1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 #include <sys/abd.h> 50 51 uint_t zfs_dbuf_evict_key; 52 53 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 54 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 55 56 #ifndef __lint 57 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 58 dmu_buf_evict_func_t *evict_func_sync, 59 dmu_buf_evict_func_t *evict_func_async, 60 dmu_buf_t **clear_on_evict_dbufp); 61 #endif /* ! __lint */ 62 63 /* 64 * Global data structures and functions for the dbuf cache. 65 */ 66 static kmem_cache_t *dbuf_kmem_cache; 67 static taskq_t *dbu_evict_taskq; 68 69 static kthread_t *dbuf_cache_evict_thread; 70 static kmutex_t dbuf_evict_lock; 71 static kcondvar_t dbuf_evict_cv; 72 static boolean_t dbuf_evict_thread_exit; 73 74 /* 75 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 76 * are not currently held but have been recently released. These dbufs 77 * are not eligible for arc eviction until they are aged out of the cache. 78 * Dbufs are added to the dbuf cache once the last hold is released. If a 79 * dbuf is later accessed and still exists in the dbuf cache, then it will 80 * be removed from the cache and later re-added to the head of the cache. 81 * Dbufs that are aged out of the cache will be immediately destroyed and 82 * become eligible for arc eviction. 83 */ 84 static multilist_t *dbuf_cache; 85 static refcount_t dbuf_cache_size; 86 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024; 87 88 /* Cap the size of the dbuf cache to log2 fraction of arc size. */ 89 int dbuf_cache_max_shift = 5; 90 91 /* 92 * The dbuf cache uses a three-stage eviction policy: 93 * - A low water marker designates when the dbuf eviction thread 94 * should stop evicting from the dbuf cache. 95 * - When we reach the maximum size (aka mid water mark), we 96 * signal the eviction thread to run. 97 * - The high water mark indicates when the eviction thread 98 * is unable to keep up with the incoming load and eviction must 99 * happen in the context of the calling thread. 100 * 101 * The dbuf cache: 102 * (max size) 103 * low water mid water hi water 104 * +----------------------------------------+----------+----------+ 105 * | | | | 106 * | | | | 107 * | | | | 108 * | | | | 109 * +----------------------------------------+----------+----------+ 110 * stop signal evict 111 * evicting eviction directly 112 * thread 113 * 114 * The high and low water marks indicate the operating range for the eviction 115 * thread. The low water mark is, by default, 90% of the total size of the 116 * cache and the high water mark is at 110% (both of these percentages can be 117 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 118 * respectively). The eviction thread will try to ensure that the cache remains 119 * within this range by waking up every second and checking if the cache is 120 * above the low water mark. The thread can also be woken up by callers adding 121 * elements into the cache if the cache is larger than the mid water (i.e max 122 * cache size). Once the eviction thread is woken up and eviction is required, 123 * it will continue evicting buffers until it's able to reduce the cache size 124 * to the low water mark. If the cache size continues to grow and hits the high 125 * water mark, then callers adding elments to the cache will begin to evict 126 * directly from the cache until the cache is no longer above the high water 127 * mark. 128 */ 129 130 /* 131 * The percentage above and below the maximum cache size. 132 */ 133 uint_t dbuf_cache_hiwater_pct = 10; 134 uint_t dbuf_cache_lowater_pct = 10; 135 136 /* ARGSUSED */ 137 static int 138 dbuf_cons(void *vdb, void *unused, int kmflag) 139 { 140 dmu_buf_impl_t *db = vdb; 141 bzero(db, sizeof (dmu_buf_impl_t)); 142 143 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 144 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 145 multilist_link_init(&db->db_cache_link); 146 refcount_create(&db->db_holds); 147 148 return (0); 149 } 150 151 /* ARGSUSED */ 152 static void 153 dbuf_dest(void *vdb, void *unused) 154 { 155 dmu_buf_impl_t *db = vdb; 156 mutex_destroy(&db->db_mtx); 157 cv_destroy(&db->db_changed); 158 ASSERT(!multilist_link_active(&db->db_cache_link)); 159 refcount_destroy(&db->db_holds); 160 } 161 162 /* 163 * dbuf hash table routines 164 */ 165 static dbuf_hash_table_t dbuf_hash_table; 166 167 static uint64_t dbuf_hash_count; 168 169 static uint64_t 170 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 171 { 172 uintptr_t osv = (uintptr_t)os; 173 uint64_t crc = -1ULL; 174 175 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 176 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 177 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 178 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 179 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 180 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 181 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 182 183 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 184 185 return (crc); 186 } 187 188 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 189 ((dbuf)->db.db_object == (obj) && \ 190 (dbuf)->db_objset == (os) && \ 191 (dbuf)->db_level == (level) && \ 192 (dbuf)->db_blkid == (blkid)) 193 194 dmu_buf_impl_t * 195 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 196 { 197 dbuf_hash_table_t *h = &dbuf_hash_table; 198 uint64_t hv = dbuf_hash(os, obj, level, blkid); 199 uint64_t idx = hv & h->hash_table_mask; 200 dmu_buf_impl_t *db; 201 202 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 203 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 204 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 205 mutex_enter(&db->db_mtx); 206 if (db->db_state != DB_EVICTING) { 207 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 208 return (db); 209 } 210 mutex_exit(&db->db_mtx); 211 } 212 } 213 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 214 return (NULL); 215 } 216 217 static dmu_buf_impl_t * 218 dbuf_find_bonus(objset_t *os, uint64_t object) 219 { 220 dnode_t *dn; 221 dmu_buf_impl_t *db = NULL; 222 223 if (dnode_hold(os, object, FTAG, &dn) == 0) { 224 rw_enter(&dn->dn_struct_rwlock, RW_READER); 225 if (dn->dn_bonus != NULL) { 226 db = dn->dn_bonus; 227 mutex_enter(&db->db_mtx); 228 } 229 rw_exit(&dn->dn_struct_rwlock); 230 dnode_rele(dn, FTAG); 231 } 232 return (db); 233 } 234 235 /* 236 * Insert an entry into the hash table. If there is already an element 237 * equal to elem in the hash table, then the already existing element 238 * will be returned and the new element will not be inserted. 239 * Otherwise returns NULL. 240 */ 241 static dmu_buf_impl_t * 242 dbuf_hash_insert(dmu_buf_impl_t *db) 243 { 244 dbuf_hash_table_t *h = &dbuf_hash_table; 245 objset_t *os = db->db_objset; 246 uint64_t obj = db->db.db_object; 247 int level = db->db_level; 248 uint64_t blkid = db->db_blkid; 249 uint64_t hv = dbuf_hash(os, obj, level, blkid); 250 uint64_t idx = hv & h->hash_table_mask; 251 dmu_buf_impl_t *dbf; 252 253 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 254 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 255 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 256 mutex_enter(&dbf->db_mtx); 257 if (dbf->db_state != DB_EVICTING) { 258 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 259 return (dbf); 260 } 261 mutex_exit(&dbf->db_mtx); 262 } 263 } 264 265 mutex_enter(&db->db_mtx); 266 db->db_hash_next = h->hash_table[idx]; 267 h->hash_table[idx] = db; 268 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 269 atomic_inc_64(&dbuf_hash_count); 270 271 return (NULL); 272 } 273 274 /* 275 * Remove an entry from the hash table. It must be in the EVICTING state. 276 */ 277 static void 278 dbuf_hash_remove(dmu_buf_impl_t *db) 279 { 280 dbuf_hash_table_t *h = &dbuf_hash_table; 281 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 282 db->db_level, db->db_blkid); 283 uint64_t idx = hv & h->hash_table_mask; 284 dmu_buf_impl_t *dbf, **dbp; 285 286 /* 287 * We musn't hold db_mtx to maintain lock ordering: 288 * DBUF_HASH_MUTEX > db_mtx. 289 */ 290 ASSERT(refcount_is_zero(&db->db_holds)); 291 ASSERT(db->db_state == DB_EVICTING); 292 ASSERT(!MUTEX_HELD(&db->db_mtx)); 293 294 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 295 dbp = &h->hash_table[idx]; 296 while ((dbf = *dbp) != db) { 297 dbp = &dbf->db_hash_next; 298 ASSERT(dbf != NULL); 299 } 300 *dbp = db->db_hash_next; 301 db->db_hash_next = NULL; 302 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 303 atomic_dec_64(&dbuf_hash_count); 304 } 305 306 typedef enum { 307 DBVU_EVICTING, 308 DBVU_NOT_EVICTING 309 } dbvu_verify_type_t; 310 311 static void 312 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 313 { 314 #ifdef ZFS_DEBUG 315 int64_t holds; 316 317 if (db->db_user == NULL) 318 return; 319 320 /* Only data blocks support the attachment of user data. */ 321 ASSERT(db->db_level == 0); 322 323 /* Clients must resolve a dbuf before attaching user data. */ 324 ASSERT(db->db.db_data != NULL); 325 ASSERT3U(db->db_state, ==, DB_CACHED); 326 327 holds = refcount_count(&db->db_holds); 328 if (verify_type == DBVU_EVICTING) { 329 /* 330 * Immediate eviction occurs when holds == dirtycnt. 331 * For normal eviction buffers, holds is zero on 332 * eviction, except when dbuf_fix_old_data() calls 333 * dbuf_clear_data(). However, the hold count can grow 334 * during eviction even though db_mtx is held (see 335 * dmu_bonus_hold() for an example), so we can only 336 * test the generic invariant that holds >= dirtycnt. 337 */ 338 ASSERT3U(holds, >=, db->db_dirtycnt); 339 } else { 340 if (db->db_user_immediate_evict == TRUE) 341 ASSERT3U(holds, >=, db->db_dirtycnt); 342 else 343 ASSERT3U(holds, >, 0); 344 } 345 #endif 346 } 347 348 static void 349 dbuf_evict_user(dmu_buf_impl_t *db) 350 { 351 dmu_buf_user_t *dbu = db->db_user; 352 353 ASSERT(MUTEX_HELD(&db->db_mtx)); 354 355 if (dbu == NULL) 356 return; 357 358 dbuf_verify_user(db, DBVU_EVICTING); 359 db->db_user = NULL; 360 361 #ifdef ZFS_DEBUG 362 if (dbu->dbu_clear_on_evict_dbufp != NULL) 363 *dbu->dbu_clear_on_evict_dbufp = NULL; 364 #endif 365 366 /* 367 * There are two eviction callbacks - one that we call synchronously 368 * and one that we invoke via a taskq. The async one is useful for 369 * avoiding lock order reversals and limiting stack depth. 370 * 371 * Note that if we have a sync callback but no async callback, 372 * it's likely that the sync callback will free the structure 373 * containing the dbu. In that case we need to take care to not 374 * dereference dbu after calling the sync evict func. 375 */ 376 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 377 378 if (dbu->dbu_evict_func_sync != NULL) 379 dbu->dbu_evict_func_sync(dbu); 380 381 if (has_async) { 382 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 383 dbu, 0, &dbu->dbu_tqent); 384 } 385 } 386 387 boolean_t 388 dbuf_is_metadata(dmu_buf_impl_t *db) 389 { 390 if (db->db_level > 0) { 391 return (B_TRUE); 392 } else { 393 boolean_t is_metadata; 394 395 DB_DNODE_ENTER(db); 396 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 397 DB_DNODE_EXIT(db); 398 399 return (is_metadata); 400 } 401 } 402 403 /* 404 * This function *must* return indices evenly distributed between all 405 * sublists of the multilist. This is needed due to how the dbuf eviction 406 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 407 * distributed between all sublists and uses this assumption when 408 * deciding which sublist to evict from and how much to evict from it. 409 */ 410 unsigned int 411 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 412 { 413 dmu_buf_impl_t *db = obj; 414 415 /* 416 * The assumption here, is the hash value for a given 417 * dmu_buf_impl_t will remain constant throughout it's lifetime 418 * (i.e. it's objset, object, level and blkid fields don't change). 419 * Thus, we don't need to store the dbuf's sublist index 420 * on insertion, as this index can be recalculated on removal. 421 * 422 * Also, the low order bits of the hash value are thought to be 423 * distributed evenly. Otherwise, in the case that the multilist 424 * has a power of two number of sublists, each sublists' usage 425 * would not be evenly distributed. 426 */ 427 return (dbuf_hash(db->db_objset, db->db.db_object, 428 db->db_level, db->db_blkid) % 429 multilist_get_num_sublists(ml)); 430 } 431 432 static inline boolean_t 433 dbuf_cache_above_hiwater(void) 434 { 435 uint64_t dbuf_cache_hiwater_bytes = 436 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 437 438 return (refcount_count(&dbuf_cache_size) > 439 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 440 } 441 442 static inline boolean_t 443 dbuf_cache_above_lowater(void) 444 { 445 uint64_t dbuf_cache_lowater_bytes = 446 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 447 448 return (refcount_count(&dbuf_cache_size) > 449 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 450 } 451 452 /* 453 * Evict the oldest eligible dbuf from the dbuf cache. 454 */ 455 static void 456 dbuf_evict_one(void) 457 { 458 int idx = multilist_get_random_index(dbuf_cache); 459 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx); 460 461 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 462 463 /* 464 * Set the thread's tsd to indicate that it's processing evictions. 465 * Once a thread stops evicting from the dbuf cache it will 466 * reset its tsd to NULL. 467 */ 468 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL); 469 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE); 470 471 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 472 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 473 db = multilist_sublist_prev(mls, db); 474 } 475 476 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 477 multilist_sublist_t *, mls); 478 479 if (db != NULL) { 480 multilist_sublist_remove(mls, db); 481 multilist_sublist_unlock(mls); 482 (void) refcount_remove_many(&dbuf_cache_size, 483 db->db.db_size, db); 484 dbuf_destroy(db); 485 } else { 486 multilist_sublist_unlock(mls); 487 } 488 (void) tsd_set(zfs_dbuf_evict_key, NULL); 489 } 490 491 /* 492 * The dbuf evict thread is responsible for aging out dbufs from the 493 * cache. Once the cache has reached it's maximum size, dbufs are removed 494 * and destroyed. The eviction thread will continue running until the size 495 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 496 * out of the cache it is destroyed and becomes eligible for arc eviction. 497 */ 498 static void 499 dbuf_evict_thread(void) 500 { 501 callb_cpr_t cpr; 502 503 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 504 505 mutex_enter(&dbuf_evict_lock); 506 while (!dbuf_evict_thread_exit) { 507 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 508 CALLB_CPR_SAFE_BEGIN(&cpr); 509 (void) cv_timedwait_hires(&dbuf_evict_cv, 510 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 511 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 512 } 513 mutex_exit(&dbuf_evict_lock); 514 515 /* 516 * Keep evicting as long as we're above the low water mark 517 * for the cache. We do this without holding the locks to 518 * minimize lock contention. 519 */ 520 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 521 dbuf_evict_one(); 522 } 523 524 mutex_enter(&dbuf_evict_lock); 525 } 526 527 dbuf_evict_thread_exit = B_FALSE; 528 cv_broadcast(&dbuf_evict_cv); 529 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 530 thread_exit(); 531 } 532 533 /* 534 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 535 * If the dbuf cache is at its high water mark, then evict a dbuf from the 536 * dbuf cache using the callers context. 537 */ 538 static void 539 dbuf_evict_notify(void) 540 { 541 542 /* 543 * We use thread specific data to track when a thread has 544 * started processing evictions. This allows us to avoid deeply 545 * nested stacks that would have a call flow similar to this: 546 * 547 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 548 * ^ | 549 * | | 550 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 551 * 552 * The dbuf_eviction_thread will always have its tsd set until 553 * that thread exits. All other threads will only set their tsd 554 * if they are participating in the eviction process. This only 555 * happens if the eviction thread is unable to process evictions 556 * fast enough. To keep the dbuf cache size in check, other threads 557 * can evict from the dbuf cache directly. Those threads will set 558 * their tsd values so that we ensure that they only evict one dbuf 559 * from the dbuf cache. 560 */ 561 if (tsd_get(zfs_dbuf_evict_key) != NULL) 562 return; 563 564 /* 565 * We check if we should evict without holding the dbuf_evict_lock, 566 * because it's OK to occasionally make the wrong decision here, 567 * and grabbing the lock results in massive lock contention. 568 */ 569 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 570 if (dbuf_cache_above_hiwater()) 571 dbuf_evict_one(); 572 cv_signal(&dbuf_evict_cv); 573 } 574 } 575 576 void 577 dbuf_init(void) 578 { 579 uint64_t hsize = 1ULL << 16; 580 dbuf_hash_table_t *h = &dbuf_hash_table; 581 int i; 582 583 /* 584 * The hash table is big enough to fill all of physical memory 585 * with an average 4K block size. The table will take up 586 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 587 */ 588 while (hsize * 4096 < physmem * PAGESIZE) 589 hsize <<= 1; 590 591 retry: 592 h->hash_table_mask = hsize - 1; 593 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 594 if (h->hash_table == NULL) { 595 /* XXX - we should really return an error instead of assert */ 596 ASSERT(hsize > (1ULL << 10)); 597 hsize >>= 1; 598 goto retry; 599 } 600 601 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 602 sizeof (dmu_buf_impl_t), 603 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 604 605 for (i = 0; i < DBUF_MUTEXES; i++) 606 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 607 608 /* 609 * Setup the parameters for the dbuf cache. We cap the size of the 610 * dbuf cache to 1/32nd (default) of the size of the ARC. 611 */ 612 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes, 613 arc_max_bytes() >> dbuf_cache_max_shift); 614 615 /* 616 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 617 * configuration is not required. 618 */ 619 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 620 621 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t), 622 offsetof(dmu_buf_impl_t, db_cache_link), 623 dbuf_cache_multilist_index_func); 624 refcount_create(&dbuf_cache_size); 625 626 tsd_create(&zfs_dbuf_evict_key, NULL); 627 dbuf_evict_thread_exit = B_FALSE; 628 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 629 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 630 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 631 NULL, 0, &p0, TS_RUN, minclsyspri); 632 } 633 634 void 635 dbuf_fini(void) 636 { 637 dbuf_hash_table_t *h = &dbuf_hash_table; 638 int i; 639 640 for (i = 0; i < DBUF_MUTEXES; i++) 641 mutex_destroy(&h->hash_mutexes[i]); 642 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 643 kmem_cache_destroy(dbuf_kmem_cache); 644 taskq_destroy(dbu_evict_taskq); 645 646 mutex_enter(&dbuf_evict_lock); 647 dbuf_evict_thread_exit = B_TRUE; 648 while (dbuf_evict_thread_exit) { 649 cv_signal(&dbuf_evict_cv); 650 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 651 } 652 mutex_exit(&dbuf_evict_lock); 653 tsd_destroy(&zfs_dbuf_evict_key); 654 655 mutex_destroy(&dbuf_evict_lock); 656 cv_destroy(&dbuf_evict_cv); 657 658 refcount_destroy(&dbuf_cache_size); 659 multilist_destroy(dbuf_cache); 660 } 661 662 /* 663 * Other stuff. 664 */ 665 666 #ifdef ZFS_DEBUG 667 static void 668 dbuf_verify(dmu_buf_impl_t *db) 669 { 670 dnode_t *dn; 671 dbuf_dirty_record_t *dr; 672 673 ASSERT(MUTEX_HELD(&db->db_mtx)); 674 675 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 676 return; 677 678 ASSERT(db->db_objset != NULL); 679 DB_DNODE_ENTER(db); 680 dn = DB_DNODE(db); 681 if (dn == NULL) { 682 ASSERT(db->db_parent == NULL); 683 ASSERT(db->db_blkptr == NULL); 684 } else { 685 ASSERT3U(db->db.db_object, ==, dn->dn_object); 686 ASSERT3P(db->db_objset, ==, dn->dn_objset); 687 ASSERT3U(db->db_level, <, dn->dn_nlevels); 688 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 689 db->db_blkid == DMU_SPILL_BLKID || 690 !avl_is_empty(&dn->dn_dbufs)); 691 } 692 if (db->db_blkid == DMU_BONUS_BLKID) { 693 ASSERT(dn != NULL); 694 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 695 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 696 } else if (db->db_blkid == DMU_SPILL_BLKID) { 697 ASSERT(dn != NULL); 698 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 699 ASSERT0(db->db.db_offset); 700 } else { 701 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 702 } 703 704 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 705 ASSERT(dr->dr_dbuf == db); 706 707 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 708 ASSERT(dr->dr_dbuf == db); 709 710 /* 711 * We can't assert that db_size matches dn_datablksz because it 712 * can be momentarily different when another thread is doing 713 * dnode_set_blksz(). 714 */ 715 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 716 dr = db->db_data_pending; 717 /* 718 * It should only be modified in syncing context, so 719 * make sure we only have one copy of the data. 720 */ 721 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 722 } 723 724 /* verify db->db_blkptr */ 725 if (db->db_blkptr) { 726 if (db->db_parent == dn->dn_dbuf) { 727 /* db is pointed to by the dnode */ 728 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 729 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 730 ASSERT(db->db_parent == NULL); 731 else 732 ASSERT(db->db_parent != NULL); 733 if (db->db_blkid != DMU_SPILL_BLKID) 734 ASSERT3P(db->db_blkptr, ==, 735 &dn->dn_phys->dn_blkptr[db->db_blkid]); 736 } else { 737 /* db is pointed to by an indirect block */ 738 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 739 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 740 ASSERT3U(db->db_parent->db.db_object, ==, 741 db->db.db_object); 742 /* 743 * dnode_grow_indblksz() can make this fail if we don't 744 * have the struct_rwlock. XXX indblksz no longer 745 * grows. safe to do this now? 746 */ 747 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 748 ASSERT3P(db->db_blkptr, ==, 749 ((blkptr_t *)db->db_parent->db.db_data + 750 db->db_blkid % epb)); 751 } 752 } 753 } 754 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 755 (db->db_buf == NULL || db->db_buf->b_data) && 756 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 757 db->db_state != DB_FILL && !dn->dn_free_txg) { 758 /* 759 * If the blkptr isn't set but they have nonzero data, 760 * it had better be dirty, otherwise we'll lose that 761 * data when we evict this buffer. 762 * 763 * There is an exception to this rule for indirect blocks; in 764 * this case, if the indirect block is a hole, we fill in a few 765 * fields on each of the child blocks (importantly, birth time) 766 * to prevent hole birth times from being lost when you 767 * partially fill in a hole. 768 */ 769 if (db->db_dirtycnt == 0) { 770 if (db->db_level == 0) { 771 uint64_t *buf = db->db.db_data; 772 int i; 773 774 for (i = 0; i < db->db.db_size >> 3; i++) { 775 ASSERT(buf[i] == 0); 776 } 777 } else { 778 blkptr_t *bps = db->db.db_data; 779 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 780 db->db.db_size); 781 /* 782 * We want to verify that all the blkptrs in the 783 * indirect block are holes, but we may have 784 * automatically set up a few fields for them. 785 * We iterate through each blkptr and verify 786 * they only have those fields set. 787 */ 788 for (int i = 0; 789 i < db->db.db_size / sizeof (blkptr_t); 790 i++) { 791 blkptr_t *bp = &bps[i]; 792 ASSERT(ZIO_CHECKSUM_IS_ZERO( 793 &bp->blk_cksum)); 794 ASSERT( 795 DVA_IS_EMPTY(&bp->blk_dva[0]) && 796 DVA_IS_EMPTY(&bp->blk_dva[1]) && 797 DVA_IS_EMPTY(&bp->blk_dva[2])); 798 ASSERT0(bp->blk_fill); 799 ASSERT0(bp->blk_pad[0]); 800 ASSERT0(bp->blk_pad[1]); 801 ASSERT(!BP_IS_EMBEDDED(bp)); 802 ASSERT(BP_IS_HOLE(bp)); 803 ASSERT0(bp->blk_phys_birth); 804 } 805 } 806 } 807 } 808 DB_DNODE_EXIT(db); 809 } 810 #endif 811 812 static void 813 dbuf_clear_data(dmu_buf_impl_t *db) 814 { 815 ASSERT(MUTEX_HELD(&db->db_mtx)); 816 dbuf_evict_user(db); 817 ASSERT3P(db->db_buf, ==, NULL); 818 db->db.db_data = NULL; 819 if (db->db_state != DB_NOFILL) 820 db->db_state = DB_UNCACHED; 821 } 822 823 static void 824 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 825 { 826 ASSERT(MUTEX_HELD(&db->db_mtx)); 827 ASSERT(buf != NULL); 828 829 db->db_buf = buf; 830 ASSERT(buf->b_data != NULL); 831 db->db.db_data = buf->b_data; 832 } 833 834 /* 835 * Loan out an arc_buf for read. Return the loaned arc_buf. 836 */ 837 arc_buf_t * 838 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 839 { 840 arc_buf_t *abuf; 841 842 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 843 mutex_enter(&db->db_mtx); 844 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 845 int blksz = db->db.db_size; 846 spa_t *spa = db->db_objset->os_spa; 847 848 mutex_exit(&db->db_mtx); 849 abuf = arc_loan_buf(spa, B_FALSE, blksz); 850 bcopy(db->db.db_data, abuf->b_data, blksz); 851 } else { 852 abuf = db->db_buf; 853 arc_loan_inuse_buf(abuf, db); 854 db->db_buf = NULL; 855 dbuf_clear_data(db); 856 mutex_exit(&db->db_mtx); 857 } 858 return (abuf); 859 } 860 861 /* 862 * Calculate which level n block references the data at the level 0 offset 863 * provided. 864 */ 865 uint64_t 866 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 867 { 868 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 869 /* 870 * The level n blkid is equal to the level 0 blkid divided by 871 * the number of level 0s in a level n block. 872 * 873 * The level 0 blkid is offset >> datablkshift = 874 * offset / 2^datablkshift. 875 * 876 * The number of level 0s in a level n is the number of block 877 * pointers in an indirect block, raised to the power of level. 878 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 879 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 880 * 881 * Thus, the level n blkid is: offset / 882 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 883 * = offset / 2^(datablkshift + level * 884 * (indblkshift - SPA_BLKPTRSHIFT)) 885 * = offset >> (datablkshift + level * 886 * (indblkshift - SPA_BLKPTRSHIFT)) 887 */ 888 return (offset >> (dn->dn_datablkshift + level * 889 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 890 } else { 891 ASSERT3U(offset, <, dn->dn_datablksz); 892 return (0); 893 } 894 } 895 896 static void 897 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 898 { 899 dmu_buf_impl_t *db = vdb; 900 901 mutex_enter(&db->db_mtx); 902 ASSERT3U(db->db_state, ==, DB_READ); 903 /* 904 * All reads are synchronous, so we must have a hold on the dbuf 905 */ 906 ASSERT(refcount_count(&db->db_holds) > 0); 907 ASSERT(db->db_buf == NULL); 908 ASSERT(db->db.db_data == NULL); 909 if (db->db_level == 0 && db->db_freed_in_flight) { 910 /* we were freed in flight; disregard any error */ 911 arc_release(buf, db); 912 bzero(buf->b_data, db->db.db_size); 913 arc_buf_freeze(buf); 914 db->db_freed_in_flight = FALSE; 915 dbuf_set_data(db, buf); 916 db->db_state = DB_CACHED; 917 } else if (zio == NULL || zio->io_error == 0) { 918 dbuf_set_data(db, buf); 919 db->db_state = DB_CACHED; 920 } else { 921 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 922 ASSERT3P(db->db_buf, ==, NULL); 923 arc_buf_destroy(buf, db); 924 db->db_state = DB_UNCACHED; 925 } 926 cv_broadcast(&db->db_changed); 927 dbuf_rele_and_unlock(db, NULL); 928 } 929 930 static void 931 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 932 { 933 dnode_t *dn; 934 zbookmark_phys_t zb; 935 arc_flags_t aflags = ARC_FLAG_NOWAIT; 936 937 DB_DNODE_ENTER(db); 938 dn = DB_DNODE(db); 939 ASSERT(!refcount_is_zero(&db->db_holds)); 940 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 941 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 942 ASSERT(MUTEX_HELD(&db->db_mtx)); 943 ASSERT(db->db_state == DB_UNCACHED); 944 ASSERT(db->db_buf == NULL); 945 946 if (db->db_blkid == DMU_BONUS_BLKID) { 947 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 948 949 ASSERT3U(bonuslen, <=, db->db.db_size); 950 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 951 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 952 if (bonuslen < DN_MAX_BONUSLEN) 953 bzero(db->db.db_data, DN_MAX_BONUSLEN); 954 if (bonuslen) 955 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 956 DB_DNODE_EXIT(db); 957 db->db_state = DB_CACHED; 958 mutex_exit(&db->db_mtx); 959 return; 960 } 961 962 /* 963 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 964 * processes the delete record and clears the bp while we are waiting 965 * for the dn_mtx (resulting in a "no" from block_freed). 966 */ 967 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 968 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 969 BP_IS_HOLE(db->db_blkptr)))) { 970 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 971 972 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type, 973 db->db.db_size)); 974 bzero(db->db.db_data, db->db.db_size); 975 976 if (db->db_blkptr != NULL && db->db_level > 0 && 977 BP_IS_HOLE(db->db_blkptr) && 978 db->db_blkptr->blk_birth != 0) { 979 blkptr_t *bps = db->db.db_data; 980 for (int i = 0; i < ((1 << 981 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 982 i++) { 983 blkptr_t *bp = &bps[i]; 984 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 985 1 << dn->dn_indblkshift); 986 BP_SET_LSIZE(bp, 987 BP_GET_LEVEL(db->db_blkptr) == 1 ? 988 dn->dn_datablksz : 989 BP_GET_LSIZE(db->db_blkptr)); 990 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 991 BP_SET_LEVEL(bp, 992 BP_GET_LEVEL(db->db_blkptr) - 1); 993 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 994 } 995 } 996 DB_DNODE_EXIT(db); 997 db->db_state = DB_CACHED; 998 mutex_exit(&db->db_mtx); 999 return; 1000 } 1001 1002 DB_DNODE_EXIT(db); 1003 1004 db->db_state = DB_READ; 1005 mutex_exit(&db->db_mtx); 1006 1007 if (DBUF_IS_L2CACHEABLE(db)) 1008 aflags |= ARC_FLAG_L2CACHE; 1009 1010 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 1011 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 1012 db->db.db_object, db->db_level, db->db_blkid); 1013 1014 dbuf_add_ref(db, NULL); 1015 1016 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 1017 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 1018 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 1019 &aflags, &zb); 1020 } 1021 1022 /* 1023 * This is our just-in-time copy function. It makes a copy of buffers that 1024 * have been modified in a previous transaction group before we access them in 1025 * the current active group. 1026 * 1027 * This function is used in three places: when we are dirtying a buffer for the 1028 * first time in a txg, when we are freeing a range in a dnode that includes 1029 * this buffer, and when we are accessing a buffer which was received compressed 1030 * and later referenced in a WRITE_BYREF record. 1031 * 1032 * Note that when we are called from dbuf_free_range() we do not put a hold on 1033 * the buffer, we just traverse the active dbuf list for the dnode. 1034 */ 1035 static void 1036 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1037 { 1038 dbuf_dirty_record_t *dr = db->db_last_dirty; 1039 1040 ASSERT(MUTEX_HELD(&db->db_mtx)); 1041 ASSERT(db->db.db_data != NULL); 1042 ASSERT(db->db_level == 0); 1043 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1044 1045 if (dr == NULL || 1046 (dr->dt.dl.dr_data != 1047 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1048 return; 1049 1050 /* 1051 * If the last dirty record for this dbuf has not yet synced 1052 * and its referencing the dbuf data, either: 1053 * reset the reference to point to a new copy, 1054 * or (if there a no active holders) 1055 * just null out the current db_data pointer. 1056 */ 1057 ASSERT(dr->dr_txg >= txg - 2); 1058 if (db->db_blkid == DMU_BONUS_BLKID) { 1059 /* Note that the data bufs here are zio_bufs */ 1060 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 1061 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1062 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 1063 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1064 int size = arc_buf_size(db->db_buf); 1065 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1066 spa_t *spa = db->db_objset->os_spa; 1067 enum zio_compress compress_type = 1068 arc_get_compression(db->db_buf); 1069 1070 if (compress_type == ZIO_COMPRESS_OFF) { 1071 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1072 } else { 1073 ASSERT3U(type, ==, ARC_BUFC_DATA); 1074 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1075 size, arc_buf_lsize(db->db_buf), compress_type); 1076 } 1077 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1078 } else { 1079 db->db_buf = NULL; 1080 dbuf_clear_data(db); 1081 } 1082 } 1083 1084 int 1085 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1086 { 1087 int err = 0; 1088 boolean_t prefetch; 1089 dnode_t *dn; 1090 1091 /* 1092 * We don't have to hold the mutex to check db_state because it 1093 * can't be freed while we have a hold on the buffer. 1094 */ 1095 ASSERT(!refcount_is_zero(&db->db_holds)); 1096 1097 if (db->db_state == DB_NOFILL) 1098 return (SET_ERROR(EIO)); 1099 1100 DB_DNODE_ENTER(db); 1101 dn = DB_DNODE(db); 1102 if ((flags & DB_RF_HAVESTRUCT) == 0) 1103 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1104 1105 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1106 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1107 DBUF_IS_CACHEABLE(db); 1108 1109 mutex_enter(&db->db_mtx); 1110 if (db->db_state == DB_CACHED) { 1111 /* 1112 * If the arc buf is compressed, we need to decompress it to 1113 * read the data. This could happen during the "zfs receive" of 1114 * a stream which is compressed and deduplicated. 1115 */ 1116 if (db->db_buf != NULL && 1117 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) { 1118 dbuf_fix_old_data(db, 1119 spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1120 err = arc_decompress(db->db_buf); 1121 dbuf_set_data(db, db->db_buf); 1122 } 1123 mutex_exit(&db->db_mtx); 1124 if (prefetch) 1125 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1126 if ((flags & DB_RF_HAVESTRUCT) == 0) 1127 rw_exit(&dn->dn_struct_rwlock); 1128 DB_DNODE_EXIT(db); 1129 } else if (db->db_state == DB_UNCACHED) { 1130 spa_t *spa = dn->dn_objset->os_spa; 1131 boolean_t need_wait = B_FALSE; 1132 1133 if (zio == NULL && 1134 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1135 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1136 need_wait = B_TRUE; 1137 } 1138 dbuf_read_impl(db, zio, flags); 1139 1140 /* dbuf_read_impl has dropped db_mtx for us */ 1141 1142 if (prefetch) 1143 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1144 1145 if ((flags & DB_RF_HAVESTRUCT) == 0) 1146 rw_exit(&dn->dn_struct_rwlock); 1147 DB_DNODE_EXIT(db); 1148 1149 if (need_wait) 1150 err = zio_wait(zio); 1151 } else { 1152 /* 1153 * Another reader came in while the dbuf was in flight 1154 * between UNCACHED and CACHED. Either a writer will finish 1155 * writing the buffer (sending the dbuf to CACHED) or the 1156 * first reader's request will reach the read_done callback 1157 * and send the dbuf to CACHED. Otherwise, a failure 1158 * occurred and the dbuf went to UNCACHED. 1159 */ 1160 mutex_exit(&db->db_mtx); 1161 if (prefetch) 1162 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1163 if ((flags & DB_RF_HAVESTRUCT) == 0) 1164 rw_exit(&dn->dn_struct_rwlock); 1165 DB_DNODE_EXIT(db); 1166 1167 /* Skip the wait per the caller's request. */ 1168 mutex_enter(&db->db_mtx); 1169 if ((flags & DB_RF_NEVERWAIT) == 0) { 1170 while (db->db_state == DB_READ || 1171 db->db_state == DB_FILL) { 1172 ASSERT(db->db_state == DB_READ || 1173 (flags & DB_RF_HAVESTRUCT) == 0); 1174 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1175 db, zio_t *, zio); 1176 cv_wait(&db->db_changed, &db->db_mtx); 1177 } 1178 if (db->db_state == DB_UNCACHED) 1179 err = SET_ERROR(EIO); 1180 } 1181 mutex_exit(&db->db_mtx); 1182 } 1183 1184 return (err); 1185 } 1186 1187 static void 1188 dbuf_noread(dmu_buf_impl_t *db) 1189 { 1190 ASSERT(!refcount_is_zero(&db->db_holds)); 1191 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1192 mutex_enter(&db->db_mtx); 1193 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1194 cv_wait(&db->db_changed, &db->db_mtx); 1195 if (db->db_state == DB_UNCACHED) { 1196 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1197 spa_t *spa = db->db_objset->os_spa; 1198 1199 ASSERT(db->db_buf == NULL); 1200 ASSERT(db->db.db_data == NULL); 1201 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size)); 1202 db->db_state = DB_FILL; 1203 } else if (db->db_state == DB_NOFILL) { 1204 dbuf_clear_data(db); 1205 } else { 1206 ASSERT3U(db->db_state, ==, DB_CACHED); 1207 } 1208 mutex_exit(&db->db_mtx); 1209 } 1210 1211 void 1212 dbuf_unoverride(dbuf_dirty_record_t *dr) 1213 { 1214 dmu_buf_impl_t *db = dr->dr_dbuf; 1215 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1216 uint64_t txg = dr->dr_txg; 1217 1218 ASSERT(MUTEX_HELD(&db->db_mtx)); 1219 /* 1220 * This assert is valid because dmu_sync() expects to be called by 1221 * a zilog's get_data while holding a range lock. This call only 1222 * comes from dbuf_dirty() callers who must also hold a range lock. 1223 */ 1224 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1225 ASSERT(db->db_level == 0); 1226 1227 if (db->db_blkid == DMU_BONUS_BLKID || 1228 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1229 return; 1230 1231 ASSERT(db->db_data_pending != dr); 1232 1233 /* free this block */ 1234 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1235 zio_free(db->db_objset->os_spa, txg, bp); 1236 1237 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1238 dr->dt.dl.dr_nopwrite = B_FALSE; 1239 1240 /* 1241 * Release the already-written buffer, so we leave it in 1242 * a consistent dirty state. Note that all callers are 1243 * modifying the buffer, so they will immediately do 1244 * another (redundant) arc_release(). Therefore, leave 1245 * the buf thawed to save the effort of freezing & 1246 * immediately re-thawing it. 1247 */ 1248 arc_release(dr->dt.dl.dr_data, db); 1249 } 1250 1251 /* 1252 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1253 * data blocks in the free range, so that any future readers will find 1254 * empty blocks. 1255 */ 1256 void 1257 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1258 dmu_tx_t *tx) 1259 { 1260 dmu_buf_impl_t db_search; 1261 dmu_buf_impl_t *db, *db_next; 1262 uint64_t txg = tx->tx_txg; 1263 avl_index_t where; 1264 1265 if (end_blkid > dn->dn_maxblkid && 1266 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1267 end_blkid = dn->dn_maxblkid; 1268 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1269 1270 db_search.db_level = 0; 1271 db_search.db_blkid = start_blkid; 1272 db_search.db_state = DB_SEARCH; 1273 1274 mutex_enter(&dn->dn_dbufs_mtx); 1275 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1276 ASSERT3P(db, ==, NULL); 1277 1278 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1279 1280 for (; db != NULL; db = db_next) { 1281 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1282 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1283 1284 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1285 break; 1286 } 1287 ASSERT3U(db->db_blkid, >=, start_blkid); 1288 1289 /* found a level 0 buffer in the range */ 1290 mutex_enter(&db->db_mtx); 1291 if (dbuf_undirty(db, tx)) { 1292 /* mutex has been dropped and dbuf destroyed */ 1293 continue; 1294 } 1295 1296 if (db->db_state == DB_UNCACHED || 1297 db->db_state == DB_NOFILL || 1298 db->db_state == DB_EVICTING) { 1299 ASSERT(db->db.db_data == NULL); 1300 mutex_exit(&db->db_mtx); 1301 continue; 1302 } 1303 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1304 /* will be handled in dbuf_read_done or dbuf_rele */ 1305 db->db_freed_in_flight = TRUE; 1306 mutex_exit(&db->db_mtx); 1307 continue; 1308 } 1309 if (refcount_count(&db->db_holds) == 0) { 1310 ASSERT(db->db_buf); 1311 dbuf_destroy(db); 1312 continue; 1313 } 1314 /* The dbuf is referenced */ 1315 1316 if (db->db_last_dirty != NULL) { 1317 dbuf_dirty_record_t *dr = db->db_last_dirty; 1318 1319 if (dr->dr_txg == txg) { 1320 /* 1321 * This buffer is "in-use", re-adjust the file 1322 * size to reflect that this buffer may 1323 * contain new data when we sync. 1324 */ 1325 if (db->db_blkid != DMU_SPILL_BLKID && 1326 db->db_blkid > dn->dn_maxblkid) 1327 dn->dn_maxblkid = db->db_blkid; 1328 dbuf_unoverride(dr); 1329 } else { 1330 /* 1331 * This dbuf is not dirty in the open context. 1332 * Either uncache it (if its not referenced in 1333 * the open context) or reset its contents to 1334 * empty. 1335 */ 1336 dbuf_fix_old_data(db, txg); 1337 } 1338 } 1339 /* clear the contents if its cached */ 1340 if (db->db_state == DB_CACHED) { 1341 ASSERT(db->db.db_data != NULL); 1342 arc_release(db->db_buf, db); 1343 bzero(db->db.db_data, db->db.db_size); 1344 arc_buf_freeze(db->db_buf); 1345 } 1346 1347 mutex_exit(&db->db_mtx); 1348 } 1349 mutex_exit(&dn->dn_dbufs_mtx); 1350 } 1351 1352 void 1353 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1354 { 1355 arc_buf_t *buf, *obuf; 1356 int osize = db->db.db_size; 1357 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1358 dnode_t *dn; 1359 1360 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1361 1362 DB_DNODE_ENTER(db); 1363 dn = DB_DNODE(db); 1364 1365 /* XXX does *this* func really need the lock? */ 1366 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1367 1368 /* 1369 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1370 * is OK, because there can be no other references to the db 1371 * when we are changing its size, so no concurrent DB_FILL can 1372 * be happening. 1373 */ 1374 /* 1375 * XXX we should be doing a dbuf_read, checking the return 1376 * value and returning that up to our callers 1377 */ 1378 dmu_buf_will_dirty(&db->db, tx); 1379 1380 /* create the data buffer for the new block */ 1381 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1382 1383 /* copy old block data to the new block */ 1384 obuf = db->db_buf; 1385 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1386 /* zero the remainder */ 1387 if (size > osize) 1388 bzero((uint8_t *)buf->b_data + osize, size - osize); 1389 1390 mutex_enter(&db->db_mtx); 1391 dbuf_set_data(db, buf); 1392 arc_buf_destroy(obuf, db); 1393 db->db.db_size = size; 1394 1395 if (db->db_level == 0) { 1396 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1397 db->db_last_dirty->dt.dl.dr_data = buf; 1398 } 1399 mutex_exit(&db->db_mtx); 1400 1401 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1402 DB_DNODE_EXIT(db); 1403 } 1404 1405 void 1406 dbuf_release_bp(dmu_buf_impl_t *db) 1407 { 1408 objset_t *os = db->db_objset; 1409 1410 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1411 ASSERT(arc_released(os->os_phys_buf) || 1412 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1413 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1414 1415 (void) arc_release(db->db_buf, db); 1416 } 1417 1418 /* 1419 * We already have a dirty record for this TXG, and we are being 1420 * dirtied again. 1421 */ 1422 static void 1423 dbuf_redirty(dbuf_dirty_record_t *dr) 1424 { 1425 dmu_buf_impl_t *db = dr->dr_dbuf; 1426 1427 ASSERT(MUTEX_HELD(&db->db_mtx)); 1428 1429 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1430 /* 1431 * If this buffer has already been written out, 1432 * we now need to reset its state. 1433 */ 1434 dbuf_unoverride(dr); 1435 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1436 db->db_state != DB_NOFILL) { 1437 /* Already released on initial dirty, so just thaw. */ 1438 ASSERT(arc_released(db->db_buf)); 1439 arc_buf_thaw(db->db_buf); 1440 } 1441 } 1442 } 1443 1444 dbuf_dirty_record_t * 1445 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1446 { 1447 dnode_t *dn; 1448 objset_t *os; 1449 dbuf_dirty_record_t **drp, *dr; 1450 int drop_struct_lock = FALSE; 1451 int txgoff = tx->tx_txg & TXG_MASK; 1452 1453 ASSERT(tx->tx_txg != 0); 1454 ASSERT(!refcount_is_zero(&db->db_holds)); 1455 DMU_TX_DIRTY_BUF(tx, db); 1456 1457 DB_DNODE_ENTER(db); 1458 dn = DB_DNODE(db); 1459 /* 1460 * Shouldn't dirty a regular buffer in syncing context. Private 1461 * objects may be dirtied in syncing context, but only if they 1462 * were already pre-dirtied in open context. 1463 */ 1464 #ifdef DEBUG 1465 if (dn->dn_objset->os_dsl_dataset != NULL) { 1466 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1467 RW_READER, FTAG); 1468 } 1469 ASSERT(!dmu_tx_is_syncing(tx) || 1470 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1471 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1472 dn->dn_objset->os_dsl_dataset == NULL); 1473 if (dn->dn_objset->os_dsl_dataset != NULL) 1474 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 1475 #endif 1476 /* 1477 * We make this assert for private objects as well, but after we 1478 * check if we're already dirty. They are allowed to re-dirty 1479 * in syncing context. 1480 */ 1481 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1482 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1483 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1484 1485 mutex_enter(&db->db_mtx); 1486 /* 1487 * XXX make this true for indirects too? The problem is that 1488 * transactions created with dmu_tx_create_assigned() from 1489 * syncing context don't bother holding ahead. 1490 */ 1491 ASSERT(db->db_level != 0 || 1492 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1493 db->db_state == DB_NOFILL); 1494 1495 mutex_enter(&dn->dn_mtx); 1496 /* 1497 * Don't set dirtyctx to SYNC if we're just modifying this as we 1498 * initialize the objset. 1499 */ 1500 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 1501 if (dn->dn_objset->os_dsl_dataset != NULL) { 1502 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1503 RW_READER, FTAG); 1504 } 1505 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1506 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? 1507 DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1508 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1509 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1510 } 1511 if (dn->dn_objset->os_dsl_dataset != NULL) { 1512 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1513 FTAG); 1514 } 1515 } 1516 mutex_exit(&dn->dn_mtx); 1517 1518 if (db->db_blkid == DMU_SPILL_BLKID) 1519 dn->dn_have_spill = B_TRUE; 1520 1521 /* 1522 * If this buffer is already dirty, we're done. 1523 */ 1524 drp = &db->db_last_dirty; 1525 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1526 db->db.db_object == DMU_META_DNODE_OBJECT); 1527 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1528 drp = &dr->dr_next; 1529 if (dr && dr->dr_txg == tx->tx_txg) { 1530 DB_DNODE_EXIT(db); 1531 1532 dbuf_redirty(dr); 1533 mutex_exit(&db->db_mtx); 1534 return (dr); 1535 } 1536 1537 /* 1538 * Only valid if not already dirty. 1539 */ 1540 ASSERT(dn->dn_object == 0 || 1541 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1542 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1543 1544 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1545 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1546 dn->dn_phys->dn_nlevels > db->db_level || 1547 dn->dn_next_nlevels[txgoff] > db->db_level || 1548 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1549 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1550 1551 /* 1552 * We should only be dirtying in syncing context if it's the 1553 * mos or we're initializing the os or it's a special object. 1554 * However, we are allowed to dirty in syncing context provided 1555 * we already dirtied it in open context. Hence we must make 1556 * this assertion only if we're not already dirty. 1557 */ 1558 os = dn->dn_objset; 1559 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 1560 #ifdef DEBUG 1561 if (dn->dn_objset->os_dsl_dataset != NULL) 1562 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 1563 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1564 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1565 if (dn->dn_objset->os_dsl_dataset != NULL) 1566 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 1567 #endif 1568 ASSERT(db->db.db_size != 0); 1569 1570 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1571 1572 if (db->db_blkid != DMU_BONUS_BLKID) { 1573 dmu_objset_willuse_space(os, db->db.db_size, tx); 1574 } 1575 1576 /* 1577 * If this buffer is dirty in an old transaction group we need 1578 * to make a copy of it so that the changes we make in this 1579 * transaction group won't leak out when we sync the older txg. 1580 */ 1581 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1582 if (db->db_level == 0) { 1583 void *data_old = db->db_buf; 1584 1585 if (db->db_state != DB_NOFILL) { 1586 if (db->db_blkid == DMU_BONUS_BLKID) { 1587 dbuf_fix_old_data(db, tx->tx_txg); 1588 data_old = db->db.db_data; 1589 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1590 /* 1591 * Release the data buffer from the cache so 1592 * that we can modify it without impacting 1593 * possible other users of this cached data 1594 * block. Note that indirect blocks and 1595 * private objects are not released until the 1596 * syncing state (since they are only modified 1597 * then). 1598 */ 1599 arc_release(db->db_buf, db); 1600 dbuf_fix_old_data(db, tx->tx_txg); 1601 data_old = db->db_buf; 1602 } 1603 ASSERT(data_old != NULL); 1604 } 1605 dr->dt.dl.dr_data = data_old; 1606 } else { 1607 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1608 list_create(&dr->dt.di.dr_children, 1609 sizeof (dbuf_dirty_record_t), 1610 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1611 } 1612 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1613 dr->dr_accounted = db->db.db_size; 1614 dr->dr_dbuf = db; 1615 dr->dr_txg = tx->tx_txg; 1616 dr->dr_next = *drp; 1617 *drp = dr; 1618 1619 /* 1620 * We could have been freed_in_flight between the dbuf_noread 1621 * and dbuf_dirty. We win, as though the dbuf_noread() had 1622 * happened after the free. 1623 */ 1624 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1625 db->db_blkid != DMU_SPILL_BLKID) { 1626 mutex_enter(&dn->dn_mtx); 1627 if (dn->dn_free_ranges[txgoff] != NULL) { 1628 range_tree_clear(dn->dn_free_ranges[txgoff], 1629 db->db_blkid, 1); 1630 } 1631 mutex_exit(&dn->dn_mtx); 1632 db->db_freed_in_flight = FALSE; 1633 } 1634 1635 /* 1636 * This buffer is now part of this txg 1637 */ 1638 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1639 db->db_dirtycnt += 1; 1640 ASSERT3U(db->db_dirtycnt, <=, 3); 1641 1642 mutex_exit(&db->db_mtx); 1643 1644 if (db->db_blkid == DMU_BONUS_BLKID || 1645 db->db_blkid == DMU_SPILL_BLKID) { 1646 mutex_enter(&dn->dn_mtx); 1647 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1648 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1649 mutex_exit(&dn->dn_mtx); 1650 dnode_setdirty(dn, tx); 1651 DB_DNODE_EXIT(db); 1652 return (dr); 1653 } 1654 1655 /* 1656 * The dn_struct_rwlock prevents db_blkptr from changing 1657 * due to a write from syncing context completing 1658 * while we are running, so we want to acquire it before 1659 * looking at db_blkptr. 1660 */ 1661 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1662 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1663 drop_struct_lock = TRUE; 1664 } 1665 1666 /* 1667 * If we are overwriting a dedup BP, then unless it is snapshotted, 1668 * when we get to syncing context we will need to decrement its 1669 * refcount in the DDT. Prefetch the relevant DDT block so that 1670 * syncing context won't have to wait for the i/o. 1671 */ 1672 ddt_prefetch(os->os_spa, db->db_blkptr); 1673 1674 if (db->db_level == 0) { 1675 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1676 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1677 } 1678 1679 if (db->db_level+1 < dn->dn_nlevels) { 1680 dmu_buf_impl_t *parent = db->db_parent; 1681 dbuf_dirty_record_t *di; 1682 int parent_held = FALSE; 1683 1684 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1685 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1686 1687 parent = dbuf_hold_level(dn, db->db_level+1, 1688 db->db_blkid >> epbs, FTAG); 1689 ASSERT(parent != NULL); 1690 parent_held = TRUE; 1691 } 1692 if (drop_struct_lock) 1693 rw_exit(&dn->dn_struct_rwlock); 1694 ASSERT3U(db->db_level+1, ==, parent->db_level); 1695 di = dbuf_dirty(parent, tx); 1696 if (parent_held) 1697 dbuf_rele(parent, FTAG); 1698 1699 mutex_enter(&db->db_mtx); 1700 /* 1701 * Since we've dropped the mutex, it's possible that 1702 * dbuf_undirty() might have changed this out from under us. 1703 */ 1704 if (db->db_last_dirty == dr || 1705 dn->dn_object == DMU_META_DNODE_OBJECT) { 1706 mutex_enter(&di->dt.di.dr_mtx); 1707 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1708 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1709 list_insert_tail(&di->dt.di.dr_children, dr); 1710 mutex_exit(&di->dt.di.dr_mtx); 1711 dr->dr_parent = di; 1712 } 1713 mutex_exit(&db->db_mtx); 1714 } else { 1715 ASSERT(db->db_level+1 == dn->dn_nlevels); 1716 ASSERT(db->db_blkid < dn->dn_nblkptr); 1717 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1718 mutex_enter(&dn->dn_mtx); 1719 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1720 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1721 mutex_exit(&dn->dn_mtx); 1722 if (drop_struct_lock) 1723 rw_exit(&dn->dn_struct_rwlock); 1724 } 1725 1726 dnode_setdirty(dn, tx); 1727 DB_DNODE_EXIT(db); 1728 return (dr); 1729 } 1730 1731 /* 1732 * Undirty a buffer in the transaction group referenced by the given 1733 * transaction. Return whether this evicted the dbuf. 1734 */ 1735 static boolean_t 1736 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1737 { 1738 dnode_t *dn; 1739 uint64_t txg = tx->tx_txg; 1740 dbuf_dirty_record_t *dr, **drp; 1741 1742 ASSERT(txg != 0); 1743 1744 /* 1745 * Due to our use of dn_nlevels below, this can only be called 1746 * in open context, unless we are operating on the MOS. 1747 * From syncing context, dn_nlevels may be different from the 1748 * dn_nlevels used when dbuf was dirtied. 1749 */ 1750 ASSERT(db->db_objset == 1751 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1752 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1753 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1754 ASSERT0(db->db_level); 1755 ASSERT(MUTEX_HELD(&db->db_mtx)); 1756 1757 /* 1758 * If this buffer is not dirty, we're done. 1759 */ 1760 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1761 if (dr->dr_txg <= txg) 1762 break; 1763 if (dr == NULL || dr->dr_txg < txg) 1764 return (B_FALSE); 1765 ASSERT(dr->dr_txg == txg); 1766 ASSERT(dr->dr_dbuf == db); 1767 1768 DB_DNODE_ENTER(db); 1769 dn = DB_DNODE(db); 1770 1771 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1772 1773 ASSERT(db->db.db_size != 0); 1774 1775 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1776 dr->dr_accounted, txg); 1777 1778 *drp = dr->dr_next; 1779 1780 /* 1781 * Note that there are three places in dbuf_dirty() 1782 * where this dirty record may be put on a list. 1783 * Make sure to do a list_remove corresponding to 1784 * every one of those list_insert calls. 1785 */ 1786 if (dr->dr_parent) { 1787 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1788 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1789 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1790 } else if (db->db_blkid == DMU_SPILL_BLKID || 1791 db->db_level + 1 == dn->dn_nlevels) { 1792 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1793 mutex_enter(&dn->dn_mtx); 1794 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1795 mutex_exit(&dn->dn_mtx); 1796 } 1797 DB_DNODE_EXIT(db); 1798 1799 if (db->db_state != DB_NOFILL) { 1800 dbuf_unoverride(dr); 1801 1802 ASSERT(db->db_buf != NULL); 1803 ASSERT(dr->dt.dl.dr_data != NULL); 1804 if (dr->dt.dl.dr_data != db->db_buf) 1805 arc_buf_destroy(dr->dt.dl.dr_data, db); 1806 } 1807 1808 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1809 1810 ASSERT(db->db_dirtycnt > 0); 1811 db->db_dirtycnt -= 1; 1812 1813 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1814 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 1815 dbuf_destroy(db); 1816 return (B_TRUE); 1817 } 1818 1819 return (B_FALSE); 1820 } 1821 1822 void 1823 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1824 { 1825 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1826 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1827 1828 ASSERT(tx->tx_txg != 0); 1829 ASSERT(!refcount_is_zero(&db->db_holds)); 1830 1831 /* 1832 * Quick check for dirtyness. For already dirty blocks, this 1833 * reduces runtime of this function by >90%, and overall performance 1834 * by 50% for some workloads (e.g. file deletion with indirect blocks 1835 * cached). 1836 */ 1837 mutex_enter(&db->db_mtx); 1838 dbuf_dirty_record_t *dr; 1839 for (dr = db->db_last_dirty; 1840 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 1841 /* 1842 * It's possible that it is already dirty but not cached, 1843 * because there are some calls to dbuf_dirty() that don't 1844 * go through dmu_buf_will_dirty(). 1845 */ 1846 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 1847 /* This dbuf is already dirty and cached. */ 1848 dbuf_redirty(dr); 1849 mutex_exit(&db->db_mtx); 1850 return; 1851 } 1852 } 1853 mutex_exit(&db->db_mtx); 1854 1855 DB_DNODE_ENTER(db); 1856 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1857 rf |= DB_RF_HAVESTRUCT; 1858 DB_DNODE_EXIT(db); 1859 (void) dbuf_read(db, NULL, rf); 1860 (void) dbuf_dirty(db, tx); 1861 } 1862 1863 void 1864 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1865 { 1866 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1867 1868 db->db_state = DB_NOFILL; 1869 1870 dmu_buf_will_fill(db_fake, tx); 1871 } 1872 1873 void 1874 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1875 { 1876 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1877 1878 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1879 ASSERT(tx->tx_txg != 0); 1880 ASSERT(db->db_level == 0); 1881 ASSERT(!refcount_is_zero(&db->db_holds)); 1882 1883 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1884 dmu_tx_private_ok(tx)); 1885 1886 dbuf_noread(db); 1887 (void) dbuf_dirty(db, tx); 1888 } 1889 1890 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1891 /* ARGSUSED */ 1892 void 1893 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1894 { 1895 mutex_enter(&db->db_mtx); 1896 DBUF_VERIFY(db); 1897 1898 if (db->db_state == DB_FILL) { 1899 if (db->db_level == 0 && db->db_freed_in_flight) { 1900 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1901 /* we were freed while filling */ 1902 /* XXX dbuf_undirty? */ 1903 bzero(db->db.db_data, db->db.db_size); 1904 db->db_freed_in_flight = FALSE; 1905 } 1906 db->db_state = DB_CACHED; 1907 cv_broadcast(&db->db_changed); 1908 } 1909 mutex_exit(&db->db_mtx); 1910 } 1911 1912 void 1913 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1914 bp_embedded_type_t etype, enum zio_compress comp, 1915 int uncompressed_size, int compressed_size, int byteorder, 1916 dmu_tx_t *tx) 1917 { 1918 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1919 struct dirty_leaf *dl; 1920 dmu_object_type_t type; 1921 1922 if (etype == BP_EMBEDDED_TYPE_DATA) { 1923 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 1924 SPA_FEATURE_EMBEDDED_DATA)); 1925 } 1926 1927 DB_DNODE_ENTER(db); 1928 type = DB_DNODE(db)->dn_type; 1929 DB_DNODE_EXIT(db); 1930 1931 ASSERT0(db->db_level); 1932 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1933 1934 dmu_buf_will_not_fill(dbuf, tx); 1935 1936 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1937 dl = &db->db_last_dirty->dt.dl; 1938 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1939 data, comp, uncompressed_size, compressed_size); 1940 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1941 BP_SET_TYPE(&dl->dr_overridden_by, type); 1942 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1943 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1944 1945 dl->dr_override_state = DR_OVERRIDDEN; 1946 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1947 } 1948 1949 /* 1950 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1951 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1952 */ 1953 void 1954 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1955 { 1956 ASSERT(!refcount_is_zero(&db->db_holds)); 1957 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1958 ASSERT(db->db_level == 0); 1959 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 1960 ASSERT(buf != NULL); 1961 ASSERT(arc_buf_lsize(buf) == db->db.db_size); 1962 ASSERT(tx->tx_txg != 0); 1963 1964 arc_return_buf(buf, db); 1965 ASSERT(arc_released(buf)); 1966 1967 mutex_enter(&db->db_mtx); 1968 1969 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1970 cv_wait(&db->db_changed, &db->db_mtx); 1971 1972 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1973 1974 if (db->db_state == DB_CACHED && 1975 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1976 mutex_exit(&db->db_mtx); 1977 (void) dbuf_dirty(db, tx); 1978 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1979 arc_buf_destroy(buf, db); 1980 xuio_stat_wbuf_copied(); 1981 return; 1982 } 1983 1984 xuio_stat_wbuf_nocopy(); 1985 if (db->db_state == DB_CACHED) { 1986 dbuf_dirty_record_t *dr = db->db_last_dirty; 1987 1988 ASSERT(db->db_buf != NULL); 1989 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1990 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1991 if (!arc_released(db->db_buf)) { 1992 ASSERT(dr->dt.dl.dr_override_state == 1993 DR_OVERRIDDEN); 1994 arc_release(db->db_buf, db); 1995 } 1996 dr->dt.dl.dr_data = buf; 1997 arc_buf_destroy(db->db_buf, db); 1998 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 1999 arc_release(db->db_buf, db); 2000 arc_buf_destroy(db->db_buf, db); 2001 } 2002 db->db_buf = NULL; 2003 } 2004 ASSERT(db->db_buf == NULL); 2005 dbuf_set_data(db, buf); 2006 db->db_state = DB_FILL; 2007 mutex_exit(&db->db_mtx); 2008 (void) dbuf_dirty(db, tx); 2009 dmu_buf_fill_done(&db->db, tx); 2010 } 2011 2012 void 2013 dbuf_destroy(dmu_buf_impl_t *db) 2014 { 2015 dnode_t *dn; 2016 dmu_buf_impl_t *parent = db->db_parent; 2017 dmu_buf_impl_t *dndb; 2018 2019 ASSERT(MUTEX_HELD(&db->db_mtx)); 2020 ASSERT(refcount_is_zero(&db->db_holds)); 2021 2022 if (db->db_buf != NULL) { 2023 arc_buf_destroy(db->db_buf, db); 2024 db->db_buf = NULL; 2025 } 2026 2027 if (db->db_blkid == DMU_BONUS_BLKID) { 2028 ASSERT(db->db.db_data != NULL); 2029 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 2030 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2031 db->db_state = DB_UNCACHED; 2032 } 2033 2034 dbuf_clear_data(db); 2035 2036 if (multilist_link_active(&db->db_cache_link)) { 2037 multilist_remove(dbuf_cache, db); 2038 (void) refcount_remove_many(&dbuf_cache_size, 2039 db->db.db_size, db); 2040 } 2041 2042 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2043 ASSERT(db->db_data_pending == NULL); 2044 2045 db->db_state = DB_EVICTING; 2046 db->db_blkptr = NULL; 2047 2048 /* 2049 * Now that db_state is DB_EVICTING, nobody else can find this via 2050 * the hash table. We can now drop db_mtx, which allows us to 2051 * acquire the dn_dbufs_mtx. 2052 */ 2053 mutex_exit(&db->db_mtx); 2054 2055 DB_DNODE_ENTER(db); 2056 dn = DB_DNODE(db); 2057 dndb = dn->dn_dbuf; 2058 if (db->db_blkid != DMU_BONUS_BLKID) { 2059 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2060 if (needlock) 2061 mutex_enter(&dn->dn_dbufs_mtx); 2062 avl_remove(&dn->dn_dbufs, db); 2063 atomic_dec_32(&dn->dn_dbufs_count); 2064 membar_producer(); 2065 DB_DNODE_EXIT(db); 2066 if (needlock) 2067 mutex_exit(&dn->dn_dbufs_mtx); 2068 /* 2069 * Decrementing the dbuf count means that the hold corresponding 2070 * to the removed dbuf is no longer discounted in dnode_move(), 2071 * so the dnode cannot be moved until after we release the hold. 2072 * The membar_producer() ensures visibility of the decremented 2073 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2074 * release any lock. 2075 */ 2076 dnode_rele(dn, db); 2077 db->db_dnode_handle = NULL; 2078 2079 dbuf_hash_remove(db); 2080 } else { 2081 DB_DNODE_EXIT(db); 2082 } 2083 2084 ASSERT(refcount_is_zero(&db->db_holds)); 2085 2086 db->db_parent = NULL; 2087 2088 ASSERT(db->db_buf == NULL); 2089 ASSERT(db->db.db_data == NULL); 2090 ASSERT(db->db_hash_next == NULL); 2091 ASSERT(db->db_blkptr == NULL); 2092 ASSERT(db->db_data_pending == NULL); 2093 ASSERT(!multilist_link_active(&db->db_cache_link)); 2094 2095 kmem_cache_free(dbuf_kmem_cache, db); 2096 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2097 2098 /* 2099 * If this dbuf is referenced from an indirect dbuf, 2100 * decrement the ref count on the indirect dbuf. 2101 */ 2102 if (parent && parent != dndb) 2103 dbuf_rele(parent, db); 2104 } 2105 2106 /* 2107 * Note: While bpp will always be updated if the function returns success, 2108 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2109 * this happens when the dnode is the meta-dnode, or a userused or groupused 2110 * object. 2111 */ 2112 static int 2113 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2114 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2115 { 2116 *parentp = NULL; 2117 *bpp = NULL; 2118 2119 ASSERT(blkid != DMU_BONUS_BLKID); 2120 2121 if (blkid == DMU_SPILL_BLKID) { 2122 mutex_enter(&dn->dn_mtx); 2123 if (dn->dn_have_spill && 2124 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2125 *bpp = &dn->dn_phys->dn_spill; 2126 else 2127 *bpp = NULL; 2128 dbuf_add_ref(dn->dn_dbuf, NULL); 2129 *parentp = dn->dn_dbuf; 2130 mutex_exit(&dn->dn_mtx); 2131 return (0); 2132 } 2133 2134 int nlevels = 2135 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2136 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2137 2138 ASSERT3U(level * epbs, <, 64); 2139 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2140 /* 2141 * This assertion shouldn't trip as long as the max indirect block size 2142 * is less than 1M. The reason for this is that up to that point, 2143 * the number of levels required to address an entire object with blocks 2144 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2145 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2146 * (i.e. we can address the entire object), objects will all use at most 2147 * N-1 levels and the assertion won't overflow. However, once epbs is 2148 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2149 * enough to address an entire object, so objects will have 5 levels, 2150 * but then this assertion will overflow. 2151 * 2152 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2153 * need to redo this logic to handle overflows. 2154 */ 2155 ASSERT(level >= nlevels || 2156 ((nlevels - level - 1) * epbs) + 2157 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2158 if (level >= nlevels || 2159 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2160 ((nlevels - level - 1) * epbs)) || 2161 (fail_sparse && 2162 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2163 /* the buffer has no parent yet */ 2164 return (SET_ERROR(ENOENT)); 2165 } else if (level < nlevels-1) { 2166 /* this block is referenced from an indirect block */ 2167 int err = dbuf_hold_impl(dn, level+1, 2168 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2169 if (err) 2170 return (err); 2171 err = dbuf_read(*parentp, NULL, 2172 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2173 if (err) { 2174 dbuf_rele(*parentp, NULL); 2175 *parentp = NULL; 2176 return (err); 2177 } 2178 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2179 (blkid & ((1ULL << epbs) - 1)); 2180 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2181 ASSERT(BP_IS_HOLE(*bpp)); 2182 return (0); 2183 } else { 2184 /* the block is referenced from the dnode */ 2185 ASSERT3U(level, ==, nlevels-1); 2186 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2187 blkid < dn->dn_phys->dn_nblkptr); 2188 if (dn->dn_dbuf) { 2189 dbuf_add_ref(dn->dn_dbuf, NULL); 2190 *parentp = dn->dn_dbuf; 2191 } 2192 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2193 return (0); 2194 } 2195 } 2196 2197 static dmu_buf_impl_t * 2198 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2199 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2200 { 2201 objset_t *os = dn->dn_objset; 2202 dmu_buf_impl_t *db, *odb; 2203 2204 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2205 ASSERT(dn->dn_type != DMU_OT_NONE); 2206 2207 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2208 2209 db->db_objset = os; 2210 db->db.db_object = dn->dn_object; 2211 db->db_level = level; 2212 db->db_blkid = blkid; 2213 db->db_last_dirty = NULL; 2214 db->db_dirtycnt = 0; 2215 db->db_dnode_handle = dn->dn_handle; 2216 db->db_parent = parent; 2217 db->db_blkptr = blkptr; 2218 2219 db->db_user = NULL; 2220 db->db_user_immediate_evict = FALSE; 2221 db->db_freed_in_flight = FALSE; 2222 db->db_pending_evict = FALSE; 2223 2224 if (blkid == DMU_BONUS_BLKID) { 2225 ASSERT3P(parent, ==, dn->dn_dbuf); 2226 db->db.db_size = DN_MAX_BONUSLEN - 2227 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2228 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2229 db->db.db_offset = DMU_BONUS_BLKID; 2230 db->db_state = DB_UNCACHED; 2231 /* the bonus dbuf is not placed in the hash table */ 2232 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2233 return (db); 2234 } else if (blkid == DMU_SPILL_BLKID) { 2235 db->db.db_size = (blkptr != NULL) ? 2236 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2237 db->db.db_offset = 0; 2238 } else { 2239 int blocksize = 2240 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2241 db->db.db_size = blocksize; 2242 db->db.db_offset = db->db_blkid * blocksize; 2243 } 2244 2245 /* 2246 * Hold the dn_dbufs_mtx while we get the new dbuf 2247 * in the hash table *and* added to the dbufs list. 2248 * This prevents a possible deadlock with someone 2249 * trying to look up this dbuf before its added to the 2250 * dn_dbufs list. 2251 */ 2252 mutex_enter(&dn->dn_dbufs_mtx); 2253 db->db_state = DB_EVICTING; 2254 if ((odb = dbuf_hash_insert(db)) != NULL) { 2255 /* someone else inserted it first */ 2256 kmem_cache_free(dbuf_kmem_cache, db); 2257 mutex_exit(&dn->dn_dbufs_mtx); 2258 return (odb); 2259 } 2260 avl_add(&dn->dn_dbufs, db); 2261 2262 db->db_state = DB_UNCACHED; 2263 mutex_exit(&dn->dn_dbufs_mtx); 2264 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2265 2266 if (parent && parent != dn->dn_dbuf) 2267 dbuf_add_ref(parent, db); 2268 2269 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2270 refcount_count(&dn->dn_holds) > 0); 2271 (void) refcount_add(&dn->dn_holds, db); 2272 atomic_inc_32(&dn->dn_dbufs_count); 2273 2274 dprintf_dbuf(db, "db=%p\n", db); 2275 2276 return (db); 2277 } 2278 2279 typedef struct dbuf_prefetch_arg { 2280 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2281 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2282 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2283 int dpa_curlevel; /* The current level that we're reading */ 2284 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2285 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2286 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2287 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2288 } dbuf_prefetch_arg_t; 2289 2290 /* 2291 * Actually issue the prefetch read for the block given. 2292 */ 2293 static void 2294 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2295 { 2296 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2297 return; 2298 2299 arc_flags_t aflags = 2300 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2301 2302 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2303 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2304 ASSERT(dpa->dpa_zio != NULL); 2305 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2306 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2307 &aflags, &dpa->dpa_zb); 2308 } 2309 2310 /* 2311 * Called when an indirect block above our prefetch target is read in. This 2312 * will either read in the next indirect block down the tree or issue the actual 2313 * prefetch if the next block down is our target. 2314 */ 2315 static void 2316 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) 2317 { 2318 dbuf_prefetch_arg_t *dpa = private; 2319 2320 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2321 ASSERT3S(dpa->dpa_curlevel, >, 0); 2322 2323 /* 2324 * The dpa_dnode is only valid if we are called with a NULL 2325 * zio. This indicates that the arc_read() returned without 2326 * first calling zio_read() to issue a physical read. Once 2327 * a physical read is made the dpa_dnode must be invalidated 2328 * as the locks guarding it may have been dropped. If the 2329 * dpa_dnode is still valid, then we want to add it to the dbuf 2330 * cache. To do so, we must hold the dbuf associated with the block 2331 * we just prefetched, read its contents so that we associate it 2332 * with an arc_buf_t, and then release it. 2333 */ 2334 if (zio != NULL) { 2335 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2336 if (zio->io_flags & ZIO_FLAG_RAW) { 2337 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2338 } else { 2339 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2340 } 2341 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2342 2343 dpa->dpa_dnode = NULL; 2344 } else if (dpa->dpa_dnode != NULL) { 2345 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2346 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2347 dpa->dpa_zb.zb_level)); 2348 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2349 dpa->dpa_curlevel, curblkid, FTAG); 2350 (void) dbuf_read(db, NULL, 2351 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2352 dbuf_rele(db, FTAG); 2353 } 2354 2355 dpa->dpa_curlevel--; 2356 2357 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2358 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2359 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2360 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2361 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) { 2362 kmem_free(dpa, sizeof (*dpa)); 2363 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2364 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2365 dbuf_issue_final_prefetch(dpa, bp); 2366 kmem_free(dpa, sizeof (*dpa)); 2367 } else { 2368 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2369 zbookmark_phys_t zb; 2370 2371 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2372 2373 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2374 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2375 2376 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2377 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2378 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2379 &iter_aflags, &zb); 2380 } 2381 2382 arc_buf_destroy(abuf, private); 2383 } 2384 2385 /* 2386 * Issue prefetch reads for the given block on the given level. If the indirect 2387 * blocks above that block are not in memory, we will read them in 2388 * asynchronously. As a result, this call never blocks waiting for a read to 2389 * complete. 2390 */ 2391 void 2392 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2393 arc_flags_t aflags) 2394 { 2395 blkptr_t bp; 2396 int epbs, nlevels, curlevel; 2397 uint64_t curblkid; 2398 2399 ASSERT(blkid != DMU_BONUS_BLKID); 2400 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2401 2402 if (blkid > dn->dn_maxblkid) 2403 return; 2404 2405 if (dnode_block_freed(dn, blkid)) 2406 return; 2407 2408 /* 2409 * This dnode hasn't been written to disk yet, so there's nothing to 2410 * prefetch. 2411 */ 2412 nlevels = dn->dn_phys->dn_nlevels; 2413 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2414 return; 2415 2416 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2417 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2418 return; 2419 2420 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2421 level, blkid); 2422 if (db != NULL) { 2423 mutex_exit(&db->db_mtx); 2424 /* 2425 * This dbuf already exists. It is either CACHED, or 2426 * (we assume) about to be read or filled. 2427 */ 2428 return; 2429 } 2430 2431 /* 2432 * Find the closest ancestor (indirect block) of the target block 2433 * that is present in the cache. In this indirect block, we will 2434 * find the bp that is at curlevel, curblkid. 2435 */ 2436 curlevel = level; 2437 curblkid = blkid; 2438 while (curlevel < nlevels - 1) { 2439 int parent_level = curlevel + 1; 2440 uint64_t parent_blkid = curblkid >> epbs; 2441 dmu_buf_impl_t *db; 2442 2443 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2444 FALSE, TRUE, FTAG, &db) == 0) { 2445 blkptr_t *bpp = db->db_buf->b_data; 2446 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2447 dbuf_rele(db, FTAG); 2448 break; 2449 } 2450 2451 curlevel = parent_level; 2452 curblkid = parent_blkid; 2453 } 2454 2455 if (curlevel == nlevels - 1) { 2456 /* No cached indirect blocks found. */ 2457 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2458 bp = dn->dn_phys->dn_blkptr[curblkid]; 2459 } 2460 if (BP_IS_HOLE(&bp)) 2461 return; 2462 2463 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2464 2465 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2466 ZIO_FLAG_CANFAIL); 2467 2468 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2469 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2470 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2471 dn->dn_object, level, blkid); 2472 dpa->dpa_curlevel = curlevel; 2473 dpa->dpa_prio = prio; 2474 dpa->dpa_aflags = aflags; 2475 dpa->dpa_spa = dn->dn_objset->os_spa; 2476 dpa->dpa_dnode = dn; 2477 dpa->dpa_epbs = epbs; 2478 dpa->dpa_zio = pio; 2479 2480 /* 2481 * If we have the indirect just above us, no need to do the asynchronous 2482 * prefetch chain; we'll just run the last step ourselves. If we're at 2483 * a higher level, though, we want to issue the prefetches for all the 2484 * indirect blocks asynchronously, so we can go on with whatever we were 2485 * doing. 2486 */ 2487 if (curlevel == level) { 2488 ASSERT3U(curblkid, ==, blkid); 2489 dbuf_issue_final_prefetch(dpa, &bp); 2490 kmem_free(dpa, sizeof (*dpa)); 2491 } else { 2492 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2493 zbookmark_phys_t zb; 2494 2495 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2496 dn->dn_object, curlevel, curblkid); 2497 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2498 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2499 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2500 &iter_aflags, &zb); 2501 } 2502 /* 2503 * We use pio here instead of dpa_zio since it's possible that 2504 * dpa may have already been freed. 2505 */ 2506 zio_nowait(pio); 2507 } 2508 2509 /* 2510 * Returns with db_holds incremented, and db_mtx not held. 2511 * Note: dn_struct_rwlock must be held. 2512 */ 2513 int 2514 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2515 boolean_t fail_sparse, boolean_t fail_uncached, 2516 void *tag, dmu_buf_impl_t **dbp) 2517 { 2518 dmu_buf_impl_t *db, *parent = NULL; 2519 2520 ASSERT(blkid != DMU_BONUS_BLKID); 2521 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2522 ASSERT3U(dn->dn_nlevels, >, level); 2523 2524 *dbp = NULL; 2525 top: 2526 /* dbuf_find() returns with db_mtx held */ 2527 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2528 2529 if (db == NULL) { 2530 blkptr_t *bp = NULL; 2531 int err; 2532 2533 if (fail_uncached) 2534 return (SET_ERROR(ENOENT)); 2535 2536 ASSERT3P(parent, ==, NULL); 2537 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2538 if (fail_sparse) { 2539 if (err == 0 && bp && BP_IS_HOLE(bp)) 2540 err = SET_ERROR(ENOENT); 2541 if (err) { 2542 if (parent) 2543 dbuf_rele(parent, NULL); 2544 return (err); 2545 } 2546 } 2547 if (err && err != ENOENT) 2548 return (err); 2549 db = dbuf_create(dn, level, blkid, parent, bp); 2550 } 2551 2552 if (fail_uncached && db->db_state != DB_CACHED) { 2553 mutex_exit(&db->db_mtx); 2554 return (SET_ERROR(ENOENT)); 2555 } 2556 2557 if (db->db_buf != NULL) 2558 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2559 2560 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2561 2562 /* 2563 * If this buffer is currently syncing out, and we are are 2564 * still referencing it from db_data, we need to make a copy 2565 * of it in case we decide we want to dirty it again in this txg. 2566 */ 2567 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2568 dn->dn_object != DMU_META_DNODE_OBJECT && 2569 db->db_state == DB_CACHED && db->db_data_pending) { 2570 dbuf_dirty_record_t *dr = db->db_data_pending; 2571 2572 if (dr->dt.dl.dr_data == db->db_buf) { 2573 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2574 2575 dbuf_set_data(db, 2576 arc_alloc_buf(dn->dn_objset->os_spa, db, type, 2577 db->db.db_size)); 2578 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2579 db->db.db_size); 2580 } 2581 } 2582 2583 if (multilist_link_active(&db->db_cache_link)) { 2584 ASSERT(refcount_is_zero(&db->db_holds)); 2585 multilist_remove(dbuf_cache, db); 2586 (void) refcount_remove_many(&dbuf_cache_size, 2587 db->db.db_size, db); 2588 } 2589 (void) refcount_add(&db->db_holds, tag); 2590 DBUF_VERIFY(db); 2591 mutex_exit(&db->db_mtx); 2592 2593 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2594 if (parent) 2595 dbuf_rele(parent, NULL); 2596 2597 ASSERT3P(DB_DNODE(db), ==, dn); 2598 ASSERT3U(db->db_blkid, ==, blkid); 2599 ASSERT3U(db->db_level, ==, level); 2600 *dbp = db; 2601 2602 return (0); 2603 } 2604 2605 dmu_buf_impl_t * 2606 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2607 { 2608 return (dbuf_hold_level(dn, 0, blkid, tag)); 2609 } 2610 2611 dmu_buf_impl_t * 2612 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2613 { 2614 dmu_buf_impl_t *db; 2615 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2616 return (err ? NULL : db); 2617 } 2618 2619 void 2620 dbuf_create_bonus(dnode_t *dn) 2621 { 2622 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2623 2624 ASSERT(dn->dn_bonus == NULL); 2625 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2626 } 2627 2628 int 2629 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2630 { 2631 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2632 dnode_t *dn; 2633 2634 if (db->db_blkid != DMU_SPILL_BLKID) 2635 return (SET_ERROR(ENOTSUP)); 2636 if (blksz == 0) 2637 blksz = SPA_MINBLOCKSIZE; 2638 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2639 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2640 2641 DB_DNODE_ENTER(db); 2642 dn = DB_DNODE(db); 2643 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2644 dbuf_new_size(db, blksz, tx); 2645 rw_exit(&dn->dn_struct_rwlock); 2646 DB_DNODE_EXIT(db); 2647 2648 return (0); 2649 } 2650 2651 void 2652 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2653 { 2654 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2655 } 2656 2657 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2658 void 2659 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2660 { 2661 int64_t holds = refcount_add(&db->db_holds, tag); 2662 ASSERT3S(holds, >, 1); 2663 } 2664 2665 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2666 boolean_t 2667 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2668 void *tag) 2669 { 2670 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2671 dmu_buf_impl_t *found_db; 2672 boolean_t result = B_FALSE; 2673 2674 if (db->db_blkid == DMU_BONUS_BLKID) 2675 found_db = dbuf_find_bonus(os, obj); 2676 else 2677 found_db = dbuf_find(os, obj, 0, blkid); 2678 2679 if (found_db != NULL) { 2680 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 2681 (void) refcount_add(&db->db_holds, tag); 2682 result = B_TRUE; 2683 } 2684 mutex_exit(&db->db_mtx); 2685 } 2686 return (result); 2687 } 2688 2689 /* 2690 * If you call dbuf_rele() you had better not be referencing the dnode handle 2691 * unless you have some other direct or indirect hold on the dnode. (An indirect 2692 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2693 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2694 * dnode's parent dbuf evicting its dnode handles. 2695 */ 2696 void 2697 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2698 { 2699 mutex_enter(&db->db_mtx); 2700 dbuf_rele_and_unlock(db, tag); 2701 } 2702 2703 void 2704 dmu_buf_rele(dmu_buf_t *db, void *tag) 2705 { 2706 dbuf_rele((dmu_buf_impl_t *)db, tag); 2707 } 2708 2709 /* 2710 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2711 * db_dirtycnt and db_holds to be updated atomically. 2712 */ 2713 void 2714 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2715 { 2716 int64_t holds; 2717 2718 ASSERT(MUTEX_HELD(&db->db_mtx)); 2719 DBUF_VERIFY(db); 2720 2721 /* 2722 * Remove the reference to the dbuf before removing its hold on the 2723 * dnode so we can guarantee in dnode_move() that a referenced bonus 2724 * buffer has a corresponding dnode hold. 2725 */ 2726 holds = refcount_remove(&db->db_holds, tag); 2727 ASSERT(holds >= 0); 2728 2729 /* 2730 * We can't freeze indirects if there is a possibility that they 2731 * may be modified in the current syncing context. 2732 */ 2733 if (db->db_buf != NULL && 2734 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 2735 arc_buf_freeze(db->db_buf); 2736 } 2737 2738 if (holds == db->db_dirtycnt && 2739 db->db_level == 0 && db->db_user_immediate_evict) 2740 dbuf_evict_user(db); 2741 2742 if (holds == 0) { 2743 if (db->db_blkid == DMU_BONUS_BLKID) { 2744 dnode_t *dn; 2745 boolean_t evict_dbuf = db->db_pending_evict; 2746 2747 /* 2748 * If the dnode moves here, we cannot cross this 2749 * barrier until the move completes. 2750 */ 2751 DB_DNODE_ENTER(db); 2752 2753 dn = DB_DNODE(db); 2754 atomic_dec_32(&dn->dn_dbufs_count); 2755 2756 /* 2757 * Decrementing the dbuf count means that the bonus 2758 * buffer's dnode hold is no longer discounted in 2759 * dnode_move(). The dnode cannot move until after 2760 * the dnode_rele() below. 2761 */ 2762 DB_DNODE_EXIT(db); 2763 2764 /* 2765 * Do not reference db after its lock is dropped. 2766 * Another thread may evict it. 2767 */ 2768 mutex_exit(&db->db_mtx); 2769 2770 if (evict_dbuf) 2771 dnode_evict_bonus(dn); 2772 2773 dnode_rele(dn, db); 2774 } else if (db->db_buf == NULL) { 2775 /* 2776 * This is a special case: we never associated this 2777 * dbuf with any data allocated from the ARC. 2778 */ 2779 ASSERT(db->db_state == DB_UNCACHED || 2780 db->db_state == DB_NOFILL); 2781 dbuf_destroy(db); 2782 } else if (arc_released(db->db_buf)) { 2783 /* 2784 * This dbuf has anonymous data associated with it. 2785 */ 2786 dbuf_destroy(db); 2787 } else { 2788 boolean_t do_arc_evict = B_FALSE; 2789 blkptr_t bp; 2790 spa_t *spa = dmu_objset_spa(db->db_objset); 2791 2792 if (!DBUF_IS_CACHEABLE(db) && 2793 db->db_blkptr != NULL && 2794 !BP_IS_HOLE(db->db_blkptr) && 2795 !BP_IS_EMBEDDED(db->db_blkptr)) { 2796 do_arc_evict = B_TRUE; 2797 bp = *db->db_blkptr; 2798 } 2799 2800 if (!DBUF_IS_CACHEABLE(db) || 2801 db->db_pending_evict) { 2802 dbuf_destroy(db); 2803 } else if (!multilist_link_active(&db->db_cache_link)) { 2804 multilist_insert(dbuf_cache, db); 2805 (void) refcount_add_many(&dbuf_cache_size, 2806 db->db.db_size, db); 2807 mutex_exit(&db->db_mtx); 2808 2809 dbuf_evict_notify(); 2810 } 2811 2812 if (do_arc_evict) 2813 arc_freed(spa, &bp); 2814 } 2815 } else { 2816 mutex_exit(&db->db_mtx); 2817 } 2818 2819 } 2820 2821 #pragma weak dmu_buf_refcount = dbuf_refcount 2822 uint64_t 2823 dbuf_refcount(dmu_buf_impl_t *db) 2824 { 2825 return (refcount_count(&db->db_holds)); 2826 } 2827 2828 void * 2829 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 2830 dmu_buf_user_t *new_user) 2831 { 2832 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2833 2834 mutex_enter(&db->db_mtx); 2835 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2836 if (db->db_user == old_user) 2837 db->db_user = new_user; 2838 else 2839 old_user = db->db_user; 2840 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2841 mutex_exit(&db->db_mtx); 2842 2843 return (old_user); 2844 } 2845 2846 void * 2847 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2848 { 2849 return (dmu_buf_replace_user(db_fake, NULL, user)); 2850 } 2851 2852 void * 2853 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2854 { 2855 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2856 2857 db->db_user_immediate_evict = TRUE; 2858 return (dmu_buf_set_user(db_fake, user)); 2859 } 2860 2861 void * 2862 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2863 { 2864 return (dmu_buf_replace_user(db_fake, user, NULL)); 2865 } 2866 2867 void * 2868 dmu_buf_get_user(dmu_buf_t *db_fake) 2869 { 2870 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2871 2872 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2873 return (db->db_user); 2874 } 2875 2876 void 2877 dmu_buf_user_evict_wait() 2878 { 2879 taskq_wait(dbu_evict_taskq); 2880 } 2881 2882 blkptr_t * 2883 dmu_buf_get_blkptr(dmu_buf_t *db) 2884 { 2885 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2886 return (dbi->db_blkptr); 2887 } 2888 2889 objset_t * 2890 dmu_buf_get_objset(dmu_buf_t *db) 2891 { 2892 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2893 return (dbi->db_objset); 2894 } 2895 2896 dnode_t * 2897 dmu_buf_dnode_enter(dmu_buf_t *db) 2898 { 2899 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2900 DB_DNODE_ENTER(dbi); 2901 return (DB_DNODE(dbi)); 2902 } 2903 2904 void 2905 dmu_buf_dnode_exit(dmu_buf_t *db) 2906 { 2907 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2908 DB_DNODE_EXIT(dbi); 2909 } 2910 2911 static void 2912 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2913 { 2914 /* ASSERT(dmu_tx_is_syncing(tx) */ 2915 ASSERT(MUTEX_HELD(&db->db_mtx)); 2916 2917 if (db->db_blkptr != NULL) 2918 return; 2919 2920 if (db->db_blkid == DMU_SPILL_BLKID) { 2921 db->db_blkptr = &dn->dn_phys->dn_spill; 2922 BP_ZERO(db->db_blkptr); 2923 return; 2924 } 2925 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2926 /* 2927 * This buffer was allocated at a time when there was 2928 * no available blkptrs from the dnode, or it was 2929 * inappropriate to hook it in (i.e., nlevels mis-match). 2930 */ 2931 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2932 ASSERT(db->db_parent == NULL); 2933 db->db_parent = dn->dn_dbuf; 2934 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2935 DBUF_VERIFY(db); 2936 } else { 2937 dmu_buf_impl_t *parent = db->db_parent; 2938 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2939 2940 ASSERT(dn->dn_phys->dn_nlevels > 1); 2941 if (parent == NULL) { 2942 mutex_exit(&db->db_mtx); 2943 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2944 parent = dbuf_hold_level(dn, db->db_level + 1, 2945 db->db_blkid >> epbs, db); 2946 rw_exit(&dn->dn_struct_rwlock); 2947 mutex_enter(&db->db_mtx); 2948 db->db_parent = parent; 2949 } 2950 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2951 (db->db_blkid & ((1ULL << epbs) - 1)); 2952 DBUF_VERIFY(db); 2953 } 2954 } 2955 2956 static void 2957 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2958 { 2959 dmu_buf_impl_t *db = dr->dr_dbuf; 2960 dnode_t *dn; 2961 zio_t *zio; 2962 2963 ASSERT(dmu_tx_is_syncing(tx)); 2964 2965 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2966 2967 mutex_enter(&db->db_mtx); 2968 2969 ASSERT(db->db_level > 0); 2970 DBUF_VERIFY(db); 2971 2972 /* Read the block if it hasn't been read yet. */ 2973 if (db->db_buf == NULL) { 2974 mutex_exit(&db->db_mtx); 2975 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2976 mutex_enter(&db->db_mtx); 2977 } 2978 ASSERT3U(db->db_state, ==, DB_CACHED); 2979 ASSERT(db->db_buf != NULL); 2980 2981 DB_DNODE_ENTER(db); 2982 dn = DB_DNODE(db); 2983 /* Indirect block size must match what the dnode thinks it is. */ 2984 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2985 dbuf_check_blkptr(dn, db); 2986 DB_DNODE_EXIT(db); 2987 2988 /* Provide the pending dirty record to child dbufs */ 2989 db->db_data_pending = dr; 2990 2991 mutex_exit(&db->db_mtx); 2992 dbuf_write(dr, db->db_buf, tx); 2993 2994 zio = dr->dr_zio; 2995 mutex_enter(&dr->dt.di.dr_mtx); 2996 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 2997 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2998 mutex_exit(&dr->dt.di.dr_mtx); 2999 zio_nowait(zio); 3000 } 3001 3002 static void 3003 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3004 { 3005 arc_buf_t **datap = &dr->dt.dl.dr_data; 3006 dmu_buf_impl_t *db = dr->dr_dbuf; 3007 dnode_t *dn; 3008 objset_t *os; 3009 uint64_t txg = tx->tx_txg; 3010 3011 ASSERT(dmu_tx_is_syncing(tx)); 3012 3013 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3014 3015 mutex_enter(&db->db_mtx); 3016 /* 3017 * To be synced, we must be dirtied. But we 3018 * might have been freed after the dirty. 3019 */ 3020 if (db->db_state == DB_UNCACHED) { 3021 /* This buffer has been freed since it was dirtied */ 3022 ASSERT(db->db.db_data == NULL); 3023 } else if (db->db_state == DB_FILL) { 3024 /* This buffer was freed and is now being re-filled */ 3025 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3026 } else { 3027 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3028 } 3029 DBUF_VERIFY(db); 3030 3031 DB_DNODE_ENTER(db); 3032 dn = DB_DNODE(db); 3033 3034 if (db->db_blkid == DMU_SPILL_BLKID) { 3035 mutex_enter(&dn->dn_mtx); 3036 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 3037 mutex_exit(&dn->dn_mtx); 3038 } 3039 3040 /* 3041 * If this is a bonus buffer, simply copy the bonus data into the 3042 * dnode. It will be written out when the dnode is synced (and it 3043 * will be synced, since it must have been dirty for dbuf_sync to 3044 * be called). 3045 */ 3046 if (db->db_blkid == DMU_BONUS_BLKID) { 3047 dbuf_dirty_record_t **drp; 3048 3049 ASSERT(*datap != NULL); 3050 ASSERT0(db->db_level); 3051 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 3052 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 3053 DB_DNODE_EXIT(db); 3054 3055 if (*datap != db->db.db_data) { 3056 zio_buf_free(*datap, DN_MAX_BONUSLEN); 3057 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 3058 } 3059 db->db_data_pending = NULL; 3060 drp = &db->db_last_dirty; 3061 while (*drp != dr) 3062 drp = &(*drp)->dr_next; 3063 ASSERT(dr->dr_next == NULL); 3064 ASSERT(dr->dr_dbuf == db); 3065 *drp = dr->dr_next; 3066 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3067 ASSERT(db->db_dirtycnt > 0); 3068 db->db_dirtycnt -= 1; 3069 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 3070 return; 3071 } 3072 3073 os = dn->dn_objset; 3074 3075 /* 3076 * This function may have dropped the db_mtx lock allowing a dmu_sync 3077 * operation to sneak in. As a result, we need to ensure that we 3078 * don't check the dr_override_state until we have returned from 3079 * dbuf_check_blkptr. 3080 */ 3081 dbuf_check_blkptr(dn, db); 3082 3083 /* 3084 * If this buffer is in the middle of an immediate write, 3085 * wait for the synchronous IO to complete. 3086 */ 3087 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 3088 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 3089 cv_wait(&db->db_changed, &db->db_mtx); 3090 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 3091 } 3092 3093 if (db->db_state != DB_NOFILL && 3094 dn->dn_object != DMU_META_DNODE_OBJECT && 3095 refcount_count(&db->db_holds) > 1 && 3096 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 3097 *datap == db->db_buf) { 3098 /* 3099 * If this buffer is currently "in use" (i.e., there 3100 * are active holds and db_data still references it), 3101 * then make a copy before we start the write so that 3102 * any modifications from the open txg will not leak 3103 * into this write. 3104 * 3105 * NOTE: this copy does not need to be made for 3106 * objects only modified in the syncing context (e.g. 3107 * DNONE_DNODE blocks). 3108 */ 3109 int psize = arc_buf_size(*datap); 3110 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 3111 enum zio_compress compress_type = arc_get_compression(*datap); 3112 3113 if (compress_type == ZIO_COMPRESS_OFF) { 3114 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 3115 } else { 3116 ASSERT3U(type, ==, ARC_BUFC_DATA); 3117 int lsize = arc_buf_lsize(*datap); 3118 *datap = arc_alloc_compressed_buf(os->os_spa, db, 3119 psize, lsize, compress_type); 3120 } 3121 bcopy(db->db.db_data, (*datap)->b_data, psize); 3122 } 3123 db->db_data_pending = dr; 3124 3125 mutex_exit(&db->db_mtx); 3126 3127 dbuf_write(dr, *datap, tx); 3128 3129 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3130 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 3131 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 3132 DB_DNODE_EXIT(db); 3133 } else { 3134 /* 3135 * Although zio_nowait() does not "wait for an IO", it does 3136 * initiate the IO. If this is an empty write it seems plausible 3137 * that the IO could actually be completed before the nowait 3138 * returns. We need to DB_DNODE_EXIT() first in case 3139 * zio_nowait() invalidates the dbuf. 3140 */ 3141 DB_DNODE_EXIT(db); 3142 zio_nowait(dr->dr_zio); 3143 } 3144 } 3145 3146 void 3147 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 3148 { 3149 dbuf_dirty_record_t *dr; 3150 3151 while (dr = list_head(list)) { 3152 if (dr->dr_zio != NULL) { 3153 /* 3154 * If we find an already initialized zio then we 3155 * are processing the meta-dnode, and we have finished. 3156 * The dbufs for all dnodes are put back on the list 3157 * during processing, so that we can zio_wait() 3158 * these IOs after initiating all child IOs. 3159 */ 3160 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 3161 DMU_META_DNODE_OBJECT); 3162 break; 3163 } 3164 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 3165 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 3166 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 3167 } 3168 list_remove(list, dr); 3169 if (dr->dr_dbuf->db_level > 0) 3170 dbuf_sync_indirect(dr, tx); 3171 else 3172 dbuf_sync_leaf(dr, tx); 3173 } 3174 } 3175 3176 /* ARGSUSED */ 3177 static void 3178 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3179 { 3180 dmu_buf_impl_t *db = vdb; 3181 dnode_t *dn; 3182 blkptr_t *bp = zio->io_bp; 3183 blkptr_t *bp_orig = &zio->io_bp_orig; 3184 spa_t *spa = zio->io_spa; 3185 int64_t delta; 3186 uint64_t fill = 0; 3187 int i; 3188 3189 ASSERT3P(db->db_blkptr, !=, NULL); 3190 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 3191 3192 DB_DNODE_ENTER(db); 3193 dn = DB_DNODE(db); 3194 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 3195 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 3196 zio->io_prev_space_delta = delta; 3197 3198 if (bp->blk_birth != 0) { 3199 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 3200 BP_GET_TYPE(bp) == dn->dn_type) || 3201 (db->db_blkid == DMU_SPILL_BLKID && 3202 BP_GET_TYPE(bp) == dn->dn_bonustype) || 3203 BP_IS_EMBEDDED(bp)); 3204 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 3205 } 3206 3207 mutex_enter(&db->db_mtx); 3208 3209 #ifdef ZFS_DEBUG 3210 if (db->db_blkid == DMU_SPILL_BLKID) { 3211 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3212 ASSERT(!(BP_IS_HOLE(bp)) && 3213 db->db_blkptr == &dn->dn_phys->dn_spill); 3214 } 3215 #endif 3216 3217 if (db->db_level == 0) { 3218 mutex_enter(&dn->dn_mtx); 3219 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 3220 db->db_blkid != DMU_SPILL_BLKID) 3221 dn->dn_phys->dn_maxblkid = db->db_blkid; 3222 mutex_exit(&dn->dn_mtx); 3223 3224 if (dn->dn_type == DMU_OT_DNODE) { 3225 dnode_phys_t *dnp = db->db.db_data; 3226 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 3227 i--, dnp++) { 3228 if (dnp->dn_type != DMU_OT_NONE) 3229 fill++; 3230 } 3231 } else { 3232 if (BP_IS_HOLE(bp)) { 3233 fill = 0; 3234 } else { 3235 fill = 1; 3236 } 3237 } 3238 } else { 3239 blkptr_t *ibp = db->db.db_data; 3240 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3241 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 3242 if (BP_IS_HOLE(ibp)) 3243 continue; 3244 fill += BP_GET_FILL(ibp); 3245 } 3246 } 3247 DB_DNODE_EXIT(db); 3248 3249 if (!BP_IS_EMBEDDED(bp)) 3250 bp->blk_fill = fill; 3251 3252 mutex_exit(&db->db_mtx); 3253 3254 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3255 *db->db_blkptr = *bp; 3256 rw_exit(&dn->dn_struct_rwlock); 3257 } 3258 3259 /* ARGSUSED */ 3260 /* 3261 * This function gets called just prior to running through the compression 3262 * stage of the zio pipeline. If we're an indirect block comprised of only 3263 * holes, then we want this indirect to be compressed away to a hole. In 3264 * order to do that we must zero out any information about the holes that 3265 * this indirect points to prior to before we try to compress it. 3266 */ 3267 static void 3268 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3269 { 3270 dmu_buf_impl_t *db = vdb; 3271 dnode_t *dn; 3272 blkptr_t *bp; 3273 unsigned int epbs, i; 3274 3275 ASSERT3U(db->db_level, >, 0); 3276 DB_DNODE_ENTER(db); 3277 dn = DB_DNODE(db); 3278 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3279 ASSERT3U(epbs, <, 31); 3280 3281 /* Determine if all our children are holes */ 3282 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { 3283 if (!BP_IS_HOLE(bp)) 3284 break; 3285 } 3286 3287 /* 3288 * If all the children are holes, then zero them all out so that 3289 * we may get compressed away. 3290 */ 3291 if (i == 1 << epbs) { 3292 /* 3293 * We only found holes. Grab the rwlock to prevent 3294 * anybody from reading the blocks we're about to 3295 * zero out. 3296 */ 3297 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3298 bzero(db->db.db_data, db->db.db_size); 3299 rw_exit(&dn->dn_struct_rwlock); 3300 } 3301 DB_DNODE_EXIT(db); 3302 } 3303 3304 /* 3305 * The SPA will call this callback several times for each zio - once 3306 * for every physical child i/o (zio->io_phys_children times). This 3307 * allows the DMU to monitor the progress of each logical i/o. For example, 3308 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 3309 * block. There may be a long delay before all copies/fragments are completed, 3310 * so this callback allows us to retire dirty space gradually, as the physical 3311 * i/os complete. 3312 */ 3313 /* ARGSUSED */ 3314 static void 3315 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 3316 { 3317 dmu_buf_impl_t *db = arg; 3318 objset_t *os = db->db_objset; 3319 dsl_pool_t *dp = dmu_objset_pool(os); 3320 dbuf_dirty_record_t *dr; 3321 int delta = 0; 3322 3323 dr = db->db_data_pending; 3324 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 3325 3326 /* 3327 * The callback will be called io_phys_children times. Retire one 3328 * portion of our dirty space each time we are called. Any rounding 3329 * error will be cleaned up by dsl_pool_sync()'s call to 3330 * dsl_pool_undirty_space(). 3331 */ 3332 delta = dr->dr_accounted / zio->io_phys_children; 3333 dsl_pool_undirty_space(dp, delta, zio->io_txg); 3334 } 3335 3336 /* ARGSUSED */ 3337 static void 3338 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 3339 { 3340 dmu_buf_impl_t *db = vdb; 3341 blkptr_t *bp_orig = &zio->io_bp_orig; 3342 blkptr_t *bp = db->db_blkptr; 3343 objset_t *os = db->db_objset; 3344 dmu_tx_t *tx = os->os_synctx; 3345 dbuf_dirty_record_t **drp, *dr; 3346 3347 ASSERT0(zio->io_error); 3348 ASSERT(db->db_blkptr == bp); 3349 3350 /* 3351 * For nopwrites and rewrites we ensure that the bp matches our 3352 * original and bypass all the accounting. 3353 */ 3354 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 3355 ASSERT(BP_EQUAL(bp, bp_orig)); 3356 } else { 3357 dsl_dataset_t *ds = os->os_dsl_dataset; 3358 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 3359 dsl_dataset_block_born(ds, bp, tx); 3360 } 3361 3362 mutex_enter(&db->db_mtx); 3363 3364 DBUF_VERIFY(db); 3365 3366 drp = &db->db_last_dirty; 3367 while ((dr = *drp) != db->db_data_pending) 3368 drp = &dr->dr_next; 3369 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3370 ASSERT(dr->dr_dbuf == db); 3371 ASSERT(dr->dr_next == NULL); 3372 *drp = dr->dr_next; 3373 3374 #ifdef ZFS_DEBUG 3375 if (db->db_blkid == DMU_SPILL_BLKID) { 3376 dnode_t *dn; 3377 3378 DB_DNODE_ENTER(db); 3379 dn = DB_DNODE(db); 3380 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3381 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3382 db->db_blkptr == &dn->dn_phys->dn_spill); 3383 DB_DNODE_EXIT(db); 3384 } 3385 #endif 3386 3387 if (db->db_level == 0) { 3388 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3389 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3390 if (db->db_state != DB_NOFILL) { 3391 if (dr->dt.dl.dr_data != db->db_buf) 3392 arc_buf_destroy(dr->dt.dl.dr_data, db); 3393 } 3394 } else { 3395 dnode_t *dn; 3396 3397 DB_DNODE_ENTER(db); 3398 dn = DB_DNODE(db); 3399 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3400 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3401 if (!BP_IS_HOLE(db->db_blkptr)) { 3402 int epbs = 3403 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3404 ASSERT3U(db->db_blkid, <=, 3405 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3406 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3407 db->db.db_size); 3408 } 3409 DB_DNODE_EXIT(db); 3410 mutex_destroy(&dr->dt.di.dr_mtx); 3411 list_destroy(&dr->dt.di.dr_children); 3412 } 3413 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3414 3415 cv_broadcast(&db->db_changed); 3416 ASSERT(db->db_dirtycnt > 0); 3417 db->db_dirtycnt -= 1; 3418 db->db_data_pending = NULL; 3419 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 3420 } 3421 3422 static void 3423 dbuf_write_nofill_ready(zio_t *zio) 3424 { 3425 dbuf_write_ready(zio, NULL, zio->io_private); 3426 } 3427 3428 static void 3429 dbuf_write_nofill_done(zio_t *zio) 3430 { 3431 dbuf_write_done(zio, NULL, zio->io_private); 3432 } 3433 3434 static void 3435 dbuf_write_override_ready(zio_t *zio) 3436 { 3437 dbuf_dirty_record_t *dr = zio->io_private; 3438 dmu_buf_impl_t *db = dr->dr_dbuf; 3439 3440 dbuf_write_ready(zio, NULL, db); 3441 } 3442 3443 static void 3444 dbuf_write_override_done(zio_t *zio) 3445 { 3446 dbuf_dirty_record_t *dr = zio->io_private; 3447 dmu_buf_impl_t *db = dr->dr_dbuf; 3448 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3449 3450 mutex_enter(&db->db_mtx); 3451 if (!BP_EQUAL(zio->io_bp, obp)) { 3452 if (!BP_IS_HOLE(obp)) 3453 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3454 arc_release(dr->dt.dl.dr_data, db); 3455 } 3456 mutex_exit(&db->db_mtx); 3457 dbuf_write_done(zio, NULL, db); 3458 3459 if (zio->io_abd != NULL) 3460 abd_put(zio->io_abd); 3461 } 3462 3463 /* Issue I/O to commit a dirty buffer to disk. */ 3464 static void 3465 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 3466 { 3467 dmu_buf_impl_t *db = dr->dr_dbuf; 3468 dnode_t *dn; 3469 objset_t *os; 3470 dmu_buf_impl_t *parent = db->db_parent; 3471 uint64_t txg = tx->tx_txg; 3472 zbookmark_phys_t zb; 3473 zio_prop_t zp; 3474 zio_t *zio; 3475 int wp_flag = 0; 3476 3477 ASSERT(dmu_tx_is_syncing(tx)); 3478 3479 DB_DNODE_ENTER(db); 3480 dn = DB_DNODE(db); 3481 os = dn->dn_objset; 3482 3483 if (db->db_state != DB_NOFILL) { 3484 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 3485 /* 3486 * Private object buffers are released here rather 3487 * than in dbuf_dirty() since they are only modified 3488 * in the syncing context and we don't want the 3489 * overhead of making multiple copies of the data. 3490 */ 3491 if (BP_IS_HOLE(db->db_blkptr)) { 3492 arc_buf_thaw(data); 3493 } else { 3494 dbuf_release_bp(db); 3495 } 3496 } 3497 } 3498 3499 if (parent != dn->dn_dbuf) { 3500 /* Our parent is an indirect block. */ 3501 /* We have a dirty parent that has been scheduled for write. */ 3502 ASSERT(parent && parent->db_data_pending); 3503 /* Our parent's buffer is one level closer to the dnode. */ 3504 ASSERT(db->db_level == parent->db_level-1); 3505 /* 3506 * We're about to modify our parent's db_data by modifying 3507 * our block pointer, so the parent must be released. 3508 */ 3509 ASSERT(arc_released(parent->db_buf)); 3510 zio = parent->db_data_pending->dr_zio; 3511 } else { 3512 /* Our parent is the dnode itself. */ 3513 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 3514 db->db_blkid != DMU_SPILL_BLKID) || 3515 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 3516 if (db->db_blkid != DMU_SPILL_BLKID) 3517 ASSERT3P(db->db_blkptr, ==, 3518 &dn->dn_phys->dn_blkptr[db->db_blkid]); 3519 zio = dn->dn_zio; 3520 } 3521 3522 ASSERT(db->db_level == 0 || data == db->db_buf); 3523 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 3524 ASSERT(zio); 3525 3526 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 3527 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 3528 db->db.db_object, db->db_level, db->db_blkid); 3529 3530 if (db->db_blkid == DMU_SPILL_BLKID) 3531 wp_flag = WP_SPILL; 3532 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 3533 3534 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 3535 DB_DNODE_EXIT(db); 3536 3537 /* 3538 * We copy the blkptr now (rather than when we instantiate the dirty 3539 * record), because its value can change between open context and 3540 * syncing context. We do not need to hold dn_struct_rwlock to read 3541 * db_blkptr because we are in syncing context. 3542 */ 3543 dr->dr_bp_copy = *db->db_blkptr; 3544 3545 if (db->db_level == 0 && 3546 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 3547 /* 3548 * The BP for this block has been provided by open context 3549 * (by dmu_sync() or dmu_buf_write_embedded()). 3550 */ 3551 abd_t *contents = (data != NULL) ? 3552 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 3553 3554 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy, 3555 contents, db->db.db_size, db->db.db_size, &zp, 3556 dbuf_write_override_ready, NULL, NULL, 3557 dbuf_write_override_done, 3558 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3559 mutex_enter(&db->db_mtx); 3560 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 3561 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 3562 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 3563 mutex_exit(&db->db_mtx); 3564 } else if (db->db_state == DB_NOFILL) { 3565 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 3566 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 3567 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3568 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 3569 dbuf_write_nofill_ready, NULL, NULL, 3570 dbuf_write_nofill_done, db, 3571 ZIO_PRIORITY_ASYNC_WRITE, 3572 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 3573 } else { 3574 ASSERT(arc_released(data)); 3575 3576 /* 3577 * For indirect blocks, we want to setup the children 3578 * ready callback so that we can properly handle an indirect 3579 * block that only contains holes. 3580 */ 3581 arc_done_func_t *children_ready_cb = NULL; 3582 if (db->db_level != 0) 3583 children_ready_cb = dbuf_write_children_ready; 3584 3585 dr->dr_zio = arc_write(zio, os->os_spa, txg, 3586 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 3587 &zp, dbuf_write_ready, children_ready_cb, 3588 dbuf_write_physdone, dbuf_write_done, db, 3589 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3590 } 3591 } 3592