONUS_BLKID) { 2220 ASSERT3P(parent, ==, dn->dn_dbuf); 2221 db->db.db_size = DN_MAX_BONUSLEN - 2222 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2223 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2224 db->db.db_offset = DMU_BONUS_BLKID; 2225 db->db_state = DB_UNCACHED; 2226 /* the bonus dbuf is not placed in the hash table */ 2227 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2228 return (db); 2229 } else if (blkid == DMU_SPILL_BLKID) { 2230 db->db.db_size = (blkptr != NULL) ? 2231 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2232 db->db.db_offset = 0; 2233 } else { 2234 int blocksize = 2235 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2236 db->db.db_size = blocksize; 2237 db->db.db_offset = db->db_blkid * blocksize; 2238 } 2239 2240 /* 2241 * Hold the dn_dbufs_mtx while we get the new dbuf 2242 * in the hash table *and* added to the dbufs list. 2243 * This prevents a possible deadlock with someone 2244 * trying to look up this dbuf before its added to the 2245 * dn_dbufs list. 2246 */ 2247 mutex_enter(&dn->dn_dbufs_mtx); 2248 db->db_state = DB_EVICTING; 2249 if ((odb = dbuf_hash_insert(db)) != NULL) { 2250 /* someone else inserted it first */ 2251 kmem_cache_free(dbuf_kmem_cache, db); 2252 mutex_exit(&dn->dn_dbufs_mtx); 2253 return (odb); 2254 } 2255 avl_add(&dn->dn_dbufs, db); 2256 2257 db->db_state = DB_UNCACHED; 2258 mutex_exit(&dn->dn_dbufs_mtx); 2259 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2260 2261 if (parent && parent != dn->dn_dbuf) 2262 dbuf_add_ref(parent, db); 2263 2264 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2265 refcount_count(&dn->dn_holds) > 0); 2266 (void) refcount_add(&dn->dn_holds, db); 2267 atomic_inc_32(&dn->dn_dbufs_count); 2268 2269 dprintf_dbuf(db, "db=%p\n", db); 2270 2271 return (db); 2272 } 2273 2274 typedef struct dbuf_prefetch_arg { 2275 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2276 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2277 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2278 int dpa_curlevel; /* The current level that we're reading */ 2279 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2280 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2281 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2282 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2283 } dbuf_prefetch_arg_t; 2284 2285 /* 2286 * Actually issue the prefetch read for the block given. 2287 */ 2288 static void 2289 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2290 { 2291 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2292 return; 2293 2294 arc_flags_t aflags = 2295 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2296 2297 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2298 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2299 ASSERT(dpa->dpa_zio != NULL); 2300 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2301 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2302 &aflags, &dpa->dpa_zb); 2303 } 2304 2305 /* 2306 * Called when an indirect block above our prefetch target is read in. This 2307 * will either read in the next indirect block down the tree or issue the actual 2308 * prefetch if the next block down is our target. 2309 */ 2310 static void 2311 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) 2312 { 2313 dbuf_prefetch_arg_t *dpa = private; 2314 2315 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2316 ASSERT3S(dpa->dpa_curlevel, >, 0); 2317 2318 /* 2319 * The dpa_dnode is only valid if we are called with a NULL 2320 * zio. This indicates that the arc_read() returned without 2321 * first calling zio_read() to issue a physical read. Once 2322 * a physical read is made the dpa_dnode must be invalidated 2323 * as the locks guarding it may have been dropped. If the 2324 * dpa_dnode is still valid, then we want to add it to the dbuf 2325 * cache. To do so, we must hold the dbuf associated with the block 2326 * we just prefetched, read its contents so that we associate it 2327 * with an arc_buf_t, and then release it. 2328 */ 2329 if (zio != NULL) { 2330 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2331 if (zio->io_flags & ZIO_FLAG_RAW) { 2332 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2333 } else { 2334 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2335 } 2336 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2337 2338 dpa->dpa_dnode = NULL; 2339 } else if (dpa->dpa_dnode != NULL) { 2340 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2341 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2342 dpa->dpa_zb.zb_level)); 2343 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2344 dpa->dpa_curlevel, curblkid, FTAG); 2345 (void) dbuf_read(db, NULL, 2346 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2347 dbuf_rele(db, FTAG); 2348 } 2349 2350 dpa->dpa_curlevel--; 2351 2352 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2353 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2354 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2355 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2356 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) { 2357 kmem_free(dpa, sizeof (*dpa)); 2358 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2359 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2360 dbuf_issue_final_prefetch(dpa, bp); 2361 kmem_free(dpa, sizeof (*dpa)); 2362 } else { 2363 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2364 zbookmark_phys_t zb; 2365 2366 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2367 2368 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2369 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2370 2371 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2372 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2373 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2374 &iter_aflags, &zb); 2375 } 2376 2377 arc_buf_destroy(abuf, private); 2378 } 2379 2380 /* 2381 * Issue prefetch reads for the given block on the given level. If the indirect 2382 * blocks above that block are not in memory, we will read them in 2383 * asynchronously. As a result, this call never blocks waiting for a read to 2384 * complete. 2385 */ 2386 void 2387 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2388 arc_flags_t aflags) 2389 { 2390 blkptr_t bp; 2391 int epbs, nlevels, curlevel; 2392 uint64_t curblkid; 2393 2394 ASSERT(blkid != DMU_BONUS_BLKID); 2395 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2396 2397 if (blkid > dn->dn_maxblkid) 2398 return; 2399 2400 if (dnode_block_freed(dn, blkid)) 2401 return; 2402 2403 /* 2404 * This dnode hasn't been written to disk yet, so there's nothing to 2405 * prefetch. 2406 */ 2407 nlevels = dn->dn_phys->dn_nlevels; 2408 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2409 return; 2410 2411 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2412 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2413 return; 2414 2415 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2416 level, blkid); 2417 if (db != NULL) { 2418 mutex_exit(&db->db_mtx); 2419 /* 2420 * This dbuf already exists. It is either CACHED, or 2421 * (we assume) about to be read or filled. 2422 */ 2423 return; 2424 } 2425 2426 /* 2427 * Find the closest ancestor (indirect block) of the target block 2428 * that is present in the cache. In this indirect block, we will 2429 * find the bp that is at curlevel, curblkid. 2430 */ 2431 curlevel = level; 2432 curblkid = blkid; 2433 while (curlevel < nlevels - 1) { 2434 int parent_level = curlevel + 1; 2435 uint64_t parent_blkid = curblkid >> epbs; 2436 dmu_buf_impl_t *db; 2437 2438 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2439 FALSE, TRUE, FTAG, &db) == 0) { 2440 blkptr_t *bpp = db->db_buf->b_data; 2441 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2442 dbuf_rele(db, FTAG); 2443 break; 2444 } 2445 2446 curlevel = parent_level; 2447 curblkid = parent_blkid; 2448 } 2449 2450 if (curlevel == nlevels - 1) { 2451 /* No cached indirect blocks found. */ 2452 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2453 bp = dn->dn_phys->dn_blkptr[curblkid]; 2454 } 2455 if (BP_IS_HOLE(&bp)) 2456 return; 2457 2458 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2459 2460 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2461 ZIO_FLAG_CANFAIL); 2462 2463 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2464 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2465 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2466 dn->dn_object, level, blkid); 2467 dpa->dpa_curlevel = curlevel; 2468 dpa->dpa_prio = prio; 2469 dpa->dpa_aflags = aflags; 2470 dpa->dpa_spa = dn->dn_objset->os_spa; 2471 dpa->dpa_dnode = dn; 2472 dpa->dpa_epbs = epbs; 2473 dpa->dpa_zio = pio; 2474 2475 /* 2476 * If we have the indirect just above us, no need to do the asynchronous 2477 * prefetch chain; we'll just run the last step ourselves. If we're at 2478 * a higher level, though, we want to issue the prefetches for all the 2479 * indirect blocks asynchronously, so we can go on with whatever we were 2480 * doing. 2481 */ 2482 if (curlevel == level) { 2483 ASSERT3U(curblkid, ==, blkid); 2484 dbuf_issue_final_prefetch(dpa, &bp); 2485 kmem_free(dpa, sizeof (*dpa)); 2486 } else { 2487 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2488 zbookmark_phys_t zb; 2489 2490 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2491 dn->dn_object, curlevel, curblkid); 2492 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2493 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2494 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2495 &iter_aflags, &zb); 2496 } 2497 /* 2498 * We use pio here instead of dpa_zio since it's possible that 2499 * dpa may have already been freed. 2500 */ 2501 zio_nowait(pio); 2502 } 2503 2504 /* 2505 * Returns with db_holds incremented, and db_mtx not held. 2506 * Note: dn_struct_rwlock must be held. 2507 */ 2508 int 2509 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2510 boolean_t fail_sparse, boolean_t fail_uncached, 2511 void *tag, dmu_buf_impl_t **dbp) 2512 { 2513 dmu_buf_impl_t *db, *parent = NULL; 2514 2515 ASSERT(blkid != DMU_BONUS_BLKID); 2516 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2517 ASSERT3U(dn->dn_nlevels, >, level); 2518 2519 *dbp = NULL; 2520 top: 2521 /* dbuf_find() returns with db_mtx held */ 2522 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2523 2524 if (db == NULL) { 2525 blkptr_t *bp = NULL; 2526 int err; 2527 2528 if (fail_uncached) 2529 return (SET_ERROR(ENOENT)); 2530 2531 ASSERT3P(parent, ==, NULL); 2532 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2533 if (fail_sparse) { 2534 if (err == 0 && bp && BP_IS_HOLE(bp)) 2535 err = SET_ERROR(ENOENT); 2536 if (err) { 2537 if (parent) 2538 dbuf_rele(parent, NULL); 2539 return (err); 2540 } 2541 } 2542 if (err && err != ENOENT) 2543 return (err); 2544 db = dbuf_create(dn, level, blkid, parent, bp); 2545 } 2546 2547 if (fail_uncached && db->db_state != DB_CACHED) { 2548 mutex_exit(&db->db_mtx); 2549 return (SET_ERROR(ENOENT)); 2550 } 2551 2552 if (db->db_buf != NULL) 2553 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2554 2555 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2556 2557 /* 2558 * If this buffer is currently syncing out, and we are are 2559 * still referencing it from db_data, we need to make a copy 2560 * of it in case we decide we want to dirty it again in this txg. 2561 */ 2562 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2563 dn->dn_object != DMU_META_DNODE_OBJECT && 2564 db->db_state == DB_CACHED && db->db_data_pending) { 2565 dbuf_dirty_record_t *dr = db->db_data_pending; 2566 2567 if (dr->dt.dl.dr_data == db->db_buf) { 2568 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2569 2570 dbuf_set_data(db, 2571 arc_alloc_buf(dn->dn_objset->os_spa, db, type, 2572 db->db.db_size)); 2573 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2574 db->db.db_size); 2575 } 2576 } 2577 2578 if (multilist_link_active(&db->db_cache_link)) { 2579 ASSERT(refcount_is_zero(&db->db_holds)); 2580 multilist_remove(dbuf_cache, db); 2581 (void) refcount_remove_many(&dbuf_cache_size, 2582 db->db.db_size, db); 2583 } 2584 (void) refcount_add(&db->db_holds, tag); 2585 DBUF_VERIFY(db); 2586 mutex_exit(&db->db_mtx); 2587 2588 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2589 if (parent) 2590 dbuf_rele(parent, NULL); 2591 2592 ASSERT3P(DB_DNODE(db), ==, dn); 2593 ASSERT3U(db->db_blkid, ==, blkid); 2594 ASSERT3U(db->db_level, ==, level); 2595 *dbp = db; 2596 2597 return (0); 2598 } 2599 2600 dmu_buf_impl_t * 2601 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2602 { 2603 return (dbuf_hold_level(dn, 0, blkid, tag)); 2604 } 2605 2606 dmu_buf_impl_t * 2607 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2608 { 2609 dmu_buf_impl_t *db; 2610 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2611 return (err ? NULL : db); 2612 } 2613 2614 void 2615 dbuf_create_bonus(dnode_t *dn) 2616 { 2617 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2618 2619 ASSERT(dn->dn_bonus == NULL); 2620 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2621 } 2622 2623 int 2624 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2625 { 2626 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2627 dnode_t *dn; 2628 2629 if (db->db_blkid != DMU_SPILL_BLKID) 2630 return (SET_ERROR(ENOTSUP)); 2631 if (blksz == 0) 2632 blksz = SPA_MINBLOCKSIZE; 2633 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2634 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2635 2636 DB_DNODE_ENTER(db); 2637 dn = DB_DNODE(db); 2638 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2639 dbuf_new_size(db, blksz, tx); 2640 rw_exit(&dn->dn_struct_rwlock); 2641 DB_DNODE_EXIT(db); 2642 2643 return (0); 2644 } 2645 2646 void 2647 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2648 { 2649 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2650 } 2651 2652 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2653 void 2654 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2655 { 2656 int64_t holds = refcount_add(&db->db_holds, tag); 2657 ASSERT3S(holds, >, 1); 2658 } 2659 2660 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2661 boolean_t 2662 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2663 void *tag) 2664 { 2665 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2666 dmu_buf_impl_t *found_db; 2667 boolean_t result = B_FALSE; 2668 2669 if (db->db_blkid == DMU_BONUS_BLKID) 2670 found_db = dbuf_find_bonus(os, obj); 2671 else 2672 found_db = dbuf_find(os, obj, 0, blkid); 2673 2674 if (found_db != NULL) { 2675 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 2676 (void) refcount_add(&db->db_holds, tag); 2677 result = B_TRUE; 2678 } 2679 mutex_exit(&db->db_mtx); 2680 } 2681 return (result); 2682 } 2683 2684 /* 2685 * If you call dbuf_rele() you had better not be referencing the dnode handle 2686 * unless you have some other direct or indirect hold on the dnode. (An indirect 2687 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2688 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2689 * dnode's parent dbuf evicting its dnode handles. 2690 */ 2691 void 2692 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2693 { 2694 mutex_enter(&db->db_mtx); 2695 dbuf_rele_and_unlock(db, tag); 2696 } 2697 2698 void 2699 dmu_buf_rele(dmu_buf_t *db, void *tag) 2700 { 2701 dbuf_rele((dmu_buf_impl_t *)db, tag); 2702 } 2703 2704 /* 2705 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2706 * db_dirtycnt and db_holds to be updated atomically. 2707 */ 2708 void 2709 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2710 { 2711 int64_t holds; 2712 2713 ASSERT(MUTEX_HELD(&db->db_mtx)); 2714 DBUF_VERIFY(db); 2715 2716 /* 2717 * Remove the reference to the dbuf before removing its hold on the 2718 * dnode so we can guarantee in dnode_move() that a referenced bonus 2719 * buffer has a corresponding dnode hold. 2720 */ 2721 holds = refcount_remove(&db->db_holds, tag); 2722 ASSERT(holds >= 0); 2723 2724 /* 2725 * We can't freeze indirects if there is a possibility that they 2726 * may be modified in the current syncing context. 2727 */ 2728 if (db->db_buf != NULL && 2729 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 2730 arc_buf_freeze(db->db_buf); 2731 } 2732 2733 if (holds == db->db_dirtycnt && 2734 db->db_level == 0 && db->db_user_immediate_evict) 2735 dbuf_evict_user(db); 2736 2737 if (holds == 0) { 2738 if (db->db_blkid == DMU_BONUS_BLKID) { 2739 dnode_t *dn; 2740 boolean_t evict_dbuf = db->db_pending_evict; 2741 2742 /* 2743 * If the dnode moves here, we cannot cross this 2744 * barrier until the move completes. 2745 */ 2746 DB_DNODE_ENTER(db); 2747 2748 dn = DB_DNODE(db); 2749 atomic_dec_32(&dn->dn_dbufs_count); 2750 2751 /* 2752 * Decrementing the dbuf count means that the bonus 2753 * buffer's dnode hold is no longer discounted in 2754 * dnode_move(). The dnode cannot move until after 2755 * the dnode_rele() below. 2756 */ 2757 DB_DNODE_EXIT(db); 2758 2759 /* 2760 * Do not reference db after its lock is dropped. 2761 * Another thread may evict it. 2762 */ 2763 mutex_exit(&db->db_mtx); 2764 2765 if (evict_dbuf) 2766 dnode_evict_bonus(dn); 2767 2768 dnode_rele(dn, db); 2769 } else if (db->db_buf == NULL) { 2770 /* 2771 * This is a special case: we never associated this 2772 * dbuf with any data allocated from the ARC. 2773 */ 2774 ASSERT(db->db_state == DB_UNCACHED || 2775 db->db_state == DB_NOFILL); 2776 dbuf_destroy(db); 2777 } else if (arc_released(db->db_buf)) { 2778 /* 2779 * This dbuf has anonymous data associated with it. 2780 */ 2781 dbuf_destroy(db); 2782 } else { 2783 boolean_t do_arc_evict = B_FALSE; 2784 blkptr_t bp; 2785 spa_t *spa = dmu_objset_spa(db->db_objset); 2786 2787 if (!DBUF_IS_CACHEABLE(db) && 2788 db->db_blkptr != NULL && 2789 !BP_IS_HOLE(db->db_blkptr) && 2790 !BP_IS_EMBEDDED(db->db_blkptr)) { 2791 do_arc_evict = B_TRUE; 2792 bp = *db->db_blkptr; 2793 } 2794 2795 if (!DBUF_IS_CACHEABLE(db) || 2796 db->db_pending_evict) { 2797 dbuf_destroy(db); 2798 } else if (!multilist_link_active(&db->db_cache_link)) { 2799 multilist_insert(dbuf_cache, db); 2800 (void) refcount_add_many(&dbuf_cache_size, 2801 db->db.db_size, db); 2802 mutex_exit(&db->db_mtx); 2803 2804 dbuf_evict_notify(); 2805 } 2806 2807 if (do_arc_evict) 2808 arc_freed(spa, &bp); 2809 } 2810 } else { 2811 mutex_exit(&db->db_mtx); 2812 } 2813 2814 } 2815 2816 #pragma weak dmu_buf_refcount = dbuf_refcount 2817 uint64_t 2818 dbuf_refcount(dmu_buf_impl_t *db) 2819 { 2820 return (refcount_count(&db->db_holds)); 2821 } 2822 2823 void * 2824 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 2825 dmu_buf_user_t *new_user) 2826 { 2827 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2828 2829 mutex_enter(&db->db_mtx); 2830 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2831 if (db->db_user == old_user) 2832 db->db_user = new_user; 2833 else 2834 old_user = db->db_user; 2835 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2836 mutex_exit(&db->db_mtx); 2837 2838 return (old_user); 2839 } 2840 2841 void * 2842 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2843 { 2844 return (dmu_buf_replace_user(db_fake, NULL, user)); 2845 } 2846 2847 void * 2848 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2849 { 2850 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2851 2852 db->db_user_immediate_evict = TRUE; 2853 return (dmu_buf_set_user(db_fake, user)); 2854 } 2855 2856 void * 2857 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2858 { 2859 return (dmu_buf_replace_user(db_fake, user, NULL)); 2860 } 2861 2862 void * 2863 dmu_buf_get_user(dmu_buf_t *db_fake) 2864 { 2865 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2866 2867 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2868 return (db->db_user); 2869 } 2870 2871 void 2872 dmu_buf_user_evict_wait() 2873 { 2874 taskq_wait(dbu_evict_taskq); 2875 } 2876 2877 blkptr_t * 2878 dmu_buf_get_blkptr(dmu_buf_t *db) 2879 { 2880 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2881 return (dbi->db_blkptr); 2882 } 2883 2884 objset_t * 2885 dmu_buf_get_objset(dmu_buf_t *db) 2886 { 2887 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2888 return (dbi->db_objset); 2889 } 2890 2891 dnode_t * 2892 dmu_buf_dnode_enter(dmu_buf_t *db) 2893 { 2894 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2895 DB_DNODE_ENTER(dbi); 2896 return (DB_DNODE(dbi)); 2897 } 2898 2899 void 2900 dmu_buf_dnode_exit(dmu_buf_t *db) 2901 { 2902 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2903 DB_DNODE_EXIT(dbi); 2904 } 2905 2906 static void 2907 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2908 { 2909 /* ASSERT(dmu_tx_is_syncing(tx) */ 2910 ASSERT(MUTEX_HELD(&db->db_mtx)); 2911 2912 if (db->db_blkptr != NULL) 2913 return; 2914 2915 if (db->db_blkid == DMU_SPILL_BLKID) { 2916 db->db_blkptr = &dn->dn_phys->dn_spill; 2917 BP_ZERO(db->db_blkptr); 2918 return; 2919 } 2920 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2921 /* 2922 * This buffer was allocated at a time when there was 2923 * no available blkptrs from the dnode, or it was 2924 * inappropriate to hook it in (i.e., nlevels mis-match). 2925 */ 2926 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2927 ASSERT(db->db_parent == NULL); 2928 db->db_parent = dn->dn_dbuf; 2929 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2930 DBUF_VERIFY(db); 2931 } else { 2932 dmu_buf_impl_t *parent = db->db_parent; 2933 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2934 2935 ASSERT(dn->dn_phys->dn_nlevels > 1); 2936 if (parent == NULL) { 2937 mutex_exit(&db->db_mtx); 2938 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2939 parent = dbuf_hold_level(dn, db->db_level + 1, 2940 db->db_blkid >> epbs, db); 2941 rw_exit(&dn->dn_struct_rwlock); 2942 mutex_enter(&db->db_mtx); 2943 db->db_parent = parent; 2944 } 2945 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2946 (db->db_blkid & ((1ULL << epbs) - 1)); 2947 DBUF_VERIFY(db); 2948 } 2949 } 2950 2951 static void 2952 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2953 { 2954 dmu_buf_impl_t *db = dr->dr_dbuf; 2955 dnode_t *dn; 2956 zio_t *zio; 2957 2958 ASSERT(dmu_tx_is_syncing(tx)); 2959 2960 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2961 2962 mutex_enter(&db->db_mtx); 2963 2964 ASSERT(db->db_level > 0); 2965 DBUF_VERIFY(db); 2966 2967 /* Read the block if it hasn't been read yet. */ 2968 if (db->db_buf == NULL) { 2969 mutex_exit(&db->db_mtx); 2970 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2971 mutex_enter(&db->db_mtx); 2972 } 2973 ASSERT3U(db->db_state, ==, DB_CACHED); 2974 ASSERT(db->db_buf != NULL); 2975 2976 DB_DNODE_ENTER(db); 2977 dn = DB_DNODE(db); 2978 /* Indirect block size must match what the dnode thinks it is. */ 2979 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2980 dbuf_check_blkptr(dn, db); 2981 DB_DNODE_EXIT(db); 2982 2983 /* Provide the pending dirty record to child dbufs */ 2984 db->db_data_pending = dr; 2985 2986 mutex_exit(&db->db_mtx); 2987 dbuf_write(dr, db->db_buf, tx); 2988 2989 zio = dr->dr_zio; 2990 mutex_enter(&dr->dt.di.dr_mtx); 2991 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 2992 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2993 mutex_exit(&dr->dt.di.dr_mtx); 2994 zio_nowait(zio); 2995 } 2996 2997 static void 2998 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2999 { 3000 arc_buf_t **datap = &dr->dt.dl.dr_data; 3001 dmu_buf_impl_t *db = dr->dr_dbuf; 3002 dnode_t *dn; 3003 objset_t *os; 3004 uint64_t txg = tx->tx_txg; 3005 3006 ASSERT(dmu_tx_is_syncing(tx)); 3007 3008 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3009 3010 mutex_enter(&db->db_mtx); 3011 /* 3012 * To be synced, we must be dirtied. But we 3013 * might have been freed after the dirty. 3014 */ 3015 if (db->db_state == DB_UNCACHED) { 3016 /* This buffer has been freed since it was dirtied */ 3017 ASSERT(db->db.db_data == NULL); 3018 } else if (db->db_state == DB_FILL) { 3019 /* This buffer was freed and is now being re-filled */ 3020 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3021 } else { 3022 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3023 } 3024 DBUF_VERIFY(db); 3025 3026 DB_DNODE_ENTER(db); 3027 dn = DB_DNODE(db); 3028 3029 if (db->db_blkid == DMU_SPILL_BLKID) { 3030 mutex_enter(&dn->dn_mtx); 3031 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 3032 mutex_exit(&dn->dn_mtx); 3033 } 3034 3035 /* 3036 * If this is a bonus buffer, simply copy the bonus data into the 3037 * dnode. It will be written out when the dnode is synced (and it 3038 * will be synced, since it must have been dirty for dbuf_sync to 3039 * be called). 3040 */ 3041 if (db->db_blkid == DMU_BONUS_BLKID) { 3042 dbuf_dirty_record_t **drp; 3043 3044 ASSERT(*datap != NULL); 3045 ASSERT0(db->db_level); 3046 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 3047 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 3048 DB_DNODE_EXIT(db); 3049 3050 if (*datap != db->db.db_data) { 3051 zio_buf_free(*datap, DN_MAX_BONUSLEN); 3052 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 3053 } 3054 db->db_data_pending = NULL; 3055 drp = &db->db_last_dirty; 3056 while (*drp != dr) 3057 drp = &(*drp)->dr_next; 3058 ASSERT(dr->dr_next == NULL); 3059 ASSERT(dr->dr_dbuf == db); 3060 *drp = dr->dr_next; 3061 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3062 ASSERT(db->db_dirtycnt > 0); 3063 db->db_dirtycnt -= 1; 3064 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 3065 return; 3066 } 3067 3068 os = dn->dn_objset; 3069 3070 /* 3071 * This function may have dropped the db_mtx lock allowing a dmu_sync 3072 * operation to sneak in. As a result, we need to ensure that we 3073 * don't check the dr_override_state until we have returned from 3074 * dbuf_check_blkptr. 3075 */ 3076 dbuf_check_blkptr(dn, db); 3077 3078 /* 3079 * If this buffer is in the middle of an immediate write, 3080 * wait for the synchronous IO to complete. 3081 */ 3082 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 3083 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 3084 cv_wait(&db->db_changed, &db->db_mtx); 3085 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 3086 } 3087 3088 if (db->db_state != DB_NOFILL && 3089 dn->dn_object != DMU_META_DNODE_OBJECT && 3090 refcount_count(&db->db_holds) > 1 && 3091 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 3092 *datap == db->db_buf) { 3093 /* 3094 * If this buffer is currently "in use" (i.e., there 3095 * are active holds and db_data still references it), 3096 * then make a copy before we start the write so that 3097 * any modifications from the open txg will not leak 3098 * into this write. 3099 * 3100 * NOTE: this copy does not need to be made for 3101 * objects only modified in the syncing context (e.g. 3102 * DNONE_DNODE blocks). 3103 */ 3104 int psize = arc_buf_size(*datap); 3105 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 3106 enum zio_compress compress_type = arc_get_compression(*datap); 3107 3108 if (compress_type == ZIO_COMPRESS_OFF) { 3109 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 3110 } else { 3111 ASSERT3U(type, ==, ARC_BUFC_DATA); 3112 int lsize = arc_buf_lsize(*datap); 3113 *datap = arc_alloc_compressed_buf(os->os_spa, db, 3114 psize, lsize, compress_type); 3115 } 3116 bcopy(db->db.db_data, (*datap)->b_data, psize); 3117 } 3118 db->db_data_pending = dr; 3119 3120 mutex_exit(&db->db_mtx); 3121 3122 dbuf_write(dr, *datap, tx); 3123 3124 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3125 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 3126 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 3127 DB_DNODE_EXIT(db); 3128 } else { 3129 /* 3130 * Although zio_nowait() does not "wait for an IO", it does 3131 * initiate the IO. If this is an empty write it seems plausible 3132 * that the IO could actually be completed before the nowait 3133 * returns. We need to DB_DNODE_EXIT() first in case 3134 * zio_nowait() invalidates the dbuf. 3135 */ 3136 DB_DNODE_EXIT(db); 3137 zio_nowait(dr->dr_zio); 3138 } 3139 } 3140 3141 void 3142 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 3143 { 3144 dbuf_dirty_record_t *dr; 3145 3146 while (dr = list_head(list)) { 3147 if (dr->dr_zio != NULL) { 3148 /* 3149 * If we find an already initialized zio then we 3150 * are processing the meta-dnode, and we have finished. 3151 * The dbufs for all dnodes are put back on the list 3152 * during processing, so that we can zio_wait() 3153 * these IOs after initiating all child IOs. 3154 */ 3155 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 3156 DMU_META_DNODE_OBJECT); 3157 break; 3158 } 3159 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 3160 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 3161 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 3162 } 3163 list_remove(list, dr); 3164 if (dr->dr_dbuf->db_level > 0) 3165 dbuf_sync_indirect(dr, tx); 3166 else 3167 dbuf_sync_leaf(dr, tx); 3168 } 3169 } 3170 3171 /* ARGSUSED */ 3172 static void 3173 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3174 { 3175 dmu_buf_impl_t *db = vdb; 3176 dnode_t *dn; 3177 blkptr_t *bp = zio->io_bp; 3178 blkptr_t *bp_orig = &zio->io_bp_orig; 3179 spa_t *spa = zio->io_spa; 3180 int64_t delta; 3181 uint64_t fill = 0; 3182 int i; 3183 3184 ASSERT3P(db->db_blkptr, !=, NULL); 3185 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 3186 3187 DB_DNODE_ENTER(db); 3188 dn = DB_DNODE(db); 3189 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 3190 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 3191 zio->io_prev_space_delta = delta; 3192 3193 if (bp->blk_birth != 0) { 3194 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 3195 BP_GET_TYPE(bp) == dn->dn_type) || 3196 (db->db_blkid == DMU_SPILL_BLKID && 3197 BP_GET_TYPE(bp) == dn->dn_bonustype) || 3198 BP_IS_EMBEDDED(bp)); 3199 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 3200 } 3201 3202 mutex_enter(&db->db_mtx); 3203 3204 #ifdef ZFS_DEBUG 3205 if (db->db_blkid == DMU_SPILL_BLKID) { 3206 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3207 ASSERT(!(BP_IS_HOLE(bp)) && 3208 db->db_blkptr == &dn->dn_phys->dn_spill); 3209 } 3210 #endif 3211 3212 if (db->db_level == 0) { 3213 mutex_enter(&dn->dn_mtx); 3214 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 3215 db->db_blkid != DMU_SPILL_BLKID) 3216 dn->dn_phys->dn_maxblkid = db->db_blkid; 3217 mutex_exit(&dn->dn_mtx); 3218 3219 if (dn->dn_type == DMU_OT_DNODE) { 3220 dnode_phys_t *dnp = db->db.db_data; 3221 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 3222 i--, dnp++) { 3223 if (dnp->dn_type != DMU_OT_NONE) 3224 fill++; 3225 } 3226 } else { 3227 if (BP_IS_HOLE(bp)) { 3228 fill = 0; 3229 } else { 3230 fill = 1; 3231 } 3232 } 3233 } else { 3234 blkptr_t *ibp = db->db.db_data; 3235 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3236 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 3237 if (BP_IS_HOLE(ibp)) 3238 continue; 3239 fill += BP_GET_FILL(ibp); 3240 } 3241 } 3242 DB_DNODE_EXIT(db); 3243 3244 if (!BP_IS_EMBEDDED(bp)) 3245 bp->blk_fill = fill; 3246 3247 mutex_exit(&db->db_mtx); 3248 3249 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3250 *db->db_blkptr = *bp; 3251 rw_exit(&dn->dn_struct_rwlock); 3252 } 3253 3254 /* ARGSUSED */ 3255 /* 3256 * This function gets called just prior to running through the compression 3257 * stage of the zio pipeline. If we're an indirect block comprised of only 3258 * holes, then we want this indirect to be compressed away to a hole. In 3259 * order to do that we must zero out any information about the holes that 3260 * this indirect points to prior to before we try to compress it. 3261 */ 3262 static void 3263 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3264 { 3265 dmu_buf_impl_t *db = vdb; 3266 dnode_t *dn; 3267 blkptr_t *bp; 3268 unsigned int epbs, i; 3269 3270 ASSERT3U(db->db_level, >, 0); 3271 DB_DNODE_ENTER(db); 3272 dn = DB_DNODE(db); 3273 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3274 ASSERT3U(epbs, <, 31); 3275 3276 /* Determine if all our children are holes */ 3277 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { 3278 if (!BP_IS_HOLE(bp)) 3279 break; 3280 } 3281 3282 /* 3283 * If all the children are holes, then zero them all out so that 3284 * we may get compressed away. 3285 */ 3286 if (i == 1 << epbs) { 3287 /* 3288 * We only found holes. Grab the rwlock to prevent 3289 * anybody from reading the blocks we're about to 3290 * zero out. 3291 */ 3292 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3293 bzero(db->db.db_data, db->db.db_size); 3294 rw_exit(&dn->dn_struct_rwlock); 3295 } 3296 DB_DNODE_EXIT(db); 3297 } 3298 3299 /* 3300 * The SPA will call this callback several times for each zio - once 3301 * for every physical child i/o (zio->io_phys_children times). This 3302 * allows the DMU to monitor the progress of each logical i/o. For example, 3303 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 3304 * block. There may be a long delay before all copies/fragments are completed, 3305 * so this callback allows us to retire dirty space gradually, as the physical 3306 * i/os complete. 3307 */ 3308 /* ARGSUSED */ 3309 static void 3310 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 3311 { 3312 dmu_buf_impl_t *db = arg; 3313 objset_t *os = db->db_objset; 3314 dsl_pool_t *dp = dmu_objset_pool(os); 3315 dbuf_dirty_record_t *dr; 3316 int delta = 0; 3317 3318 dr = db->db_data_pending; 3319 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 3320 3321 /* 3322 * The callback will be called io_phys_children times. Retire one 3323 * portion of our dirty space each time we are called. Any rounding 3324 * error will be cleaned up by dsl_pool_sync()'s call to 3325 * dsl_pool_undirty_space(). 3326 */ 3327 delta = dr->dr_accounted / zio->io_phys_children; 3328 dsl_pool_undirty_space(dp, delta, zio->io_txg); 3329 } 3330 3331 /* ARGSUSED */ 3332 static void 3333 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 3334 { 3335 dmu_buf_impl_t *db = vdb; 3336 blkptr_t *bp_orig = &zio->io_bp_orig; 3337 blkptr_t *bp = db->db_blkptr; 3338 objset_t *os = db->db_objset; 3339 dmu_tx_t *tx = os->os_synctx; 3340 dbuf_dirty_record_t **drp, *dr; 3341 3342 ASSERT0(zio->io_error); 3343 ASSERT(db->db_blkptr == bp); 3344 3345 /* 3346 * For nopwrites and rewrites we ensure that the bp matches our 3347 * original and bypass all the accounting. 3348 */ 3349 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 3350 ASSERT(BP_EQUAL(bp, bp_orig)); 3351 } else { 3352 dsl_dataset_t *ds = os->os_dsl_dataset; 3353 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 3354 dsl_dataset_block_born(ds, bp, tx); 3355 } 3356 3357 mutex_enter(&db->db_mtx); 3358 3359 DBUF_VERIFY(db); 3360 3361 drp = &db->db_last_dirty; 3362 while ((dr = *drp) != db->db_data_pending) 3363 drp = &dr->dr_next; 3364 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3365 ASSERT(dr->dr_dbuf == db); 3366 ASSERT(dr->dr_next == NULL); 3367 *drp = dr->dr_next; 3368 3369 #ifdef ZFS_DEBUG 3370 if (db->db_blkid == DMU_SPILL_BLKID) { 3371 dnode_t *dn; 3372 3373 DB_DNODE_ENTER(db); 3374 dn = DB_DNODE(db); 3375 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3376 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3377 db->db_blkptr == &dn->dn_phys->dn_spill); 3378 DB_DNODE_EXIT(db); 3379 } 3380 #endif 3381 3382 if (db->db_level == 0) { 3383 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3384 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3385 if (db->db_state != DB_NOFILL) { 3386 if (dr->dt.dl.dr_data != db->db_buf) 3387 arc_buf_destroy(dr->dt.dl.dr_data, db); 3388 } 3389 } else { 3390 dnode_t *dn; 3391 3392 DB_DNODE_ENTER(db); 3393 dn = DB_DNODE(db); 3394 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3395 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3396 if (!BP_IS_HOLE(db->db_blkptr)) { 3397 int epbs = 3398 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3399 ASSERT3U(db->db_blkid, <=, 3400 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3401 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3402 db->db.db_size); 3403 } 3404 DB_DNODE_EXIT(db); 3405 mutex_destroy(&dr->dt.di.dr_mtx); 3406 list_destroy(&dr->dt.di.dr_children); 3407 } 3408 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3409 3410 cv_broadcast(&db->db_changed); 3411 ASSERT(db->db_dirtycnt > 0); 3412 db->db_dirtycnt -= 1; 3413 db->db_data_pending = NULL; 3414 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 3415 } 3416 3417 static void 3418 dbuf_write_nofill_ready(zio_t *zio) 3419 { 3420 dbuf_write_ready(zio, NULL, zio->io_private); 3421 } 3422 3423 static void 3424 dbuf_write_nofill_done(zio_t *zio) 3425 { 3426 dbuf_write_done(zio, NULL, zio->io_private); 3427 } 3428 3429 static void 3430 dbuf_write_override_ready(zio_t *zio) 3431 { 3432 dbuf_dirty_record_t *dr = zio->io_private; 3433 dmu_buf_impl_t *db = dr->dr_dbuf; 3434 3435 dbuf_write_ready(zio, NULL, db); 3436 } 3437 3438 static void 3439 dbuf_write_override_done(zio_t *zio) 3440 { 3441 dbuf_dirty_record_t *dr = zio->io_private; 3442 dmu_buf_impl_t *db = dr->dr_dbuf; 3443 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3444 3445 mutex_enter(&db->db_mtx); 3446 if (!BP_EQUAL(zio->io_bp, obp)) { 3447 if (!BP_IS_HOLE(obp)) 3448 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3449 arc_release(dr->dt.dl.dr_data, db); 3450 } 3451 mutex_exit(&db->db_mtx); 3452 3453 dbuf_write_done(zio, NULL, db); 3454 } 3455 3456 /* Issue I/O to commit a dirty buffer to disk. */ 3457 static void 3458 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 3459 { 3460 dmu_buf_impl_t *db = dr->dr_dbuf; 3461 dnode_t *dn; 3462 objset_t *os; 3463 dmu_buf_impl_t *parent = db->db_parent; 3464 uint64_t txg = tx->tx_txg; 3465 zbookmark_phys_t zb; 3466 zio_prop_t zp; 3467 zio_t *zio; 3468 int wp_flag = 0; 3469 3470 ASSERT(dmu_tx_is_syncing(tx)); 3471 3472 DB_DNODE_ENTER(db); 3473 dn = DB_DNODE(db); 3474 os = dn->dn_objset; 3475 3476 if (db->db_state != DB_NOFILL) { 3477 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 3478 /* 3479 * Private object buffers are released here rather 3480 * than in dbuf_dirty() since they are only modified 3481 * in the syncing context and we don't want the 3482 * overhead of making multiple copies of the data. 3483 */ 3484 if (BP_IS_HOLE(db->db_blkptr)) { 3485 arc_buf_thaw(data); 3486 } else { 3487 dbuf_release_bp(db); 3488 } 3489 } 3490 } 3491 3492 if (parent != dn->dn_dbuf) { 3493 /* Our parent is an indirect block. */ 3494 /* We have a dirty parent that has been scheduled for write. */ 3495 ASSERT(parent && parent->db_data_pending); 3496 /* Our parent's buffer is one level closer to the dnode. */ 3497 ASSERT(db->db_level == parent->db_level-1); 3498 /* 3499 * We're about to modify our parent's db_data by modifying 3500 * our block pointer, so the parent must be released. 3501 */ 3502 ASSERT(arc_released(parent->db_buf)); 3503 zio = parent->db_data_pending->dr_zio; 3504 } else { 3505 /* Our parent is the dnode itself. */ 3506 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 3507 db->db_blkid != DMU_SPILL_BLKID) || 3508 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 3509 if (db->db_blkid != DMU_SPILL_BLKID) 3510 ASSERT3P(db->db_blkptr, ==, 3511 &dn->dn_phys->dn_blkptr[db->db_blkid]); 3512 zio = dn->dn_zio; 3513 } 3514 3515 ASSERT(db->db_level == 0 || data == db->db_buf); 3516 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 3517 ASSERT(zio); 3518 3519 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 3520 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 3521 db->db.db_object, db->db_level, db->db_blkid); 3522 3523 if (db->db_blkid == DMU_SPILL_BLKID) 3524 wp_flag = WP_SPILL; 3525 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 3526 3527 dmu_write_policy(os, dn, db->db_level, wp_flag, 3528 (data != NULL && arc_get_compression(data) != ZIO_COMPRESS_OFF) ? 3529 arc_get_compression(data) : ZIO_COMPRESS_INHERIT, &zp); 3530 DB_DNODE_EXIT(db); 3531 3532 /* 3533 * We copy the blkptr now (rather than when we instantiate the dirty 3534 * record), because its value can change between open context and 3535 * syncing context. We do not need to hold dn_struct_rwlock to read 3536 * db_blkptr because we are in syncing context. 3537 */ 3538 dr->dr_bp_copy = *db->db_blkptr; 3539 3540 if (db->db_level == 0 && 3541 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 3542 /* 3543 * The BP for this block has been provided by open context 3544 * (by dmu_sync() or dmu_buf_write_embedded()). 3545 */ 3546 void *contents = (data != NULL) ? data->b_data : NULL; 3547 3548 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy, 3549 contents, db->db.db_size, db->db.db_size, &zp, 3550 dbuf_write_override_ready, NULL, NULL, 3551 dbuf_write_override_done, 3552 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3553 mutex_enter(&db->db_mtx); 3554 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 3555 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 3556 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 3557 mutex_exit(&db->db_mtx); 3558 } else if (db->db_state == DB_NOFILL) { 3559 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 3560 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 3561 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3562 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 3563 dbuf_write_nofill_ready, NULL, NULL, 3564 dbuf_write_nofill_done, db, 3565 ZIO_PRIORITY_ASYNC_WRITE, 3566 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 3567 } else { 3568 ASSERT(arc_released(data)); 3569 3570 /* 3571 * For indirect blocks, we want to setup the children 3572 * ready callback so that we can properly handle an indirect 3573 * block that only contains holes. 3574 */ 3575 arc_done_func_t *children_ready_cb = NULL; 3576 if (db->db_level != 0) 3577 children_ready_cb = dbuf_write_children_ready; 3578 3579 dr->dr_zio = arc_write(zio, os->os_spa, txg, 3580 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 3581 &zp, dbuf_write_ready, children_ready_cb, 3582 dbuf_write_physdone, dbuf_write_done, db, 3583 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3584 } 3585 } 3586