xref: /illumos-gate/usr/src/uts/common/fs/zfs/dbuf.c (revision e94f268a6264bf027b3bc556fb4cceb84f7323c5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_send.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dbuf.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/spa.h>
39 #include <sys/zio.h>
40 #include <sys/dmu_zfetch.h>
41 #include <sys/sa.h>
42 #include <sys/sa_impl.h>
43 #include <sys/zfeature.h>
44 #include <sys/blkptr.h>
45 #include <sys/range_tree.h>
46 
47 /*
48  * Number of times that zfs_free_range() took the slow path while doing
49  * a zfs receive.  A nonzero value indicates a potential performance problem.
50  */
51 uint64_t zfs_free_range_recv_miss;
52 
53 static void dbuf_destroy(dmu_buf_impl_t *db);
54 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
55 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
56 
57 /*
58  * Global data structures and functions for the dbuf cache.
59  */
60 static kmem_cache_t *dbuf_cache;
61 
62 /* ARGSUSED */
63 static int
64 dbuf_cons(void *vdb, void *unused, int kmflag)
65 {
66 	dmu_buf_impl_t *db = vdb;
67 	bzero(db, sizeof (dmu_buf_impl_t));
68 
69 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
70 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
71 	refcount_create(&db->db_holds);
72 
73 	return (0);
74 }
75 
76 /* ARGSUSED */
77 static void
78 dbuf_dest(void *vdb, void *unused)
79 {
80 	dmu_buf_impl_t *db = vdb;
81 	mutex_destroy(&db->db_mtx);
82 	cv_destroy(&db->db_changed);
83 	refcount_destroy(&db->db_holds);
84 }
85 
86 /*
87  * dbuf hash table routines
88  */
89 static dbuf_hash_table_t dbuf_hash_table;
90 
91 static uint64_t dbuf_hash_count;
92 
93 static uint64_t
94 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
95 {
96 	uintptr_t osv = (uintptr_t)os;
97 	uint64_t crc = -1ULL;
98 
99 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
100 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
101 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
102 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
103 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
104 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
105 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
106 
107 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
108 
109 	return (crc);
110 }
111 
112 #define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
113 
114 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
115 	((dbuf)->db.db_object == (obj) &&		\
116 	(dbuf)->db_objset == (os) &&			\
117 	(dbuf)->db_level == (level) &&			\
118 	(dbuf)->db_blkid == (blkid))
119 
120 dmu_buf_impl_t *
121 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid)
122 {
123 	dbuf_hash_table_t *h = &dbuf_hash_table;
124 	objset_t *os = dn->dn_objset;
125 	uint64_t obj = dn->dn_object;
126 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
127 	uint64_t idx = hv & h->hash_table_mask;
128 	dmu_buf_impl_t *db;
129 
130 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
131 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
132 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
133 			mutex_enter(&db->db_mtx);
134 			if (db->db_state != DB_EVICTING) {
135 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
136 				return (db);
137 			}
138 			mutex_exit(&db->db_mtx);
139 		}
140 	}
141 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
142 	return (NULL);
143 }
144 
145 /*
146  * Insert an entry into the hash table.  If there is already an element
147  * equal to elem in the hash table, then the already existing element
148  * will be returned and the new element will not be inserted.
149  * Otherwise returns NULL.
150  */
151 static dmu_buf_impl_t *
152 dbuf_hash_insert(dmu_buf_impl_t *db)
153 {
154 	dbuf_hash_table_t *h = &dbuf_hash_table;
155 	objset_t *os = db->db_objset;
156 	uint64_t obj = db->db.db_object;
157 	int level = db->db_level;
158 	uint64_t blkid = db->db_blkid;
159 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
160 	uint64_t idx = hv & h->hash_table_mask;
161 	dmu_buf_impl_t *dbf;
162 
163 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
164 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
165 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
166 			mutex_enter(&dbf->db_mtx);
167 			if (dbf->db_state != DB_EVICTING) {
168 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
169 				return (dbf);
170 			}
171 			mutex_exit(&dbf->db_mtx);
172 		}
173 	}
174 
175 	mutex_enter(&db->db_mtx);
176 	db->db_hash_next = h->hash_table[idx];
177 	h->hash_table[idx] = db;
178 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
179 	atomic_inc_64(&dbuf_hash_count);
180 
181 	return (NULL);
182 }
183 
184 /*
185  * Remove an entry from the hash table.  It must be in the EVICTING state.
186  */
187 static void
188 dbuf_hash_remove(dmu_buf_impl_t *db)
189 {
190 	dbuf_hash_table_t *h = &dbuf_hash_table;
191 	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
192 	    db->db_level, db->db_blkid);
193 	uint64_t idx = hv & h->hash_table_mask;
194 	dmu_buf_impl_t *dbf, **dbp;
195 
196 	/*
197 	 * We musn't hold db_mtx to maintain lock ordering:
198 	 * DBUF_HASH_MUTEX > db_mtx.
199 	 */
200 	ASSERT(refcount_is_zero(&db->db_holds));
201 	ASSERT(db->db_state == DB_EVICTING);
202 	ASSERT(!MUTEX_HELD(&db->db_mtx));
203 
204 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
205 	dbp = &h->hash_table[idx];
206 	while ((dbf = *dbp) != db) {
207 		dbp = &dbf->db_hash_next;
208 		ASSERT(dbf != NULL);
209 	}
210 	*dbp = db->db_hash_next;
211 	db->db_hash_next = NULL;
212 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
213 	atomic_dec_64(&dbuf_hash_count);
214 }
215 
216 static arc_evict_func_t dbuf_do_evict;
217 
218 static void
219 dbuf_evict_user(dmu_buf_impl_t *db)
220 {
221 	ASSERT(MUTEX_HELD(&db->db_mtx));
222 
223 	if (db->db_level != 0 || db->db_evict_func == NULL)
224 		return;
225 
226 	if (db->db_user_data_ptr_ptr)
227 		*db->db_user_data_ptr_ptr = db->db.db_data;
228 	db->db_evict_func(&db->db, db->db_user_ptr);
229 	db->db_user_ptr = NULL;
230 	db->db_user_data_ptr_ptr = NULL;
231 	db->db_evict_func = NULL;
232 }
233 
234 boolean_t
235 dbuf_is_metadata(dmu_buf_impl_t *db)
236 {
237 	if (db->db_level > 0) {
238 		return (B_TRUE);
239 	} else {
240 		boolean_t is_metadata;
241 
242 		DB_DNODE_ENTER(db);
243 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
244 		DB_DNODE_EXIT(db);
245 
246 		return (is_metadata);
247 	}
248 }
249 
250 void
251 dbuf_evict(dmu_buf_impl_t *db)
252 {
253 	ASSERT(MUTEX_HELD(&db->db_mtx));
254 	ASSERT(db->db_buf == NULL);
255 	ASSERT(db->db_data_pending == NULL);
256 
257 	dbuf_clear(db);
258 	dbuf_destroy(db);
259 }
260 
261 void
262 dbuf_init(void)
263 {
264 	uint64_t hsize = 1ULL << 16;
265 	dbuf_hash_table_t *h = &dbuf_hash_table;
266 	int i;
267 
268 	/*
269 	 * The hash table is big enough to fill all of physical memory
270 	 * with an average 4K block size.  The table will take up
271 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
272 	 */
273 	while (hsize * 4096 < physmem * PAGESIZE)
274 		hsize <<= 1;
275 
276 retry:
277 	h->hash_table_mask = hsize - 1;
278 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
279 	if (h->hash_table == NULL) {
280 		/* XXX - we should really return an error instead of assert */
281 		ASSERT(hsize > (1ULL << 10));
282 		hsize >>= 1;
283 		goto retry;
284 	}
285 
286 	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
287 	    sizeof (dmu_buf_impl_t),
288 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
289 
290 	for (i = 0; i < DBUF_MUTEXES; i++)
291 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
292 }
293 
294 void
295 dbuf_fini(void)
296 {
297 	dbuf_hash_table_t *h = &dbuf_hash_table;
298 	int i;
299 
300 	for (i = 0; i < DBUF_MUTEXES; i++)
301 		mutex_destroy(&h->hash_mutexes[i]);
302 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
303 	kmem_cache_destroy(dbuf_cache);
304 }
305 
306 /*
307  * Other stuff.
308  */
309 
310 #ifdef ZFS_DEBUG
311 static void
312 dbuf_verify(dmu_buf_impl_t *db)
313 {
314 	dnode_t *dn;
315 	dbuf_dirty_record_t *dr;
316 
317 	ASSERT(MUTEX_HELD(&db->db_mtx));
318 
319 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
320 		return;
321 
322 	ASSERT(db->db_objset != NULL);
323 	DB_DNODE_ENTER(db);
324 	dn = DB_DNODE(db);
325 	if (dn == NULL) {
326 		ASSERT(db->db_parent == NULL);
327 		ASSERT(db->db_blkptr == NULL);
328 	} else {
329 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
330 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
331 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
332 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
333 		    db->db_blkid == DMU_SPILL_BLKID ||
334 		    !avl_is_empty(&dn->dn_dbufs));
335 	}
336 	if (db->db_blkid == DMU_BONUS_BLKID) {
337 		ASSERT(dn != NULL);
338 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
339 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
340 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
341 		ASSERT(dn != NULL);
342 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
343 		ASSERT0(db->db.db_offset);
344 	} else {
345 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
346 	}
347 
348 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
349 		ASSERT(dr->dr_dbuf == db);
350 
351 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
352 		ASSERT(dr->dr_dbuf == db);
353 
354 	/*
355 	 * We can't assert that db_size matches dn_datablksz because it
356 	 * can be momentarily different when another thread is doing
357 	 * dnode_set_blksz().
358 	 */
359 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
360 		dr = db->db_data_pending;
361 		/*
362 		 * It should only be modified in syncing context, so
363 		 * make sure we only have one copy of the data.
364 		 */
365 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
366 	}
367 
368 	/* verify db->db_blkptr */
369 	if (db->db_blkptr) {
370 		if (db->db_parent == dn->dn_dbuf) {
371 			/* db is pointed to by the dnode */
372 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
373 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
374 				ASSERT(db->db_parent == NULL);
375 			else
376 				ASSERT(db->db_parent != NULL);
377 			if (db->db_blkid != DMU_SPILL_BLKID)
378 				ASSERT3P(db->db_blkptr, ==,
379 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
380 		} else {
381 			/* db is pointed to by an indirect block */
382 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
383 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
384 			ASSERT3U(db->db_parent->db.db_object, ==,
385 			    db->db.db_object);
386 			/*
387 			 * dnode_grow_indblksz() can make this fail if we don't
388 			 * have the struct_rwlock.  XXX indblksz no longer
389 			 * grows.  safe to do this now?
390 			 */
391 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
392 				ASSERT3P(db->db_blkptr, ==,
393 				    ((blkptr_t *)db->db_parent->db.db_data +
394 				    db->db_blkid % epb));
395 			}
396 		}
397 	}
398 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
399 	    (db->db_buf == NULL || db->db_buf->b_data) &&
400 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
401 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
402 		/*
403 		 * If the blkptr isn't set but they have nonzero data,
404 		 * it had better be dirty, otherwise we'll lose that
405 		 * data when we evict this buffer.
406 		 */
407 		if (db->db_dirtycnt == 0) {
408 			uint64_t *buf = db->db.db_data;
409 			int i;
410 
411 			for (i = 0; i < db->db.db_size >> 3; i++) {
412 				ASSERT(buf[i] == 0);
413 			}
414 		}
415 	}
416 	DB_DNODE_EXIT(db);
417 }
418 #endif
419 
420 static void
421 dbuf_update_data(dmu_buf_impl_t *db)
422 {
423 	ASSERT(MUTEX_HELD(&db->db_mtx));
424 	if (db->db_level == 0 && db->db_user_data_ptr_ptr) {
425 		ASSERT(!refcount_is_zero(&db->db_holds));
426 		*db->db_user_data_ptr_ptr = db->db.db_data;
427 	}
428 }
429 
430 static void
431 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
432 {
433 	ASSERT(MUTEX_HELD(&db->db_mtx));
434 	db->db_buf = buf;
435 	if (buf != NULL) {
436 		ASSERT(buf->b_data != NULL);
437 		db->db.db_data = buf->b_data;
438 		if (!arc_released(buf))
439 			arc_set_callback(buf, dbuf_do_evict, db);
440 		dbuf_update_data(db);
441 	} else {
442 		dbuf_evict_user(db);
443 		db->db.db_data = NULL;
444 		if (db->db_state != DB_NOFILL)
445 			db->db_state = DB_UNCACHED;
446 	}
447 }
448 
449 /*
450  * Loan out an arc_buf for read.  Return the loaned arc_buf.
451  */
452 arc_buf_t *
453 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
454 {
455 	arc_buf_t *abuf;
456 
457 	mutex_enter(&db->db_mtx);
458 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
459 		int blksz = db->db.db_size;
460 		spa_t *spa = db->db_objset->os_spa;
461 
462 		mutex_exit(&db->db_mtx);
463 		abuf = arc_loan_buf(spa, blksz);
464 		bcopy(db->db.db_data, abuf->b_data, blksz);
465 	} else {
466 		abuf = db->db_buf;
467 		arc_loan_inuse_buf(abuf, db);
468 		dbuf_set_data(db, NULL);
469 		mutex_exit(&db->db_mtx);
470 	}
471 	return (abuf);
472 }
473 
474 uint64_t
475 dbuf_whichblock(dnode_t *dn, uint64_t offset)
476 {
477 	if (dn->dn_datablkshift) {
478 		return (offset >> dn->dn_datablkshift);
479 	} else {
480 		ASSERT3U(offset, <, dn->dn_datablksz);
481 		return (0);
482 	}
483 }
484 
485 static void
486 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
487 {
488 	dmu_buf_impl_t *db = vdb;
489 
490 	mutex_enter(&db->db_mtx);
491 	ASSERT3U(db->db_state, ==, DB_READ);
492 	/*
493 	 * All reads are synchronous, so we must have a hold on the dbuf
494 	 */
495 	ASSERT(refcount_count(&db->db_holds) > 0);
496 	ASSERT(db->db_buf == NULL);
497 	ASSERT(db->db.db_data == NULL);
498 	if (db->db_level == 0 && db->db_freed_in_flight) {
499 		/* we were freed in flight; disregard any error */
500 		arc_release(buf, db);
501 		bzero(buf->b_data, db->db.db_size);
502 		arc_buf_freeze(buf);
503 		db->db_freed_in_flight = FALSE;
504 		dbuf_set_data(db, buf);
505 		db->db_state = DB_CACHED;
506 	} else if (zio == NULL || zio->io_error == 0) {
507 		dbuf_set_data(db, buf);
508 		db->db_state = DB_CACHED;
509 	} else {
510 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
511 		ASSERT3P(db->db_buf, ==, NULL);
512 		VERIFY(arc_buf_remove_ref(buf, db));
513 		db->db_state = DB_UNCACHED;
514 	}
515 	cv_broadcast(&db->db_changed);
516 	dbuf_rele_and_unlock(db, NULL);
517 }
518 
519 static void
520 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
521 {
522 	dnode_t *dn;
523 	zbookmark_phys_t zb;
524 	uint32_t aflags = ARC_NOWAIT;
525 
526 	DB_DNODE_ENTER(db);
527 	dn = DB_DNODE(db);
528 	ASSERT(!refcount_is_zero(&db->db_holds));
529 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
530 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
531 	ASSERT(MUTEX_HELD(&db->db_mtx));
532 	ASSERT(db->db_state == DB_UNCACHED);
533 	ASSERT(db->db_buf == NULL);
534 
535 	if (db->db_blkid == DMU_BONUS_BLKID) {
536 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
537 
538 		ASSERT3U(bonuslen, <=, db->db.db_size);
539 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
540 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
541 		if (bonuslen < DN_MAX_BONUSLEN)
542 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
543 		if (bonuslen)
544 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
545 		DB_DNODE_EXIT(db);
546 		dbuf_update_data(db);
547 		db->db_state = DB_CACHED;
548 		mutex_exit(&db->db_mtx);
549 		return;
550 	}
551 
552 	/*
553 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
554 	 * processes the delete record and clears the bp while we are waiting
555 	 * for the dn_mtx (resulting in a "no" from block_freed).
556 	 */
557 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
558 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
559 	    BP_IS_HOLE(db->db_blkptr)))) {
560 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
561 
562 		DB_DNODE_EXIT(db);
563 		dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
564 		    db->db.db_size, db, type));
565 		bzero(db->db.db_data, db->db.db_size);
566 		db->db_state = DB_CACHED;
567 		*flags |= DB_RF_CACHED;
568 		mutex_exit(&db->db_mtx);
569 		return;
570 	}
571 
572 	DB_DNODE_EXIT(db);
573 
574 	db->db_state = DB_READ;
575 	mutex_exit(&db->db_mtx);
576 
577 	if (DBUF_IS_L2CACHEABLE(db))
578 		aflags |= ARC_L2CACHE;
579 	if (DBUF_IS_L2COMPRESSIBLE(db))
580 		aflags |= ARC_L2COMPRESS;
581 
582 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
583 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
584 	    db->db.db_object, db->db_level, db->db_blkid);
585 
586 	dbuf_add_ref(db, NULL);
587 
588 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
589 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
590 	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
591 	    &aflags, &zb);
592 	if (aflags & ARC_CACHED)
593 		*flags |= DB_RF_CACHED;
594 }
595 
596 int
597 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
598 {
599 	int err = 0;
600 	boolean_t havepzio = (zio != NULL);
601 	boolean_t prefetch;
602 	dnode_t *dn;
603 
604 	/*
605 	 * We don't have to hold the mutex to check db_state because it
606 	 * can't be freed while we have a hold on the buffer.
607 	 */
608 	ASSERT(!refcount_is_zero(&db->db_holds));
609 
610 	if (db->db_state == DB_NOFILL)
611 		return (SET_ERROR(EIO));
612 
613 	DB_DNODE_ENTER(db);
614 	dn = DB_DNODE(db);
615 	if ((flags & DB_RF_HAVESTRUCT) == 0)
616 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
617 
618 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
619 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
620 	    DBUF_IS_CACHEABLE(db);
621 
622 	mutex_enter(&db->db_mtx);
623 	if (db->db_state == DB_CACHED) {
624 		mutex_exit(&db->db_mtx);
625 		if (prefetch)
626 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
627 			    db->db.db_size, TRUE);
628 		if ((flags & DB_RF_HAVESTRUCT) == 0)
629 			rw_exit(&dn->dn_struct_rwlock);
630 		DB_DNODE_EXIT(db);
631 	} else if (db->db_state == DB_UNCACHED) {
632 		spa_t *spa = dn->dn_objset->os_spa;
633 
634 		if (zio == NULL)
635 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
636 		dbuf_read_impl(db, zio, &flags);
637 
638 		/* dbuf_read_impl has dropped db_mtx for us */
639 
640 		if (prefetch)
641 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
642 			    db->db.db_size, flags & DB_RF_CACHED);
643 
644 		if ((flags & DB_RF_HAVESTRUCT) == 0)
645 			rw_exit(&dn->dn_struct_rwlock);
646 		DB_DNODE_EXIT(db);
647 
648 		if (!havepzio)
649 			err = zio_wait(zio);
650 	} else {
651 		/*
652 		 * Another reader came in while the dbuf was in flight
653 		 * between UNCACHED and CACHED.  Either a writer will finish
654 		 * writing the buffer (sending the dbuf to CACHED) or the
655 		 * first reader's request will reach the read_done callback
656 		 * and send the dbuf to CACHED.  Otherwise, a failure
657 		 * occurred and the dbuf went to UNCACHED.
658 		 */
659 		mutex_exit(&db->db_mtx);
660 		if (prefetch)
661 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
662 			    db->db.db_size, TRUE);
663 		if ((flags & DB_RF_HAVESTRUCT) == 0)
664 			rw_exit(&dn->dn_struct_rwlock);
665 		DB_DNODE_EXIT(db);
666 
667 		/* Skip the wait per the caller's request. */
668 		mutex_enter(&db->db_mtx);
669 		if ((flags & DB_RF_NEVERWAIT) == 0) {
670 			while (db->db_state == DB_READ ||
671 			    db->db_state == DB_FILL) {
672 				ASSERT(db->db_state == DB_READ ||
673 				    (flags & DB_RF_HAVESTRUCT) == 0);
674 				cv_wait(&db->db_changed, &db->db_mtx);
675 			}
676 			if (db->db_state == DB_UNCACHED)
677 				err = SET_ERROR(EIO);
678 		}
679 		mutex_exit(&db->db_mtx);
680 	}
681 
682 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
683 	return (err);
684 }
685 
686 static void
687 dbuf_noread(dmu_buf_impl_t *db)
688 {
689 	ASSERT(!refcount_is_zero(&db->db_holds));
690 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
691 	mutex_enter(&db->db_mtx);
692 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
693 		cv_wait(&db->db_changed, &db->db_mtx);
694 	if (db->db_state == DB_UNCACHED) {
695 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
696 		spa_t *spa = db->db_objset->os_spa;
697 
698 		ASSERT(db->db_buf == NULL);
699 		ASSERT(db->db.db_data == NULL);
700 		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
701 		db->db_state = DB_FILL;
702 	} else if (db->db_state == DB_NOFILL) {
703 		dbuf_set_data(db, NULL);
704 	} else {
705 		ASSERT3U(db->db_state, ==, DB_CACHED);
706 	}
707 	mutex_exit(&db->db_mtx);
708 }
709 
710 /*
711  * This is our just-in-time copy function.  It makes a copy of
712  * buffers, that have been modified in a previous transaction
713  * group, before we modify them in the current active group.
714  *
715  * This function is used in two places: when we are dirtying a
716  * buffer for the first time in a txg, and when we are freeing
717  * a range in a dnode that includes this buffer.
718  *
719  * Note that when we are called from dbuf_free_range() we do
720  * not put a hold on the buffer, we just traverse the active
721  * dbuf list for the dnode.
722  */
723 static void
724 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
725 {
726 	dbuf_dirty_record_t *dr = db->db_last_dirty;
727 
728 	ASSERT(MUTEX_HELD(&db->db_mtx));
729 	ASSERT(db->db.db_data != NULL);
730 	ASSERT(db->db_level == 0);
731 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
732 
733 	if (dr == NULL ||
734 	    (dr->dt.dl.dr_data !=
735 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
736 		return;
737 
738 	/*
739 	 * If the last dirty record for this dbuf has not yet synced
740 	 * and its referencing the dbuf data, either:
741 	 *	reset the reference to point to a new copy,
742 	 * or (if there a no active holders)
743 	 *	just null out the current db_data pointer.
744 	 */
745 	ASSERT(dr->dr_txg >= txg - 2);
746 	if (db->db_blkid == DMU_BONUS_BLKID) {
747 		/* Note that the data bufs here are zio_bufs */
748 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
749 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
750 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
751 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
752 		int size = db->db.db_size;
753 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
754 		spa_t *spa = db->db_objset->os_spa;
755 
756 		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
757 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
758 	} else {
759 		dbuf_set_data(db, NULL);
760 	}
761 }
762 
763 void
764 dbuf_unoverride(dbuf_dirty_record_t *dr)
765 {
766 	dmu_buf_impl_t *db = dr->dr_dbuf;
767 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
768 	uint64_t txg = dr->dr_txg;
769 
770 	ASSERT(MUTEX_HELD(&db->db_mtx));
771 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
772 	ASSERT(db->db_level == 0);
773 
774 	if (db->db_blkid == DMU_BONUS_BLKID ||
775 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
776 		return;
777 
778 	ASSERT(db->db_data_pending != dr);
779 
780 	/* free this block */
781 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
782 		zio_free(db->db_objset->os_spa, txg, bp);
783 
784 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
785 	dr->dt.dl.dr_nopwrite = B_FALSE;
786 
787 	/*
788 	 * Release the already-written buffer, so we leave it in
789 	 * a consistent dirty state.  Note that all callers are
790 	 * modifying the buffer, so they will immediately do
791 	 * another (redundant) arc_release().  Therefore, leave
792 	 * the buf thawed to save the effort of freezing &
793 	 * immediately re-thawing it.
794 	 */
795 	arc_release(dr->dt.dl.dr_data, db);
796 }
797 
798 /*
799  * Evict (if its unreferenced) or clear (if its referenced) any level-0
800  * data blocks in the free range, so that any future readers will find
801  * empty blocks.
802  *
803  * This is a no-op if the dataset is in the middle of an incremental
804  * receive; see comment below for details.
805  */
806 void
807 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
808     dmu_tx_t *tx)
809 {
810 	dmu_buf_impl_t *db, *db_next, db_search;
811 	uint64_t txg = tx->tx_txg;
812 	avl_index_t where;
813 
814 	if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID))
815 		end_blkid = dn->dn_maxblkid;
816 	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
817 
818 	db_search.db_level = 0;
819 	db_search.db_blkid = start_blkid;
820 	db_search.db_state = DB_SEARCH;
821 
822 	mutex_enter(&dn->dn_dbufs_mtx);
823 	if (start_blkid >= dn->dn_unlisted_l0_blkid) {
824 		/* There can't be any dbufs in this range; no need to search. */
825 #ifdef DEBUG
826 		db = avl_find(&dn->dn_dbufs, &db_search, &where);
827 		ASSERT3P(db, ==, NULL);
828 		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
829 		ASSERT(db == NULL || db->db_level > 0);
830 #endif
831 		mutex_exit(&dn->dn_dbufs_mtx);
832 		return;
833 	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
834 		/*
835 		 * If we are receiving, we expect there to be no dbufs in
836 		 * the range to be freed, because receive modifies each
837 		 * block at most once, and in offset order.  If this is
838 		 * not the case, it can lead to performance problems,
839 		 * so note that we unexpectedly took the slow path.
840 		 */
841 		atomic_inc_64(&zfs_free_range_recv_miss);
842 	}
843 
844 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
845 	ASSERT3P(db, ==, NULL);
846 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
847 
848 	for (; db != NULL; db = db_next) {
849 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
850 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
851 
852 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
853 			break;
854 		}
855 		ASSERT3U(db->db_blkid, >=, start_blkid);
856 
857 		/* found a level 0 buffer in the range */
858 		mutex_enter(&db->db_mtx);
859 		if (dbuf_undirty(db, tx)) {
860 			/* mutex has been dropped and dbuf destroyed */
861 			continue;
862 		}
863 
864 		if (db->db_state == DB_UNCACHED ||
865 		    db->db_state == DB_NOFILL ||
866 		    db->db_state == DB_EVICTING) {
867 			ASSERT(db->db.db_data == NULL);
868 			mutex_exit(&db->db_mtx);
869 			continue;
870 		}
871 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
872 			/* will be handled in dbuf_read_done or dbuf_rele */
873 			db->db_freed_in_flight = TRUE;
874 			mutex_exit(&db->db_mtx);
875 			continue;
876 		}
877 		if (refcount_count(&db->db_holds) == 0) {
878 			ASSERT(db->db_buf);
879 			dbuf_clear(db);
880 			continue;
881 		}
882 		/* The dbuf is referenced */
883 
884 		if (db->db_last_dirty != NULL) {
885 			dbuf_dirty_record_t *dr = db->db_last_dirty;
886 
887 			if (dr->dr_txg == txg) {
888 				/*
889 				 * This buffer is "in-use", re-adjust the file
890 				 * size to reflect that this buffer may
891 				 * contain new data when we sync.
892 				 */
893 				if (db->db_blkid != DMU_SPILL_BLKID &&
894 				    db->db_blkid > dn->dn_maxblkid)
895 					dn->dn_maxblkid = db->db_blkid;
896 				dbuf_unoverride(dr);
897 			} else {
898 				/*
899 				 * This dbuf is not dirty in the open context.
900 				 * Either uncache it (if its not referenced in
901 				 * the open context) or reset its contents to
902 				 * empty.
903 				 */
904 				dbuf_fix_old_data(db, txg);
905 			}
906 		}
907 		/* clear the contents if its cached */
908 		if (db->db_state == DB_CACHED) {
909 			ASSERT(db->db.db_data != NULL);
910 			arc_release(db->db_buf, db);
911 			bzero(db->db.db_data, db->db.db_size);
912 			arc_buf_freeze(db->db_buf);
913 		}
914 
915 		mutex_exit(&db->db_mtx);
916 	}
917 	mutex_exit(&dn->dn_dbufs_mtx);
918 }
919 
920 static int
921 dbuf_block_freeable(dmu_buf_impl_t *db)
922 {
923 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
924 	uint64_t birth_txg = 0;
925 
926 	/*
927 	 * We don't need any locking to protect db_blkptr:
928 	 * If it's syncing, then db_last_dirty will be set
929 	 * so we'll ignore db_blkptr.
930 	 *
931 	 * This logic ensures that only block births for
932 	 * filled blocks are considered.
933 	 */
934 	ASSERT(MUTEX_HELD(&db->db_mtx));
935 	if (db->db_last_dirty && (db->db_blkptr == NULL ||
936 	    !BP_IS_HOLE(db->db_blkptr))) {
937 		birth_txg = db->db_last_dirty->dr_txg;
938 	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
939 		birth_txg = db->db_blkptr->blk_birth;
940 	}
941 
942 	/*
943 	 * If this block don't exist or is in a snapshot, it can't be freed.
944 	 * Don't pass the bp to dsl_dataset_block_freeable() since we
945 	 * are holding the db_mtx lock and might deadlock if we are
946 	 * prefetching a dedup-ed block.
947 	 */
948 	if (birth_txg != 0)
949 		return (ds == NULL ||
950 		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
951 	else
952 		return (B_FALSE);
953 }
954 
955 void
956 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
957 {
958 	arc_buf_t *buf, *obuf;
959 	int osize = db->db.db_size;
960 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
961 	dnode_t *dn;
962 
963 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
964 
965 	DB_DNODE_ENTER(db);
966 	dn = DB_DNODE(db);
967 
968 	/* XXX does *this* func really need the lock? */
969 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
970 
971 	/*
972 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
973 	 * is OK, because there can be no other references to the db
974 	 * when we are changing its size, so no concurrent DB_FILL can
975 	 * be happening.
976 	 */
977 	/*
978 	 * XXX we should be doing a dbuf_read, checking the return
979 	 * value and returning that up to our callers
980 	 */
981 	dmu_buf_will_dirty(&db->db, tx);
982 
983 	/* create the data buffer for the new block */
984 	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
985 
986 	/* copy old block data to the new block */
987 	obuf = db->db_buf;
988 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
989 	/* zero the remainder */
990 	if (size > osize)
991 		bzero((uint8_t *)buf->b_data + osize, size - osize);
992 
993 	mutex_enter(&db->db_mtx);
994 	dbuf_set_data(db, buf);
995 	VERIFY(arc_buf_remove_ref(obuf, db));
996 	db->db.db_size = size;
997 
998 	if (db->db_level == 0) {
999 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1000 		db->db_last_dirty->dt.dl.dr_data = buf;
1001 	}
1002 	mutex_exit(&db->db_mtx);
1003 
1004 	dnode_willuse_space(dn, size-osize, tx);
1005 	DB_DNODE_EXIT(db);
1006 }
1007 
1008 void
1009 dbuf_release_bp(dmu_buf_impl_t *db)
1010 {
1011 	objset_t *os = db->db_objset;
1012 
1013 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1014 	ASSERT(arc_released(os->os_phys_buf) ||
1015 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1016 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1017 
1018 	(void) arc_release(db->db_buf, db);
1019 }
1020 
1021 dbuf_dirty_record_t *
1022 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1023 {
1024 	dnode_t *dn;
1025 	objset_t *os;
1026 	dbuf_dirty_record_t **drp, *dr;
1027 	int drop_struct_lock = FALSE;
1028 	boolean_t do_free_accounting = B_FALSE;
1029 	int txgoff = tx->tx_txg & TXG_MASK;
1030 
1031 	ASSERT(tx->tx_txg != 0);
1032 	ASSERT(!refcount_is_zero(&db->db_holds));
1033 	DMU_TX_DIRTY_BUF(tx, db);
1034 
1035 	DB_DNODE_ENTER(db);
1036 	dn = DB_DNODE(db);
1037 	/*
1038 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1039 	 * objects may be dirtied in syncing context, but only if they
1040 	 * were already pre-dirtied in open context.
1041 	 */
1042 	ASSERT(!dmu_tx_is_syncing(tx) ||
1043 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1044 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1045 	    dn->dn_objset->os_dsl_dataset == NULL);
1046 	/*
1047 	 * We make this assert for private objects as well, but after we
1048 	 * check if we're already dirty.  They are allowed to re-dirty
1049 	 * in syncing context.
1050 	 */
1051 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1052 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1053 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1054 
1055 	mutex_enter(&db->db_mtx);
1056 	/*
1057 	 * XXX make this true for indirects too?  The problem is that
1058 	 * transactions created with dmu_tx_create_assigned() from
1059 	 * syncing context don't bother holding ahead.
1060 	 */
1061 	ASSERT(db->db_level != 0 ||
1062 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1063 	    db->db_state == DB_NOFILL);
1064 
1065 	mutex_enter(&dn->dn_mtx);
1066 	/*
1067 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1068 	 * initialize the objset.
1069 	 */
1070 	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1071 	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1072 		dn->dn_dirtyctx =
1073 		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1074 		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1075 		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1076 	}
1077 	mutex_exit(&dn->dn_mtx);
1078 
1079 	if (db->db_blkid == DMU_SPILL_BLKID)
1080 		dn->dn_have_spill = B_TRUE;
1081 
1082 	/*
1083 	 * If this buffer is already dirty, we're done.
1084 	 */
1085 	drp = &db->db_last_dirty;
1086 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1087 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1088 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1089 		drp = &dr->dr_next;
1090 	if (dr && dr->dr_txg == tx->tx_txg) {
1091 		DB_DNODE_EXIT(db);
1092 
1093 		if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1094 			/*
1095 			 * If this buffer has already been written out,
1096 			 * we now need to reset its state.
1097 			 */
1098 			dbuf_unoverride(dr);
1099 			if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1100 			    db->db_state != DB_NOFILL)
1101 				arc_buf_thaw(db->db_buf);
1102 		}
1103 		mutex_exit(&db->db_mtx);
1104 		return (dr);
1105 	}
1106 
1107 	/*
1108 	 * Only valid if not already dirty.
1109 	 */
1110 	ASSERT(dn->dn_object == 0 ||
1111 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1112 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1113 
1114 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1115 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1116 	    dn->dn_phys->dn_nlevels > db->db_level ||
1117 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1118 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1119 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1120 
1121 	/*
1122 	 * We should only be dirtying in syncing context if it's the
1123 	 * mos or we're initializing the os or it's a special object.
1124 	 * However, we are allowed to dirty in syncing context provided
1125 	 * we already dirtied it in open context.  Hence we must make
1126 	 * this assertion only if we're not already dirty.
1127 	 */
1128 	os = dn->dn_objset;
1129 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1130 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1131 	ASSERT(db->db.db_size != 0);
1132 
1133 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1134 
1135 	if (db->db_blkid != DMU_BONUS_BLKID) {
1136 		/*
1137 		 * Update the accounting.
1138 		 * Note: we delay "free accounting" until after we drop
1139 		 * the db_mtx.  This keeps us from grabbing other locks
1140 		 * (and possibly deadlocking) in bp_get_dsize() while
1141 		 * also holding the db_mtx.
1142 		 */
1143 		dnode_willuse_space(dn, db->db.db_size, tx);
1144 		do_free_accounting = dbuf_block_freeable(db);
1145 	}
1146 
1147 	/*
1148 	 * If this buffer is dirty in an old transaction group we need
1149 	 * to make a copy of it so that the changes we make in this
1150 	 * transaction group won't leak out when we sync the older txg.
1151 	 */
1152 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1153 	if (db->db_level == 0) {
1154 		void *data_old = db->db_buf;
1155 
1156 		if (db->db_state != DB_NOFILL) {
1157 			if (db->db_blkid == DMU_BONUS_BLKID) {
1158 				dbuf_fix_old_data(db, tx->tx_txg);
1159 				data_old = db->db.db_data;
1160 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1161 				/*
1162 				 * Release the data buffer from the cache so
1163 				 * that we can modify it without impacting
1164 				 * possible other users of this cached data
1165 				 * block.  Note that indirect blocks and
1166 				 * private objects are not released until the
1167 				 * syncing state (since they are only modified
1168 				 * then).
1169 				 */
1170 				arc_release(db->db_buf, db);
1171 				dbuf_fix_old_data(db, tx->tx_txg);
1172 				data_old = db->db_buf;
1173 			}
1174 			ASSERT(data_old != NULL);
1175 		}
1176 		dr->dt.dl.dr_data = data_old;
1177 	} else {
1178 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1179 		list_create(&dr->dt.di.dr_children,
1180 		    sizeof (dbuf_dirty_record_t),
1181 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1182 	}
1183 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1184 		dr->dr_accounted = db->db.db_size;
1185 	dr->dr_dbuf = db;
1186 	dr->dr_txg = tx->tx_txg;
1187 	dr->dr_next = *drp;
1188 	*drp = dr;
1189 
1190 	/*
1191 	 * We could have been freed_in_flight between the dbuf_noread
1192 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1193 	 * happened after the free.
1194 	 */
1195 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1196 	    db->db_blkid != DMU_SPILL_BLKID) {
1197 		mutex_enter(&dn->dn_mtx);
1198 		if (dn->dn_free_ranges[txgoff] != NULL) {
1199 			range_tree_clear(dn->dn_free_ranges[txgoff],
1200 			    db->db_blkid, 1);
1201 		}
1202 		mutex_exit(&dn->dn_mtx);
1203 		db->db_freed_in_flight = FALSE;
1204 	}
1205 
1206 	/*
1207 	 * This buffer is now part of this txg
1208 	 */
1209 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1210 	db->db_dirtycnt += 1;
1211 	ASSERT3U(db->db_dirtycnt, <=, 3);
1212 
1213 	mutex_exit(&db->db_mtx);
1214 
1215 	if (db->db_blkid == DMU_BONUS_BLKID ||
1216 	    db->db_blkid == DMU_SPILL_BLKID) {
1217 		mutex_enter(&dn->dn_mtx);
1218 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1219 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1220 		mutex_exit(&dn->dn_mtx);
1221 		dnode_setdirty(dn, tx);
1222 		DB_DNODE_EXIT(db);
1223 		return (dr);
1224 	} else if (do_free_accounting) {
1225 		blkptr_t *bp = db->db_blkptr;
1226 		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1227 		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1228 		/*
1229 		 * This is only a guess -- if the dbuf is dirty
1230 		 * in a previous txg, we don't know how much
1231 		 * space it will use on disk yet.  We should
1232 		 * really have the struct_rwlock to access
1233 		 * db_blkptr, but since this is just a guess,
1234 		 * it's OK if we get an odd answer.
1235 		 */
1236 		ddt_prefetch(os->os_spa, bp);
1237 		dnode_willuse_space(dn, -willfree, tx);
1238 	}
1239 
1240 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1241 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1242 		drop_struct_lock = TRUE;
1243 	}
1244 
1245 	if (db->db_level == 0) {
1246 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1247 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1248 	}
1249 
1250 	if (db->db_level+1 < dn->dn_nlevels) {
1251 		dmu_buf_impl_t *parent = db->db_parent;
1252 		dbuf_dirty_record_t *di;
1253 		int parent_held = FALSE;
1254 
1255 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1256 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1257 
1258 			parent = dbuf_hold_level(dn, db->db_level+1,
1259 			    db->db_blkid >> epbs, FTAG);
1260 			ASSERT(parent != NULL);
1261 			parent_held = TRUE;
1262 		}
1263 		if (drop_struct_lock)
1264 			rw_exit(&dn->dn_struct_rwlock);
1265 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1266 		di = dbuf_dirty(parent, tx);
1267 		if (parent_held)
1268 			dbuf_rele(parent, FTAG);
1269 
1270 		mutex_enter(&db->db_mtx);
1271 		/*
1272 		 * Since we've dropped the mutex, it's possible that
1273 		 * dbuf_undirty() might have changed this out from under us.
1274 		 */
1275 		if (db->db_last_dirty == dr ||
1276 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1277 			mutex_enter(&di->dt.di.dr_mtx);
1278 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1279 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1280 			list_insert_tail(&di->dt.di.dr_children, dr);
1281 			mutex_exit(&di->dt.di.dr_mtx);
1282 			dr->dr_parent = di;
1283 		}
1284 		mutex_exit(&db->db_mtx);
1285 	} else {
1286 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1287 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1288 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1289 		mutex_enter(&dn->dn_mtx);
1290 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1291 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1292 		mutex_exit(&dn->dn_mtx);
1293 		if (drop_struct_lock)
1294 			rw_exit(&dn->dn_struct_rwlock);
1295 	}
1296 
1297 	dnode_setdirty(dn, tx);
1298 	DB_DNODE_EXIT(db);
1299 	return (dr);
1300 }
1301 
1302 /*
1303  * Undirty a buffer in the transaction group referenced by the given
1304  * transaction.  Return whether this evicted the dbuf.
1305  */
1306 static boolean_t
1307 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1308 {
1309 	dnode_t *dn;
1310 	uint64_t txg = tx->tx_txg;
1311 	dbuf_dirty_record_t *dr, **drp;
1312 
1313 	ASSERT(txg != 0);
1314 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1315 	ASSERT0(db->db_level);
1316 	ASSERT(MUTEX_HELD(&db->db_mtx));
1317 
1318 	/*
1319 	 * If this buffer is not dirty, we're done.
1320 	 */
1321 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1322 		if (dr->dr_txg <= txg)
1323 			break;
1324 	if (dr == NULL || dr->dr_txg < txg)
1325 		return (B_FALSE);
1326 	ASSERT(dr->dr_txg == txg);
1327 	ASSERT(dr->dr_dbuf == db);
1328 
1329 	DB_DNODE_ENTER(db);
1330 	dn = DB_DNODE(db);
1331 
1332 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1333 
1334 	ASSERT(db->db.db_size != 0);
1335 
1336 	/*
1337 	 * Any space we accounted for in dp_dirty_* will be cleaned up by
1338 	 * dsl_pool_sync().  This is relatively rare so the discrepancy
1339 	 * is not a big deal.
1340 	 */
1341 
1342 	*drp = dr->dr_next;
1343 
1344 	/*
1345 	 * Note that there are three places in dbuf_dirty()
1346 	 * where this dirty record may be put on a list.
1347 	 * Make sure to do a list_remove corresponding to
1348 	 * every one of those list_insert calls.
1349 	 */
1350 	if (dr->dr_parent) {
1351 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1352 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1353 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1354 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1355 	    db->db_level+1 == dn->dn_nlevels) {
1356 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1357 		mutex_enter(&dn->dn_mtx);
1358 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1359 		mutex_exit(&dn->dn_mtx);
1360 	}
1361 	DB_DNODE_EXIT(db);
1362 
1363 	if (db->db_state != DB_NOFILL) {
1364 		dbuf_unoverride(dr);
1365 
1366 		ASSERT(db->db_buf != NULL);
1367 		ASSERT(dr->dt.dl.dr_data != NULL);
1368 		if (dr->dt.dl.dr_data != db->db_buf)
1369 			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1370 	}
1371 
1372 	if (db->db_level != 0) {
1373 		mutex_destroy(&dr->dt.di.dr_mtx);
1374 		list_destroy(&dr->dt.di.dr_children);
1375 	}
1376 
1377 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1378 
1379 	ASSERT(db->db_dirtycnt > 0);
1380 	db->db_dirtycnt -= 1;
1381 
1382 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1383 		arc_buf_t *buf = db->db_buf;
1384 
1385 		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1386 		dbuf_set_data(db, NULL);
1387 		VERIFY(arc_buf_remove_ref(buf, db));
1388 		dbuf_evict(db);
1389 		return (B_TRUE);
1390 	}
1391 
1392 	return (B_FALSE);
1393 }
1394 
1395 void
1396 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1397 {
1398 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1399 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1400 
1401 	ASSERT(tx->tx_txg != 0);
1402 	ASSERT(!refcount_is_zero(&db->db_holds));
1403 
1404 	DB_DNODE_ENTER(db);
1405 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1406 		rf |= DB_RF_HAVESTRUCT;
1407 	DB_DNODE_EXIT(db);
1408 	(void) dbuf_read(db, NULL, rf);
1409 	(void) dbuf_dirty(db, tx);
1410 }
1411 
1412 void
1413 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1414 {
1415 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1416 
1417 	db->db_state = DB_NOFILL;
1418 
1419 	dmu_buf_will_fill(db_fake, tx);
1420 }
1421 
1422 void
1423 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1424 {
1425 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1426 
1427 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1428 	ASSERT(tx->tx_txg != 0);
1429 	ASSERT(db->db_level == 0);
1430 	ASSERT(!refcount_is_zero(&db->db_holds));
1431 
1432 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1433 	    dmu_tx_private_ok(tx));
1434 
1435 	dbuf_noread(db);
1436 	(void) dbuf_dirty(db, tx);
1437 }
1438 
1439 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1440 /* ARGSUSED */
1441 void
1442 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1443 {
1444 	mutex_enter(&db->db_mtx);
1445 	DBUF_VERIFY(db);
1446 
1447 	if (db->db_state == DB_FILL) {
1448 		if (db->db_level == 0 && db->db_freed_in_flight) {
1449 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1450 			/* we were freed while filling */
1451 			/* XXX dbuf_undirty? */
1452 			bzero(db->db.db_data, db->db.db_size);
1453 			db->db_freed_in_flight = FALSE;
1454 		}
1455 		db->db_state = DB_CACHED;
1456 		cv_broadcast(&db->db_changed);
1457 	}
1458 	mutex_exit(&db->db_mtx);
1459 }
1460 
1461 void
1462 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1463     bp_embedded_type_t etype, enum zio_compress comp,
1464     int uncompressed_size, int compressed_size, int byteorder,
1465     dmu_tx_t *tx)
1466 {
1467 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1468 	struct dirty_leaf *dl;
1469 	dmu_object_type_t type;
1470 
1471 	DB_DNODE_ENTER(db);
1472 	type = DB_DNODE(db)->dn_type;
1473 	DB_DNODE_EXIT(db);
1474 
1475 	ASSERT0(db->db_level);
1476 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1477 
1478 	dmu_buf_will_not_fill(dbuf, tx);
1479 
1480 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1481 	dl = &db->db_last_dirty->dt.dl;
1482 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1483 	    data, comp, uncompressed_size, compressed_size);
1484 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1485 	BP_SET_TYPE(&dl->dr_overridden_by, type);
1486 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1487 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1488 
1489 	dl->dr_override_state = DR_OVERRIDDEN;
1490 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1491 }
1492 
1493 /*
1494  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1495  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1496  */
1497 void
1498 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1499 {
1500 	ASSERT(!refcount_is_zero(&db->db_holds));
1501 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1502 	ASSERT(db->db_level == 0);
1503 	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1504 	ASSERT(buf != NULL);
1505 	ASSERT(arc_buf_size(buf) == db->db.db_size);
1506 	ASSERT(tx->tx_txg != 0);
1507 
1508 	arc_return_buf(buf, db);
1509 	ASSERT(arc_released(buf));
1510 
1511 	mutex_enter(&db->db_mtx);
1512 
1513 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1514 		cv_wait(&db->db_changed, &db->db_mtx);
1515 
1516 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1517 
1518 	if (db->db_state == DB_CACHED &&
1519 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1520 		mutex_exit(&db->db_mtx);
1521 		(void) dbuf_dirty(db, tx);
1522 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1523 		VERIFY(arc_buf_remove_ref(buf, db));
1524 		xuio_stat_wbuf_copied();
1525 		return;
1526 	}
1527 
1528 	xuio_stat_wbuf_nocopy();
1529 	if (db->db_state == DB_CACHED) {
1530 		dbuf_dirty_record_t *dr = db->db_last_dirty;
1531 
1532 		ASSERT(db->db_buf != NULL);
1533 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1534 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1535 			if (!arc_released(db->db_buf)) {
1536 				ASSERT(dr->dt.dl.dr_override_state ==
1537 				    DR_OVERRIDDEN);
1538 				arc_release(db->db_buf, db);
1539 			}
1540 			dr->dt.dl.dr_data = buf;
1541 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1542 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1543 			arc_release(db->db_buf, db);
1544 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1545 		}
1546 		db->db_buf = NULL;
1547 	}
1548 	ASSERT(db->db_buf == NULL);
1549 	dbuf_set_data(db, buf);
1550 	db->db_state = DB_FILL;
1551 	mutex_exit(&db->db_mtx);
1552 	(void) dbuf_dirty(db, tx);
1553 	dmu_buf_fill_done(&db->db, tx);
1554 }
1555 
1556 /*
1557  * "Clear" the contents of this dbuf.  This will mark the dbuf
1558  * EVICTING and clear *most* of its references.  Unfortunately,
1559  * when we are not holding the dn_dbufs_mtx, we can't clear the
1560  * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1561  * in this case.  For callers from the DMU we will usually see:
1562  *	dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1563  * For the arc callback, we will usually see:
1564  *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1565  * Sometimes, though, we will get a mix of these two:
1566  *	DMU: dbuf_clear()->arc_clear_callback()
1567  *	ARC: dbuf_do_evict()->dbuf_destroy()
1568  *
1569  * This routine will dissociate the dbuf from the arc, by calling
1570  * arc_clear_callback(), but will not evict the data from the ARC.
1571  */
1572 void
1573 dbuf_clear(dmu_buf_impl_t *db)
1574 {
1575 	dnode_t *dn;
1576 	dmu_buf_impl_t *parent = db->db_parent;
1577 	dmu_buf_impl_t *dndb;
1578 	boolean_t dbuf_gone = B_FALSE;
1579 
1580 	ASSERT(MUTEX_HELD(&db->db_mtx));
1581 	ASSERT(refcount_is_zero(&db->db_holds));
1582 
1583 	dbuf_evict_user(db);
1584 
1585 	if (db->db_state == DB_CACHED) {
1586 		ASSERT(db->db.db_data != NULL);
1587 		if (db->db_blkid == DMU_BONUS_BLKID) {
1588 			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1589 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1590 		}
1591 		db->db.db_data = NULL;
1592 		db->db_state = DB_UNCACHED;
1593 	}
1594 
1595 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1596 	ASSERT(db->db_data_pending == NULL);
1597 
1598 	db->db_state = DB_EVICTING;
1599 	db->db_blkptr = NULL;
1600 
1601 	DB_DNODE_ENTER(db);
1602 	dn = DB_DNODE(db);
1603 	dndb = dn->dn_dbuf;
1604 	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1605 		avl_remove(&dn->dn_dbufs, db);
1606 		atomic_dec_32(&dn->dn_dbufs_count);
1607 		membar_producer();
1608 		DB_DNODE_EXIT(db);
1609 		/*
1610 		 * Decrementing the dbuf count means that the hold corresponding
1611 		 * to the removed dbuf is no longer discounted in dnode_move(),
1612 		 * so the dnode cannot be moved until after we release the hold.
1613 		 * The membar_producer() ensures visibility of the decremented
1614 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1615 		 * release any lock.
1616 		 */
1617 		dnode_rele(dn, db);
1618 		db->db_dnode_handle = NULL;
1619 	} else {
1620 		DB_DNODE_EXIT(db);
1621 	}
1622 
1623 	if (db->db_buf)
1624 		dbuf_gone = arc_clear_callback(db->db_buf);
1625 
1626 	if (!dbuf_gone)
1627 		mutex_exit(&db->db_mtx);
1628 
1629 	/*
1630 	 * If this dbuf is referenced from an indirect dbuf,
1631 	 * decrement the ref count on the indirect dbuf.
1632 	 */
1633 	if (parent && parent != dndb)
1634 		dbuf_rele(parent, db);
1635 }
1636 
1637 static int
1638 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1639     dmu_buf_impl_t **parentp, blkptr_t **bpp)
1640 {
1641 	int nlevels, epbs;
1642 
1643 	*parentp = NULL;
1644 	*bpp = NULL;
1645 
1646 	ASSERT(blkid != DMU_BONUS_BLKID);
1647 
1648 	if (blkid == DMU_SPILL_BLKID) {
1649 		mutex_enter(&dn->dn_mtx);
1650 		if (dn->dn_have_spill &&
1651 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1652 			*bpp = &dn->dn_phys->dn_spill;
1653 		else
1654 			*bpp = NULL;
1655 		dbuf_add_ref(dn->dn_dbuf, NULL);
1656 		*parentp = dn->dn_dbuf;
1657 		mutex_exit(&dn->dn_mtx);
1658 		return (0);
1659 	}
1660 
1661 	if (dn->dn_phys->dn_nlevels == 0)
1662 		nlevels = 1;
1663 	else
1664 		nlevels = dn->dn_phys->dn_nlevels;
1665 
1666 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1667 
1668 	ASSERT3U(level * epbs, <, 64);
1669 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1670 	if (level >= nlevels ||
1671 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1672 		/* the buffer has no parent yet */
1673 		return (SET_ERROR(ENOENT));
1674 	} else if (level < nlevels-1) {
1675 		/* this block is referenced from an indirect block */
1676 		int err = dbuf_hold_impl(dn, level+1,
1677 		    blkid >> epbs, fail_sparse, NULL, parentp);
1678 		if (err)
1679 			return (err);
1680 		err = dbuf_read(*parentp, NULL,
1681 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1682 		if (err) {
1683 			dbuf_rele(*parentp, NULL);
1684 			*parentp = NULL;
1685 			return (err);
1686 		}
1687 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1688 		    (blkid & ((1ULL << epbs) - 1));
1689 		return (0);
1690 	} else {
1691 		/* the block is referenced from the dnode */
1692 		ASSERT3U(level, ==, nlevels-1);
1693 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1694 		    blkid < dn->dn_phys->dn_nblkptr);
1695 		if (dn->dn_dbuf) {
1696 			dbuf_add_ref(dn->dn_dbuf, NULL);
1697 			*parentp = dn->dn_dbuf;
1698 		}
1699 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1700 		return (0);
1701 	}
1702 }
1703 
1704 static dmu_buf_impl_t *
1705 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1706     dmu_buf_impl_t *parent, blkptr_t *blkptr)
1707 {
1708 	objset_t *os = dn->dn_objset;
1709 	dmu_buf_impl_t *db, *odb;
1710 
1711 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1712 	ASSERT(dn->dn_type != DMU_OT_NONE);
1713 
1714 	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1715 
1716 	db->db_objset = os;
1717 	db->db.db_object = dn->dn_object;
1718 	db->db_level = level;
1719 	db->db_blkid = blkid;
1720 	db->db_last_dirty = NULL;
1721 	db->db_dirtycnt = 0;
1722 	db->db_dnode_handle = dn->dn_handle;
1723 	db->db_parent = parent;
1724 	db->db_blkptr = blkptr;
1725 
1726 	db->db_user_ptr = NULL;
1727 	db->db_user_data_ptr_ptr = NULL;
1728 	db->db_evict_func = NULL;
1729 	db->db_immediate_evict = 0;
1730 	db->db_freed_in_flight = 0;
1731 
1732 	if (blkid == DMU_BONUS_BLKID) {
1733 		ASSERT3P(parent, ==, dn->dn_dbuf);
1734 		db->db.db_size = DN_MAX_BONUSLEN -
1735 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1736 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1737 		db->db.db_offset = DMU_BONUS_BLKID;
1738 		db->db_state = DB_UNCACHED;
1739 		/* the bonus dbuf is not placed in the hash table */
1740 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1741 		return (db);
1742 	} else if (blkid == DMU_SPILL_BLKID) {
1743 		db->db.db_size = (blkptr != NULL) ?
1744 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1745 		db->db.db_offset = 0;
1746 	} else {
1747 		int blocksize =
1748 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1749 		db->db.db_size = blocksize;
1750 		db->db.db_offset = db->db_blkid * blocksize;
1751 	}
1752 
1753 	/*
1754 	 * Hold the dn_dbufs_mtx while we get the new dbuf
1755 	 * in the hash table *and* added to the dbufs list.
1756 	 * This prevents a possible deadlock with someone
1757 	 * trying to look up this dbuf before its added to the
1758 	 * dn_dbufs list.
1759 	 */
1760 	mutex_enter(&dn->dn_dbufs_mtx);
1761 	db->db_state = DB_EVICTING;
1762 	if ((odb = dbuf_hash_insert(db)) != NULL) {
1763 		/* someone else inserted it first */
1764 		kmem_cache_free(dbuf_cache, db);
1765 		mutex_exit(&dn->dn_dbufs_mtx);
1766 		return (odb);
1767 	}
1768 	avl_add(&dn->dn_dbufs, db);
1769 	if (db->db_level == 0 && db->db_blkid >=
1770 	    dn->dn_unlisted_l0_blkid)
1771 		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1772 	db->db_state = DB_UNCACHED;
1773 	mutex_exit(&dn->dn_dbufs_mtx);
1774 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1775 
1776 	if (parent && parent != dn->dn_dbuf)
1777 		dbuf_add_ref(parent, db);
1778 
1779 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1780 	    refcount_count(&dn->dn_holds) > 0);
1781 	(void) refcount_add(&dn->dn_holds, db);
1782 	atomic_inc_32(&dn->dn_dbufs_count);
1783 
1784 	dprintf_dbuf(db, "db=%p\n", db);
1785 
1786 	return (db);
1787 }
1788 
1789 static int
1790 dbuf_do_evict(void *private)
1791 {
1792 	dmu_buf_impl_t *db = private;
1793 
1794 	if (!MUTEX_HELD(&db->db_mtx))
1795 		mutex_enter(&db->db_mtx);
1796 
1797 	ASSERT(refcount_is_zero(&db->db_holds));
1798 
1799 	if (db->db_state != DB_EVICTING) {
1800 		ASSERT(db->db_state == DB_CACHED);
1801 		DBUF_VERIFY(db);
1802 		db->db_buf = NULL;
1803 		dbuf_evict(db);
1804 	} else {
1805 		mutex_exit(&db->db_mtx);
1806 		dbuf_destroy(db);
1807 	}
1808 	return (0);
1809 }
1810 
1811 static void
1812 dbuf_destroy(dmu_buf_impl_t *db)
1813 {
1814 	ASSERT(refcount_is_zero(&db->db_holds));
1815 
1816 	if (db->db_blkid != DMU_BONUS_BLKID) {
1817 		/*
1818 		 * If this dbuf is still on the dn_dbufs list,
1819 		 * remove it from that list.
1820 		 */
1821 		if (db->db_dnode_handle != NULL) {
1822 			dnode_t *dn;
1823 
1824 			DB_DNODE_ENTER(db);
1825 			dn = DB_DNODE(db);
1826 			mutex_enter(&dn->dn_dbufs_mtx);
1827 			avl_remove(&dn->dn_dbufs, db);
1828 			atomic_dec_32(&dn->dn_dbufs_count);
1829 			mutex_exit(&dn->dn_dbufs_mtx);
1830 			DB_DNODE_EXIT(db);
1831 			/*
1832 			 * Decrementing the dbuf count means that the hold
1833 			 * corresponding to the removed dbuf is no longer
1834 			 * discounted in dnode_move(), so the dnode cannot be
1835 			 * moved until after we release the hold.
1836 			 */
1837 			dnode_rele(dn, db);
1838 			db->db_dnode_handle = NULL;
1839 		}
1840 		dbuf_hash_remove(db);
1841 	}
1842 	db->db_parent = NULL;
1843 	db->db_buf = NULL;
1844 
1845 	ASSERT(db->db.db_data == NULL);
1846 	ASSERT(db->db_hash_next == NULL);
1847 	ASSERT(db->db_blkptr == NULL);
1848 	ASSERT(db->db_data_pending == NULL);
1849 
1850 	kmem_cache_free(dbuf_cache, db);
1851 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1852 }
1853 
1854 void
1855 dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio)
1856 {
1857 	dmu_buf_impl_t *db = NULL;
1858 	blkptr_t *bp = NULL;
1859 
1860 	ASSERT(blkid != DMU_BONUS_BLKID);
1861 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1862 
1863 	if (dnode_block_freed(dn, blkid))
1864 		return;
1865 
1866 	/* dbuf_find() returns with db_mtx held */
1867 	if (db = dbuf_find(dn, 0, blkid)) {
1868 		/*
1869 		 * This dbuf is already in the cache.  We assume that
1870 		 * it is already CACHED, or else about to be either
1871 		 * read or filled.
1872 		 */
1873 		mutex_exit(&db->db_mtx);
1874 		return;
1875 	}
1876 
1877 	if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) {
1878 		if (bp && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1879 			dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
1880 			uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH;
1881 			zbookmark_phys_t zb;
1882 
1883 			SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1884 			    dn->dn_object, 0, blkid);
1885 
1886 			(void) arc_read(NULL, dn->dn_objset->os_spa,
1887 			    bp, NULL, NULL, prio,
1888 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1889 			    &aflags, &zb);
1890 		}
1891 		if (db)
1892 			dbuf_rele(db, NULL);
1893 	}
1894 }
1895 
1896 /*
1897  * Returns with db_holds incremented, and db_mtx not held.
1898  * Note: dn_struct_rwlock must be held.
1899  */
1900 int
1901 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
1902     void *tag, dmu_buf_impl_t **dbp)
1903 {
1904 	dmu_buf_impl_t *db, *parent = NULL;
1905 
1906 	ASSERT(blkid != DMU_BONUS_BLKID);
1907 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1908 	ASSERT3U(dn->dn_nlevels, >, level);
1909 
1910 	*dbp = NULL;
1911 top:
1912 	/* dbuf_find() returns with db_mtx held */
1913 	db = dbuf_find(dn, level, blkid);
1914 
1915 	if (db == NULL) {
1916 		blkptr_t *bp = NULL;
1917 		int err;
1918 
1919 		ASSERT3P(parent, ==, NULL);
1920 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
1921 		if (fail_sparse) {
1922 			if (err == 0 && bp && BP_IS_HOLE(bp))
1923 				err = SET_ERROR(ENOENT);
1924 			if (err) {
1925 				if (parent)
1926 					dbuf_rele(parent, NULL);
1927 				return (err);
1928 			}
1929 		}
1930 		if (err && err != ENOENT)
1931 			return (err);
1932 		db = dbuf_create(dn, level, blkid, parent, bp);
1933 	}
1934 
1935 	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
1936 		arc_buf_add_ref(db->db_buf, db);
1937 		if (db->db_buf->b_data == NULL) {
1938 			dbuf_clear(db);
1939 			if (parent) {
1940 				dbuf_rele(parent, NULL);
1941 				parent = NULL;
1942 			}
1943 			goto top;
1944 		}
1945 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
1946 	}
1947 
1948 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
1949 
1950 	/*
1951 	 * If this buffer is currently syncing out, and we are are
1952 	 * still referencing it from db_data, we need to make a copy
1953 	 * of it in case we decide we want to dirty it again in this txg.
1954 	 */
1955 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1956 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
1957 	    db->db_state == DB_CACHED && db->db_data_pending) {
1958 		dbuf_dirty_record_t *dr = db->db_data_pending;
1959 
1960 		if (dr->dt.dl.dr_data == db->db_buf) {
1961 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1962 
1963 			dbuf_set_data(db,
1964 			    arc_buf_alloc(dn->dn_objset->os_spa,
1965 			    db->db.db_size, db, type));
1966 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
1967 			    db->db.db_size);
1968 		}
1969 	}
1970 
1971 	(void) refcount_add(&db->db_holds, tag);
1972 	dbuf_update_data(db);
1973 	DBUF_VERIFY(db);
1974 	mutex_exit(&db->db_mtx);
1975 
1976 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
1977 	if (parent)
1978 		dbuf_rele(parent, NULL);
1979 
1980 	ASSERT3P(DB_DNODE(db), ==, dn);
1981 	ASSERT3U(db->db_blkid, ==, blkid);
1982 	ASSERT3U(db->db_level, ==, level);
1983 	*dbp = db;
1984 
1985 	return (0);
1986 }
1987 
1988 dmu_buf_impl_t *
1989 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
1990 {
1991 	dmu_buf_impl_t *db;
1992 	int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
1993 	return (err ? NULL : db);
1994 }
1995 
1996 dmu_buf_impl_t *
1997 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
1998 {
1999 	dmu_buf_impl_t *db;
2000 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
2001 	return (err ? NULL : db);
2002 }
2003 
2004 void
2005 dbuf_create_bonus(dnode_t *dn)
2006 {
2007 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2008 
2009 	ASSERT(dn->dn_bonus == NULL);
2010 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2011 }
2012 
2013 int
2014 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2015 {
2016 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2017 	dnode_t *dn;
2018 
2019 	if (db->db_blkid != DMU_SPILL_BLKID)
2020 		return (SET_ERROR(ENOTSUP));
2021 	if (blksz == 0)
2022 		blksz = SPA_MINBLOCKSIZE;
2023 	if (blksz > SPA_MAXBLOCKSIZE)
2024 		blksz = SPA_MAXBLOCKSIZE;
2025 	else
2026 		blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2027 
2028 	DB_DNODE_ENTER(db);
2029 	dn = DB_DNODE(db);
2030 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2031 	dbuf_new_size(db, blksz, tx);
2032 	rw_exit(&dn->dn_struct_rwlock);
2033 	DB_DNODE_EXIT(db);
2034 
2035 	return (0);
2036 }
2037 
2038 void
2039 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2040 {
2041 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2042 }
2043 
2044 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2045 void
2046 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2047 {
2048 	int64_t holds = refcount_add(&db->db_holds, tag);
2049 	ASSERT(holds > 1);
2050 }
2051 
2052 /*
2053  * If you call dbuf_rele() you had better not be referencing the dnode handle
2054  * unless you have some other direct or indirect hold on the dnode. (An indirect
2055  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2056  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2057  * dnode's parent dbuf evicting its dnode handles.
2058  */
2059 void
2060 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2061 {
2062 	mutex_enter(&db->db_mtx);
2063 	dbuf_rele_and_unlock(db, tag);
2064 }
2065 
2066 void
2067 dmu_buf_rele(dmu_buf_t *db, void *tag)
2068 {
2069 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2070 }
2071 
2072 /*
2073  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2074  * db_dirtycnt and db_holds to be updated atomically.
2075  */
2076 void
2077 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2078 {
2079 	int64_t holds;
2080 
2081 	ASSERT(MUTEX_HELD(&db->db_mtx));
2082 	DBUF_VERIFY(db);
2083 
2084 	/*
2085 	 * Remove the reference to the dbuf before removing its hold on the
2086 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2087 	 * buffer has a corresponding dnode hold.
2088 	 */
2089 	holds = refcount_remove(&db->db_holds, tag);
2090 	ASSERT(holds >= 0);
2091 
2092 	/*
2093 	 * We can't freeze indirects if there is a possibility that they
2094 	 * may be modified in the current syncing context.
2095 	 */
2096 	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2097 		arc_buf_freeze(db->db_buf);
2098 
2099 	if (holds == db->db_dirtycnt &&
2100 	    db->db_level == 0 && db->db_immediate_evict)
2101 		dbuf_evict_user(db);
2102 
2103 	if (holds == 0) {
2104 		if (db->db_blkid == DMU_BONUS_BLKID) {
2105 			mutex_exit(&db->db_mtx);
2106 
2107 			/*
2108 			 * If the dnode moves here, we cannot cross this barrier
2109 			 * until the move completes.
2110 			 */
2111 			DB_DNODE_ENTER(db);
2112 			atomic_dec_32(&DB_DNODE(db)->dn_dbufs_count);
2113 			DB_DNODE_EXIT(db);
2114 			/*
2115 			 * The bonus buffer's dnode hold is no longer discounted
2116 			 * in dnode_move(). The dnode cannot move until after
2117 			 * the dnode_rele().
2118 			 */
2119 			dnode_rele(DB_DNODE(db), db);
2120 		} else if (db->db_buf == NULL) {
2121 			/*
2122 			 * This is a special case: we never associated this
2123 			 * dbuf with any data allocated from the ARC.
2124 			 */
2125 			ASSERT(db->db_state == DB_UNCACHED ||
2126 			    db->db_state == DB_NOFILL);
2127 			dbuf_evict(db);
2128 		} else if (arc_released(db->db_buf)) {
2129 			arc_buf_t *buf = db->db_buf;
2130 			/*
2131 			 * This dbuf has anonymous data associated with it.
2132 			 */
2133 			dbuf_set_data(db, NULL);
2134 			VERIFY(arc_buf_remove_ref(buf, db));
2135 			dbuf_evict(db);
2136 		} else {
2137 			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2138 
2139 			/*
2140 			 * A dbuf will be eligible for eviction if either the
2141 			 * 'primarycache' property is set or a duplicate
2142 			 * copy of this buffer is already cached in the arc.
2143 			 *
2144 			 * In the case of the 'primarycache' a buffer
2145 			 * is considered for eviction if it matches the
2146 			 * criteria set in the property.
2147 			 *
2148 			 * To decide if our buffer is considered a
2149 			 * duplicate, we must call into the arc to determine
2150 			 * if multiple buffers are referencing the same
2151 			 * block on-disk. If so, then we simply evict
2152 			 * ourselves.
2153 			 */
2154 			if (!DBUF_IS_CACHEABLE(db)) {
2155 				if (db->db_blkptr != NULL &&
2156 				    !BP_IS_HOLE(db->db_blkptr) &&
2157 				    !BP_IS_EMBEDDED(db->db_blkptr)) {
2158 					spa_t *spa =
2159 					    dmu_objset_spa(db->db_objset);
2160 					blkptr_t bp = *db->db_blkptr;
2161 					dbuf_clear(db);
2162 					arc_freed(spa, &bp);
2163 				} else {
2164 					dbuf_clear(db);
2165 				}
2166 			} else if (arc_buf_eviction_needed(db->db_buf)) {
2167 				dbuf_clear(db);
2168 			} else {
2169 				mutex_exit(&db->db_mtx);
2170 			}
2171 		}
2172 	} else {
2173 		mutex_exit(&db->db_mtx);
2174 	}
2175 }
2176 
2177 #pragma weak dmu_buf_refcount = dbuf_refcount
2178 uint64_t
2179 dbuf_refcount(dmu_buf_impl_t *db)
2180 {
2181 	return (refcount_count(&db->db_holds));
2182 }
2183 
2184 void *
2185 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2186     dmu_buf_evict_func_t *evict_func)
2187 {
2188 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2189 	    user_data_ptr_ptr, evict_func));
2190 }
2191 
2192 void *
2193 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2194     dmu_buf_evict_func_t *evict_func)
2195 {
2196 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2197 
2198 	db->db_immediate_evict = TRUE;
2199 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2200 	    user_data_ptr_ptr, evict_func));
2201 }
2202 
2203 void *
2204 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr,
2205     void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func)
2206 {
2207 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2208 	ASSERT(db->db_level == 0);
2209 
2210 	ASSERT((user_ptr == NULL) == (evict_func == NULL));
2211 
2212 	mutex_enter(&db->db_mtx);
2213 
2214 	if (db->db_user_ptr == old_user_ptr) {
2215 		db->db_user_ptr = user_ptr;
2216 		db->db_user_data_ptr_ptr = user_data_ptr_ptr;
2217 		db->db_evict_func = evict_func;
2218 
2219 		dbuf_update_data(db);
2220 	} else {
2221 		old_user_ptr = db->db_user_ptr;
2222 	}
2223 
2224 	mutex_exit(&db->db_mtx);
2225 	return (old_user_ptr);
2226 }
2227 
2228 void *
2229 dmu_buf_get_user(dmu_buf_t *db_fake)
2230 {
2231 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2232 	ASSERT(!refcount_is_zero(&db->db_holds));
2233 
2234 	return (db->db_user_ptr);
2235 }
2236 
2237 boolean_t
2238 dmu_buf_freeable(dmu_buf_t *dbuf)
2239 {
2240 	boolean_t res = B_FALSE;
2241 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2242 
2243 	if (db->db_blkptr)
2244 		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2245 		    db->db_blkptr, db->db_blkptr->blk_birth);
2246 
2247 	return (res);
2248 }
2249 
2250 blkptr_t *
2251 dmu_buf_get_blkptr(dmu_buf_t *db)
2252 {
2253 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2254 	return (dbi->db_blkptr);
2255 }
2256 
2257 static void
2258 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2259 {
2260 	/* ASSERT(dmu_tx_is_syncing(tx) */
2261 	ASSERT(MUTEX_HELD(&db->db_mtx));
2262 
2263 	if (db->db_blkptr != NULL)
2264 		return;
2265 
2266 	if (db->db_blkid == DMU_SPILL_BLKID) {
2267 		db->db_blkptr = &dn->dn_phys->dn_spill;
2268 		BP_ZERO(db->db_blkptr);
2269 		return;
2270 	}
2271 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2272 		/*
2273 		 * This buffer was allocated at a time when there was
2274 		 * no available blkptrs from the dnode, or it was
2275 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2276 		 */
2277 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2278 		ASSERT(db->db_parent == NULL);
2279 		db->db_parent = dn->dn_dbuf;
2280 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2281 		DBUF_VERIFY(db);
2282 	} else {
2283 		dmu_buf_impl_t *parent = db->db_parent;
2284 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2285 
2286 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2287 		if (parent == NULL) {
2288 			mutex_exit(&db->db_mtx);
2289 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2290 			(void) dbuf_hold_impl(dn, db->db_level+1,
2291 			    db->db_blkid >> epbs, FALSE, db, &parent);
2292 			rw_exit(&dn->dn_struct_rwlock);
2293 			mutex_enter(&db->db_mtx);
2294 			db->db_parent = parent;
2295 		}
2296 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2297 		    (db->db_blkid & ((1ULL << epbs) - 1));
2298 		DBUF_VERIFY(db);
2299 	}
2300 }
2301 
2302 static void
2303 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2304 {
2305 	dmu_buf_impl_t *db = dr->dr_dbuf;
2306 	dnode_t *dn;
2307 	zio_t *zio;
2308 
2309 	ASSERT(dmu_tx_is_syncing(tx));
2310 
2311 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2312 
2313 	mutex_enter(&db->db_mtx);
2314 
2315 	ASSERT(db->db_level > 0);
2316 	DBUF_VERIFY(db);
2317 
2318 	/* Read the block if it hasn't been read yet. */
2319 	if (db->db_buf == NULL) {
2320 		mutex_exit(&db->db_mtx);
2321 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2322 		mutex_enter(&db->db_mtx);
2323 	}
2324 	ASSERT3U(db->db_state, ==, DB_CACHED);
2325 	ASSERT(db->db_buf != NULL);
2326 
2327 	DB_DNODE_ENTER(db);
2328 	dn = DB_DNODE(db);
2329 	/* Indirect block size must match what the dnode thinks it is. */
2330 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2331 	dbuf_check_blkptr(dn, db);
2332 	DB_DNODE_EXIT(db);
2333 
2334 	/* Provide the pending dirty record to child dbufs */
2335 	db->db_data_pending = dr;
2336 
2337 	mutex_exit(&db->db_mtx);
2338 	dbuf_write(dr, db->db_buf, tx);
2339 
2340 	zio = dr->dr_zio;
2341 	mutex_enter(&dr->dt.di.dr_mtx);
2342 	dbuf_sync_list(&dr->dt.di.dr_children, tx);
2343 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2344 	mutex_exit(&dr->dt.di.dr_mtx);
2345 	zio_nowait(zio);
2346 }
2347 
2348 static void
2349 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2350 {
2351 	arc_buf_t **datap = &dr->dt.dl.dr_data;
2352 	dmu_buf_impl_t *db = dr->dr_dbuf;
2353 	dnode_t *dn;
2354 	objset_t *os;
2355 	uint64_t txg = tx->tx_txg;
2356 
2357 	ASSERT(dmu_tx_is_syncing(tx));
2358 
2359 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2360 
2361 	mutex_enter(&db->db_mtx);
2362 	/*
2363 	 * To be synced, we must be dirtied.  But we
2364 	 * might have been freed after the dirty.
2365 	 */
2366 	if (db->db_state == DB_UNCACHED) {
2367 		/* This buffer has been freed since it was dirtied */
2368 		ASSERT(db->db.db_data == NULL);
2369 	} else if (db->db_state == DB_FILL) {
2370 		/* This buffer was freed and is now being re-filled */
2371 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2372 	} else {
2373 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2374 	}
2375 	DBUF_VERIFY(db);
2376 
2377 	DB_DNODE_ENTER(db);
2378 	dn = DB_DNODE(db);
2379 
2380 	if (db->db_blkid == DMU_SPILL_BLKID) {
2381 		mutex_enter(&dn->dn_mtx);
2382 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2383 		mutex_exit(&dn->dn_mtx);
2384 	}
2385 
2386 	/*
2387 	 * If this is a bonus buffer, simply copy the bonus data into the
2388 	 * dnode.  It will be written out when the dnode is synced (and it
2389 	 * will be synced, since it must have been dirty for dbuf_sync to
2390 	 * be called).
2391 	 */
2392 	if (db->db_blkid == DMU_BONUS_BLKID) {
2393 		dbuf_dirty_record_t **drp;
2394 
2395 		ASSERT(*datap != NULL);
2396 		ASSERT0(db->db_level);
2397 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2398 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2399 		DB_DNODE_EXIT(db);
2400 
2401 		if (*datap != db->db.db_data) {
2402 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2403 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2404 		}
2405 		db->db_data_pending = NULL;
2406 		drp = &db->db_last_dirty;
2407 		while (*drp != dr)
2408 			drp = &(*drp)->dr_next;
2409 		ASSERT(dr->dr_next == NULL);
2410 		ASSERT(dr->dr_dbuf == db);
2411 		*drp = dr->dr_next;
2412 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2413 		ASSERT(db->db_dirtycnt > 0);
2414 		db->db_dirtycnt -= 1;
2415 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2416 		return;
2417 	}
2418 
2419 	os = dn->dn_objset;
2420 
2421 	/*
2422 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2423 	 * operation to sneak in. As a result, we need to ensure that we
2424 	 * don't check the dr_override_state until we have returned from
2425 	 * dbuf_check_blkptr.
2426 	 */
2427 	dbuf_check_blkptr(dn, db);
2428 
2429 	/*
2430 	 * If this buffer is in the middle of an immediate write,
2431 	 * wait for the synchronous IO to complete.
2432 	 */
2433 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2434 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2435 		cv_wait(&db->db_changed, &db->db_mtx);
2436 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2437 	}
2438 
2439 	if (db->db_state != DB_NOFILL &&
2440 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2441 	    refcount_count(&db->db_holds) > 1 &&
2442 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2443 	    *datap == db->db_buf) {
2444 		/*
2445 		 * If this buffer is currently "in use" (i.e., there
2446 		 * are active holds and db_data still references it),
2447 		 * then make a copy before we start the write so that
2448 		 * any modifications from the open txg will not leak
2449 		 * into this write.
2450 		 *
2451 		 * NOTE: this copy does not need to be made for
2452 		 * objects only modified in the syncing context (e.g.
2453 		 * DNONE_DNODE blocks).
2454 		 */
2455 		int blksz = arc_buf_size(*datap);
2456 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2457 		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2458 		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2459 	}
2460 	db->db_data_pending = dr;
2461 
2462 	mutex_exit(&db->db_mtx);
2463 
2464 	dbuf_write(dr, *datap, tx);
2465 
2466 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2467 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2468 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2469 		DB_DNODE_EXIT(db);
2470 	} else {
2471 		/*
2472 		 * Although zio_nowait() does not "wait for an IO", it does
2473 		 * initiate the IO. If this is an empty write it seems plausible
2474 		 * that the IO could actually be completed before the nowait
2475 		 * returns. We need to DB_DNODE_EXIT() first in case
2476 		 * zio_nowait() invalidates the dbuf.
2477 		 */
2478 		DB_DNODE_EXIT(db);
2479 		zio_nowait(dr->dr_zio);
2480 	}
2481 }
2482 
2483 void
2484 dbuf_sync_list(list_t *list, dmu_tx_t *tx)
2485 {
2486 	dbuf_dirty_record_t *dr;
2487 
2488 	while (dr = list_head(list)) {
2489 		if (dr->dr_zio != NULL) {
2490 			/*
2491 			 * If we find an already initialized zio then we
2492 			 * are processing the meta-dnode, and we have finished.
2493 			 * The dbufs for all dnodes are put back on the list
2494 			 * during processing, so that we can zio_wait()
2495 			 * these IOs after initiating all child IOs.
2496 			 */
2497 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2498 			    DMU_META_DNODE_OBJECT);
2499 			break;
2500 		}
2501 		list_remove(list, dr);
2502 		if (dr->dr_dbuf->db_level > 0)
2503 			dbuf_sync_indirect(dr, tx);
2504 		else
2505 			dbuf_sync_leaf(dr, tx);
2506 	}
2507 }
2508 
2509 /* ARGSUSED */
2510 static void
2511 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2512 {
2513 	dmu_buf_impl_t *db = vdb;
2514 	dnode_t *dn;
2515 	blkptr_t *bp = zio->io_bp;
2516 	blkptr_t *bp_orig = &zio->io_bp_orig;
2517 	spa_t *spa = zio->io_spa;
2518 	int64_t delta;
2519 	uint64_t fill = 0;
2520 	int i;
2521 
2522 	ASSERT3P(db->db_blkptr, ==, bp);
2523 
2524 	DB_DNODE_ENTER(db);
2525 	dn = DB_DNODE(db);
2526 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2527 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2528 	zio->io_prev_space_delta = delta;
2529 
2530 	if (bp->blk_birth != 0) {
2531 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2532 		    BP_GET_TYPE(bp) == dn->dn_type) ||
2533 		    (db->db_blkid == DMU_SPILL_BLKID &&
2534 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2535 		    BP_IS_EMBEDDED(bp));
2536 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2537 	}
2538 
2539 	mutex_enter(&db->db_mtx);
2540 
2541 #ifdef ZFS_DEBUG
2542 	if (db->db_blkid == DMU_SPILL_BLKID) {
2543 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2544 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2545 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2546 	}
2547 #endif
2548 
2549 	if (db->db_level == 0) {
2550 		mutex_enter(&dn->dn_mtx);
2551 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2552 		    db->db_blkid != DMU_SPILL_BLKID)
2553 			dn->dn_phys->dn_maxblkid = db->db_blkid;
2554 		mutex_exit(&dn->dn_mtx);
2555 
2556 		if (dn->dn_type == DMU_OT_DNODE) {
2557 			dnode_phys_t *dnp = db->db.db_data;
2558 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2559 			    i--, dnp++) {
2560 				if (dnp->dn_type != DMU_OT_NONE)
2561 					fill++;
2562 			}
2563 		} else {
2564 			if (BP_IS_HOLE(bp)) {
2565 				fill = 0;
2566 			} else {
2567 				fill = 1;
2568 			}
2569 		}
2570 	} else {
2571 		blkptr_t *ibp = db->db.db_data;
2572 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2573 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2574 			if (BP_IS_HOLE(ibp))
2575 				continue;
2576 			fill += BP_GET_FILL(ibp);
2577 		}
2578 	}
2579 	DB_DNODE_EXIT(db);
2580 
2581 	if (!BP_IS_EMBEDDED(bp))
2582 		bp->blk_fill = fill;
2583 
2584 	mutex_exit(&db->db_mtx);
2585 }
2586 
2587 /*
2588  * The SPA will call this callback several times for each zio - once
2589  * for every physical child i/o (zio->io_phys_children times).  This
2590  * allows the DMU to monitor the progress of each logical i/o.  For example,
2591  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2592  * block.  There may be a long delay before all copies/fragments are completed,
2593  * so this callback allows us to retire dirty space gradually, as the physical
2594  * i/os complete.
2595  */
2596 /* ARGSUSED */
2597 static void
2598 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2599 {
2600 	dmu_buf_impl_t *db = arg;
2601 	objset_t *os = db->db_objset;
2602 	dsl_pool_t *dp = dmu_objset_pool(os);
2603 	dbuf_dirty_record_t *dr;
2604 	int delta = 0;
2605 
2606 	dr = db->db_data_pending;
2607 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2608 
2609 	/*
2610 	 * The callback will be called io_phys_children times.  Retire one
2611 	 * portion of our dirty space each time we are called.  Any rounding
2612 	 * error will be cleaned up by dsl_pool_sync()'s call to
2613 	 * dsl_pool_undirty_space().
2614 	 */
2615 	delta = dr->dr_accounted / zio->io_phys_children;
2616 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2617 }
2618 
2619 /* ARGSUSED */
2620 static void
2621 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2622 {
2623 	dmu_buf_impl_t *db = vdb;
2624 	blkptr_t *bp_orig = &zio->io_bp_orig;
2625 	blkptr_t *bp = db->db_blkptr;
2626 	objset_t *os = db->db_objset;
2627 	dmu_tx_t *tx = os->os_synctx;
2628 	dbuf_dirty_record_t **drp, *dr;
2629 
2630 	ASSERT0(zio->io_error);
2631 	ASSERT(db->db_blkptr == bp);
2632 
2633 	/*
2634 	 * For nopwrites and rewrites we ensure that the bp matches our
2635 	 * original and bypass all the accounting.
2636 	 */
2637 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2638 		ASSERT(BP_EQUAL(bp, bp_orig));
2639 	} else {
2640 		dsl_dataset_t *ds = os->os_dsl_dataset;
2641 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2642 		dsl_dataset_block_born(ds, bp, tx);
2643 	}
2644 
2645 	mutex_enter(&db->db_mtx);
2646 
2647 	DBUF_VERIFY(db);
2648 
2649 	drp = &db->db_last_dirty;
2650 	while ((dr = *drp) != db->db_data_pending)
2651 		drp = &dr->dr_next;
2652 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2653 	ASSERT(dr->dr_dbuf == db);
2654 	ASSERT(dr->dr_next == NULL);
2655 	*drp = dr->dr_next;
2656 
2657 #ifdef ZFS_DEBUG
2658 	if (db->db_blkid == DMU_SPILL_BLKID) {
2659 		dnode_t *dn;
2660 
2661 		DB_DNODE_ENTER(db);
2662 		dn = DB_DNODE(db);
2663 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2664 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2665 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2666 		DB_DNODE_EXIT(db);
2667 	}
2668 #endif
2669 
2670 	if (db->db_level == 0) {
2671 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2672 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2673 		if (db->db_state != DB_NOFILL) {
2674 			if (dr->dt.dl.dr_data != db->db_buf)
2675 				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2676 				    db));
2677 			else if (!arc_released(db->db_buf))
2678 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2679 		}
2680 	} else {
2681 		dnode_t *dn;
2682 
2683 		DB_DNODE_ENTER(db);
2684 		dn = DB_DNODE(db);
2685 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2686 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
2687 		if (!BP_IS_HOLE(db->db_blkptr)) {
2688 			int epbs =
2689 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2690 			ASSERT3U(db->db_blkid, <=,
2691 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
2692 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2693 			    db->db.db_size);
2694 			if (!arc_released(db->db_buf))
2695 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2696 		}
2697 		DB_DNODE_EXIT(db);
2698 		mutex_destroy(&dr->dt.di.dr_mtx);
2699 		list_destroy(&dr->dt.di.dr_children);
2700 	}
2701 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2702 
2703 	cv_broadcast(&db->db_changed);
2704 	ASSERT(db->db_dirtycnt > 0);
2705 	db->db_dirtycnt -= 1;
2706 	db->db_data_pending = NULL;
2707 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
2708 }
2709 
2710 static void
2711 dbuf_write_nofill_ready(zio_t *zio)
2712 {
2713 	dbuf_write_ready(zio, NULL, zio->io_private);
2714 }
2715 
2716 static void
2717 dbuf_write_nofill_done(zio_t *zio)
2718 {
2719 	dbuf_write_done(zio, NULL, zio->io_private);
2720 }
2721 
2722 static void
2723 dbuf_write_override_ready(zio_t *zio)
2724 {
2725 	dbuf_dirty_record_t *dr = zio->io_private;
2726 	dmu_buf_impl_t *db = dr->dr_dbuf;
2727 
2728 	dbuf_write_ready(zio, NULL, db);
2729 }
2730 
2731 static void
2732 dbuf_write_override_done(zio_t *zio)
2733 {
2734 	dbuf_dirty_record_t *dr = zio->io_private;
2735 	dmu_buf_impl_t *db = dr->dr_dbuf;
2736 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
2737 
2738 	mutex_enter(&db->db_mtx);
2739 	if (!BP_EQUAL(zio->io_bp, obp)) {
2740 		if (!BP_IS_HOLE(obp))
2741 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
2742 		arc_release(dr->dt.dl.dr_data, db);
2743 	}
2744 	mutex_exit(&db->db_mtx);
2745 
2746 	dbuf_write_done(zio, NULL, db);
2747 }
2748 
2749 /* Issue I/O to commit a dirty buffer to disk. */
2750 static void
2751 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2752 {
2753 	dmu_buf_impl_t *db = dr->dr_dbuf;
2754 	dnode_t *dn;
2755 	objset_t *os;
2756 	dmu_buf_impl_t *parent = db->db_parent;
2757 	uint64_t txg = tx->tx_txg;
2758 	zbookmark_phys_t zb;
2759 	zio_prop_t zp;
2760 	zio_t *zio;
2761 	int wp_flag = 0;
2762 
2763 	DB_DNODE_ENTER(db);
2764 	dn = DB_DNODE(db);
2765 	os = dn->dn_objset;
2766 
2767 	if (db->db_state != DB_NOFILL) {
2768 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2769 			/*
2770 			 * Private object buffers are released here rather
2771 			 * than in dbuf_dirty() since they are only modified
2772 			 * in the syncing context and we don't want the
2773 			 * overhead of making multiple copies of the data.
2774 			 */
2775 			if (BP_IS_HOLE(db->db_blkptr)) {
2776 				arc_buf_thaw(data);
2777 			} else {
2778 				dbuf_release_bp(db);
2779 			}
2780 		}
2781 	}
2782 
2783 	if (parent != dn->dn_dbuf) {
2784 		/* Our parent is an indirect block. */
2785 		/* We have a dirty parent that has been scheduled for write. */
2786 		ASSERT(parent && parent->db_data_pending);
2787 		/* Our parent's buffer is one level closer to the dnode. */
2788 		ASSERT(db->db_level == parent->db_level-1);
2789 		/*
2790 		 * We're about to modify our parent's db_data by modifying
2791 		 * our block pointer, so the parent must be released.
2792 		 */
2793 		ASSERT(arc_released(parent->db_buf));
2794 		zio = parent->db_data_pending->dr_zio;
2795 	} else {
2796 		/* Our parent is the dnode itself. */
2797 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2798 		    db->db_blkid != DMU_SPILL_BLKID) ||
2799 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2800 		if (db->db_blkid != DMU_SPILL_BLKID)
2801 			ASSERT3P(db->db_blkptr, ==,
2802 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
2803 		zio = dn->dn_zio;
2804 	}
2805 
2806 	ASSERT(db->db_level == 0 || data == db->db_buf);
2807 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2808 	ASSERT(zio);
2809 
2810 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2811 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2812 	    db->db.db_object, db->db_level, db->db_blkid);
2813 
2814 	if (db->db_blkid == DMU_SPILL_BLKID)
2815 		wp_flag = WP_SPILL;
2816 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
2817 
2818 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2819 	DB_DNODE_EXIT(db);
2820 
2821 	if (db->db_level == 0 &&
2822 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2823 		/*
2824 		 * The BP for this block has been provided by open context
2825 		 * (by dmu_sync() or dmu_buf_write_embedded()).
2826 		 */
2827 		void *contents = (data != NULL) ? data->b_data : NULL;
2828 
2829 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2830 		    db->db_blkptr, contents, db->db.db_size, &zp,
2831 		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
2832 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2833 		mutex_enter(&db->db_mtx);
2834 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2835 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2836 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2837 		mutex_exit(&db->db_mtx);
2838 	} else if (db->db_state == DB_NOFILL) {
2839 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
2840 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
2841 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2842 		    db->db_blkptr, NULL, db->db.db_size, &zp,
2843 		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
2844 		    ZIO_PRIORITY_ASYNC_WRITE,
2845 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
2846 	} else {
2847 		ASSERT(arc_released(data));
2848 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
2849 		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
2850 		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
2851 		    dbuf_write_physdone, dbuf_write_done, db,
2852 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2853 	}
2854 }
2855