xref: /illumos-gate/usr/src/uts/common/fs/zfs/dbuf.c (revision e9542cf7b65f0e77a62389967bddd9ef73c78bb4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
49 
50 uint_t zfs_dbuf_evict_key;
51 
52 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
53 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
54 
55 #ifndef __lint
56 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
57     dmu_buf_evict_func_t *evict_func_sync,
58     dmu_buf_evict_func_t *evict_func_async,
59     dmu_buf_t **clear_on_evict_dbufp);
60 #endif /* ! __lint */
61 
62 /*
63  * Global data structures and functions for the dbuf cache.
64  */
65 static kmem_cache_t *dbuf_kmem_cache;
66 static taskq_t *dbu_evict_taskq;
67 
68 static kthread_t *dbuf_cache_evict_thread;
69 static kmutex_t dbuf_evict_lock;
70 static kcondvar_t dbuf_evict_cv;
71 static boolean_t dbuf_evict_thread_exit;
72 
73 /*
74  * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
75  * are not currently held but have been recently released. These dbufs
76  * are not eligible for arc eviction until they are aged out of the cache.
77  * Dbufs are added to the dbuf cache once the last hold is released. If a
78  * dbuf is later accessed and still exists in the dbuf cache, then it will
79  * be removed from the cache and later re-added to the head of the cache.
80  * Dbufs that are aged out of the cache will be immediately destroyed and
81  * become eligible for arc eviction.
82  */
83 static multilist_t *dbuf_cache;
84 static refcount_t dbuf_cache_size;
85 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024;
86 
87 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
88 int dbuf_cache_max_shift = 5;
89 
90 /*
91  * The dbuf cache uses a three-stage eviction policy:
92  *	- A low water marker designates when the dbuf eviction thread
93  *	should stop evicting from the dbuf cache.
94  *	- When we reach the maximum size (aka mid water mark), we
95  *	signal the eviction thread to run.
96  *	- The high water mark indicates when the eviction thread
97  *	is unable to keep up with the incoming load and eviction must
98  *	happen in the context of the calling thread.
99  *
100  * The dbuf cache:
101  *                                                 (max size)
102  *                                      low water   mid water   hi water
103  * +----------------------------------------+----------+----------+
104  * |                                        |          |          |
105  * |                                        |          |          |
106  * |                                        |          |          |
107  * |                                        |          |          |
108  * +----------------------------------------+----------+----------+
109  *                                        stop        signal     evict
110  *                                      evicting     eviction   directly
111  *                                                    thread
112  *
113  * The high and low water marks indicate the operating range for the eviction
114  * thread. The low water mark is, by default, 90% of the total size of the
115  * cache and the high water mark is at 110% (both of these percentages can be
116  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
117  * respectively). The eviction thread will try to ensure that the cache remains
118  * within this range by waking up every second and checking if the cache is
119  * above the low water mark. The thread can also be woken up by callers adding
120  * elements into the cache if the cache is larger than the mid water (i.e max
121  * cache size). Once the eviction thread is woken up and eviction is required,
122  * it will continue evicting buffers until it's able to reduce the cache size
123  * to the low water mark. If the cache size continues to grow and hits the high
124  * water mark, then callers adding elments to the cache will begin to evict
125  * directly from the cache until the cache is no longer above the high water
126  * mark.
127  */
128 
129 /*
130  * The percentage above and below the maximum cache size.
131  */
132 uint_t dbuf_cache_hiwater_pct = 10;
133 uint_t dbuf_cache_lowater_pct = 10;
134 
135 /* ARGSUSED */
136 static int
137 dbuf_cons(void *vdb, void *unused, int kmflag)
138 {
139 	dmu_buf_impl_t *db = vdb;
140 	bzero(db, sizeof (dmu_buf_impl_t));
141 
142 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
143 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
144 	multilist_link_init(&db->db_cache_link);
145 	refcount_create(&db->db_holds);
146 
147 	return (0);
148 }
149 
150 /* ARGSUSED */
151 static void
152 dbuf_dest(void *vdb, void *unused)
153 {
154 	dmu_buf_impl_t *db = vdb;
155 	mutex_destroy(&db->db_mtx);
156 	cv_destroy(&db->db_changed);
157 	ASSERT(!multilist_link_active(&db->db_cache_link));
158 	refcount_destroy(&db->db_holds);
159 }
160 
161 /*
162  * dbuf hash table routines
163  */
164 static dbuf_hash_table_t dbuf_hash_table;
165 
166 static uint64_t dbuf_hash_count;
167 
168 static uint64_t
169 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
170 {
171 	uintptr_t osv = (uintptr_t)os;
172 	uint64_t crc = -1ULL;
173 
174 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
175 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
176 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
177 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
178 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
179 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
180 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
181 
182 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
183 
184 	return (crc);
185 }
186 
187 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
188 	((dbuf)->db.db_object == (obj) &&		\
189 	(dbuf)->db_objset == (os) &&			\
190 	(dbuf)->db_level == (level) &&			\
191 	(dbuf)->db_blkid == (blkid))
192 
193 dmu_buf_impl_t *
194 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
195 {
196 	dbuf_hash_table_t *h = &dbuf_hash_table;
197 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
198 	uint64_t idx = hv & h->hash_table_mask;
199 	dmu_buf_impl_t *db;
200 
201 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
202 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
203 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
204 			mutex_enter(&db->db_mtx);
205 			if (db->db_state != DB_EVICTING) {
206 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
207 				return (db);
208 			}
209 			mutex_exit(&db->db_mtx);
210 		}
211 	}
212 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
213 	return (NULL);
214 }
215 
216 static dmu_buf_impl_t *
217 dbuf_find_bonus(objset_t *os, uint64_t object)
218 {
219 	dnode_t *dn;
220 	dmu_buf_impl_t *db = NULL;
221 
222 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
223 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
224 		if (dn->dn_bonus != NULL) {
225 			db = dn->dn_bonus;
226 			mutex_enter(&db->db_mtx);
227 		}
228 		rw_exit(&dn->dn_struct_rwlock);
229 		dnode_rele(dn, FTAG);
230 	}
231 	return (db);
232 }
233 
234 /*
235  * Insert an entry into the hash table.  If there is already an element
236  * equal to elem in the hash table, then the already existing element
237  * will be returned and the new element will not be inserted.
238  * Otherwise returns NULL.
239  */
240 static dmu_buf_impl_t *
241 dbuf_hash_insert(dmu_buf_impl_t *db)
242 {
243 	dbuf_hash_table_t *h = &dbuf_hash_table;
244 	objset_t *os = db->db_objset;
245 	uint64_t obj = db->db.db_object;
246 	int level = db->db_level;
247 	uint64_t blkid = db->db_blkid;
248 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
249 	uint64_t idx = hv & h->hash_table_mask;
250 	dmu_buf_impl_t *dbf;
251 
252 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
253 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
254 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
255 			mutex_enter(&dbf->db_mtx);
256 			if (dbf->db_state != DB_EVICTING) {
257 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
258 				return (dbf);
259 			}
260 			mutex_exit(&dbf->db_mtx);
261 		}
262 	}
263 
264 	mutex_enter(&db->db_mtx);
265 	db->db_hash_next = h->hash_table[idx];
266 	h->hash_table[idx] = db;
267 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
268 	atomic_inc_64(&dbuf_hash_count);
269 
270 	return (NULL);
271 }
272 
273 /*
274  * Remove an entry from the hash table.  It must be in the EVICTING state.
275  */
276 static void
277 dbuf_hash_remove(dmu_buf_impl_t *db)
278 {
279 	dbuf_hash_table_t *h = &dbuf_hash_table;
280 	uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
281 	    db->db_level, db->db_blkid);
282 	uint64_t idx = hv & h->hash_table_mask;
283 	dmu_buf_impl_t *dbf, **dbp;
284 
285 	/*
286 	 * We musn't hold db_mtx to maintain lock ordering:
287 	 * DBUF_HASH_MUTEX > db_mtx.
288 	 */
289 	ASSERT(refcount_is_zero(&db->db_holds));
290 	ASSERT(db->db_state == DB_EVICTING);
291 	ASSERT(!MUTEX_HELD(&db->db_mtx));
292 
293 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
294 	dbp = &h->hash_table[idx];
295 	while ((dbf = *dbp) != db) {
296 		dbp = &dbf->db_hash_next;
297 		ASSERT(dbf != NULL);
298 	}
299 	*dbp = db->db_hash_next;
300 	db->db_hash_next = NULL;
301 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
302 	atomic_dec_64(&dbuf_hash_count);
303 }
304 
305 typedef enum {
306 	DBVU_EVICTING,
307 	DBVU_NOT_EVICTING
308 } dbvu_verify_type_t;
309 
310 static void
311 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
312 {
313 #ifdef ZFS_DEBUG
314 	int64_t holds;
315 
316 	if (db->db_user == NULL)
317 		return;
318 
319 	/* Only data blocks support the attachment of user data. */
320 	ASSERT(db->db_level == 0);
321 
322 	/* Clients must resolve a dbuf before attaching user data. */
323 	ASSERT(db->db.db_data != NULL);
324 	ASSERT3U(db->db_state, ==, DB_CACHED);
325 
326 	holds = refcount_count(&db->db_holds);
327 	if (verify_type == DBVU_EVICTING) {
328 		/*
329 		 * Immediate eviction occurs when holds == dirtycnt.
330 		 * For normal eviction buffers, holds is zero on
331 		 * eviction, except when dbuf_fix_old_data() calls
332 		 * dbuf_clear_data().  However, the hold count can grow
333 		 * during eviction even though db_mtx is held (see
334 		 * dmu_bonus_hold() for an example), so we can only
335 		 * test the generic invariant that holds >= dirtycnt.
336 		 */
337 		ASSERT3U(holds, >=, db->db_dirtycnt);
338 	} else {
339 		if (db->db_user_immediate_evict == TRUE)
340 			ASSERT3U(holds, >=, db->db_dirtycnt);
341 		else
342 			ASSERT3U(holds, >, 0);
343 	}
344 #endif
345 }
346 
347 static void
348 dbuf_evict_user(dmu_buf_impl_t *db)
349 {
350 	dmu_buf_user_t *dbu = db->db_user;
351 
352 	ASSERT(MUTEX_HELD(&db->db_mtx));
353 
354 	if (dbu == NULL)
355 		return;
356 
357 	dbuf_verify_user(db, DBVU_EVICTING);
358 	db->db_user = NULL;
359 
360 #ifdef ZFS_DEBUG
361 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
362 		*dbu->dbu_clear_on_evict_dbufp = NULL;
363 #endif
364 
365 	/*
366 	 * There are two eviction callbacks - one that we call synchronously
367 	 * and one that we invoke via a taskq.  The async one is useful for
368 	 * avoiding lock order reversals and limiting stack depth.
369 	 *
370 	 * Note that if we have a sync callback but no async callback,
371 	 * it's likely that the sync callback will free the structure
372 	 * containing the dbu.  In that case we need to take care to not
373 	 * dereference dbu after calling the sync evict func.
374 	 */
375 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
376 
377 	if (dbu->dbu_evict_func_sync != NULL)
378 		dbu->dbu_evict_func_sync(dbu);
379 
380 	if (has_async) {
381 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
382 		    dbu, 0, &dbu->dbu_tqent);
383 	}
384 }
385 
386 boolean_t
387 dbuf_is_metadata(dmu_buf_impl_t *db)
388 {
389 	if (db->db_level > 0) {
390 		return (B_TRUE);
391 	} else {
392 		boolean_t is_metadata;
393 
394 		DB_DNODE_ENTER(db);
395 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
396 		DB_DNODE_EXIT(db);
397 
398 		return (is_metadata);
399 	}
400 }
401 
402 /*
403  * This function *must* return indices evenly distributed between all
404  * sublists of the multilist. This is needed due to how the dbuf eviction
405  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
406  * distributed between all sublists and uses this assumption when
407  * deciding which sublist to evict from and how much to evict from it.
408  */
409 unsigned int
410 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
411 {
412 	dmu_buf_impl_t *db = obj;
413 
414 	/*
415 	 * The assumption here, is the hash value for a given
416 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
417 	 * (i.e. it's objset, object, level and blkid fields don't change).
418 	 * Thus, we don't need to store the dbuf's sublist index
419 	 * on insertion, as this index can be recalculated on removal.
420 	 *
421 	 * Also, the low order bits of the hash value are thought to be
422 	 * distributed evenly. Otherwise, in the case that the multilist
423 	 * has a power of two number of sublists, each sublists' usage
424 	 * would not be evenly distributed.
425 	 */
426 	return (dbuf_hash(db->db_objset, db->db.db_object,
427 	    db->db_level, db->db_blkid) %
428 	    multilist_get_num_sublists(ml));
429 }
430 
431 static inline boolean_t
432 dbuf_cache_above_hiwater(void)
433 {
434 	uint64_t dbuf_cache_hiwater_bytes =
435 	    (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
436 
437 	return (refcount_count(&dbuf_cache_size) >
438 	    dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
439 }
440 
441 static inline boolean_t
442 dbuf_cache_above_lowater(void)
443 {
444 	uint64_t dbuf_cache_lowater_bytes =
445 	    (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
446 
447 	return (refcount_count(&dbuf_cache_size) >
448 	    dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
449 }
450 
451 /*
452  * Evict the oldest eligible dbuf from the dbuf cache.
453  */
454 static void
455 dbuf_evict_one(void)
456 {
457 	int idx = multilist_get_random_index(dbuf_cache);
458 	multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
459 
460 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
461 
462 	/*
463 	 * Set the thread's tsd to indicate that it's processing evictions.
464 	 * Once a thread stops evicting from the dbuf cache it will
465 	 * reset its tsd to NULL.
466 	 */
467 	ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
468 	(void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
469 
470 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
471 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
472 		db = multilist_sublist_prev(mls, db);
473 	}
474 
475 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
476 	    multilist_sublist_t *, mls);
477 
478 	if (db != NULL) {
479 		multilist_sublist_remove(mls, db);
480 		multilist_sublist_unlock(mls);
481 		(void) refcount_remove_many(&dbuf_cache_size,
482 		    db->db.db_size, db);
483 		dbuf_destroy(db);
484 	} else {
485 		multilist_sublist_unlock(mls);
486 	}
487 	(void) tsd_set(zfs_dbuf_evict_key, NULL);
488 }
489 
490 /*
491  * The dbuf evict thread is responsible for aging out dbufs from the
492  * cache. Once the cache has reached it's maximum size, dbufs are removed
493  * and destroyed. The eviction thread will continue running until the size
494  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
495  * out of the cache it is destroyed and becomes eligible for arc eviction.
496  */
497 static void
498 dbuf_evict_thread(void)
499 {
500 	callb_cpr_t cpr;
501 
502 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
503 
504 	mutex_enter(&dbuf_evict_lock);
505 	while (!dbuf_evict_thread_exit) {
506 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
507 			CALLB_CPR_SAFE_BEGIN(&cpr);
508 			(void) cv_timedwait_hires(&dbuf_evict_cv,
509 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
510 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
511 		}
512 		mutex_exit(&dbuf_evict_lock);
513 
514 		/*
515 		 * Keep evicting as long as we're above the low water mark
516 		 * for the cache. We do this without holding the locks to
517 		 * minimize lock contention.
518 		 */
519 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
520 			dbuf_evict_one();
521 		}
522 
523 		mutex_enter(&dbuf_evict_lock);
524 	}
525 
526 	dbuf_evict_thread_exit = B_FALSE;
527 	cv_broadcast(&dbuf_evict_cv);
528 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
529 	thread_exit();
530 }
531 
532 /*
533  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
534  * If the dbuf cache is at its high water mark, then evict a dbuf from the
535  * dbuf cache using the callers context.
536  */
537 static void
538 dbuf_evict_notify(void)
539 {
540 
541 	/*
542 	 * We use thread specific data to track when a thread has
543 	 * started processing evictions. This allows us to avoid deeply
544 	 * nested stacks that would have a call flow similar to this:
545 	 *
546 	 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
547 	 *	^						|
548 	 *	|						|
549 	 *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
550 	 *
551 	 * The dbuf_eviction_thread will always have its tsd set until
552 	 * that thread exits. All other threads will only set their tsd
553 	 * if they are participating in the eviction process. This only
554 	 * happens if the eviction thread is unable to process evictions
555 	 * fast enough. To keep the dbuf cache size in check, other threads
556 	 * can evict from the dbuf cache directly. Those threads will set
557 	 * their tsd values so that we ensure that they only evict one dbuf
558 	 * from the dbuf cache.
559 	 */
560 	if (tsd_get(zfs_dbuf_evict_key) != NULL)
561 		return;
562 
563 	if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
564 		boolean_t evict_now = B_FALSE;
565 
566 		mutex_enter(&dbuf_evict_lock);
567 		if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
568 			evict_now = dbuf_cache_above_hiwater();
569 			cv_signal(&dbuf_evict_cv);
570 		}
571 		mutex_exit(&dbuf_evict_lock);
572 
573 		if (evict_now) {
574 			dbuf_evict_one();
575 		}
576 	}
577 }
578 
579 void
580 dbuf_init(void)
581 {
582 	uint64_t hsize = 1ULL << 16;
583 	dbuf_hash_table_t *h = &dbuf_hash_table;
584 	int i;
585 
586 	/*
587 	 * The hash table is big enough to fill all of physical memory
588 	 * with an average 4K block size.  The table will take up
589 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
590 	 */
591 	while (hsize * 4096 < physmem * PAGESIZE)
592 		hsize <<= 1;
593 
594 retry:
595 	h->hash_table_mask = hsize - 1;
596 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
597 	if (h->hash_table == NULL) {
598 		/* XXX - we should really return an error instead of assert */
599 		ASSERT(hsize > (1ULL << 10));
600 		hsize >>= 1;
601 		goto retry;
602 	}
603 
604 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
605 	    sizeof (dmu_buf_impl_t),
606 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
607 
608 	for (i = 0; i < DBUF_MUTEXES; i++)
609 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
610 
611 	/*
612 	 * Setup the parameters for the dbuf cache. We cap the size of the
613 	 * dbuf cache to 1/32nd (default) of the size of the ARC.
614 	 */
615 	dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
616 	    arc_max_bytes() >> dbuf_cache_max_shift);
617 
618 	/*
619 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
620 	 * configuration is not required.
621 	 */
622 	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
623 
624 	dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
625 	    offsetof(dmu_buf_impl_t, db_cache_link),
626 	    dbuf_cache_multilist_index_func);
627 	refcount_create(&dbuf_cache_size);
628 
629 	tsd_create(&zfs_dbuf_evict_key, NULL);
630 	dbuf_evict_thread_exit = B_FALSE;
631 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
632 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
633 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
634 	    NULL, 0, &p0, TS_RUN, minclsyspri);
635 }
636 
637 void
638 dbuf_fini(void)
639 {
640 	dbuf_hash_table_t *h = &dbuf_hash_table;
641 	int i;
642 
643 	for (i = 0; i < DBUF_MUTEXES; i++)
644 		mutex_destroy(&h->hash_mutexes[i]);
645 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
646 	kmem_cache_destroy(dbuf_kmem_cache);
647 	taskq_destroy(dbu_evict_taskq);
648 
649 	mutex_enter(&dbuf_evict_lock);
650 	dbuf_evict_thread_exit = B_TRUE;
651 	while (dbuf_evict_thread_exit) {
652 		cv_signal(&dbuf_evict_cv);
653 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
654 	}
655 	mutex_exit(&dbuf_evict_lock);
656 	tsd_destroy(&zfs_dbuf_evict_key);
657 
658 	mutex_destroy(&dbuf_evict_lock);
659 	cv_destroy(&dbuf_evict_cv);
660 
661 	refcount_destroy(&dbuf_cache_size);
662 	multilist_destroy(dbuf_cache);
663 }
664 
665 /*
666  * Other stuff.
667  */
668 
669 #ifdef ZFS_DEBUG
670 static void
671 dbuf_verify(dmu_buf_impl_t *db)
672 {
673 	dnode_t *dn;
674 	dbuf_dirty_record_t *dr;
675 
676 	ASSERT(MUTEX_HELD(&db->db_mtx));
677 
678 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
679 		return;
680 
681 	ASSERT(db->db_objset != NULL);
682 	DB_DNODE_ENTER(db);
683 	dn = DB_DNODE(db);
684 	if (dn == NULL) {
685 		ASSERT(db->db_parent == NULL);
686 		ASSERT(db->db_blkptr == NULL);
687 	} else {
688 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
689 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
690 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
691 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
692 		    db->db_blkid == DMU_SPILL_BLKID ||
693 		    !avl_is_empty(&dn->dn_dbufs));
694 	}
695 	if (db->db_blkid == DMU_BONUS_BLKID) {
696 		ASSERT(dn != NULL);
697 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
698 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
699 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
700 		ASSERT(dn != NULL);
701 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
702 		ASSERT0(db->db.db_offset);
703 	} else {
704 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
705 	}
706 
707 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
708 		ASSERT(dr->dr_dbuf == db);
709 
710 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
711 		ASSERT(dr->dr_dbuf == db);
712 
713 	/*
714 	 * We can't assert that db_size matches dn_datablksz because it
715 	 * can be momentarily different when another thread is doing
716 	 * dnode_set_blksz().
717 	 */
718 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
719 		dr = db->db_data_pending;
720 		/*
721 		 * It should only be modified in syncing context, so
722 		 * make sure we only have one copy of the data.
723 		 */
724 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
725 	}
726 
727 	/* verify db->db_blkptr */
728 	if (db->db_blkptr) {
729 		if (db->db_parent == dn->dn_dbuf) {
730 			/* db is pointed to by the dnode */
731 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
732 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
733 				ASSERT(db->db_parent == NULL);
734 			else
735 				ASSERT(db->db_parent != NULL);
736 			if (db->db_blkid != DMU_SPILL_BLKID)
737 				ASSERT3P(db->db_blkptr, ==,
738 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
739 		} else {
740 			/* db is pointed to by an indirect block */
741 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
742 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
743 			ASSERT3U(db->db_parent->db.db_object, ==,
744 			    db->db.db_object);
745 			/*
746 			 * dnode_grow_indblksz() can make this fail if we don't
747 			 * have the struct_rwlock.  XXX indblksz no longer
748 			 * grows.  safe to do this now?
749 			 */
750 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
751 				ASSERT3P(db->db_blkptr, ==,
752 				    ((blkptr_t *)db->db_parent->db.db_data +
753 				    db->db_blkid % epb));
754 			}
755 		}
756 	}
757 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
758 	    (db->db_buf == NULL || db->db_buf->b_data) &&
759 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
760 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
761 		/*
762 		 * If the blkptr isn't set but they have nonzero data,
763 		 * it had better be dirty, otherwise we'll lose that
764 		 * data when we evict this buffer.
765 		 *
766 		 * There is an exception to this rule for indirect blocks; in
767 		 * this case, if the indirect block is a hole, we fill in a few
768 		 * fields on each of the child blocks (importantly, birth time)
769 		 * to prevent hole birth times from being lost when you
770 		 * partially fill in a hole.
771 		 */
772 		if (db->db_dirtycnt == 0) {
773 			if (db->db_level == 0) {
774 				uint64_t *buf = db->db.db_data;
775 				int i;
776 
777 				for (i = 0; i < db->db.db_size >> 3; i++) {
778 					ASSERT(buf[i] == 0);
779 				}
780 			} else {
781 				blkptr_t *bps = db->db.db_data;
782 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
783 				    db->db.db_size);
784 				/*
785 				 * We want to verify that all the blkptrs in the
786 				 * indirect block are holes, but we may have
787 				 * automatically set up a few fields for them.
788 				 * We iterate through each blkptr and verify
789 				 * they only have those fields set.
790 				 */
791 				for (int i = 0;
792 				    i < db->db.db_size / sizeof (blkptr_t);
793 				    i++) {
794 					blkptr_t *bp = &bps[i];
795 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
796 					    &bp->blk_cksum));
797 					ASSERT(
798 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
799 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
800 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
801 					ASSERT0(bp->blk_fill);
802 					ASSERT0(bp->blk_pad[0]);
803 					ASSERT0(bp->blk_pad[1]);
804 					ASSERT(!BP_IS_EMBEDDED(bp));
805 					ASSERT(BP_IS_HOLE(bp));
806 					ASSERT0(bp->blk_phys_birth);
807 				}
808 			}
809 		}
810 	}
811 	DB_DNODE_EXIT(db);
812 }
813 #endif
814 
815 static void
816 dbuf_clear_data(dmu_buf_impl_t *db)
817 {
818 	ASSERT(MUTEX_HELD(&db->db_mtx));
819 	dbuf_evict_user(db);
820 	ASSERT3P(db->db_buf, ==, NULL);
821 	db->db.db_data = NULL;
822 	if (db->db_state != DB_NOFILL)
823 		db->db_state = DB_UNCACHED;
824 }
825 
826 static void
827 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
828 {
829 	ASSERT(MUTEX_HELD(&db->db_mtx));
830 	ASSERT(buf != NULL);
831 
832 	db->db_buf = buf;
833 	ASSERT(buf->b_data != NULL);
834 	db->db.db_data = buf->b_data;
835 }
836 
837 /*
838  * Loan out an arc_buf for read.  Return the loaned arc_buf.
839  */
840 arc_buf_t *
841 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
842 {
843 	arc_buf_t *abuf;
844 
845 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
846 	mutex_enter(&db->db_mtx);
847 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
848 		int blksz = db->db.db_size;
849 		spa_t *spa = db->db_objset->os_spa;
850 
851 		mutex_exit(&db->db_mtx);
852 		abuf = arc_loan_buf(spa, B_FALSE, blksz);
853 		bcopy(db->db.db_data, abuf->b_data, blksz);
854 	} else {
855 		abuf = db->db_buf;
856 		arc_loan_inuse_buf(abuf, db);
857 		db->db_buf = NULL;
858 		dbuf_clear_data(db);
859 		mutex_exit(&db->db_mtx);
860 	}
861 	return (abuf);
862 }
863 
864 /*
865  * Calculate which level n block references the data at the level 0 offset
866  * provided.
867  */
868 uint64_t
869 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
870 {
871 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
872 		/*
873 		 * The level n blkid is equal to the level 0 blkid divided by
874 		 * the number of level 0s in a level n block.
875 		 *
876 		 * The level 0 blkid is offset >> datablkshift =
877 		 * offset / 2^datablkshift.
878 		 *
879 		 * The number of level 0s in a level n is the number of block
880 		 * pointers in an indirect block, raised to the power of level.
881 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
882 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
883 		 *
884 		 * Thus, the level n blkid is: offset /
885 		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
886 		 * = offset / 2^(datablkshift + level *
887 		 *   (indblkshift - SPA_BLKPTRSHIFT))
888 		 * = offset >> (datablkshift + level *
889 		 *   (indblkshift - SPA_BLKPTRSHIFT))
890 		 */
891 		return (offset >> (dn->dn_datablkshift + level *
892 		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
893 	} else {
894 		ASSERT3U(offset, <, dn->dn_datablksz);
895 		return (0);
896 	}
897 }
898 
899 static void
900 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
901 {
902 	dmu_buf_impl_t *db = vdb;
903 
904 	mutex_enter(&db->db_mtx);
905 	ASSERT3U(db->db_state, ==, DB_READ);
906 	/*
907 	 * All reads are synchronous, so we must have a hold on the dbuf
908 	 */
909 	ASSERT(refcount_count(&db->db_holds) > 0);
910 	ASSERT(db->db_buf == NULL);
911 	ASSERT(db->db.db_data == NULL);
912 	if (db->db_level == 0 && db->db_freed_in_flight) {
913 		/* we were freed in flight; disregard any error */
914 		arc_release(buf, db);
915 		bzero(buf->b_data, db->db.db_size);
916 		arc_buf_freeze(buf);
917 		db->db_freed_in_flight = FALSE;
918 		dbuf_set_data(db, buf);
919 		db->db_state = DB_CACHED;
920 	} else if (zio == NULL || zio->io_error == 0) {
921 		dbuf_set_data(db, buf);
922 		db->db_state = DB_CACHED;
923 	} else {
924 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
925 		ASSERT3P(db->db_buf, ==, NULL);
926 		arc_buf_destroy(buf, db);
927 		db->db_state = DB_UNCACHED;
928 	}
929 	cv_broadcast(&db->db_changed);
930 	dbuf_rele_and_unlock(db, NULL);
931 }
932 
933 static void
934 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
935 {
936 	dnode_t *dn;
937 	zbookmark_phys_t zb;
938 	arc_flags_t aflags = ARC_FLAG_NOWAIT;
939 
940 	DB_DNODE_ENTER(db);
941 	dn = DB_DNODE(db);
942 	ASSERT(!refcount_is_zero(&db->db_holds));
943 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
944 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
945 	ASSERT(MUTEX_HELD(&db->db_mtx));
946 	ASSERT(db->db_state == DB_UNCACHED);
947 	ASSERT(db->db_buf == NULL);
948 
949 	if (db->db_blkid == DMU_BONUS_BLKID) {
950 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
951 
952 		ASSERT3U(bonuslen, <=, db->db.db_size);
953 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
954 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
955 		if (bonuslen < DN_MAX_BONUSLEN)
956 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
957 		if (bonuslen)
958 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
959 		DB_DNODE_EXIT(db);
960 		db->db_state = DB_CACHED;
961 		mutex_exit(&db->db_mtx);
962 		return;
963 	}
964 
965 	/*
966 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
967 	 * processes the delete record and clears the bp while we are waiting
968 	 * for the dn_mtx (resulting in a "no" from block_freed).
969 	 */
970 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
971 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
972 	    BP_IS_HOLE(db->db_blkptr)))) {
973 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
974 
975 		dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
976 		    db->db.db_size));
977 		bzero(db->db.db_data, db->db.db_size);
978 
979 		if (db->db_blkptr != NULL && db->db_level > 0 &&
980 		    BP_IS_HOLE(db->db_blkptr) &&
981 		    db->db_blkptr->blk_birth != 0) {
982 			blkptr_t *bps = db->db.db_data;
983 			for (int i = 0; i < ((1 <<
984 			    DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
985 			    i++) {
986 				blkptr_t *bp = &bps[i];
987 				ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
988 				    1 << dn->dn_indblkshift);
989 				BP_SET_LSIZE(bp,
990 				    BP_GET_LEVEL(db->db_blkptr) == 1 ?
991 				    dn->dn_datablksz :
992 				    BP_GET_LSIZE(db->db_blkptr));
993 				BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
994 				BP_SET_LEVEL(bp,
995 				    BP_GET_LEVEL(db->db_blkptr) - 1);
996 				BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
997 			}
998 		}
999 		DB_DNODE_EXIT(db);
1000 		db->db_state = DB_CACHED;
1001 		mutex_exit(&db->db_mtx);
1002 		return;
1003 	}
1004 
1005 	DB_DNODE_EXIT(db);
1006 
1007 	db->db_state = DB_READ;
1008 	mutex_exit(&db->db_mtx);
1009 
1010 	if (DBUF_IS_L2CACHEABLE(db))
1011 		aflags |= ARC_FLAG_L2CACHE;
1012 
1013 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1014 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1015 	    db->db.db_object, db->db_level, db->db_blkid);
1016 
1017 	dbuf_add_ref(db, NULL);
1018 
1019 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1020 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1021 	    (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1022 	    &aflags, &zb);
1023 }
1024 
1025 /*
1026  * This is our just-in-time copy function.  It makes a copy of buffers that
1027  * have been modified in a previous transaction group before we access them in
1028  * the current active group.
1029  *
1030  * This function is used in three places: when we are dirtying a buffer for the
1031  * first time in a txg, when we are freeing a range in a dnode that includes
1032  * this buffer, and when we are accessing a buffer which was received compressed
1033  * and later referenced in a WRITE_BYREF record.
1034  *
1035  * Note that when we are called from dbuf_free_range() we do not put a hold on
1036  * the buffer, we just traverse the active dbuf list for the dnode.
1037  */
1038 static void
1039 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1040 {
1041 	dbuf_dirty_record_t *dr = db->db_last_dirty;
1042 
1043 	ASSERT(MUTEX_HELD(&db->db_mtx));
1044 	ASSERT(db->db.db_data != NULL);
1045 	ASSERT(db->db_level == 0);
1046 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1047 
1048 	if (dr == NULL ||
1049 	    (dr->dt.dl.dr_data !=
1050 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1051 		return;
1052 
1053 	/*
1054 	 * If the last dirty record for this dbuf has not yet synced
1055 	 * and its referencing the dbuf data, either:
1056 	 *	reset the reference to point to a new copy,
1057 	 * or (if there a no active holders)
1058 	 *	just null out the current db_data pointer.
1059 	 */
1060 	ASSERT(dr->dr_txg >= txg - 2);
1061 	if (db->db_blkid == DMU_BONUS_BLKID) {
1062 		/* Note that the data bufs here are zio_bufs */
1063 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1064 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1065 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1066 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1067 		int size = arc_buf_size(db->db_buf);
1068 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1069 		spa_t *spa = db->db_objset->os_spa;
1070 		enum zio_compress compress_type =
1071 		    arc_get_compression(db->db_buf);
1072 
1073 		if (compress_type == ZIO_COMPRESS_OFF) {
1074 			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1075 		} else {
1076 			ASSERT3U(type, ==, ARC_BUFC_DATA);
1077 			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1078 			    size, arc_buf_lsize(db->db_buf), compress_type);
1079 		}
1080 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1081 	} else {
1082 		db->db_buf = NULL;
1083 		dbuf_clear_data(db);
1084 	}
1085 }
1086 
1087 int
1088 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1089 {
1090 	int err = 0;
1091 	boolean_t havepzio = (zio != NULL);
1092 	boolean_t prefetch;
1093 	dnode_t *dn;
1094 
1095 	/*
1096 	 * We don't have to hold the mutex to check db_state because it
1097 	 * can't be freed while we have a hold on the buffer.
1098 	 */
1099 	ASSERT(!refcount_is_zero(&db->db_holds));
1100 
1101 	if (db->db_state == DB_NOFILL)
1102 		return (SET_ERROR(EIO));
1103 
1104 	DB_DNODE_ENTER(db);
1105 	dn = DB_DNODE(db);
1106 	if ((flags & DB_RF_HAVESTRUCT) == 0)
1107 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1108 
1109 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1110 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1111 	    DBUF_IS_CACHEABLE(db);
1112 
1113 	mutex_enter(&db->db_mtx);
1114 	if (db->db_state == DB_CACHED) {
1115 		/*
1116 		 * If the arc buf is compressed, we need to decompress it to
1117 		 * read the data. This could happen during the "zfs receive" of
1118 		 * a stream which is compressed and deduplicated.
1119 		 */
1120 		if (db->db_buf != NULL &&
1121 		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1122 			dbuf_fix_old_data(db,
1123 			    spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1124 			err = arc_decompress(db->db_buf);
1125 			dbuf_set_data(db, db->db_buf);
1126 		}
1127 		mutex_exit(&db->db_mtx);
1128 		if (prefetch)
1129 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1130 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1131 			rw_exit(&dn->dn_struct_rwlock);
1132 		DB_DNODE_EXIT(db);
1133 	} else if (db->db_state == DB_UNCACHED) {
1134 		spa_t *spa = dn->dn_objset->os_spa;
1135 
1136 		if (zio == NULL)
1137 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1138 		dbuf_read_impl(db, zio, flags);
1139 
1140 		/* dbuf_read_impl has dropped db_mtx for us */
1141 
1142 		if (prefetch)
1143 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1144 
1145 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1146 			rw_exit(&dn->dn_struct_rwlock);
1147 		DB_DNODE_EXIT(db);
1148 
1149 		if (!havepzio)
1150 			err = zio_wait(zio);
1151 	} else {
1152 		/*
1153 		 * Another reader came in while the dbuf was in flight
1154 		 * between UNCACHED and CACHED.  Either a writer will finish
1155 		 * writing the buffer (sending the dbuf to CACHED) or the
1156 		 * first reader's request will reach the read_done callback
1157 		 * and send the dbuf to CACHED.  Otherwise, a failure
1158 		 * occurred and the dbuf went to UNCACHED.
1159 		 */
1160 		mutex_exit(&db->db_mtx);
1161 		if (prefetch)
1162 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1163 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1164 			rw_exit(&dn->dn_struct_rwlock);
1165 		DB_DNODE_EXIT(db);
1166 
1167 		/* Skip the wait per the caller's request. */
1168 		mutex_enter(&db->db_mtx);
1169 		if ((flags & DB_RF_NEVERWAIT) == 0) {
1170 			while (db->db_state == DB_READ ||
1171 			    db->db_state == DB_FILL) {
1172 				ASSERT(db->db_state == DB_READ ||
1173 				    (flags & DB_RF_HAVESTRUCT) == 0);
1174 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1175 				    db, zio_t *, zio);
1176 				cv_wait(&db->db_changed, &db->db_mtx);
1177 			}
1178 			if (db->db_state == DB_UNCACHED)
1179 				err = SET_ERROR(EIO);
1180 		}
1181 		mutex_exit(&db->db_mtx);
1182 	}
1183 
1184 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
1185 	return (err);
1186 }
1187 
1188 static void
1189 dbuf_noread(dmu_buf_impl_t *db)
1190 {
1191 	ASSERT(!refcount_is_zero(&db->db_holds));
1192 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1193 	mutex_enter(&db->db_mtx);
1194 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1195 		cv_wait(&db->db_changed, &db->db_mtx);
1196 	if (db->db_state == DB_UNCACHED) {
1197 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1198 		spa_t *spa = db->db_objset->os_spa;
1199 
1200 		ASSERT(db->db_buf == NULL);
1201 		ASSERT(db->db.db_data == NULL);
1202 		dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1203 		db->db_state = DB_FILL;
1204 	} else if (db->db_state == DB_NOFILL) {
1205 		dbuf_clear_data(db);
1206 	} else {
1207 		ASSERT3U(db->db_state, ==, DB_CACHED);
1208 	}
1209 	mutex_exit(&db->db_mtx);
1210 }
1211 
1212 void
1213 dbuf_unoverride(dbuf_dirty_record_t *dr)
1214 {
1215 	dmu_buf_impl_t *db = dr->dr_dbuf;
1216 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1217 	uint64_t txg = dr->dr_txg;
1218 
1219 	ASSERT(MUTEX_HELD(&db->db_mtx));
1220 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1221 	ASSERT(db->db_level == 0);
1222 
1223 	if (db->db_blkid == DMU_BONUS_BLKID ||
1224 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1225 		return;
1226 
1227 	ASSERT(db->db_data_pending != dr);
1228 
1229 	/* free this block */
1230 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1231 		zio_free(db->db_objset->os_spa, txg, bp);
1232 
1233 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1234 	dr->dt.dl.dr_nopwrite = B_FALSE;
1235 
1236 	/*
1237 	 * Release the already-written buffer, so we leave it in
1238 	 * a consistent dirty state.  Note that all callers are
1239 	 * modifying the buffer, so they will immediately do
1240 	 * another (redundant) arc_release().  Therefore, leave
1241 	 * the buf thawed to save the effort of freezing &
1242 	 * immediately re-thawing it.
1243 	 */
1244 	arc_release(dr->dt.dl.dr_data, db);
1245 }
1246 
1247 /*
1248  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1249  * data blocks in the free range, so that any future readers will find
1250  * empty blocks.
1251  */
1252 void
1253 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1254     dmu_tx_t *tx)
1255 {
1256 	dmu_buf_impl_t db_search;
1257 	dmu_buf_impl_t *db, *db_next;
1258 	uint64_t txg = tx->tx_txg;
1259 	avl_index_t where;
1260 
1261 	if (end_blkid > dn->dn_maxblkid &&
1262 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1263 		end_blkid = dn->dn_maxblkid;
1264 	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1265 
1266 	db_search.db_level = 0;
1267 	db_search.db_blkid = start_blkid;
1268 	db_search.db_state = DB_SEARCH;
1269 
1270 	mutex_enter(&dn->dn_dbufs_mtx);
1271 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1272 	ASSERT3P(db, ==, NULL);
1273 
1274 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1275 
1276 	for (; db != NULL; db = db_next) {
1277 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1278 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1279 
1280 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1281 			break;
1282 		}
1283 		ASSERT3U(db->db_blkid, >=, start_blkid);
1284 
1285 		/* found a level 0 buffer in the range */
1286 		mutex_enter(&db->db_mtx);
1287 		if (dbuf_undirty(db, tx)) {
1288 			/* mutex has been dropped and dbuf destroyed */
1289 			continue;
1290 		}
1291 
1292 		if (db->db_state == DB_UNCACHED ||
1293 		    db->db_state == DB_NOFILL ||
1294 		    db->db_state == DB_EVICTING) {
1295 			ASSERT(db->db.db_data == NULL);
1296 			mutex_exit(&db->db_mtx);
1297 			continue;
1298 		}
1299 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1300 			/* will be handled in dbuf_read_done or dbuf_rele */
1301 			db->db_freed_in_flight = TRUE;
1302 			mutex_exit(&db->db_mtx);
1303 			continue;
1304 		}
1305 		if (refcount_count(&db->db_holds) == 0) {
1306 			ASSERT(db->db_buf);
1307 			dbuf_destroy(db);
1308 			continue;
1309 		}
1310 		/* The dbuf is referenced */
1311 
1312 		if (db->db_last_dirty != NULL) {
1313 			dbuf_dirty_record_t *dr = db->db_last_dirty;
1314 
1315 			if (dr->dr_txg == txg) {
1316 				/*
1317 				 * This buffer is "in-use", re-adjust the file
1318 				 * size to reflect that this buffer may
1319 				 * contain new data when we sync.
1320 				 */
1321 				if (db->db_blkid != DMU_SPILL_BLKID &&
1322 				    db->db_blkid > dn->dn_maxblkid)
1323 					dn->dn_maxblkid = db->db_blkid;
1324 				dbuf_unoverride(dr);
1325 			} else {
1326 				/*
1327 				 * This dbuf is not dirty in the open context.
1328 				 * Either uncache it (if its not referenced in
1329 				 * the open context) or reset its contents to
1330 				 * empty.
1331 				 */
1332 				dbuf_fix_old_data(db, txg);
1333 			}
1334 		}
1335 		/* clear the contents if its cached */
1336 		if (db->db_state == DB_CACHED) {
1337 			ASSERT(db->db.db_data != NULL);
1338 			arc_release(db->db_buf, db);
1339 			bzero(db->db.db_data, db->db.db_size);
1340 			arc_buf_freeze(db->db_buf);
1341 		}
1342 
1343 		mutex_exit(&db->db_mtx);
1344 	}
1345 	mutex_exit(&dn->dn_dbufs_mtx);
1346 }
1347 
1348 void
1349 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1350 {
1351 	arc_buf_t *buf, *obuf;
1352 	int osize = db->db.db_size;
1353 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1354 	dnode_t *dn;
1355 
1356 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1357 
1358 	DB_DNODE_ENTER(db);
1359 	dn = DB_DNODE(db);
1360 
1361 	/* XXX does *this* func really need the lock? */
1362 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1363 
1364 	/*
1365 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1366 	 * is OK, because there can be no other references to the db
1367 	 * when we are changing its size, so no concurrent DB_FILL can
1368 	 * be happening.
1369 	 */
1370 	/*
1371 	 * XXX we should be doing a dbuf_read, checking the return
1372 	 * value and returning that up to our callers
1373 	 */
1374 	dmu_buf_will_dirty(&db->db, tx);
1375 
1376 	/* create the data buffer for the new block */
1377 	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1378 
1379 	/* copy old block data to the new block */
1380 	obuf = db->db_buf;
1381 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1382 	/* zero the remainder */
1383 	if (size > osize)
1384 		bzero((uint8_t *)buf->b_data + osize, size - osize);
1385 
1386 	mutex_enter(&db->db_mtx);
1387 	dbuf_set_data(db, buf);
1388 	arc_buf_destroy(obuf, db);
1389 	db->db.db_size = size;
1390 
1391 	if (db->db_level == 0) {
1392 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1393 		db->db_last_dirty->dt.dl.dr_data = buf;
1394 	}
1395 	mutex_exit(&db->db_mtx);
1396 
1397 	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1398 	DB_DNODE_EXIT(db);
1399 }
1400 
1401 void
1402 dbuf_release_bp(dmu_buf_impl_t *db)
1403 {
1404 	objset_t *os = db->db_objset;
1405 
1406 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1407 	ASSERT(arc_released(os->os_phys_buf) ||
1408 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1409 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1410 
1411 	(void) arc_release(db->db_buf, db);
1412 }
1413 
1414 /*
1415  * We already have a dirty record for this TXG, and we are being
1416  * dirtied again.
1417  */
1418 static void
1419 dbuf_redirty(dbuf_dirty_record_t *dr)
1420 {
1421 	dmu_buf_impl_t *db = dr->dr_dbuf;
1422 
1423 	ASSERT(MUTEX_HELD(&db->db_mtx));
1424 
1425 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1426 		/*
1427 		 * If this buffer has already been written out,
1428 		 * we now need to reset its state.
1429 		 */
1430 		dbuf_unoverride(dr);
1431 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1432 		    db->db_state != DB_NOFILL) {
1433 			/* Already released on initial dirty, so just thaw. */
1434 			ASSERT(arc_released(db->db_buf));
1435 			arc_buf_thaw(db->db_buf);
1436 		}
1437 	}
1438 }
1439 
1440 dbuf_dirty_record_t *
1441 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1442 {
1443 	dnode_t *dn;
1444 	objset_t *os;
1445 	dbuf_dirty_record_t **drp, *dr;
1446 	int drop_struct_lock = FALSE;
1447 	int txgoff = tx->tx_txg & TXG_MASK;
1448 
1449 	ASSERT(tx->tx_txg != 0);
1450 	ASSERT(!refcount_is_zero(&db->db_holds));
1451 	DMU_TX_DIRTY_BUF(tx, db);
1452 
1453 	DB_DNODE_ENTER(db);
1454 	dn = DB_DNODE(db);
1455 	/*
1456 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1457 	 * objects may be dirtied in syncing context, but only if they
1458 	 * were already pre-dirtied in open context.
1459 	 */
1460 #ifdef DEBUG
1461 	if (dn->dn_objset->os_dsl_dataset != NULL) {
1462 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1463 		    RW_READER, FTAG);
1464 	}
1465 	ASSERT(!dmu_tx_is_syncing(tx) ||
1466 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1467 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1468 	    dn->dn_objset->os_dsl_dataset == NULL);
1469 	if (dn->dn_objset->os_dsl_dataset != NULL)
1470 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1471 #endif
1472 	/*
1473 	 * We make this assert for private objects as well, but after we
1474 	 * check if we're already dirty.  They are allowed to re-dirty
1475 	 * in syncing context.
1476 	 */
1477 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1478 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1479 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1480 
1481 	mutex_enter(&db->db_mtx);
1482 	/*
1483 	 * XXX make this true for indirects too?  The problem is that
1484 	 * transactions created with dmu_tx_create_assigned() from
1485 	 * syncing context don't bother holding ahead.
1486 	 */
1487 	ASSERT(db->db_level != 0 ||
1488 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1489 	    db->db_state == DB_NOFILL);
1490 
1491 	mutex_enter(&dn->dn_mtx);
1492 	/*
1493 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1494 	 * initialize the objset.
1495 	 */
1496 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1497 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1498 			rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1499 			    RW_READER, FTAG);
1500 		}
1501 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1502 			dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1503 			    DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1504 			ASSERT(dn->dn_dirtyctx_firstset == NULL);
1505 			dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1506 		}
1507 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1508 			rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1509 			    FTAG);
1510 		}
1511 	}
1512 	mutex_exit(&dn->dn_mtx);
1513 
1514 	if (db->db_blkid == DMU_SPILL_BLKID)
1515 		dn->dn_have_spill = B_TRUE;
1516 
1517 	/*
1518 	 * If this buffer is already dirty, we're done.
1519 	 */
1520 	drp = &db->db_last_dirty;
1521 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1522 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1523 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1524 		drp = &dr->dr_next;
1525 	if (dr && dr->dr_txg == tx->tx_txg) {
1526 		DB_DNODE_EXIT(db);
1527 
1528 		dbuf_redirty(dr);
1529 		mutex_exit(&db->db_mtx);
1530 		return (dr);
1531 	}
1532 
1533 	/*
1534 	 * Only valid if not already dirty.
1535 	 */
1536 	ASSERT(dn->dn_object == 0 ||
1537 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1538 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1539 
1540 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1541 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1542 	    dn->dn_phys->dn_nlevels > db->db_level ||
1543 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1544 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1545 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1546 
1547 	/*
1548 	 * We should only be dirtying in syncing context if it's the
1549 	 * mos or we're initializing the os or it's a special object.
1550 	 * However, we are allowed to dirty in syncing context provided
1551 	 * we already dirtied it in open context.  Hence we must make
1552 	 * this assertion only if we're not already dirty.
1553 	 */
1554 	os = dn->dn_objset;
1555 #ifdef DEBUG
1556 	if (dn->dn_objset->os_dsl_dataset != NULL)
1557 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1558 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1559 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1560 	if (dn->dn_objset->os_dsl_dataset != NULL)
1561 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1562 #endif
1563 	ASSERT(db->db.db_size != 0);
1564 
1565 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1566 
1567 	if (db->db_blkid != DMU_BONUS_BLKID) {
1568 		dmu_objset_willuse_space(os, db->db.db_size, tx);
1569 	}
1570 
1571 	/*
1572 	 * If this buffer is dirty in an old transaction group we need
1573 	 * to make a copy of it so that the changes we make in this
1574 	 * transaction group won't leak out when we sync the older txg.
1575 	 */
1576 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1577 	if (db->db_level == 0) {
1578 		void *data_old = db->db_buf;
1579 
1580 		if (db->db_state != DB_NOFILL) {
1581 			if (db->db_blkid == DMU_BONUS_BLKID) {
1582 				dbuf_fix_old_data(db, tx->tx_txg);
1583 				data_old = db->db.db_data;
1584 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1585 				/*
1586 				 * Release the data buffer from the cache so
1587 				 * that we can modify it without impacting
1588 				 * possible other users of this cached data
1589 				 * block.  Note that indirect blocks and
1590 				 * private objects are not released until the
1591 				 * syncing state (since they are only modified
1592 				 * then).
1593 				 */
1594 				arc_release(db->db_buf, db);
1595 				dbuf_fix_old_data(db, tx->tx_txg);
1596 				data_old = db->db_buf;
1597 			}
1598 			ASSERT(data_old != NULL);
1599 		}
1600 		dr->dt.dl.dr_data = data_old;
1601 	} else {
1602 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1603 		list_create(&dr->dt.di.dr_children,
1604 		    sizeof (dbuf_dirty_record_t),
1605 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1606 	}
1607 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1608 		dr->dr_accounted = db->db.db_size;
1609 	dr->dr_dbuf = db;
1610 	dr->dr_txg = tx->tx_txg;
1611 	dr->dr_next = *drp;
1612 	*drp = dr;
1613 
1614 	/*
1615 	 * We could have been freed_in_flight between the dbuf_noread
1616 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1617 	 * happened after the free.
1618 	 */
1619 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1620 	    db->db_blkid != DMU_SPILL_BLKID) {
1621 		mutex_enter(&dn->dn_mtx);
1622 		if (dn->dn_free_ranges[txgoff] != NULL) {
1623 			range_tree_clear(dn->dn_free_ranges[txgoff],
1624 			    db->db_blkid, 1);
1625 		}
1626 		mutex_exit(&dn->dn_mtx);
1627 		db->db_freed_in_flight = FALSE;
1628 	}
1629 
1630 	/*
1631 	 * This buffer is now part of this txg
1632 	 */
1633 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1634 	db->db_dirtycnt += 1;
1635 	ASSERT3U(db->db_dirtycnt, <=, 3);
1636 
1637 	mutex_exit(&db->db_mtx);
1638 
1639 	if (db->db_blkid == DMU_BONUS_BLKID ||
1640 	    db->db_blkid == DMU_SPILL_BLKID) {
1641 		mutex_enter(&dn->dn_mtx);
1642 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1643 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1644 		mutex_exit(&dn->dn_mtx);
1645 		dnode_setdirty(dn, tx);
1646 		DB_DNODE_EXIT(db);
1647 		return (dr);
1648 	}
1649 
1650 	/*
1651 	 * The dn_struct_rwlock prevents db_blkptr from changing
1652 	 * due to a write from syncing context completing
1653 	 * while we are running, so we want to acquire it before
1654 	 * looking at db_blkptr.
1655 	 */
1656 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1657 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1658 		drop_struct_lock = TRUE;
1659 	}
1660 
1661 	/*
1662 	 * If we are overwriting a dedup BP, then unless it is snapshotted,
1663 	 * when we get to syncing context we will need to decrement its
1664 	 * refcount in the DDT.  Prefetch the relevant DDT block so that
1665 	 * syncing context won't have to wait for the i/o.
1666 	 */
1667 	ddt_prefetch(os->os_spa, db->db_blkptr);
1668 
1669 	if (db->db_level == 0) {
1670 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1671 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1672 	}
1673 
1674 	if (db->db_level+1 < dn->dn_nlevels) {
1675 		dmu_buf_impl_t *parent = db->db_parent;
1676 		dbuf_dirty_record_t *di;
1677 		int parent_held = FALSE;
1678 
1679 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1680 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1681 
1682 			parent = dbuf_hold_level(dn, db->db_level+1,
1683 			    db->db_blkid >> epbs, FTAG);
1684 			ASSERT(parent != NULL);
1685 			parent_held = TRUE;
1686 		}
1687 		if (drop_struct_lock)
1688 			rw_exit(&dn->dn_struct_rwlock);
1689 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1690 		di = dbuf_dirty(parent, tx);
1691 		if (parent_held)
1692 			dbuf_rele(parent, FTAG);
1693 
1694 		mutex_enter(&db->db_mtx);
1695 		/*
1696 		 * Since we've dropped the mutex, it's possible that
1697 		 * dbuf_undirty() might have changed this out from under us.
1698 		 */
1699 		if (db->db_last_dirty == dr ||
1700 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1701 			mutex_enter(&di->dt.di.dr_mtx);
1702 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1703 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1704 			list_insert_tail(&di->dt.di.dr_children, dr);
1705 			mutex_exit(&di->dt.di.dr_mtx);
1706 			dr->dr_parent = di;
1707 		}
1708 		mutex_exit(&db->db_mtx);
1709 	} else {
1710 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1711 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1712 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1713 		mutex_enter(&dn->dn_mtx);
1714 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1715 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1716 		mutex_exit(&dn->dn_mtx);
1717 		if (drop_struct_lock)
1718 			rw_exit(&dn->dn_struct_rwlock);
1719 	}
1720 
1721 	dnode_setdirty(dn, tx);
1722 	DB_DNODE_EXIT(db);
1723 	return (dr);
1724 }
1725 
1726 /*
1727  * Undirty a buffer in the transaction group referenced by the given
1728  * transaction.  Return whether this evicted the dbuf.
1729  */
1730 static boolean_t
1731 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1732 {
1733 	dnode_t *dn;
1734 	uint64_t txg = tx->tx_txg;
1735 	dbuf_dirty_record_t *dr, **drp;
1736 
1737 	ASSERT(txg != 0);
1738 
1739 	/*
1740 	 * Due to our use of dn_nlevels below, this can only be called
1741 	 * in open context, unless we are operating on the MOS.
1742 	 * From syncing context, dn_nlevels may be different from the
1743 	 * dn_nlevels used when dbuf was dirtied.
1744 	 */
1745 	ASSERT(db->db_objset ==
1746 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1747 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1748 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1749 	ASSERT0(db->db_level);
1750 	ASSERT(MUTEX_HELD(&db->db_mtx));
1751 
1752 	/*
1753 	 * If this buffer is not dirty, we're done.
1754 	 */
1755 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1756 		if (dr->dr_txg <= txg)
1757 			break;
1758 	if (dr == NULL || dr->dr_txg < txg)
1759 		return (B_FALSE);
1760 	ASSERT(dr->dr_txg == txg);
1761 	ASSERT(dr->dr_dbuf == db);
1762 
1763 	DB_DNODE_ENTER(db);
1764 	dn = DB_DNODE(db);
1765 
1766 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1767 
1768 	ASSERT(db->db.db_size != 0);
1769 
1770 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1771 	    dr->dr_accounted, txg);
1772 
1773 	*drp = dr->dr_next;
1774 
1775 	/*
1776 	 * Note that there are three places in dbuf_dirty()
1777 	 * where this dirty record may be put on a list.
1778 	 * Make sure to do a list_remove corresponding to
1779 	 * every one of those list_insert calls.
1780 	 */
1781 	if (dr->dr_parent) {
1782 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1783 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1784 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1785 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1786 	    db->db_level + 1 == dn->dn_nlevels) {
1787 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1788 		mutex_enter(&dn->dn_mtx);
1789 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1790 		mutex_exit(&dn->dn_mtx);
1791 	}
1792 	DB_DNODE_EXIT(db);
1793 
1794 	if (db->db_state != DB_NOFILL) {
1795 		dbuf_unoverride(dr);
1796 
1797 		ASSERT(db->db_buf != NULL);
1798 		ASSERT(dr->dt.dl.dr_data != NULL);
1799 		if (dr->dt.dl.dr_data != db->db_buf)
1800 			arc_buf_destroy(dr->dt.dl.dr_data, db);
1801 	}
1802 
1803 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1804 
1805 	ASSERT(db->db_dirtycnt > 0);
1806 	db->db_dirtycnt -= 1;
1807 
1808 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1809 		ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1810 		dbuf_destroy(db);
1811 		return (B_TRUE);
1812 	}
1813 
1814 	return (B_FALSE);
1815 }
1816 
1817 void
1818 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1819 {
1820 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1821 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1822 
1823 	ASSERT(tx->tx_txg != 0);
1824 	ASSERT(!refcount_is_zero(&db->db_holds));
1825 
1826 	/*
1827 	 * Quick check for dirtyness.  For already dirty blocks, this
1828 	 * reduces runtime of this function by >90%, and overall performance
1829 	 * by 50% for some workloads (e.g. file deletion with indirect blocks
1830 	 * cached).
1831 	 */
1832 	mutex_enter(&db->db_mtx);
1833 	dbuf_dirty_record_t *dr;
1834 	for (dr = db->db_last_dirty;
1835 	    dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1836 		/*
1837 		 * It's possible that it is already dirty but not cached,
1838 		 * because there are some calls to dbuf_dirty() that don't
1839 		 * go through dmu_buf_will_dirty().
1840 		 */
1841 		if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1842 			/* This dbuf is already dirty and cached. */
1843 			dbuf_redirty(dr);
1844 			mutex_exit(&db->db_mtx);
1845 			return;
1846 		}
1847 	}
1848 	mutex_exit(&db->db_mtx);
1849 
1850 	DB_DNODE_ENTER(db);
1851 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1852 		rf |= DB_RF_HAVESTRUCT;
1853 	DB_DNODE_EXIT(db);
1854 	(void) dbuf_read(db, NULL, rf);
1855 	(void) dbuf_dirty(db, tx);
1856 }
1857 
1858 void
1859 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1860 {
1861 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1862 
1863 	db->db_state = DB_NOFILL;
1864 
1865 	dmu_buf_will_fill(db_fake, tx);
1866 }
1867 
1868 void
1869 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1870 {
1871 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1872 
1873 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1874 	ASSERT(tx->tx_txg != 0);
1875 	ASSERT(db->db_level == 0);
1876 	ASSERT(!refcount_is_zero(&db->db_holds));
1877 
1878 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1879 	    dmu_tx_private_ok(tx));
1880 
1881 	dbuf_noread(db);
1882 	(void) dbuf_dirty(db, tx);
1883 }
1884 
1885 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1886 /* ARGSUSED */
1887 void
1888 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1889 {
1890 	mutex_enter(&db->db_mtx);
1891 	DBUF_VERIFY(db);
1892 
1893 	if (db->db_state == DB_FILL) {
1894 		if (db->db_level == 0 && db->db_freed_in_flight) {
1895 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1896 			/* we were freed while filling */
1897 			/* XXX dbuf_undirty? */
1898 			bzero(db->db.db_data, db->db.db_size);
1899 			db->db_freed_in_flight = FALSE;
1900 		}
1901 		db->db_state = DB_CACHED;
1902 		cv_broadcast(&db->db_changed);
1903 	}
1904 	mutex_exit(&db->db_mtx);
1905 }
1906 
1907 void
1908 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1909     bp_embedded_type_t etype, enum zio_compress comp,
1910     int uncompressed_size, int compressed_size, int byteorder,
1911     dmu_tx_t *tx)
1912 {
1913 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1914 	struct dirty_leaf *dl;
1915 	dmu_object_type_t type;
1916 
1917 	if (etype == BP_EMBEDDED_TYPE_DATA) {
1918 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1919 		    SPA_FEATURE_EMBEDDED_DATA));
1920 	}
1921 
1922 	DB_DNODE_ENTER(db);
1923 	type = DB_DNODE(db)->dn_type;
1924 	DB_DNODE_EXIT(db);
1925 
1926 	ASSERT0(db->db_level);
1927 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1928 
1929 	dmu_buf_will_not_fill(dbuf, tx);
1930 
1931 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1932 	dl = &db->db_last_dirty->dt.dl;
1933 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1934 	    data, comp, uncompressed_size, compressed_size);
1935 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1936 	BP_SET_TYPE(&dl->dr_overridden_by, type);
1937 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1938 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1939 
1940 	dl->dr_override_state = DR_OVERRIDDEN;
1941 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1942 }
1943 
1944 /*
1945  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1946  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1947  */
1948 void
1949 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1950 {
1951 	ASSERT(!refcount_is_zero(&db->db_holds));
1952 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1953 	ASSERT(db->db_level == 0);
1954 	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
1955 	ASSERT(buf != NULL);
1956 	ASSERT(arc_buf_lsize(buf) == db->db.db_size);
1957 	ASSERT(tx->tx_txg != 0);
1958 
1959 	arc_return_buf(buf, db);
1960 	ASSERT(arc_released(buf));
1961 
1962 	mutex_enter(&db->db_mtx);
1963 
1964 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1965 		cv_wait(&db->db_changed, &db->db_mtx);
1966 
1967 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1968 
1969 	if (db->db_state == DB_CACHED &&
1970 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1971 		mutex_exit(&db->db_mtx);
1972 		(void) dbuf_dirty(db, tx);
1973 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1974 		arc_buf_destroy(buf, db);
1975 		xuio_stat_wbuf_copied();
1976 		return;
1977 	}
1978 
1979 	xuio_stat_wbuf_nocopy();
1980 	if (db->db_state == DB_CACHED) {
1981 		dbuf_dirty_record_t *dr = db->db_last_dirty;
1982 
1983 		ASSERT(db->db_buf != NULL);
1984 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1985 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1986 			if (!arc_released(db->db_buf)) {
1987 				ASSERT(dr->dt.dl.dr_override_state ==
1988 				    DR_OVERRIDDEN);
1989 				arc_release(db->db_buf, db);
1990 			}
1991 			dr->dt.dl.dr_data = buf;
1992 			arc_buf_destroy(db->db_buf, db);
1993 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1994 			arc_release(db->db_buf, db);
1995 			arc_buf_destroy(db->db_buf, db);
1996 		}
1997 		db->db_buf = NULL;
1998 	}
1999 	ASSERT(db->db_buf == NULL);
2000 	dbuf_set_data(db, buf);
2001 	db->db_state = DB_FILL;
2002 	mutex_exit(&db->db_mtx);
2003 	(void) dbuf_dirty(db, tx);
2004 	dmu_buf_fill_done(&db->db, tx);
2005 }
2006 
2007 void
2008 dbuf_destroy(dmu_buf_impl_t *db)
2009 {
2010 	dnode_t *dn;
2011 	dmu_buf_impl_t *parent = db->db_parent;
2012 	dmu_buf_impl_t *dndb;
2013 
2014 	ASSERT(MUTEX_HELD(&db->db_mtx));
2015 	ASSERT(refcount_is_zero(&db->db_holds));
2016 
2017 	if (db->db_buf != NULL) {
2018 		arc_buf_destroy(db->db_buf, db);
2019 		db->db_buf = NULL;
2020 	}
2021 
2022 	if (db->db_blkid == DMU_BONUS_BLKID) {
2023 		ASSERT(db->db.db_data != NULL);
2024 		zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2025 		arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2026 		db->db_state = DB_UNCACHED;
2027 	}
2028 
2029 	dbuf_clear_data(db);
2030 
2031 	if (multilist_link_active(&db->db_cache_link)) {
2032 		multilist_remove(dbuf_cache, db);
2033 		(void) refcount_remove_many(&dbuf_cache_size,
2034 		    db->db.db_size, db);
2035 	}
2036 
2037 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2038 	ASSERT(db->db_data_pending == NULL);
2039 
2040 	db->db_state = DB_EVICTING;
2041 	db->db_blkptr = NULL;
2042 
2043 	/*
2044 	 * Now that db_state is DB_EVICTING, nobody else can find this via
2045 	 * the hash table.  We can now drop db_mtx, which allows us to
2046 	 * acquire the dn_dbufs_mtx.
2047 	 */
2048 	mutex_exit(&db->db_mtx);
2049 
2050 	DB_DNODE_ENTER(db);
2051 	dn = DB_DNODE(db);
2052 	dndb = dn->dn_dbuf;
2053 	if (db->db_blkid != DMU_BONUS_BLKID) {
2054 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2055 		if (needlock)
2056 			mutex_enter(&dn->dn_dbufs_mtx);
2057 		avl_remove(&dn->dn_dbufs, db);
2058 		atomic_dec_32(&dn->dn_dbufs_count);
2059 		membar_producer();
2060 		DB_DNODE_EXIT(db);
2061 		if (needlock)
2062 			mutex_exit(&dn->dn_dbufs_mtx);
2063 		/*
2064 		 * Decrementing the dbuf count means that the hold corresponding
2065 		 * to the removed dbuf is no longer discounted in dnode_move(),
2066 		 * so the dnode cannot be moved until after we release the hold.
2067 		 * The membar_producer() ensures visibility of the decremented
2068 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2069 		 * release any lock.
2070 		 */
2071 		dnode_rele(dn, db);
2072 		db->db_dnode_handle = NULL;
2073 
2074 		dbuf_hash_remove(db);
2075 	} else {
2076 		DB_DNODE_EXIT(db);
2077 	}
2078 
2079 	ASSERT(refcount_is_zero(&db->db_holds));
2080 
2081 	db->db_parent = NULL;
2082 
2083 	ASSERT(db->db_buf == NULL);
2084 	ASSERT(db->db.db_data == NULL);
2085 	ASSERT(db->db_hash_next == NULL);
2086 	ASSERT(db->db_blkptr == NULL);
2087 	ASSERT(db->db_data_pending == NULL);
2088 	ASSERT(!multilist_link_active(&db->db_cache_link));
2089 
2090 	kmem_cache_free(dbuf_kmem_cache, db);
2091 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2092 
2093 	/*
2094 	 * If this dbuf is referenced from an indirect dbuf,
2095 	 * decrement the ref count on the indirect dbuf.
2096 	 */
2097 	if (parent && parent != dndb)
2098 		dbuf_rele(parent, db);
2099 }
2100 
2101 /*
2102  * Note: While bpp will always be updated if the function returns success,
2103  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2104  * this happens when the dnode is the meta-dnode, or a userused or groupused
2105  * object.
2106  */
2107 static int
2108 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2109     dmu_buf_impl_t **parentp, blkptr_t **bpp)
2110 {
2111 	*parentp = NULL;
2112 	*bpp = NULL;
2113 
2114 	ASSERT(blkid != DMU_BONUS_BLKID);
2115 
2116 	if (blkid == DMU_SPILL_BLKID) {
2117 		mutex_enter(&dn->dn_mtx);
2118 		if (dn->dn_have_spill &&
2119 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2120 			*bpp = &dn->dn_phys->dn_spill;
2121 		else
2122 			*bpp = NULL;
2123 		dbuf_add_ref(dn->dn_dbuf, NULL);
2124 		*parentp = dn->dn_dbuf;
2125 		mutex_exit(&dn->dn_mtx);
2126 		return (0);
2127 	}
2128 
2129 	int nlevels =
2130 	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2131 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2132 
2133 	ASSERT3U(level * epbs, <, 64);
2134 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2135 	/*
2136 	 * This assertion shouldn't trip as long as the max indirect block size
2137 	 * is less than 1M.  The reason for this is that up to that point,
2138 	 * the number of levels required to address an entire object with blocks
2139 	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.  In
2140 	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2141 	 * (i.e. we can address the entire object), objects will all use at most
2142 	 * N-1 levels and the assertion won't overflow.  However, once epbs is
2143 	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
2144 	 * enough to address an entire object, so objects will have 5 levels,
2145 	 * but then this assertion will overflow.
2146 	 *
2147 	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2148 	 * need to redo this logic to handle overflows.
2149 	 */
2150 	ASSERT(level >= nlevels ||
2151 	    ((nlevels - level - 1) * epbs) +
2152 	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2153 	if (level >= nlevels ||
2154 	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2155 	    ((nlevels - level - 1) * epbs)) ||
2156 	    (fail_sparse &&
2157 	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2158 		/* the buffer has no parent yet */
2159 		return (SET_ERROR(ENOENT));
2160 	} else if (level < nlevels-1) {
2161 		/* this block is referenced from an indirect block */
2162 		int err = dbuf_hold_impl(dn, level+1,
2163 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2164 		if (err)
2165 			return (err);
2166 		err = dbuf_read(*parentp, NULL,
2167 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2168 		if (err) {
2169 			dbuf_rele(*parentp, NULL);
2170 			*parentp = NULL;
2171 			return (err);
2172 		}
2173 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2174 		    (blkid & ((1ULL << epbs) - 1));
2175 		if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2176 			ASSERT(BP_IS_HOLE(*bpp));
2177 		return (0);
2178 	} else {
2179 		/* the block is referenced from the dnode */
2180 		ASSERT3U(level, ==, nlevels-1);
2181 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2182 		    blkid < dn->dn_phys->dn_nblkptr);
2183 		if (dn->dn_dbuf) {
2184 			dbuf_add_ref(dn->dn_dbuf, NULL);
2185 			*parentp = dn->dn_dbuf;
2186 		}
2187 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
2188 		return (0);
2189 	}
2190 }
2191 
2192 static dmu_buf_impl_t *
2193 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2194     dmu_buf_impl_t *parent, blkptr_t *blkptr)
2195 {
2196 	objset_t *os = dn->dn_objset;
2197 	dmu_buf_impl_t *db, *odb;
2198 
2199 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2200 	ASSERT(dn->dn_type != DMU_OT_NONE);
2201 
2202 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2203 
2204 	db->db_objset = os;
2205 	db->db.db_object = dn->dn_object;
2206 	db->db_level = level;
2207 	db->db_blkid = blkid;
2208 	db->db_last_dirty = NULL;
2209 	db->db_dirtycnt = 0;
2210 	db->db_dnode_handle = dn->dn_handle;
2211 	db->db_parent = parent;
2212 	db->db_blkptr = blkptr;
2213 
2214 	db->db_user = NULL;
2215 	db->db_user_immediate_evict = FALSE;
2216 	db->db_freed_in_flight = FALSE;
2217 	db->db_pending_evict = FALSE;
2218 
2219 	if (blkid == DMU_BONUS_BLKID) {
2220 		ASSERT3P(parent, ==, dn->dn_dbuf);
2221 		db->db.db_size = DN_MAX_BONUSLEN -
2222 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2223 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2224 		db->db.db_offset = DMU_BONUS_BLKID;
2225 		db->db_state = DB_UNCACHED;
2226 		/* the bonus dbuf is not placed in the hash table */
2227 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2228 		return (db);
2229 	} else if (blkid == DMU_SPILL_BLKID) {
2230 		db->db.db_size = (blkptr != NULL) ?
2231 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2232 		db->db.db_offset = 0;
2233 	} else {
2234 		int blocksize =
2235 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2236 		db->db.db_size = blocksize;
2237 		db->db.db_offset = db->db_blkid * blocksize;
2238 	}
2239 
2240 	/*
2241 	 * Hold the dn_dbufs_mtx while we get the new dbuf
2242 	 * in the hash table *and* added to the dbufs list.
2243 	 * This prevents a possible deadlock with someone
2244 	 * trying to look up this dbuf before its added to the
2245 	 * dn_dbufs list.
2246 	 */
2247 	mutex_enter(&dn->dn_dbufs_mtx);
2248 	db->db_state = DB_EVICTING;
2249 	if ((odb = dbuf_hash_insert(db)) != NULL) {
2250 		/* someone else inserted it first */
2251 		kmem_cache_free(dbuf_kmem_cache, db);
2252 		mutex_exit(&dn->dn_dbufs_mtx);
2253 		return (odb);
2254 	}
2255 	avl_add(&dn->dn_dbufs, db);
2256 
2257 	db->db_state = DB_UNCACHED;
2258 	mutex_exit(&dn->dn_dbufs_mtx);
2259 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2260 
2261 	if (parent && parent != dn->dn_dbuf)
2262 		dbuf_add_ref(parent, db);
2263 
2264 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2265 	    refcount_count(&dn->dn_holds) > 0);
2266 	(void) refcount_add(&dn->dn_holds, db);
2267 	atomic_inc_32(&dn->dn_dbufs_count);
2268 
2269 	dprintf_dbuf(db, "db=%p\n", db);
2270 
2271 	return (db);
2272 }
2273 
2274 typedef struct dbuf_prefetch_arg {
2275 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
2276 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2277 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2278 	int dpa_curlevel; /* The current level that we're reading */
2279 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2280 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2281 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2282 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2283 } dbuf_prefetch_arg_t;
2284 
2285 /*
2286  * Actually issue the prefetch read for the block given.
2287  */
2288 static void
2289 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2290 {
2291 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2292 		return;
2293 
2294 	arc_flags_t aflags =
2295 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2296 
2297 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2298 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2299 	ASSERT(dpa->dpa_zio != NULL);
2300 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2301 	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2302 	    &aflags, &dpa->dpa_zb);
2303 }
2304 
2305 /*
2306  * Called when an indirect block above our prefetch target is read in.  This
2307  * will either read in the next indirect block down the tree or issue the actual
2308  * prefetch if the next block down is our target.
2309  */
2310 static void
2311 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2312 {
2313 	dbuf_prefetch_arg_t *dpa = private;
2314 
2315 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2316 	ASSERT3S(dpa->dpa_curlevel, >, 0);
2317 
2318 	/*
2319 	 * The dpa_dnode is only valid if we are called with a NULL
2320 	 * zio. This indicates that the arc_read() returned without
2321 	 * first calling zio_read() to issue a physical read. Once
2322 	 * a physical read is made the dpa_dnode must be invalidated
2323 	 * as the locks guarding it may have been dropped. If the
2324 	 * dpa_dnode is still valid, then we want to add it to the dbuf
2325 	 * cache. To do so, we must hold the dbuf associated with the block
2326 	 * we just prefetched, read its contents so that we associate it
2327 	 * with an arc_buf_t, and then release it.
2328 	 */
2329 	if (zio != NULL) {
2330 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2331 		if (zio->io_flags & ZIO_FLAG_RAW) {
2332 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2333 		} else {
2334 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2335 		}
2336 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2337 
2338 		dpa->dpa_dnode = NULL;
2339 	} else if (dpa->dpa_dnode != NULL) {
2340 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2341 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
2342 		    dpa->dpa_zb.zb_level));
2343 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2344 		    dpa->dpa_curlevel, curblkid, FTAG);
2345 		(void) dbuf_read(db, NULL,
2346 		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2347 		dbuf_rele(db, FTAG);
2348 	}
2349 
2350 	dpa->dpa_curlevel--;
2351 
2352 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2353 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2354 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2355 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2356 	if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2357 		kmem_free(dpa, sizeof (*dpa));
2358 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2359 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2360 		dbuf_issue_final_prefetch(dpa, bp);
2361 		kmem_free(dpa, sizeof (*dpa));
2362 	} else {
2363 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2364 		zbookmark_phys_t zb;
2365 
2366 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2367 
2368 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2369 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2370 
2371 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2372 		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2373 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2374 		    &iter_aflags, &zb);
2375 	}
2376 
2377 	arc_buf_destroy(abuf, private);
2378 }
2379 
2380 /*
2381  * Issue prefetch reads for the given block on the given level.  If the indirect
2382  * blocks above that block are not in memory, we will read them in
2383  * asynchronously.  As a result, this call never blocks waiting for a read to
2384  * complete.
2385  */
2386 void
2387 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2388     arc_flags_t aflags)
2389 {
2390 	blkptr_t bp;
2391 	int epbs, nlevels, curlevel;
2392 	uint64_t curblkid;
2393 
2394 	ASSERT(blkid != DMU_BONUS_BLKID);
2395 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2396 
2397 	if (blkid > dn->dn_maxblkid)
2398 		return;
2399 
2400 	if (dnode_block_freed(dn, blkid))
2401 		return;
2402 
2403 	/*
2404 	 * This dnode hasn't been written to disk yet, so there's nothing to
2405 	 * prefetch.
2406 	 */
2407 	nlevels = dn->dn_phys->dn_nlevels;
2408 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2409 		return;
2410 
2411 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2412 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2413 		return;
2414 
2415 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2416 	    level, blkid);
2417 	if (db != NULL) {
2418 		mutex_exit(&db->db_mtx);
2419 		/*
2420 		 * This dbuf already exists.  It is either CACHED, or
2421 		 * (we assume) about to be read or filled.
2422 		 */
2423 		return;
2424 	}
2425 
2426 	/*
2427 	 * Find the closest ancestor (indirect block) of the target block
2428 	 * that is present in the cache.  In this indirect block, we will
2429 	 * find the bp that is at curlevel, curblkid.
2430 	 */
2431 	curlevel = level;
2432 	curblkid = blkid;
2433 	while (curlevel < nlevels - 1) {
2434 		int parent_level = curlevel + 1;
2435 		uint64_t parent_blkid = curblkid >> epbs;
2436 		dmu_buf_impl_t *db;
2437 
2438 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2439 		    FALSE, TRUE, FTAG, &db) == 0) {
2440 			blkptr_t *bpp = db->db_buf->b_data;
2441 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2442 			dbuf_rele(db, FTAG);
2443 			break;
2444 		}
2445 
2446 		curlevel = parent_level;
2447 		curblkid = parent_blkid;
2448 	}
2449 
2450 	if (curlevel == nlevels - 1) {
2451 		/* No cached indirect blocks found. */
2452 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2453 		bp = dn->dn_phys->dn_blkptr[curblkid];
2454 	}
2455 	if (BP_IS_HOLE(&bp))
2456 		return;
2457 
2458 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2459 
2460 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2461 	    ZIO_FLAG_CANFAIL);
2462 
2463 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2464 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2465 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2466 	    dn->dn_object, level, blkid);
2467 	dpa->dpa_curlevel = curlevel;
2468 	dpa->dpa_prio = prio;
2469 	dpa->dpa_aflags = aflags;
2470 	dpa->dpa_spa = dn->dn_objset->os_spa;
2471 	dpa->dpa_dnode = dn;
2472 	dpa->dpa_epbs = epbs;
2473 	dpa->dpa_zio = pio;
2474 
2475 	/*
2476 	 * If we have the indirect just above us, no need to do the asynchronous
2477 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2478 	 * a higher level, though, we want to issue the prefetches for all the
2479 	 * indirect blocks asynchronously, so we can go on with whatever we were
2480 	 * doing.
2481 	 */
2482 	if (curlevel == level) {
2483 		ASSERT3U(curblkid, ==, blkid);
2484 		dbuf_issue_final_prefetch(dpa, &bp);
2485 		kmem_free(dpa, sizeof (*dpa));
2486 	} else {
2487 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2488 		zbookmark_phys_t zb;
2489 
2490 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2491 		    dn->dn_object, curlevel, curblkid);
2492 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2493 		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2494 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2495 		    &iter_aflags, &zb);
2496 	}
2497 	/*
2498 	 * We use pio here instead of dpa_zio since it's possible that
2499 	 * dpa may have already been freed.
2500 	 */
2501 	zio_nowait(pio);
2502 }
2503 
2504 /*
2505  * Returns with db_holds incremented, and db_mtx not held.
2506  * Note: dn_struct_rwlock must be held.
2507  */
2508 int
2509 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2510     boolean_t fail_sparse, boolean_t fail_uncached,
2511     void *tag, dmu_buf_impl_t **dbp)
2512 {
2513 	dmu_buf_impl_t *db, *parent = NULL;
2514 
2515 	ASSERT(blkid != DMU_BONUS_BLKID);
2516 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2517 	ASSERT3U(dn->dn_nlevels, >, level);
2518 
2519 	*dbp = NULL;
2520 top:
2521 	/* dbuf_find() returns with db_mtx held */
2522 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2523 
2524 	if (db == NULL) {
2525 		blkptr_t *bp = NULL;
2526 		int err;
2527 
2528 		if (fail_uncached)
2529 			return (SET_ERROR(ENOENT));
2530 
2531 		ASSERT3P(parent, ==, NULL);
2532 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2533 		if (fail_sparse) {
2534 			if (err == 0 && bp && BP_IS_HOLE(bp))
2535 				err = SET_ERROR(ENOENT);
2536 			if (err) {
2537 				if (parent)
2538 					dbuf_rele(parent, NULL);
2539 				return (err);
2540 			}
2541 		}
2542 		if (err && err != ENOENT)
2543 			return (err);
2544 		db = dbuf_create(dn, level, blkid, parent, bp);
2545 	}
2546 
2547 	if (fail_uncached && db->db_state != DB_CACHED) {
2548 		mutex_exit(&db->db_mtx);
2549 		return (SET_ERROR(ENOENT));
2550 	}
2551 
2552 	if (db->db_buf != NULL)
2553 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2554 
2555 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2556 
2557 	/*
2558 	 * If this buffer is currently syncing out, and we are are
2559 	 * still referencing it from db_data, we need to make a copy
2560 	 * of it in case we decide we want to dirty it again in this txg.
2561 	 */
2562 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2563 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2564 	    db->db_state == DB_CACHED && db->db_data_pending) {
2565 		dbuf_dirty_record_t *dr = db->db_data_pending;
2566 
2567 		if (dr->dt.dl.dr_data == db->db_buf) {
2568 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2569 
2570 			dbuf_set_data(db,
2571 			    arc_alloc_buf(dn->dn_objset->os_spa, db, type,
2572 			    db->db.db_size));
2573 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2574 			    db->db.db_size);
2575 		}
2576 	}
2577 
2578 	if (multilist_link_active(&db->db_cache_link)) {
2579 		ASSERT(refcount_is_zero(&db->db_holds));
2580 		multilist_remove(dbuf_cache, db);
2581 		(void) refcount_remove_many(&dbuf_cache_size,
2582 		    db->db.db_size, db);
2583 	}
2584 	(void) refcount_add(&db->db_holds, tag);
2585 	DBUF_VERIFY(db);
2586 	mutex_exit(&db->db_mtx);
2587 
2588 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2589 	if (parent)
2590 		dbuf_rele(parent, NULL);
2591 
2592 	ASSERT3P(DB_DNODE(db), ==, dn);
2593 	ASSERT3U(db->db_blkid, ==, blkid);
2594 	ASSERT3U(db->db_level, ==, level);
2595 	*dbp = db;
2596 
2597 	return (0);
2598 }
2599 
2600 dmu_buf_impl_t *
2601 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2602 {
2603 	return (dbuf_hold_level(dn, 0, blkid, tag));
2604 }
2605 
2606 dmu_buf_impl_t *
2607 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2608 {
2609 	dmu_buf_impl_t *db;
2610 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2611 	return (err ? NULL : db);
2612 }
2613 
2614 void
2615 dbuf_create_bonus(dnode_t *dn)
2616 {
2617 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2618 
2619 	ASSERT(dn->dn_bonus == NULL);
2620 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2621 }
2622 
2623 int
2624 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2625 {
2626 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2627 	dnode_t *dn;
2628 
2629 	if (db->db_blkid != DMU_SPILL_BLKID)
2630 		return (SET_ERROR(ENOTSUP));
2631 	if (blksz == 0)
2632 		blksz = SPA_MINBLOCKSIZE;
2633 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2634 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2635 
2636 	DB_DNODE_ENTER(db);
2637 	dn = DB_DNODE(db);
2638 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2639 	dbuf_new_size(db, blksz, tx);
2640 	rw_exit(&dn->dn_struct_rwlock);
2641 	DB_DNODE_EXIT(db);
2642 
2643 	return (0);
2644 }
2645 
2646 void
2647 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2648 {
2649 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2650 }
2651 
2652 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2653 void
2654 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2655 {
2656 	int64_t holds = refcount_add(&db->db_holds, tag);
2657 	ASSERT3S(holds, >, 1);
2658 }
2659 
2660 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2661 boolean_t
2662 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2663     void *tag)
2664 {
2665 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2666 	dmu_buf_impl_t *found_db;
2667 	boolean_t result = B_FALSE;
2668 
2669 	if (db->db_blkid == DMU_BONUS_BLKID)
2670 		found_db = dbuf_find_bonus(os, obj);
2671 	else
2672 		found_db = dbuf_find(os, obj, 0, blkid);
2673 
2674 	if (found_db != NULL) {
2675 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2676 			(void) refcount_add(&db->db_holds, tag);
2677 			result = B_TRUE;
2678 		}
2679 		mutex_exit(&db->db_mtx);
2680 	}
2681 	return (result);
2682 }
2683 
2684 /*
2685  * If you call dbuf_rele() you had better not be referencing the dnode handle
2686  * unless you have some other direct or indirect hold on the dnode. (An indirect
2687  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2688  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2689  * dnode's parent dbuf evicting its dnode handles.
2690  */
2691 void
2692 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2693 {
2694 	mutex_enter(&db->db_mtx);
2695 	dbuf_rele_and_unlock(db, tag);
2696 }
2697 
2698 void
2699 dmu_buf_rele(dmu_buf_t *db, void *tag)
2700 {
2701 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2702 }
2703 
2704 /*
2705  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2706  * db_dirtycnt and db_holds to be updated atomically.
2707  */
2708 void
2709 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2710 {
2711 	int64_t holds;
2712 
2713 	ASSERT(MUTEX_HELD(&db->db_mtx));
2714 	DBUF_VERIFY(db);
2715 
2716 	/*
2717 	 * Remove the reference to the dbuf before removing its hold on the
2718 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2719 	 * buffer has a corresponding dnode hold.
2720 	 */
2721 	holds = refcount_remove(&db->db_holds, tag);
2722 	ASSERT(holds >= 0);
2723 
2724 	/*
2725 	 * We can't freeze indirects if there is a possibility that they
2726 	 * may be modified in the current syncing context.
2727 	 */
2728 	if (db->db_buf != NULL &&
2729 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2730 		arc_buf_freeze(db->db_buf);
2731 	}
2732 
2733 	if (holds == db->db_dirtycnt &&
2734 	    db->db_level == 0 && db->db_user_immediate_evict)
2735 		dbuf_evict_user(db);
2736 
2737 	if (holds == 0) {
2738 		if (db->db_blkid == DMU_BONUS_BLKID) {
2739 			dnode_t *dn;
2740 			boolean_t evict_dbuf = db->db_pending_evict;
2741 
2742 			/*
2743 			 * If the dnode moves here, we cannot cross this
2744 			 * barrier until the move completes.
2745 			 */
2746 			DB_DNODE_ENTER(db);
2747 
2748 			dn = DB_DNODE(db);
2749 			atomic_dec_32(&dn->dn_dbufs_count);
2750 
2751 			/*
2752 			 * Decrementing the dbuf count means that the bonus
2753 			 * buffer's dnode hold is no longer discounted in
2754 			 * dnode_move(). The dnode cannot move until after
2755 			 * the dnode_rele() below.
2756 			 */
2757 			DB_DNODE_EXIT(db);
2758 
2759 			/*
2760 			 * Do not reference db after its lock is dropped.
2761 			 * Another thread may evict it.
2762 			 */
2763 			mutex_exit(&db->db_mtx);
2764 
2765 			if (evict_dbuf)
2766 				dnode_evict_bonus(dn);
2767 
2768 			dnode_rele(dn, db);
2769 		} else if (db->db_buf == NULL) {
2770 			/*
2771 			 * This is a special case: we never associated this
2772 			 * dbuf with any data allocated from the ARC.
2773 			 */
2774 			ASSERT(db->db_state == DB_UNCACHED ||
2775 			    db->db_state == DB_NOFILL);
2776 			dbuf_destroy(db);
2777 		} else if (arc_released(db->db_buf)) {
2778 			/*
2779 			 * This dbuf has anonymous data associated with it.
2780 			 */
2781 			dbuf_destroy(db);
2782 		} else {
2783 			boolean_t do_arc_evict = B_FALSE;
2784 			blkptr_t bp;
2785 			spa_t *spa = dmu_objset_spa(db->db_objset);
2786 
2787 			if (!DBUF_IS_CACHEABLE(db) &&
2788 			    db->db_blkptr != NULL &&
2789 			    !BP_IS_HOLE(db->db_blkptr) &&
2790 			    !BP_IS_EMBEDDED(db->db_blkptr)) {
2791 				do_arc_evict = B_TRUE;
2792 				bp = *db->db_blkptr;
2793 			}
2794 
2795 			if (!DBUF_IS_CACHEABLE(db) ||
2796 			    db->db_pending_evict) {
2797 				dbuf_destroy(db);
2798 			} else if (!multilist_link_active(&db->db_cache_link)) {
2799 				multilist_insert(dbuf_cache, db);
2800 				(void) refcount_add_many(&dbuf_cache_size,
2801 				    db->db.db_size, db);
2802 				mutex_exit(&db->db_mtx);
2803 
2804 				dbuf_evict_notify();
2805 			}
2806 
2807 			if (do_arc_evict)
2808 				arc_freed(spa, &bp);
2809 		}
2810 	} else {
2811 		mutex_exit(&db->db_mtx);
2812 	}
2813 
2814 }
2815 
2816 #pragma weak dmu_buf_refcount = dbuf_refcount
2817 uint64_t
2818 dbuf_refcount(dmu_buf_impl_t *db)
2819 {
2820 	return (refcount_count(&db->db_holds));
2821 }
2822 
2823 void *
2824 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2825     dmu_buf_user_t *new_user)
2826 {
2827 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2828 
2829 	mutex_enter(&db->db_mtx);
2830 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2831 	if (db->db_user == old_user)
2832 		db->db_user = new_user;
2833 	else
2834 		old_user = db->db_user;
2835 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2836 	mutex_exit(&db->db_mtx);
2837 
2838 	return (old_user);
2839 }
2840 
2841 void *
2842 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2843 {
2844 	return (dmu_buf_replace_user(db_fake, NULL, user));
2845 }
2846 
2847 void *
2848 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2849 {
2850 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2851 
2852 	db->db_user_immediate_evict = TRUE;
2853 	return (dmu_buf_set_user(db_fake, user));
2854 }
2855 
2856 void *
2857 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2858 {
2859 	return (dmu_buf_replace_user(db_fake, user, NULL));
2860 }
2861 
2862 void *
2863 dmu_buf_get_user(dmu_buf_t *db_fake)
2864 {
2865 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2866 
2867 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2868 	return (db->db_user);
2869 }
2870 
2871 void
2872 dmu_buf_user_evict_wait()
2873 {
2874 	taskq_wait(dbu_evict_taskq);
2875 }
2876 
2877 blkptr_t *
2878 dmu_buf_get_blkptr(dmu_buf_t *db)
2879 {
2880 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2881 	return (dbi->db_blkptr);
2882 }
2883 
2884 objset_t *
2885 dmu_buf_get_objset(dmu_buf_t *db)
2886 {
2887 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2888 	return (dbi->db_objset);
2889 }
2890 
2891 dnode_t *
2892 dmu_buf_dnode_enter(dmu_buf_t *db)
2893 {
2894 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2895 	DB_DNODE_ENTER(dbi);
2896 	return (DB_DNODE(dbi));
2897 }
2898 
2899 void
2900 dmu_buf_dnode_exit(dmu_buf_t *db)
2901 {
2902 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2903 	DB_DNODE_EXIT(dbi);
2904 }
2905 
2906 static void
2907 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2908 {
2909 	/* ASSERT(dmu_tx_is_syncing(tx) */
2910 	ASSERT(MUTEX_HELD(&db->db_mtx));
2911 
2912 	if (db->db_blkptr != NULL)
2913 		return;
2914 
2915 	if (db->db_blkid == DMU_SPILL_BLKID) {
2916 		db->db_blkptr = &dn->dn_phys->dn_spill;
2917 		BP_ZERO(db->db_blkptr);
2918 		return;
2919 	}
2920 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2921 		/*
2922 		 * This buffer was allocated at a time when there was
2923 		 * no available blkptrs from the dnode, or it was
2924 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2925 		 */
2926 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2927 		ASSERT(db->db_parent == NULL);
2928 		db->db_parent = dn->dn_dbuf;
2929 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2930 		DBUF_VERIFY(db);
2931 	} else {
2932 		dmu_buf_impl_t *parent = db->db_parent;
2933 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2934 
2935 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2936 		if (parent == NULL) {
2937 			mutex_exit(&db->db_mtx);
2938 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2939 			parent = dbuf_hold_level(dn, db->db_level + 1,
2940 			    db->db_blkid >> epbs, db);
2941 			rw_exit(&dn->dn_struct_rwlock);
2942 			mutex_enter(&db->db_mtx);
2943 			db->db_parent = parent;
2944 		}
2945 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2946 		    (db->db_blkid & ((1ULL << epbs) - 1));
2947 		DBUF_VERIFY(db);
2948 	}
2949 }
2950 
2951 static void
2952 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2953 {
2954 	dmu_buf_impl_t *db = dr->dr_dbuf;
2955 	dnode_t *dn;
2956 	zio_t *zio;
2957 
2958 	ASSERT(dmu_tx_is_syncing(tx));
2959 
2960 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2961 
2962 	mutex_enter(&db->db_mtx);
2963 
2964 	ASSERT(db->db_level > 0);
2965 	DBUF_VERIFY(db);
2966 
2967 	/* Read the block if it hasn't been read yet. */
2968 	if (db->db_buf == NULL) {
2969 		mutex_exit(&db->db_mtx);
2970 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2971 		mutex_enter(&db->db_mtx);
2972 	}
2973 	ASSERT3U(db->db_state, ==, DB_CACHED);
2974 	ASSERT(db->db_buf != NULL);
2975 
2976 	DB_DNODE_ENTER(db);
2977 	dn = DB_DNODE(db);
2978 	/* Indirect block size must match what the dnode thinks it is. */
2979 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2980 	dbuf_check_blkptr(dn, db);
2981 	DB_DNODE_EXIT(db);
2982 
2983 	/* Provide the pending dirty record to child dbufs */
2984 	db->db_data_pending = dr;
2985 
2986 	mutex_exit(&db->db_mtx);
2987 	dbuf_write(dr, db->db_buf, tx);
2988 
2989 	zio = dr->dr_zio;
2990 	mutex_enter(&dr->dt.di.dr_mtx);
2991 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2992 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2993 	mutex_exit(&dr->dt.di.dr_mtx);
2994 	zio_nowait(zio);
2995 }
2996 
2997 static void
2998 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2999 {
3000 	arc_buf_t **datap = &dr->dt.dl.dr_data;
3001 	dmu_buf_impl_t *db = dr->dr_dbuf;
3002 	dnode_t *dn;
3003 	objset_t *os;
3004 	uint64_t txg = tx->tx_txg;
3005 
3006 	ASSERT(dmu_tx_is_syncing(tx));
3007 
3008 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3009 
3010 	mutex_enter(&db->db_mtx);
3011 	/*
3012 	 * To be synced, we must be dirtied.  But we
3013 	 * might have been freed after the dirty.
3014 	 */
3015 	if (db->db_state == DB_UNCACHED) {
3016 		/* This buffer has been freed since it was dirtied */
3017 		ASSERT(db->db.db_data == NULL);
3018 	} else if (db->db_state == DB_FILL) {
3019 		/* This buffer was freed and is now being re-filled */
3020 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3021 	} else {
3022 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3023 	}
3024 	DBUF_VERIFY(db);
3025 
3026 	DB_DNODE_ENTER(db);
3027 	dn = DB_DNODE(db);
3028 
3029 	if (db->db_blkid == DMU_SPILL_BLKID) {
3030 		mutex_enter(&dn->dn_mtx);
3031 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3032 		mutex_exit(&dn->dn_mtx);
3033 	}
3034 
3035 	/*
3036 	 * If this is a bonus buffer, simply copy the bonus data into the
3037 	 * dnode.  It will be written out when the dnode is synced (and it
3038 	 * will be synced, since it must have been dirty for dbuf_sync to
3039 	 * be called).
3040 	 */
3041 	if (db->db_blkid == DMU_BONUS_BLKID) {
3042 		dbuf_dirty_record_t **drp;
3043 
3044 		ASSERT(*datap != NULL);
3045 		ASSERT0(db->db_level);
3046 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3047 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3048 		DB_DNODE_EXIT(db);
3049 
3050 		if (*datap != db->db.db_data) {
3051 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
3052 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3053 		}
3054 		db->db_data_pending = NULL;
3055 		drp = &db->db_last_dirty;
3056 		while (*drp != dr)
3057 			drp = &(*drp)->dr_next;
3058 		ASSERT(dr->dr_next == NULL);
3059 		ASSERT(dr->dr_dbuf == db);
3060 		*drp = dr->dr_next;
3061 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
3062 		ASSERT(db->db_dirtycnt > 0);
3063 		db->db_dirtycnt -= 1;
3064 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3065 		return;
3066 	}
3067 
3068 	os = dn->dn_objset;
3069 
3070 	/*
3071 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
3072 	 * operation to sneak in. As a result, we need to ensure that we
3073 	 * don't check the dr_override_state until we have returned from
3074 	 * dbuf_check_blkptr.
3075 	 */
3076 	dbuf_check_blkptr(dn, db);
3077 
3078 	/*
3079 	 * If this buffer is in the middle of an immediate write,
3080 	 * wait for the synchronous IO to complete.
3081 	 */
3082 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3083 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3084 		cv_wait(&db->db_changed, &db->db_mtx);
3085 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3086 	}
3087 
3088 	if (db->db_state != DB_NOFILL &&
3089 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3090 	    refcount_count(&db->db_holds) > 1 &&
3091 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3092 	    *datap == db->db_buf) {
3093 		/*
3094 		 * If this buffer is currently "in use" (i.e., there
3095 		 * are active holds and db_data still references it),
3096 		 * then make a copy before we start the write so that
3097 		 * any modifications from the open txg will not leak
3098 		 * into this write.
3099 		 *
3100 		 * NOTE: this copy does not need to be made for
3101 		 * objects only modified in the syncing context (e.g.
3102 		 * DNONE_DNODE blocks).
3103 		 */
3104 		int psize = arc_buf_size(*datap);
3105 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3106 		enum zio_compress compress_type = arc_get_compression(*datap);
3107 
3108 		if (compress_type == ZIO_COMPRESS_OFF) {
3109 			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
3110 		} else {
3111 			ASSERT3U(type, ==, ARC_BUFC_DATA);
3112 			int lsize = arc_buf_lsize(*datap);
3113 			*datap = arc_alloc_compressed_buf(os->os_spa, db,
3114 			    psize, lsize, compress_type);
3115 		}
3116 		bcopy(db->db.db_data, (*datap)->b_data, psize);
3117 	}
3118 	db->db_data_pending = dr;
3119 
3120 	mutex_exit(&db->db_mtx);
3121 
3122 	dbuf_write(dr, *datap, tx);
3123 
3124 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3125 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3126 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3127 		DB_DNODE_EXIT(db);
3128 	} else {
3129 		/*
3130 		 * Although zio_nowait() does not "wait for an IO", it does
3131 		 * initiate the IO. If this is an empty write it seems plausible
3132 		 * that the IO could actually be completed before the nowait
3133 		 * returns. We need to DB_DNODE_EXIT() first in case
3134 		 * zio_nowait() invalidates the dbuf.
3135 		 */
3136 		DB_DNODE_EXIT(db);
3137 		zio_nowait(dr->dr_zio);
3138 	}
3139 }
3140 
3141 void
3142 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3143 {
3144 	dbuf_dirty_record_t *dr;
3145 
3146 	while (dr = list_head(list)) {
3147 		if (dr->dr_zio != NULL) {
3148 			/*
3149 			 * If we find an already initialized zio then we
3150 			 * are processing the meta-dnode, and we have finished.
3151 			 * The dbufs for all dnodes are put back on the list
3152 			 * during processing, so that we can zio_wait()
3153 			 * these IOs after initiating all child IOs.
3154 			 */
3155 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3156 			    DMU_META_DNODE_OBJECT);
3157 			break;
3158 		}
3159 		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3160 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3161 			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3162 		}
3163 		list_remove(list, dr);
3164 		if (dr->dr_dbuf->db_level > 0)
3165 			dbuf_sync_indirect(dr, tx);
3166 		else
3167 			dbuf_sync_leaf(dr, tx);
3168 	}
3169 }
3170 
3171 /* ARGSUSED */
3172 static void
3173 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3174 {
3175 	dmu_buf_impl_t *db = vdb;
3176 	dnode_t *dn;
3177 	blkptr_t *bp = zio->io_bp;
3178 	blkptr_t *bp_orig = &zio->io_bp_orig;
3179 	spa_t *spa = zio->io_spa;
3180 	int64_t delta;
3181 	uint64_t fill = 0;
3182 	int i;
3183 
3184 	ASSERT3P(db->db_blkptr, !=, NULL);
3185 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3186 
3187 	DB_DNODE_ENTER(db);
3188 	dn = DB_DNODE(db);
3189 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3190 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3191 	zio->io_prev_space_delta = delta;
3192 
3193 	if (bp->blk_birth != 0) {
3194 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3195 		    BP_GET_TYPE(bp) == dn->dn_type) ||
3196 		    (db->db_blkid == DMU_SPILL_BLKID &&
3197 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3198 		    BP_IS_EMBEDDED(bp));
3199 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3200 	}
3201 
3202 	mutex_enter(&db->db_mtx);
3203 
3204 #ifdef ZFS_DEBUG
3205 	if (db->db_blkid == DMU_SPILL_BLKID) {
3206 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3207 		ASSERT(!(BP_IS_HOLE(bp)) &&
3208 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3209 	}
3210 #endif
3211 
3212 	if (db->db_level == 0) {
3213 		mutex_enter(&dn->dn_mtx);
3214 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3215 		    db->db_blkid != DMU_SPILL_BLKID)
3216 			dn->dn_phys->dn_maxblkid = db->db_blkid;
3217 		mutex_exit(&dn->dn_mtx);
3218 
3219 		if (dn->dn_type == DMU_OT_DNODE) {
3220 			dnode_phys_t *dnp = db->db.db_data;
3221 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3222 			    i--, dnp++) {
3223 				if (dnp->dn_type != DMU_OT_NONE)
3224 					fill++;
3225 			}
3226 		} else {
3227 			if (BP_IS_HOLE(bp)) {
3228 				fill = 0;
3229 			} else {
3230 				fill = 1;
3231 			}
3232 		}
3233 	} else {
3234 		blkptr_t *ibp = db->db.db_data;
3235 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3236 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3237 			if (BP_IS_HOLE(ibp))
3238 				continue;
3239 			fill += BP_GET_FILL(ibp);
3240 		}
3241 	}
3242 	DB_DNODE_EXIT(db);
3243 
3244 	if (!BP_IS_EMBEDDED(bp))
3245 		bp->blk_fill = fill;
3246 
3247 	mutex_exit(&db->db_mtx);
3248 
3249 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3250 	*db->db_blkptr = *bp;
3251 	rw_exit(&dn->dn_struct_rwlock);
3252 }
3253 
3254 /* ARGSUSED */
3255 /*
3256  * This function gets called just prior to running through the compression
3257  * stage of the zio pipeline. If we're an indirect block comprised of only
3258  * holes, then we want this indirect to be compressed away to a hole. In
3259  * order to do that we must zero out any information about the holes that
3260  * this indirect points to prior to before we try to compress it.
3261  */
3262 static void
3263 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3264 {
3265 	dmu_buf_impl_t *db = vdb;
3266 	dnode_t *dn;
3267 	blkptr_t *bp;
3268 	unsigned int epbs, i;
3269 
3270 	ASSERT3U(db->db_level, >, 0);
3271 	DB_DNODE_ENTER(db);
3272 	dn = DB_DNODE(db);
3273 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3274 	ASSERT3U(epbs, <, 31);
3275 
3276 	/* Determine if all our children are holes */
3277 	for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3278 		if (!BP_IS_HOLE(bp))
3279 			break;
3280 	}
3281 
3282 	/*
3283 	 * If all the children are holes, then zero them all out so that
3284 	 * we may get compressed away.
3285 	 */
3286 	if (i == 1 << epbs) {
3287 		/*
3288 		 * We only found holes. Grab the rwlock to prevent
3289 		 * anybody from reading the blocks we're about to
3290 		 * zero out.
3291 		 */
3292 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3293 		bzero(db->db.db_data, db->db.db_size);
3294 		rw_exit(&dn->dn_struct_rwlock);
3295 	}
3296 	DB_DNODE_EXIT(db);
3297 }
3298 
3299 /*
3300  * The SPA will call this callback several times for each zio - once
3301  * for every physical child i/o (zio->io_phys_children times).  This
3302  * allows the DMU to monitor the progress of each logical i/o.  For example,
3303  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3304  * block.  There may be a long delay before all copies/fragments are completed,
3305  * so this callback allows us to retire dirty space gradually, as the physical
3306  * i/os complete.
3307  */
3308 /* ARGSUSED */
3309 static void
3310 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3311 {
3312 	dmu_buf_impl_t *db = arg;
3313 	objset_t *os = db->db_objset;
3314 	dsl_pool_t *dp = dmu_objset_pool(os);
3315 	dbuf_dirty_record_t *dr;
3316 	int delta = 0;
3317 
3318 	dr = db->db_data_pending;
3319 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3320 
3321 	/*
3322 	 * The callback will be called io_phys_children times.  Retire one
3323 	 * portion of our dirty space each time we are called.  Any rounding
3324 	 * error will be cleaned up by dsl_pool_sync()'s call to
3325 	 * dsl_pool_undirty_space().
3326 	 */
3327 	delta = dr->dr_accounted / zio->io_phys_children;
3328 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
3329 }
3330 
3331 /* ARGSUSED */
3332 static void
3333 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3334 {
3335 	dmu_buf_impl_t *db = vdb;
3336 	blkptr_t *bp_orig = &zio->io_bp_orig;
3337 	blkptr_t *bp = db->db_blkptr;
3338 	objset_t *os = db->db_objset;
3339 	dmu_tx_t *tx = os->os_synctx;
3340 	dbuf_dirty_record_t **drp, *dr;
3341 
3342 	ASSERT0(zio->io_error);
3343 	ASSERT(db->db_blkptr == bp);
3344 
3345 	/*
3346 	 * For nopwrites and rewrites we ensure that the bp matches our
3347 	 * original and bypass all the accounting.
3348 	 */
3349 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3350 		ASSERT(BP_EQUAL(bp, bp_orig));
3351 	} else {
3352 		dsl_dataset_t *ds = os->os_dsl_dataset;
3353 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3354 		dsl_dataset_block_born(ds, bp, tx);
3355 	}
3356 
3357 	mutex_enter(&db->db_mtx);
3358 
3359 	DBUF_VERIFY(db);
3360 
3361 	drp = &db->db_last_dirty;
3362 	while ((dr = *drp) != db->db_data_pending)
3363 		drp = &dr->dr_next;
3364 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3365 	ASSERT(dr->dr_dbuf == db);
3366 	ASSERT(dr->dr_next == NULL);
3367 	*drp = dr->dr_next;
3368 
3369 #ifdef ZFS_DEBUG
3370 	if (db->db_blkid == DMU_SPILL_BLKID) {
3371 		dnode_t *dn;
3372 
3373 		DB_DNODE_ENTER(db);
3374 		dn = DB_DNODE(db);
3375 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3376 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3377 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3378 		DB_DNODE_EXIT(db);
3379 	}
3380 #endif
3381 
3382 	if (db->db_level == 0) {
3383 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3384 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3385 		if (db->db_state != DB_NOFILL) {
3386 			if (dr->dt.dl.dr_data != db->db_buf)
3387 				arc_buf_destroy(dr->dt.dl.dr_data, db);
3388 		}
3389 	} else {
3390 		dnode_t *dn;
3391 
3392 		DB_DNODE_ENTER(db);
3393 		dn = DB_DNODE(db);
3394 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3395 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3396 		if (!BP_IS_HOLE(db->db_blkptr)) {
3397 			int epbs =
3398 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3399 			ASSERT3U(db->db_blkid, <=,
3400 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3401 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3402 			    db->db.db_size);
3403 		}
3404 		DB_DNODE_EXIT(db);
3405 		mutex_destroy(&dr->dt.di.dr_mtx);
3406 		list_destroy(&dr->dt.di.dr_children);
3407 	}
3408 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3409 
3410 	cv_broadcast(&db->db_changed);
3411 	ASSERT(db->db_dirtycnt > 0);
3412 	db->db_dirtycnt -= 1;
3413 	db->db_data_pending = NULL;
3414 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3415 }
3416 
3417 static void
3418 dbuf_write_nofill_ready(zio_t *zio)
3419 {
3420 	dbuf_write_ready(zio, NULL, zio->io_private);
3421 }
3422 
3423 static void
3424 dbuf_write_nofill_done(zio_t *zio)
3425 {
3426 	dbuf_write_done(zio, NULL, zio->io_private);
3427 }
3428 
3429 static void
3430 dbuf_write_override_ready(zio_t *zio)
3431 {
3432 	dbuf_dirty_record_t *dr = zio->io_private;
3433 	dmu_buf_impl_t *db = dr->dr_dbuf;
3434 
3435 	dbuf_write_ready(zio, NULL, db);
3436 }
3437 
3438 static void
3439 dbuf_write_override_done(zio_t *zio)
3440 {
3441 	dbuf_dirty_record_t *dr = zio->io_private;
3442 	dmu_buf_impl_t *db = dr->dr_dbuf;
3443 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3444 
3445 	mutex_enter(&db->db_mtx);
3446 	if (!BP_EQUAL(zio->io_bp, obp)) {
3447 		if (!BP_IS_HOLE(obp))
3448 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3449 		arc_release(dr->dt.dl.dr_data, db);
3450 	}
3451 	mutex_exit(&db->db_mtx);
3452 
3453 	dbuf_write_done(zio, NULL, db);
3454 }
3455 
3456 /* Issue I/O to commit a dirty buffer to disk. */
3457 static void
3458 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3459 {
3460 	dmu_buf_impl_t *db = dr->dr_dbuf;
3461 	dnode_t *dn;
3462 	objset_t *os;
3463 	dmu_buf_impl_t *parent = db->db_parent;
3464 	uint64_t txg = tx->tx_txg;
3465 	zbookmark_phys_t zb;
3466 	zio_prop_t zp;
3467 	zio_t *zio;
3468 	int wp_flag = 0;
3469 
3470 	ASSERT(dmu_tx_is_syncing(tx));
3471 
3472 	DB_DNODE_ENTER(db);
3473 	dn = DB_DNODE(db);
3474 	os = dn->dn_objset;
3475 
3476 	if (db->db_state != DB_NOFILL) {
3477 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3478 			/*
3479 			 * Private object buffers are released here rather
3480 			 * than in dbuf_dirty() since they are only modified
3481 			 * in the syncing context and we don't want the
3482 			 * overhead of making multiple copies of the data.
3483 			 */
3484 			if (BP_IS_HOLE(db->db_blkptr)) {
3485 				arc_buf_thaw(data);
3486 			} else {
3487 				dbuf_release_bp(db);
3488 			}
3489 		}
3490 	}
3491 
3492 	if (parent != dn->dn_dbuf) {
3493 		/* Our parent is an indirect block. */
3494 		/* We have a dirty parent that has been scheduled for write. */
3495 		ASSERT(parent && parent->db_data_pending);
3496 		/* Our parent's buffer is one level closer to the dnode. */
3497 		ASSERT(db->db_level == parent->db_level-1);
3498 		/*
3499 		 * We're about to modify our parent's db_data by modifying
3500 		 * our block pointer, so the parent must be released.
3501 		 */
3502 		ASSERT(arc_released(parent->db_buf));
3503 		zio = parent->db_data_pending->dr_zio;
3504 	} else {
3505 		/* Our parent is the dnode itself. */
3506 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3507 		    db->db_blkid != DMU_SPILL_BLKID) ||
3508 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3509 		if (db->db_blkid != DMU_SPILL_BLKID)
3510 			ASSERT3P(db->db_blkptr, ==,
3511 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3512 		zio = dn->dn_zio;
3513 	}
3514 
3515 	ASSERT(db->db_level == 0 || data == db->db_buf);
3516 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3517 	ASSERT(zio);
3518 
3519 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3520 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3521 	    db->db.db_object, db->db_level, db->db_blkid);
3522 
3523 	if (db->db_blkid == DMU_SPILL_BLKID)
3524 		wp_flag = WP_SPILL;
3525 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3526 
3527 	dmu_write_policy(os, dn, db->db_level, wp_flag,
3528 	    (data != NULL && arc_get_compression(data) != ZIO_COMPRESS_OFF) ?
3529 	    arc_get_compression(data) : ZIO_COMPRESS_INHERIT, &zp);
3530 	DB_DNODE_EXIT(db);
3531 
3532 	/*
3533 	 * We copy the blkptr now (rather than when we instantiate the dirty
3534 	 * record), because its value can change between open context and
3535 	 * syncing context. We do not need to hold dn_struct_rwlock to read
3536 	 * db_blkptr because we are in syncing context.
3537 	 */
3538 	dr->dr_bp_copy = *db->db_blkptr;
3539 
3540 	if (db->db_level == 0 &&
3541 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3542 		/*
3543 		 * The BP for this block has been provided by open context
3544 		 * (by dmu_sync() or dmu_buf_write_embedded()).
3545 		 */
3546 		void *contents = (data != NULL) ? data->b_data : NULL;
3547 
3548 		dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy,
3549 		    contents, db->db.db_size, db->db.db_size, &zp,
3550 		    dbuf_write_override_ready, NULL, NULL,
3551 		    dbuf_write_override_done,
3552 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3553 		mutex_enter(&db->db_mtx);
3554 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3555 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3556 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3557 		mutex_exit(&db->db_mtx);
3558 	} else if (db->db_state == DB_NOFILL) {
3559 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3560 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3561 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3562 		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3563 		    dbuf_write_nofill_ready, NULL, NULL,
3564 		    dbuf_write_nofill_done, db,
3565 		    ZIO_PRIORITY_ASYNC_WRITE,
3566 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3567 	} else {
3568 		ASSERT(arc_released(data));
3569 
3570 		/*
3571 		 * For indirect blocks, we want to setup the children
3572 		 * ready callback so that we can properly handle an indirect
3573 		 * block that only contains holes.
3574 		 */
3575 		arc_done_func_t *children_ready_cb = NULL;
3576 		if (db->db_level != 0)
3577 			children_ready_cb = dbuf_write_children_ready;
3578 
3579 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3580 		    &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3581 		    &zp, dbuf_write_ready, children_ready_cb,
3582 		    dbuf_write_physdone, dbuf_write_done, db,
3583 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3584 	}
3585 }
3586