1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 50 uint_t zfs_dbuf_evict_key; 51 52 /* 53 * Number of times that zfs_free_range() took the slow path while doing 54 * a zfs receive. A nonzero value indicates a potential performance problem. 55 */ 56 uint64_t zfs_free_range_recv_miss; 57 58 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 59 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 60 61 #ifndef __lint 62 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 63 dmu_buf_evict_func_t *evict_func, dmu_buf_t **clear_on_evict_dbufp); 64 #endif /* ! __lint */ 65 66 /* 67 * Global data structures and functions for the dbuf cache. 68 */ 69 static kmem_cache_t *dbuf_kmem_cache; 70 static taskq_t *dbu_evict_taskq; 71 72 static kthread_t *dbuf_cache_evict_thread; 73 static kmutex_t dbuf_evict_lock; 74 static kcondvar_t dbuf_evict_cv; 75 static boolean_t dbuf_evict_thread_exit; 76 77 /* 78 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 79 * are not currently held but have been recently released. These dbufs 80 * are not eligible for arc eviction until they are aged out of the cache. 81 * Dbufs are added to the dbuf cache once the last hold is released. If a 82 * dbuf is later accessed and still exists in the dbuf cache, then it will 83 * be removed from the cache and later re-added to the head of the cache. 84 * Dbufs that are aged out of the cache will be immediately destroyed and 85 * become eligible for arc eviction. 86 */ 87 static multilist_t dbuf_cache; 88 static refcount_t dbuf_cache_size; 89 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024; 90 91 /* Cap the size of the dbuf cache to log2 fraction of arc size. */ 92 int dbuf_cache_max_shift = 5; 93 94 /* 95 * The dbuf cache uses a three-stage eviction policy: 96 * - A low water marker designates when the dbuf eviction thread 97 * should stop evicting from the dbuf cache. 98 * - When we reach the maximum size (aka mid water mark), we 99 * signal the eviction thread to run. 100 * - The high water mark indicates when the eviction thread 101 * is unable to keep up with the incoming load and eviction must 102 * happen in the context of the calling thread. 103 * 104 * The dbuf cache: 105 * (max size) 106 * low water mid water hi water 107 * +----------------------------------------+----------+----------+ 108 * | | | | 109 * | | | | 110 * | | | | 111 * | | | | 112 * +----------------------------------------+----------+----------+ 113 * stop signal evict 114 * evicting eviction directly 115 * thread 116 * 117 * The high and low water marks indicate the operating range for the eviction 118 * thread. The low water mark is, by default, 90% of the total size of the 119 * cache and the high water mark is at 110% (both of these percentages can be 120 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 121 * respectively). The eviction thread will try to ensure that the cache remains 122 * within this range by waking up every second and checking if the cache is 123 * above the low water mark. The thread can also be woken up by callers adding 124 * elements into the cache if the cache is larger than the mid water (i.e max 125 * cache size). Once the eviction thread is woken up and eviction is required, 126 * it will continue evicting buffers until it's able to reduce the cache size 127 * to the low water mark. If the cache size continues to grow and hits the high 128 * water mark, then callers adding elments to the cache will begin to evict 129 * directly from the cache until the cache is no longer above the high water 130 * mark. 131 */ 132 133 /* 134 * The percentage above and below the maximum cache size. 135 */ 136 uint_t dbuf_cache_hiwater_pct = 10; 137 uint_t dbuf_cache_lowater_pct = 10; 138 139 /* ARGSUSED */ 140 static int 141 dbuf_cons(void *vdb, void *unused, int kmflag) 142 { 143 dmu_buf_impl_t *db = vdb; 144 bzero(db, sizeof (dmu_buf_impl_t)); 145 146 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 147 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 148 multilist_link_init(&db->db_cache_link); 149 refcount_create(&db->db_holds); 150 151 return (0); 152 } 153 154 /* ARGSUSED */ 155 static void 156 dbuf_dest(void *vdb, void *unused) 157 { 158 dmu_buf_impl_t *db = vdb; 159 mutex_destroy(&db->db_mtx); 160 cv_destroy(&db->db_changed); 161 ASSERT(!multilist_link_active(&db->db_cache_link)); 162 refcount_destroy(&db->db_holds); 163 } 164 165 /* 166 * dbuf hash table routines 167 */ 168 static dbuf_hash_table_t dbuf_hash_table; 169 170 static uint64_t dbuf_hash_count; 171 172 static uint64_t 173 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 174 { 175 uintptr_t osv = (uintptr_t)os; 176 uint64_t crc = -1ULL; 177 178 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 179 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 180 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 181 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 182 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 183 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 184 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 185 186 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 187 188 return (crc); 189 } 190 191 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 192 ((dbuf)->db.db_object == (obj) && \ 193 (dbuf)->db_objset == (os) && \ 194 (dbuf)->db_level == (level) && \ 195 (dbuf)->db_blkid == (blkid)) 196 197 dmu_buf_impl_t * 198 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 199 { 200 dbuf_hash_table_t *h = &dbuf_hash_table; 201 uint64_t hv = dbuf_hash(os, obj, level, blkid); 202 uint64_t idx = hv & h->hash_table_mask; 203 dmu_buf_impl_t *db; 204 205 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 206 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 207 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 208 mutex_enter(&db->db_mtx); 209 if (db->db_state != DB_EVICTING) { 210 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 211 return (db); 212 } 213 mutex_exit(&db->db_mtx); 214 } 215 } 216 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 217 return (NULL); 218 } 219 220 static dmu_buf_impl_t * 221 dbuf_find_bonus(objset_t *os, uint64_t object) 222 { 223 dnode_t *dn; 224 dmu_buf_impl_t *db = NULL; 225 226 if (dnode_hold(os, object, FTAG, &dn) == 0) { 227 rw_enter(&dn->dn_struct_rwlock, RW_READER); 228 if (dn->dn_bonus != NULL) { 229 db = dn->dn_bonus; 230 mutex_enter(&db->db_mtx); 231 } 232 rw_exit(&dn->dn_struct_rwlock); 233 dnode_rele(dn, FTAG); 234 } 235 return (db); 236 } 237 238 /* 239 * Insert an entry into the hash table. If there is already an element 240 * equal to elem in the hash table, then the already existing element 241 * will be returned and the new element will not be inserted. 242 * Otherwise returns NULL. 243 */ 244 static dmu_buf_impl_t * 245 dbuf_hash_insert(dmu_buf_impl_t *db) 246 { 247 dbuf_hash_table_t *h = &dbuf_hash_table; 248 objset_t *os = db->db_objset; 249 uint64_t obj = db->db.db_object; 250 int level = db->db_level; 251 uint64_t blkid = db->db_blkid; 252 uint64_t hv = dbuf_hash(os, obj, level, blkid); 253 uint64_t idx = hv & h->hash_table_mask; 254 dmu_buf_impl_t *dbf; 255 256 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 257 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 258 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 259 mutex_enter(&dbf->db_mtx); 260 if (dbf->db_state != DB_EVICTING) { 261 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 262 return (dbf); 263 } 264 mutex_exit(&dbf->db_mtx); 265 } 266 } 267 268 mutex_enter(&db->db_mtx); 269 db->db_hash_next = h->hash_table[idx]; 270 h->hash_table[idx] = db; 271 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 272 atomic_inc_64(&dbuf_hash_count); 273 274 return (NULL); 275 } 276 277 /* 278 * Remove an entry from the hash table. It must be in the EVICTING state. 279 */ 280 static void 281 dbuf_hash_remove(dmu_buf_impl_t *db) 282 { 283 dbuf_hash_table_t *h = &dbuf_hash_table; 284 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 285 db->db_level, db->db_blkid); 286 uint64_t idx = hv & h->hash_table_mask; 287 dmu_buf_impl_t *dbf, **dbp; 288 289 /* 290 * We musn't hold db_mtx to maintain lock ordering: 291 * DBUF_HASH_MUTEX > db_mtx. 292 */ 293 ASSERT(refcount_is_zero(&db->db_holds)); 294 ASSERT(db->db_state == DB_EVICTING); 295 ASSERT(!MUTEX_HELD(&db->db_mtx)); 296 297 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 298 dbp = &h->hash_table[idx]; 299 while ((dbf = *dbp) != db) { 300 dbp = &dbf->db_hash_next; 301 ASSERT(dbf != NULL); 302 } 303 *dbp = db->db_hash_next; 304 db->db_hash_next = NULL; 305 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 306 atomic_dec_64(&dbuf_hash_count); 307 } 308 309 typedef enum { 310 DBVU_EVICTING, 311 DBVU_NOT_EVICTING 312 } dbvu_verify_type_t; 313 314 static void 315 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 316 { 317 #ifdef ZFS_DEBUG 318 int64_t holds; 319 320 if (db->db_user == NULL) 321 return; 322 323 /* Only data blocks support the attachment of user data. */ 324 ASSERT(db->db_level == 0); 325 326 /* Clients must resolve a dbuf before attaching user data. */ 327 ASSERT(db->db.db_data != NULL); 328 ASSERT3U(db->db_state, ==, DB_CACHED); 329 330 holds = refcount_count(&db->db_holds); 331 if (verify_type == DBVU_EVICTING) { 332 /* 333 * Immediate eviction occurs when holds == dirtycnt. 334 * For normal eviction buffers, holds is zero on 335 * eviction, except when dbuf_fix_old_data() calls 336 * dbuf_clear_data(). However, the hold count can grow 337 * during eviction even though db_mtx is held (see 338 * dmu_bonus_hold() for an example), so we can only 339 * test the generic invariant that holds >= dirtycnt. 340 */ 341 ASSERT3U(holds, >=, db->db_dirtycnt); 342 } else { 343 if (db->db_user_immediate_evict == TRUE) 344 ASSERT3U(holds, >=, db->db_dirtycnt); 345 else 346 ASSERT3U(holds, >, 0); 347 } 348 #endif 349 } 350 351 static void 352 dbuf_evict_user(dmu_buf_impl_t *db) 353 { 354 dmu_buf_user_t *dbu = db->db_user; 355 356 ASSERT(MUTEX_HELD(&db->db_mtx)); 357 358 if (dbu == NULL) 359 return; 360 361 dbuf_verify_user(db, DBVU_EVICTING); 362 db->db_user = NULL; 363 364 #ifdef ZFS_DEBUG 365 if (dbu->dbu_clear_on_evict_dbufp != NULL) 366 *dbu->dbu_clear_on_evict_dbufp = NULL; 367 #endif 368 369 /* 370 * Invoke the callback from a taskq to avoid lock order reversals 371 * and limit stack depth. 372 */ 373 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func, dbu, 0, 374 &dbu->dbu_tqent); 375 } 376 377 boolean_t 378 dbuf_is_metadata(dmu_buf_impl_t *db) 379 { 380 if (db->db_level > 0) { 381 return (B_TRUE); 382 } else { 383 boolean_t is_metadata; 384 385 DB_DNODE_ENTER(db); 386 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 387 DB_DNODE_EXIT(db); 388 389 return (is_metadata); 390 } 391 } 392 393 /* 394 * This function *must* return indices evenly distributed between all 395 * sublists of the multilist. This is needed due to how the dbuf eviction 396 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 397 * distributed between all sublists and uses this assumption when 398 * deciding which sublist to evict from and how much to evict from it. 399 */ 400 unsigned int 401 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 402 { 403 dmu_buf_impl_t *db = obj; 404 405 /* 406 * The assumption here, is the hash value for a given 407 * dmu_buf_impl_t will remain constant throughout it's lifetime 408 * (i.e. it's objset, object, level and blkid fields don't change). 409 * Thus, we don't need to store the dbuf's sublist index 410 * on insertion, as this index can be recalculated on removal. 411 * 412 * Also, the low order bits of the hash value are thought to be 413 * distributed evenly. Otherwise, in the case that the multilist 414 * has a power of two number of sublists, each sublists' usage 415 * would not be evenly distributed. 416 */ 417 return (dbuf_hash(db->db_objset, db->db.db_object, 418 db->db_level, db->db_blkid) % 419 multilist_get_num_sublists(ml)); 420 } 421 422 static inline boolean_t 423 dbuf_cache_above_hiwater(void) 424 { 425 uint64_t dbuf_cache_hiwater_bytes = 426 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 427 428 return (refcount_count(&dbuf_cache_size) > 429 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 430 } 431 432 static inline boolean_t 433 dbuf_cache_above_lowater(void) 434 { 435 uint64_t dbuf_cache_lowater_bytes = 436 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 437 438 return (refcount_count(&dbuf_cache_size) > 439 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 440 } 441 442 /* 443 * Evict the oldest eligible dbuf from the dbuf cache. 444 */ 445 static void 446 dbuf_evict_one(void) 447 { 448 int idx = multilist_get_random_index(&dbuf_cache); 449 multilist_sublist_t *mls = multilist_sublist_lock(&dbuf_cache, idx); 450 451 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 452 453 /* 454 * Set the thread's tsd to indicate that it's processing evictions. 455 * Once a thread stops evicting from the dbuf cache it will 456 * reset its tsd to NULL. 457 */ 458 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL); 459 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE); 460 461 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 462 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 463 db = multilist_sublist_prev(mls, db); 464 } 465 466 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 467 multilist_sublist_t *, mls); 468 469 if (db != NULL) { 470 multilist_sublist_remove(mls, db); 471 multilist_sublist_unlock(mls); 472 (void) refcount_remove_many(&dbuf_cache_size, 473 db->db.db_size, db); 474 dbuf_destroy(db); 475 } else { 476 multilist_sublist_unlock(mls); 477 } 478 (void) tsd_set(zfs_dbuf_evict_key, NULL); 479 } 480 481 /* 482 * The dbuf evict thread is responsible for aging out dbufs from the 483 * cache. Once the cache has reached it's maximum size, dbufs are removed 484 * and destroyed. The eviction thread will continue running until the size 485 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 486 * out of the cache it is destroyed and becomes eligible for arc eviction. 487 */ 488 static void 489 dbuf_evict_thread(void) 490 { 491 callb_cpr_t cpr; 492 493 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 494 495 mutex_enter(&dbuf_evict_lock); 496 while (!dbuf_evict_thread_exit) { 497 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 498 CALLB_CPR_SAFE_BEGIN(&cpr); 499 (void) cv_timedwait_hires(&dbuf_evict_cv, 500 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 501 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 502 } 503 mutex_exit(&dbuf_evict_lock); 504 505 /* 506 * Keep evicting as long as we're above the low water mark 507 * for the cache. We do this without holding the locks to 508 * minimize lock contention. 509 */ 510 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 511 dbuf_evict_one(); 512 } 513 514 mutex_enter(&dbuf_evict_lock); 515 } 516 517 dbuf_evict_thread_exit = B_FALSE; 518 cv_broadcast(&dbuf_evict_cv); 519 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 520 thread_exit(); 521 } 522 523 /* 524 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 525 * If the dbuf cache is at its high water mark, then evict a dbuf from the 526 * dbuf cache using the callers context. 527 */ 528 static void 529 dbuf_evict_notify(void) 530 { 531 532 /* 533 * We use thread specific data to track when a thread has 534 * started processing evictions. This allows us to avoid deeply 535 * nested stacks that would have a call flow similar to this: 536 * 537 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 538 * ^ | 539 * | | 540 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 541 * 542 * The dbuf_eviction_thread will always have its tsd set until 543 * that thread exits. All other threads will only set their tsd 544 * if they are participating in the eviction process. This only 545 * happens if the eviction thread is unable to process evictions 546 * fast enough. To keep the dbuf cache size in check, other threads 547 * can evict from the dbuf cache directly. Those threads will set 548 * their tsd values so that we ensure that they only evict one dbuf 549 * from the dbuf cache. 550 */ 551 if (tsd_get(zfs_dbuf_evict_key) != NULL) 552 return; 553 554 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 555 boolean_t evict_now = B_FALSE; 556 557 mutex_enter(&dbuf_evict_lock); 558 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 559 evict_now = dbuf_cache_above_hiwater(); 560 cv_signal(&dbuf_evict_cv); 561 } 562 mutex_exit(&dbuf_evict_lock); 563 564 if (evict_now) { 565 dbuf_evict_one(); 566 } 567 } 568 } 569 570 void 571 dbuf_init(void) 572 { 573 uint64_t hsize = 1ULL << 16; 574 dbuf_hash_table_t *h = &dbuf_hash_table; 575 int i; 576 577 /* 578 * The hash table is big enough to fill all of physical memory 579 * with an average 4K block size. The table will take up 580 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 581 */ 582 while (hsize * 4096 < physmem * PAGESIZE) 583 hsize <<= 1; 584 585 retry: 586 h->hash_table_mask = hsize - 1; 587 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 588 if (h->hash_table == NULL) { 589 /* XXX - we should really return an error instead of assert */ 590 ASSERT(hsize > (1ULL << 10)); 591 hsize >>= 1; 592 goto retry; 593 } 594 595 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 596 sizeof (dmu_buf_impl_t), 597 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 598 599 for (i = 0; i < DBUF_MUTEXES; i++) 600 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 601 602 /* 603 * Setup the parameters for the dbuf cache. We cap the size of the 604 * dbuf cache to 1/32nd (default) of the size of the ARC. 605 */ 606 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes, 607 arc_max_bytes() >> dbuf_cache_max_shift); 608 609 /* 610 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 611 * configuration is not required. 612 */ 613 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 614 615 multilist_create(&dbuf_cache, sizeof (dmu_buf_impl_t), 616 offsetof(dmu_buf_impl_t, db_cache_link), 617 zfs_arc_num_sublists_per_state, 618 dbuf_cache_multilist_index_func); 619 refcount_create(&dbuf_cache_size); 620 621 tsd_create(&zfs_dbuf_evict_key, NULL); 622 dbuf_evict_thread_exit = B_FALSE; 623 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 624 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 625 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 626 NULL, 0, &p0, TS_RUN, minclsyspri); 627 } 628 629 void 630 dbuf_fini(void) 631 { 632 dbuf_hash_table_t *h = &dbuf_hash_table; 633 int i; 634 635 for (i = 0; i < DBUF_MUTEXES; i++) 636 mutex_destroy(&h->hash_mutexes[i]); 637 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 638 kmem_cache_destroy(dbuf_kmem_cache); 639 taskq_destroy(dbu_evict_taskq); 640 641 mutex_enter(&dbuf_evict_lock); 642 dbuf_evict_thread_exit = B_TRUE; 643 while (dbuf_evict_thread_exit) { 644 cv_signal(&dbuf_evict_cv); 645 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 646 } 647 mutex_exit(&dbuf_evict_lock); 648 tsd_destroy(&zfs_dbuf_evict_key); 649 650 mutex_destroy(&dbuf_evict_lock); 651 cv_destroy(&dbuf_evict_cv); 652 653 refcount_destroy(&dbuf_cache_size); 654 multilist_destroy(&dbuf_cache); 655 } 656 657 /* 658 * Other stuff. 659 */ 660 661 #ifdef ZFS_DEBUG 662 static void 663 dbuf_verify(dmu_buf_impl_t *db) 664 { 665 dnode_t *dn; 666 dbuf_dirty_record_t *dr; 667 668 ASSERT(MUTEX_HELD(&db->db_mtx)); 669 670 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 671 return; 672 673 ASSERT(db->db_objset != NULL); 674 DB_DNODE_ENTER(db); 675 dn = DB_DNODE(db); 676 if (dn == NULL) { 677 ASSERT(db->db_parent == NULL); 678 ASSERT(db->db_blkptr == NULL); 679 } else { 680 ASSERT3U(db->db.db_object, ==, dn->dn_object); 681 ASSERT3P(db->db_objset, ==, dn->dn_objset); 682 ASSERT3U(db->db_level, <, dn->dn_nlevels); 683 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 684 db->db_blkid == DMU_SPILL_BLKID || 685 !avl_is_empty(&dn->dn_dbufs)); 686 } 687 if (db->db_blkid == DMU_BONUS_BLKID) { 688 ASSERT(dn != NULL); 689 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 690 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 691 } else if (db->db_blkid == DMU_SPILL_BLKID) { 692 ASSERT(dn != NULL); 693 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 694 ASSERT0(db->db.db_offset); 695 } else { 696 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 697 } 698 699 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 700 ASSERT(dr->dr_dbuf == db); 701 702 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 703 ASSERT(dr->dr_dbuf == db); 704 705 /* 706 * We can't assert that db_size matches dn_datablksz because it 707 * can be momentarily different when another thread is doing 708 * dnode_set_blksz(). 709 */ 710 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 711 dr = db->db_data_pending; 712 /* 713 * It should only be modified in syncing context, so 714 * make sure we only have one copy of the data. 715 */ 716 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 717 } 718 719 /* verify db->db_blkptr */ 720 if (db->db_blkptr) { 721 if (db->db_parent == dn->dn_dbuf) { 722 /* db is pointed to by the dnode */ 723 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 724 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 725 ASSERT(db->db_parent == NULL); 726 else 727 ASSERT(db->db_parent != NULL); 728 if (db->db_blkid != DMU_SPILL_BLKID) 729 ASSERT3P(db->db_blkptr, ==, 730 &dn->dn_phys->dn_blkptr[db->db_blkid]); 731 } else { 732 /* db is pointed to by an indirect block */ 733 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 734 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 735 ASSERT3U(db->db_parent->db.db_object, ==, 736 db->db.db_object); 737 /* 738 * dnode_grow_indblksz() can make this fail if we don't 739 * have the struct_rwlock. XXX indblksz no longer 740 * grows. safe to do this now? 741 */ 742 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 743 ASSERT3P(db->db_blkptr, ==, 744 ((blkptr_t *)db->db_parent->db.db_data + 745 db->db_blkid % epb)); 746 } 747 } 748 } 749 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 750 (db->db_buf == NULL || db->db_buf->b_data) && 751 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 752 db->db_state != DB_FILL && !dn->dn_free_txg) { 753 /* 754 * If the blkptr isn't set but they have nonzero data, 755 * it had better be dirty, otherwise we'll lose that 756 * data when we evict this buffer. 757 * 758 * There is an exception to this rule for indirect blocks; in 759 * this case, if the indirect block is a hole, we fill in a few 760 * fields on each of the child blocks (importantly, birth time) 761 * to prevent hole birth times from being lost when you 762 * partially fill in a hole. 763 */ 764 if (db->db_dirtycnt == 0) { 765 if (db->db_level == 0) { 766 uint64_t *buf = db->db.db_data; 767 int i; 768 769 for (i = 0; i < db->db.db_size >> 3; i++) { 770 ASSERT(buf[i] == 0); 771 } 772 } else { 773 blkptr_t *bps = db->db.db_data; 774 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 775 db->db.db_size); 776 /* 777 * We want to verify that all the blkptrs in the 778 * indirect block are holes, but we may have 779 * automatically set up a few fields for them. 780 * We iterate through each blkptr and verify 781 * they only have those fields set. 782 */ 783 for (int i = 0; 784 i < db->db.db_size / sizeof (blkptr_t); 785 i++) { 786 blkptr_t *bp = &bps[i]; 787 ASSERT(ZIO_CHECKSUM_IS_ZERO( 788 &bp->blk_cksum)); 789 ASSERT( 790 DVA_IS_EMPTY(&bp->blk_dva[0]) && 791 DVA_IS_EMPTY(&bp->blk_dva[1]) && 792 DVA_IS_EMPTY(&bp->blk_dva[2])); 793 ASSERT0(bp->blk_fill); 794 ASSERT0(bp->blk_pad[0]); 795 ASSERT0(bp->blk_pad[1]); 796 ASSERT(!BP_IS_EMBEDDED(bp)); 797 ASSERT(BP_IS_HOLE(bp)); 798 ASSERT0(bp->blk_phys_birth); 799 } 800 } 801 } 802 } 803 DB_DNODE_EXIT(db); 804 } 805 #endif 806 807 static void 808 dbuf_clear_data(dmu_buf_impl_t *db) 809 { 810 ASSERT(MUTEX_HELD(&db->db_mtx)); 811 dbuf_evict_user(db); 812 ASSERT3P(db->db_buf, ==, NULL); 813 db->db.db_data = NULL; 814 if (db->db_state != DB_NOFILL) 815 db->db_state = DB_UNCACHED; 816 } 817 818 static void 819 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 820 { 821 ASSERT(MUTEX_HELD(&db->db_mtx)); 822 ASSERT(buf != NULL); 823 824 db->db_buf = buf; 825 ASSERT(buf->b_data != NULL); 826 db->db.db_data = buf->b_data; 827 } 828 829 /* 830 * Loan out an arc_buf for read. Return the loaned arc_buf. 831 */ 832 arc_buf_t * 833 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 834 { 835 arc_buf_t *abuf; 836 837 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 838 mutex_enter(&db->db_mtx); 839 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 840 int blksz = db->db.db_size; 841 spa_t *spa = db->db_objset->os_spa; 842 843 mutex_exit(&db->db_mtx); 844 abuf = arc_loan_buf(spa, blksz); 845 bcopy(db->db.db_data, abuf->b_data, blksz); 846 } else { 847 abuf = db->db_buf; 848 arc_loan_inuse_buf(abuf, db); 849 db->db_buf = NULL; 850 dbuf_clear_data(db); 851 mutex_exit(&db->db_mtx); 852 } 853 return (abuf); 854 } 855 856 /* 857 * Calculate which level n block references the data at the level 0 offset 858 * provided. 859 */ 860 uint64_t 861 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 862 { 863 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 864 /* 865 * The level n blkid is equal to the level 0 blkid divided by 866 * the number of level 0s in a level n block. 867 * 868 * The level 0 blkid is offset >> datablkshift = 869 * offset / 2^datablkshift. 870 * 871 * The number of level 0s in a level n is the number of block 872 * pointers in an indirect block, raised to the power of level. 873 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 874 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 875 * 876 * Thus, the level n blkid is: offset / 877 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 878 * = offset / 2^(datablkshift + level * 879 * (indblkshift - SPA_BLKPTRSHIFT)) 880 * = offset >> (datablkshift + level * 881 * (indblkshift - SPA_BLKPTRSHIFT)) 882 */ 883 return (offset >> (dn->dn_datablkshift + level * 884 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 885 } else { 886 ASSERT3U(offset, <, dn->dn_datablksz); 887 return (0); 888 } 889 } 890 891 static void 892 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 893 { 894 dmu_buf_impl_t *db = vdb; 895 896 mutex_enter(&db->db_mtx); 897 ASSERT3U(db->db_state, ==, DB_READ); 898 /* 899 * All reads are synchronous, so we must have a hold on the dbuf 900 */ 901 ASSERT(refcount_count(&db->db_holds) > 0); 902 ASSERT(db->db_buf == NULL); 903 ASSERT(db->db.db_data == NULL); 904 if (db->db_level == 0 && db->db_freed_in_flight) { 905 /* we were freed in flight; disregard any error */ 906 arc_release(buf, db); 907 bzero(buf->b_data, db->db.db_size); 908 arc_buf_freeze(buf); 909 db->db_freed_in_flight = FALSE; 910 dbuf_set_data(db, buf); 911 db->db_state = DB_CACHED; 912 } else if (zio == NULL || zio->io_error == 0) { 913 dbuf_set_data(db, buf); 914 db->db_state = DB_CACHED; 915 } else { 916 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 917 ASSERT3P(db->db_buf, ==, NULL); 918 arc_buf_destroy(buf, db); 919 db->db_state = DB_UNCACHED; 920 } 921 cv_broadcast(&db->db_changed); 922 dbuf_rele_and_unlock(db, NULL); 923 } 924 925 static void 926 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 927 { 928 dnode_t *dn; 929 zbookmark_phys_t zb; 930 arc_flags_t aflags = ARC_FLAG_NOWAIT; 931 932 DB_DNODE_ENTER(db); 933 dn = DB_DNODE(db); 934 ASSERT(!refcount_is_zero(&db->db_holds)); 935 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 936 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 937 ASSERT(MUTEX_HELD(&db->db_mtx)); 938 ASSERT(db->db_state == DB_UNCACHED); 939 ASSERT(db->db_buf == NULL); 940 941 if (db->db_blkid == DMU_BONUS_BLKID) { 942 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 943 944 ASSERT3U(bonuslen, <=, db->db.db_size); 945 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 946 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 947 if (bonuslen < DN_MAX_BONUSLEN) 948 bzero(db->db.db_data, DN_MAX_BONUSLEN); 949 if (bonuslen) 950 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 951 DB_DNODE_EXIT(db); 952 db->db_state = DB_CACHED; 953 mutex_exit(&db->db_mtx); 954 return; 955 } 956 957 /* 958 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 959 * processes the delete record and clears the bp while we are waiting 960 * for the dn_mtx (resulting in a "no" from block_freed). 961 */ 962 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 963 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 964 BP_IS_HOLE(db->db_blkptr)))) { 965 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 966 967 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, 968 db->db.db_size, db, type)); 969 bzero(db->db.db_data, db->db.db_size); 970 971 if (db->db_blkptr != NULL && db->db_level > 0 && 972 BP_IS_HOLE(db->db_blkptr) && 973 db->db_blkptr->blk_birth != 0) { 974 blkptr_t *bps = db->db.db_data; 975 for (int i = 0; i < ((1 << 976 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 977 i++) { 978 blkptr_t *bp = &bps[i]; 979 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 980 1 << dn->dn_indblkshift); 981 BP_SET_LSIZE(bp, 982 BP_GET_LEVEL(db->db_blkptr) == 1 ? 983 dn->dn_datablksz : 984 BP_GET_LSIZE(db->db_blkptr)); 985 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 986 BP_SET_LEVEL(bp, 987 BP_GET_LEVEL(db->db_blkptr) - 1); 988 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 989 } 990 } 991 DB_DNODE_EXIT(db); 992 db->db_state = DB_CACHED; 993 mutex_exit(&db->db_mtx); 994 return; 995 } 996 997 DB_DNODE_EXIT(db); 998 999 db->db_state = DB_READ; 1000 mutex_exit(&db->db_mtx); 1001 1002 if (DBUF_IS_L2CACHEABLE(db)) 1003 aflags |= ARC_FLAG_L2CACHE; 1004 1005 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 1006 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 1007 db->db.db_object, db->db_level, db->db_blkid); 1008 1009 dbuf_add_ref(db, NULL); 1010 1011 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 1012 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 1013 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 1014 &aflags, &zb); 1015 } 1016 1017 int 1018 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1019 { 1020 int err = 0; 1021 boolean_t havepzio = (zio != NULL); 1022 boolean_t prefetch; 1023 dnode_t *dn; 1024 1025 /* 1026 * We don't have to hold the mutex to check db_state because it 1027 * can't be freed while we have a hold on the buffer. 1028 */ 1029 ASSERT(!refcount_is_zero(&db->db_holds)); 1030 1031 if (db->db_state == DB_NOFILL) 1032 return (SET_ERROR(EIO)); 1033 1034 DB_DNODE_ENTER(db); 1035 dn = DB_DNODE(db); 1036 if ((flags & DB_RF_HAVESTRUCT) == 0) 1037 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1038 1039 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1040 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1041 DBUF_IS_CACHEABLE(db); 1042 1043 mutex_enter(&db->db_mtx); 1044 if (db->db_state == DB_CACHED) { 1045 mutex_exit(&db->db_mtx); 1046 if (prefetch) 1047 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1048 if ((flags & DB_RF_HAVESTRUCT) == 0) 1049 rw_exit(&dn->dn_struct_rwlock); 1050 DB_DNODE_EXIT(db); 1051 } else if (db->db_state == DB_UNCACHED) { 1052 spa_t *spa = dn->dn_objset->os_spa; 1053 1054 if (zio == NULL) 1055 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1056 dbuf_read_impl(db, zio, flags); 1057 1058 /* dbuf_read_impl has dropped db_mtx for us */ 1059 1060 if (prefetch) 1061 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1062 1063 if ((flags & DB_RF_HAVESTRUCT) == 0) 1064 rw_exit(&dn->dn_struct_rwlock); 1065 DB_DNODE_EXIT(db); 1066 1067 if (!havepzio) 1068 err = zio_wait(zio); 1069 } else { 1070 /* 1071 * Another reader came in while the dbuf was in flight 1072 * between UNCACHED and CACHED. Either a writer will finish 1073 * writing the buffer (sending the dbuf to CACHED) or the 1074 * first reader's request will reach the read_done callback 1075 * and send the dbuf to CACHED. Otherwise, a failure 1076 * occurred and the dbuf went to UNCACHED. 1077 */ 1078 mutex_exit(&db->db_mtx); 1079 if (prefetch) 1080 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1081 if ((flags & DB_RF_HAVESTRUCT) == 0) 1082 rw_exit(&dn->dn_struct_rwlock); 1083 DB_DNODE_EXIT(db); 1084 1085 /* Skip the wait per the caller's request. */ 1086 mutex_enter(&db->db_mtx); 1087 if ((flags & DB_RF_NEVERWAIT) == 0) { 1088 while (db->db_state == DB_READ || 1089 db->db_state == DB_FILL) { 1090 ASSERT(db->db_state == DB_READ || 1091 (flags & DB_RF_HAVESTRUCT) == 0); 1092 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1093 db, zio_t *, zio); 1094 cv_wait(&db->db_changed, &db->db_mtx); 1095 } 1096 if (db->db_state == DB_UNCACHED) 1097 err = SET_ERROR(EIO); 1098 } 1099 mutex_exit(&db->db_mtx); 1100 } 1101 1102 ASSERT(err || havepzio || db->db_state == DB_CACHED); 1103 return (err); 1104 } 1105 1106 static void 1107 dbuf_noread(dmu_buf_impl_t *db) 1108 { 1109 ASSERT(!refcount_is_zero(&db->db_holds)); 1110 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1111 mutex_enter(&db->db_mtx); 1112 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1113 cv_wait(&db->db_changed, &db->db_mtx); 1114 if (db->db_state == DB_UNCACHED) { 1115 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1116 spa_t *spa = db->db_objset->os_spa; 1117 1118 ASSERT(db->db_buf == NULL); 1119 ASSERT(db->db.db_data == NULL); 1120 dbuf_set_data(db, arc_alloc_buf(spa, db->db.db_size, db, type)); 1121 db->db_state = DB_FILL; 1122 } else if (db->db_state == DB_NOFILL) { 1123 dbuf_clear_data(db); 1124 } else { 1125 ASSERT3U(db->db_state, ==, DB_CACHED); 1126 } 1127 mutex_exit(&db->db_mtx); 1128 } 1129 1130 /* 1131 * This is our just-in-time copy function. It makes a copy of 1132 * buffers, that have been modified in a previous transaction 1133 * group, before we modify them in the current active group. 1134 * 1135 * This function is used in two places: when we are dirtying a 1136 * buffer for the first time in a txg, and when we are freeing 1137 * a range in a dnode that includes this buffer. 1138 * 1139 * Note that when we are called from dbuf_free_range() we do 1140 * not put a hold on the buffer, we just traverse the active 1141 * dbuf list for the dnode. 1142 */ 1143 static void 1144 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1145 { 1146 dbuf_dirty_record_t *dr = db->db_last_dirty; 1147 1148 ASSERT(MUTEX_HELD(&db->db_mtx)); 1149 ASSERT(db->db.db_data != NULL); 1150 ASSERT(db->db_level == 0); 1151 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1152 1153 if (dr == NULL || 1154 (dr->dt.dl.dr_data != 1155 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1156 return; 1157 1158 /* 1159 * If the last dirty record for this dbuf has not yet synced 1160 * and its referencing the dbuf data, either: 1161 * reset the reference to point to a new copy, 1162 * or (if there a no active holders) 1163 * just null out the current db_data pointer. 1164 */ 1165 ASSERT(dr->dr_txg >= txg - 2); 1166 if (db->db_blkid == DMU_BONUS_BLKID) { 1167 /* Note that the data bufs here are zio_bufs */ 1168 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 1169 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1170 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 1171 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1172 int size = db->db.db_size; 1173 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1174 spa_t *spa = db->db_objset->os_spa; 1175 1176 dr->dt.dl.dr_data = arc_alloc_buf(spa, size, db, type); 1177 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1178 } else { 1179 db->db_buf = NULL; 1180 dbuf_clear_data(db); 1181 } 1182 } 1183 1184 void 1185 dbuf_unoverride(dbuf_dirty_record_t *dr) 1186 { 1187 dmu_buf_impl_t *db = dr->dr_dbuf; 1188 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1189 uint64_t txg = dr->dr_txg; 1190 1191 ASSERT(MUTEX_HELD(&db->db_mtx)); 1192 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1193 ASSERT(db->db_level == 0); 1194 1195 if (db->db_blkid == DMU_BONUS_BLKID || 1196 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1197 return; 1198 1199 ASSERT(db->db_data_pending != dr); 1200 1201 /* free this block */ 1202 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1203 zio_free(db->db_objset->os_spa, txg, bp); 1204 1205 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1206 dr->dt.dl.dr_nopwrite = B_FALSE; 1207 1208 /* 1209 * Release the already-written buffer, so we leave it in 1210 * a consistent dirty state. Note that all callers are 1211 * modifying the buffer, so they will immediately do 1212 * another (redundant) arc_release(). Therefore, leave 1213 * the buf thawed to save the effort of freezing & 1214 * immediately re-thawing it. 1215 */ 1216 arc_release(dr->dt.dl.dr_data, db); 1217 } 1218 1219 /* 1220 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1221 * data blocks in the free range, so that any future readers will find 1222 * empty blocks. 1223 * 1224 * This is a no-op if the dataset is in the middle of an incremental 1225 * receive; see comment below for details. 1226 */ 1227 void 1228 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1229 dmu_tx_t *tx) 1230 { 1231 dmu_buf_impl_t db_search; 1232 dmu_buf_impl_t *db, *db_next; 1233 uint64_t txg = tx->tx_txg; 1234 avl_index_t where; 1235 boolean_t freespill = 1236 (start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID); 1237 1238 if (end_blkid > dn->dn_maxblkid && !freespill) 1239 end_blkid = dn->dn_maxblkid; 1240 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1241 1242 db_search.db_level = 0; 1243 db_search.db_blkid = start_blkid; 1244 db_search.db_state = DB_SEARCH; 1245 1246 mutex_enter(&dn->dn_dbufs_mtx); 1247 if (start_blkid >= dn->dn_unlisted_l0_blkid && !freespill) { 1248 /* There can't be any dbufs in this range; no need to search. */ 1249 #ifdef DEBUG 1250 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1251 ASSERT3P(db, ==, NULL); 1252 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1253 ASSERT(db == NULL || db->db_level > 0); 1254 #endif 1255 mutex_exit(&dn->dn_dbufs_mtx); 1256 return; 1257 } else if (dmu_objset_is_receiving(dn->dn_objset)) { 1258 /* 1259 * If we are receiving, we expect there to be no dbufs in 1260 * the range to be freed, because receive modifies each 1261 * block at most once, and in offset order. If this is 1262 * not the case, it can lead to performance problems, 1263 * so note that we unexpectedly took the slow path. 1264 */ 1265 atomic_inc_64(&zfs_free_range_recv_miss); 1266 } 1267 1268 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1269 ASSERT3P(db, ==, NULL); 1270 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1271 1272 for (; db != NULL; db = db_next) { 1273 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1274 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1275 1276 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1277 break; 1278 } 1279 ASSERT3U(db->db_blkid, >=, start_blkid); 1280 1281 /* found a level 0 buffer in the range */ 1282 mutex_enter(&db->db_mtx); 1283 if (dbuf_undirty(db, tx)) { 1284 /* mutex has been dropped and dbuf destroyed */ 1285 continue; 1286 } 1287 1288 if (db->db_state == DB_UNCACHED || 1289 db->db_state == DB_NOFILL || 1290 db->db_state == DB_EVICTING) { 1291 ASSERT(db->db.db_data == NULL); 1292 mutex_exit(&db->db_mtx); 1293 continue; 1294 } 1295 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1296 /* will be handled in dbuf_read_done or dbuf_rele */ 1297 db->db_freed_in_flight = TRUE; 1298 mutex_exit(&db->db_mtx); 1299 continue; 1300 } 1301 if (refcount_count(&db->db_holds) == 0) { 1302 ASSERT(db->db_buf); 1303 dbuf_destroy(db); 1304 continue; 1305 } 1306 /* The dbuf is referenced */ 1307 1308 if (db->db_last_dirty != NULL) { 1309 dbuf_dirty_record_t *dr = db->db_last_dirty; 1310 1311 if (dr->dr_txg == txg) { 1312 /* 1313 * This buffer is "in-use", re-adjust the file 1314 * size to reflect that this buffer may 1315 * contain new data when we sync. 1316 */ 1317 if (db->db_blkid != DMU_SPILL_BLKID && 1318 db->db_blkid > dn->dn_maxblkid) 1319 dn->dn_maxblkid = db->db_blkid; 1320 dbuf_unoverride(dr); 1321 } else { 1322 /* 1323 * This dbuf is not dirty in the open context. 1324 * Either uncache it (if its not referenced in 1325 * the open context) or reset its contents to 1326 * empty. 1327 */ 1328 dbuf_fix_old_data(db, txg); 1329 } 1330 } 1331 /* clear the contents if its cached */ 1332 if (db->db_state == DB_CACHED) { 1333 ASSERT(db->db.db_data != NULL); 1334 arc_release(db->db_buf, db); 1335 bzero(db->db.db_data, db->db.db_size); 1336 arc_buf_freeze(db->db_buf); 1337 } 1338 1339 mutex_exit(&db->db_mtx); 1340 } 1341 mutex_exit(&dn->dn_dbufs_mtx); 1342 } 1343 1344 static int 1345 dbuf_block_freeable(dmu_buf_impl_t *db) 1346 { 1347 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 1348 uint64_t birth_txg = 0; 1349 1350 /* 1351 * We don't need any locking to protect db_blkptr: 1352 * If it's syncing, then db_last_dirty will be set 1353 * so we'll ignore db_blkptr. 1354 * 1355 * This logic ensures that only block births for 1356 * filled blocks are considered. 1357 */ 1358 ASSERT(MUTEX_HELD(&db->db_mtx)); 1359 if (db->db_last_dirty && (db->db_blkptr == NULL || 1360 !BP_IS_HOLE(db->db_blkptr))) { 1361 birth_txg = db->db_last_dirty->dr_txg; 1362 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1363 birth_txg = db->db_blkptr->blk_birth; 1364 } 1365 1366 /* 1367 * If this block don't exist or is in a snapshot, it can't be freed. 1368 * Don't pass the bp to dsl_dataset_block_freeable() since we 1369 * are holding the db_mtx lock and might deadlock if we are 1370 * prefetching a dedup-ed block. 1371 */ 1372 if (birth_txg != 0) 1373 return (ds == NULL || 1374 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 1375 else 1376 return (B_FALSE); 1377 } 1378 1379 void 1380 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1381 { 1382 arc_buf_t *buf, *obuf; 1383 int osize = db->db.db_size; 1384 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1385 dnode_t *dn; 1386 1387 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1388 1389 DB_DNODE_ENTER(db); 1390 dn = DB_DNODE(db); 1391 1392 /* XXX does *this* func really need the lock? */ 1393 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1394 1395 /* 1396 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1397 * is OK, because there can be no other references to the db 1398 * when we are changing its size, so no concurrent DB_FILL can 1399 * be happening. 1400 */ 1401 /* 1402 * XXX we should be doing a dbuf_read, checking the return 1403 * value and returning that up to our callers 1404 */ 1405 dmu_buf_will_dirty(&db->db, tx); 1406 1407 /* create the data buffer for the new block */ 1408 buf = arc_alloc_buf(dn->dn_objset->os_spa, size, db, type); 1409 1410 /* copy old block data to the new block */ 1411 obuf = db->db_buf; 1412 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1413 /* zero the remainder */ 1414 if (size > osize) 1415 bzero((uint8_t *)buf->b_data + osize, size - osize); 1416 1417 mutex_enter(&db->db_mtx); 1418 dbuf_set_data(db, buf); 1419 arc_buf_destroy(obuf, db); 1420 db->db.db_size = size; 1421 1422 if (db->db_level == 0) { 1423 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1424 db->db_last_dirty->dt.dl.dr_data = buf; 1425 } 1426 mutex_exit(&db->db_mtx); 1427 1428 dnode_willuse_space(dn, size-osize, tx); 1429 DB_DNODE_EXIT(db); 1430 } 1431 1432 void 1433 dbuf_release_bp(dmu_buf_impl_t *db) 1434 { 1435 objset_t *os = db->db_objset; 1436 1437 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1438 ASSERT(arc_released(os->os_phys_buf) || 1439 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1440 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1441 1442 (void) arc_release(db->db_buf, db); 1443 } 1444 1445 /* 1446 * We already have a dirty record for this TXG, and we are being 1447 * dirtied again. 1448 */ 1449 static void 1450 dbuf_redirty(dbuf_dirty_record_t *dr) 1451 { 1452 dmu_buf_impl_t *db = dr->dr_dbuf; 1453 1454 ASSERT(MUTEX_HELD(&db->db_mtx)); 1455 1456 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1457 /* 1458 * If this buffer has already been written out, 1459 * we now need to reset its state. 1460 */ 1461 dbuf_unoverride(dr); 1462 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1463 db->db_state != DB_NOFILL) { 1464 /* Already released on initial dirty, so just thaw. */ 1465 ASSERT(arc_released(db->db_buf)); 1466 arc_buf_thaw(db->db_buf); 1467 } 1468 } 1469 } 1470 1471 dbuf_dirty_record_t * 1472 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1473 { 1474 dnode_t *dn; 1475 objset_t *os; 1476 dbuf_dirty_record_t **drp, *dr; 1477 int drop_struct_lock = FALSE; 1478 boolean_t do_free_accounting = B_FALSE; 1479 int txgoff = tx->tx_txg & TXG_MASK; 1480 1481 ASSERT(tx->tx_txg != 0); 1482 ASSERT(!refcount_is_zero(&db->db_holds)); 1483 DMU_TX_DIRTY_BUF(tx, db); 1484 1485 DB_DNODE_ENTER(db); 1486 dn = DB_DNODE(db); 1487 /* 1488 * Shouldn't dirty a regular buffer in syncing context. Private 1489 * objects may be dirtied in syncing context, but only if they 1490 * were already pre-dirtied in open context. 1491 */ 1492 ASSERT(!dmu_tx_is_syncing(tx) || 1493 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1494 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1495 dn->dn_objset->os_dsl_dataset == NULL); 1496 /* 1497 * We make this assert for private objects as well, but after we 1498 * check if we're already dirty. They are allowed to re-dirty 1499 * in syncing context. 1500 */ 1501 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1502 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1503 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1504 1505 mutex_enter(&db->db_mtx); 1506 /* 1507 * XXX make this true for indirects too? The problem is that 1508 * transactions created with dmu_tx_create_assigned() from 1509 * syncing context don't bother holding ahead. 1510 */ 1511 ASSERT(db->db_level != 0 || 1512 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1513 db->db_state == DB_NOFILL); 1514 1515 mutex_enter(&dn->dn_mtx); 1516 /* 1517 * Don't set dirtyctx to SYNC if we're just modifying this as we 1518 * initialize the objset. 1519 */ 1520 if (dn->dn_dirtyctx == DN_UNDIRTIED && 1521 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1522 dn->dn_dirtyctx = 1523 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1524 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1525 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1526 } 1527 mutex_exit(&dn->dn_mtx); 1528 1529 if (db->db_blkid == DMU_SPILL_BLKID) 1530 dn->dn_have_spill = B_TRUE; 1531 1532 /* 1533 * If this buffer is already dirty, we're done. 1534 */ 1535 drp = &db->db_last_dirty; 1536 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1537 db->db.db_object == DMU_META_DNODE_OBJECT); 1538 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1539 drp = &dr->dr_next; 1540 if (dr && dr->dr_txg == tx->tx_txg) { 1541 DB_DNODE_EXIT(db); 1542 1543 dbuf_redirty(dr); 1544 mutex_exit(&db->db_mtx); 1545 return (dr); 1546 } 1547 1548 /* 1549 * Only valid if not already dirty. 1550 */ 1551 ASSERT(dn->dn_object == 0 || 1552 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1553 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1554 1555 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1556 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1557 dn->dn_phys->dn_nlevels > db->db_level || 1558 dn->dn_next_nlevels[txgoff] > db->db_level || 1559 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1560 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1561 1562 /* 1563 * We should only be dirtying in syncing context if it's the 1564 * mos or we're initializing the os or it's a special object. 1565 * However, we are allowed to dirty in syncing context provided 1566 * we already dirtied it in open context. Hence we must make 1567 * this assertion only if we're not already dirty. 1568 */ 1569 os = dn->dn_objset; 1570 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1571 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1572 ASSERT(db->db.db_size != 0); 1573 1574 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1575 1576 if (db->db_blkid != DMU_BONUS_BLKID) { 1577 /* 1578 * Update the accounting. 1579 * Note: we delay "free accounting" until after we drop 1580 * the db_mtx. This keeps us from grabbing other locks 1581 * (and possibly deadlocking) in bp_get_dsize() while 1582 * also holding the db_mtx. 1583 */ 1584 dnode_willuse_space(dn, db->db.db_size, tx); 1585 do_free_accounting = dbuf_block_freeable(db); 1586 } 1587 1588 /* 1589 * If this buffer is dirty in an old transaction group we need 1590 * to make a copy of it so that the changes we make in this 1591 * transaction group won't leak out when we sync the older txg. 1592 */ 1593 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1594 if (db->db_level == 0) { 1595 void *data_old = db->db_buf; 1596 1597 if (db->db_state != DB_NOFILL) { 1598 if (db->db_blkid == DMU_BONUS_BLKID) { 1599 dbuf_fix_old_data(db, tx->tx_txg); 1600 data_old = db->db.db_data; 1601 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1602 /* 1603 * Release the data buffer from the cache so 1604 * that we can modify it without impacting 1605 * possible other users of this cached data 1606 * block. Note that indirect blocks and 1607 * private objects are not released until the 1608 * syncing state (since they are only modified 1609 * then). 1610 */ 1611 arc_release(db->db_buf, db); 1612 dbuf_fix_old_data(db, tx->tx_txg); 1613 data_old = db->db_buf; 1614 } 1615 ASSERT(data_old != NULL); 1616 } 1617 dr->dt.dl.dr_data = data_old; 1618 } else { 1619 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1620 list_create(&dr->dt.di.dr_children, 1621 sizeof (dbuf_dirty_record_t), 1622 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1623 } 1624 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1625 dr->dr_accounted = db->db.db_size; 1626 dr->dr_dbuf = db; 1627 dr->dr_txg = tx->tx_txg; 1628 dr->dr_next = *drp; 1629 *drp = dr; 1630 1631 /* 1632 * We could have been freed_in_flight between the dbuf_noread 1633 * and dbuf_dirty. We win, as though the dbuf_noread() had 1634 * happened after the free. 1635 */ 1636 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1637 db->db_blkid != DMU_SPILL_BLKID) { 1638 mutex_enter(&dn->dn_mtx); 1639 if (dn->dn_free_ranges[txgoff] != NULL) { 1640 range_tree_clear(dn->dn_free_ranges[txgoff], 1641 db->db_blkid, 1); 1642 } 1643 mutex_exit(&dn->dn_mtx); 1644 db->db_freed_in_flight = FALSE; 1645 } 1646 1647 /* 1648 * This buffer is now part of this txg 1649 */ 1650 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1651 db->db_dirtycnt += 1; 1652 ASSERT3U(db->db_dirtycnt, <=, 3); 1653 1654 mutex_exit(&db->db_mtx); 1655 1656 if (db->db_blkid == DMU_BONUS_BLKID || 1657 db->db_blkid == DMU_SPILL_BLKID) { 1658 mutex_enter(&dn->dn_mtx); 1659 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1660 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1661 mutex_exit(&dn->dn_mtx); 1662 dnode_setdirty(dn, tx); 1663 DB_DNODE_EXIT(db); 1664 return (dr); 1665 } 1666 1667 /* 1668 * The dn_struct_rwlock prevents db_blkptr from changing 1669 * due to a write from syncing context completing 1670 * while we are running, so we want to acquire it before 1671 * looking at db_blkptr. 1672 */ 1673 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1674 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1675 drop_struct_lock = TRUE; 1676 } 1677 1678 if (do_free_accounting) { 1679 blkptr_t *bp = db->db_blkptr; 1680 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1681 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1682 /* 1683 * This is only a guess -- if the dbuf is dirty 1684 * in a previous txg, we don't know how much 1685 * space it will use on disk yet. We should 1686 * really have the struct_rwlock to access 1687 * db_blkptr, but since this is just a guess, 1688 * it's OK if we get an odd answer. 1689 */ 1690 ddt_prefetch(os->os_spa, bp); 1691 dnode_willuse_space(dn, -willfree, tx); 1692 } 1693 1694 if (db->db_level == 0) { 1695 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1696 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1697 } 1698 1699 if (db->db_level+1 < dn->dn_nlevels) { 1700 dmu_buf_impl_t *parent = db->db_parent; 1701 dbuf_dirty_record_t *di; 1702 int parent_held = FALSE; 1703 1704 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1705 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1706 1707 parent = dbuf_hold_level(dn, db->db_level+1, 1708 db->db_blkid >> epbs, FTAG); 1709 ASSERT(parent != NULL); 1710 parent_held = TRUE; 1711 } 1712 if (drop_struct_lock) 1713 rw_exit(&dn->dn_struct_rwlock); 1714 ASSERT3U(db->db_level+1, ==, parent->db_level); 1715 di = dbuf_dirty(parent, tx); 1716 if (parent_held) 1717 dbuf_rele(parent, FTAG); 1718 1719 mutex_enter(&db->db_mtx); 1720 /* 1721 * Since we've dropped the mutex, it's possible that 1722 * dbuf_undirty() might have changed this out from under us. 1723 */ 1724 if (db->db_last_dirty == dr || 1725 dn->dn_object == DMU_META_DNODE_OBJECT) { 1726 mutex_enter(&di->dt.di.dr_mtx); 1727 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1728 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1729 list_insert_tail(&di->dt.di.dr_children, dr); 1730 mutex_exit(&di->dt.di.dr_mtx); 1731 dr->dr_parent = di; 1732 } 1733 mutex_exit(&db->db_mtx); 1734 } else { 1735 ASSERT(db->db_level+1 == dn->dn_nlevels); 1736 ASSERT(db->db_blkid < dn->dn_nblkptr); 1737 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1738 mutex_enter(&dn->dn_mtx); 1739 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1740 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1741 mutex_exit(&dn->dn_mtx); 1742 if (drop_struct_lock) 1743 rw_exit(&dn->dn_struct_rwlock); 1744 } 1745 1746 dnode_setdirty(dn, tx); 1747 DB_DNODE_EXIT(db); 1748 return (dr); 1749 } 1750 1751 /* 1752 * Undirty a buffer in the transaction group referenced by the given 1753 * transaction. Return whether this evicted the dbuf. 1754 */ 1755 static boolean_t 1756 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1757 { 1758 dnode_t *dn; 1759 uint64_t txg = tx->tx_txg; 1760 dbuf_dirty_record_t *dr, **drp; 1761 1762 ASSERT(txg != 0); 1763 1764 /* 1765 * Due to our use of dn_nlevels below, this can only be called 1766 * in open context, unless we are operating on the MOS. 1767 * From syncing context, dn_nlevels may be different from the 1768 * dn_nlevels used when dbuf was dirtied. 1769 */ 1770 ASSERT(db->db_objset == 1771 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1772 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1773 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1774 ASSERT0(db->db_level); 1775 ASSERT(MUTEX_HELD(&db->db_mtx)); 1776 1777 /* 1778 * If this buffer is not dirty, we're done. 1779 */ 1780 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1781 if (dr->dr_txg <= txg) 1782 break; 1783 if (dr == NULL || dr->dr_txg < txg) 1784 return (B_FALSE); 1785 ASSERT(dr->dr_txg == txg); 1786 ASSERT(dr->dr_dbuf == db); 1787 1788 DB_DNODE_ENTER(db); 1789 dn = DB_DNODE(db); 1790 1791 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1792 1793 ASSERT(db->db.db_size != 0); 1794 1795 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1796 dr->dr_accounted, txg); 1797 1798 *drp = dr->dr_next; 1799 1800 /* 1801 * Note that there are three places in dbuf_dirty() 1802 * where this dirty record may be put on a list. 1803 * Make sure to do a list_remove corresponding to 1804 * every one of those list_insert calls. 1805 */ 1806 if (dr->dr_parent) { 1807 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1808 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1809 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1810 } else if (db->db_blkid == DMU_SPILL_BLKID || 1811 db->db_level + 1 == dn->dn_nlevels) { 1812 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1813 mutex_enter(&dn->dn_mtx); 1814 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1815 mutex_exit(&dn->dn_mtx); 1816 } 1817 DB_DNODE_EXIT(db); 1818 1819 if (db->db_state != DB_NOFILL) { 1820 dbuf_unoverride(dr); 1821 1822 ASSERT(db->db_buf != NULL); 1823 ASSERT(dr->dt.dl.dr_data != NULL); 1824 if (dr->dt.dl.dr_data != db->db_buf) 1825 arc_buf_destroy(dr->dt.dl.dr_data, db); 1826 } 1827 1828 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1829 1830 ASSERT(db->db_dirtycnt > 0); 1831 db->db_dirtycnt -= 1; 1832 1833 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1834 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 1835 dbuf_destroy(db); 1836 return (B_TRUE); 1837 } 1838 1839 return (B_FALSE); 1840 } 1841 1842 void 1843 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1844 { 1845 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1846 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1847 1848 ASSERT(tx->tx_txg != 0); 1849 ASSERT(!refcount_is_zero(&db->db_holds)); 1850 1851 /* 1852 * Quick check for dirtyness. For already dirty blocks, this 1853 * reduces runtime of this function by >90%, and overall performance 1854 * by 50% for some workloads (e.g. file deletion with indirect blocks 1855 * cached). 1856 */ 1857 mutex_enter(&db->db_mtx); 1858 dbuf_dirty_record_t *dr; 1859 for (dr = db->db_last_dirty; 1860 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 1861 /* 1862 * It's possible that it is already dirty but not cached, 1863 * because there are some calls to dbuf_dirty() that don't 1864 * go through dmu_buf_will_dirty(). 1865 */ 1866 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 1867 /* This dbuf is already dirty and cached. */ 1868 dbuf_redirty(dr); 1869 mutex_exit(&db->db_mtx); 1870 return; 1871 } 1872 } 1873 mutex_exit(&db->db_mtx); 1874 1875 DB_DNODE_ENTER(db); 1876 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1877 rf |= DB_RF_HAVESTRUCT; 1878 DB_DNODE_EXIT(db); 1879 (void) dbuf_read(db, NULL, rf); 1880 (void) dbuf_dirty(db, tx); 1881 } 1882 1883 void 1884 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1885 { 1886 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1887 1888 db->db_state = DB_NOFILL; 1889 1890 dmu_buf_will_fill(db_fake, tx); 1891 } 1892 1893 void 1894 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1895 { 1896 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1897 1898 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1899 ASSERT(tx->tx_txg != 0); 1900 ASSERT(db->db_level == 0); 1901 ASSERT(!refcount_is_zero(&db->db_holds)); 1902 1903 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1904 dmu_tx_private_ok(tx)); 1905 1906 dbuf_noread(db); 1907 (void) dbuf_dirty(db, tx); 1908 } 1909 1910 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1911 /* ARGSUSED */ 1912 void 1913 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1914 { 1915 mutex_enter(&db->db_mtx); 1916 DBUF_VERIFY(db); 1917 1918 if (db->db_state == DB_FILL) { 1919 if (db->db_level == 0 && db->db_freed_in_flight) { 1920 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1921 /* we were freed while filling */ 1922 /* XXX dbuf_undirty? */ 1923 bzero(db->db.db_data, db->db.db_size); 1924 db->db_freed_in_flight = FALSE; 1925 } 1926 db->db_state = DB_CACHED; 1927 cv_broadcast(&db->db_changed); 1928 } 1929 mutex_exit(&db->db_mtx); 1930 } 1931 1932 void 1933 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1934 bp_embedded_type_t etype, enum zio_compress comp, 1935 int uncompressed_size, int compressed_size, int byteorder, 1936 dmu_tx_t *tx) 1937 { 1938 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1939 struct dirty_leaf *dl; 1940 dmu_object_type_t type; 1941 1942 if (etype == BP_EMBEDDED_TYPE_DATA) { 1943 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 1944 SPA_FEATURE_EMBEDDED_DATA)); 1945 } 1946 1947 DB_DNODE_ENTER(db); 1948 type = DB_DNODE(db)->dn_type; 1949 DB_DNODE_EXIT(db); 1950 1951 ASSERT0(db->db_level); 1952 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1953 1954 dmu_buf_will_not_fill(dbuf, tx); 1955 1956 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1957 dl = &db->db_last_dirty->dt.dl; 1958 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1959 data, comp, uncompressed_size, compressed_size); 1960 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1961 BP_SET_TYPE(&dl->dr_overridden_by, type); 1962 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1963 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1964 1965 dl->dr_override_state = DR_OVERRIDDEN; 1966 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1967 } 1968 1969 /* 1970 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1971 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1972 */ 1973 void 1974 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1975 { 1976 ASSERT(!refcount_is_zero(&db->db_holds)); 1977 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1978 ASSERT(db->db_level == 0); 1979 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); 1980 ASSERT(buf != NULL); 1981 ASSERT(arc_buf_size(buf) == db->db.db_size); 1982 ASSERT(tx->tx_txg != 0); 1983 1984 arc_return_buf(buf, db); 1985 ASSERT(arc_released(buf)); 1986 1987 mutex_enter(&db->db_mtx); 1988 1989 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1990 cv_wait(&db->db_changed, &db->db_mtx); 1991 1992 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1993 1994 if (db->db_state == DB_CACHED && 1995 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1996 mutex_exit(&db->db_mtx); 1997 (void) dbuf_dirty(db, tx); 1998 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1999 arc_buf_destroy(buf, db); 2000 xuio_stat_wbuf_copied(); 2001 return; 2002 } 2003 2004 xuio_stat_wbuf_nocopy(); 2005 if (db->db_state == DB_CACHED) { 2006 dbuf_dirty_record_t *dr = db->db_last_dirty; 2007 2008 ASSERT(db->db_buf != NULL); 2009 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2010 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2011 if (!arc_released(db->db_buf)) { 2012 ASSERT(dr->dt.dl.dr_override_state == 2013 DR_OVERRIDDEN); 2014 arc_release(db->db_buf, db); 2015 } 2016 dr->dt.dl.dr_data = buf; 2017 arc_buf_destroy(db->db_buf, db); 2018 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2019 arc_release(db->db_buf, db); 2020 arc_buf_destroy(db->db_buf, db); 2021 } 2022 db->db_buf = NULL; 2023 } 2024 ASSERT(db->db_buf == NULL); 2025 dbuf_set_data(db, buf); 2026 db->db_state = DB_FILL; 2027 mutex_exit(&db->db_mtx); 2028 (void) dbuf_dirty(db, tx); 2029 dmu_buf_fill_done(&db->db, tx); 2030 } 2031 2032 void 2033 dbuf_destroy(dmu_buf_impl_t *db) 2034 { 2035 dnode_t *dn; 2036 dmu_buf_impl_t *parent = db->db_parent; 2037 dmu_buf_impl_t *dndb; 2038 2039 ASSERT(MUTEX_HELD(&db->db_mtx)); 2040 ASSERT(refcount_is_zero(&db->db_holds)); 2041 2042 if (db->db_buf != NULL) { 2043 arc_buf_destroy(db->db_buf, db); 2044 db->db_buf = NULL; 2045 } 2046 2047 if (db->db_blkid == DMU_BONUS_BLKID) { 2048 ASSERT(db->db.db_data != NULL); 2049 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 2050 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2051 db->db_state = DB_UNCACHED; 2052 } 2053 2054 dbuf_clear_data(db); 2055 2056 if (multilist_link_active(&db->db_cache_link)) { 2057 multilist_remove(&dbuf_cache, db); 2058 (void) refcount_remove_many(&dbuf_cache_size, 2059 db->db.db_size, db); 2060 } 2061 2062 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2063 ASSERT(db->db_data_pending == NULL); 2064 2065 db->db_state = DB_EVICTING; 2066 db->db_blkptr = NULL; 2067 2068 /* 2069 * Now that db_state is DB_EVICTING, nobody else can find this via 2070 * the hash table. We can now drop db_mtx, which allows us to 2071 * acquire the dn_dbufs_mtx. 2072 */ 2073 mutex_exit(&db->db_mtx); 2074 2075 DB_DNODE_ENTER(db); 2076 dn = DB_DNODE(db); 2077 dndb = dn->dn_dbuf; 2078 if (db->db_blkid != DMU_BONUS_BLKID) { 2079 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2080 if (needlock) 2081 mutex_enter(&dn->dn_dbufs_mtx); 2082 avl_remove(&dn->dn_dbufs, db); 2083 atomic_dec_32(&dn->dn_dbufs_count); 2084 membar_producer(); 2085 DB_DNODE_EXIT(db); 2086 if (needlock) 2087 mutex_exit(&dn->dn_dbufs_mtx); 2088 /* 2089 * Decrementing the dbuf count means that the hold corresponding 2090 * to the removed dbuf is no longer discounted in dnode_move(), 2091 * so the dnode cannot be moved until after we release the hold. 2092 * The membar_producer() ensures visibility of the decremented 2093 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2094 * release any lock. 2095 */ 2096 dnode_rele(dn, db); 2097 db->db_dnode_handle = NULL; 2098 2099 dbuf_hash_remove(db); 2100 } else { 2101 DB_DNODE_EXIT(db); 2102 } 2103 2104 ASSERT(refcount_is_zero(&db->db_holds)); 2105 2106 db->db_parent = NULL; 2107 2108 ASSERT(db->db_buf == NULL); 2109 ASSERT(db->db.db_data == NULL); 2110 ASSERT(db->db_hash_next == NULL); 2111 ASSERT(db->db_blkptr == NULL); 2112 ASSERT(db->db_data_pending == NULL); 2113 ASSERT(!multilist_link_active(&db->db_cache_link)); 2114 2115 kmem_cache_free(dbuf_kmem_cache, db); 2116 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2117 2118 /* 2119 * If this dbuf is referenced from an indirect dbuf, 2120 * decrement the ref count on the indirect dbuf. 2121 */ 2122 if (parent && parent != dndb) 2123 dbuf_rele(parent, db); 2124 } 2125 2126 /* 2127 * Note: While bpp will always be updated if the function returns success, 2128 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2129 * this happens when the dnode is the meta-dnode, or a userused or groupused 2130 * object. 2131 */ 2132 static int 2133 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2134 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2135 { 2136 int nlevels, epbs; 2137 2138 *parentp = NULL; 2139 *bpp = NULL; 2140 2141 ASSERT(blkid != DMU_BONUS_BLKID); 2142 2143 if (blkid == DMU_SPILL_BLKID) { 2144 mutex_enter(&dn->dn_mtx); 2145 if (dn->dn_have_spill && 2146 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2147 *bpp = &dn->dn_phys->dn_spill; 2148 else 2149 *bpp = NULL; 2150 dbuf_add_ref(dn->dn_dbuf, NULL); 2151 *parentp = dn->dn_dbuf; 2152 mutex_exit(&dn->dn_mtx); 2153 return (0); 2154 } 2155 2156 if (dn->dn_phys->dn_nlevels == 0) 2157 nlevels = 1; 2158 else 2159 nlevels = dn->dn_phys->dn_nlevels; 2160 2161 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2162 2163 ASSERT3U(level * epbs, <, 64); 2164 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2165 if (level >= nlevels || 2166 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2167 /* the buffer has no parent yet */ 2168 return (SET_ERROR(ENOENT)); 2169 } else if (level < nlevels-1) { 2170 /* this block is referenced from an indirect block */ 2171 int err = dbuf_hold_impl(dn, level+1, 2172 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2173 if (err) 2174 return (err); 2175 err = dbuf_read(*parentp, NULL, 2176 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2177 if (err) { 2178 dbuf_rele(*parentp, NULL); 2179 *parentp = NULL; 2180 return (err); 2181 } 2182 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2183 (blkid & ((1ULL << epbs) - 1)); 2184 return (0); 2185 } else { 2186 /* the block is referenced from the dnode */ 2187 ASSERT3U(level, ==, nlevels-1); 2188 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2189 blkid < dn->dn_phys->dn_nblkptr); 2190 if (dn->dn_dbuf) { 2191 dbuf_add_ref(dn->dn_dbuf, NULL); 2192 *parentp = dn->dn_dbuf; 2193 } 2194 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2195 return (0); 2196 } 2197 } 2198 2199 static dmu_buf_impl_t * 2200 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2201 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2202 { 2203 objset_t *os = dn->dn_objset; 2204 dmu_buf_impl_t *db, *odb; 2205 2206 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2207 ASSERT(dn->dn_type != DMU_OT_NONE); 2208 2209 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2210 2211 db->db_objset = os; 2212 db->db.db_object = dn->dn_object; 2213 db->db_level = level; 2214 db->db_blkid = blkid; 2215 db->db_last_dirty = NULL; 2216 db->db_dirtycnt = 0; 2217 db->db_dnode_handle = dn->dn_handle; 2218 db->db_parent = parent; 2219 db->db_blkptr = blkptr; 2220 2221 db->db_user = NULL; 2222 db->db_user_immediate_evict = FALSE; 2223 db->db_freed_in_flight = FALSE; 2224 db->db_pending_evict = FALSE; 2225 2226 if (blkid == DMU_BONUS_BLKID) { 2227 ASSERT3P(parent, ==, dn->dn_dbuf); 2228 db->db.db_size = DN_MAX_BONUSLEN - 2229 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2230 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2231 db->db.db_offset = DMU_BONUS_BLKID; 2232 db->db_state = DB_UNCACHED; 2233 /* the bonus dbuf is not placed in the hash table */ 2234 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2235 return (db); 2236 } else if (blkid == DMU_SPILL_BLKID) { 2237 db->db.db_size = (blkptr != NULL) ? 2238 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2239 db->db.db_offset = 0; 2240 } else { 2241 int blocksize = 2242 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2243 db->db.db_size = blocksize; 2244 db->db.db_offset = db->db_blkid * blocksize; 2245 } 2246 2247 /* 2248 * Hold the dn_dbufs_mtx while we get the new dbuf 2249 * in the hash table *and* added to the dbufs list. 2250 * This prevents a possible deadlock with someone 2251 * trying to look up this dbuf before its added to the 2252 * dn_dbufs list. 2253 */ 2254 mutex_enter(&dn->dn_dbufs_mtx); 2255 db->db_state = DB_EVICTING; 2256 if ((odb = dbuf_hash_insert(db)) != NULL) { 2257 /* someone else inserted it first */ 2258 kmem_cache_free(dbuf_kmem_cache, db); 2259 mutex_exit(&dn->dn_dbufs_mtx); 2260 return (odb); 2261 } 2262 avl_add(&dn->dn_dbufs, db); 2263 if (db->db_level == 0 && db->db_blkid >= 2264 dn->dn_unlisted_l0_blkid) 2265 dn->dn_unlisted_l0_blkid = db->db_blkid + 1; 2266 db->db_state = DB_UNCACHED; 2267 mutex_exit(&dn->dn_dbufs_mtx); 2268 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2269 2270 if (parent && parent != dn->dn_dbuf) 2271 dbuf_add_ref(parent, db); 2272 2273 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2274 refcount_count(&dn->dn_holds) > 0); 2275 (void) refcount_add(&dn->dn_holds, db); 2276 atomic_inc_32(&dn->dn_dbufs_count); 2277 2278 dprintf_dbuf(db, "db=%p\n", db); 2279 2280 return (db); 2281 } 2282 2283 typedef struct dbuf_prefetch_arg { 2284 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2285 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2286 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2287 int dpa_curlevel; /* The current level that we're reading */ 2288 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2289 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2290 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2291 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2292 } dbuf_prefetch_arg_t; 2293 2294 /* 2295 * Actually issue the prefetch read for the block given. 2296 */ 2297 static void 2298 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2299 { 2300 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2301 return; 2302 2303 arc_flags_t aflags = 2304 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2305 2306 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2307 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2308 ASSERT(dpa->dpa_zio != NULL); 2309 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2310 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2311 &aflags, &dpa->dpa_zb); 2312 } 2313 2314 /* 2315 * Called when an indirect block above our prefetch target is read in. This 2316 * will either read in the next indirect block down the tree or issue the actual 2317 * prefetch if the next block down is our target. 2318 */ 2319 static void 2320 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) 2321 { 2322 dbuf_prefetch_arg_t *dpa = private; 2323 2324 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2325 ASSERT3S(dpa->dpa_curlevel, >, 0); 2326 2327 /* 2328 * The dpa_dnode is only valid if we are called with a NULL 2329 * zio. This indicates that the arc_read() returned without 2330 * first calling zio_read() to issue a physical read. Once 2331 * a physical read is made the dpa_dnode must be invalidated 2332 * as the locks guarding it may have been dropped. If the 2333 * dpa_dnode is still valid, then we want to add it to the dbuf 2334 * cache. To do so, we must hold the dbuf associated with the block 2335 * we just prefetched, read its contents so that we associate it 2336 * with an arc_buf_t, and then release it. 2337 */ 2338 if (zio != NULL) { 2339 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2340 if (zio->io_flags & ZIO_FLAG_RAW) { 2341 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2342 } else { 2343 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2344 } 2345 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2346 2347 dpa->dpa_dnode = NULL; 2348 } else if (dpa->dpa_dnode != NULL) { 2349 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2350 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2351 dpa->dpa_zb.zb_level)); 2352 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2353 dpa->dpa_curlevel, curblkid, FTAG); 2354 (void) dbuf_read(db, NULL, 2355 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2356 dbuf_rele(db, FTAG); 2357 } 2358 2359 dpa->dpa_curlevel--; 2360 2361 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2362 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2363 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2364 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2365 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) { 2366 kmem_free(dpa, sizeof (*dpa)); 2367 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2368 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2369 dbuf_issue_final_prefetch(dpa, bp); 2370 kmem_free(dpa, sizeof (*dpa)); 2371 } else { 2372 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2373 zbookmark_phys_t zb; 2374 2375 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2376 2377 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2378 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2379 2380 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2381 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2382 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2383 &iter_aflags, &zb); 2384 } 2385 2386 arc_buf_destroy(abuf, private); 2387 } 2388 2389 /* 2390 * Issue prefetch reads for the given block on the given level. If the indirect 2391 * blocks above that block are not in memory, we will read them in 2392 * asynchronously. As a result, this call never blocks waiting for a read to 2393 * complete. 2394 */ 2395 void 2396 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2397 arc_flags_t aflags) 2398 { 2399 blkptr_t bp; 2400 int epbs, nlevels, curlevel; 2401 uint64_t curblkid; 2402 2403 ASSERT(blkid != DMU_BONUS_BLKID); 2404 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2405 2406 if (blkid > dn->dn_maxblkid) 2407 return; 2408 2409 if (dnode_block_freed(dn, blkid)) 2410 return; 2411 2412 /* 2413 * This dnode hasn't been written to disk yet, so there's nothing to 2414 * prefetch. 2415 */ 2416 nlevels = dn->dn_phys->dn_nlevels; 2417 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2418 return; 2419 2420 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2421 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2422 return; 2423 2424 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2425 level, blkid); 2426 if (db != NULL) { 2427 mutex_exit(&db->db_mtx); 2428 /* 2429 * This dbuf already exists. It is either CACHED, or 2430 * (we assume) about to be read or filled. 2431 */ 2432 return; 2433 } 2434 2435 /* 2436 * Find the closest ancestor (indirect block) of the target block 2437 * that is present in the cache. In this indirect block, we will 2438 * find the bp that is at curlevel, curblkid. 2439 */ 2440 curlevel = level; 2441 curblkid = blkid; 2442 while (curlevel < nlevels - 1) { 2443 int parent_level = curlevel + 1; 2444 uint64_t parent_blkid = curblkid >> epbs; 2445 dmu_buf_impl_t *db; 2446 2447 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2448 FALSE, TRUE, FTAG, &db) == 0) { 2449 blkptr_t *bpp = db->db_buf->b_data; 2450 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2451 dbuf_rele(db, FTAG); 2452 break; 2453 } 2454 2455 curlevel = parent_level; 2456 curblkid = parent_blkid; 2457 } 2458 2459 if (curlevel == nlevels - 1) { 2460 /* No cached indirect blocks found. */ 2461 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2462 bp = dn->dn_phys->dn_blkptr[curblkid]; 2463 } 2464 if (BP_IS_HOLE(&bp)) 2465 return; 2466 2467 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2468 2469 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2470 ZIO_FLAG_CANFAIL); 2471 2472 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2473 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2474 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2475 dn->dn_object, level, blkid); 2476 dpa->dpa_curlevel = curlevel; 2477 dpa->dpa_prio = prio; 2478 dpa->dpa_aflags = aflags; 2479 dpa->dpa_spa = dn->dn_objset->os_spa; 2480 dpa->dpa_dnode = dn; 2481 dpa->dpa_epbs = epbs; 2482 dpa->dpa_zio = pio; 2483 2484 /* 2485 * If we have the indirect just above us, no need to do the asynchronous 2486 * prefetch chain; we'll just run the last step ourselves. If we're at 2487 * a higher level, though, we want to issue the prefetches for all the 2488 * indirect blocks asynchronously, so we can go on with whatever we were 2489 * doing. 2490 */ 2491 if (curlevel == level) { 2492 ASSERT3U(curblkid, ==, blkid); 2493 dbuf_issue_final_prefetch(dpa, &bp); 2494 kmem_free(dpa, sizeof (*dpa)); 2495 } else { 2496 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2497 zbookmark_phys_t zb; 2498 2499 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2500 dn->dn_object, curlevel, curblkid); 2501 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2502 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2503 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2504 &iter_aflags, &zb); 2505 } 2506 /* 2507 * We use pio here instead of dpa_zio since it's possible that 2508 * dpa may have already been freed. 2509 */ 2510 zio_nowait(pio); 2511 } 2512 2513 /* 2514 * Returns with db_holds incremented, and db_mtx not held. 2515 * Note: dn_struct_rwlock must be held. 2516 */ 2517 int 2518 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2519 boolean_t fail_sparse, boolean_t fail_uncached, 2520 void *tag, dmu_buf_impl_t **dbp) 2521 { 2522 dmu_buf_impl_t *db, *parent = NULL; 2523 2524 ASSERT(blkid != DMU_BONUS_BLKID); 2525 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2526 ASSERT3U(dn->dn_nlevels, >, level); 2527 2528 *dbp = NULL; 2529 top: 2530 /* dbuf_find() returns with db_mtx held */ 2531 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2532 2533 if (db == NULL) { 2534 blkptr_t *bp = NULL; 2535 int err; 2536 2537 if (fail_uncached) 2538 return (SET_ERROR(ENOENT)); 2539 2540 ASSERT3P(parent, ==, NULL); 2541 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2542 if (fail_sparse) { 2543 if (err == 0 && bp && BP_IS_HOLE(bp)) 2544 err = SET_ERROR(ENOENT); 2545 if (err) { 2546 if (parent) 2547 dbuf_rele(parent, NULL); 2548 return (err); 2549 } 2550 } 2551 if (err && err != ENOENT) 2552 return (err); 2553 db = dbuf_create(dn, level, blkid, parent, bp); 2554 } 2555 2556 if (fail_uncached && db->db_state != DB_CACHED) { 2557 mutex_exit(&db->db_mtx); 2558 return (SET_ERROR(ENOENT)); 2559 } 2560 2561 if (db->db_buf != NULL) 2562 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2563 2564 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2565 2566 /* 2567 * If this buffer is currently syncing out, and we are are 2568 * still referencing it from db_data, we need to make a copy 2569 * of it in case we decide we want to dirty it again in this txg. 2570 */ 2571 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2572 dn->dn_object != DMU_META_DNODE_OBJECT && 2573 db->db_state == DB_CACHED && db->db_data_pending) { 2574 dbuf_dirty_record_t *dr = db->db_data_pending; 2575 2576 if (dr->dt.dl.dr_data == db->db_buf) { 2577 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2578 2579 dbuf_set_data(db, 2580 arc_alloc_buf(dn->dn_objset->os_spa, 2581 db->db.db_size, db, type)); 2582 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2583 db->db.db_size); 2584 } 2585 } 2586 2587 if (multilist_link_active(&db->db_cache_link)) { 2588 ASSERT(refcount_is_zero(&db->db_holds)); 2589 multilist_remove(&dbuf_cache, db); 2590 (void) refcount_remove_many(&dbuf_cache_size, 2591 db->db.db_size, db); 2592 } 2593 (void) refcount_add(&db->db_holds, tag); 2594 DBUF_VERIFY(db); 2595 mutex_exit(&db->db_mtx); 2596 2597 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2598 if (parent) 2599 dbuf_rele(parent, NULL); 2600 2601 ASSERT3P(DB_DNODE(db), ==, dn); 2602 ASSERT3U(db->db_blkid, ==, blkid); 2603 ASSERT3U(db->db_level, ==, level); 2604 *dbp = db; 2605 2606 return (0); 2607 } 2608 2609 dmu_buf_impl_t * 2610 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2611 { 2612 return (dbuf_hold_level(dn, 0, blkid, tag)); 2613 } 2614 2615 dmu_buf_impl_t * 2616 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2617 { 2618 dmu_buf_impl_t *db; 2619 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2620 return (err ? NULL : db); 2621 } 2622 2623 void 2624 dbuf_create_bonus(dnode_t *dn) 2625 { 2626 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2627 2628 ASSERT(dn->dn_bonus == NULL); 2629 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2630 } 2631 2632 int 2633 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2634 { 2635 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2636 dnode_t *dn; 2637 2638 if (db->db_blkid != DMU_SPILL_BLKID) 2639 return (SET_ERROR(ENOTSUP)); 2640 if (blksz == 0) 2641 blksz = SPA_MINBLOCKSIZE; 2642 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2643 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2644 2645 DB_DNODE_ENTER(db); 2646 dn = DB_DNODE(db); 2647 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2648 dbuf_new_size(db, blksz, tx); 2649 rw_exit(&dn->dn_struct_rwlock); 2650 DB_DNODE_EXIT(db); 2651 2652 return (0); 2653 } 2654 2655 void 2656 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2657 { 2658 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2659 } 2660 2661 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2662 void 2663 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2664 { 2665 int64_t holds = refcount_add(&db->db_holds, tag); 2666 ASSERT3S(holds, >, 1); 2667 } 2668 2669 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2670 boolean_t 2671 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2672 void *tag) 2673 { 2674 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2675 dmu_buf_impl_t *found_db; 2676 boolean_t result = B_FALSE; 2677 2678 if (db->db_blkid == DMU_BONUS_BLKID) 2679 found_db = dbuf_find_bonus(os, obj); 2680 else 2681 found_db = dbuf_find(os, obj, 0, blkid); 2682 2683 if (found_db != NULL) { 2684 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 2685 (void) refcount_add(&db->db_holds, tag); 2686 result = B_TRUE; 2687 } 2688 mutex_exit(&db->db_mtx); 2689 } 2690 return (result); 2691 } 2692 2693 /* 2694 * If you call dbuf_rele() you had better not be referencing the dnode handle 2695 * unless you have some other direct or indirect hold on the dnode. (An indirect 2696 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2697 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2698 * dnode's parent dbuf evicting its dnode handles. 2699 */ 2700 void 2701 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2702 { 2703 mutex_enter(&db->db_mtx); 2704 dbuf_rele_and_unlock(db, tag); 2705 } 2706 2707 void 2708 dmu_buf_rele(dmu_buf_t *db, void *tag) 2709 { 2710 dbuf_rele((dmu_buf_impl_t *)db, tag); 2711 } 2712 2713 /* 2714 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2715 * db_dirtycnt and db_holds to be updated atomically. 2716 */ 2717 void 2718 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2719 { 2720 int64_t holds; 2721 2722 ASSERT(MUTEX_HELD(&db->db_mtx)); 2723 DBUF_VERIFY(db); 2724 2725 /* 2726 * Remove the reference to the dbuf before removing its hold on the 2727 * dnode so we can guarantee in dnode_move() that a referenced bonus 2728 * buffer has a corresponding dnode hold. 2729 */ 2730 holds = refcount_remove(&db->db_holds, tag); 2731 ASSERT(holds >= 0); 2732 2733 /* 2734 * We can't freeze indirects if there is a possibility that they 2735 * may be modified in the current syncing context. 2736 */ 2737 if (db->db_buf != NULL && 2738 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 2739 arc_buf_freeze(db->db_buf); 2740 } 2741 2742 if (holds == db->db_dirtycnt && 2743 db->db_level == 0 && db->db_user_immediate_evict) 2744 dbuf_evict_user(db); 2745 2746 if (holds == 0) { 2747 if (db->db_blkid == DMU_BONUS_BLKID) { 2748 dnode_t *dn; 2749 boolean_t evict_dbuf = db->db_pending_evict; 2750 2751 /* 2752 * If the dnode moves here, we cannot cross this 2753 * barrier until the move completes. 2754 */ 2755 DB_DNODE_ENTER(db); 2756 2757 dn = DB_DNODE(db); 2758 atomic_dec_32(&dn->dn_dbufs_count); 2759 2760 /* 2761 * Decrementing the dbuf count means that the bonus 2762 * buffer's dnode hold is no longer discounted in 2763 * dnode_move(). The dnode cannot move until after 2764 * the dnode_rele() below. 2765 */ 2766 DB_DNODE_EXIT(db); 2767 2768 /* 2769 * Do not reference db after its lock is dropped. 2770 * Another thread may evict it. 2771 */ 2772 mutex_exit(&db->db_mtx); 2773 2774 if (evict_dbuf) 2775 dnode_evict_bonus(dn); 2776 2777 dnode_rele(dn, db); 2778 } else if (db->db_buf == NULL) { 2779 /* 2780 * This is a special case: we never associated this 2781 * dbuf with any data allocated from the ARC. 2782 */ 2783 ASSERT(db->db_state == DB_UNCACHED || 2784 db->db_state == DB_NOFILL); 2785 dbuf_destroy(db); 2786 } else if (arc_released(db->db_buf)) { 2787 /* 2788 * This dbuf has anonymous data associated with it. 2789 */ 2790 dbuf_destroy(db); 2791 } else { 2792 boolean_t do_arc_evict = B_FALSE; 2793 blkptr_t bp; 2794 spa_t *spa = dmu_objset_spa(db->db_objset); 2795 2796 if (!DBUF_IS_CACHEABLE(db) && 2797 db->db_blkptr != NULL && 2798 !BP_IS_HOLE(db->db_blkptr) && 2799 !BP_IS_EMBEDDED(db->db_blkptr)) { 2800 do_arc_evict = B_TRUE; 2801 bp = *db->db_blkptr; 2802 } 2803 2804 if (!DBUF_IS_CACHEABLE(db) || 2805 db->db_pending_evict) { 2806 dbuf_destroy(db); 2807 } else if (!multilist_link_active(&db->db_cache_link)) { 2808 multilist_insert(&dbuf_cache, db); 2809 (void) refcount_add_many(&dbuf_cache_size, 2810 db->db.db_size, db); 2811 mutex_exit(&db->db_mtx); 2812 2813 dbuf_evict_notify(); 2814 } 2815 2816 if (do_arc_evict) 2817 arc_freed(spa, &bp); 2818 } 2819 } else { 2820 mutex_exit(&db->db_mtx); 2821 } 2822 2823 } 2824 2825 #pragma weak dmu_buf_refcount = dbuf_refcount 2826 uint64_t 2827 dbuf_refcount(dmu_buf_impl_t *db) 2828 { 2829 return (refcount_count(&db->db_holds)); 2830 } 2831 2832 void * 2833 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 2834 dmu_buf_user_t *new_user) 2835 { 2836 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2837 2838 mutex_enter(&db->db_mtx); 2839 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2840 if (db->db_user == old_user) 2841 db->db_user = new_user; 2842 else 2843 old_user = db->db_user; 2844 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2845 mutex_exit(&db->db_mtx); 2846 2847 return (old_user); 2848 } 2849 2850 void * 2851 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2852 { 2853 return (dmu_buf_replace_user(db_fake, NULL, user)); 2854 } 2855 2856 void * 2857 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2858 { 2859 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2860 2861 db->db_user_immediate_evict = TRUE; 2862 return (dmu_buf_set_user(db_fake, user)); 2863 } 2864 2865 void * 2866 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2867 { 2868 return (dmu_buf_replace_user(db_fake, user, NULL)); 2869 } 2870 2871 void * 2872 dmu_buf_get_user(dmu_buf_t *db_fake) 2873 { 2874 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2875 2876 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2877 return (db->db_user); 2878 } 2879 2880 void 2881 dmu_buf_user_evict_wait() 2882 { 2883 taskq_wait(dbu_evict_taskq); 2884 } 2885 2886 boolean_t 2887 dmu_buf_freeable(dmu_buf_t *dbuf) 2888 { 2889 boolean_t res = B_FALSE; 2890 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2891 2892 if (db->db_blkptr) 2893 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2894 db->db_blkptr, db->db_blkptr->blk_birth); 2895 2896 return (res); 2897 } 2898 2899 blkptr_t * 2900 dmu_buf_get_blkptr(dmu_buf_t *db) 2901 { 2902 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2903 return (dbi->db_blkptr); 2904 } 2905 2906 static void 2907 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2908 { 2909 /* ASSERT(dmu_tx_is_syncing(tx) */ 2910 ASSERT(MUTEX_HELD(&db->db_mtx)); 2911 2912 if (db->db_blkptr != NULL) 2913 return; 2914 2915 if (db->db_blkid == DMU_SPILL_BLKID) { 2916 db->db_blkptr = &dn->dn_phys->dn_spill; 2917 BP_ZERO(db->db_blkptr); 2918 return; 2919 } 2920 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2921 /* 2922 * This buffer was allocated at a time when there was 2923 * no available blkptrs from the dnode, or it was 2924 * inappropriate to hook it in (i.e., nlevels mis-match). 2925 */ 2926 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2927 ASSERT(db->db_parent == NULL); 2928 db->db_parent = dn->dn_dbuf; 2929 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2930 DBUF_VERIFY(db); 2931 } else { 2932 dmu_buf_impl_t *parent = db->db_parent; 2933 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2934 2935 ASSERT(dn->dn_phys->dn_nlevels > 1); 2936 if (parent == NULL) { 2937 mutex_exit(&db->db_mtx); 2938 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2939 parent = dbuf_hold_level(dn, db->db_level + 1, 2940 db->db_blkid >> epbs, db); 2941 rw_exit(&dn->dn_struct_rwlock); 2942 mutex_enter(&db->db_mtx); 2943 db->db_parent = parent; 2944 } 2945 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2946 (db->db_blkid & ((1ULL << epbs) - 1)); 2947 DBUF_VERIFY(db); 2948 } 2949 } 2950 2951 static void 2952 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2953 { 2954 dmu_buf_impl_t *db = dr->dr_dbuf; 2955 dnode_t *dn; 2956 zio_t *zio; 2957 2958 ASSERT(dmu_tx_is_syncing(tx)); 2959 2960 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2961 2962 mutex_enter(&db->db_mtx); 2963 2964 ASSERT(db->db_level > 0); 2965 DBUF_VERIFY(db); 2966 2967 /* Read the block if it hasn't been read yet. */ 2968 if (db->db_buf == NULL) { 2969 mutex_exit(&db->db_mtx); 2970 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2971 mutex_enter(&db->db_mtx); 2972 } 2973 ASSERT3U(db->db_state, ==, DB_CACHED); 2974 ASSERT(db->db_buf != NULL); 2975 2976 DB_DNODE_ENTER(db); 2977 dn = DB_DNODE(db); 2978 /* Indirect block size must match what the dnode thinks it is. */ 2979 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2980 dbuf_check_blkptr(dn, db); 2981 DB_DNODE_EXIT(db); 2982 2983 /* Provide the pending dirty record to child dbufs */ 2984 db->db_data_pending = dr; 2985 2986 mutex_exit(&db->db_mtx); 2987 dbuf_write(dr, db->db_buf, tx); 2988 2989 zio = dr->dr_zio; 2990 mutex_enter(&dr->dt.di.dr_mtx); 2991 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 2992 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2993 mutex_exit(&dr->dt.di.dr_mtx); 2994 zio_nowait(zio); 2995 } 2996 2997 static void 2998 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2999 { 3000 arc_buf_t **datap = &dr->dt.dl.dr_data; 3001 dmu_buf_impl_t *db = dr->dr_dbuf; 3002 dnode_t *dn; 3003 objset_t *os; 3004 uint64_t txg = tx->tx_txg; 3005 3006 ASSERT(dmu_tx_is_syncing(tx)); 3007 3008 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3009 3010 mutex_enter(&db->db_mtx); 3011 /* 3012 * To be synced, we must be dirtied. But we 3013 * might have been freed after the dirty. 3014 */ 3015 if (db->db_state == DB_UNCACHED) { 3016 /* This buffer has been freed since it was dirtied */ 3017 ASSERT(db->db.db_data == NULL); 3018 } else if (db->db_state == DB_FILL) { 3019 /* This buffer was freed and is now being re-filled */ 3020 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3021 } else { 3022 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3023 } 3024 DBUF_VERIFY(db); 3025 3026 DB_DNODE_ENTER(db); 3027 dn = DB_DNODE(db); 3028 3029 if (db->db_blkid == DMU_SPILL_BLKID) { 3030 mutex_enter(&dn->dn_mtx); 3031 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 3032 mutex_exit(&dn->dn_mtx); 3033 } 3034 3035 /* 3036 * If this is a bonus buffer, simply copy the bonus data into the 3037 * dnode. It will be written out when the dnode is synced (and it 3038 * will be synced, since it must have been dirty for dbuf_sync to 3039 * be called). 3040 */ 3041 if (db->db_blkid == DMU_BONUS_BLKID) { 3042 dbuf_dirty_record_t **drp; 3043 3044 ASSERT(*datap != NULL); 3045 ASSERT0(db->db_level); 3046 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 3047 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 3048 DB_DNODE_EXIT(db); 3049 3050 if (*datap != db->db.db_data) { 3051 zio_buf_free(*datap, DN_MAX_BONUSLEN); 3052 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 3053 } 3054 db->db_data_pending = NULL; 3055 drp = &db->db_last_dirty; 3056 while (*drp != dr) 3057 drp = &(*drp)->dr_next; 3058 ASSERT(dr->dr_next == NULL); 3059 ASSERT(dr->dr_dbuf == db); 3060 *drp = dr->dr_next; 3061 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3062 ASSERT(db->db_dirtycnt > 0); 3063 db->db_dirtycnt -= 1; 3064 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 3065 return; 3066 } 3067 3068 os = dn->dn_objset; 3069 3070 /* 3071 * This function may have dropped the db_mtx lock allowing a dmu_sync 3072 * operation to sneak in. As a result, we need to ensure that we 3073 * don't check the dr_override_state until we have returned from 3074 * dbuf_check_blkptr. 3075 */ 3076 dbuf_check_blkptr(dn, db); 3077 3078 /* 3079 * If this buffer is in the middle of an immediate write, 3080 * wait for the synchronous IO to complete. 3081 */ 3082 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 3083 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 3084 cv_wait(&db->db_changed, &db->db_mtx); 3085 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 3086 } 3087 3088 if (db->db_state != DB_NOFILL && 3089 dn->dn_object != DMU_META_DNODE_OBJECT && 3090 refcount_count(&db->db_holds) > 1 && 3091 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 3092 *datap == db->db_buf) { 3093 /* 3094 * If this buffer is currently "in use" (i.e., there 3095 * are active holds and db_data still references it), 3096 * then make a copy before we start the write so that 3097 * any modifications from the open txg will not leak 3098 * into this write. 3099 * 3100 * NOTE: this copy does not need to be made for 3101 * objects only modified in the syncing context (e.g. 3102 * DNONE_DNODE blocks). 3103 */ 3104 int blksz = arc_buf_size(*datap); 3105 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 3106 *datap = arc_alloc_buf(os->os_spa, blksz, db, type); 3107 bcopy(db->db.db_data, (*datap)->b_data, blksz); 3108 } 3109 db->db_data_pending = dr; 3110 3111 mutex_exit(&db->db_mtx); 3112 3113 dbuf_write(dr, *datap, tx); 3114 3115 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3116 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 3117 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 3118 DB_DNODE_EXIT(db); 3119 } else { 3120 /* 3121 * Although zio_nowait() does not "wait for an IO", it does 3122 * initiate the IO. If this is an empty write it seems plausible 3123 * that the IO could actually be completed before the nowait 3124 * returns. We need to DB_DNODE_EXIT() first in case 3125 * zio_nowait() invalidates the dbuf. 3126 */ 3127 DB_DNODE_EXIT(db); 3128 zio_nowait(dr->dr_zio); 3129 } 3130 } 3131 3132 void 3133 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 3134 { 3135 dbuf_dirty_record_t *dr; 3136 3137 while (dr = list_head(list)) { 3138 if (dr->dr_zio != NULL) { 3139 /* 3140 * If we find an already initialized zio then we 3141 * are processing the meta-dnode, and we have finished. 3142 * The dbufs for all dnodes are put back on the list 3143 * during processing, so that we can zio_wait() 3144 * these IOs after initiating all child IOs. 3145 */ 3146 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 3147 DMU_META_DNODE_OBJECT); 3148 break; 3149 } 3150 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 3151 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 3152 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 3153 } 3154 list_remove(list, dr); 3155 if (dr->dr_dbuf->db_level > 0) 3156 dbuf_sync_indirect(dr, tx); 3157 else 3158 dbuf_sync_leaf(dr, tx); 3159 } 3160 } 3161 3162 /* ARGSUSED */ 3163 static void 3164 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3165 { 3166 dmu_buf_impl_t *db = vdb; 3167 dnode_t *dn; 3168 blkptr_t *bp = zio->io_bp; 3169 blkptr_t *bp_orig = &zio->io_bp_orig; 3170 spa_t *spa = zio->io_spa; 3171 int64_t delta; 3172 uint64_t fill = 0; 3173 int i; 3174 3175 ASSERT3P(db->db_blkptr, !=, NULL); 3176 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 3177 3178 DB_DNODE_ENTER(db); 3179 dn = DB_DNODE(db); 3180 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 3181 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 3182 zio->io_prev_space_delta = delta; 3183 3184 if (bp->blk_birth != 0) { 3185 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 3186 BP_GET_TYPE(bp) == dn->dn_type) || 3187 (db->db_blkid == DMU_SPILL_BLKID && 3188 BP_GET_TYPE(bp) == dn->dn_bonustype) || 3189 BP_IS_EMBEDDED(bp)); 3190 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 3191 } 3192 3193 mutex_enter(&db->db_mtx); 3194 3195 #ifdef ZFS_DEBUG 3196 if (db->db_blkid == DMU_SPILL_BLKID) { 3197 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3198 ASSERT(!(BP_IS_HOLE(bp)) && 3199 db->db_blkptr == &dn->dn_phys->dn_spill); 3200 } 3201 #endif 3202 3203 if (db->db_level == 0) { 3204 mutex_enter(&dn->dn_mtx); 3205 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 3206 db->db_blkid != DMU_SPILL_BLKID) 3207 dn->dn_phys->dn_maxblkid = db->db_blkid; 3208 mutex_exit(&dn->dn_mtx); 3209 3210 if (dn->dn_type == DMU_OT_DNODE) { 3211 dnode_phys_t *dnp = db->db.db_data; 3212 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 3213 i--, dnp++) { 3214 if (dnp->dn_type != DMU_OT_NONE) 3215 fill++; 3216 } 3217 } else { 3218 if (BP_IS_HOLE(bp)) { 3219 fill = 0; 3220 } else { 3221 fill = 1; 3222 } 3223 } 3224 } else { 3225 blkptr_t *ibp = db->db.db_data; 3226 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3227 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 3228 if (BP_IS_HOLE(ibp)) 3229 continue; 3230 fill += BP_GET_FILL(ibp); 3231 } 3232 } 3233 DB_DNODE_EXIT(db); 3234 3235 if (!BP_IS_EMBEDDED(bp)) 3236 bp->blk_fill = fill; 3237 3238 mutex_exit(&db->db_mtx); 3239 3240 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3241 *db->db_blkptr = *bp; 3242 rw_exit(&dn->dn_struct_rwlock); 3243 } 3244 3245 /* ARGSUSED */ 3246 /* 3247 * This function gets called just prior to running through the compression 3248 * stage of the zio pipeline. If we're an indirect block comprised of only 3249 * holes, then we want this indirect to be compressed away to a hole. In 3250 * order to do that we must zero out any information about the holes that 3251 * this indirect points to prior to before we try to compress it. 3252 */ 3253 static void 3254 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3255 { 3256 dmu_buf_impl_t *db = vdb; 3257 dnode_t *dn; 3258 blkptr_t *bp; 3259 uint64_t i; 3260 int epbs; 3261 3262 ASSERT3U(db->db_level, >, 0); 3263 DB_DNODE_ENTER(db); 3264 dn = DB_DNODE(db); 3265 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3266 3267 /* Determine if all our children are holes */ 3268 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { 3269 if (!BP_IS_HOLE(bp)) 3270 break; 3271 } 3272 3273 /* 3274 * If all the children are holes, then zero them all out so that 3275 * we may get compressed away. 3276 */ 3277 if (i == 1 << epbs) { 3278 /* didn't find any non-holes */ 3279 bzero(db->db.db_data, db->db.db_size); 3280 } 3281 DB_DNODE_EXIT(db); 3282 } 3283 3284 /* 3285 * The SPA will call this callback several times for each zio - once 3286 * for every physical child i/o (zio->io_phys_children times). This 3287 * allows the DMU to monitor the progress of each logical i/o. For example, 3288 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 3289 * block. There may be a long delay before all copies/fragments are completed, 3290 * so this callback allows us to retire dirty space gradually, as the physical 3291 * i/os complete. 3292 */ 3293 /* ARGSUSED */ 3294 static void 3295 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 3296 { 3297 dmu_buf_impl_t *db = arg; 3298 objset_t *os = db->db_objset; 3299 dsl_pool_t *dp = dmu_objset_pool(os); 3300 dbuf_dirty_record_t *dr; 3301 int delta = 0; 3302 3303 dr = db->db_data_pending; 3304 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 3305 3306 /* 3307 * The callback will be called io_phys_children times. Retire one 3308 * portion of our dirty space each time we are called. Any rounding 3309 * error will be cleaned up by dsl_pool_sync()'s call to 3310 * dsl_pool_undirty_space(). 3311 */ 3312 delta = dr->dr_accounted / zio->io_phys_children; 3313 dsl_pool_undirty_space(dp, delta, zio->io_txg); 3314 } 3315 3316 /* ARGSUSED */ 3317 static void 3318 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 3319 { 3320 dmu_buf_impl_t *db = vdb; 3321 blkptr_t *bp_orig = &zio->io_bp_orig; 3322 blkptr_t *bp = db->db_blkptr; 3323 objset_t *os = db->db_objset; 3324 dmu_tx_t *tx = os->os_synctx; 3325 dbuf_dirty_record_t **drp, *dr; 3326 3327 ASSERT0(zio->io_error); 3328 ASSERT(db->db_blkptr == bp); 3329 3330 /* 3331 * For nopwrites and rewrites we ensure that the bp matches our 3332 * original and bypass all the accounting. 3333 */ 3334 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 3335 ASSERT(BP_EQUAL(bp, bp_orig)); 3336 } else { 3337 dsl_dataset_t *ds = os->os_dsl_dataset; 3338 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 3339 dsl_dataset_block_born(ds, bp, tx); 3340 } 3341 3342 mutex_enter(&db->db_mtx); 3343 3344 DBUF_VERIFY(db); 3345 3346 drp = &db->db_last_dirty; 3347 while ((dr = *drp) != db->db_data_pending) 3348 drp = &dr->dr_next; 3349 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3350 ASSERT(dr->dr_dbuf == db); 3351 ASSERT(dr->dr_next == NULL); 3352 *drp = dr->dr_next; 3353 3354 #ifdef ZFS_DEBUG 3355 if (db->db_blkid == DMU_SPILL_BLKID) { 3356 dnode_t *dn; 3357 3358 DB_DNODE_ENTER(db); 3359 dn = DB_DNODE(db); 3360 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3361 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3362 db->db_blkptr == &dn->dn_phys->dn_spill); 3363 DB_DNODE_EXIT(db); 3364 } 3365 #endif 3366 3367 if (db->db_level == 0) { 3368 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3369 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3370 if (db->db_state != DB_NOFILL) { 3371 if (dr->dt.dl.dr_data != db->db_buf) 3372 arc_buf_destroy(dr->dt.dl.dr_data, db); 3373 } 3374 } else { 3375 dnode_t *dn; 3376 3377 DB_DNODE_ENTER(db); 3378 dn = DB_DNODE(db); 3379 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3380 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3381 if (!BP_IS_HOLE(db->db_blkptr)) { 3382 int epbs = 3383 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3384 ASSERT3U(db->db_blkid, <=, 3385 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3386 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3387 db->db.db_size); 3388 } 3389 DB_DNODE_EXIT(db); 3390 mutex_destroy(&dr->dt.di.dr_mtx); 3391 list_destroy(&dr->dt.di.dr_children); 3392 } 3393 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3394 3395 cv_broadcast(&db->db_changed); 3396 ASSERT(db->db_dirtycnt > 0); 3397 db->db_dirtycnt -= 1; 3398 db->db_data_pending = NULL; 3399 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 3400 } 3401 3402 static void 3403 dbuf_write_nofill_ready(zio_t *zio) 3404 { 3405 dbuf_write_ready(zio, NULL, zio->io_private); 3406 } 3407 3408 static void 3409 dbuf_write_nofill_done(zio_t *zio) 3410 { 3411 dbuf_write_done(zio, NULL, zio->io_private); 3412 } 3413 3414 static void 3415 dbuf_write_override_ready(zio_t *zio) 3416 { 3417 dbuf_dirty_record_t *dr = zio->io_private; 3418 dmu_buf_impl_t *db = dr->dr_dbuf; 3419 3420 dbuf_write_ready(zio, NULL, db); 3421 } 3422 3423 static void 3424 dbuf_write_override_done(zio_t *zio) 3425 { 3426 dbuf_dirty_record_t *dr = zio->io_private; 3427 dmu_buf_impl_t *db = dr->dr_dbuf; 3428 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3429 3430 mutex_enter(&db->db_mtx); 3431 if (!BP_EQUAL(zio->io_bp, obp)) { 3432 if (!BP_IS_HOLE(obp)) 3433 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3434 arc_release(dr->dt.dl.dr_data, db); 3435 } 3436 mutex_exit(&db->db_mtx); 3437 3438 dbuf_write_done(zio, NULL, db); 3439 } 3440 3441 /* Issue I/O to commit a dirty buffer to disk. */ 3442 static void 3443 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 3444 { 3445 dmu_buf_impl_t *db = dr->dr_dbuf; 3446 dnode_t *dn; 3447 objset_t *os; 3448 dmu_buf_impl_t *parent = db->db_parent; 3449 uint64_t txg = tx->tx_txg; 3450 zbookmark_phys_t zb; 3451 zio_prop_t zp; 3452 zio_t *zio; 3453 int wp_flag = 0; 3454 3455 ASSERT(dmu_tx_is_syncing(tx)); 3456 3457 DB_DNODE_ENTER(db); 3458 dn = DB_DNODE(db); 3459 os = dn->dn_objset; 3460 3461 if (db->db_state != DB_NOFILL) { 3462 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 3463 /* 3464 * Private object buffers are released here rather 3465 * than in dbuf_dirty() since they are only modified 3466 * in the syncing context and we don't want the 3467 * overhead of making multiple copies of the data. 3468 */ 3469 if (BP_IS_HOLE(db->db_blkptr)) { 3470 arc_buf_thaw(data); 3471 } else { 3472 dbuf_release_bp(db); 3473 } 3474 } 3475 } 3476 3477 if (parent != dn->dn_dbuf) { 3478 /* Our parent is an indirect block. */ 3479 /* We have a dirty parent that has been scheduled for write. */ 3480 ASSERT(parent && parent->db_data_pending); 3481 /* Our parent's buffer is one level closer to the dnode. */ 3482 ASSERT(db->db_level == parent->db_level-1); 3483 /* 3484 * We're about to modify our parent's db_data by modifying 3485 * our block pointer, so the parent must be released. 3486 */ 3487 ASSERT(arc_released(parent->db_buf)); 3488 zio = parent->db_data_pending->dr_zio; 3489 } else { 3490 /* Our parent is the dnode itself. */ 3491 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 3492 db->db_blkid != DMU_SPILL_BLKID) || 3493 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 3494 if (db->db_blkid != DMU_SPILL_BLKID) 3495 ASSERT3P(db->db_blkptr, ==, 3496 &dn->dn_phys->dn_blkptr[db->db_blkid]); 3497 zio = dn->dn_zio; 3498 } 3499 3500 ASSERT(db->db_level == 0 || data == db->db_buf); 3501 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 3502 ASSERT(zio); 3503 3504 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 3505 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 3506 db->db.db_object, db->db_level, db->db_blkid); 3507 3508 if (db->db_blkid == DMU_SPILL_BLKID) 3509 wp_flag = WP_SPILL; 3510 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 3511 3512 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 3513 DB_DNODE_EXIT(db); 3514 3515 /* 3516 * We copy the blkptr now (rather than when we instantiate the dirty 3517 * record), because its value can change between open context and 3518 * syncing context. We do not need to hold dn_struct_rwlock to read 3519 * db_blkptr because we are in syncing context. 3520 */ 3521 dr->dr_bp_copy = *db->db_blkptr; 3522 3523 if (db->db_level == 0 && 3524 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 3525 /* 3526 * The BP for this block has been provided by open context 3527 * (by dmu_sync() or dmu_buf_write_embedded()). 3528 */ 3529 void *contents = (data != NULL) ? data->b_data : NULL; 3530 3531 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3532 &dr->dr_bp_copy, contents, db->db.db_size, &zp, 3533 dbuf_write_override_ready, NULL, NULL, 3534 dbuf_write_override_done, 3535 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3536 mutex_enter(&db->db_mtx); 3537 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 3538 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 3539 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 3540 mutex_exit(&db->db_mtx); 3541 } else if (db->db_state == DB_NOFILL) { 3542 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 3543 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 3544 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3545 &dr->dr_bp_copy, NULL, db->db.db_size, &zp, 3546 dbuf_write_nofill_ready, NULL, NULL, 3547 dbuf_write_nofill_done, db, 3548 ZIO_PRIORITY_ASYNC_WRITE, 3549 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 3550 } else { 3551 ASSERT(arc_released(data)); 3552 3553 /* 3554 * For indirect blocks, we want to setup the children 3555 * ready callback so that we can properly handle an indirect 3556 * block that only contains holes. 3557 */ 3558 arc_done_func_t *children_ready_cb = NULL; 3559 if (db->db_level != 0) 3560 children_ready_cb = dbuf_write_children_ready; 3561 3562 dr->dr_zio = arc_write(zio, os->os_spa, txg, 3563 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 3564 &zp, dbuf_write_ready, children_ready_cb, 3565 dbuf_write_physdone, dbuf_write_done, db, 3566 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3567 } 3568 } 3569