xref: /illumos-gate/usr/src/uts/common/fs/zfs/dbuf.c (revision d9c5840bd764434fd93f85a52eb4cbc24bff03da)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_send.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dbuf.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/spa.h>
39 #include <sys/zio.h>
40 #include <sys/dmu_zfetch.h>
41 #include <sys/sa.h>
42 #include <sys/sa_impl.h>
43 #include <sys/zfeature.h>
44 #include <sys/blkptr.h>
45 #include <sys/range_tree.h>
46 
47 /*
48  * Number of times that zfs_free_range() took the slow path while doing
49  * a zfs receive.  A nonzero value indicates a potential performance problem.
50  */
51 uint64_t zfs_free_range_recv_miss;
52 
53 static void dbuf_destroy(dmu_buf_impl_t *db);
54 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
55 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
56 
57 /*
58  * Global data structures and functions for the dbuf cache.
59  */
60 static kmem_cache_t *dbuf_cache;
61 
62 /* ARGSUSED */
63 static int
64 dbuf_cons(void *vdb, void *unused, int kmflag)
65 {
66 	dmu_buf_impl_t *db = vdb;
67 	bzero(db, sizeof (dmu_buf_impl_t));
68 
69 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
70 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
71 	refcount_create(&db->db_holds);
72 	return (0);
73 }
74 
75 /* ARGSUSED */
76 static void
77 dbuf_dest(void *vdb, void *unused)
78 {
79 	dmu_buf_impl_t *db = vdb;
80 	mutex_destroy(&db->db_mtx);
81 	cv_destroy(&db->db_changed);
82 	refcount_destroy(&db->db_holds);
83 }
84 
85 /*
86  * dbuf hash table routines
87  */
88 static dbuf_hash_table_t dbuf_hash_table;
89 
90 static uint64_t dbuf_hash_count;
91 
92 static uint64_t
93 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
94 {
95 	uintptr_t osv = (uintptr_t)os;
96 	uint64_t crc = -1ULL;
97 
98 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
99 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
100 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
101 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
102 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
103 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
104 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
105 
106 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
107 
108 	return (crc);
109 }
110 
111 #define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
112 
113 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
114 	((dbuf)->db.db_object == (obj) &&		\
115 	(dbuf)->db_objset == (os) &&			\
116 	(dbuf)->db_level == (level) &&			\
117 	(dbuf)->db_blkid == (blkid))
118 
119 dmu_buf_impl_t *
120 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid)
121 {
122 	dbuf_hash_table_t *h = &dbuf_hash_table;
123 	objset_t *os = dn->dn_objset;
124 	uint64_t obj = dn->dn_object;
125 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
126 	uint64_t idx = hv & h->hash_table_mask;
127 	dmu_buf_impl_t *db;
128 
129 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
130 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
131 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
132 			mutex_enter(&db->db_mtx);
133 			if (db->db_state != DB_EVICTING) {
134 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
135 				return (db);
136 			}
137 			mutex_exit(&db->db_mtx);
138 		}
139 	}
140 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
141 	return (NULL);
142 }
143 
144 /*
145  * Insert an entry into the hash table.  If there is already an element
146  * equal to elem in the hash table, then the already existing element
147  * will be returned and the new element will not be inserted.
148  * Otherwise returns NULL.
149  */
150 static dmu_buf_impl_t *
151 dbuf_hash_insert(dmu_buf_impl_t *db)
152 {
153 	dbuf_hash_table_t *h = &dbuf_hash_table;
154 	objset_t *os = db->db_objset;
155 	uint64_t obj = db->db.db_object;
156 	int level = db->db_level;
157 	uint64_t blkid = db->db_blkid;
158 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
159 	uint64_t idx = hv & h->hash_table_mask;
160 	dmu_buf_impl_t *dbf;
161 
162 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
163 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
164 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
165 			mutex_enter(&dbf->db_mtx);
166 			if (dbf->db_state != DB_EVICTING) {
167 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
168 				return (dbf);
169 			}
170 			mutex_exit(&dbf->db_mtx);
171 		}
172 	}
173 
174 	mutex_enter(&db->db_mtx);
175 	db->db_hash_next = h->hash_table[idx];
176 	h->hash_table[idx] = db;
177 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
178 	atomic_add_64(&dbuf_hash_count, 1);
179 
180 	return (NULL);
181 }
182 
183 /*
184  * Remove an entry from the hash table.  It must be in the EVICTING state.
185  */
186 static void
187 dbuf_hash_remove(dmu_buf_impl_t *db)
188 {
189 	dbuf_hash_table_t *h = &dbuf_hash_table;
190 	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
191 	    db->db_level, db->db_blkid);
192 	uint64_t idx = hv & h->hash_table_mask;
193 	dmu_buf_impl_t *dbf, **dbp;
194 
195 	/*
196 	 * We musn't hold db_mtx to maintain lock ordering:
197 	 * DBUF_HASH_MUTEX > db_mtx.
198 	 */
199 	ASSERT(refcount_is_zero(&db->db_holds));
200 	ASSERT(db->db_state == DB_EVICTING);
201 	ASSERT(!MUTEX_HELD(&db->db_mtx));
202 
203 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
204 	dbp = &h->hash_table[idx];
205 	while ((dbf = *dbp) != db) {
206 		dbp = &dbf->db_hash_next;
207 		ASSERT(dbf != NULL);
208 	}
209 	*dbp = db->db_hash_next;
210 	db->db_hash_next = NULL;
211 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
212 	atomic_add_64(&dbuf_hash_count, -1);
213 }
214 
215 static arc_evict_func_t dbuf_do_evict;
216 
217 static void
218 dbuf_evict_user(dmu_buf_impl_t *db)
219 {
220 	ASSERT(MUTEX_HELD(&db->db_mtx));
221 
222 	if (db->db_level != 0 || db->db_evict_func == NULL)
223 		return;
224 
225 	if (db->db_user_data_ptr_ptr)
226 		*db->db_user_data_ptr_ptr = db->db.db_data;
227 	db->db_evict_func(&db->db, db->db_user_ptr);
228 	db->db_user_ptr = NULL;
229 	db->db_user_data_ptr_ptr = NULL;
230 	db->db_evict_func = NULL;
231 }
232 
233 boolean_t
234 dbuf_is_metadata(dmu_buf_impl_t *db)
235 {
236 	if (db->db_level > 0) {
237 		return (B_TRUE);
238 	} else {
239 		boolean_t is_metadata;
240 
241 		DB_DNODE_ENTER(db);
242 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
243 		DB_DNODE_EXIT(db);
244 
245 		return (is_metadata);
246 	}
247 }
248 
249 void
250 dbuf_evict(dmu_buf_impl_t *db)
251 {
252 	ASSERT(MUTEX_HELD(&db->db_mtx));
253 	ASSERT(db->db_buf == NULL);
254 	ASSERT(db->db_data_pending == NULL);
255 
256 	dbuf_clear(db);
257 	dbuf_destroy(db);
258 }
259 
260 void
261 dbuf_init(void)
262 {
263 	uint64_t hsize = 1ULL << 16;
264 	dbuf_hash_table_t *h = &dbuf_hash_table;
265 	int i;
266 
267 	/*
268 	 * The hash table is big enough to fill all of physical memory
269 	 * with an average 4K block size.  The table will take up
270 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
271 	 */
272 	while (hsize * 4096 < physmem * PAGESIZE)
273 		hsize <<= 1;
274 
275 retry:
276 	h->hash_table_mask = hsize - 1;
277 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
278 	if (h->hash_table == NULL) {
279 		/* XXX - we should really return an error instead of assert */
280 		ASSERT(hsize > (1ULL << 10));
281 		hsize >>= 1;
282 		goto retry;
283 	}
284 
285 	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
286 	    sizeof (dmu_buf_impl_t),
287 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
288 
289 	for (i = 0; i < DBUF_MUTEXES; i++)
290 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
291 }
292 
293 void
294 dbuf_fini(void)
295 {
296 	dbuf_hash_table_t *h = &dbuf_hash_table;
297 	int i;
298 
299 	for (i = 0; i < DBUF_MUTEXES; i++)
300 		mutex_destroy(&h->hash_mutexes[i]);
301 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
302 	kmem_cache_destroy(dbuf_cache);
303 }
304 
305 /*
306  * Other stuff.
307  */
308 
309 #ifdef ZFS_DEBUG
310 static void
311 dbuf_verify(dmu_buf_impl_t *db)
312 {
313 	dnode_t *dn;
314 	dbuf_dirty_record_t *dr;
315 
316 	ASSERT(MUTEX_HELD(&db->db_mtx));
317 
318 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
319 		return;
320 
321 	ASSERT(db->db_objset != NULL);
322 	DB_DNODE_ENTER(db);
323 	dn = DB_DNODE(db);
324 	if (dn == NULL) {
325 		ASSERT(db->db_parent == NULL);
326 		ASSERT(db->db_blkptr == NULL);
327 	} else {
328 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
329 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
330 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
331 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
332 		    db->db_blkid == DMU_SPILL_BLKID ||
333 		    !list_is_empty(&dn->dn_dbufs));
334 	}
335 	if (db->db_blkid == DMU_BONUS_BLKID) {
336 		ASSERT(dn != NULL);
337 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
338 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
339 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
340 		ASSERT(dn != NULL);
341 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
342 		ASSERT0(db->db.db_offset);
343 	} else {
344 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
345 	}
346 
347 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
348 		ASSERT(dr->dr_dbuf == db);
349 
350 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
351 		ASSERT(dr->dr_dbuf == db);
352 
353 	/*
354 	 * We can't assert that db_size matches dn_datablksz because it
355 	 * can be momentarily different when another thread is doing
356 	 * dnode_set_blksz().
357 	 */
358 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
359 		dr = db->db_data_pending;
360 		/*
361 		 * It should only be modified in syncing context, so
362 		 * make sure we only have one copy of the data.
363 		 */
364 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
365 	}
366 
367 	/* verify db->db_blkptr */
368 	if (db->db_blkptr) {
369 		if (db->db_parent == dn->dn_dbuf) {
370 			/* db is pointed to by the dnode */
371 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
372 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
373 				ASSERT(db->db_parent == NULL);
374 			else
375 				ASSERT(db->db_parent != NULL);
376 			if (db->db_blkid != DMU_SPILL_BLKID)
377 				ASSERT3P(db->db_blkptr, ==,
378 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
379 		} else {
380 			/* db is pointed to by an indirect block */
381 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
382 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
383 			ASSERT3U(db->db_parent->db.db_object, ==,
384 			    db->db.db_object);
385 			/*
386 			 * dnode_grow_indblksz() can make this fail if we don't
387 			 * have the struct_rwlock.  XXX indblksz no longer
388 			 * grows.  safe to do this now?
389 			 */
390 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
391 				ASSERT3P(db->db_blkptr, ==,
392 				    ((blkptr_t *)db->db_parent->db.db_data +
393 				    db->db_blkid % epb));
394 			}
395 		}
396 	}
397 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
398 	    (db->db_buf == NULL || db->db_buf->b_data) &&
399 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
400 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
401 		/*
402 		 * If the blkptr isn't set but they have nonzero data,
403 		 * it had better be dirty, otherwise we'll lose that
404 		 * data when we evict this buffer.
405 		 */
406 		if (db->db_dirtycnt == 0) {
407 			uint64_t *buf = db->db.db_data;
408 			int i;
409 
410 			for (i = 0; i < db->db.db_size >> 3; i++) {
411 				ASSERT(buf[i] == 0);
412 			}
413 		}
414 	}
415 	DB_DNODE_EXIT(db);
416 }
417 #endif
418 
419 static void
420 dbuf_update_data(dmu_buf_impl_t *db)
421 {
422 	ASSERT(MUTEX_HELD(&db->db_mtx));
423 	if (db->db_level == 0 && db->db_user_data_ptr_ptr) {
424 		ASSERT(!refcount_is_zero(&db->db_holds));
425 		*db->db_user_data_ptr_ptr = db->db.db_data;
426 	}
427 }
428 
429 static void
430 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
431 {
432 	ASSERT(MUTEX_HELD(&db->db_mtx));
433 	db->db_buf = buf;
434 	if (buf != NULL) {
435 		ASSERT(buf->b_data != NULL);
436 		db->db.db_data = buf->b_data;
437 		if (!arc_released(buf))
438 			arc_set_callback(buf, dbuf_do_evict, db);
439 		dbuf_update_data(db);
440 	} else {
441 		dbuf_evict_user(db);
442 		db->db.db_data = NULL;
443 		if (db->db_state != DB_NOFILL)
444 			db->db_state = DB_UNCACHED;
445 	}
446 }
447 
448 /*
449  * Loan out an arc_buf for read.  Return the loaned arc_buf.
450  */
451 arc_buf_t *
452 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
453 {
454 	arc_buf_t *abuf;
455 
456 	mutex_enter(&db->db_mtx);
457 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
458 		int blksz = db->db.db_size;
459 		spa_t *spa = db->db_objset->os_spa;
460 
461 		mutex_exit(&db->db_mtx);
462 		abuf = arc_loan_buf(spa, blksz);
463 		bcopy(db->db.db_data, abuf->b_data, blksz);
464 	} else {
465 		abuf = db->db_buf;
466 		arc_loan_inuse_buf(abuf, db);
467 		dbuf_set_data(db, NULL);
468 		mutex_exit(&db->db_mtx);
469 	}
470 	return (abuf);
471 }
472 
473 uint64_t
474 dbuf_whichblock(dnode_t *dn, uint64_t offset)
475 {
476 	if (dn->dn_datablkshift) {
477 		return (offset >> dn->dn_datablkshift);
478 	} else {
479 		ASSERT3U(offset, <, dn->dn_datablksz);
480 		return (0);
481 	}
482 }
483 
484 static void
485 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
486 {
487 	dmu_buf_impl_t *db = vdb;
488 
489 	mutex_enter(&db->db_mtx);
490 	ASSERT3U(db->db_state, ==, DB_READ);
491 	/*
492 	 * All reads are synchronous, so we must have a hold on the dbuf
493 	 */
494 	ASSERT(refcount_count(&db->db_holds) > 0);
495 	ASSERT(db->db_buf == NULL);
496 	ASSERT(db->db.db_data == NULL);
497 	if (db->db_level == 0 && db->db_freed_in_flight) {
498 		/* we were freed in flight; disregard any error */
499 		arc_release(buf, db);
500 		bzero(buf->b_data, db->db.db_size);
501 		arc_buf_freeze(buf);
502 		db->db_freed_in_flight = FALSE;
503 		dbuf_set_data(db, buf);
504 		db->db_state = DB_CACHED;
505 	} else if (zio == NULL || zio->io_error == 0) {
506 		dbuf_set_data(db, buf);
507 		db->db_state = DB_CACHED;
508 	} else {
509 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
510 		ASSERT3P(db->db_buf, ==, NULL);
511 		VERIFY(arc_buf_remove_ref(buf, db));
512 		db->db_state = DB_UNCACHED;
513 	}
514 	cv_broadcast(&db->db_changed);
515 	dbuf_rele_and_unlock(db, NULL);
516 }
517 
518 static void
519 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
520 {
521 	dnode_t *dn;
522 	zbookmark_phys_t zb;
523 	uint32_t aflags = ARC_NOWAIT;
524 
525 	DB_DNODE_ENTER(db);
526 	dn = DB_DNODE(db);
527 	ASSERT(!refcount_is_zero(&db->db_holds));
528 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
529 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
530 	ASSERT(MUTEX_HELD(&db->db_mtx));
531 	ASSERT(db->db_state == DB_UNCACHED);
532 	ASSERT(db->db_buf == NULL);
533 
534 	if (db->db_blkid == DMU_BONUS_BLKID) {
535 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
536 
537 		ASSERT3U(bonuslen, <=, db->db.db_size);
538 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
539 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
540 		if (bonuslen < DN_MAX_BONUSLEN)
541 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
542 		if (bonuslen)
543 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
544 		DB_DNODE_EXIT(db);
545 		dbuf_update_data(db);
546 		db->db_state = DB_CACHED;
547 		mutex_exit(&db->db_mtx);
548 		return;
549 	}
550 
551 	/*
552 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
553 	 * processes the delete record and clears the bp while we are waiting
554 	 * for the dn_mtx (resulting in a "no" from block_freed).
555 	 */
556 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
557 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
558 	    BP_IS_HOLE(db->db_blkptr)))) {
559 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
560 
561 		DB_DNODE_EXIT(db);
562 		dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
563 		    db->db.db_size, db, type));
564 		bzero(db->db.db_data, db->db.db_size);
565 		db->db_state = DB_CACHED;
566 		*flags |= DB_RF_CACHED;
567 		mutex_exit(&db->db_mtx);
568 		return;
569 	}
570 
571 	DB_DNODE_EXIT(db);
572 
573 	db->db_state = DB_READ;
574 	mutex_exit(&db->db_mtx);
575 
576 	if (DBUF_IS_L2CACHEABLE(db))
577 		aflags |= ARC_L2CACHE;
578 	if (DBUF_IS_L2COMPRESSIBLE(db))
579 		aflags |= ARC_L2COMPRESS;
580 
581 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
582 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
583 	    db->db.db_object, db->db_level, db->db_blkid);
584 
585 	dbuf_add_ref(db, NULL);
586 
587 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
588 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
589 	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
590 	    &aflags, &zb);
591 	if (aflags & ARC_CACHED)
592 		*flags |= DB_RF_CACHED;
593 }
594 
595 int
596 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
597 {
598 	int err = 0;
599 	boolean_t havepzio = (zio != NULL);
600 	boolean_t prefetch;
601 	dnode_t *dn;
602 
603 	/*
604 	 * We don't have to hold the mutex to check db_state because it
605 	 * can't be freed while we have a hold on the buffer.
606 	 */
607 	ASSERT(!refcount_is_zero(&db->db_holds));
608 
609 	if (db->db_state == DB_NOFILL)
610 		return (SET_ERROR(EIO));
611 
612 	DB_DNODE_ENTER(db);
613 	dn = DB_DNODE(db);
614 	if ((flags & DB_RF_HAVESTRUCT) == 0)
615 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
616 
617 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
618 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
619 	    DBUF_IS_CACHEABLE(db);
620 
621 	mutex_enter(&db->db_mtx);
622 	if (db->db_state == DB_CACHED) {
623 		mutex_exit(&db->db_mtx);
624 		if (prefetch)
625 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
626 			    db->db.db_size, TRUE);
627 		if ((flags & DB_RF_HAVESTRUCT) == 0)
628 			rw_exit(&dn->dn_struct_rwlock);
629 		DB_DNODE_EXIT(db);
630 	} else if (db->db_state == DB_UNCACHED) {
631 		spa_t *spa = dn->dn_objset->os_spa;
632 
633 		if (zio == NULL)
634 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
635 		dbuf_read_impl(db, zio, &flags);
636 
637 		/* dbuf_read_impl has dropped db_mtx for us */
638 
639 		if (prefetch)
640 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
641 			    db->db.db_size, flags & DB_RF_CACHED);
642 
643 		if ((flags & DB_RF_HAVESTRUCT) == 0)
644 			rw_exit(&dn->dn_struct_rwlock);
645 		DB_DNODE_EXIT(db);
646 
647 		if (!havepzio)
648 			err = zio_wait(zio);
649 	} else {
650 		/*
651 		 * Another reader came in while the dbuf was in flight
652 		 * between UNCACHED and CACHED.  Either a writer will finish
653 		 * writing the buffer (sending the dbuf to CACHED) or the
654 		 * first reader's request will reach the read_done callback
655 		 * and send the dbuf to CACHED.  Otherwise, a failure
656 		 * occurred and the dbuf went to UNCACHED.
657 		 */
658 		mutex_exit(&db->db_mtx);
659 		if (prefetch)
660 			dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
661 			    db->db.db_size, TRUE);
662 		if ((flags & DB_RF_HAVESTRUCT) == 0)
663 			rw_exit(&dn->dn_struct_rwlock);
664 		DB_DNODE_EXIT(db);
665 
666 		/* Skip the wait per the caller's request. */
667 		mutex_enter(&db->db_mtx);
668 		if ((flags & DB_RF_NEVERWAIT) == 0) {
669 			while (db->db_state == DB_READ ||
670 			    db->db_state == DB_FILL) {
671 				ASSERT(db->db_state == DB_READ ||
672 				    (flags & DB_RF_HAVESTRUCT) == 0);
673 				cv_wait(&db->db_changed, &db->db_mtx);
674 			}
675 			if (db->db_state == DB_UNCACHED)
676 				err = SET_ERROR(EIO);
677 		}
678 		mutex_exit(&db->db_mtx);
679 	}
680 
681 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
682 	return (err);
683 }
684 
685 static void
686 dbuf_noread(dmu_buf_impl_t *db)
687 {
688 	ASSERT(!refcount_is_zero(&db->db_holds));
689 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
690 	mutex_enter(&db->db_mtx);
691 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
692 		cv_wait(&db->db_changed, &db->db_mtx);
693 	if (db->db_state == DB_UNCACHED) {
694 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
695 		spa_t *spa = db->db_objset->os_spa;
696 
697 		ASSERT(db->db_buf == NULL);
698 		ASSERT(db->db.db_data == NULL);
699 		dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
700 		db->db_state = DB_FILL;
701 	} else if (db->db_state == DB_NOFILL) {
702 		dbuf_set_data(db, NULL);
703 	} else {
704 		ASSERT3U(db->db_state, ==, DB_CACHED);
705 	}
706 	mutex_exit(&db->db_mtx);
707 }
708 
709 /*
710  * This is our just-in-time copy function.  It makes a copy of
711  * buffers, that have been modified in a previous transaction
712  * group, before we modify them in the current active group.
713  *
714  * This function is used in two places: when we are dirtying a
715  * buffer for the first time in a txg, and when we are freeing
716  * a range in a dnode that includes this buffer.
717  *
718  * Note that when we are called from dbuf_free_range() we do
719  * not put a hold on the buffer, we just traverse the active
720  * dbuf list for the dnode.
721  */
722 static void
723 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
724 {
725 	dbuf_dirty_record_t *dr = db->db_last_dirty;
726 
727 	ASSERT(MUTEX_HELD(&db->db_mtx));
728 	ASSERT(db->db.db_data != NULL);
729 	ASSERT(db->db_level == 0);
730 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
731 
732 	if (dr == NULL ||
733 	    (dr->dt.dl.dr_data !=
734 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
735 		return;
736 
737 	/*
738 	 * If the last dirty record for this dbuf has not yet synced
739 	 * and its referencing the dbuf data, either:
740 	 *	reset the reference to point to a new copy,
741 	 * or (if there a no active holders)
742 	 *	just null out the current db_data pointer.
743 	 */
744 	ASSERT(dr->dr_txg >= txg - 2);
745 	if (db->db_blkid == DMU_BONUS_BLKID) {
746 		/* Note that the data bufs here are zio_bufs */
747 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
748 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
749 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
750 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
751 		int size = db->db.db_size;
752 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
753 		spa_t *spa = db->db_objset->os_spa;
754 
755 		dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
756 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
757 	} else {
758 		dbuf_set_data(db, NULL);
759 	}
760 }
761 
762 void
763 dbuf_unoverride(dbuf_dirty_record_t *dr)
764 {
765 	dmu_buf_impl_t *db = dr->dr_dbuf;
766 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
767 	uint64_t txg = dr->dr_txg;
768 
769 	ASSERT(MUTEX_HELD(&db->db_mtx));
770 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
771 	ASSERT(db->db_level == 0);
772 
773 	if (db->db_blkid == DMU_BONUS_BLKID ||
774 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
775 		return;
776 
777 	ASSERT(db->db_data_pending != dr);
778 
779 	/* free this block */
780 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
781 		zio_free(db->db_objset->os_spa, txg, bp);
782 
783 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
784 	dr->dt.dl.dr_nopwrite = B_FALSE;
785 
786 	/*
787 	 * Release the already-written buffer, so we leave it in
788 	 * a consistent dirty state.  Note that all callers are
789 	 * modifying the buffer, so they will immediately do
790 	 * another (redundant) arc_release().  Therefore, leave
791 	 * the buf thawed to save the effort of freezing &
792 	 * immediately re-thawing it.
793 	 */
794 	arc_release(dr->dt.dl.dr_data, db);
795 }
796 
797 /*
798  * Evict (if its unreferenced) or clear (if its referenced) any level-0
799  * data blocks in the free range, so that any future readers will find
800  * empty blocks.
801  *
802  * This is a no-op if the dataset is in the middle of an incremental
803  * receive; see comment below for details.
804  */
805 void
806 dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx)
807 {
808 	dmu_buf_impl_t *db, *db_next;
809 	uint64_t txg = tx->tx_txg;
810 
811 	if (end > dn->dn_maxblkid && (end != DMU_SPILL_BLKID))
812 		end = dn->dn_maxblkid;
813 	dprintf_dnode(dn, "start=%llu end=%llu\n", start, end);
814 
815 	mutex_enter(&dn->dn_dbufs_mtx);
816 	if (start >= dn->dn_unlisted_l0_blkid * dn->dn_datablksz) {
817 		/* There can't be any dbufs in this range; no need to search. */
818 		mutex_exit(&dn->dn_dbufs_mtx);
819 		return;
820 	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
821 		/*
822 		 * If we are receiving, we expect there to be no dbufs in
823 		 * the range to be freed, because receive modifies each
824 		 * block at most once, and in offset order.  If this is
825 		 * not the case, it can lead to performance problems,
826 		 * so note that we unexpectedly took the slow path.
827 		 */
828 		atomic_inc_64(&zfs_free_range_recv_miss);
829 	}
830 
831 	for (db = list_head(&dn->dn_dbufs); db != NULL; db = db_next) {
832 		db_next = list_next(&dn->dn_dbufs, db);
833 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
834 
835 		if (db->db_level != 0)
836 			continue;
837 		if (db->db_blkid < start || db->db_blkid > end)
838 			continue;
839 
840 		/* found a level 0 buffer in the range */
841 		mutex_enter(&db->db_mtx);
842 		if (dbuf_undirty(db, tx)) {
843 			/* mutex has been dropped and dbuf destroyed */
844 			continue;
845 		}
846 
847 		if (db->db_state == DB_UNCACHED ||
848 		    db->db_state == DB_NOFILL ||
849 		    db->db_state == DB_EVICTING) {
850 			ASSERT(db->db.db_data == NULL);
851 			mutex_exit(&db->db_mtx);
852 			continue;
853 		}
854 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
855 			/* will be handled in dbuf_read_done or dbuf_rele */
856 			db->db_freed_in_flight = TRUE;
857 			mutex_exit(&db->db_mtx);
858 			continue;
859 		}
860 		if (refcount_count(&db->db_holds) == 0) {
861 			ASSERT(db->db_buf);
862 			dbuf_clear(db);
863 			continue;
864 		}
865 		/* The dbuf is referenced */
866 
867 		if (db->db_last_dirty != NULL) {
868 			dbuf_dirty_record_t *dr = db->db_last_dirty;
869 
870 			if (dr->dr_txg == txg) {
871 				/*
872 				 * This buffer is "in-use", re-adjust the file
873 				 * size to reflect that this buffer may
874 				 * contain new data when we sync.
875 				 */
876 				if (db->db_blkid != DMU_SPILL_BLKID &&
877 				    db->db_blkid > dn->dn_maxblkid)
878 					dn->dn_maxblkid = db->db_blkid;
879 				dbuf_unoverride(dr);
880 			} else {
881 				/*
882 				 * This dbuf is not dirty in the open context.
883 				 * Either uncache it (if its not referenced in
884 				 * the open context) or reset its contents to
885 				 * empty.
886 				 */
887 				dbuf_fix_old_data(db, txg);
888 			}
889 		}
890 		/* clear the contents if its cached */
891 		if (db->db_state == DB_CACHED) {
892 			ASSERT(db->db.db_data != NULL);
893 			arc_release(db->db_buf, db);
894 			bzero(db->db.db_data, db->db.db_size);
895 			arc_buf_freeze(db->db_buf);
896 		}
897 
898 		mutex_exit(&db->db_mtx);
899 	}
900 	mutex_exit(&dn->dn_dbufs_mtx);
901 }
902 
903 static int
904 dbuf_block_freeable(dmu_buf_impl_t *db)
905 {
906 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
907 	uint64_t birth_txg = 0;
908 
909 	/*
910 	 * We don't need any locking to protect db_blkptr:
911 	 * If it's syncing, then db_last_dirty will be set
912 	 * so we'll ignore db_blkptr.
913 	 *
914 	 * This logic ensures that only block births for
915 	 * filled blocks are considered.
916 	 */
917 	ASSERT(MUTEX_HELD(&db->db_mtx));
918 	if (db->db_last_dirty && (db->db_blkptr == NULL ||
919 	    !BP_IS_HOLE(db->db_blkptr))) {
920 		birth_txg = db->db_last_dirty->dr_txg;
921 	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
922 		birth_txg = db->db_blkptr->blk_birth;
923 	}
924 
925 	/*
926 	 * If this block don't exist or is in a snapshot, it can't be freed.
927 	 * Don't pass the bp to dsl_dataset_block_freeable() since we
928 	 * are holding the db_mtx lock and might deadlock if we are
929 	 * prefetching a dedup-ed block.
930 	 */
931 	if (birth_txg != 0)
932 		return (ds == NULL ||
933 		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
934 	else
935 		return (B_FALSE);
936 }
937 
938 void
939 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
940 {
941 	arc_buf_t *buf, *obuf;
942 	int osize = db->db.db_size;
943 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
944 	dnode_t *dn;
945 
946 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
947 
948 	DB_DNODE_ENTER(db);
949 	dn = DB_DNODE(db);
950 
951 	/* XXX does *this* func really need the lock? */
952 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
953 
954 	/*
955 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
956 	 * is OK, because there can be no other references to the db
957 	 * when we are changing its size, so no concurrent DB_FILL can
958 	 * be happening.
959 	 */
960 	/*
961 	 * XXX we should be doing a dbuf_read, checking the return
962 	 * value and returning that up to our callers
963 	 */
964 	dmu_buf_will_dirty(&db->db, tx);
965 
966 	/* create the data buffer for the new block */
967 	buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
968 
969 	/* copy old block data to the new block */
970 	obuf = db->db_buf;
971 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
972 	/* zero the remainder */
973 	if (size > osize)
974 		bzero((uint8_t *)buf->b_data + osize, size - osize);
975 
976 	mutex_enter(&db->db_mtx);
977 	dbuf_set_data(db, buf);
978 	VERIFY(arc_buf_remove_ref(obuf, db));
979 	db->db.db_size = size;
980 
981 	if (db->db_level == 0) {
982 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
983 		db->db_last_dirty->dt.dl.dr_data = buf;
984 	}
985 	mutex_exit(&db->db_mtx);
986 
987 	dnode_willuse_space(dn, size-osize, tx);
988 	DB_DNODE_EXIT(db);
989 }
990 
991 void
992 dbuf_release_bp(dmu_buf_impl_t *db)
993 {
994 	objset_t *os = db->db_objset;
995 
996 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
997 	ASSERT(arc_released(os->os_phys_buf) ||
998 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
999 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1000 
1001 	(void) arc_release(db->db_buf, db);
1002 }
1003 
1004 dbuf_dirty_record_t *
1005 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1006 {
1007 	dnode_t *dn;
1008 	objset_t *os;
1009 	dbuf_dirty_record_t **drp, *dr;
1010 	int drop_struct_lock = FALSE;
1011 	boolean_t do_free_accounting = B_FALSE;
1012 	int txgoff = tx->tx_txg & TXG_MASK;
1013 
1014 	ASSERT(tx->tx_txg != 0);
1015 	ASSERT(!refcount_is_zero(&db->db_holds));
1016 	DMU_TX_DIRTY_BUF(tx, db);
1017 
1018 	DB_DNODE_ENTER(db);
1019 	dn = DB_DNODE(db);
1020 	/*
1021 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1022 	 * objects may be dirtied in syncing context, but only if they
1023 	 * were already pre-dirtied in open context.
1024 	 */
1025 	ASSERT(!dmu_tx_is_syncing(tx) ||
1026 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1027 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1028 	    dn->dn_objset->os_dsl_dataset == NULL);
1029 	/*
1030 	 * We make this assert for private objects as well, but after we
1031 	 * check if we're already dirty.  They are allowed to re-dirty
1032 	 * in syncing context.
1033 	 */
1034 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1035 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1036 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1037 
1038 	mutex_enter(&db->db_mtx);
1039 	/*
1040 	 * XXX make this true for indirects too?  The problem is that
1041 	 * transactions created with dmu_tx_create_assigned() from
1042 	 * syncing context don't bother holding ahead.
1043 	 */
1044 	ASSERT(db->db_level != 0 ||
1045 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1046 	    db->db_state == DB_NOFILL);
1047 
1048 	mutex_enter(&dn->dn_mtx);
1049 	/*
1050 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1051 	 * initialize the objset.
1052 	 */
1053 	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1054 	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1055 		dn->dn_dirtyctx =
1056 		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1057 		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1058 		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1059 	}
1060 	mutex_exit(&dn->dn_mtx);
1061 
1062 	if (db->db_blkid == DMU_SPILL_BLKID)
1063 		dn->dn_have_spill = B_TRUE;
1064 
1065 	/*
1066 	 * If this buffer is already dirty, we're done.
1067 	 */
1068 	drp = &db->db_last_dirty;
1069 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1070 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1071 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1072 		drp = &dr->dr_next;
1073 	if (dr && dr->dr_txg == tx->tx_txg) {
1074 		DB_DNODE_EXIT(db);
1075 
1076 		if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1077 			/*
1078 			 * If this buffer has already been written out,
1079 			 * we now need to reset its state.
1080 			 */
1081 			dbuf_unoverride(dr);
1082 			if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1083 			    db->db_state != DB_NOFILL)
1084 				arc_buf_thaw(db->db_buf);
1085 		}
1086 		mutex_exit(&db->db_mtx);
1087 		return (dr);
1088 	}
1089 
1090 	/*
1091 	 * Only valid if not already dirty.
1092 	 */
1093 	ASSERT(dn->dn_object == 0 ||
1094 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1095 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1096 
1097 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1098 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1099 	    dn->dn_phys->dn_nlevels > db->db_level ||
1100 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1101 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1102 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1103 
1104 	/*
1105 	 * We should only be dirtying in syncing context if it's the
1106 	 * mos or we're initializing the os or it's a special object.
1107 	 * However, we are allowed to dirty in syncing context provided
1108 	 * we already dirtied it in open context.  Hence we must make
1109 	 * this assertion only if we're not already dirty.
1110 	 */
1111 	os = dn->dn_objset;
1112 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1113 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1114 	ASSERT(db->db.db_size != 0);
1115 
1116 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1117 
1118 	if (db->db_blkid != DMU_BONUS_BLKID) {
1119 		/*
1120 		 * Update the accounting.
1121 		 * Note: we delay "free accounting" until after we drop
1122 		 * the db_mtx.  This keeps us from grabbing other locks
1123 		 * (and possibly deadlocking) in bp_get_dsize() while
1124 		 * also holding the db_mtx.
1125 		 */
1126 		dnode_willuse_space(dn, db->db.db_size, tx);
1127 		do_free_accounting = dbuf_block_freeable(db);
1128 	}
1129 
1130 	/*
1131 	 * If this buffer is dirty in an old transaction group we need
1132 	 * to make a copy of it so that the changes we make in this
1133 	 * transaction group won't leak out when we sync the older txg.
1134 	 */
1135 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1136 	if (db->db_level == 0) {
1137 		void *data_old = db->db_buf;
1138 
1139 		if (db->db_state != DB_NOFILL) {
1140 			if (db->db_blkid == DMU_BONUS_BLKID) {
1141 				dbuf_fix_old_data(db, tx->tx_txg);
1142 				data_old = db->db.db_data;
1143 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1144 				/*
1145 				 * Release the data buffer from the cache so
1146 				 * that we can modify it without impacting
1147 				 * possible other users of this cached data
1148 				 * block.  Note that indirect blocks and
1149 				 * private objects are not released until the
1150 				 * syncing state (since they are only modified
1151 				 * then).
1152 				 */
1153 				arc_release(db->db_buf, db);
1154 				dbuf_fix_old_data(db, tx->tx_txg);
1155 				data_old = db->db_buf;
1156 			}
1157 			ASSERT(data_old != NULL);
1158 		}
1159 		dr->dt.dl.dr_data = data_old;
1160 	} else {
1161 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1162 		list_create(&dr->dt.di.dr_children,
1163 		    sizeof (dbuf_dirty_record_t),
1164 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1165 	}
1166 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1167 		dr->dr_accounted = db->db.db_size;
1168 	dr->dr_dbuf = db;
1169 	dr->dr_txg = tx->tx_txg;
1170 	dr->dr_next = *drp;
1171 	*drp = dr;
1172 
1173 	/*
1174 	 * We could have been freed_in_flight between the dbuf_noread
1175 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1176 	 * happened after the free.
1177 	 */
1178 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1179 	    db->db_blkid != DMU_SPILL_BLKID) {
1180 		mutex_enter(&dn->dn_mtx);
1181 		if (dn->dn_free_ranges[txgoff] != NULL) {
1182 			range_tree_clear(dn->dn_free_ranges[txgoff],
1183 			    db->db_blkid, 1);
1184 		}
1185 		mutex_exit(&dn->dn_mtx);
1186 		db->db_freed_in_flight = FALSE;
1187 	}
1188 
1189 	/*
1190 	 * This buffer is now part of this txg
1191 	 */
1192 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1193 	db->db_dirtycnt += 1;
1194 	ASSERT3U(db->db_dirtycnt, <=, 3);
1195 
1196 	mutex_exit(&db->db_mtx);
1197 
1198 	if (db->db_blkid == DMU_BONUS_BLKID ||
1199 	    db->db_blkid == DMU_SPILL_BLKID) {
1200 		mutex_enter(&dn->dn_mtx);
1201 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1202 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1203 		mutex_exit(&dn->dn_mtx);
1204 		dnode_setdirty(dn, tx);
1205 		DB_DNODE_EXIT(db);
1206 		return (dr);
1207 	} else if (do_free_accounting) {
1208 		blkptr_t *bp = db->db_blkptr;
1209 		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1210 		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1211 		/*
1212 		 * This is only a guess -- if the dbuf is dirty
1213 		 * in a previous txg, we don't know how much
1214 		 * space it will use on disk yet.  We should
1215 		 * really have the struct_rwlock to access
1216 		 * db_blkptr, but since this is just a guess,
1217 		 * it's OK if we get an odd answer.
1218 		 */
1219 		ddt_prefetch(os->os_spa, bp);
1220 		dnode_willuse_space(dn, -willfree, tx);
1221 	}
1222 
1223 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1224 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1225 		drop_struct_lock = TRUE;
1226 	}
1227 
1228 	if (db->db_level == 0) {
1229 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1230 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1231 	}
1232 
1233 	if (db->db_level+1 < dn->dn_nlevels) {
1234 		dmu_buf_impl_t *parent = db->db_parent;
1235 		dbuf_dirty_record_t *di;
1236 		int parent_held = FALSE;
1237 
1238 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1239 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1240 
1241 			parent = dbuf_hold_level(dn, db->db_level+1,
1242 			    db->db_blkid >> epbs, FTAG);
1243 			ASSERT(parent != NULL);
1244 			parent_held = TRUE;
1245 		}
1246 		if (drop_struct_lock)
1247 			rw_exit(&dn->dn_struct_rwlock);
1248 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1249 		di = dbuf_dirty(parent, tx);
1250 		if (parent_held)
1251 			dbuf_rele(parent, FTAG);
1252 
1253 		mutex_enter(&db->db_mtx);
1254 		/*
1255 		 * Since we've dropped the mutex, it's possible that
1256 		 * dbuf_undirty() might have changed this out from under us.
1257 		 */
1258 		if (db->db_last_dirty == dr ||
1259 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1260 			mutex_enter(&di->dt.di.dr_mtx);
1261 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1262 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1263 			list_insert_tail(&di->dt.di.dr_children, dr);
1264 			mutex_exit(&di->dt.di.dr_mtx);
1265 			dr->dr_parent = di;
1266 		}
1267 		mutex_exit(&db->db_mtx);
1268 	} else {
1269 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1270 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1271 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1272 		mutex_enter(&dn->dn_mtx);
1273 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1274 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1275 		mutex_exit(&dn->dn_mtx);
1276 		if (drop_struct_lock)
1277 			rw_exit(&dn->dn_struct_rwlock);
1278 	}
1279 
1280 	dnode_setdirty(dn, tx);
1281 	DB_DNODE_EXIT(db);
1282 	return (dr);
1283 }
1284 
1285 /*
1286  * Undirty a buffer in the transaction group referenced by the given
1287  * transaction.  Return whether this evicted the dbuf.
1288  */
1289 static boolean_t
1290 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1291 {
1292 	dnode_t *dn;
1293 	uint64_t txg = tx->tx_txg;
1294 	dbuf_dirty_record_t *dr, **drp;
1295 
1296 	ASSERT(txg != 0);
1297 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1298 	ASSERT0(db->db_level);
1299 	ASSERT(MUTEX_HELD(&db->db_mtx));
1300 
1301 	/*
1302 	 * If this buffer is not dirty, we're done.
1303 	 */
1304 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1305 		if (dr->dr_txg <= txg)
1306 			break;
1307 	if (dr == NULL || dr->dr_txg < txg)
1308 		return (B_FALSE);
1309 	ASSERT(dr->dr_txg == txg);
1310 	ASSERT(dr->dr_dbuf == db);
1311 
1312 	DB_DNODE_ENTER(db);
1313 	dn = DB_DNODE(db);
1314 
1315 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1316 
1317 	ASSERT(db->db.db_size != 0);
1318 
1319 	/*
1320 	 * Any space we accounted for in dp_dirty_* will be cleaned up by
1321 	 * dsl_pool_sync().  This is relatively rare so the discrepancy
1322 	 * is not a big deal.
1323 	 */
1324 
1325 	*drp = dr->dr_next;
1326 
1327 	/*
1328 	 * Note that there are three places in dbuf_dirty()
1329 	 * where this dirty record may be put on a list.
1330 	 * Make sure to do a list_remove corresponding to
1331 	 * every one of those list_insert calls.
1332 	 */
1333 	if (dr->dr_parent) {
1334 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1335 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1336 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1337 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1338 	    db->db_level+1 == dn->dn_nlevels) {
1339 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1340 		mutex_enter(&dn->dn_mtx);
1341 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1342 		mutex_exit(&dn->dn_mtx);
1343 	}
1344 	DB_DNODE_EXIT(db);
1345 
1346 	if (db->db_state != DB_NOFILL) {
1347 		dbuf_unoverride(dr);
1348 
1349 		ASSERT(db->db_buf != NULL);
1350 		ASSERT(dr->dt.dl.dr_data != NULL);
1351 		if (dr->dt.dl.dr_data != db->db_buf)
1352 			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1353 	}
1354 
1355 	if (db->db_level != 0) {
1356 		mutex_destroy(&dr->dt.di.dr_mtx);
1357 		list_destroy(&dr->dt.di.dr_children);
1358 	}
1359 
1360 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1361 
1362 	ASSERT(db->db_dirtycnt > 0);
1363 	db->db_dirtycnt -= 1;
1364 
1365 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1366 		arc_buf_t *buf = db->db_buf;
1367 
1368 		ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1369 		dbuf_set_data(db, NULL);
1370 		VERIFY(arc_buf_remove_ref(buf, db));
1371 		dbuf_evict(db);
1372 		return (B_TRUE);
1373 	}
1374 
1375 	return (B_FALSE);
1376 }
1377 
1378 void
1379 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1380 {
1381 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1382 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1383 
1384 	ASSERT(tx->tx_txg != 0);
1385 	ASSERT(!refcount_is_zero(&db->db_holds));
1386 
1387 	DB_DNODE_ENTER(db);
1388 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1389 		rf |= DB_RF_HAVESTRUCT;
1390 	DB_DNODE_EXIT(db);
1391 	(void) dbuf_read(db, NULL, rf);
1392 	(void) dbuf_dirty(db, tx);
1393 }
1394 
1395 void
1396 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1397 {
1398 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1399 
1400 	db->db_state = DB_NOFILL;
1401 
1402 	dmu_buf_will_fill(db_fake, tx);
1403 }
1404 
1405 void
1406 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1407 {
1408 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1409 
1410 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1411 	ASSERT(tx->tx_txg != 0);
1412 	ASSERT(db->db_level == 0);
1413 	ASSERT(!refcount_is_zero(&db->db_holds));
1414 
1415 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1416 	    dmu_tx_private_ok(tx));
1417 
1418 	dbuf_noread(db);
1419 	(void) dbuf_dirty(db, tx);
1420 }
1421 
1422 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1423 /* ARGSUSED */
1424 void
1425 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1426 {
1427 	mutex_enter(&db->db_mtx);
1428 	DBUF_VERIFY(db);
1429 
1430 	if (db->db_state == DB_FILL) {
1431 		if (db->db_level == 0 && db->db_freed_in_flight) {
1432 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1433 			/* we were freed while filling */
1434 			/* XXX dbuf_undirty? */
1435 			bzero(db->db.db_data, db->db.db_size);
1436 			db->db_freed_in_flight = FALSE;
1437 		}
1438 		db->db_state = DB_CACHED;
1439 		cv_broadcast(&db->db_changed);
1440 	}
1441 	mutex_exit(&db->db_mtx);
1442 }
1443 
1444 void
1445 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1446     bp_embedded_type_t etype, enum zio_compress comp,
1447     int uncompressed_size, int compressed_size, int byteorder,
1448     dmu_tx_t *tx)
1449 {
1450 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1451 	struct dirty_leaf *dl;
1452 	dmu_object_type_t type;
1453 
1454 	DB_DNODE_ENTER(db);
1455 	type = DB_DNODE(db)->dn_type;
1456 	DB_DNODE_EXIT(db);
1457 
1458 	ASSERT0(db->db_level);
1459 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1460 
1461 	dmu_buf_will_not_fill(dbuf, tx);
1462 
1463 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1464 	dl = &db->db_last_dirty->dt.dl;
1465 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1466 	    data, comp, uncompressed_size, compressed_size);
1467 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1468 	BP_SET_TYPE(&dl->dr_overridden_by, type);
1469 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1470 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1471 
1472 	dl->dr_override_state = DR_OVERRIDDEN;
1473 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1474 }
1475 
1476 /*
1477  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1478  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1479  */
1480 void
1481 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1482 {
1483 	ASSERT(!refcount_is_zero(&db->db_holds));
1484 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1485 	ASSERT(db->db_level == 0);
1486 	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1487 	ASSERT(buf != NULL);
1488 	ASSERT(arc_buf_size(buf) == db->db.db_size);
1489 	ASSERT(tx->tx_txg != 0);
1490 
1491 	arc_return_buf(buf, db);
1492 	ASSERT(arc_released(buf));
1493 
1494 	mutex_enter(&db->db_mtx);
1495 
1496 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1497 		cv_wait(&db->db_changed, &db->db_mtx);
1498 
1499 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1500 
1501 	if (db->db_state == DB_CACHED &&
1502 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1503 		mutex_exit(&db->db_mtx);
1504 		(void) dbuf_dirty(db, tx);
1505 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1506 		VERIFY(arc_buf_remove_ref(buf, db));
1507 		xuio_stat_wbuf_copied();
1508 		return;
1509 	}
1510 
1511 	xuio_stat_wbuf_nocopy();
1512 	if (db->db_state == DB_CACHED) {
1513 		dbuf_dirty_record_t *dr = db->db_last_dirty;
1514 
1515 		ASSERT(db->db_buf != NULL);
1516 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1517 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1518 			if (!arc_released(db->db_buf)) {
1519 				ASSERT(dr->dt.dl.dr_override_state ==
1520 				    DR_OVERRIDDEN);
1521 				arc_release(db->db_buf, db);
1522 			}
1523 			dr->dt.dl.dr_data = buf;
1524 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1525 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1526 			arc_release(db->db_buf, db);
1527 			VERIFY(arc_buf_remove_ref(db->db_buf, db));
1528 		}
1529 		db->db_buf = NULL;
1530 	}
1531 	ASSERT(db->db_buf == NULL);
1532 	dbuf_set_data(db, buf);
1533 	db->db_state = DB_FILL;
1534 	mutex_exit(&db->db_mtx);
1535 	(void) dbuf_dirty(db, tx);
1536 	dmu_buf_fill_done(&db->db, tx);
1537 }
1538 
1539 /*
1540  * "Clear" the contents of this dbuf.  This will mark the dbuf
1541  * EVICTING and clear *most* of its references.  Unfortunately,
1542  * when we are not holding the dn_dbufs_mtx, we can't clear the
1543  * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1544  * in this case.  For callers from the DMU we will usually see:
1545  *	dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1546  * For the arc callback, we will usually see:
1547  *	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1548  * Sometimes, though, we will get a mix of these two:
1549  *	DMU: dbuf_clear()->arc_clear_callback()
1550  *	ARC: dbuf_do_evict()->dbuf_destroy()
1551  *
1552  * This routine will dissociate the dbuf from the arc, by calling
1553  * arc_clear_callback(), but will not evict the data from the ARC.
1554  */
1555 void
1556 dbuf_clear(dmu_buf_impl_t *db)
1557 {
1558 	dnode_t *dn;
1559 	dmu_buf_impl_t *parent = db->db_parent;
1560 	dmu_buf_impl_t *dndb;
1561 	boolean_t dbuf_gone = B_FALSE;
1562 
1563 	ASSERT(MUTEX_HELD(&db->db_mtx));
1564 	ASSERT(refcount_is_zero(&db->db_holds));
1565 
1566 	dbuf_evict_user(db);
1567 
1568 	if (db->db_state == DB_CACHED) {
1569 		ASSERT(db->db.db_data != NULL);
1570 		if (db->db_blkid == DMU_BONUS_BLKID) {
1571 			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1572 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1573 		}
1574 		db->db.db_data = NULL;
1575 		db->db_state = DB_UNCACHED;
1576 	}
1577 
1578 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1579 	ASSERT(db->db_data_pending == NULL);
1580 
1581 	db->db_state = DB_EVICTING;
1582 	db->db_blkptr = NULL;
1583 
1584 	DB_DNODE_ENTER(db);
1585 	dn = DB_DNODE(db);
1586 	dndb = dn->dn_dbuf;
1587 	if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1588 		list_remove(&dn->dn_dbufs, db);
1589 		(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1590 		membar_producer();
1591 		DB_DNODE_EXIT(db);
1592 		/*
1593 		 * Decrementing the dbuf count means that the hold corresponding
1594 		 * to the removed dbuf is no longer discounted in dnode_move(),
1595 		 * so the dnode cannot be moved until after we release the hold.
1596 		 * The membar_producer() ensures visibility of the decremented
1597 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1598 		 * release any lock.
1599 		 */
1600 		dnode_rele(dn, db);
1601 		db->db_dnode_handle = NULL;
1602 	} else {
1603 		DB_DNODE_EXIT(db);
1604 	}
1605 
1606 	if (db->db_buf)
1607 		dbuf_gone = arc_clear_callback(db->db_buf);
1608 
1609 	if (!dbuf_gone)
1610 		mutex_exit(&db->db_mtx);
1611 
1612 	/*
1613 	 * If this dbuf is referenced from an indirect dbuf,
1614 	 * decrement the ref count on the indirect dbuf.
1615 	 */
1616 	if (parent && parent != dndb)
1617 		dbuf_rele(parent, db);
1618 }
1619 
1620 static int
1621 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1622     dmu_buf_impl_t **parentp, blkptr_t **bpp)
1623 {
1624 	int nlevels, epbs;
1625 
1626 	*parentp = NULL;
1627 	*bpp = NULL;
1628 
1629 	ASSERT(blkid != DMU_BONUS_BLKID);
1630 
1631 	if (blkid == DMU_SPILL_BLKID) {
1632 		mutex_enter(&dn->dn_mtx);
1633 		if (dn->dn_have_spill &&
1634 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1635 			*bpp = &dn->dn_phys->dn_spill;
1636 		else
1637 			*bpp = NULL;
1638 		dbuf_add_ref(dn->dn_dbuf, NULL);
1639 		*parentp = dn->dn_dbuf;
1640 		mutex_exit(&dn->dn_mtx);
1641 		return (0);
1642 	}
1643 
1644 	if (dn->dn_phys->dn_nlevels == 0)
1645 		nlevels = 1;
1646 	else
1647 		nlevels = dn->dn_phys->dn_nlevels;
1648 
1649 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1650 
1651 	ASSERT3U(level * epbs, <, 64);
1652 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1653 	if (level >= nlevels ||
1654 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1655 		/* the buffer has no parent yet */
1656 		return (SET_ERROR(ENOENT));
1657 	} else if (level < nlevels-1) {
1658 		/* this block is referenced from an indirect block */
1659 		int err = dbuf_hold_impl(dn, level+1,
1660 		    blkid >> epbs, fail_sparse, NULL, parentp);
1661 		if (err)
1662 			return (err);
1663 		err = dbuf_read(*parentp, NULL,
1664 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1665 		if (err) {
1666 			dbuf_rele(*parentp, NULL);
1667 			*parentp = NULL;
1668 			return (err);
1669 		}
1670 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1671 		    (blkid & ((1ULL << epbs) - 1));
1672 		return (0);
1673 	} else {
1674 		/* the block is referenced from the dnode */
1675 		ASSERT3U(level, ==, nlevels-1);
1676 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1677 		    blkid < dn->dn_phys->dn_nblkptr);
1678 		if (dn->dn_dbuf) {
1679 			dbuf_add_ref(dn->dn_dbuf, NULL);
1680 			*parentp = dn->dn_dbuf;
1681 		}
1682 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1683 		return (0);
1684 	}
1685 }
1686 
1687 static dmu_buf_impl_t *
1688 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1689     dmu_buf_impl_t *parent, blkptr_t *blkptr)
1690 {
1691 	objset_t *os = dn->dn_objset;
1692 	dmu_buf_impl_t *db, *odb;
1693 
1694 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1695 	ASSERT(dn->dn_type != DMU_OT_NONE);
1696 
1697 	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1698 
1699 	db->db_objset = os;
1700 	db->db.db_object = dn->dn_object;
1701 	db->db_level = level;
1702 	db->db_blkid = blkid;
1703 	db->db_last_dirty = NULL;
1704 	db->db_dirtycnt = 0;
1705 	db->db_dnode_handle = dn->dn_handle;
1706 	db->db_parent = parent;
1707 	db->db_blkptr = blkptr;
1708 
1709 	db->db_user_ptr = NULL;
1710 	db->db_user_data_ptr_ptr = NULL;
1711 	db->db_evict_func = NULL;
1712 	db->db_immediate_evict = 0;
1713 	db->db_freed_in_flight = 0;
1714 
1715 	if (blkid == DMU_BONUS_BLKID) {
1716 		ASSERT3P(parent, ==, dn->dn_dbuf);
1717 		db->db.db_size = DN_MAX_BONUSLEN -
1718 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1719 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1720 		db->db.db_offset = DMU_BONUS_BLKID;
1721 		db->db_state = DB_UNCACHED;
1722 		/* the bonus dbuf is not placed in the hash table */
1723 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1724 		return (db);
1725 	} else if (blkid == DMU_SPILL_BLKID) {
1726 		db->db.db_size = (blkptr != NULL) ?
1727 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1728 		db->db.db_offset = 0;
1729 	} else {
1730 		int blocksize =
1731 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1732 		db->db.db_size = blocksize;
1733 		db->db.db_offset = db->db_blkid * blocksize;
1734 	}
1735 
1736 	/*
1737 	 * Hold the dn_dbufs_mtx while we get the new dbuf
1738 	 * in the hash table *and* added to the dbufs list.
1739 	 * This prevents a possible deadlock with someone
1740 	 * trying to look up this dbuf before its added to the
1741 	 * dn_dbufs list.
1742 	 */
1743 	mutex_enter(&dn->dn_dbufs_mtx);
1744 	db->db_state = DB_EVICTING;
1745 	if ((odb = dbuf_hash_insert(db)) != NULL) {
1746 		/* someone else inserted it first */
1747 		kmem_cache_free(dbuf_cache, db);
1748 		mutex_exit(&dn->dn_dbufs_mtx);
1749 		return (odb);
1750 	}
1751 	list_insert_head(&dn->dn_dbufs, db);
1752 	if (db->db_level == 0 && db->db_blkid >=
1753 	    dn->dn_unlisted_l0_blkid)
1754 		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
1755 	db->db_state = DB_UNCACHED;
1756 	mutex_exit(&dn->dn_dbufs_mtx);
1757 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1758 
1759 	if (parent && parent != dn->dn_dbuf)
1760 		dbuf_add_ref(parent, db);
1761 
1762 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1763 	    refcount_count(&dn->dn_holds) > 0);
1764 	(void) refcount_add(&dn->dn_holds, db);
1765 	(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
1766 
1767 	dprintf_dbuf(db, "db=%p\n", db);
1768 
1769 	return (db);
1770 }
1771 
1772 static int
1773 dbuf_do_evict(void *private)
1774 {
1775 	dmu_buf_impl_t *db = private;
1776 
1777 	if (!MUTEX_HELD(&db->db_mtx))
1778 		mutex_enter(&db->db_mtx);
1779 
1780 	ASSERT(refcount_is_zero(&db->db_holds));
1781 
1782 	if (db->db_state != DB_EVICTING) {
1783 		ASSERT(db->db_state == DB_CACHED);
1784 		DBUF_VERIFY(db);
1785 		db->db_buf = NULL;
1786 		dbuf_evict(db);
1787 	} else {
1788 		mutex_exit(&db->db_mtx);
1789 		dbuf_destroy(db);
1790 	}
1791 	return (0);
1792 }
1793 
1794 static void
1795 dbuf_destroy(dmu_buf_impl_t *db)
1796 {
1797 	ASSERT(refcount_is_zero(&db->db_holds));
1798 
1799 	if (db->db_blkid != DMU_BONUS_BLKID) {
1800 		/*
1801 		 * If this dbuf is still on the dn_dbufs list,
1802 		 * remove it from that list.
1803 		 */
1804 		if (db->db_dnode_handle != NULL) {
1805 			dnode_t *dn;
1806 
1807 			DB_DNODE_ENTER(db);
1808 			dn = DB_DNODE(db);
1809 			mutex_enter(&dn->dn_dbufs_mtx);
1810 			list_remove(&dn->dn_dbufs, db);
1811 			(void) atomic_dec_32_nv(&dn->dn_dbufs_count);
1812 			mutex_exit(&dn->dn_dbufs_mtx);
1813 			DB_DNODE_EXIT(db);
1814 			/*
1815 			 * Decrementing the dbuf count means that the hold
1816 			 * corresponding to the removed dbuf is no longer
1817 			 * discounted in dnode_move(), so the dnode cannot be
1818 			 * moved until after we release the hold.
1819 			 */
1820 			dnode_rele(dn, db);
1821 			db->db_dnode_handle = NULL;
1822 		}
1823 		dbuf_hash_remove(db);
1824 	}
1825 	db->db_parent = NULL;
1826 	db->db_buf = NULL;
1827 
1828 	ASSERT(!list_link_active(&db->db_link));
1829 	ASSERT(db->db.db_data == NULL);
1830 	ASSERT(db->db_hash_next == NULL);
1831 	ASSERT(db->db_blkptr == NULL);
1832 	ASSERT(db->db_data_pending == NULL);
1833 
1834 	kmem_cache_free(dbuf_cache, db);
1835 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1836 }
1837 
1838 void
1839 dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio)
1840 {
1841 	dmu_buf_impl_t *db = NULL;
1842 	blkptr_t *bp = NULL;
1843 
1844 	ASSERT(blkid != DMU_BONUS_BLKID);
1845 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1846 
1847 	if (dnode_block_freed(dn, blkid))
1848 		return;
1849 
1850 	/* dbuf_find() returns with db_mtx held */
1851 	if (db = dbuf_find(dn, 0, blkid)) {
1852 		/*
1853 		 * This dbuf is already in the cache.  We assume that
1854 		 * it is already CACHED, or else about to be either
1855 		 * read or filled.
1856 		 */
1857 		mutex_exit(&db->db_mtx);
1858 		return;
1859 	}
1860 
1861 	if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) {
1862 		if (bp && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1863 			dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
1864 			uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH;
1865 			zbookmark_phys_t zb;
1866 
1867 			SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1868 			    dn->dn_object, 0, blkid);
1869 
1870 			(void) arc_read(NULL, dn->dn_objset->os_spa,
1871 			    bp, NULL, NULL, prio,
1872 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1873 			    &aflags, &zb);
1874 		}
1875 		if (db)
1876 			dbuf_rele(db, NULL);
1877 	}
1878 }
1879 
1880 /*
1881  * Returns with db_holds incremented, and db_mtx not held.
1882  * Note: dn_struct_rwlock must be held.
1883  */
1884 int
1885 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
1886     void *tag, dmu_buf_impl_t **dbp)
1887 {
1888 	dmu_buf_impl_t *db, *parent = NULL;
1889 
1890 	ASSERT(blkid != DMU_BONUS_BLKID);
1891 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1892 	ASSERT3U(dn->dn_nlevels, >, level);
1893 
1894 	*dbp = NULL;
1895 top:
1896 	/* dbuf_find() returns with db_mtx held */
1897 	db = dbuf_find(dn, level, blkid);
1898 
1899 	if (db == NULL) {
1900 		blkptr_t *bp = NULL;
1901 		int err;
1902 
1903 		ASSERT3P(parent, ==, NULL);
1904 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
1905 		if (fail_sparse) {
1906 			if (err == 0 && bp && BP_IS_HOLE(bp))
1907 				err = SET_ERROR(ENOENT);
1908 			if (err) {
1909 				if (parent)
1910 					dbuf_rele(parent, NULL);
1911 				return (err);
1912 			}
1913 		}
1914 		if (err && err != ENOENT)
1915 			return (err);
1916 		db = dbuf_create(dn, level, blkid, parent, bp);
1917 	}
1918 
1919 	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
1920 		arc_buf_add_ref(db->db_buf, db);
1921 		if (db->db_buf->b_data == NULL) {
1922 			dbuf_clear(db);
1923 			if (parent) {
1924 				dbuf_rele(parent, NULL);
1925 				parent = NULL;
1926 			}
1927 			goto top;
1928 		}
1929 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
1930 	}
1931 
1932 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
1933 
1934 	/*
1935 	 * If this buffer is currently syncing out, and we are are
1936 	 * still referencing it from db_data, we need to make a copy
1937 	 * of it in case we decide we want to dirty it again in this txg.
1938 	 */
1939 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1940 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
1941 	    db->db_state == DB_CACHED && db->db_data_pending) {
1942 		dbuf_dirty_record_t *dr = db->db_data_pending;
1943 
1944 		if (dr->dt.dl.dr_data == db->db_buf) {
1945 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1946 
1947 			dbuf_set_data(db,
1948 			    arc_buf_alloc(dn->dn_objset->os_spa,
1949 			    db->db.db_size, db, type));
1950 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
1951 			    db->db.db_size);
1952 		}
1953 	}
1954 
1955 	(void) refcount_add(&db->db_holds, tag);
1956 	dbuf_update_data(db);
1957 	DBUF_VERIFY(db);
1958 	mutex_exit(&db->db_mtx);
1959 
1960 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
1961 	if (parent)
1962 		dbuf_rele(parent, NULL);
1963 
1964 	ASSERT3P(DB_DNODE(db), ==, dn);
1965 	ASSERT3U(db->db_blkid, ==, blkid);
1966 	ASSERT3U(db->db_level, ==, level);
1967 	*dbp = db;
1968 
1969 	return (0);
1970 }
1971 
1972 dmu_buf_impl_t *
1973 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
1974 {
1975 	dmu_buf_impl_t *db;
1976 	int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
1977 	return (err ? NULL : db);
1978 }
1979 
1980 dmu_buf_impl_t *
1981 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
1982 {
1983 	dmu_buf_impl_t *db;
1984 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
1985 	return (err ? NULL : db);
1986 }
1987 
1988 void
1989 dbuf_create_bonus(dnode_t *dn)
1990 {
1991 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1992 
1993 	ASSERT(dn->dn_bonus == NULL);
1994 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
1995 }
1996 
1997 int
1998 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
1999 {
2000 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2001 	dnode_t *dn;
2002 
2003 	if (db->db_blkid != DMU_SPILL_BLKID)
2004 		return (SET_ERROR(ENOTSUP));
2005 	if (blksz == 0)
2006 		blksz = SPA_MINBLOCKSIZE;
2007 	if (blksz > SPA_MAXBLOCKSIZE)
2008 		blksz = SPA_MAXBLOCKSIZE;
2009 	else
2010 		blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2011 
2012 	DB_DNODE_ENTER(db);
2013 	dn = DB_DNODE(db);
2014 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2015 	dbuf_new_size(db, blksz, tx);
2016 	rw_exit(&dn->dn_struct_rwlock);
2017 	DB_DNODE_EXIT(db);
2018 
2019 	return (0);
2020 }
2021 
2022 void
2023 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2024 {
2025 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2026 }
2027 
2028 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2029 void
2030 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2031 {
2032 	int64_t holds = refcount_add(&db->db_holds, tag);
2033 	ASSERT(holds > 1);
2034 }
2035 
2036 /*
2037  * If you call dbuf_rele() you had better not be referencing the dnode handle
2038  * unless you have some other direct or indirect hold on the dnode. (An indirect
2039  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2040  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2041  * dnode's parent dbuf evicting its dnode handles.
2042  */
2043 void
2044 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2045 {
2046 	mutex_enter(&db->db_mtx);
2047 	dbuf_rele_and_unlock(db, tag);
2048 }
2049 
2050 void
2051 dmu_buf_rele(dmu_buf_t *db, void *tag)
2052 {
2053 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2054 }
2055 
2056 /*
2057  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2058  * db_dirtycnt and db_holds to be updated atomically.
2059  */
2060 void
2061 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2062 {
2063 	int64_t holds;
2064 
2065 	ASSERT(MUTEX_HELD(&db->db_mtx));
2066 	DBUF_VERIFY(db);
2067 
2068 	/*
2069 	 * Remove the reference to the dbuf before removing its hold on the
2070 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2071 	 * buffer has a corresponding dnode hold.
2072 	 */
2073 	holds = refcount_remove(&db->db_holds, tag);
2074 	ASSERT(holds >= 0);
2075 
2076 	/*
2077 	 * We can't freeze indirects if there is a possibility that they
2078 	 * may be modified in the current syncing context.
2079 	 */
2080 	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2081 		arc_buf_freeze(db->db_buf);
2082 
2083 	if (holds == db->db_dirtycnt &&
2084 	    db->db_level == 0 && db->db_immediate_evict)
2085 		dbuf_evict_user(db);
2086 
2087 	if (holds == 0) {
2088 		if (db->db_blkid == DMU_BONUS_BLKID) {
2089 			mutex_exit(&db->db_mtx);
2090 
2091 			/*
2092 			 * If the dnode moves here, we cannot cross this barrier
2093 			 * until the move completes.
2094 			 */
2095 			DB_DNODE_ENTER(db);
2096 			(void) atomic_dec_32_nv(&DB_DNODE(db)->dn_dbufs_count);
2097 			DB_DNODE_EXIT(db);
2098 			/*
2099 			 * The bonus buffer's dnode hold is no longer discounted
2100 			 * in dnode_move(). The dnode cannot move until after
2101 			 * the dnode_rele().
2102 			 */
2103 			dnode_rele(DB_DNODE(db), db);
2104 		} else if (db->db_buf == NULL) {
2105 			/*
2106 			 * This is a special case: we never associated this
2107 			 * dbuf with any data allocated from the ARC.
2108 			 */
2109 			ASSERT(db->db_state == DB_UNCACHED ||
2110 			    db->db_state == DB_NOFILL);
2111 			dbuf_evict(db);
2112 		} else if (arc_released(db->db_buf)) {
2113 			arc_buf_t *buf = db->db_buf;
2114 			/*
2115 			 * This dbuf has anonymous data associated with it.
2116 			 */
2117 			dbuf_set_data(db, NULL);
2118 			VERIFY(arc_buf_remove_ref(buf, db));
2119 			dbuf_evict(db);
2120 		} else {
2121 			VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2122 
2123 			/*
2124 			 * A dbuf will be eligible for eviction if either the
2125 			 * 'primarycache' property is set or a duplicate
2126 			 * copy of this buffer is already cached in the arc.
2127 			 *
2128 			 * In the case of the 'primarycache' a buffer
2129 			 * is considered for eviction if it matches the
2130 			 * criteria set in the property.
2131 			 *
2132 			 * To decide if our buffer is considered a
2133 			 * duplicate, we must call into the arc to determine
2134 			 * if multiple buffers are referencing the same
2135 			 * block on-disk. If so, then we simply evict
2136 			 * ourselves.
2137 			 */
2138 			if (!DBUF_IS_CACHEABLE(db)) {
2139 				if (db->db_blkptr != NULL &&
2140 				    !BP_IS_HOLE(db->db_blkptr) &&
2141 				    !BP_IS_EMBEDDED(db->db_blkptr)) {
2142 					spa_t *spa =
2143 					    dmu_objset_spa(db->db_objset);
2144 					blkptr_t bp = *db->db_blkptr;
2145 					dbuf_clear(db);
2146 					arc_freed(spa, &bp);
2147 				} else {
2148 					dbuf_clear(db);
2149 				}
2150 			} else if (arc_buf_eviction_needed(db->db_buf)) {
2151 				dbuf_clear(db);
2152 			} else {
2153 				mutex_exit(&db->db_mtx);
2154 			}
2155 		}
2156 	} else {
2157 		mutex_exit(&db->db_mtx);
2158 	}
2159 }
2160 
2161 #pragma weak dmu_buf_refcount = dbuf_refcount
2162 uint64_t
2163 dbuf_refcount(dmu_buf_impl_t *db)
2164 {
2165 	return (refcount_count(&db->db_holds));
2166 }
2167 
2168 void *
2169 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2170     dmu_buf_evict_func_t *evict_func)
2171 {
2172 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2173 	    user_data_ptr_ptr, evict_func));
2174 }
2175 
2176 void *
2177 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
2178     dmu_buf_evict_func_t *evict_func)
2179 {
2180 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2181 
2182 	db->db_immediate_evict = TRUE;
2183 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
2184 	    user_data_ptr_ptr, evict_func));
2185 }
2186 
2187 void *
2188 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr,
2189     void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func)
2190 {
2191 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2192 	ASSERT(db->db_level == 0);
2193 
2194 	ASSERT((user_ptr == NULL) == (evict_func == NULL));
2195 
2196 	mutex_enter(&db->db_mtx);
2197 
2198 	if (db->db_user_ptr == old_user_ptr) {
2199 		db->db_user_ptr = user_ptr;
2200 		db->db_user_data_ptr_ptr = user_data_ptr_ptr;
2201 		db->db_evict_func = evict_func;
2202 
2203 		dbuf_update_data(db);
2204 	} else {
2205 		old_user_ptr = db->db_user_ptr;
2206 	}
2207 
2208 	mutex_exit(&db->db_mtx);
2209 	return (old_user_ptr);
2210 }
2211 
2212 void *
2213 dmu_buf_get_user(dmu_buf_t *db_fake)
2214 {
2215 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2216 	ASSERT(!refcount_is_zero(&db->db_holds));
2217 
2218 	return (db->db_user_ptr);
2219 }
2220 
2221 boolean_t
2222 dmu_buf_freeable(dmu_buf_t *dbuf)
2223 {
2224 	boolean_t res = B_FALSE;
2225 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2226 
2227 	if (db->db_blkptr)
2228 		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2229 		    db->db_blkptr, db->db_blkptr->blk_birth);
2230 
2231 	return (res);
2232 }
2233 
2234 blkptr_t *
2235 dmu_buf_get_blkptr(dmu_buf_t *db)
2236 {
2237 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2238 	return (dbi->db_blkptr);
2239 }
2240 
2241 static void
2242 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2243 {
2244 	/* ASSERT(dmu_tx_is_syncing(tx) */
2245 	ASSERT(MUTEX_HELD(&db->db_mtx));
2246 
2247 	if (db->db_blkptr != NULL)
2248 		return;
2249 
2250 	if (db->db_blkid == DMU_SPILL_BLKID) {
2251 		db->db_blkptr = &dn->dn_phys->dn_spill;
2252 		BP_ZERO(db->db_blkptr);
2253 		return;
2254 	}
2255 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2256 		/*
2257 		 * This buffer was allocated at a time when there was
2258 		 * no available blkptrs from the dnode, or it was
2259 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2260 		 */
2261 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2262 		ASSERT(db->db_parent == NULL);
2263 		db->db_parent = dn->dn_dbuf;
2264 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2265 		DBUF_VERIFY(db);
2266 	} else {
2267 		dmu_buf_impl_t *parent = db->db_parent;
2268 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2269 
2270 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2271 		if (parent == NULL) {
2272 			mutex_exit(&db->db_mtx);
2273 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2274 			(void) dbuf_hold_impl(dn, db->db_level+1,
2275 			    db->db_blkid >> epbs, FALSE, db, &parent);
2276 			rw_exit(&dn->dn_struct_rwlock);
2277 			mutex_enter(&db->db_mtx);
2278 			db->db_parent = parent;
2279 		}
2280 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2281 		    (db->db_blkid & ((1ULL << epbs) - 1));
2282 		DBUF_VERIFY(db);
2283 	}
2284 }
2285 
2286 static void
2287 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2288 {
2289 	dmu_buf_impl_t *db = dr->dr_dbuf;
2290 	dnode_t *dn;
2291 	zio_t *zio;
2292 
2293 	ASSERT(dmu_tx_is_syncing(tx));
2294 
2295 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2296 
2297 	mutex_enter(&db->db_mtx);
2298 
2299 	ASSERT(db->db_level > 0);
2300 	DBUF_VERIFY(db);
2301 
2302 	/* Read the block if it hasn't been read yet. */
2303 	if (db->db_buf == NULL) {
2304 		mutex_exit(&db->db_mtx);
2305 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2306 		mutex_enter(&db->db_mtx);
2307 	}
2308 	ASSERT3U(db->db_state, ==, DB_CACHED);
2309 	ASSERT(db->db_buf != NULL);
2310 
2311 	DB_DNODE_ENTER(db);
2312 	dn = DB_DNODE(db);
2313 	/* Indirect block size must match what the dnode thinks it is. */
2314 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2315 	dbuf_check_blkptr(dn, db);
2316 	DB_DNODE_EXIT(db);
2317 
2318 	/* Provide the pending dirty record to child dbufs */
2319 	db->db_data_pending = dr;
2320 
2321 	mutex_exit(&db->db_mtx);
2322 	dbuf_write(dr, db->db_buf, tx);
2323 
2324 	zio = dr->dr_zio;
2325 	mutex_enter(&dr->dt.di.dr_mtx);
2326 	dbuf_sync_list(&dr->dt.di.dr_children, tx);
2327 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2328 	mutex_exit(&dr->dt.di.dr_mtx);
2329 	zio_nowait(zio);
2330 }
2331 
2332 static void
2333 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2334 {
2335 	arc_buf_t **datap = &dr->dt.dl.dr_data;
2336 	dmu_buf_impl_t *db = dr->dr_dbuf;
2337 	dnode_t *dn;
2338 	objset_t *os;
2339 	uint64_t txg = tx->tx_txg;
2340 
2341 	ASSERT(dmu_tx_is_syncing(tx));
2342 
2343 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2344 
2345 	mutex_enter(&db->db_mtx);
2346 	/*
2347 	 * To be synced, we must be dirtied.  But we
2348 	 * might have been freed after the dirty.
2349 	 */
2350 	if (db->db_state == DB_UNCACHED) {
2351 		/* This buffer has been freed since it was dirtied */
2352 		ASSERT(db->db.db_data == NULL);
2353 	} else if (db->db_state == DB_FILL) {
2354 		/* This buffer was freed and is now being re-filled */
2355 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2356 	} else {
2357 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2358 	}
2359 	DBUF_VERIFY(db);
2360 
2361 	DB_DNODE_ENTER(db);
2362 	dn = DB_DNODE(db);
2363 
2364 	if (db->db_blkid == DMU_SPILL_BLKID) {
2365 		mutex_enter(&dn->dn_mtx);
2366 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2367 		mutex_exit(&dn->dn_mtx);
2368 	}
2369 
2370 	/*
2371 	 * If this is a bonus buffer, simply copy the bonus data into the
2372 	 * dnode.  It will be written out when the dnode is synced (and it
2373 	 * will be synced, since it must have been dirty for dbuf_sync to
2374 	 * be called).
2375 	 */
2376 	if (db->db_blkid == DMU_BONUS_BLKID) {
2377 		dbuf_dirty_record_t **drp;
2378 
2379 		ASSERT(*datap != NULL);
2380 		ASSERT0(db->db_level);
2381 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2382 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2383 		DB_DNODE_EXIT(db);
2384 
2385 		if (*datap != db->db.db_data) {
2386 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
2387 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2388 		}
2389 		db->db_data_pending = NULL;
2390 		drp = &db->db_last_dirty;
2391 		while (*drp != dr)
2392 			drp = &(*drp)->dr_next;
2393 		ASSERT(dr->dr_next == NULL);
2394 		ASSERT(dr->dr_dbuf == db);
2395 		*drp = dr->dr_next;
2396 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
2397 		ASSERT(db->db_dirtycnt > 0);
2398 		db->db_dirtycnt -= 1;
2399 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2400 		return;
2401 	}
2402 
2403 	os = dn->dn_objset;
2404 
2405 	/*
2406 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
2407 	 * operation to sneak in. As a result, we need to ensure that we
2408 	 * don't check the dr_override_state until we have returned from
2409 	 * dbuf_check_blkptr.
2410 	 */
2411 	dbuf_check_blkptr(dn, db);
2412 
2413 	/*
2414 	 * If this buffer is in the middle of an immediate write,
2415 	 * wait for the synchronous IO to complete.
2416 	 */
2417 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2418 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2419 		cv_wait(&db->db_changed, &db->db_mtx);
2420 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2421 	}
2422 
2423 	if (db->db_state != DB_NOFILL &&
2424 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2425 	    refcount_count(&db->db_holds) > 1 &&
2426 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2427 	    *datap == db->db_buf) {
2428 		/*
2429 		 * If this buffer is currently "in use" (i.e., there
2430 		 * are active holds and db_data still references it),
2431 		 * then make a copy before we start the write so that
2432 		 * any modifications from the open txg will not leak
2433 		 * into this write.
2434 		 *
2435 		 * NOTE: this copy does not need to be made for
2436 		 * objects only modified in the syncing context (e.g.
2437 		 * DNONE_DNODE blocks).
2438 		 */
2439 		int blksz = arc_buf_size(*datap);
2440 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2441 		*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2442 		bcopy(db->db.db_data, (*datap)->b_data, blksz);
2443 	}
2444 	db->db_data_pending = dr;
2445 
2446 	mutex_exit(&db->db_mtx);
2447 
2448 	dbuf_write(dr, *datap, tx);
2449 
2450 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2451 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2452 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2453 		DB_DNODE_EXIT(db);
2454 	} else {
2455 		/*
2456 		 * Although zio_nowait() does not "wait for an IO", it does
2457 		 * initiate the IO. If this is an empty write it seems plausible
2458 		 * that the IO could actually be completed before the nowait
2459 		 * returns. We need to DB_DNODE_EXIT() first in case
2460 		 * zio_nowait() invalidates the dbuf.
2461 		 */
2462 		DB_DNODE_EXIT(db);
2463 		zio_nowait(dr->dr_zio);
2464 	}
2465 }
2466 
2467 void
2468 dbuf_sync_list(list_t *list, dmu_tx_t *tx)
2469 {
2470 	dbuf_dirty_record_t *dr;
2471 
2472 	while (dr = list_head(list)) {
2473 		if (dr->dr_zio != NULL) {
2474 			/*
2475 			 * If we find an already initialized zio then we
2476 			 * are processing the meta-dnode, and we have finished.
2477 			 * The dbufs for all dnodes are put back on the list
2478 			 * during processing, so that we can zio_wait()
2479 			 * these IOs after initiating all child IOs.
2480 			 */
2481 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2482 			    DMU_META_DNODE_OBJECT);
2483 			break;
2484 		}
2485 		list_remove(list, dr);
2486 		if (dr->dr_dbuf->db_level > 0)
2487 			dbuf_sync_indirect(dr, tx);
2488 		else
2489 			dbuf_sync_leaf(dr, tx);
2490 	}
2491 }
2492 
2493 /* ARGSUSED */
2494 static void
2495 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2496 {
2497 	dmu_buf_impl_t *db = vdb;
2498 	dnode_t *dn;
2499 	blkptr_t *bp = zio->io_bp;
2500 	blkptr_t *bp_orig = &zio->io_bp_orig;
2501 	spa_t *spa = zio->io_spa;
2502 	int64_t delta;
2503 	uint64_t fill = 0;
2504 	int i;
2505 
2506 	ASSERT3P(db->db_blkptr, ==, bp);
2507 
2508 	DB_DNODE_ENTER(db);
2509 	dn = DB_DNODE(db);
2510 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
2511 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
2512 	zio->io_prev_space_delta = delta;
2513 
2514 	if (bp->blk_birth != 0) {
2515 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
2516 		    BP_GET_TYPE(bp) == dn->dn_type) ||
2517 		    (db->db_blkid == DMU_SPILL_BLKID &&
2518 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
2519 		    BP_IS_EMBEDDED(bp));
2520 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
2521 	}
2522 
2523 	mutex_enter(&db->db_mtx);
2524 
2525 #ifdef ZFS_DEBUG
2526 	if (db->db_blkid == DMU_SPILL_BLKID) {
2527 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2528 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2529 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2530 	}
2531 #endif
2532 
2533 	if (db->db_level == 0) {
2534 		mutex_enter(&dn->dn_mtx);
2535 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
2536 		    db->db_blkid != DMU_SPILL_BLKID)
2537 			dn->dn_phys->dn_maxblkid = db->db_blkid;
2538 		mutex_exit(&dn->dn_mtx);
2539 
2540 		if (dn->dn_type == DMU_OT_DNODE) {
2541 			dnode_phys_t *dnp = db->db.db_data;
2542 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2543 			    i--, dnp++) {
2544 				if (dnp->dn_type != DMU_OT_NONE)
2545 					fill++;
2546 			}
2547 		} else {
2548 			if (BP_IS_HOLE(bp)) {
2549 				fill = 0;
2550 			} else {
2551 				fill = 1;
2552 			}
2553 		}
2554 	} else {
2555 		blkptr_t *ibp = db->db.db_data;
2556 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2557 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
2558 			if (BP_IS_HOLE(ibp))
2559 				continue;
2560 			fill += BP_GET_FILL(ibp);
2561 		}
2562 	}
2563 	DB_DNODE_EXIT(db);
2564 
2565 	if (!BP_IS_EMBEDDED(bp))
2566 		bp->blk_fill = fill;
2567 
2568 	mutex_exit(&db->db_mtx);
2569 }
2570 
2571 /*
2572  * The SPA will call this callback several times for each zio - once
2573  * for every physical child i/o (zio->io_phys_children times).  This
2574  * allows the DMU to monitor the progress of each logical i/o.  For example,
2575  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
2576  * block.  There may be a long delay before all copies/fragments are completed,
2577  * so this callback allows us to retire dirty space gradually, as the physical
2578  * i/os complete.
2579  */
2580 /* ARGSUSED */
2581 static void
2582 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
2583 {
2584 	dmu_buf_impl_t *db = arg;
2585 	objset_t *os = db->db_objset;
2586 	dsl_pool_t *dp = dmu_objset_pool(os);
2587 	dbuf_dirty_record_t *dr;
2588 	int delta = 0;
2589 
2590 	dr = db->db_data_pending;
2591 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
2592 
2593 	/*
2594 	 * The callback will be called io_phys_children times.  Retire one
2595 	 * portion of our dirty space each time we are called.  Any rounding
2596 	 * error will be cleaned up by dsl_pool_sync()'s call to
2597 	 * dsl_pool_undirty_space().
2598 	 */
2599 	delta = dr->dr_accounted / zio->io_phys_children;
2600 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
2601 }
2602 
2603 /* ARGSUSED */
2604 static void
2605 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2606 {
2607 	dmu_buf_impl_t *db = vdb;
2608 	blkptr_t *bp_orig = &zio->io_bp_orig;
2609 	blkptr_t *bp = db->db_blkptr;
2610 	objset_t *os = db->db_objset;
2611 	dmu_tx_t *tx = os->os_synctx;
2612 	dbuf_dirty_record_t **drp, *dr;
2613 
2614 	ASSERT0(zio->io_error);
2615 	ASSERT(db->db_blkptr == bp);
2616 
2617 	/*
2618 	 * For nopwrites and rewrites we ensure that the bp matches our
2619 	 * original and bypass all the accounting.
2620 	 */
2621 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
2622 		ASSERT(BP_EQUAL(bp, bp_orig));
2623 	} else {
2624 		dsl_dataset_t *ds = os->os_dsl_dataset;
2625 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2626 		dsl_dataset_block_born(ds, bp, tx);
2627 	}
2628 
2629 	mutex_enter(&db->db_mtx);
2630 
2631 	DBUF_VERIFY(db);
2632 
2633 	drp = &db->db_last_dirty;
2634 	while ((dr = *drp) != db->db_data_pending)
2635 		drp = &dr->dr_next;
2636 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2637 	ASSERT(dr->dr_dbuf == db);
2638 	ASSERT(dr->dr_next == NULL);
2639 	*drp = dr->dr_next;
2640 
2641 #ifdef ZFS_DEBUG
2642 	if (db->db_blkid == DMU_SPILL_BLKID) {
2643 		dnode_t *dn;
2644 
2645 		DB_DNODE_ENTER(db);
2646 		dn = DB_DNODE(db);
2647 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2648 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2649 		    db->db_blkptr == &dn->dn_phys->dn_spill);
2650 		DB_DNODE_EXIT(db);
2651 	}
2652 #endif
2653 
2654 	if (db->db_level == 0) {
2655 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2656 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2657 		if (db->db_state != DB_NOFILL) {
2658 			if (dr->dt.dl.dr_data != db->db_buf)
2659 				VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2660 				    db));
2661 			else if (!arc_released(db->db_buf))
2662 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2663 		}
2664 	} else {
2665 		dnode_t *dn;
2666 
2667 		DB_DNODE_ENTER(db);
2668 		dn = DB_DNODE(db);
2669 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2670 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
2671 		if (!BP_IS_HOLE(db->db_blkptr)) {
2672 			int epbs =
2673 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2674 			ASSERT3U(db->db_blkid, <=,
2675 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
2676 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2677 			    db->db.db_size);
2678 			if (!arc_released(db->db_buf))
2679 				arc_set_callback(db->db_buf, dbuf_do_evict, db);
2680 		}
2681 		DB_DNODE_EXIT(db);
2682 		mutex_destroy(&dr->dt.di.dr_mtx);
2683 		list_destroy(&dr->dt.di.dr_children);
2684 	}
2685 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2686 
2687 	cv_broadcast(&db->db_changed);
2688 	ASSERT(db->db_dirtycnt > 0);
2689 	db->db_dirtycnt -= 1;
2690 	db->db_data_pending = NULL;
2691 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
2692 }
2693 
2694 static void
2695 dbuf_write_nofill_ready(zio_t *zio)
2696 {
2697 	dbuf_write_ready(zio, NULL, zio->io_private);
2698 }
2699 
2700 static void
2701 dbuf_write_nofill_done(zio_t *zio)
2702 {
2703 	dbuf_write_done(zio, NULL, zio->io_private);
2704 }
2705 
2706 static void
2707 dbuf_write_override_ready(zio_t *zio)
2708 {
2709 	dbuf_dirty_record_t *dr = zio->io_private;
2710 	dmu_buf_impl_t *db = dr->dr_dbuf;
2711 
2712 	dbuf_write_ready(zio, NULL, db);
2713 }
2714 
2715 static void
2716 dbuf_write_override_done(zio_t *zio)
2717 {
2718 	dbuf_dirty_record_t *dr = zio->io_private;
2719 	dmu_buf_impl_t *db = dr->dr_dbuf;
2720 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
2721 
2722 	mutex_enter(&db->db_mtx);
2723 	if (!BP_EQUAL(zio->io_bp, obp)) {
2724 		if (!BP_IS_HOLE(obp))
2725 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
2726 		arc_release(dr->dt.dl.dr_data, db);
2727 	}
2728 	mutex_exit(&db->db_mtx);
2729 
2730 	dbuf_write_done(zio, NULL, db);
2731 }
2732 
2733 /* Issue I/O to commit a dirty buffer to disk. */
2734 static void
2735 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
2736 {
2737 	dmu_buf_impl_t *db = dr->dr_dbuf;
2738 	dnode_t *dn;
2739 	objset_t *os;
2740 	dmu_buf_impl_t *parent = db->db_parent;
2741 	uint64_t txg = tx->tx_txg;
2742 	zbookmark_phys_t zb;
2743 	zio_prop_t zp;
2744 	zio_t *zio;
2745 	int wp_flag = 0;
2746 
2747 	DB_DNODE_ENTER(db);
2748 	dn = DB_DNODE(db);
2749 	os = dn->dn_objset;
2750 
2751 	if (db->db_state != DB_NOFILL) {
2752 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
2753 			/*
2754 			 * Private object buffers are released here rather
2755 			 * than in dbuf_dirty() since they are only modified
2756 			 * in the syncing context and we don't want the
2757 			 * overhead of making multiple copies of the data.
2758 			 */
2759 			if (BP_IS_HOLE(db->db_blkptr)) {
2760 				arc_buf_thaw(data);
2761 			} else {
2762 				dbuf_release_bp(db);
2763 			}
2764 		}
2765 	}
2766 
2767 	if (parent != dn->dn_dbuf) {
2768 		/* Our parent is an indirect block. */
2769 		/* We have a dirty parent that has been scheduled for write. */
2770 		ASSERT(parent && parent->db_data_pending);
2771 		/* Our parent's buffer is one level closer to the dnode. */
2772 		ASSERT(db->db_level == parent->db_level-1);
2773 		/*
2774 		 * We're about to modify our parent's db_data by modifying
2775 		 * our block pointer, so the parent must be released.
2776 		 */
2777 		ASSERT(arc_released(parent->db_buf));
2778 		zio = parent->db_data_pending->dr_zio;
2779 	} else {
2780 		/* Our parent is the dnode itself. */
2781 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
2782 		    db->db_blkid != DMU_SPILL_BLKID) ||
2783 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
2784 		if (db->db_blkid != DMU_SPILL_BLKID)
2785 			ASSERT3P(db->db_blkptr, ==,
2786 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
2787 		zio = dn->dn_zio;
2788 	}
2789 
2790 	ASSERT(db->db_level == 0 || data == db->db_buf);
2791 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2792 	ASSERT(zio);
2793 
2794 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
2795 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
2796 	    db->db.db_object, db->db_level, db->db_blkid);
2797 
2798 	if (db->db_blkid == DMU_SPILL_BLKID)
2799 		wp_flag = WP_SPILL;
2800 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
2801 
2802 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
2803 	DB_DNODE_EXIT(db);
2804 
2805 	if (db->db_level == 0 &&
2806 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2807 		/*
2808 		 * The BP for this block has been provided by open context
2809 		 * (by dmu_sync() or dmu_buf_write_embedded()).
2810 		 */
2811 		void *contents = (data != NULL) ? data->b_data : NULL;
2812 
2813 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2814 		    db->db_blkptr, contents, db->db.db_size, &zp,
2815 		    dbuf_write_override_ready, NULL, dbuf_write_override_done,
2816 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2817 		mutex_enter(&db->db_mtx);
2818 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
2819 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
2820 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
2821 		mutex_exit(&db->db_mtx);
2822 	} else if (db->db_state == DB_NOFILL) {
2823 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
2824 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
2825 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
2826 		    db->db_blkptr, NULL, db->db.db_size, &zp,
2827 		    dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
2828 		    ZIO_PRIORITY_ASYNC_WRITE,
2829 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
2830 	} else {
2831 		ASSERT(arc_released(data));
2832 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
2833 		    db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
2834 		    DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
2835 		    dbuf_write_physdone, dbuf_write_done, db,
2836 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2837 	}
2838 }
2839