xref: /illumos-gate/usr/src/uts/common/fs/zfs/dbuf.c (revision c97ad5cdc75eb73e3cc38542ca3ba783574b0a7a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dbuf.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/spa.h>
37 #include <sys/zio.h>
38 #include <sys/dmu_zfetch.h>
39 
40 static void dbuf_destroy(dmu_buf_impl_t *db);
41 static int dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
42 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, int checksum,
43     int compress, dmu_tx_t *tx);
44 static arc_done_func_t dbuf_write_ready;
45 static arc_done_func_t dbuf_write_done;
46 
47 int zfs_mdcomp_disable = 0;
48 
49 /*
50  * Global data structures and functions for the dbuf cache.
51  */
52 static kmem_cache_t *dbuf_cache;
53 
54 /* ARGSUSED */
55 static int
56 dbuf_cons(void *vdb, void *unused, int kmflag)
57 {
58 	dmu_buf_impl_t *db = vdb;
59 	bzero(db, sizeof (dmu_buf_impl_t));
60 
61 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
62 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
63 	refcount_create(&db->db_holds);
64 	return (0);
65 }
66 
67 /* ARGSUSED */
68 static void
69 dbuf_dest(void *vdb, void *unused)
70 {
71 	dmu_buf_impl_t *db = vdb;
72 	mutex_destroy(&db->db_mtx);
73 	cv_destroy(&db->db_changed);
74 	refcount_destroy(&db->db_holds);
75 }
76 
77 /*
78  * dbuf hash table routines
79  */
80 static dbuf_hash_table_t dbuf_hash_table;
81 
82 static uint64_t dbuf_hash_count;
83 
84 static uint64_t
85 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
86 {
87 	uintptr_t osv = (uintptr_t)os;
88 	uint64_t crc = -1ULL;
89 
90 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
91 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
92 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
93 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
94 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
95 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
96 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
97 
98 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
99 
100 	return (crc);
101 }
102 
103 #define	DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
104 
105 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
106 	((dbuf)->db.db_object == (obj) &&		\
107 	(dbuf)->db_objset == (os) &&			\
108 	(dbuf)->db_level == (level) &&			\
109 	(dbuf)->db_blkid == (blkid))
110 
111 dmu_buf_impl_t *
112 dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid)
113 {
114 	dbuf_hash_table_t *h = &dbuf_hash_table;
115 	objset_impl_t *os = dn->dn_objset;
116 	uint64_t obj = dn->dn_object;
117 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
118 	uint64_t idx = hv & h->hash_table_mask;
119 	dmu_buf_impl_t *db;
120 
121 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
122 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
123 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
124 			mutex_enter(&db->db_mtx);
125 			if (db->db_state != DB_EVICTING) {
126 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
127 				return (db);
128 			}
129 			mutex_exit(&db->db_mtx);
130 		}
131 	}
132 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
133 	return (NULL);
134 }
135 
136 /*
137  * Insert an entry into the hash table.  If there is already an element
138  * equal to elem in the hash table, then the already existing element
139  * will be returned and the new element will not be inserted.
140  * Otherwise returns NULL.
141  */
142 static dmu_buf_impl_t *
143 dbuf_hash_insert(dmu_buf_impl_t *db)
144 {
145 	dbuf_hash_table_t *h = &dbuf_hash_table;
146 	objset_impl_t *os = db->db_objset;
147 	uint64_t obj = db->db.db_object;
148 	int level = db->db_level;
149 	uint64_t blkid = db->db_blkid;
150 	uint64_t hv = DBUF_HASH(os, obj, level, blkid);
151 	uint64_t idx = hv & h->hash_table_mask;
152 	dmu_buf_impl_t *dbf;
153 
154 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
155 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
156 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
157 			mutex_enter(&dbf->db_mtx);
158 			if (dbf->db_state != DB_EVICTING) {
159 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
160 				return (dbf);
161 			}
162 			mutex_exit(&dbf->db_mtx);
163 		}
164 	}
165 
166 	mutex_enter(&db->db_mtx);
167 	db->db_hash_next = h->hash_table[idx];
168 	h->hash_table[idx] = db;
169 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
170 	atomic_add_64(&dbuf_hash_count, 1);
171 
172 	return (NULL);
173 }
174 
175 /*
176  * Remove an entry from the hash table.  This operation will
177  * fail if there are any existing holds on the db.
178  */
179 static void
180 dbuf_hash_remove(dmu_buf_impl_t *db)
181 {
182 	dbuf_hash_table_t *h = &dbuf_hash_table;
183 	uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object,
184 	    db->db_level, db->db_blkid);
185 	uint64_t idx = hv & h->hash_table_mask;
186 	dmu_buf_impl_t *dbf, **dbp;
187 
188 	/*
189 	 * We musn't hold db_mtx to maintin lock ordering:
190 	 * DBUF_HASH_MUTEX > db_mtx.
191 	 */
192 	ASSERT(refcount_is_zero(&db->db_holds));
193 	ASSERT(db->db_state == DB_EVICTING);
194 	ASSERT(!MUTEX_HELD(&db->db_mtx));
195 
196 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
197 	dbp = &h->hash_table[idx];
198 	while ((dbf = *dbp) != db) {
199 		dbp = &dbf->db_hash_next;
200 		ASSERT(dbf != NULL);
201 	}
202 	*dbp = db->db_hash_next;
203 	db->db_hash_next = NULL;
204 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
205 	atomic_add_64(&dbuf_hash_count, -1);
206 }
207 
208 static arc_evict_func_t dbuf_do_evict;
209 
210 static void
211 dbuf_evict_user(dmu_buf_impl_t *db)
212 {
213 	ASSERT(MUTEX_HELD(&db->db_mtx));
214 
215 	if (db->db_level != 0 || db->db_evict_func == NULL)
216 		return;
217 
218 	if (db->db_user_data_ptr_ptr)
219 		*db->db_user_data_ptr_ptr = db->db.db_data;
220 	db->db_evict_func(&db->db, db->db_user_ptr);
221 	db->db_user_ptr = NULL;
222 	db->db_user_data_ptr_ptr = NULL;
223 	db->db_evict_func = NULL;
224 }
225 
226 void
227 dbuf_evict(dmu_buf_impl_t *db)
228 {
229 	ASSERT(MUTEX_HELD(&db->db_mtx));
230 	ASSERT(db->db_buf == NULL);
231 	ASSERT(db->db_data_pending == NULL);
232 
233 	dbuf_clear(db);
234 	dbuf_destroy(db);
235 }
236 
237 void
238 dbuf_init(void)
239 {
240 	uint64_t hsize = 1ULL << 16;
241 	dbuf_hash_table_t *h = &dbuf_hash_table;
242 	int i;
243 
244 	/*
245 	 * The hash table is big enough to fill all of physical memory
246 	 * with an average 4K block size.  The table will take up
247 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
248 	 */
249 	while (hsize * 4096 < physmem * PAGESIZE)
250 		hsize <<= 1;
251 
252 retry:
253 	h->hash_table_mask = hsize - 1;
254 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
255 	if (h->hash_table == NULL) {
256 		/* XXX - we should really return an error instead of assert */
257 		ASSERT(hsize > (1ULL << 10));
258 		hsize >>= 1;
259 		goto retry;
260 	}
261 
262 	dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
263 	    sizeof (dmu_buf_impl_t),
264 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
265 
266 	for (i = 0; i < DBUF_MUTEXES; i++)
267 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
268 }
269 
270 void
271 dbuf_fini(void)
272 {
273 	dbuf_hash_table_t *h = &dbuf_hash_table;
274 	int i;
275 
276 	for (i = 0; i < DBUF_MUTEXES; i++)
277 		mutex_destroy(&h->hash_mutexes[i]);
278 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
279 	kmem_cache_destroy(dbuf_cache);
280 }
281 
282 /*
283  * Other stuff.
284  */
285 
286 #ifdef ZFS_DEBUG
287 static void
288 dbuf_verify(dmu_buf_impl_t *db)
289 {
290 	dnode_t *dn = db->db_dnode;
291 
292 	ASSERT(MUTEX_HELD(&db->db_mtx));
293 
294 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
295 		return;
296 
297 	ASSERT(db->db_objset != NULL);
298 	if (dn == NULL) {
299 		ASSERT(db->db_parent == NULL);
300 		ASSERT(db->db_blkptr == NULL);
301 	} else {
302 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
303 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
304 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
305 		ASSERT(db->db_blkid == DB_BONUS_BLKID ||
306 		    list_head(&dn->dn_dbufs));
307 	}
308 	if (db->db_blkid == DB_BONUS_BLKID) {
309 		ASSERT(dn != NULL);
310 		ASSERT3U(db->db.db_size, ==, dn->dn_bonuslen);
311 		ASSERT3U(db->db.db_offset, ==, DB_BONUS_BLKID);
312 	} else {
313 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
314 	}
315 
316 	if (db->db_level == 0) {
317 		/* we can be momentarily larger in dnode_set_blksz() */
318 		if (db->db_blkid != DB_BONUS_BLKID && dn) {
319 			ASSERT3U(db->db.db_size, >=, dn->dn_datablksz);
320 		}
321 		if (db->db.db_object == DMU_META_DNODE_OBJECT) {
322 			dbuf_dirty_record_t *dr = db->db_data_pending;
323 			/*
324 			 * it should only be modified in syncing
325 			 * context, so make sure we only have
326 			 * one copy of the data.
327 			 */
328 			ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
329 		}
330 	}
331 
332 	/* verify db->db_blkptr */
333 	if (db->db_blkptr) {
334 		if (db->db_parent == dn->dn_dbuf) {
335 			/* db is pointed to by the dnode */
336 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
337 			if (db->db.db_object == DMU_META_DNODE_OBJECT)
338 				ASSERT(db->db_parent == NULL);
339 			else
340 				ASSERT(db->db_parent != NULL);
341 			ASSERT3P(db->db_blkptr, ==,
342 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
343 		} else {
344 			/* db is pointed to by an indirect block */
345 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
346 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
347 			ASSERT3U(db->db_parent->db.db_object, ==,
348 			    db->db.db_object);
349 			/*
350 			 * dnode_grow_indblksz() can make this fail if we don't
351 			 * have the struct_rwlock.  XXX indblksz no longer
352 			 * grows.  safe to do this now?
353 			 */
354 			if (RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock)) {
355 				ASSERT3P(db->db_blkptr, ==,
356 				    ((blkptr_t *)db->db_parent->db.db_data +
357 				    db->db_blkid % epb));
358 			}
359 		}
360 	}
361 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
362 	    db->db.db_data && db->db_blkid != DB_BONUS_BLKID &&
363 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
364 		/*
365 		 * If the blkptr isn't set but they have nonzero data,
366 		 * it had better be dirty, otherwise we'll lose that
367 		 * data when we evict this buffer.
368 		 */
369 		if (db->db_dirtycnt == 0) {
370 			uint64_t *buf = db->db.db_data;
371 			int i;
372 
373 			for (i = 0; i < db->db.db_size >> 3; i++) {
374 				ASSERT(buf[i] == 0);
375 			}
376 		}
377 	}
378 }
379 #endif
380 
381 static void
382 dbuf_update_data(dmu_buf_impl_t *db)
383 {
384 	ASSERT(MUTEX_HELD(&db->db_mtx));
385 	if (db->db_level == 0 && db->db_user_data_ptr_ptr) {
386 		ASSERT(!refcount_is_zero(&db->db_holds));
387 		*db->db_user_data_ptr_ptr = db->db.db_data;
388 	}
389 }
390 
391 static void
392 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
393 {
394 	ASSERT(MUTEX_HELD(&db->db_mtx));
395 	ASSERT(db->db_buf == NULL || !arc_has_callback(db->db_buf));
396 	db->db_buf = buf;
397 	if (buf != NULL) {
398 		ASSERT(buf->b_data != NULL);
399 		db->db.db_data = buf->b_data;
400 		if (!arc_released(buf))
401 			arc_set_callback(buf, dbuf_do_evict, db);
402 		dbuf_update_data(db);
403 	} else {
404 		dbuf_evict_user(db);
405 		db->db.db_data = NULL;
406 		db->db_state = DB_UNCACHED;
407 	}
408 }
409 
410 uint64_t
411 dbuf_whichblock(dnode_t *dn, uint64_t offset)
412 {
413 	if (dn->dn_datablkshift) {
414 		return (offset >> dn->dn_datablkshift);
415 	} else {
416 		ASSERT3U(offset, <, dn->dn_datablksz);
417 		return (0);
418 	}
419 }
420 
421 static void
422 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
423 {
424 	dmu_buf_impl_t *db = vdb;
425 
426 	mutex_enter(&db->db_mtx);
427 	ASSERT3U(db->db_state, ==, DB_READ);
428 	/*
429 	 * All reads are synchronous, so we must have a hold on the dbuf
430 	 */
431 	ASSERT(refcount_count(&db->db_holds) > 0);
432 	ASSERT(db->db_buf == NULL);
433 	ASSERT(db->db.db_data == NULL);
434 	if (db->db_level == 0 && db->db_freed_in_flight) {
435 		/* we were freed in flight; disregard any error */
436 		arc_release(buf, db);
437 		bzero(buf->b_data, db->db.db_size);
438 		arc_buf_freeze(buf);
439 		db->db_freed_in_flight = FALSE;
440 		dbuf_set_data(db, buf);
441 		db->db_state = DB_CACHED;
442 	} else if (zio == NULL || zio->io_error == 0) {
443 		dbuf_set_data(db, buf);
444 		db->db_state = DB_CACHED;
445 	} else {
446 		ASSERT(db->db_blkid != DB_BONUS_BLKID);
447 		ASSERT3P(db->db_buf, ==, NULL);
448 		VERIFY(arc_buf_remove_ref(buf, db) == 1);
449 		db->db_state = DB_UNCACHED;
450 	}
451 	cv_broadcast(&db->db_changed);
452 	mutex_exit(&db->db_mtx);
453 	dbuf_rele(db, NULL);
454 }
455 
456 static void
457 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
458 {
459 	blkptr_t *bp;
460 	zbookmark_t zb;
461 	uint32_t aflags = ARC_NOWAIT;
462 
463 	ASSERT(!refcount_is_zero(&db->db_holds));
464 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
465 	ASSERT(RW_LOCK_HELD(&db->db_dnode->dn_struct_rwlock));
466 	ASSERT(MUTEX_HELD(&db->db_mtx));
467 	ASSERT(db->db_state == DB_UNCACHED);
468 	ASSERT(db->db_buf == NULL);
469 
470 	if (db->db_blkid == DB_BONUS_BLKID) {
471 		ASSERT3U(db->db_dnode->dn_bonuslen, ==, db->db.db_size);
472 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
473 		if (db->db.db_size < DN_MAX_BONUSLEN)
474 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
475 		bcopy(DN_BONUS(db->db_dnode->dn_phys), db->db.db_data,
476 		    db->db.db_size);
477 		dbuf_update_data(db);
478 		db->db_state = DB_CACHED;
479 		mutex_exit(&db->db_mtx);
480 		return;
481 	}
482 
483 	if (db->db_level == 0 && dnode_block_freed(db->db_dnode, db->db_blkid))
484 		bp = NULL;
485 	else
486 		bp = db->db_blkptr;
487 
488 	if (bp == NULL)
489 		dprintf_dbuf(db, "blkptr: %s\n", "NULL");
490 	else
491 		dprintf_dbuf_bp(db, bp, "%s", "blkptr:");
492 
493 	if (bp == NULL || BP_IS_HOLE(bp)) {
494 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
495 
496 		ASSERT(bp == NULL || BP_IS_HOLE(bp));
497 		dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa,
498 		    db->db.db_size, db, type));
499 		bzero(db->db.db_data, db->db.db_size);
500 		db->db_state = DB_CACHED;
501 		*flags |= DB_RF_CACHED;
502 		mutex_exit(&db->db_mtx);
503 		return;
504 	}
505 
506 	db->db_state = DB_READ;
507 	mutex_exit(&db->db_mtx);
508 
509 	zb.zb_objset = db->db_objset->os_dsl_dataset ?
510 	    db->db_objset->os_dsl_dataset->ds_object : 0;
511 	zb.zb_object = db->db.db_object;
512 	zb.zb_level = db->db_level;
513 	zb.zb_blkid = db->db_blkid;
514 
515 	dbuf_add_ref(db, NULL);
516 	/* ZIO_FLAG_CANFAIL callers have to check the parent zio's error */
517 	(void) arc_read(zio, db->db_dnode->dn_objset->os_spa, bp,
518 	    db->db_level > 0 ? byteswap_uint64_array :
519 	    dmu_ot[db->db_dnode->dn_type].ot_byteswap,
520 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
521 	    (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
522 	    &aflags, &zb);
523 	if (aflags & ARC_CACHED)
524 		*flags |= DB_RF_CACHED;
525 }
526 
527 int
528 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
529 {
530 	int err = 0;
531 	int havepzio = (zio != NULL);
532 	int prefetch;
533 
534 	/*
535 	 * We don't have to hold the mutex to check db_state because it
536 	 * can't be freed while we have a hold on the buffer.
537 	 */
538 	ASSERT(!refcount_is_zero(&db->db_holds));
539 
540 	if ((flags & DB_RF_HAVESTRUCT) == 0)
541 		rw_enter(&db->db_dnode->dn_struct_rwlock, RW_READER);
542 
543 	prefetch = db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID &&
544 	    (flags & DB_RF_NOPREFETCH) == 0 && db->db_dnode != NULL;
545 
546 	mutex_enter(&db->db_mtx);
547 	if (db->db_state == DB_CACHED) {
548 		mutex_exit(&db->db_mtx);
549 		if (prefetch)
550 			dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset,
551 			    db->db.db_size, TRUE);
552 		if ((flags & DB_RF_HAVESTRUCT) == 0)
553 			rw_exit(&db->db_dnode->dn_struct_rwlock);
554 	} else if (db->db_state == DB_UNCACHED) {
555 		if (zio == NULL) {
556 			zio = zio_root(db->db_dnode->dn_objset->os_spa,
557 			    NULL, NULL, ZIO_FLAG_CANFAIL);
558 		}
559 		dbuf_read_impl(db, zio, &flags);
560 
561 		/* dbuf_read_impl has dropped db_mtx for us */
562 
563 		if (prefetch)
564 			dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset,
565 			    db->db.db_size, flags & DB_RF_CACHED);
566 
567 		if ((flags & DB_RF_HAVESTRUCT) == 0)
568 			rw_exit(&db->db_dnode->dn_struct_rwlock);
569 
570 		if (!havepzio)
571 			err = zio_wait(zio);
572 	} else {
573 		mutex_exit(&db->db_mtx);
574 		if (prefetch)
575 			dmu_zfetch(&db->db_dnode->dn_zfetch, db->db.db_offset,
576 			    db->db.db_size, TRUE);
577 		if ((flags & DB_RF_HAVESTRUCT) == 0)
578 			rw_exit(&db->db_dnode->dn_struct_rwlock);
579 
580 		mutex_enter(&db->db_mtx);
581 		if ((flags & DB_RF_NEVERWAIT) == 0) {
582 			while (db->db_state == DB_READ ||
583 			    db->db_state == DB_FILL) {
584 				ASSERT(db->db_state == DB_READ ||
585 				    (flags & DB_RF_HAVESTRUCT) == 0);
586 				cv_wait(&db->db_changed, &db->db_mtx);
587 			}
588 			if (db->db_state == DB_UNCACHED)
589 				err = EIO;
590 		}
591 		mutex_exit(&db->db_mtx);
592 	}
593 
594 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
595 	return (err);
596 }
597 
598 static void
599 dbuf_noread(dmu_buf_impl_t *db)
600 {
601 	ASSERT(!refcount_is_zero(&db->db_holds));
602 	ASSERT(db->db_blkid != DB_BONUS_BLKID);
603 	mutex_enter(&db->db_mtx);
604 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
605 		cv_wait(&db->db_changed, &db->db_mtx);
606 	if (db->db_state == DB_UNCACHED) {
607 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
608 
609 		ASSERT(db->db_buf == NULL);
610 		ASSERT(db->db.db_data == NULL);
611 		dbuf_set_data(db, arc_buf_alloc(db->db_dnode->dn_objset->os_spa,
612 		    db->db.db_size, db, type));
613 		db->db_state = DB_FILL;
614 	} else {
615 		ASSERT3U(db->db_state, ==, DB_CACHED);
616 	}
617 	mutex_exit(&db->db_mtx);
618 }
619 
620 /*
621  * This is our just-in-time copy function.  It makes a copy of
622  * buffers, that have been modified in a previous transaction
623  * group, before we modify them in the current active group.
624  *
625  * This function is used in two places: when we are dirtying a
626  * buffer for the first time in a txg, and when we are freeing
627  * a range in a dnode that includes this buffer.
628  *
629  * Note that when we are called from dbuf_free_range() we do
630  * not put a hold on the buffer, we just traverse the active
631  * dbuf list for the dnode.
632  */
633 static void
634 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
635 {
636 	dbuf_dirty_record_t *dr = db->db_last_dirty;
637 
638 	ASSERT(MUTEX_HELD(&db->db_mtx));
639 	ASSERT(db->db.db_data != NULL);
640 	ASSERT(db->db_level == 0);
641 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
642 
643 	if (dr == NULL ||
644 	    (dr->dt.dl.dr_data !=
645 	    ((db->db_blkid  == DB_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
646 		return;
647 
648 	/*
649 	 * If the last dirty record for this dbuf has not yet synced
650 	 * and its referencing the dbuf data, either:
651 	 * 	reset the reference to point to a new copy,
652 	 * or (if there a no active holders)
653 	 *	just null out the current db_data pointer.
654 	 */
655 	ASSERT(dr->dr_txg >= txg - 2);
656 	if (db->db_blkid == DB_BONUS_BLKID) {
657 		/* Note that the data bufs here are zio_bufs */
658 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
659 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
660 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
661 		int size = db->db.db_size;
662 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
663 		dr->dt.dl.dr_data = arc_buf_alloc(
664 		    db->db_dnode->dn_objset->os_spa, size, db, type);
665 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
666 	} else {
667 		dbuf_set_data(db, NULL);
668 	}
669 }
670 
671 void
672 dbuf_unoverride(dbuf_dirty_record_t *dr)
673 {
674 	dmu_buf_impl_t *db = dr->dr_dbuf;
675 	uint64_t txg = dr->dr_txg;
676 
677 	ASSERT(MUTEX_HELD(&db->db_mtx));
678 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
679 	ASSERT(db->db_level == 0);
680 
681 	if (db->db_blkid == DB_BONUS_BLKID ||
682 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
683 		return;
684 
685 	/* free this block */
686 	if (!BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) {
687 		/* XXX can get silent EIO here */
688 		(void) arc_free(NULL, db->db_dnode->dn_objset->os_spa,
689 		    txg, &dr->dt.dl.dr_overridden_by, NULL, NULL, ARC_WAIT);
690 	}
691 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
692 	/*
693 	 * Release the already-written buffer, so we leave it in
694 	 * a consistent dirty state.  Note that all callers are
695 	 * modifying the buffer, so they will immediately do
696 	 * another (redundant) arc_release().  Therefore, leave
697 	 * the buf thawed to save the effort of freezing &
698 	 * immediately re-thawing it.
699 	 */
700 	arc_release(dr->dt.dl.dr_data, db);
701 }
702 
703 void
704 dbuf_free_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx)
705 {
706 	dmu_buf_impl_t *db, *db_next;
707 	uint64_t txg = tx->tx_txg;
708 
709 	dprintf_dnode(dn, "blkid=%llu nblks=%llu\n", blkid, nblks);
710 	mutex_enter(&dn->dn_dbufs_mtx);
711 	for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
712 		db_next = list_next(&dn->dn_dbufs, db);
713 		ASSERT(db->db_blkid != DB_BONUS_BLKID);
714 		if (db->db_level != 0)
715 			continue;
716 		dprintf_dbuf(db, "found buf %s\n", "");
717 		if (db->db_blkid < blkid ||
718 		    db->db_blkid >= blkid+nblks)
719 			continue;
720 
721 		/* found a level 0 buffer in the range */
722 		if (dbuf_undirty(db, tx))
723 			continue;
724 
725 		mutex_enter(&db->db_mtx);
726 		if (db->db_state == DB_UNCACHED ||
727 		    db->db_state == DB_EVICTING) {
728 			ASSERT(db->db.db_data == NULL);
729 			mutex_exit(&db->db_mtx);
730 			continue;
731 		}
732 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
733 			/* will be handled in dbuf_read_done or dbuf_rele */
734 			db->db_freed_in_flight = TRUE;
735 			mutex_exit(&db->db_mtx);
736 			continue;
737 		}
738 		if (refcount_count(&db->db_holds) == 0) {
739 			ASSERT(db->db_buf);
740 			dbuf_clear(db);
741 			continue;
742 		}
743 		/* The dbuf is referenced */
744 
745 		if (db->db_last_dirty != NULL) {
746 			dbuf_dirty_record_t *dr = db->db_last_dirty;
747 
748 			if (dr->dr_txg == txg) {
749 				/*
750 				 * This buffer is "in-use", re-adjust the file
751 				 * size to reflect that this buffer may
752 				 * contain new data when we sync.
753 				 */
754 				if (db->db_blkid > dn->dn_maxblkid)
755 					dn->dn_maxblkid = db->db_blkid;
756 				dbuf_unoverride(dr);
757 			} else {
758 				/*
759 				 * This dbuf is not dirty in the open context.
760 				 * Either uncache it (if its not referenced in
761 				 * the open context) or reset its contents to
762 				 * empty.
763 				 */
764 				dbuf_fix_old_data(db, txg);
765 			}
766 		}
767 		/* clear the contents if its cached */
768 		if (db->db_state == DB_CACHED) {
769 			ASSERT(db->db.db_data != NULL);
770 			arc_release(db->db_buf, db);
771 			bzero(db->db.db_data, db->db.db_size);
772 			arc_buf_freeze(db->db_buf);
773 		}
774 
775 		mutex_exit(&db->db_mtx);
776 	}
777 	mutex_exit(&dn->dn_dbufs_mtx);
778 }
779 
780 static int
781 dbuf_new_block(dmu_buf_impl_t *db)
782 {
783 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
784 	uint64_t birth_txg = 0;
785 
786 	/* Don't count meta-objects */
787 	if (ds == NULL)
788 		return (FALSE);
789 
790 	/*
791 	 * We don't need any locking to protect db_blkptr:
792 	 * If it's syncing, then db_last_dirty will be set
793 	 * so we'll ignore db_blkptr.
794 	 */
795 	ASSERT(MUTEX_HELD(&db->db_mtx));
796 	/* If we have been dirtied since the last snapshot, its not new */
797 	if (db->db_last_dirty)
798 		birth_txg = db->db_last_dirty->dr_txg;
799 	else if (db->db_blkptr)
800 		birth_txg = db->db_blkptr->blk_birth;
801 
802 	if (birth_txg)
803 		return (!dsl_dataset_block_freeable(ds, birth_txg));
804 	else
805 		return (TRUE);
806 }
807 
808 void
809 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
810 {
811 	arc_buf_t *buf, *obuf;
812 	int osize = db->db.db_size;
813 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
814 
815 	ASSERT(db->db_blkid != DB_BONUS_BLKID);
816 
817 	/* XXX does *this* func really need the lock? */
818 	ASSERT(RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock));
819 
820 	/*
821 	 * This call to dbuf_will_dirty() with the dn_struct_rwlock held
822 	 * is OK, because there can be no other references to the db
823 	 * when we are changing its size, so no concurrent DB_FILL can
824 	 * be happening.
825 	 */
826 	/*
827 	 * XXX we should be doing a dbuf_read, checking the return
828 	 * value and returning that up to our callers
829 	 */
830 	dbuf_will_dirty(db, tx);
831 
832 	/* create the data buffer for the new block */
833 	buf = arc_buf_alloc(db->db_dnode->dn_objset->os_spa, size, db, type);
834 
835 	/* copy old block data to the new block */
836 	obuf = db->db_buf;
837 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
838 	/* zero the remainder */
839 	if (size > osize)
840 		bzero((uint8_t *)buf->b_data + osize, size - osize);
841 
842 	mutex_enter(&db->db_mtx);
843 	dbuf_set_data(db, buf);
844 	VERIFY(arc_buf_remove_ref(obuf, db) == 1);
845 	db->db.db_size = size;
846 
847 	if (db->db_level == 0) {
848 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
849 		db->db_last_dirty->dt.dl.dr_data = buf;
850 	}
851 	mutex_exit(&db->db_mtx);
852 
853 	dnode_willuse_space(db->db_dnode, size-osize, tx);
854 }
855 
856 dbuf_dirty_record_t *
857 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
858 {
859 	dnode_t *dn = db->db_dnode;
860 	objset_impl_t *os = dn->dn_objset;
861 	dbuf_dirty_record_t **drp, *dr;
862 	int drop_struct_lock = FALSE;
863 	int txgoff = tx->tx_txg & TXG_MASK;
864 
865 	ASSERT(tx->tx_txg != 0);
866 	ASSERT(!refcount_is_zero(&db->db_holds));
867 	DMU_TX_DIRTY_BUF(tx, db);
868 
869 	/*
870 	 * Shouldn't dirty a regular buffer in syncing context.  Private
871 	 * objects may be dirtied in syncing context, but only if they
872 	 * were already pre-dirtied in open context.
873 	 * XXX We may want to prohibit dirtying in syncing context even
874 	 * if they did pre-dirty.
875 	 */
876 	ASSERT(!dmu_tx_is_syncing(tx) ||
877 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
878 	    dn->dn_object == DMU_META_DNODE_OBJECT ||
879 	    dn->dn_objset->os_dsl_dataset == NULL ||
880 	    dsl_dir_is_private(dn->dn_objset->os_dsl_dataset->ds_dir));
881 
882 	/*
883 	 * We make this assert for private objects as well, but after we
884 	 * check if we're already dirty.  They are allowed to re-dirty
885 	 * in syncing context.
886 	 */
887 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
888 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
889 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
890 
891 	mutex_enter(&db->db_mtx);
892 	/*
893 	 * XXX make this true for indirects too?  The problem is that
894 	 * transactions created with dmu_tx_create_assigned() from
895 	 * syncing context don't bother holding ahead.
896 	 */
897 	ASSERT(db->db_level != 0 ||
898 	    db->db_state == DB_CACHED || db->db_state == DB_FILL);
899 
900 	mutex_enter(&dn->dn_mtx);
901 	/*
902 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
903 	 * initialize the objset.
904 	 */
905 	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
906 	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
907 		dn->dn_dirtyctx =
908 		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
909 		ASSERT(dn->dn_dirtyctx_firstset == NULL);
910 		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
911 	}
912 	mutex_exit(&dn->dn_mtx);
913 
914 	/*
915 	 * If this buffer is already dirty, we're done.
916 	 */
917 	drp = &db->db_last_dirty;
918 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
919 	    db->db.db_object == DMU_META_DNODE_OBJECT);
920 	while (*drp && (*drp)->dr_txg > tx->tx_txg)
921 		drp = &(*drp)->dr_next;
922 	if (*drp && (*drp)->dr_txg == tx->tx_txg) {
923 		if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID) {
924 			/*
925 			 * If this buffer has already been written out,
926 			 * we now need to reset its state.
927 			 */
928 			dbuf_unoverride(*drp);
929 			if (db->db.db_object != DMU_META_DNODE_OBJECT)
930 				arc_buf_thaw(db->db_buf);
931 		}
932 		mutex_exit(&db->db_mtx);
933 		return (*drp);
934 	}
935 
936 	/*
937 	 * Only valid if not already dirty.
938 	 */
939 	ASSERT(dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
940 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
941 
942 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
943 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
944 	    dn->dn_phys->dn_nlevels > db->db_level ||
945 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
946 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
947 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
948 
949 	/*
950 	 * We should only be dirtying in syncing context if it's the
951 	 * mos, a spa os, or we're initializing the os.  However, we are
952 	 * allowed to dirty in syncing context provided we already
953 	 * dirtied it in open context.  Hence we must make this
954 	 * assertion only if we're not already dirty.
955 	 */
956 	ASSERT(!dmu_tx_is_syncing(tx) ||
957 	    os->os_dsl_dataset == NULL ||
958 	    !dsl_dir_is_private(os->os_dsl_dataset->ds_dir) ||
959 	    !BP_IS_HOLE(os->os_rootbp));
960 	ASSERT(db->db.db_size != 0);
961 
962 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
963 
964 	/*
965 	 * If this buffer is dirty in an old transaction group we need
966 	 * to make a copy of it so that the changes we make in this
967 	 * transaction group won't leak out when we sync the older txg.
968 	 */
969 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
970 	if (db->db_level == 0) {
971 		void *data_old = db->db_buf;
972 
973 		if (db->db_blkid == DB_BONUS_BLKID) {
974 			dbuf_fix_old_data(db, tx->tx_txg);
975 			data_old = db->db.db_data;
976 		} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
977 			/*
978 			 * Release the data buffer from the cache so that we
979 			 * can modify it without impacting possible other users
980 			 * of this cached data block.  Note that indirect
981 			 * blocks and private objects are not released until the
982 			 * syncing state (since they are only modified then).
983 			 */
984 			arc_release(db->db_buf, db);
985 			dbuf_fix_old_data(db, tx->tx_txg);
986 			data_old = db->db_buf;
987 		}
988 		ASSERT(data_old != NULL);
989 		dr->dt.dl.dr_data = data_old;
990 	} else {
991 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
992 		list_create(&dr->dt.di.dr_children,
993 		    sizeof (dbuf_dirty_record_t),
994 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
995 	}
996 	dr->dr_dbuf = db;
997 	dr->dr_txg = tx->tx_txg;
998 	dr->dr_next = *drp;
999 	*drp = dr;
1000 
1001 	/*
1002 	 * We could have been freed_in_flight between the dbuf_noread
1003 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1004 	 * happened after the free.
1005 	 */
1006 	if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID) {
1007 		mutex_enter(&dn->dn_mtx);
1008 		dnode_clear_range(dn, db->db_blkid, 1, tx);
1009 		mutex_exit(&dn->dn_mtx);
1010 		db->db_freed_in_flight = FALSE;
1011 	}
1012 
1013 	if (db->db_blkid != DB_BONUS_BLKID) {
1014 		/*
1015 		 * Update the accounting.
1016 		 */
1017 		if (!dbuf_new_block(db) && db->db_blkptr) {
1018 			/*
1019 			 * This is only a guess -- if the dbuf is dirty
1020 			 * in a previous txg, we don't know how much
1021 			 * space it will use on disk yet.  We should
1022 			 * really have the struct_rwlock to access
1023 			 * db_blkptr, but since this is just a guess,
1024 			 * it's OK if we get an odd answer.
1025 			 */
1026 			dnode_willuse_space(dn,
1027 			    -bp_get_dasize(os->os_spa, db->db_blkptr), tx);
1028 		}
1029 		dnode_willuse_space(dn, db->db.db_size, tx);
1030 	}
1031 
1032 	/*
1033 	 * This buffer is now part of this txg
1034 	 */
1035 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1036 	db->db_dirtycnt += 1;
1037 	ASSERT3U(db->db_dirtycnt, <=, 3);
1038 
1039 	mutex_exit(&db->db_mtx);
1040 
1041 	if (db->db_blkid == DB_BONUS_BLKID) {
1042 		mutex_enter(&dn->dn_mtx);
1043 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1044 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1045 		mutex_exit(&dn->dn_mtx);
1046 		dnode_setdirty(dn, tx);
1047 		return (dr);
1048 	}
1049 
1050 	if (db->db_level == 0) {
1051 		dnode_new_blkid(dn, db->db_blkid, tx);
1052 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1053 	}
1054 
1055 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1056 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1057 		drop_struct_lock = TRUE;
1058 	}
1059 
1060 	if (db->db_level+1 < dn->dn_nlevels) {
1061 		dmu_buf_impl_t *parent = db->db_parent;
1062 		dbuf_dirty_record_t *di;
1063 		int parent_held = FALSE;
1064 
1065 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1066 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1067 
1068 			parent = dbuf_hold_level(dn, db->db_level+1,
1069 			    db->db_blkid >> epbs, FTAG);
1070 			parent_held = TRUE;
1071 		}
1072 		if (drop_struct_lock)
1073 			rw_exit(&dn->dn_struct_rwlock);
1074 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1075 		di = dbuf_dirty(parent, tx);
1076 		if (parent_held)
1077 			dbuf_rele(parent, FTAG);
1078 
1079 		mutex_enter(&db->db_mtx);
1080 		/*  possible race with dbuf_undirty() */
1081 		if (db->db_last_dirty == dr ||
1082 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1083 			mutex_enter(&di->dt.di.dr_mtx);
1084 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1085 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1086 			list_insert_tail(&di->dt.di.dr_children, dr);
1087 			mutex_exit(&di->dt.di.dr_mtx);
1088 			dr->dr_parent = di;
1089 		}
1090 		mutex_exit(&db->db_mtx);
1091 	} else {
1092 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1093 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1094 		ASSERT(db->db_parent == NULL ||
1095 		    db->db_parent == db->db_dnode->dn_dbuf);
1096 		mutex_enter(&dn->dn_mtx);
1097 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1098 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1099 		mutex_exit(&dn->dn_mtx);
1100 		if (drop_struct_lock)
1101 			rw_exit(&dn->dn_struct_rwlock);
1102 	}
1103 
1104 	dnode_setdirty(dn, tx);
1105 	return (dr);
1106 }
1107 
1108 static int
1109 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1110 {
1111 	dnode_t *dn = db->db_dnode;
1112 	uint64_t txg = tx->tx_txg;
1113 	dbuf_dirty_record_t *dr;
1114 
1115 	ASSERT(txg != 0);
1116 	ASSERT(db->db_blkid != DB_BONUS_BLKID);
1117 
1118 	mutex_enter(&db->db_mtx);
1119 
1120 	/*
1121 	 * If this buffer is not dirty, we're done.
1122 	 */
1123 	for (dr = db->db_last_dirty; dr; dr = dr->dr_next)
1124 		if (dr->dr_txg <= txg)
1125 			break;
1126 	if (dr == NULL || dr->dr_txg < txg) {
1127 		mutex_exit(&db->db_mtx);
1128 		return (0);
1129 	}
1130 	ASSERT(dr->dr_txg == txg);
1131 
1132 	/*
1133 	 * If this buffer is currently held, we cannot undirty
1134 	 * it, since one of the current holders may be in the
1135 	 * middle of an update.  Note that users of dbuf_undirty()
1136 	 * should not place a hold on the dbuf before the call.
1137 	 */
1138 	if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1139 		mutex_exit(&db->db_mtx);
1140 		/* Make sure we don't toss this buffer at sync phase */
1141 		mutex_enter(&dn->dn_mtx);
1142 		dnode_clear_range(dn, db->db_blkid, 1, tx);
1143 		mutex_exit(&dn->dn_mtx);
1144 		return (0);
1145 	}
1146 
1147 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1148 
1149 	ASSERT(db->db.db_size != 0);
1150 
1151 	/* XXX would be nice to fix up dn_towrite_space[] */
1152 
1153 	db->db_last_dirty = dr->dr_next;
1154 
1155 	if (dr->dr_parent) {
1156 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1157 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1158 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1159 	} else if (db->db_level+1 == dn->dn_nlevels) {
1160 		ASSERT3P(db->db_parent, ==, dn->dn_dbuf);
1161 		mutex_enter(&dn->dn_mtx);
1162 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1163 		mutex_exit(&dn->dn_mtx);
1164 	}
1165 
1166 	if (db->db_level == 0) {
1167 		dbuf_unoverride(dr);
1168 
1169 		ASSERT(db->db_buf != NULL);
1170 		ASSERT(dr->dt.dl.dr_data != NULL);
1171 		if (dr->dt.dl.dr_data != db->db_buf)
1172 			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db) == 1);
1173 	} else {
1174 		ASSERT(db->db_buf != NULL);
1175 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
1176 		/* XXX - mutex and list destroy? */
1177 	}
1178 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1179 
1180 	ASSERT(db->db_dirtycnt > 0);
1181 	db->db_dirtycnt -= 1;
1182 
1183 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1184 		arc_buf_t *buf = db->db_buf;
1185 
1186 		ASSERT(arc_released(buf));
1187 		dbuf_set_data(db, NULL);
1188 		VERIFY(arc_buf_remove_ref(buf, db) == 1);
1189 		dbuf_evict(db);
1190 		return (1);
1191 	}
1192 
1193 	mutex_exit(&db->db_mtx);
1194 	return (0);
1195 }
1196 
1197 #pragma weak dmu_buf_will_dirty = dbuf_will_dirty
1198 void
1199 dbuf_will_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1200 {
1201 	int rf = DB_RF_MUST_SUCCEED;
1202 
1203 	ASSERT(tx->tx_txg != 0);
1204 	ASSERT(!refcount_is_zero(&db->db_holds));
1205 
1206 	if (RW_WRITE_HELD(&db->db_dnode->dn_struct_rwlock))
1207 		rf |= DB_RF_HAVESTRUCT;
1208 	(void) dbuf_read(db, NULL, rf);
1209 	(void) dbuf_dirty(db, tx);
1210 }
1211 
1212 void
1213 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1214 {
1215 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1216 
1217 	ASSERT(db->db_blkid != DB_BONUS_BLKID);
1218 	ASSERT(tx->tx_txg != 0);
1219 	ASSERT(db->db_level == 0);
1220 	ASSERT(!refcount_is_zero(&db->db_holds));
1221 
1222 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1223 	    dmu_tx_private_ok(tx));
1224 
1225 	dbuf_noread(db);
1226 	(void) dbuf_dirty(db, tx);
1227 }
1228 
1229 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1230 /* ARGSUSED */
1231 void
1232 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1233 {
1234 	mutex_enter(&db->db_mtx);
1235 	DBUF_VERIFY(db);
1236 
1237 	if (db->db_state == DB_FILL) {
1238 		if (db->db_level == 0 && db->db_freed_in_flight) {
1239 			ASSERT(db->db_blkid != DB_BONUS_BLKID);
1240 			/* we were freed while filling */
1241 			/* XXX dbuf_undirty? */
1242 			bzero(db->db.db_data, db->db.db_size);
1243 			db->db_freed_in_flight = FALSE;
1244 		}
1245 		db->db_state = DB_CACHED;
1246 		cv_broadcast(&db->db_changed);
1247 	}
1248 	mutex_exit(&db->db_mtx);
1249 }
1250 
1251 /*
1252  * "Clear" the contents of this dbuf.  This will mark the dbuf
1253  * EVICTING and clear *most* of its references.  Unfortunetely,
1254  * when we are not holding the dn_dbufs_mtx, we can't clear the
1255  * entry in the dn_dbufs list.  We have to wait until dbuf_destroy()
1256  * in this case.  For callers from the DMU we will usually see:
1257  *	dbuf_clear()->arc_buf_evict()->dbuf_do_evict()->dbuf_destroy()
1258  * For the arc callback, we will usually see:
1259  * 	dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1260  * Sometimes, though, we will get a mix of these two:
1261  *	DMU: dbuf_clear()->arc_buf_evict()
1262  *	ARC: dbuf_do_evict()->dbuf_destroy()
1263  */
1264 void
1265 dbuf_clear(dmu_buf_impl_t *db)
1266 {
1267 	dnode_t *dn = db->db_dnode;
1268 	dmu_buf_impl_t *parent = db->db_parent;
1269 	dmu_buf_impl_t *dndb = dn->dn_dbuf;
1270 	int dbuf_gone = FALSE;
1271 
1272 	ASSERT(MUTEX_HELD(&db->db_mtx));
1273 	ASSERT(refcount_is_zero(&db->db_holds));
1274 
1275 	dbuf_evict_user(db);
1276 
1277 	if (db->db_state == DB_CACHED) {
1278 		ASSERT(db->db.db_data != NULL);
1279 		if (db->db_blkid == DB_BONUS_BLKID)
1280 			zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1281 		db->db.db_data = NULL;
1282 		db->db_state = DB_UNCACHED;
1283 	}
1284 
1285 	ASSERT3U(db->db_state, ==, DB_UNCACHED);
1286 	ASSERT(db->db_data_pending == NULL);
1287 
1288 	db->db_state = DB_EVICTING;
1289 	db->db_blkptr = NULL;
1290 
1291 	if (db->db_blkid != DB_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1292 		list_remove(&dn->dn_dbufs, db);
1293 		dnode_rele(dn, db);
1294 	}
1295 
1296 	if (db->db_buf)
1297 		dbuf_gone = arc_buf_evict(db->db_buf);
1298 
1299 	if (!dbuf_gone)
1300 		mutex_exit(&db->db_mtx);
1301 
1302 	/*
1303 	 * If this dbuf is referened from an indirect dbuf,
1304 	 * decrement the ref count on the indirect dbuf.
1305 	 */
1306 	if (parent && parent != dndb)
1307 		dbuf_rele(parent, db);
1308 }
1309 
1310 static int
1311 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1312     dmu_buf_impl_t **parentp, blkptr_t **bpp)
1313 {
1314 	int nlevels, epbs;
1315 
1316 	*parentp = NULL;
1317 	*bpp = NULL;
1318 
1319 	ASSERT(blkid != DB_BONUS_BLKID);
1320 
1321 	if (dn->dn_phys->dn_nlevels == 0)
1322 		nlevels = 1;
1323 	else
1324 		nlevels = dn->dn_phys->dn_nlevels;
1325 
1326 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1327 
1328 	ASSERT3U(level * epbs, <, 64);
1329 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1330 	if (level >= nlevels ||
1331 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1332 		/* the buffer has no parent yet */
1333 		return (ENOENT);
1334 	} else if (level < nlevels-1) {
1335 		/* this block is referenced from an indirect block */
1336 		int err = dbuf_hold_impl(dn, level+1,
1337 		    blkid >> epbs, fail_sparse, NULL, parentp);
1338 		if (err)
1339 			return (err);
1340 		err = dbuf_read(*parentp, NULL,
1341 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1342 		if (err) {
1343 			dbuf_rele(*parentp, NULL);
1344 			*parentp = NULL;
1345 			return (err);
1346 		}
1347 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1348 		    (blkid & ((1ULL << epbs) - 1));
1349 		return (0);
1350 	} else {
1351 		/* the block is referenced from the dnode */
1352 		ASSERT3U(level, ==, nlevels-1);
1353 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1354 		    blkid < dn->dn_phys->dn_nblkptr);
1355 		if (dn->dn_dbuf) {
1356 			dbuf_add_ref(dn->dn_dbuf, NULL);
1357 			*parentp = dn->dn_dbuf;
1358 		}
1359 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
1360 		return (0);
1361 	}
1362 }
1363 
1364 static dmu_buf_impl_t *
1365 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1366     dmu_buf_impl_t *parent, blkptr_t *blkptr)
1367 {
1368 	objset_impl_t *os = dn->dn_objset;
1369 	dmu_buf_impl_t *db, *odb;
1370 
1371 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1372 	ASSERT(dn->dn_type != DMU_OT_NONE);
1373 
1374 	db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1375 
1376 	db->db_objset = os;
1377 	db->db.db_object = dn->dn_object;
1378 	db->db_level = level;
1379 	db->db_blkid = blkid;
1380 	db->db_last_dirty = NULL;
1381 	db->db_dirtycnt = 0;
1382 	db->db_dnode = dn;
1383 	db->db_parent = parent;
1384 	db->db_blkptr = blkptr;
1385 
1386 	db->db_user_ptr = NULL;
1387 	db->db_user_data_ptr_ptr = NULL;
1388 	db->db_evict_func = NULL;
1389 	db->db_immediate_evict = 0;
1390 	db->db_freed_in_flight = 0;
1391 
1392 	if (blkid == DB_BONUS_BLKID) {
1393 		ASSERT3P(parent, ==, dn->dn_dbuf);
1394 		db->db.db_size = dn->dn_bonuslen;
1395 		db->db.db_offset = DB_BONUS_BLKID;
1396 		db->db_state = DB_UNCACHED;
1397 		/* the bonus dbuf is not placed in the hash table */
1398 		return (db);
1399 	} else {
1400 		int blocksize =
1401 		    db->db_level ? 1<<dn->dn_indblkshift :  dn->dn_datablksz;
1402 		db->db.db_size = blocksize;
1403 		db->db.db_offset = db->db_blkid * blocksize;
1404 	}
1405 
1406 	/*
1407 	 * Hold the dn_dbufs_mtx while we get the new dbuf
1408 	 * in the hash table *and* added to the dbufs list.
1409 	 * This prevents a possible deadlock with someone
1410 	 * trying to look up this dbuf before its added to the
1411 	 * dn_dbufs list.
1412 	 */
1413 	mutex_enter(&dn->dn_dbufs_mtx);
1414 	db->db_state = DB_EVICTING;
1415 	if ((odb = dbuf_hash_insert(db)) != NULL) {
1416 		/* someone else inserted it first */
1417 		kmem_cache_free(dbuf_cache, db);
1418 		mutex_exit(&dn->dn_dbufs_mtx);
1419 		return (odb);
1420 	}
1421 	list_insert_head(&dn->dn_dbufs, db);
1422 	db->db_state = DB_UNCACHED;
1423 	mutex_exit(&dn->dn_dbufs_mtx);
1424 
1425 	if (parent && parent != dn->dn_dbuf)
1426 		dbuf_add_ref(parent, db);
1427 
1428 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1429 	    refcount_count(&dn->dn_holds) > 0);
1430 	(void) refcount_add(&dn->dn_holds, db);
1431 
1432 	dprintf_dbuf(db, "db=%p\n", db);
1433 
1434 	return (db);
1435 }
1436 
1437 static int
1438 dbuf_do_evict(void *private)
1439 {
1440 	arc_buf_t *buf = private;
1441 	dmu_buf_impl_t *db = buf->b_private;
1442 
1443 	if (!MUTEX_HELD(&db->db_mtx))
1444 		mutex_enter(&db->db_mtx);
1445 
1446 	ASSERT(refcount_is_zero(&db->db_holds));
1447 
1448 	if (db->db_state != DB_EVICTING) {
1449 		ASSERT(db->db_state == DB_CACHED);
1450 		DBUF_VERIFY(db);
1451 		db->db_buf = NULL;
1452 		dbuf_evict(db);
1453 	} else {
1454 		mutex_exit(&db->db_mtx);
1455 		dbuf_destroy(db);
1456 	}
1457 	return (0);
1458 }
1459 
1460 static void
1461 dbuf_destroy(dmu_buf_impl_t *db)
1462 {
1463 	ASSERT(refcount_is_zero(&db->db_holds));
1464 
1465 	if (db->db_blkid != DB_BONUS_BLKID) {
1466 		dnode_t *dn = db->db_dnode;
1467 
1468 		/*
1469 		 * If this dbuf is still on the dn_dbufs list,
1470 		 * remove it from that list.
1471 		 */
1472 		if (list_link_active(&db->db_link)) {
1473 			mutex_enter(&dn->dn_dbufs_mtx);
1474 			list_remove(&dn->dn_dbufs, db);
1475 			mutex_exit(&dn->dn_dbufs_mtx);
1476 
1477 			dnode_rele(dn, db);
1478 		}
1479 		dbuf_hash_remove(db);
1480 	}
1481 	db->db_parent = NULL;
1482 	db->db_dnode = NULL;
1483 	db->db_buf = NULL;
1484 
1485 	ASSERT(db->db.db_data == NULL);
1486 	ASSERT(db->db_hash_next == NULL);
1487 	ASSERT(db->db_blkptr == NULL);
1488 	ASSERT(db->db_data_pending == NULL);
1489 
1490 	kmem_cache_free(dbuf_cache, db);
1491 }
1492 
1493 void
1494 dbuf_prefetch(dnode_t *dn, uint64_t blkid)
1495 {
1496 	dmu_buf_impl_t *db = NULL;
1497 	blkptr_t *bp = NULL;
1498 
1499 	ASSERT(blkid != DB_BONUS_BLKID);
1500 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1501 
1502 	if (dnode_block_freed(dn, blkid))
1503 		return;
1504 
1505 	/* dbuf_find() returns with db_mtx held */
1506 	if (db = dbuf_find(dn, 0, blkid)) {
1507 		if (refcount_count(&db->db_holds) > 0) {
1508 			/*
1509 			 * This dbuf is active.  We assume that it is
1510 			 * already CACHED, or else about to be either
1511 			 * read or filled.
1512 			 */
1513 			mutex_exit(&db->db_mtx);
1514 			return;
1515 		}
1516 		mutex_exit(&db->db_mtx);
1517 		db = NULL;
1518 	}
1519 
1520 	if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) {
1521 		if (bp && !BP_IS_HOLE(bp)) {
1522 			uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH;
1523 			zbookmark_t zb;
1524 			zb.zb_objset = dn->dn_objset->os_dsl_dataset ?
1525 			    dn->dn_objset->os_dsl_dataset->ds_object : 0;
1526 			zb.zb_object = dn->dn_object;
1527 			zb.zb_level = 0;
1528 			zb.zb_blkid = blkid;
1529 
1530 			(void) arc_read(NULL, dn->dn_objset->os_spa, bp,
1531 			    dmu_ot[dn->dn_type].ot_byteswap,
1532 			    NULL, NULL, ZIO_PRIORITY_ASYNC_READ,
1533 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1534 			    &aflags, &zb);
1535 		}
1536 		if (db)
1537 			dbuf_rele(db, NULL);
1538 	}
1539 }
1540 
1541 /*
1542  * Returns with db_holds incremented, and db_mtx not held.
1543  * Note: dn_struct_rwlock must be held.
1544  */
1545 int
1546 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse,
1547     void *tag, dmu_buf_impl_t **dbp)
1548 {
1549 	dmu_buf_impl_t *db, *parent = NULL;
1550 
1551 	ASSERT(blkid != DB_BONUS_BLKID);
1552 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1553 	ASSERT3U(dn->dn_nlevels, >, level);
1554 
1555 	*dbp = NULL;
1556 top:
1557 	/* dbuf_find() returns with db_mtx held */
1558 	db = dbuf_find(dn, level, blkid);
1559 
1560 	if (db == NULL) {
1561 		blkptr_t *bp = NULL;
1562 		int err;
1563 
1564 		ASSERT3P(parent, ==, NULL);
1565 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
1566 		if (fail_sparse) {
1567 			if (err == 0 && bp && BP_IS_HOLE(bp))
1568 				err = ENOENT;
1569 			if (err) {
1570 				if (parent)
1571 					dbuf_rele(parent, NULL);
1572 				return (err);
1573 			}
1574 		}
1575 		if (err && err != ENOENT)
1576 			return (err);
1577 		db = dbuf_create(dn, level, blkid, parent, bp);
1578 	}
1579 
1580 	if (db->db_buf && refcount_is_zero(&db->db_holds)) {
1581 		arc_buf_add_ref(db->db_buf, db);
1582 		if (db->db_buf->b_data == NULL) {
1583 			dbuf_clear(db);
1584 			if (parent) {
1585 				dbuf_rele(parent, NULL);
1586 				parent = NULL;
1587 			}
1588 			goto top;
1589 		}
1590 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
1591 	}
1592 
1593 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
1594 
1595 	/*
1596 	 * If this buffer is currently syncing out, and we are are
1597 	 * still referencing it from db_data, we need to make a copy
1598 	 * of it in case we decide we want to dirty it again in this txg.
1599 	 */
1600 	if (db->db_level == 0 && db->db_blkid != DB_BONUS_BLKID &&
1601 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
1602 	    db->db_state == DB_CACHED && db->db_data_pending) {
1603 		dbuf_dirty_record_t *dr = db->db_data_pending;
1604 
1605 		if (dr->dt.dl.dr_data == db->db_buf) {
1606 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1607 
1608 			dbuf_set_data(db,
1609 			    arc_buf_alloc(db->db_dnode->dn_objset->os_spa,
1610 			    db->db.db_size, db, type));
1611 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
1612 			    db->db.db_size);
1613 		}
1614 	}
1615 
1616 	(void) refcount_add(&db->db_holds, tag);
1617 	dbuf_update_data(db);
1618 	DBUF_VERIFY(db);
1619 	mutex_exit(&db->db_mtx);
1620 
1621 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
1622 	if (parent)
1623 		dbuf_rele(parent, NULL);
1624 
1625 	ASSERT3P(db->db_dnode, ==, dn);
1626 	ASSERT3U(db->db_blkid, ==, blkid);
1627 	ASSERT3U(db->db_level, ==, level);
1628 	*dbp = db;
1629 
1630 	return (0);
1631 }
1632 
1633 dmu_buf_impl_t *
1634 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
1635 {
1636 	dmu_buf_impl_t *db;
1637 	int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db);
1638 	return (err ? NULL : db);
1639 }
1640 
1641 dmu_buf_impl_t *
1642 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
1643 {
1644 	dmu_buf_impl_t *db;
1645 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db);
1646 	return (err ? NULL : db);
1647 }
1648 
1649 dmu_buf_impl_t *
1650 dbuf_create_bonus(dnode_t *dn)
1651 {
1652 	dmu_buf_impl_t *db = dn->dn_bonus;
1653 
1654 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1655 
1656 	ASSERT(dn->dn_bonus == NULL);
1657 	db = dbuf_create(dn, 0, DB_BONUS_BLKID, dn->dn_dbuf, NULL);
1658 	return (db);
1659 }
1660 
1661 #pragma weak dmu_buf_add_ref = dbuf_add_ref
1662 void
1663 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
1664 {
1665 	int64_t holds = refcount_add(&db->db_holds, tag);
1666 	ASSERT(holds > 1);
1667 }
1668 
1669 #pragma weak dmu_buf_rele = dbuf_rele
1670 void
1671 dbuf_rele(dmu_buf_impl_t *db, void *tag)
1672 {
1673 	int64_t holds;
1674 
1675 	mutex_enter(&db->db_mtx);
1676 	DBUF_VERIFY(db);
1677 
1678 	holds = refcount_remove(&db->db_holds, tag);
1679 	ASSERT(holds >= 0);
1680 
1681 	/*
1682 	 * We can't freeze indirects if there is a possibility that they
1683 	 * may be modified in the current syncing context.
1684 	 */
1685 	if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
1686 		arc_buf_freeze(db->db_buf);
1687 
1688 	if (holds == db->db_dirtycnt &&
1689 	    db->db_level == 0 && db->db_immediate_evict)
1690 		dbuf_evict_user(db);
1691 
1692 	if (holds == 0) {
1693 		if (db->db_blkid == DB_BONUS_BLKID) {
1694 			mutex_exit(&db->db_mtx);
1695 			dnode_rele(db->db_dnode, db);
1696 		} else if (db->db_buf == NULL) {
1697 			/*
1698 			 * This is a special case: we never associated this
1699 			 * dbuf with any data allocated from the ARC.
1700 			 */
1701 			ASSERT3U(db->db_state, ==, DB_UNCACHED);
1702 			dbuf_evict(db);
1703 		} else if (arc_released(db->db_buf)) {
1704 			arc_buf_t *buf = db->db_buf;
1705 			/*
1706 			 * This dbuf has anonymous data associated with it.
1707 			 */
1708 			dbuf_set_data(db, NULL);
1709 			VERIFY(arc_buf_remove_ref(buf, db) == 1);
1710 			dbuf_evict(db);
1711 		} else {
1712 			VERIFY(arc_buf_remove_ref(db->db_buf, db) == 0);
1713 			mutex_exit(&db->db_mtx);
1714 		}
1715 	} else {
1716 		mutex_exit(&db->db_mtx);
1717 	}
1718 }
1719 
1720 #pragma weak dmu_buf_refcount = dbuf_refcount
1721 uint64_t
1722 dbuf_refcount(dmu_buf_impl_t *db)
1723 {
1724 	return (refcount_count(&db->db_holds));
1725 }
1726 
1727 void *
1728 dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
1729     dmu_buf_evict_func_t *evict_func)
1730 {
1731 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
1732 	    user_data_ptr_ptr, evict_func));
1733 }
1734 
1735 void *
1736 dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr,
1737     dmu_buf_evict_func_t *evict_func)
1738 {
1739 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1740 
1741 	db->db_immediate_evict = TRUE;
1742 	return (dmu_buf_update_user(db_fake, NULL, user_ptr,
1743 	    user_data_ptr_ptr, evict_func));
1744 }
1745 
1746 void *
1747 dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr,
1748     void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func)
1749 {
1750 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1751 	ASSERT(db->db_level == 0);
1752 
1753 	ASSERT((user_ptr == NULL) == (evict_func == NULL));
1754 
1755 	mutex_enter(&db->db_mtx);
1756 
1757 	if (db->db_user_ptr == old_user_ptr) {
1758 		db->db_user_ptr = user_ptr;
1759 		db->db_user_data_ptr_ptr = user_data_ptr_ptr;
1760 		db->db_evict_func = evict_func;
1761 
1762 		dbuf_update_data(db);
1763 	} else {
1764 		old_user_ptr = db->db_user_ptr;
1765 	}
1766 
1767 	mutex_exit(&db->db_mtx);
1768 	return (old_user_ptr);
1769 }
1770 
1771 void *
1772 dmu_buf_get_user(dmu_buf_t *db_fake)
1773 {
1774 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1775 	ASSERT(!refcount_is_zero(&db->db_holds));
1776 
1777 	return (db->db_user_ptr);
1778 }
1779 
1780 static void
1781 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
1782 {
1783 	/* ASSERT(dmu_tx_is_syncing(tx) */
1784 	ASSERT(MUTEX_HELD(&db->db_mtx));
1785 
1786 	if (db->db_blkptr != NULL)
1787 		return;
1788 
1789 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
1790 		/*
1791 		 * This buffer was allocated at a time when there was
1792 		 * no available blkptrs from the dnode, or it was
1793 		 * inappropriate to hook it in (i.e., nlevels mis-match).
1794 		 */
1795 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
1796 		ASSERT(db->db_parent == NULL);
1797 		db->db_parent = dn->dn_dbuf;
1798 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
1799 		DBUF_VERIFY(db);
1800 	} else {
1801 		dmu_buf_impl_t *parent = db->db_parent;
1802 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1803 
1804 		ASSERT(dn->dn_phys->dn_nlevels > 1);
1805 		if (parent == NULL) {
1806 			mutex_exit(&db->db_mtx);
1807 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
1808 			(void) dbuf_hold_impl(dn, db->db_level+1,
1809 			    db->db_blkid >> epbs, FALSE, db, &parent);
1810 			rw_exit(&dn->dn_struct_rwlock);
1811 			mutex_enter(&db->db_mtx);
1812 			db->db_parent = parent;
1813 		}
1814 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
1815 		    (db->db_blkid & ((1ULL << epbs) - 1));
1816 		DBUF_VERIFY(db);
1817 	}
1818 }
1819 
1820 static void
1821 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
1822 {
1823 	dmu_buf_impl_t *db = dr->dr_dbuf;
1824 	dnode_t *dn = db->db_dnode;
1825 	zio_t *zio;
1826 
1827 	ASSERT(dmu_tx_is_syncing(tx));
1828 
1829 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
1830 
1831 	mutex_enter(&db->db_mtx);
1832 
1833 	ASSERT(db->db_level > 0);
1834 	DBUF_VERIFY(db);
1835 
1836 	if (db->db_buf == NULL) {
1837 		mutex_exit(&db->db_mtx);
1838 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
1839 		mutex_enter(&db->db_mtx);
1840 	}
1841 	ASSERT3U(db->db_state, ==, DB_CACHED);
1842 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
1843 	ASSERT(db->db_buf != NULL);
1844 
1845 	dbuf_check_blkptr(dn, db);
1846 
1847 	db->db_data_pending = dr;
1848 	mutex_exit(&db->db_mtx);
1849 
1850 	arc_release(db->db_buf, db);
1851 
1852 	/*
1853 	 * XXX -- we should design a compression algorithm
1854 	 * that specializes in arrays of bps.
1855 	 */
1856 	dbuf_write(dr, db->db_buf, ZIO_CHECKSUM_FLETCHER_4,
1857 	    zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : ZIO_COMPRESS_LZJB, tx);
1858 
1859 	zio = dr->dr_zio;
1860 	mutex_enter(&dr->dt.di.dr_mtx);
1861 	dbuf_sync_list(&dr->dt.di.dr_children, tx);
1862 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
1863 	mutex_exit(&dr->dt.di.dr_mtx);
1864 	zio_nowait(zio);
1865 }
1866 
1867 static void
1868 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
1869 {
1870 	arc_buf_t **datap = &dr->dt.dl.dr_data;
1871 	dmu_buf_impl_t *db = dr->dr_dbuf;
1872 	dnode_t *dn = db->db_dnode;
1873 	objset_impl_t *os = dn->dn_objset;
1874 	uint64_t txg = tx->tx_txg;
1875 	int checksum, compress;
1876 	int blksz;
1877 
1878 	ASSERT(dmu_tx_is_syncing(tx));
1879 
1880 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
1881 
1882 	mutex_enter(&db->db_mtx);
1883 	/*
1884 	 * To be synced, we must be dirtied.  But we
1885 	 * might have been freed after the dirty.
1886 	 */
1887 	if (db->db_state == DB_UNCACHED) {
1888 		/* This buffer has been freed since it was dirtied */
1889 		ASSERT(db->db.db_data == NULL);
1890 	} else if (db->db_state == DB_FILL) {
1891 		/* This buffer was freed and is now being re-filled */
1892 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
1893 	} else {
1894 		ASSERT3U(db->db_state, ==, DB_CACHED);
1895 	}
1896 	DBUF_VERIFY(db);
1897 
1898 	/*
1899 	 * If this is a bonus buffer, simply copy the bonus data into the
1900 	 * dnode.  It will be written out when the dnode is synced (and it
1901 	 * will be synced, since it must have been dirty for dbuf_sync to
1902 	 * be called).
1903 	 */
1904 	if (db->db_blkid == DB_BONUS_BLKID) {
1905 		dbuf_dirty_record_t **drp;
1906 		/*
1907 		 * Use dn_phys->dn_bonuslen since db.db_size is the length
1908 		 * of the bonus buffer in the open transaction rather than
1909 		 * the syncing transaction.
1910 		 */
1911 		ASSERT(*datap != NULL);
1912 		ASSERT3U(db->db_level, ==, 0);
1913 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
1914 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
1915 		if (*datap != db->db.db_data)
1916 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
1917 		db->db_data_pending = NULL;
1918 		drp = &db->db_last_dirty;
1919 		while (*drp != dr)
1920 			drp = &(*drp)->dr_next;
1921 		ASSERT((*drp)->dr_next == NULL);
1922 		*drp = NULL;
1923 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
1924 		ASSERT(db->db_dirtycnt > 0);
1925 		db->db_dirtycnt -= 1;
1926 		mutex_exit(&db->db_mtx);
1927 		dbuf_rele(db, (void *)(uintptr_t)txg);
1928 		return;
1929 	}
1930 
1931 	/*
1932 	 * If this buffer is in the middle of an immdiate write,
1933 	 * wait for the synchronous IO to complete.
1934 	 */
1935 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
1936 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
1937 		cv_wait(&db->db_changed, &db->db_mtx);
1938 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
1939 	}
1940 
1941 	dbuf_check_blkptr(dn, db);
1942 
1943 	/*
1944 	 * If this dbuf has already been written out via an immediate write,
1945 	 * just complete the write by copying over the new block pointer and
1946 	 * updating the accounting via the write-completion functions.
1947 	 */
1948 	if (dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1949 		zio_t zio_fake;
1950 
1951 		zio_fake.io_private = &db;
1952 		zio_fake.io_error = 0;
1953 		zio_fake.io_bp = db->db_blkptr;
1954 		zio_fake.io_bp_orig = *db->db_blkptr;
1955 		zio_fake.io_txg = txg;
1956 
1957 		*db->db_blkptr = dr->dt.dl.dr_overridden_by;
1958 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1959 		db->db_data_pending = dr;
1960 		dr->dr_zio = &zio_fake;
1961 		mutex_exit(&db->db_mtx);
1962 
1963 		if (BP_IS_OLDER(&zio_fake.io_bp_orig, txg))
1964 			dsl_dataset_block_kill(os->os_dsl_dataset,
1965 			    &zio_fake.io_bp_orig, dn->dn_zio, tx);
1966 
1967 		dbuf_write_ready(&zio_fake, db->db_buf, db);
1968 		dbuf_write_done(&zio_fake, db->db_buf, db);
1969 
1970 		return;
1971 	}
1972 
1973 	blksz = arc_buf_size(*datap);
1974 
1975 	if (dn->dn_object != DMU_META_DNODE_OBJECT) {
1976 		/*
1977 		 * If this buffer is currently "in use" (i.e., there are
1978 		 * active holds and db_data still references it), then make
1979 		 * a copy before we start the write so that any modifications
1980 		 * from the open txg will not leak into this write.
1981 		 *
1982 		 * NOTE: this copy does not need to be made for objects only
1983 		 * modified in the syncing context (e.g. DNONE_DNODE blocks).
1984 		 */
1985 		if (refcount_count(&db->db_holds) > 1 && *datap == db->db_buf) {
1986 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1987 			*datap = arc_buf_alloc(os->os_spa, blksz, db, type);
1988 			bcopy(db->db.db_data, (*datap)->b_data, blksz);
1989 		}
1990 	} else {
1991 		/*
1992 		 * Private object buffers are released here rather
1993 		 * than in dbuf_dirty() since they are only modified
1994 		 * in the syncing context and we don't want the
1995 		 * overhead of making multiple copies of the data.
1996 		 */
1997 		arc_release(db->db_buf, db);
1998 	}
1999 
2000 	ASSERT(*datap != NULL);
2001 	db->db_data_pending = dr;
2002 
2003 	mutex_exit(&db->db_mtx);
2004 
2005 	/*
2006 	 * Allow dnode settings to override objset settings,
2007 	 * except for metadata checksums.
2008 	 */
2009 	if (dmu_ot[dn->dn_type].ot_metadata) {
2010 		checksum = os->os_md_checksum;
2011 		compress = zio_compress_select(dn->dn_compress,
2012 		    os->os_md_compress);
2013 	} else {
2014 		checksum = zio_checksum_select(dn->dn_checksum,
2015 		    os->os_checksum);
2016 		compress = zio_compress_select(dn->dn_compress,
2017 		    os->os_compress);
2018 	}
2019 
2020 	dbuf_write(dr, *datap, checksum, compress, tx);
2021 
2022 	ASSERT(!list_link_active(&dr->dr_dirty_node));
2023 	if (dn->dn_object == DMU_META_DNODE_OBJECT)
2024 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2025 	else
2026 		zio_nowait(dr->dr_zio);
2027 }
2028 
2029 void
2030 dbuf_sync_list(list_t *list, dmu_tx_t *tx)
2031 {
2032 	dbuf_dirty_record_t *dr;
2033 
2034 	while (dr = list_head(list)) {
2035 		if (dr->dr_zio != NULL) {
2036 			/*
2037 			 * If we find an already initialized zio then we
2038 			 * are processing the meta-dnode, and we have finished.
2039 			 * The dbufs for all dnodes are put back on the list
2040 			 * during processing, so that we can zio_wait()
2041 			 * these IOs after initiating all child IOs.
2042 			 */
2043 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2044 			    DMU_META_DNODE_OBJECT);
2045 			break;
2046 		}
2047 		list_remove(list, dr);
2048 		if (dr->dr_dbuf->db_level > 0)
2049 			dbuf_sync_indirect(dr, tx);
2050 		else
2051 			dbuf_sync_leaf(dr, tx);
2052 	}
2053 }
2054 
2055 static void
2056 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, int checksum,
2057     int compress, dmu_tx_t *tx)
2058 {
2059 	dmu_buf_impl_t *db = dr->dr_dbuf;
2060 	dnode_t *dn = db->db_dnode;
2061 	objset_impl_t *os = dn->dn_objset;
2062 	dmu_buf_impl_t *parent = db->db_parent;
2063 	uint64_t txg = tx->tx_txg;
2064 	zbookmark_t zb;
2065 	zio_t *zio;
2066 	int zio_flags;
2067 
2068 	if (parent != dn->dn_dbuf) {
2069 		ASSERT(parent && parent->db_data_pending);
2070 		ASSERT(db->db_level == parent->db_level-1);
2071 		ASSERT(arc_released(parent->db_buf));
2072 		zio = parent->db_data_pending->dr_zio;
2073 	} else {
2074 		ASSERT(db->db_level == dn->dn_phys->dn_nlevels-1);
2075 		ASSERT3P(db->db_blkptr, ==,
2076 		    &dn->dn_phys->dn_blkptr[db->db_blkid]);
2077 		zio = dn->dn_zio;
2078 	}
2079 
2080 	ASSERT(db->db_level == 0 || data == db->db_buf);
2081 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
2082 	ASSERT(zio);
2083 
2084 	zb.zb_objset = os->os_dsl_dataset ? os->os_dsl_dataset->ds_object : 0;
2085 	zb.zb_object = db->db.db_object;
2086 	zb.zb_level = db->db_level;
2087 	zb.zb_blkid = db->db_blkid;
2088 
2089 	zio_flags = ZIO_FLAG_MUSTSUCCEED;
2090 	if (dmu_ot[dn->dn_type].ot_metadata || zb.zb_level != 0)
2091 		zio_flags |= ZIO_FLAG_METADATA;
2092 	if (BP_IS_OLDER(db->db_blkptr, txg))
2093 		dsl_dataset_block_kill(
2094 		    os->os_dsl_dataset, db->db_blkptr, zio, tx);
2095 
2096 	dr->dr_zio = arc_write(zio, os->os_spa, checksum, compress,
2097 	    dmu_get_replication_level(os->os_spa, &zb, dn->dn_type), txg,
2098 	    db->db_blkptr, data, dbuf_write_ready, dbuf_write_done, db,
2099 	    ZIO_PRIORITY_ASYNC_WRITE, zio_flags, &zb);
2100 }
2101 
2102 /* ARGSUSED */
2103 static void
2104 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
2105 {
2106 	dmu_buf_impl_t *db = vdb;
2107 	dnode_t *dn = db->db_dnode;
2108 	objset_impl_t *os = dn->dn_objset;
2109 	blkptr_t *bp_orig = &zio->io_bp_orig;
2110 	uint64_t fill = 0;
2111 	int old_size, new_size, i;
2112 
2113 	dprintf_dbuf_bp(db, bp_orig, "bp_orig: %s", "");
2114 
2115 	old_size = bp_get_dasize(os->os_spa, bp_orig);
2116 	new_size = bp_get_dasize(os->os_spa, zio->io_bp);
2117 
2118 	dnode_diduse_space(dn, new_size-old_size);
2119 
2120 	if (BP_IS_HOLE(zio->io_bp)) {
2121 		dsl_dataset_t *ds = os->os_dsl_dataset;
2122 		dmu_tx_t *tx = os->os_synctx;
2123 
2124 		if (bp_orig->blk_birth == tx->tx_txg)
2125 			dsl_dataset_block_kill(ds, bp_orig, NULL, tx);
2126 		ASSERT3U(db->db_blkptr->blk_fill, ==, 0);
2127 		return;
2128 	}
2129 
2130 	mutex_enter(&db->db_mtx);
2131 
2132 	if (db->db_level == 0) {
2133 		mutex_enter(&dn->dn_mtx);
2134 		if (db->db_blkid > dn->dn_phys->dn_maxblkid)
2135 			dn->dn_phys->dn_maxblkid = db->db_blkid;
2136 		mutex_exit(&dn->dn_mtx);
2137 
2138 		if (dn->dn_type == DMU_OT_DNODE) {
2139 			dnode_phys_t *dnp = db->db.db_data;
2140 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
2141 			    i--, dnp++) {
2142 				if (dnp->dn_type != DMU_OT_NONE)
2143 					fill++;
2144 			}
2145 		} else {
2146 			fill = 1;
2147 		}
2148 	} else {
2149 		blkptr_t *bp = db->db.db_data;
2150 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2151 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, bp++) {
2152 			if (BP_IS_HOLE(bp))
2153 				continue;
2154 			ASSERT3U(BP_GET_LSIZE(bp), ==,
2155 			    db->db_level == 1 ? dn->dn_datablksz :
2156 			    (1<<dn->dn_phys->dn_indblkshift));
2157 			fill += bp->blk_fill;
2158 		}
2159 	}
2160 
2161 	db->db_blkptr->blk_fill = fill;
2162 	BP_SET_TYPE(db->db_blkptr, dn->dn_type);
2163 	BP_SET_LEVEL(db->db_blkptr, db->db_level);
2164 
2165 	mutex_exit(&db->db_mtx);
2166 
2167 	/* We must do this after we've set the bp's type and level */
2168 	if (!DVA_EQUAL(BP_IDENTITY(zio->io_bp), BP_IDENTITY(bp_orig))) {
2169 		dsl_dataset_t *ds = os->os_dsl_dataset;
2170 		dmu_tx_t *tx = os->os_synctx;
2171 
2172 		if (bp_orig->blk_birth == tx->tx_txg)
2173 			dsl_dataset_block_kill(ds, bp_orig, NULL, tx);
2174 		dsl_dataset_block_born(ds, zio->io_bp, tx);
2175 	}
2176 }
2177 
2178 /* ARGSUSED */
2179 static void
2180 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2181 {
2182 	dmu_buf_impl_t *db = vdb;
2183 	uint64_t txg = zio->io_txg;
2184 	dbuf_dirty_record_t **drp, *dr;
2185 
2186 	ASSERT3U(zio->io_error, ==, 0);
2187 
2188 	mutex_enter(&db->db_mtx);
2189 
2190 	drp = &db->db_last_dirty;
2191 	while (*drp != db->db_data_pending)
2192 		drp = &(*drp)->dr_next;
2193 	ASSERT(!list_link_active(&(*drp)->dr_dirty_node));
2194 	ASSERT((*drp)->dr_txg == txg);
2195 	ASSERT((*drp)->dr_next == NULL);
2196 	dr = *drp;
2197 	*drp = NULL;
2198 
2199 	if (db->db_level == 0) {
2200 		ASSERT(db->db_blkid != DB_BONUS_BLKID);
2201 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2202 
2203 		if (dr->dt.dl.dr_data != db->db_buf)
2204 			VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db) == 1);
2205 		else if (!BP_IS_HOLE(db->db_blkptr))
2206 			arc_set_callback(db->db_buf, dbuf_do_evict, db);
2207 		else
2208 			ASSERT(arc_released(db->db_buf));
2209 	} else {
2210 		dnode_t *dn = db->db_dnode;
2211 
2212 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2213 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2214 		if (!BP_IS_HOLE(db->db_blkptr)) {
2215 			int epbs =
2216 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2217 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2218 			    db->db.db_size);
2219 			ASSERT3U(dn->dn_phys->dn_maxblkid
2220 			    >> (db->db_level * epbs), >=, db->db_blkid);
2221 			arc_set_callback(db->db_buf, dbuf_do_evict, db);
2222 		}
2223 	}
2224 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2225 
2226 	cv_broadcast(&db->db_changed);
2227 	ASSERT(db->db_dirtycnt > 0);
2228 	db->db_dirtycnt -= 1;
2229 	db->db_data_pending = NULL;
2230 	mutex_exit(&db->db_mtx);
2231 
2232 	dprintf_dbuf_bp(db, zio->io_bp, "bp: %s", "");
2233 
2234 	dbuf_rele(db, (void *)(uintptr_t)txg);
2235 }
2236