1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 #include <sys/abd.h> 50 51 uint_t zfs_dbuf_evict_key; 52 53 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 54 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 55 56 #ifndef __lint 57 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 58 dmu_buf_evict_func_t *evict_func_sync, 59 dmu_buf_evict_func_t *evict_func_async, 60 dmu_buf_t **clear_on_evict_dbufp); 61 #endif /* ! __lint */ 62 63 /* 64 * Global data structures and functions for the dbuf cache. 65 */ 66 static kmem_cache_t *dbuf_kmem_cache; 67 static taskq_t *dbu_evict_taskq; 68 69 static kthread_t *dbuf_cache_evict_thread; 70 static kmutex_t dbuf_evict_lock; 71 static kcondvar_t dbuf_evict_cv; 72 static boolean_t dbuf_evict_thread_exit; 73 74 /* 75 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 76 * are not currently held but have been recently released. These dbufs 77 * are not eligible for arc eviction until they are aged out of the cache. 78 * Dbufs are added to the dbuf cache once the last hold is released. If a 79 * dbuf is later accessed and still exists in the dbuf cache, then it will 80 * be removed from the cache and later re-added to the head of the cache. 81 * Dbufs that are aged out of the cache will be immediately destroyed and 82 * become eligible for arc eviction. 83 */ 84 static multilist_t *dbuf_cache; 85 static refcount_t dbuf_cache_size; 86 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024; 87 88 /* Cap the size of the dbuf cache to log2 fraction of arc size. */ 89 int dbuf_cache_max_shift = 5; 90 91 /* 92 * The dbuf cache uses a three-stage eviction policy: 93 * - A low water marker designates when the dbuf eviction thread 94 * should stop evicting from the dbuf cache. 95 * - When we reach the maximum size (aka mid water mark), we 96 * signal the eviction thread to run. 97 * - The high water mark indicates when the eviction thread 98 * is unable to keep up with the incoming load and eviction must 99 * happen in the context of the calling thread. 100 * 101 * The dbuf cache: 102 * (max size) 103 * low water mid water hi water 104 * +----------------------------------------+----------+----------+ 105 * | | | | 106 * | | | | 107 * | | | | 108 * | | | | 109 * +----------------------------------------+----------+----------+ 110 * stop signal evict 111 * evicting eviction directly 112 * thread 113 * 114 * The high and low water marks indicate the operating range for the eviction 115 * thread. The low water mark is, by default, 90% of the total size of the 116 * cache and the high water mark is at 110% (both of these percentages can be 117 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 118 * respectively). The eviction thread will try to ensure that the cache remains 119 * within this range by waking up every second and checking if the cache is 120 * above the low water mark. The thread can also be woken up by callers adding 121 * elements into the cache if the cache is larger than the mid water (i.e max 122 * cache size). Once the eviction thread is woken up and eviction is required, 123 * it will continue evicting buffers until it's able to reduce the cache size 124 * to the low water mark. If the cache size continues to grow and hits the high 125 * water mark, then callers adding elments to the cache will begin to evict 126 * directly from the cache until the cache is no longer above the high water 127 * mark. 128 */ 129 130 /* 131 * The percentage above and below the maximum cache size. 132 */ 133 uint_t dbuf_cache_hiwater_pct = 10; 134 uint_t dbuf_cache_lowater_pct = 10; 135 136 /* ARGSUSED */ 137 static int 138 dbuf_cons(void *vdb, void *unused, int kmflag) 139 { 140 dmu_buf_impl_t *db = vdb; 141 bzero(db, sizeof (dmu_buf_impl_t)); 142 143 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 144 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 145 multilist_link_init(&db->db_cache_link); 146 refcount_create(&db->db_holds); 147 148 return (0); 149 } 150 151 /* ARGSUSED */ 152 static void 153 dbuf_dest(void *vdb, void *unused) 154 { 155 dmu_buf_impl_t *db = vdb; 156 mutex_destroy(&db->db_mtx); 157 cv_destroy(&db->db_changed); 158 ASSERT(!multilist_link_active(&db->db_cache_link)); 159 refcount_destroy(&db->db_holds); 160 } 161 162 /* 163 * dbuf hash table routines 164 */ 165 static dbuf_hash_table_t dbuf_hash_table; 166 167 static uint64_t dbuf_hash_count; 168 169 static uint64_t 170 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 171 { 172 uintptr_t osv = (uintptr_t)os; 173 uint64_t crc = -1ULL; 174 175 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 176 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 177 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 178 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 179 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 180 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 181 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 182 183 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 184 185 return (crc); 186 } 187 188 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 189 ((dbuf)->db.db_object == (obj) && \ 190 (dbuf)->db_objset == (os) && \ 191 (dbuf)->db_level == (level) && \ 192 (dbuf)->db_blkid == (blkid)) 193 194 dmu_buf_impl_t * 195 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 196 { 197 dbuf_hash_table_t *h = &dbuf_hash_table; 198 uint64_t hv = dbuf_hash(os, obj, level, blkid); 199 uint64_t idx = hv & h->hash_table_mask; 200 dmu_buf_impl_t *db; 201 202 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 203 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 204 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 205 mutex_enter(&db->db_mtx); 206 if (db->db_state != DB_EVICTING) { 207 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 208 return (db); 209 } 210 mutex_exit(&db->db_mtx); 211 } 212 } 213 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 214 return (NULL); 215 } 216 217 static dmu_buf_impl_t * 218 dbuf_find_bonus(objset_t *os, uint64_t object) 219 { 220 dnode_t *dn; 221 dmu_buf_impl_t *db = NULL; 222 223 if (dnode_hold(os, object, FTAG, &dn) == 0) { 224 rw_enter(&dn->dn_struct_rwlock, RW_READER); 225 if (dn->dn_bonus != NULL) { 226 db = dn->dn_bonus; 227 mutex_enter(&db->db_mtx); 228 } 229 rw_exit(&dn->dn_struct_rwlock); 230 dnode_rele(dn, FTAG); 231 } 232 return (db); 233 } 234 235 /* 236 * Insert an entry into the hash table. If there is already an element 237 * equal to elem in the hash table, then the already existing element 238 * will be returned and the new element will not be inserted. 239 * Otherwise returns NULL. 240 */ 241 static dmu_buf_impl_t * 242 dbuf_hash_insert(dmu_buf_impl_t *db) 243 { 244 dbuf_hash_table_t *h = &dbuf_hash_table; 245 objset_t *os = db->db_objset; 246 uint64_t obj = db->db.db_object; 247 int level = db->db_level; 248 uint64_t blkid = db->db_blkid; 249 uint64_t hv = dbuf_hash(os, obj, level, blkid); 250 uint64_t idx = hv & h->hash_table_mask; 251 dmu_buf_impl_t *dbf; 252 253 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 254 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 255 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 256 mutex_enter(&dbf->db_mtx); 257 if (dbf->db_state != DB_EVICTING) { 258 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 259 return (dbf); 260 } 261 mutex_exit(&dbf->db_mtx); 262 } 263 } 264 265 mutex_enter(&db->db_mtx); 266 db->db_hash_next = h->hash_table[idx]; 267 h->hash_table[idx] = db; 268 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 269 atomic_inc_64(&dbuf_hash_count); 270 271 return (NULL); 272 } 273 274 /* 275 * Remove an entry from the hash table. It must be in the EVICTING state. 276 */ 277 static void 278 dbuf_hash_remove(dmu_buf_impl_t *db) 279 { 280 dbuf_hash_table_t *h = &dbuf_hash_table; 281 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 282 db->db_level, db->db_blkid); 283 uint64_t idx = hv & h->hash_table_mask; 284 dmu_buf_impl_t *dbf, **dbp; 285 286 /* 287 * We musn't hold db_mtx to maintain lock ordering: 288 * DBUF_HASH_MUTEX > db_mtx. 289 */ 290 ASSERT(refcount_is_zero(&db->db_holds)); 291 ASSERT(db->db_state == DB_EVICTING); 292 ASSERT(!MUTEX_HELD(&db->db_mtx)); 293 294 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 295 dbp = &h->hash_table[idx]; 296 while ((dbf = *dbp) != db) { 297 dbp = &dbf->db_hash_next; 298 ASSERT(dbf != NULL); 299 } 300 *dbp = db->db_hash_next; 301 db->db_hash_next = NULL; 302 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 303 atomic_dec_64(&dbuf_hash_count); 304 } 305 306 typedef enum { 307 DBVU_EVICTING, 308 DBVU_NOT_EVICTING 309 } dbvu_verify_type_t; 310 311 static void 312 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 313 { 314 #ifdef ZFS_DEBUG 315 int64_t holds; 316 317 if (db->db_user == NULL) 318 return; 319 320 /* Only data blocks support the attachment of user data. */ 321 ASSERT(db->db_level == 0); 322 323 /* Clients must resolve a dbuf before attaching user data. */ 324 ASSERT(db->db.db_data != NULL); 325 ASSERT3U(db->db_state, ==, DB_CACHED); 326 327 holds = refcount_count(&db->db_holds); 328 if (verify_type == DBVU_EVICTING) { 329 /* 330 * Immediate eviction occurs when holds == dirtycnt. 331 * For normal eviction buffers, holds is zero on 332 * eviction, except when dbuf_fix_old_data() calls 333 * dbuf_clear_data(). However, the hold count can grow 334 * during eviction even though db_mtx is held (see 335 * dmu_bonus_hold() for an example), so we can only 336 * test the generic invariant that holds >= dirtycnt. 337 */ 338 ASSERT3U(holds, >=, db->db_dirtycnt); 339 } else { 340 if (db->db_user_immediate_evict == TRUE) 341 ASSERT3U(holds, >=, db->db_dirtycnt); 342 else 343 ASSERT3U(holds, >, 0); 344 } 345 #endif 346 } 347 348 static void 349 dbuf_evict_user(dmu_buf_impl_t *db) 350 { 351 dmu_buf_user_t *dbu = db->db_user; 352 353 ASSERT(MUTEX_HELD(&db->db_mtx)); 354 355 if (dbu == NULL) 356 return; 357 358 dbuf_verify_user(db, DBVU_EVICTING); 359 db->db_user = NULL; 360 361 #ifdef ZFS_DEBUG 362 if (dbu->dbu_clear_on_evict_dbufp != NULL) 363 *dbu->dbu_clear_on_evict_dbufp = NULL; 364 #endif 365 366 /* 367 * There are two eviction callbacks - one that we call synchronously 368 * and one that we invoke via a taskq. The async one is useful for 369 * avoiding lock order reversals and limiting stack depth. 370 * 371 * Note that if we have a sync callback but no async callback, 372 * it's likely that the sync callback will free the structure 373 * containing the dbu. In that case we need to take care to not 374 * dereference dbu after calling the sync evict func. 375 */ 376 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 377 378 if (dbu->dbu_evict_func_sync != NULL) 379 dbu->dbu_evict_func_sync(dbu); 380 381 if (has_async) { 382 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 383 dbu, 0, &dbu->dbu_tqent); 384 } 385 } 386 387 boolean_t 388 dbuf_is_metadata(dmu_buf_impl_t *db) 389 { 390 if (db->db_level > 0) { 391 return (B_TRUE); 392 } else { 393 boolean_t is_metadata; 394 395 DB_DNODE_ENTER(db); 396 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 397 DB_DNODE_EXIT(db); 398 399 return (is_metadata); 400 } 401 } 402 403 /* 404 * This function *must* return indices evenly distributed between all 405 * sublists of the multilist. This is needed due to how the dbuf eviction 406 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 407 * distributed between all sublists and uses this assumption when 408 * deciding which sublist to evict from and how much to evict from it. 409 */ 410 unsigned int 411 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 412 { 413 dmu_buf_impl_t *db = obj; 414 415 /* 416 * The assumption here, is the hash value for a given 417 * dmu_buf_impl_t will remain constant throughout it's lifetime 418 * (i.e. it's objset, object, level and blkid fields don't change). 419 * Thus, we don't need to store the dbuf's sublist index 420 * on insertion, as this index can be recalculated on removal. 421 * 422 * Also, the low order bits of the hash value are thought to be 423 * distributed evenly. Otherwise, in the case that the multilist 424 * has a power of two number of sublists, each sublists' usage 425 * would not be evenly distributed. 426 */ 427 return (dbuf_hash(db->db_objset, db->db.db_object, 428 db->db_level, db->db_blkid) % 429 multilist_get_num_sublists(ml)); 430 } 431 432 static inline boolean_t 433 dbuf_cache_above_hiwater(void) 434 { 435 uint64_t dbuf_cache_hiwater_bytes = 436 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 437 438 return (refcount_count(&dbuf_cache_size) > 439 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 440 } 441 442 static inline boolean_t 443 dbuf_cache_above_lowater(void) 444 { 445 uint64_t dbuf_cache_lowater_bytes = 446 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 447 448 return (refcount_count(&dbuf_cache_size) > 449 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 450 } 451 452 /* 453 * Evict the oldest eligible dbuf from the dbuf cache. 454 */ 455 static void 456 dbuf_evict_one(void) 457 { 458 int idx = multilist_get_random_index(dbuf_cache); 459 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx); 460 461 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 462 463 /* 464 * Set the thread's tsd to indicate that it's processing evictions. 465 * Once a thread stops evicting from the dbuf cache it will 466 * reset its tsd to NULL. 467 */ 468 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL); 469 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE); 470 471 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 472 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 473 db = multilist_sublist_prev(mls, db); 474 } 475 476 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 477 multilist_sublist_t *, mls); 478 479 if (db != NULL) { 480 multilist_sublist_remove(mls, db); 481 multilist_sublist_unlock(mls); 482 (void) refcount_remove_many(&dbuf_cache_size, 483 db->db.db_size, db); 484 dbuf_destroy(db); 485 } else { 486 multilist_sublist_unlock(mls); 487 } 488 (void) tsd_set(zfs_dbuf_evict_key, NULL); 489 } 490 491 /* 492 * The dbuf evict thread is responsible for aging out dbufs from the 493 * cache. Once the cache has reached it's maximum size, dbufs are removed 494 * and destroyed. The eviction thread will continue running until the size 495 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 496 * out of the cache it is destroyed and becomes eligible for arc eviction. 497 */ 498 static void 499 dbuf_evict_thread(void) 500 { 501 callb_cpr_t cpr; 502 503 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 504 505 mutex_enter(&dbuf_evict_lock); 506 while (!dbuf_evict_thread_exit) { 507 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 508 CALLB_CPR_SAFE_BEGIN(&cpr); 509 (void) cv_timedwait_hires(&dbuf_evict_cv, 510 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 511 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 512 } 513 mutex_exit(&dbuf_evict_lock); 514 515 /* 516 * Keep evicting as long as we're above the low water mark 517 * for the cache. We do this without holding the locks to 518 * minimize lock contention. 519 */ 520 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 521 dbuf_evict_one(); 522 } 523 524 mutex_enter(&dbuf_evict_lock); 525 } 526 527 dbuf_evict_thread_exit = B_FALSE; 528 cv_broadcast(&dbuf_evict_cv); 529 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 530 thread_exit(); 531 } 532 533 /* 534 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 535 * If the dbuf cache is at its high water mark, then evict a dbuf from the 536 * dbuf cache using the callers context. 537 */ 538 static void 539 dbuf_evict_notify(void) 540 { 541 542 /* 543 * We use thread specific data to track when a thread has 544 * started processing evictions. This allows us to avoid deeply 545 * nested stacks that would have a call flow similar to this: 546 * 547 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 548 * ^ | 549 * | | 550 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 551 * 552 * The dbuf_eviction_thread will always have its tsd set until 553 * that thread exits. All other threads will only set their tsd 554 * if they are participating in the eviction process. This only 555 * happens if the eviction thread is unable to process evictions 556 * fast enough. To keep the dbuf cache size in check, other threads 557 * can evict from the dbuf cache directly. Those threads will set 558 * their tsd values so that we ensure that they only evict one dbuf 559 * from the dbuf cache. 560 */ 561 if (tsd_get(zfs_dbuf_evict_key) != NULL) 562 return; 563 564 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 565 boolean_t evict_now = B_FALSE; 566 567 mutex_enter(&dbuf_evict_lock); 568 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 569 evict_now = dbuf_cache_above_hiwater(); 570 cv_signal(&dbuf_evict_cv); 571 } 572 mutex_exit(&dbuf_evict_lock); 573 574 if (evict_now) { 575 dbuf_evict_one(); 576 } 577 } 578 } 579 580 void 581 dbuf_init(void) 582 { 583 uint64_t hsize = 1ULL << 16; 584 dbuf_hash_table_t *h = &dbuf_hash_table; 585 int i; 586 587 /* 588 * The hash table is big enough to fill all of physical memory 589 * with an average 4K block size. The table will take up 590 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 591 */ 592 while (hsize * 4096 < physmem * PAGESIZE) 593 hsize <<= 1; 594 595 retry: 596 h->hash_table_mask = hsize - 1; 597 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 598 if (h->hash_table == NULL) { 599 /* XXX - we should really return an error instead of assert */ 600 ASSERT(hsize > (1ULL << 10)); 601 hsize >>= 1; 602 goto retry; 603 } 604 605 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 606 sizeof (dmu_buf_impl_t), 607 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 608 609 for (i = 0; i < DBUF_MUTEXES; i++) 610 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 611 612 /* 613 * Setup the parameters for the dbuf cache. We cap the size of the 614 * dbuf cache to 1/32nd (default) of the size of the ARC. 615 */ 616 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes, 617 arc_max_bytes() >> dbuf_cache_max_shift); 618 619 /* 620 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 621 * configuration is not required. 622 */ 623 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 624 625 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t), 626 offsetof(dmu_buf_impl_t, db_cache_link), 627 dbuf_cache_multilist_index_func); 628 refcount_create(&dbuf_cache_size); 629 630 tsd_create(&zfs_dbuf_evict_key, NULL); 631 dbuf_evict_thread_exit = B_FALSE; 632 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 633 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 634 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 635 NULL, 0, &p0, TS_RUN, minclsyspri); 636 } 637 638 void 639 dbuf_fini(void) 640 { 641 dbuf_hash_table_t *h = &dbuf_hash_table; 642 int i; 643 644 for (i = 0; i < DBUF_MUTEXES; i++) 645 mutex_destroy(&h->hash_mutexes[i]); 646 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 647 kmem_cache_destroy(dbuf_kmem_cache); 648 taskq_destroy(dbu_evict_taskq); 649 650 mutex_enter(&dbuf_evict_lock); 651 dbuf_evict_thread_exit = B_TRUE; 652 while (dbuf_evict_thread_exit) { 653 cv_signal(&dbuf_evict_cv); 654 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 655 } 656 mutex_exit(&dbuf_evict_lock); 657 tsd_destroy(&zfs_dbuf_evict_key); 658 659 mutex_destroy(&dbuf_evict_lock); 660 cv_destroy(&dbuf_evict_cv); 661 662 refcount_destroy(&dbuf_cache_size); 663 multilist_destroy(dbuf_cache); 664 } 665 666 /* 667 * Other stuff. 668 */ 669 670 #ifdef ZFS_DEBUG 671 static void 672 dbuf_verify(dmu_buf_impl_t *db) 673 { 674 dnode_t *dn; 675 dbuf_dirty_record_t *dr; 676 677 ASSERT(MUTEX_HELD(&db->db_mtx)); 678 679 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 680 return; 681 682 ASSERT(db->db_objset != NULL); 683 DB_DNODE_ENTER(db); 684 dn = DB_DNODE(db); 685 if (dn == NULL) { 686 ASSERT(db->db_parent == NULL); 687 ASSERT(db->db_blkptr == NULL); 688 } else { 689 ASSERT3U(db->db.db_object, ==, dn->dn_object); 690 ASSERT3P(db->db_objset, ==, dn->dn_objset); 691 ASSERT3U(db->db_level, <, dn->dn_nlevels); 692 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 693 db->db_blkid == DMU_SPILL_BLKID || 694 !avl_is_empty(&dn->dn_dbufs)); 695 } 696 if (db->db_blkid == DMU_BONUS_BLKID) { 697 ASSERT(dn != NULL); 698 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 699 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 700 } else if (db->db_blkid == DMU_SPILL_BLKID) { 701 ASSERT(dn != NULL); 702 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 703 ASSERT0(db->db.db_offset); 704 } else { 705 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 706 } 707 708 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 709 ASSERT(dr->dr_dbuf == db); 710 711 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 712 ASSERT(dr->dr_dbuf == db); 713 714 /* 715 * We can't assert that db_size matches dn_datablksz because it 716 * can be momentarily different when another thread is doing 717 * dnode_set_blksz(). 718 */ 719 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 720 dr = db->db_data_pending; 721 /* 722 * It should only be modified in syncing context, so 723 * make sure we only have one copy of the data. 724 */ 725 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 726 } 727 728 /* verify db->db_blkptr */ 729 if (db->db_blkptr) { 730 if (db->db_parent == dn->dn_dbuf) { 731 /* db is pointed to by the dnode */ 732 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 733 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 734 ASSERT(db->db_parent == NULL); 735 else 736 ASSERT(db->db_parent != NULL); 737 if (db->db_blkid != DMU_SPILL_BLKID) 738 ASSERT3P(db->db_blkptr, ==, 739 &dn->dn_phys->dn_blkptr[db->db_blkid]); 740 } else { 741 /* db is pointed to by an indirect block */ 742 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 743 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 744 ASSERT3U(db->db_parent->db.db_object, ==, 745 db->db.db_object); 746 /* 747 * dnode_grow_indblksz() can make this fail if we don't 748 * have the struct_rwlock. XXX indblksz no longer 749 * grows. safe to do this now? 750 */ 751 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 752 ASSERT3P(db->db_blkptr, ==, 753 ((blkptr_t *)db->db_parent->db.db_data + 754 db->db_blkid % epb)); 755 } 756 } 757 } 758 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 759 (db->db_buf == NULL || db->db_buf->b_data) && 760 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 761 db->db_state != DB_FILL && !dn->dn_free_txg) { 762 /* 763 * If the blkptr isn't set but they have nonzero data, 764 * it had better be dirty, otherwise we'll lose that 765 * data when we evict this buffer. 766 * 767 * There is an exception to this rule for indirect blocks; in 768 * this case, if the indirect block is a hole, we fill in a few 769 * fields on each of the child blocks (importantly, birth time) 770 * to prevent hole birth times from being lost when you 771 * partially fill in a hole. 772 */ 773 if (db->db_dirtycnt == 0) { 774 if (db->db_level == 0) { 775 uint64_t *buf = db->db.db_data; 776 int i; 777 778 for (i = 0; i < db->db.db_size >> 3; i++) { 779 ASSERT(buf[i] == 0); 780 } 781 } else { 782 blkptr_t *bps = db->db.db_data; 783 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 784 db->db.db_size); 785 /* 786 * We want to verify that all the blkptrs in the 787 * indirect block are holes, but we may have 788 * automatically set up a few fields for them. 789 * We iterate through each blkptr and verify 790 * they only have those fields set. 791 */ 792 for (int i = 0; 793 i < db->db.db_size / sizeof (blkptr_t); 794 i++) { 795 blkptr_t *bp = &bps[i]; 796 ASSERT(ZIO_CHECKSUM_IS_ZERO( 797 &bp->blk_cksum)); 798 ASSERT( 799 DVA_IS_EMPTY(&bp->blk_dva[0]) && 800 DVA_IS_EMPTY(&bp->blk_dva[1]) && 801 DVA_IS_EMPTY(&bp->blk_dva[2])); 802 ASSERT0(bp->blk_fill); 803 ASSERT0(bp->blk_pad[0]); 804 ASSERT0(bp->blk_pad[1]); 805 ASSERT(!BP_IS_EMBEDDED(bp)); 806 ASSERT(BP_IS_HOLE(bp)); 807 ASSERT0(bp->blk_phys_birth); 808 } 809 } 810 } 811 } 812 DB_DNODE_EXIT(db); 813 } 814 #endif 815 816 static void 817 dbuf_clear_data(dmu_buf_impl_t *db) 818 { 819 ASSERT(MUTEX_HELD(&db->db_mtx)); 820 dbuf_evict_user(db); 821 ASSERT3P(db->db_buf, ==, NULL); 822 db->db.db_data = NULL; 823 if (db->db_state != DB_NOFILL) 824 db->db_state = DB_UNCACHED; 825 } 826 827 static void 828 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 829 { 830 ASSERT(MUTEX_HELD(&db->db_mtx)); 831 ASSERT(buf != NULL); 832 833 db->db_buf = buf; 834 ASSERT(buf->b_data != NULL); 835 db->db.db_data = buf->b_data; 836 } 837 838 /* 839 * Loan out an arc_buf for read. Return the loaned arc_buf. 840 */ 841 arc_buf_t * 842 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 843 { 844 arc_buf_t *abuf; 845 846 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 847 mutex_enter(&db->db_mtx); 848 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 849 int blksz = db->db.db_size; 850 spa_t *spa = db->db_objset->os_spa; 851 852 mutex_exit(&db->db_mtx); 853 abuf = arc_loan_buf(spa, B_FALSE, blksz); 854 bcopy(db->db.db_data, abuf->b_data, blksz); 855 } else { 856 abuf = db->db_buf; 857 arc_loan_inuse_buf(abuf, db); 858 db->db_buf = NULL; 859 dbuf_clear_data(db); 860 mutex_exit(&db->db_mtx); 861 } 862 return (abuf); 863 } 864 865 /* 866 * Calculate which level n block references the data at the level 0 offset 867 * provided. 868 */ 869 uint64_t 870 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 871 { 872 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 873 /* 874 * The level n blkid is equal to the level 0 blkid divided by 875 * the number of level 0s in a level n block. 876 * 877 * The level 0 blkid is offset >> datablkshift = 878 * offset / 2^datablkshift. 879 * 880 * The number of level 0s in a level n is the number of block 881 * pointers in an indirect block, raised to the power of level. 882 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 883 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 884 * 885 * Thus, the level n blkid is: offset / 886 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 887 * = offset / 2^(datablkshift + level * 888 * (indblkshift - SPA_BLKPTRSHIFT)) 889 * = offset >> (datablkshift + level * 890 * (indblkshift - SPA_BLKPTRSHIFT)) 891 */ 892 return (offset >> (dn->dn_datablkshift + level * 893 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 894 } else { 895 ASSERT3U(offset, <, dn->dn_datablksz); 896 return (0); 897 } 898 } 899 900 static void 901 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 902 { 903 dmu_buf_impl_t *db = vdb; 904 905 mutex_enter(&db->db_mtx); 906 ASSERT3U(db->db_state, ==, DB_READ); 907 /* 908 * All reads are synchronous, so we must have a hold on the dbuf 909 */ 910 ASSERT(refcount_count(&db->db_holds) > 0); 911 ASSERT(db->db_buf == NULL); 912 ASSERT(db->db.db_data == NULL); 913 if (db->db_level == 0 && db->db_freed_in_flight) { 914 /* we were freed in flight; disregard any error */ 915 arc_release(buf, db); 916 bzero(buf->b_data, db->db.db_size); 917 arc_buf_freeze(buf); 918 db->db_freed_in_flight = FALSE; 919 dbuf_set_data(db, buf); 920 db->db_state = DB_CACHED; 921 } else if (zio == NULL || zio->io_error == 0) { 922 dbuf_set_data(db, buf); 923 db->db_state = DB_CACHED; 924 } else { 925 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 926 ASSERT3P(db->db_buf, ==, NULL); 927 arc_buf_destroy(buf, db); 928 db->db_state = DB_UNCACHED; 929 } 930 cv_broadcast(&db->db_changed); 931 dbuf_rele_and_unlock(db, NULL); 932 } 933 934 static void 935 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 936 { 937 dnode_t *dn; 938 zbookmark_phys_t zb; 939 arc_flags_t aflags = ARC_FLAG_NOWAIT; 940 941 DB_DNODE_ENTER(db); 942 dn = DB_DNODE(db); 943 ASSERT(!refcount_is_zero(&db->db_holds)); 944 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 945 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 946 ASSERT(MUTEX_HELD(&db->db_mtx)); 947 ASSERT(db->db_state == DB_UNCACHED); 948 ASSERT(db->db_buf == NULL); 949 950 if (db->db_blkid == DMU_BONUS_BLKID) { 951 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 952 953 ASSERT3U(bonuslen, <=, db->db.db_size); 954 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 955 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 956 if (bonuslen < DN_MAX_BONUSLEN) 957 bzero(db->db.db_data, DN_MAX_BONUSLEN); 958 if (bonuslen) 959 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 960 DB_DNODE_EXIT(db); 961 db->db_state = DB_CACHED; 962 mutex_exit(&db->db_mtx); 963 return; 964 } 965 966 /* 967 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 968 * processes the delete record and clears the bp while we are waiting 969 * for the dn_mtx (resulting in a "no" from block_freed). 970 */ 971 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 972 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 973 BP_IS_HOLE(db->db_blkptr)))) { 974 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 975 976 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type, 977 db->db.db_size)); 978 bzero(db->db.db_data, db->db.db_size); 979 980 if (db->db_blkptr != NULL && db->db_level > 0 && 981 BP_IS_HOLE(db->db_blkptr) && 982 db->db_blkptr->blk_birth != 0) { 983 blkptr_t *bps = db->db.db_data; 984 for (int i = 0; i < ((1 << 985 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 986 i++) { 987 blkptr_t *bp = &bps[i]; 988 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 989 1 << dn->dn_indblkshift); 990 BP_SET_LSIZE(bp, 991 BP_GET_LEVEL(db->db_blkptr) == 1 ? 992 dn->dn_datablksz : 993 BP_GET_LSIZE(db->db_blkptr)); 994 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 995 BP_SET_LEVEL(bp, 996 BP_GET_LEVEL(db->db_blkptr) - 1); 997 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 998 } 999 } 1000 DB_DNODE_EXIT(db); 1001 db->db_state = DB_CACHED; 1002 mutex_exit(&db->db_mtx); 1003 return; 1004 } 1005 1006 DB_DNODE_EXIT(db); 1007 1008 db->db_state = DB_READ; 1009 mutex_exit(&db->db_mtx); 1010 1011 if (DBUF_IS_L2CACHEABLE(db)) 1012 aflags |= ARC_FLAG_L2CACHE; 1013 1014 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 1015 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 1016 db->db.db_object, db->db_level, db->db_blkid); 1017 1018 dbuf_add_ref(db, NULL); 1019 1020 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 1021 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 1022 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 1023 &aflags, &zb); 1024 } 1025 1026 /* 1027 * This is our just-in-time copy function. It makes a copy of buffers that 1028 * have been modified in a previous transaction group before we access them in 1029 * the current active group. 1030 * 1031 * This function is used in three places: when we are dirtying a buffer for the 1032 * first time in a txg, when we are freeing a range in a dnode that includes 1033 * this buffer, and when we are accessing a buffer which was received compressed 1034 * and later referenced in a WRITE_BYREF record. 1035 * 1036 * Note that when we are called from dbuf_free_range() we do not put a hold on 1037 * the buffer, we just traverse the active dbuf list for the dnode. 1038 */ 1039 static void 1040 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1041 { 1042 dbuf_dirty_record_t *dr = db->db_last_dirty; 1043 1044 ASSERT(MUTEX_HELD(&db->db_mtx)); 1045 ASSERT(db->db.db_data != NULL); 1046 ASSERT(db->db_level == 0); 1047 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1048 1049 if (dr == NULL || 1050 (dr->dt.dl.dr_data != 1051 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1052 return; 1053 1054 /* 1055 * If the last dirty record for this dbuf has not yet synced 1056 * and its referencing the dbuf data, either: 1057 * reset the reference to point to a new copy, 1058 * or (if there a no active holders) 1059 * just null out the current db_data pointer. 1060 */ 1061 ASSERT(dr->dr_txg >= txg - 2); 1062 if (db->db_blkid == DMU_BONUS_BLKID) { 1063 /* Note that the data bufs here are zio_bufs */ 1064 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 1065 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1066 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 1067 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1068 int size = arc_buf_size(db->db_buf); 1069 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1070 spa_t *spa = db->db_objset->os_spa; 1071 enum zio_compress compress_type = 1072 arc_get_compression(db->db_buf); 1073 1074 if (compress_type == ZIO_COMPRESS_OFF) { 1075 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1076 } else { 1077 ASSERT3U(type, ==, ARC_BUFC_DATA); 1078 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1079 size, arc_buf_lsize(db->db_buf), compress_type); 1080 } 1081 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1082 } else { 1083 db->db_buf = NULL; 1084 dbuf_clear_data(db); 1085 } 1086 } 1087 1088 int 1089 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1090 { 1091 int err = 0; 1092 boolean_t prefetch; 1093 dnode_t *dn; 1094 1095 /* 1096 * We don't have to hold the mutex to check db_state because it 1097 * can't be freed while we have a hold on the buffer. 1098 */ 1099 ASSERT(!refcount_is_zero(&db->db_holds)); 1100 1101 if (db->db_state == DB_NOFILL) 1102 return (SET_ERROR(EIO)); 1103 1104 DB_DNODE_ENTER(db); 1105 dn = DB_DNODE(db); 1106 if ((flags & DB_RF_HAVESTRUCT) == 0) 1107 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1108 1109 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1110 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1111 DBUF_IS_CACHEABLE(db); 1112 1113 mutex_enter(&db->db_mtx); 1114 if (db->db_state == DB_CACHED) { 1115 /* 1116 * If the arc buf is compressed, we need to decompress it to 1117 * read the data. This could happen during the "zfs receive" of 1118 * a stream which is compressed and deduplicated. 1119 */ 1120 if (db->db_buf != NULL && 1121 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) { 1122 dbuf_fix_old_data(db, 1123 spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1124 err = arc_decompress(db->db_buf); 1125 dbuf_set_data(db, db->db_buf); 1126 } 1127 mutex_exit(&db->db_mtx); 1128 if (prefetch) 1129 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1130 if ((flags & DB_RF_HAVESTRUCT) == 0) 1131 rw_exit(&dn->dn_struct_rwlock); 1132 DB_DNODE_EXIT(db); 1133 } else if (db->db_state == DB_UNCACHED) { 1134 spa_t *spa = dn->dn_objset->os_spa; 1135 boolean_t need_wait = B_FALSE; 1136 1137 if (zio == NULL && 1138 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1139 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1140 need_wait = B_TRUE; 1141 } 1142 dbuf_read_impl(db, zio, flags); 1143 1144 /* dbuf_read_impl has dropped db_mtx for us */ 1145 1146 if (prefetch) 1147 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1148 1149 if ((flags & DB_RF_HAVESTRUCT) == 0) 1150 rw_exit(&dn->dn_struct_rwlock); 1151 DB_DNODE_EXIT(db); 1152 1153 if (need_wait) 1154 err = zio_wait(zio); 1155 } else { 1156 /* 1157 * Another reader came in while the dbuf was in flight 1158 * between UNCACHED and CACHED. Either a writer will finish 1159 * writing the buffer (sending the dbuf to CACHED) or the 1160 * first reader's request will reach the read_done callback 1161 * and send the dbuf to CACHED. Otherwise, a failure 1162 * occurred and the dbuf went to UNCACHED. 1163 */ 1164 mutex_exit(&db->db_mtx); 1165 if (prefetch) 1166 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1167 if ((flags & DB_RF_HAVESTRUCT) == 0) 1168 rw_exit(&dn->dn_struct_rwlock); 1169 DB_DNODE_EXIT(db); 1170 1171 /* Skip the wait per the caller's request. */ 1172 mutex_enter(&db->db_mtx); 1173 if ((flags & DB_RF_NEVERWAIT) == 0) { 1174 while (db->db_state == DB_READ || 1175 db->db_state == DB_FILL) { 1176 ASSERT(db->db_state == DB_READ || 1177 (flags & DB_RF_HAVESTRUCT) == 0); 1178 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1179 db, zio_t *, zio); 1180 cv_wait(&db->db_changed, &db->db_mtx); 1181 } 1182 if (db->db_state == DB_UNCACHED) 1183 err = SET_ERROR(EIO); 1184 } 1185 mutex_exit(&db->db_mtx); 1186 } 1187 1188 return (err); 1189 } 1190 1191 static void 1192 dbuf_noread(dmu_buf_impl_t *db) 1193 { 1194 ASSERT(!refcount_is_zero(&db->db_holds)); 1195 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1196 mutex_enter(&db->db_mtx); 1197 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1198 cv_wait(&db->db_changed, &db->db_mtx); 1199 if (db->db_state == DB_UNCACHED) { 1200 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1201 spa_t *spa = db->db_objset->os_spa; 1202 1203 ASSERT(db->db_buf == NULL); 1204 ASSERT(db->db.db_data == NULL); 1205 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size)); 1206 db->db_state = DB_FILL; 1207 } else if (db->db_state == DB_NOFILL) { 1208 dbuf_clear_data(db); 1209 } else { 1210 ASSERT3U(db->db_state, ==, DB_CACHED); 1211 } 1212 mutex_exit(&db->db_mtx); 1213 } 1214 1215 void 1216 dbuf_unoverride(dbuf_dirty_record_t *dr) 1217 { 1218 dmu_buf_impl_t *db = dr->dr_dbuf; 1219 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1220 uint64_t txg = dr->dr_txg; 1221 1222 ASSERT(MUTEX_HELD(&db->db_mtx)); 1223 /* 1224 * This assert is valid because dmu_sync() expects to be called by 1225 * a zilog's get_data while holding a range lock. This call only 1226 * comes from dbuf_dirty() callers who must also hold a range lock. 1227 */ 1228 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1229 ASSERT(db->db_level == 0); 1230 1231 if (db->db_blkid == DMU_BONUS_BLKID || 1232 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1233 return; 1234 1235 ASSERT(db->db_data_pending != dr); 1236 1237 /* free this block */ 1238 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1239 zio_free(db->db_objset->os_spa, txg, bp); 1240 1241 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1242 dr->dt.dl.dr_nopwrite = B_FALSE; 1243 1244 /* 1245 * Release the already-written buffer, so we leave it in 1246 * a consistent dirty state. Note that all callers are 1247 * modifying the buffer, so they will immediately do 1248 * another (redundant) arc_release(). Therefore, leave 1249 * the buf thawed to save the effort of freezing & 1250 * immediately re-thawing it. 1251 */ 1252 arc_release(dr->dt.dl.dr_data, db); 1253 } 1254 1255 /* 1256 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1257 * data blocks in the free range, so that any future readers will find 1258 * empty blocks. 1259 */ 1260 void 1261 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1262 dmu_tx_t *tx) 1263 { 1264 dmu_buf_impl_t db_search; 1265 dmu_buf_impl_t *db, *db_next; 1266 uint64_t txg = tx->tx_txg; 1267 avl_index_t where; 1268 1269 if (end_blkid > dn->dn_maxblkid && 1270 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1271 end_blkid = dn->dn_maxblkid; 1272 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1273 1274 db_search.db_level = 0; 1275 db_search.db_blkid = start_blkid; 1276 db_search.db_state = DB_SEARCH; 1277 1278 mutex_enter(&dn->dn_dbufs_mtx); 1279 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1280 ASSERT3P(db, ==, NULL); 1281 1282 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1283 1284 for (; db != NULL; db = db_next) { 1285 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1286 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1287 1288 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1289 break; 1290 } 1291 ASSERT3U(db->db_blkid, >=, start_blkid); 1292 1293 /* found a level 0 buffer in the range */ 1294 mutex_enter(&db->db_mtx); 1295 if (dbuf_undirty(db, tx)) { 1296 /* mutex has been dropped and dbuf destroyed */ 1297 continue; 1298 } 1299 1300 if (db->db_state == DB_UNCACHED || 1301 db->db_state == DB_NOFILL || 1302 db->db_state == DB_EVICTING) { 1303 ASSERT(db->db.db_data == NULL); 1304 mutex_exit(&db->db_mtx); 1305 continue; 1306 } 1307 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1308 /* will be handled in dbuf_read_done or dbuf_rele */ 1309 db->db_freed_in_flight = TRUE; 1310 mutex_exit(&db->db_mtx); 1311 continue; 1312 } 1313 if (refcount_count(&db->db_holds) == 0) { 1314 ASSERT(db->db_buf); 1315 dbuf_destroy(db); 1316 continue; 1317 } 1318 /* The dbuf is referenced */ 1319 1320 if (db->db_last_dirty != NULL) { 1321 dbuf_dirty_record_t *dr = db->db_last_dirty; 1322 1323 if (dr->dr_txg == txg) { 1324 /* 1325 * This buffer is "in-use", re-adjust the file 1326 * size to reflect that this buffer may 1327 * contain new data when we sync. 1328 */ 1329 if (db->db_blkid != DMU_SPILL_BLKID && 1330 db->db_blkid > dn->dn_maxblkid) 1331 dn->dn_maxblkid = db->db_blkid; 1332 dbuf_unoverride(dr); 1333 } else { 1334 /* 1335 * This dbuf is not dirty in the open context. 1336 * Either uncache it (if its not referenced in 1337 * the open context) or reset its contents to 1338 * empty. 1339 */ 1340 dbuf_fix_old_data(db, txg); 1341 } 1342 } 1343 /* clear the contents if its cached */ 1344 if (db->db_state == DB_CACHED) { 1345 ASSERT(db->db.db_data != NULL); 1346 arc_release(db->db_buf, db); 1347 bzero(db->db.db_data, db->db.db_size); 1348 arc_buf_freeze(db->db_buf); 1349 } 1350 1351 mutex_exit(&db->db_mtx); 1352 } 1353 mutex_exit(&dn->dn_dbufs_mtx); 1354 } 1355 1356 void 1357 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1358 { 1359 arc_buf_t *buf, *obuf; 1360 int osize = db->db.db_size; 1361 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1362 dnode_t *dn; 1363 1364 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1365 1366 DB_DNODE_ENTER(db); 1367 dn = DB_DNODE(db); 1368 1369 /* XXX does *this* func really need the lock? */ 1370 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1371 1372 /* 1373 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1374 * is OK, because there can be no other references to the db 1375 * when we are changing its size, so no concurrent DB_FILL can 1376 * be happening. 1377 */ 1378 /* 1379 * XXX we should be doing a dbuf_read, checking the return 1380 * value and returning that up to our callers 1381 */ 1382 dmu_buf_will_dirty(&db->db, tx); 1383 1384 /* create the data buffer for the new block */ 1385 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1386 1387 /* copy old block data to the new block */ 1388 obuf = db->db_buf; 1389 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1390 /* zero the remainder */ 1391 if (size > osize) 1392 bzero((uint8_t *)buf->b_data + osize, size - osize); 1393 1394 mutex_enter(&db->db_mtx); 1395 dbuf_set_data(db, buf); 1396 arc_buf_destroy(obuf, db); 1397 db->db.db_size = size; 1398 1399 if (db->db_level == 0) { 1400 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1401 db->db_last_dirty->dt.dl.dr_data = buf; 1402 } 1403 mutex_exit(&db->db_mtx); 1404 1405 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1406 DB_DNODE_EXIT(db); 1407 } 1408 1409 void 1410 dbuf_release_bp(dmu_buf_impl_t *db) 1411 { 1412 objset_t *os = db->db_objset; 1413 1414 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1415 ASSERT(arc_released(os->os_phys_buf) || 1416 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1417 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1418 1419 (void) arc_release(db->db_buf, db); 1420 } 1421 1422 /* 1423 * We already have a dirty record for this TXG, and we are being 1424 * dirtied again. 1425 */ 1426 static void 1427 dbuf_redirty(dbuf_dirty_record_t *dr) 1428 { 1429 dmu_buf_impl_t *db = dr->dr_dbuf; 1430 1431 ASSERT(MUTEX_HELD(&db->db_mtx)); 1432 1433 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1434 /* 1435 * If this buffer has already been written out, 1436 * we now need to reset its state. 1437 */ 1438 dbuf_unoverride(dr); 1439 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1440 db->db_state != DB_NOFILL) { 1441 /* Already released on initial dirty, so just thaw. */ 1442 ASSERT(arc_released(db->db_buf)); 1443 arc_buf_thaw(db->db_buf); 1444 } 1445 } 1446 } 1447 1448 dbuf_dirty_record_t * 1449 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1450 { 1451 dnode_t *dn; 1452 objset_t *os; 1453 dbuf_dirty_record_t **drp, *dr; 1454 int drop_struct_lock = FALSE; 1455 int txgoff = tx->tx_txg & TXG_MASK; 1456 1457 ASSERT(tx->tx_txg != 0); 1458 ASSERT(!refcount_is_zero(&db->db_holds)); 1459 DMU_TX_DIRTY_BUF(tx, db); 1460 1461 DB_DNODE_ENTER(db); 1462 dn = DB_DNODE(db); 1463 /* 1464 * Shouldn't dirty a regular buffer in syncing context. Private 1465 * objects may be dirtied in syncing context, but only if they 1466 * were already pre-dirtied in open context. 1467 */ 1468 #ifdef DEBUG 1469 if (dn->dn_objset->os_dsl_dataset != NULL) { 1470 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1471 RW_READER, FTAG); 1472 } 1473 ASSERT(!dmu_tx_is_syncing(tx) || 1474 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1475 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1476 dn->dn_objset->os_dsl_dataset == NULL); 1477 if (dn->dn_objset->os_dsl_dataset != NULL) 1478 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 1479 #endif 1480 /* 1481 * We make this assert for private objects as well, but after we 1482 * check if we're already dirty. They are allowed to re-dirty 1483 * in syncing context. 1484 */ 1485 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1486 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1487 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1488 1489 mutex_enter(&db->db_mtx); 1490 /* 1491 * XXX make this true for indirects too? The problem is that 1492 * transactions created with dmu_tx_create_assigned() from 1493 * syncing context don't bother holding ahead. 1494 */ 1495 ASSERT(db->db_level != 0 || 1496 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1497 db->db_state == DB_NOFILL); 1498 1499 mutex_enter(&dn->dn_mtx); 1500 /* 1501 * Don't set dirtyctx to SYNC if we're just modifying this as we 1502 * initialize the objset. 1503 */ 1504 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 1505 if (dn->dn_objset->os_dsl_dataset != NULL) { 1506 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1507 RW_READER, FTAG); 1508 } 1509 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1510 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? 1511 DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1512 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1513 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1514 } 1515 if (dn->dn_objset->os_dsl_dataset != NULL) { 1516 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1517 FTAG); 1518 } 1519 } 1520 mutex_exit(&dn->dn_mtx); 1521 1522 if (db->db_blkid == DMU_SPILL_BLKID) 1523 dn->dn_have_spill = B_TRUE; 1524 1525 /* 1526 * If this buffer is already dirty, we're done. 1527 */ 1528 drp = &db->db_last_dirty; 1529 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1530 db->db.db_object == DMU_META_DNODE_OBJECT); 1531 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1532 drp = &dr->dr_next; 1533 if (dr && dr->dr_txg == tx->tx_txg) { 1534 DB_DNODE_EXIT(db); 1535 1536 dbuf_redirty(dr); 1537 mutex_exit(&db->db_mtx); 1538 return (dr); 1539 } 1540 1541 /* 1542 * Only valid if not already dirty. 1543 */ 1544 ASSERT(dn->dn_object == 0 || 1545 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1546 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1547 1548 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1549 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1550 dn->dn_phys->dn_nlevels > db->db_level || 1551 dn->dn_next_nlevels[txgoff] > db->db_level || 1552 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1553 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1554 1555 /* 1556 * We should only be dirtying in syncing context if it's the 1557 * mos or we're initializing the os or it's a special object. 1558 * However, we are allowed to dirty in syncing context provided 1559 * we already dirtied it in open context. Hence we must make 1560 * this assertion only if we're not already dirty. 1561 */ 1562 os = dn->dn_objset; 1563 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 1564 #ifdef DEBUG 1565 if (dn->dn_objset->os_dsl_dataset != NULL) 1566 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 1567 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1568 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1569 if (dn->dn_objset->os_dsl_dataset != NULL) 1570 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 1571 #endif 1572 ASSERT(db->db.db_size != 0); 1573 1574 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1575 1576 if (db->db_blkid != DMU_BONUS_BLKID) { 1577 dmu_objset_willuse_space(os, db->db.db_size, tx); 1578 } 1579 1580 /* 1581 * If this buffer is dirty in an old transaction group we need 1582 * to make a copy of it so that the changes we make in this 1583 * transaction group won't leak out when we sync the older txg. 1584 */ 1585 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1586 if (db->db_level == 0) { 1587 void *data_old = db->db_buf; 1588 1589 if (db->db_state != DB_NOFILL) { 1590 if (db->db_blkid == DMU_BONUS_BLKID) { 1591 dbuf_fix_old_data(db, tx->tx_txg); 1592 data_old = db->db.db_data; 1593 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1594 /* 1595 * Release the data buffer from the cache so 1596 * that we can modify it without impacting 1597 * possible other users of this cached data 1598 * block. Note that indirect blocks and 1599 * private objects are not released until the 1600 * syncing state (since they are only modified 1601 * then). 1602 */ 1603 arc_release(db->db_buf, db); 1604 dbuf_fix_old_data(db, tx->tx_txg); 1605 data_old = db->db_buf; 1606 } 1607 ASSERT(data_old != NULL); 1608 } 1609 dr->dt.dl.dr_data = data_old; 1610 } else { 1611 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1612 list_create(&dr->dt.di.dr_children, 1613 sizeof (dbuf_dirty_record_t), 1614 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1615 } 1616 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1617 dr->dr_accounted = db->db.db_size; 1618 dr->dr_dbuf = db; 1619 dr->dr_txg = tx->tx_txg; 1620 dr->dr_next = *drp; 1621 *drp = dr; 1622 1623 /* 1624 * We could have been freed_in_flight between the dbuf_noread 1625 * and dbuf_dirty. We win, as though the dbuf_noread() had 1626 * happened after the free. 1627 */ 1628 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1629 db->db_blkid != DMU_SPILL_BLKID) { 1630 mutex_enter(&dn->dn_mtx); 1631 if (dn->dn_free_ranges[txgoff] != NULL) { 1632 range_tree_clear(dn->dn_free_ranges[txgoff], 1633 db->db_blkid, 1); 1634 } 1635 mutex_exit(&dn->dn_mtx); 1636 db->db_freed_in_flight = FALSE; 1637 } 1638 1639 /* 1640 * This buffer is now part of this txg 1641 */ 1642 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1643 db->db_dirtycnt += 1; 1644 ASSERT3U(db->db_dirtycnt, <=, 3); 1645 1646 mutex_exit(&db->db_mtx); 1647 1648 if (db->db_blkid == DMU_BONUS_BLKID || 1649 db->db_blkid == DMU_SPILL_BLKID) { 1650 mutex_enter(&dn->dn_mtx); 1651 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1652 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1653 mutex_exit(&dn->dn_mtx); 1654 dnode_setdirty(dn, tx); 1655 DB_DNODE_EXIT(db); 1656 return (dr); 1657 } 1658 1659 /* 1660 * The dn_struct_rwlock prevents db_blkptr from changing 1661 * due to a write from syncing context completing 1662 * while we are running, so we want to acquire it before 1663 * looking at db_blkptr. 1664 */ 1665 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1666 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1667 drop_struct_lock = TRUE; 1668 } 1669 1670 /* 1671 * If we are overwriting a dedup BP, then unless it is snapshotted, 1672 * when we get to syncing context we will need to decrement its 1673 * refcount in the DDT. Prefetch the relevant DDT block so that 1674 * syncing context won't have to wait for the i/o. 1675 */ 1676 ddt_prefetch(os->os_spa, db->db_blkptr); 1677 1678 if (db->db_level == 0) { 1679 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1680 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1681 } 1682 1683 if (db->db_level+1 < dn->dn_nlevels) { 1684 dmu_buf_impl_t *parent = db->db_parent; 1685 dbuf_dirty_record_t *di; 1686 int parent_held = FALSE; 1687 1688 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1689 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1690 1691 parent = dbuf_hold_level(dn, db->db_level+1, 1692 db->db_blkid >> epbs, FTAG); 1693 ASSERT(parent != NULL); 1694 parent_held = TRUE; 1695 } 1696 if (drop_struct_lock) 1697 rw_exit(&dn->dn_struct_rwlock); 1698 ASSERT3U(db->db_level+1, ==, parent->db_level); 1699 di = dbuf_dirty(parent, tx); 1700 if (parent_held) 1701 dbuf_rele(parent, FTAG); 1702 1703 mutex_enter(&db->db_mtx); 1704 /* 1705 * Since we've dropped the mutex, it's possible that 1706 * dbuf_undirty() might have changed this out from under us. 1707 */ 1708 if (db->db_last_dirty == dr || 1709 dn->dn_object == DMU_META_DNODE_OBJECT) { 1710 mutex_enter(&di->dt.di.dr_mtx); 1711 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1712 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1713 list_insert_tail(&di->dt.di.dr_children, dr); 1714 mutex_exit(&di->dt.di.dr_mtx); 1715 dr->dr_parent = di; 1716 } 1717 mutex_exit(&db->db_mtx); 1718 } else { 1719 ASSERT(db->db_level+1 == dn->dn_nlevels); 1720 ASSERT(db->db_blkid < dn->dn_nblkptr); 1721 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1722 mutex_enter(&dn->dn_mtx); 1723 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1724 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1725 mutex_exit(&dn->dn_mtx); 1726 if (drop_struct_lock) 1727 rw_exit(&dn->dn_struct_rwlock); 1728 } 1729 1730 dnode_setdirty(dn, tx); 1731 DB_DNODE_EXIT(db); 1732 return (dr); 1733 } 1734 1735 /* 1736 * Undirty a buffer in the transaction group referenced by the given 1737 * transaction. Return whether this evicted the dbuf. 1738 */ 1739 static boolean_t 1740 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1741 { 1742 dnode_t *dn; 1743 uint64_t txg = tx->tx_txg; 1744 dbuf_dirty_record_t *dr, **drp; 1745 1746 ASSERT(txg != 0); 1747 1748 /* 1749 * Due to our use of dn_nlevels below, this can only be called 1750 * in open context, unless we are operating on the MOS. 1751 * From syncing context, dn_nlevels may be different from the 1752 * dn_nlevels used when dbuf was dirtied. 1753 */ 1754 ASSERT(db->db_objset == 1755 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1756 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1757 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1758 ASSERT0(db->db_level); 1759 ASSERT(MUTEX_HELD(&db->db_mtx)); 1760 1761 /* 1762 * If this buffer is not dirty, we're done. 1763 */ 1764 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1765 if (dr->dr_txg <= txg) 1766 break; 1767 if (dr == NULL || dr->dr_txg < txg) 1768 return (B_FALSE); 1769 ASSERT(dr->dr_txg == txg); 1770 ASSERT(dr->dr_dbuf == db); 1771 1772 DB_DNODE_ENTER(db); 1773 dn = DB_DNODE(db); 1774 1775 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1776 1777 ASSERT(db->db.db_size != 0); 1778 1779 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1780 dr->dr_accounted, txg); 1781 1782 *drp = dr->dr_next; 1783 1784 /* 1785 * Note that there are three places in dbuf_dirty() 1786 * where this dirty record may be put on a list. 1787 * Make sure to do a list_remove corresponding to 1788 * every one of those list_insert calls. 1789 */ 1790 if (dr->dr_parent) { 1791 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1792 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1793 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1794 } else if (db->db_blkid == DMU_SPILL_BLKID || 1795 db->db_level + 1 == dn->dn_nlevels) { 1796 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1797 mutex_enter(&dn->dn_mtx); 1798 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1799 mutex_exit(&dn->dn_mtx); 1800 } 1801 DB_DNODE_EXIT(db); 1802 1803 if (db->db_state != DB_NOFILL) { 1804 dbuf_unoverride(dr); 1805 1806 ASSERT(db->db_buf != NULL); 1807 ASSERT(dr->dt.dl.dr_data != NULL); 1808 if (dr->dt.dl.dr_data != db->db_buf) 1809 arc_buf_destroy(dr->dt.dl.dr_data, db); 1810 } 1811 1812 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1813 1814 ASSERT(db->db_dirtycnt > 0); 1815 db->db_dirtycnt -= 1; 1816 1817 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1818 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 1819 dbuf_destroy(db); 1820 return (B_TRUE); 1821 } 1822 1823 return (B_FALSE); 1824 } 1825 1826 void 1827 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1828 { 1829 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1830 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1831 1832 ASSERT(tx->tx_txg != 0); 1833 ASSERT(!refcount_is_zero(&db->db_holds)); 1834 1835 /* 1836 * Quick check for dirtyness. For already dirty blocks, this 1837 * reduces runtime of this function by >90%, and overall performance 1838 * by 50% for some workloads (e.g. file deletion with indirect blocks 1839 * cached). 1840 */ 1841 mutex_enter(&db->db_mtx); 1842 dbuf_dirty_record_t *dr; 1843 for (dr = db->db_last_dirty; 1844 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 1845 /* 1846 * It's possible that it is already dirty but not cached, 1847 * because there are some calls to dbuf_dirty() that don't 1848 * go through dmu_buf_will_dirty(). 1849 */ 1850 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 1851 /* This dbuf is already dirty and cached. */ 1852 dbuf_redirty(dr); 1853 mutex_exit(&db->db_mtx); 1854 return; 1855 } 1856 } 1857 mutex_exit(&db->db_mtx); 1858 1859 DB_DNODE_ENTER(db); 1860 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1861 rf |= DB_RF_HAVESTRUCT; 1862 DB_DNODE_EXIT(db); 1863 (void) dbuf_read(db, NULL, rf); 1864 (void) dbuf_dirty(db, tx); 1865 } 1866 1867 void 1868 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1869 { 1870 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1871 1872 db->db_state = DB_NOFILL; 1873 1874 dmu_buf_will_fill(db_fake, tx); 1875 } 1876 1877 void 1878 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1879 { 1880 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1881 1882 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1883 ASSERT(tx->tx_txg != 0); 1884 ASSERT(db->db_level == 0); 1885 ASSERT(!refcount_is_zero(&db->db_holds)); 1886 1887 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1888 dmu_tx_private_ok(tx)); 1889 1890 dbuf_noread(db); 1891 (void) dbuf_dirty(db, tx); 1892 } 1893 1894 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1895 /* ARGSUSED */ 1896 void 1897 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1898 { 1899 mutex_enter(&db->db_mtx); 1900 DBUF_VERIFY(db); 1901 1902 if (db->db_state == DB_FILL) { 1903 if (db->db_level == 0 && db->db_freed_in_flight) { 1904 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1905 /* we were freed while filling */ 1906 /* XXX dbuf_undirty? */ 1907 bzero(db->db.db_data, db->db.db_size); 1908 db->db_freed_in_flight = FALSE; 1909 } 1910 db->db_state = DB_CACHED; 1911 cv_broadcast(&db->db_changed); 1912 } 1913 mutex_exit(&db->db_mtx); 1914 } 1915 1916 void 1917 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1918 bp_embedded_type_t etype, enum zio_compress comp, 1919 int uncompressed_size, int compressed_size, int byteorder, 1920 dmu_tx_t *tx) 1921 { 1922 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1923 struct dirty_leaf *dl; 1924 dmu_object_type_t type; 1925 1926 if (etype == BP_EMBEDDED_TYPE_DATA) { 1927 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 1928 SPA_FEATURE_EMBEDDED_DATA)); 1929 } 1930 1931 DB_DNODE_ENTER(db); 1932 type = DB_DNODE(db)->dn_type; 1933 DB_DNODE_EXIT(db); 1934 1935 ASSERT0(db->db_level); 1936 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1937 1938 dmu_buf_will_not_fill(dbuf, tx); 1939 1940 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1941 dl = &db->db_last_dirty->dt.dl; 1942 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1943 data, comp, uncompressed_size, compressed_size); 1944 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1945 BP_SET_TYPE(&dl->dr_overridden_by, type); 1946 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1947 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1948 1949 dl->dr_override_state = DR_OVERRIDDEN; 1950 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1951 } 1952 1953 /* 1954 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1955 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1956 */ 1957 void 1958 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1959 { 1960 ASSERT(!refcount_is_zero(&db->db_holds)); 1961 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1962 ASSERT(db->db_level == 0); 1963 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 1964 ASSERT(buf != NULL); 1965 ASSERT(arc_buf_lsize(buf) == db->db.db_size); 1966 ASSERT(tx->tx_txg != 0); 1967 1968 arc_return_buf(buf, db); 1969 ASSERT(arc_released(buf)); 1970 1971 mutex_enter(&db->db_mtx); 1972 1973 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1974 cv_wait(&db->db_changed, &db->db_mtx); 1975 1976 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1977 1978 if (db->db_state == DB_CACHED && 1979 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1980 mutex_exit(&db->db_mtx); 1981 (void) dbuf_dirty(db, tx); 1982 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1983 arc_buf_destroy(buf, db); 1984 xuio_stat_wbuf_copied(); 1985 return; 1986 } 1987 1988 xuio_stat_wbuf_nocopy(); 1989 if (db->db_state == DB_CACHED) { 1990 dbuf_dirty_record_t *dr = db->db_last_dirty; 1991 1992 ASSERT(db->db_buf != NULL); 1993 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1994 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1995 if (!arc_released(db->db_buf)) { 1996 ASSERT(dr->dt.dl.dr_override_state == 1997 DR_OVERRIDDEN); 1998 arc_release(db->db_buf, db); 1999 } 2000 dr->dt.dl.dr_data = buf; 2001 arc_buf_destroy(db->db_buf, db); 2002 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2003 arc_release(db->db_buf, db); 2004 arc_buf_destroy(db->db_buf, db); 2005 } 2006 db->db_buf = NULL; 2007 } 2008 ASSERT(db->db_buf == NULL); 2009 dbuf_set_data(db, buf); 2010 db->db_state = DB_FILL; 2011 mutex_exit(&db->db_mtx); 2012 (void) dbuf_dirty(db, tx); 2013 dmu_buf_fill_done(&db->db, tx); 2014 } 2015 2016 void 2017 dbuf_destroy(dmu_buf_impl_t *db) 2018 { 2019 dnode_t *dn; 2020 dmu_buf_impl_t *parent = db->db_parent; 2021 dmu_buf_impl_t *dndb; 2022 2023 ASSERT(MUTEX_HELD(&db->db_mtx)); 2024 ASSERT(refcount_is_zero(&db->db_holds)); 2025 2026 if (db->db_buf != NULL) { 2027 arc_buf_destroy(db->db_buf, db); 2028 db->db_buf = NULL; 2029 } 2030 2031 if (db->db_blkid == DMU_BONUS_BLKID) { 2032 ASSERT(db->db.db_data != NULL); 2033 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 2034 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2035 db->db_state = DB_UNCACHED; 2036 } 2037 2038 dbuf_clear_data(db); 2039 2040 if (multilist_link_active(&db->db_cache_link)) { 2041 multilist_remove(dbuf_cache, db); 2042 (void) refcount_remove_many(&dbuf_cache_size, 2043 db->db.db_size, db); 2044 } 2045 2046 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2047 ASSERT(db->db_data_pending == NULL); 2048 2049 db->db_state = DB_EVICTING; 2050 db->db_blkptr = NULL; 2051 2052 /* 2053 * Now that db_state is DB_EVICTING, nobody else can find this via 2054 * the hash table. We can now drop db_mtx, which allows us to 2055 * acquire the dn_dbufs_mtx. 2056 */ 2057 mutex_exit(&db->db_mtx); 2058 2059 DB_DNODE_ENTER(db); 2060 dn = DB_DNODE(db); 2061 dndb = dn->dn_dbuf; 2062 if (db->db_blkid != DMU_BONUS_BLKID) { 2063 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2064 if (needlock) 2065 mutex_enter(&dn->dn_dbufs_mtx); 2066 avl_remove(&dn->dn_dbufs, db); 2067 atomic_dec_32(&dn->dn_dbufs_count); 2068 membar_producer(); 2069 DB_DNODE_EXIT(db); 2070 if (needlock) 2071 mutex_exit(&dn->dn_dbufs_mtx); 2072 /* 2073 * Decrementing the dbuf count means that the hold corresponding 2074 * to the removed dbuf is no longer discounted in dnode_move(), 2075 * so the dnode cannot be moved until after we release the hold. 2076 * The membar_producer() ensures visibility of the decremented 2077 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2078 * release any lock. 2079 */ 2080 dnode_rele(dn, db); 2081 db->db_dnode_handle = NULL; 2082 2083 dbuf_hash_remove(db); 2084 } else { 2085 DB_DNODE_EXIT(db); 2086 } 2087 2088 ASSERT(refcount_is_zero(&db->db_holds)); 2089 2090 db->db_parent = NULL; 2091 2092 ASSERT(db->db_buf == NULL); 2093 ASSERT(db->db.db_data == NULL); 2094 ASSERT(db->db_hash_next == NULL); 2095 ASSERT(db->db_blkptr == NULL); 2096 ASSERT(db->db_data_pending == NULL); 2097 ASSERT(!multilist_link_active(&db->db_cache_link)); 2098 2099 kmem_cache_free(dbuf_kmem_cache, db); 2100 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2101 2102 /* 2103 * If this dbuf is referenced from an indirect dbuf, 2104 * decrement the ref count on the indirect dbuf. 2105 */ 2106 if (parent && parent != dndb) 2107 dbuf_rele(parent, db); 2108 } 2109 2110 /* 2111 * Note: While bpp will always be updated if the function returns success, 2112 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2113 * this happens when the dnode is the meta-dnode, or a userused or groupused 2114 * object. 2115 */ 2116 static int 2117 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2118 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2119 { 2120 *parentp = NULL; 2121 *bpp = NULL; 2122 2123 ASSERT(blkid != DMU_BONUS_BLKID); 2124 2125 if (blkid == DMU_SPILL_BLKID) { 2126 mutex_enter(&dn->dn_mtx); 2127 if (dn->dn_have_spill && 2128 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2129 *bpp = &dn->dn_phys->dn_spill; 2130 else 2131 *bpp = NULL; 2132 dbuf_add_ref(dn->dn_dbuf, NULL); 2133 *parentp = dn->dn_dbuf; 2134 mutex_exit(&dn->dn_mtx); 2135 return (0); 2136 } 2137 2138 int nlevels = 2139 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2140 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2141 2142 ASSERT3U(level * epbs, <, 64); 2143 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2144 /* 2145 * This assertion shouldn't trip as long as the max indirect block size 2146 * is less than 1M. The reason for this is that up to that point, 2147 * the number of levels required to address an entire object with blocks 2148 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2149 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2150 * (i.e. we can address the entire object), objects will all use at most 2151 * N-1 levels and the assertion won't overflow. However, once epbs is 2152 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2153 * enough to address an entire object, so objects will have 5 levels, 2154 * but then this assertion will overflow. 2155 * 2156 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2157 * need to redo this logic to handle overflows. 2158 */ 2159 ASSERT(level >= nlevels || 2160 ((nlevels - level - 1) * epbs) + 2161 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2162 if (level >= nlevels || 2163 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2164 ((nlevels - level - 1) * epbs)) || 2165 (fail_sparse && 2166 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2167 /* the buffer has no parent yet */ 2168 return (SET_ERROR(ENOENT)); 2169 } else if (level < nlevels-1) { 2170 /* this block is referenced from an indirect block */ 2171 int err = dbuf_hold_impl(dn, level+1, 2172 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2173 if (err) 2174 return (err); 2175 err = dbuf_read(*parentp, NULL, 2176 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2177 if (err) { 2178 dbuf_rele(*parentp, NULL); 2179 *parentp = NULL; 2180 return (err); 2181 } 2182 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2183 (blkid & ((1ULL << epbs) - 1)); 2184 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2185 ASSERT(BP_IS_HOLE(*bpp)); 2186 return (0); 2187 } else { 2188 /* the block is referenced from the dnode */ 2189 ASSERT3U(level, ==, nlevels-1); 2190 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2191 blkid < dn->dn_phys->dn_nblkptr); 2192 if (dn->dn_dbuf) { 2193 dbuf_add_ref(dn->dn_dbuf, NULL); 2194 *parentp = dn->dn_dbuf; 2195 } 2196 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2197 return (0); 2198 } 2199 } 2200 2201 static dmu_buf_impl_t * 2202 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2203 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2204 { 2205 objset_t *os = dn->dn_objset; 2206 dmu_buf_impl_t *db, *odb; 2207 2208 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2209 ASSERT(dn->dn_type != DMU_OT_NONE); 2210 2211 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2212 2213 db->db_objset = os; 2214 db->db.db_object = dn->dn_object; 2215 db->db_level = level; 2216 db->db_blkid = blkid; 2217 db->db_last_dirty = NULL; 2218 db->db_dirtycnt = 0; 2219 db->db_dnode_handle = dn->dn_handle; 2220 db->db_parent = parent; 2221 db->db_blkptr = blkptr; 2222 2223 db->db_user = NULL; 2224 db->db_user_immediate_evict = FALSE; 2225 db->db_freed_in_flight = FALSE; 2226 db->db_pending_evict = FALSE; 2227 2228 if (blkid == DMU_BONUS_BLKID) { 2229 ASSERT3P(parent, ==, dn->dn_dbuf); 2230 db->db.db_size = DN_MAX_BONUSLEN - 2231 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2232 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2233 db->db.db_offset = DMU_BONUS_BLKID; 2234 db->db_state = DB_UNCACHED; 2235 /* the bonus dbuf is not placed in the hash table */ 2236 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2237 return (db); 2238 } else if (blkid == DMU_SPILL_BLKID) { 2239 db->db.db_size = (blkptr != NULL) ? 2240 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2241 db->db.db_offset = 0; 2242 } else { 2243 int blocksize = 2244 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2245 db->db.db_size = blocksize; 2246 db->db.db_offset = db->db_blkid * blocksize; 2247 } 2248 2249 /* 2250 * Hold the dn_dbufs_mtx while we get the new dbuf 2251 * in the hash table *and* added to the dbufs list. 2252 * This prevents a possible deadlock with someone 2253 * trying to look up this dbuf before its added to the 2254 * dn_dbufs list. 2255 */ 2256 mutex_enter(&dn->dn_dbufs_mtx); 2257 db->db_state = DB_EVICTING; 2258 if ((odb = dbuf_hash_insert(db)) != NULL) { 2259 /* someone else inserted it first */ 2260 kmem_cache_free(dbuf_kmem_cache, db); 2261 mutex_exit(&dn->dn_dbufs_mtx); 2262 return (odb); 2263 } 2264 avl_add(&dn->dn_dbufs, db); 2265 2266 db->db_state = DB_UNCACHED; 2267 mutex_exit(&dn->dn_dbufs_mtx); 2268 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2269 2270 if (parent && parent != dn->dn_dbuf) 2271 dbuf_add_ref(parent, db); 2272 2273 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2274 refcount_count(&dn->dn_holds) > 0); 2275 (void) refcount_add(&dn->dn_holds, db); 2276 atomic_inc_32(&dn->dn_dbufs_count); 2277 2278 dprintf_dbuf(db, "db=%p\n", db); 2279 2280 return (db); 2281 } 2282 2283 typedef struct dbuf_prefetch_arg { 2284 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2285 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2286 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2287 int dpa_curlevel; /* The current level that we're reading */ 2288 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2289 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2290 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2291 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2292 } dbuf_prefetch_arg_t; 2293 2294 /* 2295 * Actually issue the prefetch read for the block given. 2296 */ 2297 static void 2298 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2299 { 2300 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2301 return; 2302 2303 arc_flags_t aflags = 2304 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2305 2306 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2307 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2308 ASSERT(dpa->dpa_zio != NULL); 2309 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2310 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2311 &aflags, &dpa->dpa_zb); 2312 } 2313 2314 /* 2315 * Called when an indirect block above our prefetch target is read in. This 2316 * will either read in the next indirect block down the tree or issue the actual 2317 * prefetch if the next block down is our target. 2318 */ 2319 static void 2320 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) 2321 { 2322 dbuf_prefetch_arg_t *dpa = private; 2323 2324 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2325 ASSERT3S(dpa->dpa_curlevel, >, 0); 2326 2327 /* 2328 * The dpa_dnode is only valid if we are called with a NULL 2329 * zio. This indicates that the arc_read() returned without 2330 * first calling zio_read() to issue a physical read. Once 2331 * a physical read is made the dpa_dnode must be invalidated 2332 * as the locks guarding it may have been dropped. If the 2333 * dpa_dnode is still valid, then we want to add it to the dbuf 2334 * cache. To do so, we must hold the dbuf associated with the block 2335 * we just prefetched, read its contents so that we associate it 2336 * with an arc_buf_t, and then release it. 2337 */ 2338 if (zio != NULL) { 2339 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2340 if (zio->io_flags & ZIO_FLAG_RAW) { 2341 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2342 } else { 2343 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2344 } 2345 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2346 2347 dpa->dpa_dnode = NULL; 2348 } else if (dpa->dpa_dnode != NULL) { 2349 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2350 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2351 dpa->dpa_zb.zb_level)); 2352 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2353 dpa->dpa_curlevel, curblkid, FTAG); 2354 (void) dbuf_read(db, NULL, 2355 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2356 dbuf_rele(db, FTAG); 2357 } 2358 2359 dpa->dpa_curlevel--; 2360 2361 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2362 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2363 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2364 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2365 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) { 2366 kmem_free(dpa, sizeof (*dpa)); 2367 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2368 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2369 dbuf_issue_final_prefetch(dpa, bp); 2370 kmem_free(dpa, sizeof (*dpa)); 2371 } else { 2372 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2373 zbookmark_phys_t zb; 2374 2375 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2376 2377 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2378 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2379 2380 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2381 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2382 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2383 &iter_aflags, &zb); 2384 } 2385 2386 arc_buf_destroy(abuf, private); 2387 } 2388 2389 /* 2390 * Issue prefetch reads for the given block on the given level. If the indirect 2391 * blocks above that block are not in memory, we will read them in 2392 * asynchronously. As a result, this call never blocks waiting for a read to 2393 * complete. 2394 */ 2395 void 2396 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2397 arc_flags_t aflags) 2398 { 2399 blkptr_t bp; 2400 int epbs, nlevels, curlevel; 2401 uint64_t curblkid; 2402 2403 ASSERT(blkid != DMU_BONUS_BLKID); 2404 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2405 2406 if (blkid > dn->dn_maxblkid) 2407 return; 2408 2409 if (dnode_block_freed(dn, blkid)) 2410 return; 2411 2412 /* 2413 * This dnode hasn't been written to disk yet, so there's nothing to 2414 * prefetch. 2415 */ 2416 nlevels = dn->dn_phys->dn_nlevels; 2417 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2418 return; 2419 2420 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2421 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2422 return; 2423 2424 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2425 level, blkid); 2426 if (db != NULL) { 2427 mutex_exit(&db->db_mtx); 2428 /* 2429 * This dbuf already exists. It is either CACHED, or 2430 * (we assume) about to be read or filled. 2431 */ 2432 return; 2433 } 2434 2435 /* 2436 * Find the closest ancestor (indirect block) of the target block 2437 * that is present in the cache. In this indirect block, we will 2438 * find the bp that is at curlevel, curblkid. 2439 */ 2440 curlevel = level; 2441 curblkid = blkid; 2442 while (curlevel < nlevels - 1) { 2443 int parent_level = curlevel + 1; 2444 uint64_t parent_blkid = curblkid >> epbs; 2445 dmu_buf_impl_t *db; 2446 2447 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2448 FALSE, TRUE, FTAG, &db) == 0) { 2449 blkptr_t *bpp = db->db_buf->b_data; 2450 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2451 dbuf_rele(db, FTAG); 2452 break; 2453 } 2454 2455 curlevel = parent_level; 2456 curblkid = parent_blkid; 2457 } 2458 2459 if (curlevel == nlevels - 1) { 2460 /* No cached indirect blocks found. */ 2461 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2462 bp = dn->dn_phys->dn_blkptr[curblkid]; 2463 } 2464 if (BP_IS_HOLE(&bp)) 2465 return; 2466 2467 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2468 2469 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2470 ZIO_FLAG_CANFAIL); 2471 2472 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2473 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2474 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2475 dn->dn_object, level, blkid); 2476 dpa->dpa_curlevel = curlevel; 2477 dpa->dpa_prio = prio; 2478 dpa->dpa_aflags = aflags; 2479 dpa->dpa_spa = dn->dn_objset->os_spa; 2480 dpa->dpa_dnode = dn; 2481 dpa->dpa_epbs = epbs; 2482 dpa->dpa_zio = pio; 2483 2484 /* 2485 * If we have the indirect just above us, no need to do the asynchronous 2486 * prefetch chain; we'll just run the last step ourselves. If we're at 2487 * a higher level, though, we want to issue the prefetches for all the 2488 * indirect blocks asynchronously, so we can go on with whatever we were 2489 * doing. 2490 */ 2491 if (curlevel == level) { 2492 ASSERT3U(curblkid, ==, blkid); 2493 dbuf_issue_final_prefetch(dpa, &bp); 2494 kmem_free(dpa, sizeof (*dpa)); 2495 } else { 2496 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2497 zbookmark_phys_t zb; 2498 2499 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2500 dn->dn_object, curlevel, curblkid); 2501 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2502 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2503 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2504 &iter_aflags, &zb); 2505 } 2506 /* 2507 * We use pio here instead of dpa_zio since it's possible that 2508 * dpa may have already been freed. 2509 */ 2510 zio_nowait(pio); 2511 } 2512 2513 /* 2514 * Returns with db_holds incremented, and db_mtx not held. 2515 * Note: dn_struct_rwlock must be held. 2516 */ 2517 int 2518 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2519 boolean_t fail_sparse, boolean_t fail_uncached, 2520 void *tag, dmu_buf_impl_t **dbp) 2521 { 2522 dmu_buf_impl_t *db, *parent = NULL; 2523 2524 ASSERT(blkid != DMU_BONUS_BLKID); 2525 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2526 ASSERT3U(dn->dn_nlevels, >, level); 2527 2528 *dbp = NULL; 2529 top: 2530 /* dbuf_find() returns with db_mtx held */ 2531 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2532 2533 if (db == NULL) { 2534 blkptr_t *bp = NULL; 2535 int err; 2536 2537 if (fail_uncached) 2538 return (SET_ERROR(ENOENT)); 2539 2540 ASSERT3P(parent, ==, NULL); 2541 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2542 if (fail_sparse) { 2543 if (err == 0 && bp && BP_IS_HOLE(bp)) 2544 err = SET_ERROR(ENOENT); 2545 if (err) { 2546 if (parent) 2547 dbuf_rele(parent, NULL); 2548 return (err); 2549 } 2550 } 2551 if (err && err != ENOENT) 2552 return (err); 2553 db = dbuf_create(dn, level, blkid, parent, bp); 2554 } 2555 2556 if (fail_uncached && db->db_state != DB_CACHED) { 2557 mutex_exit(&db->db_mtx); 2558 return (SET_ERROR(ENOENT)); 2559 } 2560 2561 if (db->db_buf != NULL) 2562 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2563 2564 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2565 2566 /* 2567 * If this buffer is currently syncing out, and we are are 2568 * still referencing it from db_data, we need to make a copy 2569 * of it in case we decide we want to dirty it again in this txg. 2570 */ 2571 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2572 dn->dn_object != DMU_META_DNODE_OBJECT && 2573 db->db_state == DB_CACHED && db->db_data_pending) { 2574 dbuf_dirty_record_t *dr = db->db_data_pending; 2575 2576 if (dr->dt.dl.dr_data == db->db_buf) { 2577 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2578 2579 dbuf_set_data(db, 2580 arc_alloc_buf(dn->dn_objset->os_spa, db, type, 2581 db->db.db_size)); 2582 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2583 db->db.db_size); 2584 } 2585 } 2586 2587 if (multilist_link_active(&db->db_cache_link)) { 2588 ASSERT(refcount_is_zero(&db->db_holds)); 2589 multilist_remove(dbuf_cache, db); 2590 (void) refcount_remove_many(&dbuf_cache_size, 2591 db->db.db_size, db); 2592 } 2593 (void) refcount_add(&db->db_holds, tag); 2594 DBUF_VERIFY(db); 2595 mutex_exit(&db->db_mtx); 2596 2597 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2598 if (parent) 2599 dbuf_rele(parent, NULL); 2600 2601 ASSERT3P(DB_DNODE(db), ==, dn); 2602 ASSERT3U(db->db_blkid, ==, blkid); 2603 ASSERT3U(db->db_level, ==, level); 2604 *dbp = db; 2605 2606 return (0); 2607 } 2608 2609 dmu_buf_impl_t * 2610 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2611 { 2612 return (dbuf_hold_level(dn, 0, blkid, tag)); 2613 } 2614 2615 dmu_buf_impl_t * 2616 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2617 { 2618 dmu_buf_impl_t *db; 2619 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2620 return (err ? NULL : db); 2621 } 2622 2623 void 2624 dbuf_create_bonus(dnode_t *dn) 2625 { 2626 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2627 2628 ASSERT(dn->dn_bonus == NULL); 2629 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2630 } 2631 2632 int 2633 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2634 { 2635 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2636 dnode_t *dn; 2637 2638 if (db->db_blkid != DMU_SPILL_BLKID) 2639 return (SET_ERROR(ENOTSUP)); 2640 if (blksz == 0) 2641 blksz = SPA_MINBLOCKSIZE; 2642 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2643 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2644 2645 DB_DNODE_ENTER(db); 2646 dn = DB_DNODE(db); 2647 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2648 dbuf_new_size(db, blksz, tx); 2649 rw_exit(&dn->dn_struct_rwlock); 2650 DB_DNODE_EXIT(db); 2651 2652 return (0); 2653 } 2654 2655 void 2656 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2657 { 2658 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2659 } 2660 2661 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2662 void 2663 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2664 { 2665 int64_t holds = refcount_add(&db->db_holds, tag); 2666 ASSERT3S(holds, >, 1); 2667 } 2668 2669 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2670 boolean_t 2671 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2672 void *tag) 2673 { 2674 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2675 dmu_buf_impl_t *found_db; 2676 boolean_t result = B_FALSE; 2677 2678 if (db->db_blkid == DMU_BONUS_BLKID) 2679 found_db = dbuf_find_bonus(os, obj); 2680 else 2681 found_db = dbuf_find(os, obj, 0, blkid); 2682 2683 if (found_db != NULL) { 2684 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 2685 (void) refcount_add(&db->db_holds, tag); 2686 result = B_TRUE; 2687 } 2688 mutex_exit(&db->db_mtx); 2689 } 2690 return (result); 2691 } 2692 2693 /* 2694 * If you call dbuf_rele() you had better not be referencing the dnode handle 2695 * unless you have some other direct or indirect hold on the dnode. (An indirect 2696 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2697 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2698 * dnode's parent dbuf evicting its dnode handles. 2699 */ 2700 void 2701 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2702 { 2703 mutex_enter(&db->db_mtx); 2704 dbuf_rele_and_unlock(db, tag); 2705 } 2706 2707 void 2708 dmu_buf_rele(dmu_buf_t *db, void *tag) 2709 { 2710 dbuf_rele((dmu_buf_impl_t *)db, tag); 2711 } 2712 2713 /* 2714 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2715 * db_dirtycnt and db_holds to be updated atomically. 2716 */ 2717 void 2718 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2719 { 2720 int64_t holds; 2721 2722 ASSERT(MUTEX_HELD(&db->db_mtx)); 2723 DBUF_VERIFY(db); 2724 2725 /* 2726 * Remove the reference to the dbuf before removing its hold on the 2727 * dnode so we can guarantee in dnode_move() that a referenced bonus 2728 * buffer has a corresponding dnode hold. 2729 */ 2730 holds = refcount_remove(&db->db_holds, tag); 2731 ASSERT(holds >= 0); 2732 2733 /* 2734 * We can't freeze indirects if there is a possibility that they 2735 * may be modified in the current syncing context. 2736 */ 2737 if (db->db_buf != NULL && 2738 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 2739 arc_buf_freeze(db->db_buf); 2740 } 2741 2742 if (holds == db->db_dirtycnt && 2743 db->db_level == 0 && db->db_user_immediate_evict) 2744 dbuf_evict_user(db); 2745 2746 if (holds == 0) { 2747 if (db->db_blkid == DMU_BONUS_BLKID) { 2748 dnode_t *dn; 2749 boolean_t evict_dbuf = db->db_pending_evict; 2750 2751 /* 2752 * If the dnode moves here, we cannot cross this 2753 * barrier until the move completes. 2754 */ 2755 DB_DNODE_ENTER(db); 2756 2757 dn = DB_DNODE(db); 2758 atomic_dec_32(&dn->dn_dbufs_count); 2759 2760 /* 2761 * Decrementing the dbuf count means that the bonus 2762 * buffer's dnode hold is no longer discounted in 2763 * dnode_move(). The dnode cannot move until after 2764 * the dnode_rele() below. 2765 */ 2766 DB_DNODE_EXIT(db); 2767 2768 /* 2769 * Do not reference db after its lock is dropped. 2770 * Another thread may evict it. 2771 */ 2772 mutex_exit(&db->db_mtx); 2773 2774 if (evict_dbuf) 2775 dnode_evict_bonus(dn); 2776 2777 dnode_rele(dn, db); 2778 } else if (db->db_buf == NULL) { 2779 /* 2780 * This is a special case: we never associated this 2781 * dbuf with any data allocated from the ARC. 2782 */ 2783 ASSERT(db->db_state == DB_UNCACHED || 2784 db->db_state == DB_NOFILL); 2785 dbuf_destroy(db); 2786 } else if (arc_released(db->db_buf)) { 2787 /* 2788 * This dbuf has anonymous data associated with it. 2789 */ 2790 dbuf_destroy(db); 2791 } else { 2792 boolean_t do_arc_evict = B_FALSE; 2793 blkptr_t bp; 2794 spa_t *spa = dmu_objset_spa(db->db_objset); 2795 2796 if (!DBUF_IS_CACHEABLE(db) && 2797 db->db_blkptr != NULL && 2798 !BP_IS_HOLE(db->db_blkptr) && 2799 !BP_IS_EMBEDDED(db->db_blkptr)) { 2800 do_arc_evict = B_TRUE; 2801 bp = *db->db_blkptr; 2802 } 2803 2804 if (!DBUF_IS_CACHEABLE(db) || 2805 db->db_pending_evict) { 2806 dbuf_destroy(db); 2807 } else if (!multilist_link_active(&db->db_cache_link)) { 2808 multilist_insert(dbuf_cache, db); 2809 (void) refcount_add_many(&dbuf_cache_size, 2810 db->db.db_size, db); 2811 mutex_exit(&db->db_mtx); 2812 2813 dbuf_evict_notify(); 2814 } 2815 2816 if (do_arc_evict) 2817 arc_freed(spa, &bp); 2818 } 2819 } else { 2820 mutex_exit(&db->db_mtx); 2821 } 2822 2823 } 2824 2825 #pragma weak dmu_buf_refcount = dbuf_refcount 2826 uint64_t 2827 dbuf_refcount(dmu_buf_impl_t *db) 2828 { 2829 return (refcount_count(&db->db_holds)); 2830 } 2831 2832 void * 2833 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 2834 dmu_buf_user_t *new_user) 2835 { 2836 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2837 2838 mutex_enter(&db->db_mtx); 2839 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2840 if (db->db_user == old_user) 2841 db->db_user = new_user; 2842 else 2843 old_user = db->db_user; 2844 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2845 mutex_exit(&db->db_mtx); 2846 2847 return (old_user); 2848 } 2849 2850 void * 2851 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2852 { 2853 return (dmu_buf_replace_user(db_fake, NULL, user)); 2854 } 2855 2856 void * 2857 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2858 { 2859 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2860 2861 db->db_user_immediate_evict = TRUE; 2862 return (dmu_buf_set_user(db_fake, user)); 2863 } 2864 2865 void * 2866 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2867 { 2868 return (dmu_buf_replace_user(db_fake, user, NULL)); 2869 } 2870 2871 void * 2872 dmu_buf_get_user(dmu_buf_t *db_fake) 2873 { 2874 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2875 2876 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2877 return (db->db_user); 2878 } 2879 2880 void 2881 dmu_buf_user_evict_wait() 2882 { 2883 taskq_wait(dbu_evict_taskq); 2884 } 2885 2886 blkptr_t * 2887 dmu_buf_get_blkptr(dmu_buf_t *db) 2888 { 2889 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2890 return (dbi->db_blkptr); 2891 } 2892 2893 objset_t * 2894 dmu_buf_get_objset(dmu_buf_t *db) 2895 { 2896 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2897 return (dbi->db_objset); 2898 } 2899 2900 dnode_t * 2901 dmu_buf_dnode_enter(dmu_buf_t *db) 2902 { 2903 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2904 DB_DNODE_ENTER(dbi); 2905 return (DB_DNODE(dbi)); 2906 } 2907 2908 void 2909 dmu_buf_dnode_exit(dmu_buf_t *db) 2910 { 2911 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2912 DB_DNODE_EXIT(dbi); 2913 } 2914 2915 static void 2916 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2917 { 2918 /* ASSERT(dmu_tx_is_syncing(tx) */ 2919 ASSERT(MUTEX_HELD(&db->db_mtx)); 2920 2921 if (db->db_blkptr != NULL) 2922 return; 2923 2924 if (db->db_blkid == DMU_SPILL_BLKID) { 2925 db->db_blkptr = &dn->dn_phys->dn_spill; 2926 BP_ZERO(db->db_blkptr); 2927 return; 2928 } 2929 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2930 /* 2931 * This buffer was allocated at a time when there was 2932 * no available blkptrs from the dnode, or it was 2933 * inappropriate to hook it in (i.e., nlevels mis-match). 2934 */ 2935 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2936 ASSERT(db->db_parent == NULL); 2937 db->db_parent = dn->dn_dbuf; 2938 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2939 DBUF_VERIFY(db); 2940 } else { 2941 dmu_buf_impl_t *parent = db->db_parent; 2942 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2943 2944 ASSERT(dn->dn_phys->dn_nlevels > 1); 2945 if (parent == NULL) { 2946 mutex_exit(&db->db_mtx); 2947 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2948 parent = dbuf_hold_level(dn, db->db_level + 1, 2949 db->db_blkid >> epbs, db); 2950 rw_exit(&dn->dn_struct_rwlock); 2951 mutex_enter(&db->db_mtx); 2952 db->db_parent = parent; 2953 } 2954 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2955 (db->db_blkid & ((1ULL << epbs) - 1)); 2956 DBUF_VERIFY(db); 2957 } 2958 } 2959 2960 static void 2961 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2962 { 2963 dmu_buf_impl_t *db = dr->dr_dbuf; 2964 dnode_t *dn; 2965 zio_t *zio; 2966 2967 ASSERT(dmu_tx_is_syncing(tx)); 2968 2969 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2970 2971 mutex_enter(&db->db_mtx); 2972 2973 ASSERT(db->db_level > 0); 2974 DBUF_VERIFY(db); 2975 2976 /* Read the block if it hasn't been read yet. */ 2977 if (db->db_buf == NULL) { 2978 mutex_exit(&db->db_mtx); 2979 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2980 mutex_enter(&db->db_mtx); 2981 } 2982 ASSERT3U(db->db_state, ==, DB_CACHED); 2983 ASSERT(db->db_buf != NULL); 2984 2985 DB_DNODE_ENTER(db); 2986 dn = DB_DNODE(db); 2987 /* Indirect block size must match what the dnode thinks it is. */ 2988 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2989 dbuf_check_blkptr(dn, db); 2990 DB_DNODE_EXIT(db); 2991 2992 /* Provide the pending dirty record to child dbufs */ 2993 db->db_data_pending = dr; 2994 2995 mutex_exit(&db->db_mtx); 2996 dbuf_write(dr, db->db_buf, tx); 2997 2998 zio = dr->dr_zio; 2999 mutex_enter(&dr->dt.di.dr_mtx); 3000 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 3001 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3002 mutex_exit(&dr->dt.di.dr_mtx); 3003 zio_nowait(zio); 3004 } 3005 3006 static void 3007 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3008 { 3009 arc_buf_t **datap = &dr->dt.dl.dr_data; 3010 dmu_buf_impl_t *db = dr->dr_dbuf; 3011 dnode_t *dn; 3012 objset_t *os; 3013 uint64_t txg = tx->tx_txg; 3014 3015 ASSERT(dmu_tx_is_syncing(tx)); 3016 3017 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3018 3019 mutex_enter(&db->db_mtx); 3020 /* 3021 * To be synced, we must be dirtied. But we 3022 * might have been freed after the dirty. 3023 */ 3024 if (db->db_state == DB_UNCACHED) { 3025 /* This buffer has been freed since it was dirtied */ 3026 ASSERT(db->db.db_data == NULL); 3027 } else if (db->db_state == DB_FILL) { 3028 /* This buffer was freed and is now being re-filled */ 3029 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3030 } else { 3031 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3032 } 3033 DBUF_VERIFY(db); 3034 3035 DB_DNODE_ENTER(db); 3036 dn = DB_DNODE(db); 3037 3038 if (db->db_blkid == DMU_SPILL_BLKID) { 3039 mutex_enter(&dn->dn_mtx); 3040 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 3041 mutex_exit(&dn->dn_mtx); 3042 } 3043 3044 /* 3045 * If this is a bonus buffer, simply copy the bonus data into the 3046 * dnode. It will be written out when the dnode is synced (and it 3047 * will be synced, since it must have been dirty for dbuf_sync to 3048 * be called). 3049 */ 3050 if (db->db_blkid == DMU_BONUS_BLKID) { 3051 dbuf_dirty_record_t **drp; 3052 3053 ASSERT(*datap != NULL); 3054 ASSERT0(db->db_level); 3055 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 3056 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 3057 DB_DNODE_EXIT(db); 3058 3059 if (*datap != db->db.db_data) { 3060 zio_buf_free(*datap, DN_MAX_BONUSLEN); 3061 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 3062 } 3063 db->db_data_pending = NULL; 3064 drp = &db->db_last_dirty; 3065 while (*drp != dr) 3066 drp = &(*drp)->dr_next; 3067 ASSERT(dr->dr_next == NULL); 3068 ASSERT(dr->dr_dbuf == db); 3069 *drp = dr->dr_next; 3070 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3071 ASSERT(db->db_dirtycnt > 0); 3072 db->db_dirtycnt -= 1; 3073 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 3074 return; 3075 } 3076 3077 os = dn->dn_objset; 3078 3079 /* 3080 * This function may have dropped the db_mtx lock allowing a dmu_sync 3081 * operation to sneak in. As a result, we need to ensure that we 3082 * don't check the dr_override_state until we have returned from 3083 * dbuf_check_blkptr. 3084 */ 3085 dbuf_check_blkptr(dn, db); 3086 3087 /* 3088 * If this buffer is in the middle of an immediate write, 3089 * wait for the synchronous IO to complete. 3090 */ 3091 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 3092 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 3093 cv_wait(&db->db_changed, &db->db_mtx); 3094 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 3095 } 3096 3097 if (db->db_state != DB_NOFILL && 3098 dn->dn_object != DMU_META_DNODE_OBJECT && 3099 refcount_count(&db->db_holds) > 1 && 3100 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 3101 *datap == db->db_buf) { 3102 /* 3103 * If this buffer is currently "in use" (i.e., there 3104 * are active holds and db_data still references it), 3105 * then make a copy before we start the write so that 3106 * any modifications from the open txg will not leak 3107 * into this write. 3108 * 3109 * NOTE: this copy does not need to be made for 3110 * objects only modified in the syncing context (e.g. 3111 * DNONE_DNODE blocks). 3112 */ 3113 int psize = arc_buf_size(*datap); 3114 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 3115 enum zio_compress compress_type = arc_get_compression(*datap); 3116 3117 if (compress_type == ZIO_COMPRESS_OFF) { 3118 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 3119 } else { 3120 ASSERT3U(type, ==, ARC_BUFC_DATA); 3121 int lsize = arc_buf_lsize(*datap); 3122 *datap = arc_alloc_compressed_buf(os->os_spa, db, 3123 psize, lsize, compress_type); 3124 } 3125 bcopy(db->db.db_data, (*datap)->b_data, psize); 3126 } 3127 db->db_data_pending = dr; 3128 3129 mutex_exit(&db->db_mtx); 3130 3131 dbuf_write(dr, *datap, tx); 3132 3133 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3134 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 3135 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 3136 DB_DNODE_EXIT(db); 3137 } else { 3138 /* 3139 * Although zio_nowait() does not "wait for an IO", it does 3140 * initiate the IO. If this is an empty write it seems plausible 3141 * that the IO could actually be completed before the nowait 3142 * returns. We need to DB_DNODE_EXIT() first in case 3143 * zio_nowait() invalidates the dbuf. 3144 */ 3145 DB_DNODE_EXIT(db); 3146 zio_nowait(dr->dr_zio); 3147 } 3148 } 3149 3150 void 3151 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 3152 { 3153 dbuf_dirty_record_t *dr; 3154 3155 while (dr = list_head(list)) { 3156 if (dr->dr_zio != NULL) { 3157 /* 3158 * If we find an already initialized zio then we 3159 * are processing the meta-dnode, and we have finished. 3160 * The dbufs for all dnodes are put back on the list 3161 * during processing, so that we can zio_wait() 3162 * these IOs after initiating all child IOs. 3163 */ 3164 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 3165 DMU_META_DNODE_OBJECT); 3166 break; 3167 } 3168 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 3169 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 3170 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 3171 } 3172 list_remove(list, dr); 3173 if (dr->dr_dbuf->db_level > 0) 3174 dbuf_sync_indirect(dr, tx); 3175 else 3176 dbuf_sync_leaf(dr, tx); 3177 } 3178 } 3179 3180 /* ARGSUSED */ 3181 static void 3182 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3183 { 3184 dmu_buf_impl_t *db = vdb; 3185 dnode_t *dn; 3186 blkptr_t *bp = zio->io_bp; 3187 blkptr_t *bp_orig = &zio->io_bp_orig; 3188 spa_t *spa = zio->io_spa; 3189 int64_t delta; 3190 uint64_t fill = 0; 3191 int i; 3192 3193 ASSERT3P(db->db_blkptr, !=, NULL); 3194 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 3195 3196 DB_DNODE_ENTER(db); 3197 dn = DB_DNODE(db); 3198 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 3199 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 3200 zio->io_prev_space_delta = delta; 3201 3202 if (bp->blk_birth != 0) { 3203 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 3204 BP_GET_TYPE(bp) == dn->dn_type) || 3205 (db->db_blkid == DMU_SPILL_BLKID && 3206 BP_GET_TYPE(bp) == dn->dn_bonustype) || 3207 BP_IS_EMBEDDED(bp)); 3208 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 3209 } 3210 3211 mutex_enter(&db->db_mtx); 3212 3213 #ifdef ZFS_DEBUG 3214 if (db->db_blkid == DMU_SPILL_BLKID) { 3215 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3216 ASSERT(!(BP_IS_HOLE(bp)) && 3217 db->db_blkptr == &dn->dn_phys->dn_spill); 3218 } 3219 #endif 3220 3221 if (db->db_level == 0) { 3222 mutex_enter(&dn->dn_mtx); 3223 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 3224 db->db_blkid != DMU_SPILL_BLKID) 3225 dn->dn_phys->dn_maxblkid = db->db_blkid; 3226 mutex_exit(&dn->dn_mtx); 3227 3228 if (dn->dn_type == DMU_OT_DNODE) { 3229 dnode_phys_t *dnp = db->db.db_data; 3230 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 3231 i--, dnp++) { 3232 if (dnp->dn_type != DMU_OT_NONE) 3233 fill++; 3234 } 3235 } else { 3236 if (BP_IS_HOLE(bp)) { 3237 fill = 0; 3238 } else { 3239 fill = 1; 3240 } 3241 } 3242 } else { 3243 blkptr_t *ibp = db->db.db_data; 3244 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3245 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 3246 if (BP_IS_HOLE(ibp)) 3247 continue; 3248 fill += BP_GET_FILL(ibp); 3249 } 3250 } 3251 DB_DNODE_EXIT(db); 3252 3253 if (!BP_IS_EMBEDDED(bp)) 3254 bp->blk_fill = fill; 3255 3256 mutex_exit(&db->db_mtx); 3257 3258 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3259 *db->db_blkptr = *bp; 3260 rw_exit(&dn->dn_struct_rwlock); 3261 } 3262 3263 /* ARGSUSED */ 3264 /* 3265 * This function gets called just prior to running through the compression 3266 * stage of the zio pipeline. If we're an indirect block comprised of only 3267 * holes, then we want this indirect to be compressed away to a hole. In 3268 * order to do that we must zero out any information about the holes that 3269 * this indirect points to prior to before we try to compress it. 3270 */ 3271 static void 3272 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3273 { 3274 dmu_buf_impl_t *db = vdb; 3275 dnode_t *dn; 3276 blkptr_t *bp; 3277 unsigned int epbs, i; 3278 3279 ASSERT3U(db->db_level, >, 0); 3280 DB_DNODE_ENTER(db); 3281 dn = DB_DNODE(db); 3282 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3283 ASSERT3U(epbs, <, 31); 3284 3285 /* Determine if all our children are holes */ 3286 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { 3287 if (!BP_IS_HOLE(bp)) 3288 break; 3289 } 3290 3291 /* 3292 * If all the children are holes, then zero them all out so that 3293 * we may get compressed away. 3294 */ 3295 if (i == 1 << epbs) { 3296 /* 3297 * We only found holes. Grab the rwlock to prevent 3298 * anybody from reading the blocks we're about to 3299 * zero out. 3300 */ 3301 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3302 bzero(db->db.db_data, db->db.db_size); 3303 rw_exit(&dn->dn_struct_rwlock); 3304 } 3305 DB_DNODE_EXIT(db); 3306 } 3307 3308 /* 3309 * The SPA will call this callback several times for each zio - once 3310 * for every physical child i/o (zio->io_phys_children times). This 3311 * allows the DMU to monitor the progress of each logical i/o. For example, 3312 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 3313 * block. There may be a long delay before all copies/fragments are completed, 3314 * so this callback allows us to retire dirty space gradually, as the physical 3315 * i/os complete. 3316 */ 3317 /* ARGSUSED */ 3318 static void 3319 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 3320 { 3321 dmu_buf_impl_t *db = arg; 3322 objset_t *os = db->db_objset; 3323 dsl_pool_t *dp = dmu_objset_pool(os); 3324 dbuf_dirty_record_t *dr; 3325 int delta = 0; 3326 3327 dr = db->db_data_pending; 3328 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 3329 3330 /* 3331 * The callback will be called io_phys_children times. Retire one 3332 * portion of our dirty space each time we are called. Any rounding 3333 * error will be cleaned up by dsl_pool_sync()'s call to 3334 * dsl_pool_undirty_space(). 3335 */ 3336 delta = dr->dr_accounted / zio->io_phys_children; 3337 dsl_pool_undirty_space(dp, delta, zio->io_txg); 3338 } 3339 3340 /* ARGSUSED */ 3341 static void 3342 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 3343 { 3344 dmu_buf_impl_t *db = vdb; 3345 blkptr_t *bp_orig = &zio->io_bp_orig; 3346 blkptr_t *bp = db->db_blkptr; 3347 objset_t *os = db->db_objset; 3348 dmu_tx_t *tx = os->os_synctx; 3349 dbuf_dirty_record_t **drp, *dr; 3350 3351 ASSERT0(zio->io_error); 3352 ASSERT(db->db_blkptr == bp); 3353 3354 /* 3355 * For nopwrites and rewrites we ensure that the bp matches our 3356 * original and bypass all the accounting. 3357 */ 3358 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 3359 ASSERT(BP_EQUAL(bp, bp_orig)); 3360 } else { 3361 dsl_dataset_t *ds = os->os_dsl_dataset; 3362 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 3363 dsl_dataset_block_born(ds, bp, tx); 3364 } 3365 3366 mutex_enter(&db->db_mtx); 3367 3368 DBUF_VERIFY(db); 3369 3370 drp = &db->db_last_dirty; 3371 while ((dr = *drp) != db->db_data_pending) 3372 drp = &dr->dr_next; 3373 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3374 ASSERT(dr->dr_dbuf == db); 3375 ASSERT(dr->dr_next == NULL); 3376 *drp = dr->dr_next; 3377 3378 #ifdef ZFS_DEBUG 3379 if (db->db_blkid == DMU_SPILL_BLKID) { 3380 dnode_t *dn; 3381 3382 DB_DNODE_ENTER(db); 3383 dn = DB_DNODE(db); 3384 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3385 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3386 db->db_blkptr == &dn->dn_phys->dn_spill); 3387 DB_DNODE_EXIT(db); 3388 } 3389 #endif 3390 3391 if (db->db_level == 0) { 3392 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3393 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3394 if (db->db_state != DB_NOFILL) { 3395 if (dr->dt.dl.dr_data != db->db_buf) 3396 arc_buf_destroy(dr->dt.dl.dr_data, db); 3397 } 3398 } else { 3399 dnode_t *dn; 3400 3401 DB_DNODE_ENTER(db); 3402 dn = DB_DNODE(db); 3403 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3404 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3405 if (!BP_IS_HOLE(db->db_blkptr)) { 3406 int epbs = 3407 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3408 ASSERT3U(db->db_blkid, <=, 3409 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3410 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3411 db->db.db_size); 3412 } 3413 DB_DNODE_EXIT(db); 3414 mutex_destroy(&dr->dt.di.dr_mtx); 3415 list_destroy(&dr->dt.di.dr_children); 3416 } 3417 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3418 3419 cv_broadcast(&db->db_changed); 3420 ASSERT(db->db_dirtycnt > 0); 3421 db->db_dirtycnt -= 1; 3422 db->db_data_pending = NULL; 3423 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 3424 } 3425 3426 static void 3427 dbuf_write_nofill_ready(zio_t *zio) 3428 { 3429 dbuf_write_ready(zio, NULL, zio->io_private); 3430 } 3431 3432 static void 3433 dbuf_write_nofill_done(zio_t *zio) 3434 { 3435 dbuf_write_done(zio, NULL, zio->io_private); 3436 } 3437 3438 static void 3439 dbuf_write_override_ready(zio_t *zio) 3440 { 3441 dbuf_dirty_record_t *dr = zio->io_private; 3442 dmu_buf_impl_t *db = dr->dr_dbuf; 3443 3444 dbuf_write_ready(zio, NULL, db); 3445 } 3446 3447 static void 3448 dbuf_write_override_done(zio_t *zio) 3449 { 3450 dbuf_dirty_record_t *dr = zio->io_private; 3451 dmu_buf_impl_t *db = dr->dr_dbuf; 3452 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3453 3454 mutex_enter(&db->db_mtx); 3455 if (!BP_EQUAL(zio->io_bp, obp)) { 3456 if (!BP_IS_HOLE(obp)) 3457 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3458 arc_release(dr->dt.dl.dr_data, db); 3459 } 3460 mutex_exit(&db->db_mtx); 3461 dbuf_write_done(zio, NULL, db); 3462 3463 if (zio->io_abd != NULL) 3464 abd_put(zio->io_abd); 3465 } 3466 3467 /* Issue I/O to commit a dirty buffer to disk. */ 3468 static void 3469 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 3470 { 3471 dmu_buf_impl_t *db = dr->dr_dbuf; 3472 dnode_t *dn; 3473 objset_t *os; 3474 dmu_buf_impl_t *parent = db->db_parent; 3475 uint64_t txg = tx->tx_txg; 3476 zbookmark_phys_t zb; 3477 zio_prop_t zp; 3478 zio_t *zio; 3479 int wp_flag = 0; 3480 3481 ASSERT(dmu_tx_is_syncing(tx)); 3482 3483 DB_DNODE_ENTER(db); 3484 dn = DB_DNODE(db); 3485 os = dn->dn_objset; 3486 3487 if (db->db_state != DB_NOFILL) { 3488 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 3489 /* 3490 * Private object buffers are released here rather 3491 * than in dbuf_dirty() since they are only modified 3492 * in the syncing context and we don't want the 3493 * overhead of making multiple copies of the data. 3494 */ 3495 if (BP_IS_HOLE(db->db_blkptr)) { 3496 arc_buf_thaw(data); 3497 } else { 3498 dbuf_release_bp(db); 3499 } 3500 } 3501 } 3502 3503 if (parent != dn->dn_dbuf) { 3504 /* Our parent is an indirect block. */ 3505 /* We have a dirty parent that has been scheduled for write. */ 3506 ASSERT(parent && parent->db_data_pending); 3507 /* Our parent's buffer is one level closer to the dnode. */ 3508 ASSERT(db->db_level == parent->db_level-1); 3509 /* 3510 * We're about to modify our parent's db_data by modifying 3511 * our block pointer, so the parent must be released. 3512 */ 3513 ASSERT(arc_released(parent->db_buf)); 3514 zio = parent->db_data_pending->dr_zio; 3515 } else { 3516 /* Our parent is the dnode itself. */ 3517 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 3518 db->db_blkid != DMU_SPILL_BLKID) || 3519 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 3520 if (db->db_blkid != DMU_SPILL_BLKID) 3521 ASSERT3P(db->db_blkptr, ==, 3522 &dn->dn_phys->dn_blkptr[db->db_blkid]); 3523 zio = dn->dn_zio; 3524 } 3525 3526 ASSERT(db->db_level == 0 || data == db->db_buf); 3527 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 3528 ASSERT(zio); 3529 3530 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 3531 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 3532 db->db.db_object, db->db_level, db->db_blkid); 3533 3534 if (db->db_blkid == DMU_SPILL_BLKID) 3535 wp_flag = WP_SPILL; 3536 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 3537 3538 dmu_write_policy(os, dn, db->db_level, wp_flag, 3539 (data != NULL && arc_get_compression(data) != ZIO_COMPRESS_OFF) ? 3540 arc_get_compression(data) : ZIO_COMPRESS_INHERIT, &zp); 3541 DB_DNODE_EXIT(db); 3542 3543 /* 3544 * We copy the blkptr now (rather than when we instantiate the dirty 3545 * record), because its value can change between open context and 3546 * syncing context. We do not need to hold dn_struct_rwlock to read 3547 * db_blkptr because we are in syncing context. 3548 */ 3549 dr->dr_bp_copy = *db->db_blkptr; 3550 3551 if (db->db_level == 0 && 3552 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 3553 /* 3554 * The BP for this block has been provided by open context 3555 * (by dmu_sync() or dmu_buf_write_embedded()). 3556 */ 3557 abd_t *contents = (data != NULL) ? 3558 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 3559 3560 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy, 3561 contents, db->db.db_size, db->db.db_size, &zp, 3562 dbuf_write_override_ready, NULL, NULL, 3563 dbuf_write_override_done, 3564 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3565 mutex_enter(&db->db_mtx); 3566 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 3567 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 3568 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 3569 mutex_exit(&db->db_mtx); 3570 } else if (db->db_state == DB_NOFILL) { 3571 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 3572 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 3573 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3574 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 3575 dbuf_write_nofill_ready, NULL, NULL, 3576 dbuf_write_nofill_done, db, 3577 ZIO_PRIORITY_ASYNC_WRITE, 3578 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 3579 } else { 3580 ASSERT(arc_released(data)); 3581 3582 /* 3583 * For indirect blocks, we want to setup the children 3584 * ready callback so that we can properly handle an indirect 3585 * block that only contains holes. 3586 */ 3587 arc_done_func_t *children_ready_cb = NULL; 3588 if (db->db_level != 0) 3589 children_ready_cb = dbuf_write_children_ready; 3590 3591 dr->dr_zio = arc_write(zio, os->os_spa, txg, 3592 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 3593 &zp, dbuf_write_ready, children_ready_cb, 3594 dbuf_write_physdone, dbuf_write_done, db, 3595 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3596 } 3597 } 3598