1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 #include <sys/abd.h> 50 #include <sys/vdev.h> 51 #include <sys/cityhash.h> 52 #include <sys/spa_impl.h> 53 54 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 55 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 56 57 #ifndef __lint 58 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 59 dmu_buf_evict_func_t *evict_func_sync, 60 dmu_buf_evict_func_t *evict_func_async, 61 dmu_buf_t **clear_on_evict_dbufp); 62 #endif /* ! __lint */ 63 64 /* 65 * Global data structures and functions for the dbuf cache. 66 */ 67 static kmem_cache_t *dbuf_kmem_cache; 68 static taskq_t *dbu_evict_taskq; 69 70 static kthread_t *dbuf_cache_evict_thread; 71 static kmutex_t dbuf_evict_lock; 72 static kcondvar_t dbuf_evict_cv; 73 static boolean_t dbuf_evict_thread_exit; 74 75 /* 76 * There are two dbuf caches; each dbuf can only be in one of them at a time. 77 * 78 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 79 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 80 * that represent the metadata that describes filesystems/snapshots/ 81 * bookmarks/properties/etc. We only evict from this cache when we export a 82 * pool, to short-circuit as much I/O as possible for all administrative 83 * commands that need the metadata. There is no eviction policy for this 84 * cache, because we try to only include types in it which would occupy a 85 * very small amount of space per object but create a large impact on the 86 * performance of these commands. Instead, after it reaches a maximum size 87 * (which should only happen on very small memory systems with a very large 88 * number of filesystem objects), we stop taking new dbufs into the 89 * metadata cache, instead putting them in the normal dbuf cache. 90 * 91 * 2. LRU cache of dbufs. The "dbuf cache" maintains a list of dbufs that 92 * are not currently held but have been recently released. These dbufs 93 * are not eligible for arc eviction until they are aged out of the cache. 94 * Dbufs that are aged out of the cache will be immediately destroyed and 95 * become eligible for arc eviction. 96 * 97 * Dbufs are added to these caches once the last hold is released. If a dbuf is 98 * later accessed and still exists in the dbuf cache, then it will be removed 99 * from the cache and later re-added to the head of the cache. 100 * 101 * If a given dbuf meets the requirements for the metadata cache, it will go 102 * there, otherwise it will be considered for the generic LRU dbuf cache. The 103 * caches and the refcounts tracking their sizes are stored in an array indexed 104 * by those caches' matching enum values (from dbuf_cached_state_t). 105 */ 106 typedef struct dbuf_cache { 107 multilist_t *cache; 108 zfs_refcount_t size; 109 } dbuf_cache_t; 110 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 111 112 /* Size limits for the caches */ 113 uint64_t dbuf_cache_max_bytes = 0; 114 uint64_t dbuf_metadata_cache_max_bytes = 0; 115 /* Set the default sizes of the caches to log2 fraction of arc size */ 116 int dbuf_cache_shift = 5; 117 int dbuf_metadata_cache_shift = 6; 118 119 /* 120 * For diagnostic purposes, this is incremented whenever we can't add 121 * something to the metadata cache because it's full, and instead put 122 * the data in the regular dbuf cache. 123 */ 124 uint64_t dbuf_metadata_cache_overflow; 125 126 /* 127 * The LRU dbuf cache uses a three-stage eviction policy: 128 * - A low water marker designates when the dbuf eviction thread 129 * should stop evicting from the dbuf cache. 130 * - When we reach the maximum size (aka mid water mark), we 131 * signal the eviction thread to run. 132 * - The high water mark indicates when the eviction thread 133 * is unable to keep up with the incoming load and eviction must 134 * happen in the context of the calling thread. 135 * 136 * The dbuf cache: 137 * (max size) 138 * low water mid water hi water 139 * +----------------------------------------+----------+----------+ 140 * | | | | 141 * | | | | 142 * | | | | 143 * | | | | 144 * +----------------------------------------+----------+----------+ 145 * stop signal evict 146 * evicting eviction directly 147 * thread 148 * 149 * The high and low water marks indicate the operating range for the eviction 150 * thread. The low water mark is, by default, 90% of the total size of the 151 * cache and the high water mark is at 110% (both of these percentages can be 152 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 153 * respectively). The eviction thread will try to ensure that the cache remains 154 * within this range by waking up every second and checking if the cache is 155 * above the low water mark. The thread can also be woken up by callers adding 156 * elements into the cache if the cache is larger than the mid water (i.e max 157 * cache size). Once the eviction thread is woken up and eviction is required, 158 * it will continue evicting buffers until it's able to reduce the cache size 159 * to the low water mark. If the cache size continues to grow and hits the high 160 * water mark, then callers adding elements to the cache will begin to evict 161 * directly from the cache until the cache is no longer above the high water 162 * mark. 163 */ 164 165 /* 166 * The percentage above and below the maximum cache size. 167 */ 168 uint_t dbuf_cache_hiwater_pct = 10; 169 uint_t dbuf_cache_lowater_pct = 10; 170 171 /* ARGSUSED */ 172 static int 173 dbuf_cons(void *vdb, void *unused, int kmflag) 174 { 175 dmu_buf_impl_t *db = vdb; 176 bzero(db, sizeof (dmu_buf_impl_t)); 177 178 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 179 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 180 multilist_link_init(&db->db_cache_link); 181 zfs_refcount_create(&db->db_holds); 182 183 return (0); 184 } 185 186 /* ARGSUSED */ 187 static void 188 dbuf_dest(void *vdb, void *unused) 189 { 190 dmu_buf_impl_t *db = vdb; 191 mutex_destroy(&db->db_mtx); 192 cv_destroy(&db->db_changed); 193 ASSERT(!multilist_link_active(&db->db_cache_link)); 194 zfs_refcount_destroy(&db->db_holds); 195 } 196 197 /* 198 * dbuf hash table routines 199 */ 200 static dbuf_hash_table_t dbuf_hash_table; 201 202 static uint64_t dbuf_hash_count; 203 204 /* 205 * We use Cityhash for this. It's fast, and has good hash properties without 206 * requiring any large static buffers. 207 */ 208 static uint64_t 209 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 210 { 211 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 212 } 213 214 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 215 ((dbuf)->db.db_object == (obj) && \ 216 (dbuf)->db_objset == (os) && \ 217 (dbuf)->db_level == (level) && \ 218 (dbuf)->db_blkid == (blkid)) 219 220 dmu_buf_impl_t * 221 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 222 { 223 dbuf_hash_table_t *h = &dbuf_hash_table; 224 uint64_t hv = dbuf_hash(os, obj, level, blkid); 225 uint64_t idx = hv & h->hash_table_mask; 226 dmu_buf_impl_t *db; 227 228 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 229 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 230 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 231 mutex_enter(&db->db_mtx); 232 if (db->db_state != DB_EVICTING) { 233 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 234 return (db); 235 } 236 mutex_exit(&db->db_mtx); 237 } 238 } 239 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 240 return (NULL); 241 } 242 243 static dmu_buf_impl_t * 244 dbuf_find_bonus(objset_t *os, uint64_t object) 245 { 246 dnode_t *dn; 247 dmu_buf_impl_t *db = NULL; 248 249 if (dnode_hold(os, object, FTAG, &dn) == 0) { 250 rw_enter(&dn->dn_struct_rwlock, RW_READER); 251 if (dn->dn_bonus != NULL) { 252 db = dn->dn_bonus; 253 mutex_enter(&db->db_mtx); 254 } 255 rw_exit(&dn->dn_struct_rwlock); 256 dnode_rele(dn, FTAG); 257 } 258 return (db); 259 } 260 261 /* 262 * Insert an entry into the hash table. If there is already an element 263 * equal to elem in the hash table, then the already existing element 264 * will be returned and the new element will not be inserted. 265 * Otherwise returns NULL. 266 */ 267 static dmu_buf_impl_t * 268 dbuf_hash_insert(dmu_buf_impl_t *db) 269 { 270 dbuf_hash_table_t *h = &dbuf_hash_table; 271 objset_t *os = db->db_objset; 272 uint64_t obj = db->db.db_object; 273 int level = db->db_level; 274 uint64_t blkid = db->db_blkid; 275 uint64_t hv = dbuf_hash(os, obj, level, blkid); 276 uint64_t idx = hv & h->hash_table_mask; 277 dmu_buf_impl_t *dbf; 278 279 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 280 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 281 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 282 mutex_enter(&dbf->db_mtx); 283 if (dbf->db_state != DB_EVICTING) { 284 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 285 return (dbf); 286 } 287 mutex_exit(&dbf->db_mtx); 288 } 289 } 290 291 mutex_enter(&db->db_mtx); 292 db->db_hash_next = h->hash_table[idx]; 293 h->hash_table[idx] = db; 294 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 295 atomic_inc_64(&dbuf_hash_count); 296 297 return (NULL); 298 } 299 300 /* 301 * Remove an entry from the hash table. It must be in the EVICTING state. 302 */ 303 static void 304 dbuf_hash_remove(dmu_buf_impl_t *db) 305 { 306 dbuf_hash_table_t *h = &dbuf_hash_table; 307 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 308 db->db_level, db->db_blkid); 309 uint64_t idx = hv & h->hash_table_mask; 310 dmu_buf_impl_t *dbf, **dbp; 311 312 /* 313 * We mustn't hold db_mtx to maintain lock ordering: 314 * DBUF_HASH_MUTEX > db_mtx. 315 */ 316 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 317 ASSERT(db->db_state == DB_EVICTING); 318 ASSERT(!MUTEX_HELD(&db->db_mtx)); 319 320 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 321 dbp = &h->hash_table[idx]; 322 while ((dbf = *dbp) != db) { 323 dbp = &dbf->db_hash_next; 324 ASSERT(dbf != NULL); 325 } 326 *dbp = db->db_hash_next; 327 db->db_hash_next = NULL; 328 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 329 atomic_dec_64(&dbuf_hash_count); 330 } 331 332 typedef enum { 333 DBVU_EVICTING, 334 DBVU_NOT_EVICTING 335 } dbvu_verify_type_t; 336 337 static void 338 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 339 { 340 #ifdef ZFS_DEBUG 341 int64_t holds; 342 343 if (db->db_user == NULL) 344 return; 345 346 /* Only data blocks support the attachment of user data. */ 347 ASSERT(db->db_level == 0); 348 349 /* Clients must resolve a dbuf before attaching user data. */ 350 ASSERT(db->db.db_data != NULL); 351 ASSERT3U(db->db_state, ==, DB_CACHED); 352 353 holds = zfs_refcount_count(&db->db_holds); 354 if (verify_type == DBVU_EVICTING) { 355 /* 356 * Immediate eviction occurs when holds == dirtycnt. 357 * For normal eviction buffers, holds is zero on 358 * eviction, except when dbuf_fix_old_data() calls 359 * dbuf_clear_data(). However, the hold count can grow 360 * during eviction even though db_mtx is held (see 361 * dmu_bonus_hold() for an example), so we can only 362 * test the generic invariant that holds >= dirtycnt. 363 */ 364 ASSERT3U(holds, >=, db->db_dirtycnt); 365 } else { 366 if (db->db_user_immediate_evict == TRUE) 367 ASSERT3U(holds, >=, db->db_dirtycnt); 368 else 369 ASSERT3U(holds, >, 0); 370 } 371 #endif 372 } 373 374 static void 375 dbuf_evict_user(dmu_buf_impl_t *db) 376 { 377 dmu_buf_user_t *dbu = db->db_user; 378 379 ASSERT(MUTEX_HELD(&db->db_mtx)); 380 381 if (dbu == NULL) 382 return; 383 384 dbuf_verify_user(db, DBVU_EVICTING); 385 db->db_user = NULL; 386 387 #ifdef ZFS_DEBUG 388 if (dbu->dbu_clear_on_evict_dbufp != NULL) 389 *dbu->dbu_clear_on_evict_dbufp = NULL; 390 #endif 391 392 /* 393 * There are two eviction callbacks - one that we call synchronously 394 * and one that we invoke via a taskq. The async one is useful for 395 * avoiding lock order reversals and limiting stack depth. 396 * 397 * Note that if we have a sync callback but no async callback, 398 * it's likely that the sync callback will free the structure 399 * containing the dbu. In that case we need to take care to not 400 * dereference dbu after calling the sync evict func. 401 */ 402 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 403 404 if (dbu->dbu_evict_func_sync != NULL) 405 dbu->dbu_evict_func_sync(dbu); 406 407 if (has_async) { 408 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 409 dbu, 0, &dbu->dbu_tqent); 410 } 411 } 412 413 boolean_t 414 dbuf_is_metadata(dmu_buf_impl_t *db) 415 { 416 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 417 return (B_TRUE); 418 } else { 419 boolean_t is_metadata; 420 421 DB_DNODE_ENTER(db); 422 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 423 DB_DNODE_EXIT(db); 424 425 return (is_metadata); 426 } 427 } 428 429 /* 430 * This returns whether this dbuf should be stored in the metadata cache, which 431 * is based on whether it's from one of the dnode types that store data related 432 * to traversing dataset hierarchies. 433 */ 434 static boolean_t 435 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 436 { 437 DB_DNODE_ENTER(db); 438 dmu_object_type_t type = DB_DNODE(db)->dn_type; 439 DB_DNODE_EXIT(db); 440 441 /* Check if this dbuf is one of the types we care about */ 442 if (DMU_OT_IS_METADATA_CACHED(type)) { 443 /* If we hit this, then we set something up wrong in dmu_ot */ 444 ASSERT(DMU_OT_IS_METADATA(type)); 445 446 /* 447 * Sanity check for small-memory systems: don't allocate too 448 * much memory for this purpose. 449 */ 450 if (zfs_refcount_count( 451 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 452 dbuf_metadata_cache_max_bytes) { 453 dbuf_metadata_cache_overflow++; 454 DTRACE_PROBE1(dbuf__metadata__cache__overflow, 455 dmu_buf_impl_t *, db); 456 return (B_FALSE); 457 } 458 459 return (B_TRUE); 460 } 461 462 return (B_FALSE); 463 } 464 465 /* 466 * This function *must* return indices evenly distributed between all 467 * sublists of the multilist. This is needed due to how the dbuf eviction 468 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 469 * distributed between all sublists and uses this assumption when 470 * deciding which sublist to evict from and how much to evict from it. 471 */ 472 unsigned int 473 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 474 { 475 dmu_buf_impl_t *db = obj; 476 477 /* 478 * The assumption here, is the hash value for a given 479 * dmu_buf_impl_t will remain constant throughout it's lifetime 480 * (i.e. it's objset, object, level and blkid fields don't change). 481 * Thus, we don't need to store the dbuf's sublist index 482 * on insertion, as this index can be recalculated on removal. 483 * 484 * Also, the low order bits of the hash value are thought to be 485 * distributed evenly. Otherwise, in the case that the multilist 486 * has a power of two number of sublists, each sublists' usage 487 * would not be evenly distributed. 488 */ 489 return (dbuf_hash(db->db_objset, db->db.db_object, 490 db->db_level, db->db_blkid) % 491 multilist_get_num_sublists(ml)); 492 } 493 494 static inline boolean_t 495 dbuf_cache_above_hiwater(void) 496 { 497 uint64_t dbuf_cache_hiwater_bytes = 498 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 499 500 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 501 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 502 } 503 504 static inline boolean_t 505 dbuf_cache_above_lowater(void) 506 { 507 uint64_t dbuf_cache_lowater_bytes = 508 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 509 510 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 511 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 512 } 513 514 /* 515 * Evict the oldest eligible dbuf from the dbuf cache. 516 */ 517 static void 518 dbuf_evict_one(void) 519 { 520 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache); 521 multilist_sublist_t *mls = multilist_sublist_lock( 522 dbuf_caches[DB_DBUF_CACHE].cache, idx); 523 524 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 525 526 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 527 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 528 db = multilist_sublist_prev(mls, db); 529 } 530 531 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 532 multilist_sublist_t *, mls); 533 534 if (db != NULL) { 535 multilist_sublist_remove(mls, db); 536 multilist_sublist_unlock(mls); 537 (void) zfs_refcount_remove_many( 538 &dbuf_caches[DB_DBUF_CACHE].size, 539 db->db.db_size, db); 540 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 541 db->db_caching_status = DB_NO_CACHE; 542 dbuf_destroy(db); 543 } else { 544 multilist_sublist_unlock(mls); 545 } 546 } 547 548 /* 549 * The dbuf evict thread is responsible for aging out dbufs from the 550 * cache. Once the cache has reached it's maximum size, dbufs are removed 551 * and destroyed. The eviction thread will continue running until the size 552 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 553 * out of the cache it is destroyed and becomes eligible for arc eviction. 554 */ 555 /* ARGSUSED */ 556 static void 557 dbuf_evict_thread(void *unused) 558 { 559 callb_cpr_t cpr; 560 561 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 562 563 mutex_enter(&dbuf_evict_lock); 564 while (!dbuf_evict_thread_exit) { 565 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 566 CALLB_CPR_SAFE_BEGIN(&cpr); 567 (void) cv_timedwait_hires(&dbuf_evict_cv, 568 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 569 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 570 } 571 mutex_exit(&dbuf_evict_lock); 572 573 /* 574 * Keep evicting as long as we're above the low water mark 575 * for the cache. We do this without holding the locks to 576 * minimize lock contention. 577 */ 578 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 579 dbuf_evict_one(); 580 } 581 582 mutex_enter(&dbuf_evict_lock); 583 } 584 585 dbuf_evict_thread_exit = B_FALSE; 586 cv_broadcast(&dbuf_evict_cv); 587 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 588 thread_exit(); 589 } 590 591 /* 592 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 593 * If the dbuf cache is at its high water mark, then evict a dbuf from the 594 * dbuf cache using the callers context. 595 */ 596 static void 597 dbuf_evict_notify(void) 598 { 599 /* 600 * We check if we should evict without holding the dbuf_evict_lock, 601 * because it's OK to occasionally make the wrong decision here, 602 * and grabbing the lock results in massive lock contention. 603 */ 604 if (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 605 dbuf_cache_max_bytes) { 606 if (dbuf_cache_above_hiwater()) 607 dbuf_evict_one(); 608 cv_signal(&dbuf_evict_cv); 609 } 610 } 611 612 void 613 dbuf_init(void) 614 { 615 uint64_t hsize = 1ULL << 16; 616 dbuf_hash_table_t *h = &dbuf_hash_table; 617 int i; 618 619 /* 620 * The hash table is big enough to fill all of physical memory 621 * with an average 4K block size. The table will take up 622 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 623 */ 624 while (hsize * 4096 < physmem * PAGESIZE) 625 hsize <<= 1; 626 627 retry: 628 h->hash_table_mask = hsize - 1; 629 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 630 if (h->hash_table == NULL) { 631 /* XXX - we should really return an error instead of assert */ 632 ASSERT(hsize > (1ULL << 10)); 633 hsize >>= 1; 634 goto retry; 635 } 636 637 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 638 sizeof (dmu_buf_impl_t), 639 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 640 641 for (i = 0; i < DBUF_MUTEXES; i++) 642 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 643 644 /* 645 * Setup the parameters for the dbuf caches. We set the sizes of the 646 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default) 647 * of the size of the ARC, respectively. If the values are set in 648 * /etc/system and they're not greater than the size of the ARC, then 649 * we honor that value. 650 */ 651 if (dbuf_cache_max_bytes == 0 || 652 dbuf_cache_max_bytes >= arc_max_bytes()) { 653 dbuf_cache_max_bytes = arc_max_bytes() >> dbuf_cache_shift; 654 } 655 if (dbuf_metadata_cache_max_bytes == 0 || 656 dbuf_metadata_cache_max_bytes >= arc_max_bytes()) { 657 dbuf_metadata_cache_max_bytes = 658 arc_max_bytes() >> dbuf_metadata_cache_shift; 659 } 660 661 /* 662 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 663 * configuration is not required. 664 */ 665 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 666 667 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 668 dbuf_caches[dcs].cache = 669 multilist_create(sizeof (dmu_buf_impl_t), 670 offsetof(dmu_buf_impl_t, db_cache_link), 671 dbuf_cache_multilist_index_func); 672 zfs_refcount_create(&dbuf_caches[dcs].size); 673 } 674 675 dbuf_evict_thread_exit = B_FALSE; 676 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 677 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 678 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 679 NULL, 0, &p0, TS_RUN, minclsyspri); 680 } 681 682 void 683 dbuf_fini(void) 684 { 685 dbuf_hash_table_t *h = &dbuf_hash_table; 686 int i; 687 688 for (i = 0; i < DBUF_MUTEXES; i++) 689 mutex_destroy(&h->hash_mutexes[i]); 690 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 691 kmem_cache_destroy(dbuf_kmem_cache); 692 taskq_destroy(dbu_evict_taskq); 693 694 mutex_enter(&dbuf_evict_lock); 695 dbuf_evict_thread_exit = B_TRUE; 696 while (dbuf_evict_thread_exit) { 697 cv_signal(&dbuf_evict_cv); 698 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 699 } 700 mutex_exit(&dbuf_evict_lock); 701 702 mutex_destroy(&dbuf_evict_lock); 703 cv_destroy(&dbuf_evict_cv); 704 705 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 706 zfs_refcount_destroy(&dbuf_caches[dcs].size); 707 multilist_destroy(dbuf_caches[dcs].cache); 708 } 709 } 710 711 /* 712 * Other stuff. 713 */ 714 715 #ifdef ZFS_DEBUG 716 static void 717 dbuf_verify(dmu_buf_impl_t *db) 718 { 719 dnode_t *dn; 720 dbuf_dirty_record_t *dr; 721 722 ASSERT(MUTEX_HELD(&db->db_mtx)); 723 724 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 725 return; 726 727 ASSERT(db->db_objset != NULL); 728 DB_DNODE_ENTER(db); 729 dn = DB_DNODE(db); 730 if (dn == NULL) { 731 ASSERT(db->db_parent == NULL); 732 ASSERT(db->db_blkptr == NULL); 733 } else { 734 ASSERT3U(db->db.db_object, ==, dn->dn_object); 735 ASSERT3P(db->db_objset, ==, dn->dn_objset); 736 ASSERT3U(db->db_level, <, dn->dn_nlevels); 737 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 738 db->db_blkid == DMU_SPILL_BLKID || 739 !avl_is_empty(&dn->dn_dbufs)); 740 } 741 if (db->db_blkid == DMU_BONUS_BLKID) { 742 ASSERT(dn != NULL); 743 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 744 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 745 } else if (db->db_blkid == DMU_SPILL_BLKID) { 746 ASSERT(dn != NULL); 747 ASSERT0(db->db.db_offset); 748 } else { 749 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 750 } 751 752 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 753 ASSERT(dr->dr_dbuf == db); 754 755 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 756 ASSERT(dr->dr_dbuf == db); 757 758 /* 759 * We can't assert that db_size matches dn_datablksz because it 760 * can be momentarily different when another thread is doing 761 * dnode_set_blksz(). 762 */ 763 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 764 dr = db->db_data_pending; 765 /* 766 * It should only be modified in syncing context, so 767 * make sure we only have one copy of the data. 768 */ 769 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 770 } 771 772 /* verify db->db_blkptr */ 773 if (db->db_blkptr) { 774 if (db->db_parent == dn->dn_dbuf) { 775 /* db is pointed to by the dnode */ 776 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 777 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 778 ASSERT(db->db_parent == NULL); 779 else 780 ASSERT(db->db_parent != NULL); 781 if (db->db_blkid != DMU_SPILL_BLKID) 782 ASSERT3P(db->db_blkptr, ==, 783 &dn->dn_phys->dn_blkptr[db->db_blkid]); 784 } else { 785 /* db is pointed to by an indirect block */ 786 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 787 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 788 ASSERT3U(db->db_parent->db.db_object, ==, 789 db->db.db_object); 790 /* 791 * dnode_grow_indblksz() can make this fail if we don't 792 * have the struct_rwlock. XXX indblksz no longer 793 * grows. safe to do this now? 794 */ 795 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 796 ASSERT3P(db->db_blkptr, ==, 797 ((blkptr_t *)db->db_parent->db.db_data + 798 db->db_blkid % epb)); 799 } 800 } 801 } 802 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 803 (db->db_buf == NULL || db->db_buf->b_data) && 804 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 805 db->db_state != DB_FILL && !dn->dn_free_txg) { 806 /* 807 * If the blkptr isn't set but they have nonzero data, 808 * it had better be dirty, otherwise we'll lose that 809 * data when we evict this buffer. 810 * 811 * There is an exception to this rule for indirect blocks; in 812 * this case, if the indirect block is a hole, we fill in a few 813 * fields on each of the child blocks (importantly, birth time) 814 * to prevent hole birth times from being lost when you 815 * partially fill in a hole. 816 */ 817 if (db->db_dirtycnt == 0) { 818 if (db->db_level == 0) { 819 uint64_t *buf = db->db.db_data; 820 int i; 821 822 for (i = 0; i < db->db.db_size >> 3; i++) { 823 ASSERT(buf[i] == 0); 824 } 825 } else { 826 blkptr_t *bps = db->db.db_data; 827 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 828 db->db.db_size); 829 /* 830 * We want to verify that all the blkptrs in the 831 * indirect block are holes, but we may have 832 * automatically set up a few fields for them. 833 * We iterate through each blkptr and verify 834 * they only have those fields set. 835 */ 836 for (int i = 0; 837 i < db->db.db_size / sizeof (blkptr_t); 838 i++) { 839 blkptr_t *bp = &bps[i]; 840 ASSERT(ZIO_CHECKSUM_IS_ZERO( 841 &bp->blk_cksum)); 842 ASSERT( 843 DVA_IS_EMPTY(&bp->blk_dva[0]) && 844 DVA_IS_EMPTY(&bp->blk_dva[1]) && 845 DVA_IS_EMPTY(&bp->blk_dva[2])); 846 ASSERT0(bp->blk_fill); 847 ASSERT0(bp->blk_pad[0]); 848 ASSERT0(bp->blk_pad[1]); 849 ASSERT(!BP_IS_EMBEDDED(bp)); 850 ASSERT(BP_IS_HOLE(bp)); 851 ASSERT0(bp->blk_phys_birth); 852 } 853 } 854 } 855 } 856 DB_DNODE_EXIT(db); 857 } 858 #endif 859 860 static void 861 dbuf_clear_data(dmu_buf_impl_t *db) 862 { 863 ASSERT(MUTEX_HELD(&db->db_mtx)); 864 dbuf_evict_user(db); 865 ASSERT3P(db->db_buf, ==, NULL); 866 db->db.db_data = NULL; 867 if (db->db_state != DB_NOFILL) 868 db->db_state = DB_UNCACHED; 869 } 870 871 static void 872 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 873 { 874 ASSERT(MUTEX_HELD(&db->db_mtx)); 875 ASSERT(buf != NULL); 876 877 db->db_buf = buf; 878 ASSERT(buf->b_data != NULL); 879 db->db.db_data = buf->b_data; 880 } 881 882 /* 883 * Loan out an arc_buf for read. Return the loaned arc_buf. 884 */ 885 arc_buf_t * 886 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 887 { 888 arc_buf_t *abuf; 889 890 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 891 mutex_enter(&db->db_mtx); 892 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 893 int blksz = db->db.db_size; 894 spa_t *spa = db->db_objset->os_spa; 895 896 mutex_exit(&db->db_mtx); 897 abuf = arc_loan_buf(spa, B_FALSE, blksz); 898 bcopy(db->db.db_data, abuf->b_data, blksz); 899 } else { 900 abuf = db->db_buf; 901 arc_loan_inuse_buf(abuf, db); 902 db->db_buf = NULL; 903 dbuf_clear_data(db); 904 mutex_exit(&db->db_mtx); 905 } 906 return (abuf); 907 } 908 909 /* 910 * Calculate which level n block references the data at the level 0 offset 911 * provided. 912 */ 913 uint64_t 914 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 915 { 916 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 917 /* 918 * The level n blkid is equal to the level 0 blkid divided by 919 * the number of level 0s in a level n block. 920 * 921 * The level 0 blkid is offset >> datablkshift = 922 * offset / 2^datablkshift. 923 * 924 * The number of level 0s in a level n is the number of block 925 * pointers in an indirect block, raised to the power of level. 926 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 927 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 928 * 929 * Thus, the level n blkid is: offset / 930 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 931 * = offset / 2^(datablkshift + level * 932 * (indblkshift - SPA_BLKPTRSHIFT)) 933 * = offset >> (datablkshift + level * 934 * (indblkshift - SPA_BLKPTRSHIFT)) 935 */ 936 return (offset >> (dn->dn_datablkshift + level * 937 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 938 } else { 939 ASSERT3U(offset, <, dn->dn_datablksz); 940 return (0); 941 } 942 } 943 944 /* ARGSUSED */ 945 static void 946 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 947 arc_buf_t *buf, void *vdb) 948 { 949 dmu_buf_impl_t *db = vdb; 950 951 mutex_enter(&db->db_mtx); 952 ASSERT3U(db->db_state, ==, DB_READ); 953 /* 954 * All reads are synchronous, so we must have a hold on the dbuf 955 */ 956 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 957 ASSERT(db->db_buf == NULL); 958 ASSERT(db->db.db_data == NULL); 959 if (buf == NULL) { 960 /* i/o error */ 961 ASSERT(zio == NULL || zio->io_error != 0); 962 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 963 ASSERT3P(db->db_buf, ==, NULL); 964 db->db_state = DB_UNCACHED; 965 } else if (db->db_level == 0 && db->db_freed_in_flight) { 966 /* we were freed in flight; disregard any error */ 967 ASSERT(zio == NULL || zio->io_error == 0); 968 if (buf == NULL) { 969 buf = arc_alloc_buf(db->db_objset->os_spa, 970 db, DBUF_GET_BUFC_TYPE(db), db->db.db_size); 971 } 972 arc_release(buf, db); 973 bzero(buf->b_data, db->db.db_size); 974 arc_buf_freeze(buf); 975 db->db_freed_in_flight = FALSE; 976 dbuf_set_data(db, buf); 977 db->db_state = DB_CACHED; 978 } else if (buf != NULL) { 979 /* success */ 980 ASSERT(zio == NULL || zio->io_error == 0); 981 dbuf_set_data(db, buf); 982 db->db_state = DB_CACHED; 983 } 984 cv_broadcast(&db->db_changed); 985 dbuf_rele_and_unlock(db, NULL, B_FALSE); 986 } 987 988 989 /* 990 * This function ensures that, when doing a decrypting read of a block, 991 * we make sure we have decrypted the dnode associated with it. We must do 992 * this so that we ensure we are fully authenticating the checksum-of-MACs 993 * tree from the root of the objset down to this block. Indirect blocks are 994 * always verified against their secure checksum-of-MACs assuming that the 995 * dnode containing them is correct. Now that we are doing a decrypting read, 996 * we can be sure that the key is loaded and verify that assumption. This is 997 * especially important considering that we always read encrypted dnode 998 * blocks as raw data (without verifying their MACs) to start, and 999 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1000 */ 1001 static int 1002 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1003 { 1004 int err = 0; 1005 objset_t *os = db->db_objset; 1006 arc_buf_t *dnode_abuf; 1007 dnode_t *dn; 1008 zbookmark_phys_t zb; 1009 1010 ASSERT(MUTEX_HELD(&db->db_mtx)); 1011 1012 if (!os->os_encrypted || os->os_raw_receive || 1013 (flags & DB_RF_NO_DECRYPT) != 0) 1014 return (0); 1015 1016 DB_DNODE_ENTER(db); 1017 dn = DB_DNODE(db); 1018 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1019 1020 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1021 DB_DNODE_EXIT(db); 1022 return (0); 1023 } 1024 1025 SET_BOOKMARK(&zb, dmu_objset_id(os), 1026 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1027 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1028 1029 /* 1030 * An error code of EACCES tells us that the key is still not 1031 * available. This is ok if we are only reading authenticated 1032 * (and therefore non-encrypted) blocks. 1033 */ 1034 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1035 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1036 (db->db_blkid == DMU_BONUS_BLKID && 1037 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1038 err = 0; 1039 1040 DB_DNODE_EXIT(db); 1041 1042 return (err); 1043 } 1044 1045 static int 1046 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1047 { 1048 dnode_t *dn; 1049 zbookmark_phys_t zb; 1050 arc_flags_t aflags = ARC_FLAG_NOWAIT; 1051 int err, zio_flags = 0; 1052 1053 DB_DNODE_ENTER(db); 1054 dn = DB_DNODE(db); 1055 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1056 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 1057 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1058 ASSERT(MUTEX_HELD(&db->db_mtx)); 1059 ASSERT(db->db_state == DB_UNCACHED); 1060 ASSERT(db->db_buf == NULL); 1061 1062 if (db->db_blkid == DMU_BONUS_BLKID) { 1063 /* 1064 * The bonus length stored in the dnode may be less than 1065 * the maximum available space in the bonus buffer. 1066 */ 1067 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1068 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1069 1070 /* if the underlying dnode block is encrypted, decrypt it */ 1071 err = dbuf_read_verify_dnode_crypt(db, flags); 1072 if (err != 0) { 1073 DB_DNODE_EXIT(db); 1074 mutex_exit(&db->db_mtx); 1075 return (err); 1076 } 1077 1078 ASSERT3U(bonuslen, <=, db->db.db_size); 1079 db->db.db_data = zio_buf_alloc(max_bonuslen); 1080 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1081 if (bonuslen < max_bonuslen) 1082 bzero(db->db.db_data, max_bonuslen); 1083 if (bonuslen) 1084 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 1085 DB_DNODE_EXIT(db); 1086 db->db_state = DB_CACHED; 1087 mutex_exit(&db->db_mtx); 1088 return (0); 1089 } 1090 1091 /* 1092 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1093 * processes the delete record and clears the bp while we are waiting 1094 * for the dn_mtx (resulting in a "no" from block_freed). 1095 */ 1096 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 1097 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 1098 BP_IS_HOLE(db->db_blkptr)))) { 1099 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1100 1101 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type, 1102 db->db.db_size)); 1103 bzero(db->db.db_data, db->db.db_size); 1104 1105 if (db->db_blkptr != NULL && db->db_level > 0 && 1106 BP_IS_HOLE(db->db_blkptr) && 1107 db->db_blkptr->blk_birth != 0) { 1108 blkptr_t *bps = db->db.db_data; 1109 for (int i = 0; i < ((1 << 1110 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 1111 i++) { 1112 blkptr_t *bp = &bps[i]; 1113 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 1114 1 << dn->dn_indblkshift); 1115 BP_SET_LSIZE(bp, 1116 BP_GET_LEVEL(db->db_blkptr) == 1 ? 1117 dn->dn_datablksz : 1118 BP_GET_LSIZE(db->db_blkptr)); 1119 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 1120 BP_SET_LEVEL(bp, 1121 BP_GET_LEVEL(db->db_blkptr) - 1); 1122 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 1123 } 1124 } 1125 DB_DNODE_EXIT(db); 1126 db->db_state = DB_CACHED; 1127 mutex_exit(&db->db_mtx); 1128 return (0); 1129 } 1130 1131 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1132 db->db.db_object, db->db_level, db->db_blkid); 1133 1134 /* 1135 * All bps of an encrypted os should have the encryption bit set. 1136 * If this is not true it indicates tampering and we report an error. 1137 */ 1138 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) { 1139 spa_log_error(db->db_objset->os_spa, &zb); 1140 zfs_panic_recover("unencrypted block in encrypted " 1141 "object set %llu", dmu_objset_id(db->db_objset)); 1142 DB_DNODE_EXIT(db); 1143 mutex_exit(&db->db_mtx); 1144 return (SET_ERROR(EIO)); 1145 } 1146 1147 err = dbuf_read_verify_dnode_crypt(db, flags); 1148 if (err != 0) { 1149 DB_DNODE_EXIT(db); 1150 mutex_exit(&db->db_mtx); 1151 return (err); 1152 } 1153 1154 DB_DNODE_EXIT(db); 1155 1156 db->db_state = DB_READ; 1157 mutex_exit(&db->db_mtx); 1158 1159 if (DBUF_IS_L2CACHEABLE(db)) 1160 aflags |= ARC_FLAG_L2CACHE; 1161 1162 dbuf_add_ref(db, NULL); 1163 1164 zio_flags = (flags & DB_RF_CANFAIL) ? 1165 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1166 1167 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1168 zio_flags |= ZIO_FLAG_RAW; 1169 1170 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 1171 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1172 &aflags, &zb); 1173 1174 return (err); 1175 } 1176 1177 /* 1178 * This is our just-in-time copy function. It makes a copy of buffers that 1179 * have been modified in a previous transaction group before we access them in 1180 * the current active group. 1181 * 1182 * This function is used in three places: when we are dirtying a buffer for the 1183 * first time in a txg, when we are freeing a range in a dnode that includes 1184 * this buffer, and when we are accessing a buffer which was received compressed 1185 * and later referenced in a WRITE_BYREF record. 1186 * 1187 * Note that when we are called from dbuf_free_range() we do not put a hold on 1188 * the buffer, we just traverse the active dbuf list for the dnode. 1189 */ 1190 static void 1191 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1192 { 1193 dbuf_dirty_record_t *dr = db->db_last_dirty; 1194 1195 ASSERT(MUTEX_HELD(&db->db_mtx)); 1196 ASSERT(db->db.db_data != NULL); 1197 ASSERT(db->db_level == 0); 1198 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1199 1200 if (dr == NULL || 1201 (dr->dt.dl.dr_data != 1202 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1203 return; 1204 1205 /* 1206 * If the last dirty record for this dbuf has not yet synced 1207 * and its referencing the dbuf data, either: 1208 * reset the reference to point to a new copy, 1209 * or (if there a no active holders) 1210 * just null out the current db_data pointer. 1211 */ 1212 ASSERT3U(dr->dr_txg, >=, txg - 2); 1213 if (db->db_blkid == DMU_BONUS_BLKID) { 1214 /* Note that the data bufs here are zio_bufs */ 1215 dnode_t *dn = DB_DNODE(db); 1216 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1217 dr->dt.dl.dr_data = zio_buf_alloc(bonuslen); 1218 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1219 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen); 1220 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1221 dnode_t *dn = DB_DNODE(db); 1222 int size = arc_buf_size(db->db_buf); 1223 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1224 spa_t *spa = db->db_objset->os_spa; 1225 enum zio_compress compress_type = 1226 arc_get_compression(db->db_buf); 1227 1228 if (arc_is_encrypted(db->db_buf)) { 1229 boolean_t byteorder; 1230 uint8_t salt[ZIO_DATA_SALT_LEN]; 1231 uint8_t iv[ZIO_DATA_IV_LEN]; 1232 uint8_t mac[ZIO_DATA_MAC_LEN]; 1233 1234 arc_get_raw_params(db->db_buf, &byteorder, salt, 1235 iv, mac); 1236 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1237 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1238 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1239 compress_type); 1240 } else if (compress_type != ZIO_COMPRESS_OFF) { 1241 ASSERT3U(type, ==, ARC_BUFC_DATA); 1242 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1243 size, arc_buf_lsize(db->db_buf), compress_type); 1244 } else { 1245 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1246 } 1247 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1248 } else { 1249 db->db_buf = NULL; 1250 dbuf_clear_data(db); 1251 } 1252 } 1253 1254 int 1255 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1256 { 1257 int err = 0; 1258 boolean_t prefetch; 1259 dnode_t *dn; 1260 1261 /* 1262 * We don't have to hold the mutex to check db_state because it 1263 * can't be freed while we have a hold on the buffer. 1264 */ 1265 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1266 1267 if (db->db_state == DB_NOFILL) 1268 return (SET_ERROR(EIO)); 1269 1270 DB_DNODE_ENTER(db); 1271 dn = DB_DNODE(db); 1272 if ((flags & DB_RF_HAVESTRUCT) == 0) 1273 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1274 1275 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1276 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1277 DBUF_IS_CACHEABLE(db); 1278 1279 mutex_enter(&db->db_mtx); 1280 if (db->db_state == DB_CACHED) { 1281 spa_t *spa = dn->dn_objset->os_spa; 1282 1283 /* 1284 * Ensure that this block's dnode has been decrypted if 1285 * the caller has requested decrypted data. 1286 */ 1287 err = dbuf_read_verify_dnode_crypt(db, flags); 1288 1289 /* 1290 * If the arc buf is compressed or encrypted and the caller 1291 * requested uncompressed data, we need to untransform it 1292 * before returning. We also call arc_untransform() on any 1293 * unauthenticated blocks, which will verify their MAC if 1294 * the key is now available. 1295 */ 1296 if (err == 0 && db->db_buf != NULL && 1297 (flags & DB_RF_NO_DECRYPT) == 0 && 1298 (arc_is_encrypted(db->db_buf) || 1299 arc_is_unauthenticated(db->db_buf) || 1300 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1301 zbookmark_phys_t zb; 1302 1303 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1304 db->db.db_object, db->db_level, db->db_blkid); 1305 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1306 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1307 dbuf_set_data(db, db->db_buf); 1308 } 1309 mutex_exit(&db->db_mtx); 1310 if (err == 0 && prefetch) 1311 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1312 if ((flags & DB_RF_HAVESTRUCT) == 0) 1313 rw_exit(&dn->dn_struct_rwlock); 1314 DB_DNODE_EXIT(db); 1315 } else if (db->db_state == DB_UNCACHED) { 1316 spa_t *spa = dn->dn_objset->os_spa; 1317 boolean_t need_wait = B_FALSE; 1318 1319 if (zio == NULL && 1320 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1321 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1322 need_wait = B_TRUE; 1323 } 1324 err = dbuf_read_impl(db, zio, flags); 1325 1326 /* dbuf_read_impl has dropped db_mtx for us */ 1327 1328 if (!err && prefetch) 1329 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1330 1331 if ((flags & DB_RF_HAVESTRUCT) == 0) 1332 rw_exit(&dn->dn_struct_rwlock); 1333 DB_DNODE_EXIT(db); 1334 1335 if (!err && need_wait) 1336 err = zio_wait(zio); 1337 } else { 1338 /* 1339 * Another reader came in while the dbuf was in flight 1340 * between UNCACHED and CACHED. Either a writer will finish 1341 * writing the buffer (sending the dbuf to CACHED) or the 1342 * first reader's request will reach the read_done callback 1343 * and send the dbuf to CACHED. Otherwise, a failure 1344 * occurred and the dbuf went to UNCACHED. 1345 */ 1346 mutex_exit(&db->db_mtx); 1347 if (prefetch) 1348 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1349 if ((flags & DB_RF_HAVESTRUCT) == 0) 1350 rw_exit(&dn->dn_struct_rwlock); 1351 DB_DNODE_EXIT(db); 1352 1353 /* Skip the wait per the caller's request. */ 1354 mutex_enter(&db->db_mtx); 1355 if ((flags & DB_RF_NEVERWAIT) == 0) { 1356 while (db->db_state == DB_READ || 1357 db->db_state == DB_FILL) { 1358 ASSERT(db->db_state == DB_READ || 1359 (flags & DB_RF_HAVESTRUCT) == 0); 1360 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1361 db, zio_t *, zio); 1362 cv_wait(&db->db_changed, &db->db_mtx); 1363 } 1364 if (db->db_state == DB_UNCACHED) 1365 err = SET_ERROR(EIO); 1366 } 1367 mutex_exit(&db->db_mtx); 1368 } 1369 1370 return (err); 1371 } 1372 1373 static void 1374 dbuf_noread(dmu_buf_impl_t *db) 1375 { 1376 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1377 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1378 mutex_enter(&db->db_mtx); 1379 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1380 cv_wait(&db->db_changed, &db->db_mtx); 1381 if (db->db_state == DB_UNCACHED) { 1382 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1383 spa_t *spa = db->db_objset->os_spa; 1384 1385 ASSERT(db->db_buf == NULL); 1386 ASSERT(db->db.db_data == NULL); 1387 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size)); 1388 db->db_state = DB_FILL; 1389 } else if (db->db_state == DB_NOFILL) { 1390 dbuf_clear_data(db); 1391 } else { 1392 ASSERT3U(db->db_state, ==, DB_CACHED); 1393 } 1394 mutex_exit(&db->db_mtx); 1395 } 1396 1397 void 1398 dbuf_unoverride(dbuf_dirty_record_t *dr) 1399 { 1400 dmu_buf_impl_t *db = dr->dr_dbuf; 1401 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1402 uint64_t txg = dr->dr_txg; 1403 1404 ASSERT(MUTEX_HELD(&db->db_mtx)); 1405 /* 1406 * This assert is valid because dmu_sync() expects to be called by 1407 * a zilog's get_data while holding a range lock. This call only 1408 * comes from dbuf_dirty() callers who must also hold a range lock. 1409 */ 1410 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1411 ASSERT(db->db_level == 0); 1412 1413 if (db->db_blkid == DMU_BONUS_BLKID || 1414 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1415 return; 1416 1417 ASSERT(db->db_data_pending != dr); 1418 1419 /* free this block */ 1420 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1421 zio_free(db->db_objset->os_spa, txg, bp); 1422 1423 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1424 dr->dt.dl.dr_nopwrite = B_FALSE; 1425 dr->dt.dl.dr_has_raw_params = B_FALSE; 1426 1427 /* 1428 * Release the already-written buffer, so we leave it in 1429 * a consistent dirty state. Note that all callers are 1430 * modifying the buffer, so they will immediately do 1431 * another (redundant) arc_release(). Therefore, leave 1432 * the buf thawed to save the effort of freezing & 1433 * immediately re-thawing it. 1434 */ 1435 arc_release(dr->dt.dl.dr_data, db); 1436 } 1437 1438 /* 1439 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1440 * data blocks in the free range, so that any future readers will find 1441 * empty blocks. 1442 */ 1443 void 1444 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1445 dmu_tx_t *tx) 1446 { 1447 dmu_buf_impl_t db_search; 1448 dmu_buf_impl_t *db, *db_next; 1449 uint64_t txg = tx->tx_txg; 1450 avl_index_t where; 1451 1452 if (end_blkid > dn->dn_maxblkid && 1453 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1454 end_blkid = dn->dn_maxblkid; 1455 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1456 1457 db_search.db_level = 0; 1458 db_search.db_blkid = start_blkid; 1459 db_search.db_state = DB_SEARCH; 1460 1461 mutex_enter(&dn->dn_dbufs_mtx); 1462 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1463 ASSERT3P(db, ==, NULL); 1464 1465 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1466 1467 for (; db != NULL; db = db_next) { 1468 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1469 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1470 1471 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1472 break; 1473 } 1474 ASSERT3U(db->db_blkid, >=, start_blkid); 1475 1476 /* found a level 0 buffer in the range */ 1477 mutex_enter(&db->db_mtx); 1478 if (dbuf_undirty(db, tx)) { 1479 /* mutex has been dropped and dbuf destroyed */ 1480 continue; 1481 } 1482 1483 if (db->db_state == DB_UNCACHED || 1484 db->db_state == DB_NOFILL || 1485 db->db_state == DB_EVICTING) { 1486 ASSERT(db->db.db_data == NULL); 1487 mutex_exit(&db->db_mtx); 1488 continue; 1489 } 1490 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1491 /* will be handled in dbuf_read_done or dbuf_rele */ 1492 db->db_freed_in_flight = TRUE; 1493 mutex_exit(&db->db_mtx); 1494 continue; 1495 } 1496 if (zfs_refcount_count(&db->db_holds) == 0) { 1497 ASSERT(db->db_buf); 1498 dbuf_destroy(db); 1499 continue; 1500 } 1501 /* The dbuf is referenced */ 1502 1503 if (db->db_last_dirty != NULL) { 1504 dbuf_dirty_record_t *dr = db->db_last_dirty; 1505 1506 if (dr->dr_txg == txg) { 1507 /* 1508 * This buffer is "in-use", re-adjust the file 1509 * size to reflect that this buffer may 1510 * contain new data when we sync. 1511 */ 1512 if (db->db_blkid != DMU_SPILL_BLKID && 1513 db->db_blkid > dn->dn_maxblkid) 1514 dn->dn_maxblkid = db->db_blkid; 1515 dbuf_unoverride(dr); 1516 } else { 1517 /* 1518 * This dbuf is not dirty in the open context. 1519 * Either uncache it (if its not referenced in 1520 * the open context) or reset its contents to 1521 * empty. 1522 */ 1523 dbuf_fix_old_data(db, txg); 1524 } 1525 } 1526 /* clear the contents if its cached */ 1527 if (db->db_state == DB_CACHED) { 1528 ASSERT(db->db.db_data != NULL); 1529 arc_release(db->db_buf, db); 1530 bzero(db->db.db_data, db->db.db_size); 1531 arc_buf_freeze(db->db_buf); 1532 } 1533 1534 mutex_exit(&db->db_mtx); 1535 } 1536 mutex_exit(&dn->dn_dbufs_mtx); 1537 } 1538 1539 void 1540 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1541 { 1542 arc_buf_t *buf, *obuf; 1543 int osize = db->db.db_size; 1544 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1545 dnode_t *dn; 1546 1547 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1548 1549 DB_DNODE_ENTER(db); 1550 dn = DB_DNODE(db); 1551 1552 /* XXX does *this* func really need the lock? */ 1553 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1554 1555 /* 1556 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1557 * is OK, because there can be no other references to the db 1558 * when we are changing its size, so no concurrent DB_FILL can 1559 * be happening. 1560 */ 1561 /* 1562 * XXX we should be doing a dbuf_read, checking the return 1563 * value and returning that up to our callers 1564 */ 1565 dmu_buf_will_dirty(&db->db, tx); 1566 1567 /* create the data buffer for the new block */ 1568 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1569 1570 /* copy old block data to the new block */ 1571 obuf = db->db_buf; 1572 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1573 /* zero the remainder */ 1574 if (size > osize) 1575 bzero((uint8_t *)buf->b_data + osize, size - osize); 1576 1577 mutex_enter(&db->db_mtx); 1578 dbuf_set_data(db, buf); 1579 arc_buf_destroy(obuf, db); 1580 db->db.db_size = size; 1581 1582 if (db->db_level == 0) { 1583 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1584 db->db_last_dirty->dt.dl.dr_data = buf; 1585 } 1586 mutex_exit(&db->db_mtx); 1587 1588 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1589 DB_DNODE_EXIT(db); 1590 } 1591 1592 void 1593 dbuf_release_bp(dmu_buf_impl_t *db) 1594 { 1595 objset_t *os = db->db_objset; 1596 1597 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1598 ASSERT(arc_released(os->os_phys_buf) || 1599 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1600 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1601 1602 (void) arc_release(db->db_buf, db); 1603 } 1604 1605 /* 1606 * We already have a dirty record for this TXG, and we are being 1607 * dirtied again. 1608 */ 1609 static void 1610 dbuf_redirty(dbuf_dirty_record_t *dr) 1611 { 1612 dmu_buf_impl_t *db = dr->dr_dbuf; 1613 1614 ASSERT(MUTEX_HELD(&db->db_mtx)); 1615 1616 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1617 /* 1618 * If this buffer has already been written out, 1619 * we now need to reset its state. 1620 */ 1621 dbuf_unoverride(dr); 1622 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1623 db->db_state != DB_NOFILL) { 1624 /* Already released on initial dirty, so just thaw. */ 1625 ASSERT(arc_released(db->db_buf)); 1626 arc_buf_thaw(db->db_buf); 1627 } 1628 } 1629 } 1630 1631 dbuf_dirty_record_t * 1632 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1633 { 1634 dnode_t *dn; 1635 objset_t *os; 1636 dbuf_dirty_record_t **drp, *dr; 1637 int drop_struct_lock = FALSE; 1638 int txgoff = tx->tx_txg & TXG_MASK; 1639 1640 ASSERT(tx->tx_txg != 0); 1641 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1642 DMU_TX_DIRTY_BUF(tx, db); 1643 1644 DB_DNODE_ENTER(db); 1645 dn = DB_DNODE(db); 1646 /* 1647 * Shouldn't dirty a regular buffer in syncing context. Private 1648 * objects may be dirtied in syncing context, but only if they 1649 * were already pre-dirtied in open context. 1650 */ 1651 #ifdef DEBUG 1652 if (dn->dn_objset->os_dsl_dataset != NULL) { 1653 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1654 RW_READER, FTAG); 1655 } 1656 ASSERT(!dmu_tx_is_syncing(tx) || 1657 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1658 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1659 dn->dn_objset->os_dsl_dataset == NULL); 1660 if (dn->dn_objset->os_dsl_dataset != NULL) 1661 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 1662 #endif 1663 /* 1664 * We make this assert for private objects as well, but after we 1665 * check if we're already dirty. They are allowed to re-dirty 1666 * in syncing context. 1667 */ 1668 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1669 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1670 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1671 1672 mutex_enter(&db->db_mtx); 1673 /* 1674 * XXX make this true for indirects too? The problem is that 1675 * transactions created with dmu_tx_create_assigned() from 1676 * syncing context don't bother holding ahead. 1677 */ 1678 ASSERT(db->db_level != 0 || 1679 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1680 db->db_state == DB_NOFILL); 1681 1682 mutex_enter(&dn->dn_mtx); 1683 /* 1684 * Don't set dirtyctx to SYNC if we're just modifying this as we 1685 * initialize the objset. 1686 */ 1687 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 1688 if (dn->dn_objset->os_dsl_dataset != NULL) { 1689 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1690 RW_READER, FTAG); 1691 } 1692 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1693 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? 1694 DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1695 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1696 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1697 } 1698 if (dn->dn_objset->os_dsl_dataset != NULL) { 1699 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1700 FTAG); 1701 } 1702 } 1703 1704 if (tx->tx_txg > dn->dn_dirty_txg) 1705 dn->dn_dirty_txg = tx->tx_txg; 1706 mutex_exit(&dn->dn_mtx); 1707 1708 if (db->db_blkid == DMU_SPILL_BLKID) 1709 dn->dn_have_spill = B_TRUE; 1710 1711 /* 1712 * If this buffer is already dirty, we're done. 1713 */ 1714 drp = &db->db_last_dirty; 1715 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1716 db->db.db_object == DMU_META_DNODE_OBJECT); 1717 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1718 drp = &dr->dr_next; 1719 if (dr && dr->dr_txg == tx->tx_txg) { 1720 DB_DNODE_EXIT(db); 1721 1722 dbuf_redirty(dr); 1723 mutex_exit(&db->db_mtx); 1724 return (dr); 1725 } 1726 1727 /* 1728 * Only valid if not already dirty. 1729 */ 1730 ASSERT(dn->dn_object == 0 || 1731 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1732 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1733 1734 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1735 1736 /* 1737 * We should only be dirtying in syncing context if it's the 1738 * mos or we're initializing the os or it's a special object. 1739 * However, we are allowed to dirty in syncing context provided 1740 * we already dirtied it in open context. Hence we must make 1741 * this assertion only if we're not already dirty. 1742 */ 1743 os = dn->dn_objset; 1744 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 1745 #ifdef DEBUG 1746 if (dn->dn_objset->os_dsl_dataset != NULL) 1747 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 1748 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1749 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1750 if (dn->dn_objset->os_dsl_dataset != NULL) 1751 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 1752 #endif 1753 ASSERT(db->db.db_size != 0); 1754 1755 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1756 1757 if (db->db_blkid != DMU_BONUS_BLKID) { 1758 dmu_objset_willuse_space(os, db->db.db_size, tx); 1759 } 1760 1761 /* 1762 * If this buffer is dirty in an old transaction group we need 1763 * to make a copy of it so that the changes we make in this 1764 * transaction group won't leak out when we sync the older txg. 1765 */ 1766 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1767 if (db->db_level == 0) { 1768 void *data_old = db->db_buf; 1769 1770 if (db->db_state != DB_NOFILL) { 1771 if (db->db_blkid == DMU_BONUS_BLKID) { 1772 dbuf_fix_old_data(db, tx->tx_txg); 1773 data_old = db->db.db_data; 1774 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1775 /* 1776 * Release the data buffer from the cache so 1777 * that we can modify it without impacting 1778 * possible other users of this cached data 1779 * block. Note that indirect blocks and 1780 * private objects are not released until the 1781 * syncing state (since they are only modified 1782 * then). 1783 */ 1784 arc_release(db->db_buf, db); 1785 dbuf_fix_old_data(db, tx->tx_txg); 1786 data_old = db->db_buf; 1787 } 1788 ASSERT(data_old != NULL); 1789 } 1790 dr->dt.dl.dr_data = data_old; 1791 } else { 1792 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1793 list_create(&dr->dt.di.dr_children, 1794 sizeof (dbuf_dirty_record_t), 1795 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1796 } 1797 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1798 dr->dr_accounted = db->db.db_size; 1799 dr->dr_dbuf = db; 1800 dr->dr_txg = tx->tx_txg; 1801 dr->dr_next = *drp; 1802 *drp = dr; 1803 1804 /* 1805 * We could have been freed_in_flight between the dbuf_noread 1806 * and dbuf_dirty. We win, as though the dbuf_noread() had 1807 * happened after the free. 1808 */ 1809 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1810 db->db_blkid != DMU_SPILL_BLKID) { 1811 mutex_enter(&dn->dn_mtx); 1812 if (dn->dn_free_ranges[txgoff] != NULL) { 1813 range_tree_clear(dn->dn_free_ranges[txgoff], 1814 db->db_blkid, 1); 1815 } 1816 mutex_exit(&dn->dn_mtx); 1817 db->db_freed_in_flight = FALSE; 1818 } 1819 1820 /* 1821 * This buffer is now part of this txg 1822 */ 1823 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1824 db->db_dirtycnt += 1; 1825 ASSERT3U(db->db_dirtycnt, <=, 3); 1826 1827 mutex_exit(&db->db_mtx); 1828 1829 if (db->db_blkid == DMU_BONUS_BLKID || 1830 db->db_blkid == DMU_SPILL_BLKID) { 1831 mutex_enter(&dn->dn_mtx); 1832 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1833 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1834 mutex_exit(&dn->dn_mtx); 1835 dnode_setdirty(dn, tx); 1836 DB_DNODE_EXIT(db); 1837 return (dr); 1838 } 1839 1840 /* 1841 * The dn_struct_rwlock prevents db_blkptr from changing 1842 * due to a write from syncing context completing 1843 * while we are running, so we want to acquire it before 1844 * looking at db_blkptr. 1845 */ 1846 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1847 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1848 drop_struct_lock = TRUE; 1849 } 1850 1851 /* 1852 * We need to hold the dn_struct_rwlock to make this assertion, 1853 * because it protects dn_phys / dn_next_nlevels from changing. 1854 */ 1855 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1856 dn->dn_phys->dn_nlevels > db->db_level || 1857 dn->dn_next_nlevels[txgoff] > db->db_level || 1858 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1859 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1860 1861 /* 1862 * If we are overwriting a dedup BP, then unless it is snapshotted, 1863 * when we get to syncing context we will need to decrement its 1864 * refcount in the DDT. Prefetch the relevant DDT block so that 1865 * syncing context won't have to wait for the i/o. 1866 */ 1867 ddt_prefetch(os->os_spa, db->db_blkptr); 1868 1869 if (db->db_level == 0) { 1870 ASSERT(!db->db_objset->os_raw_receive || 1871 dn->dn_maxblkid >= db->db_blkid); 1872 dnode_new_blkid(dn, db->db_blkid, tx, 1873 drop_struct_lock, B_FALSE); 1874 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1875 } 1876 1877 if (db->db_level+1 < dn->dn_nlevels) { 1878 dmu_buf_impl_t *parent = db->db_parent; 1879 dbuf_dirty_record_t *di; 1880 int parent_held = FALSE; 1881 1882 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1883 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1884 1885 parent = dbuf_hold_level(dn, db->db_level+1, 1886 db->db_blkid >> epbs, FTAG); 1887 ASSERT(parent != NULL); 1888 parent_held = TRUE; 1889 } 1890 if (drop_struct_lock) 1891 rw_exit(&dn->dn_struct_rwlock); 1892 ASSERT3U(db->db_level+1, ==, parent->db_level); 1893 di = dbuf_dirty(parent, tx); 1894 if (parent_held) 1895 dbuf_rele(parent, FTAG); 1896 1897 mutex_enter(&db->db_mtx); 1898 /* 1899 * Since we've dropped the mutex, it's possible that 1900 * dbuf_undirty() might have changed this out from under us. 1901 */ 1902 if (db->db_last_dirty == dr || 1903 dn->dn_object == DMU_META_DNODE_OBJECT) { 1904 mutex_enter(&di->dt.di.dr_mtx); 1905 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1906 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1907 list_insert_tail(&di->dt.di.dr_children, dr); 1908 mutex_exit(&di->dt.di.dr_mtx); 1909 dr->dr_parent = di; 1910 } 1911 mutex_exit(&db->db_mtx); 1912 } else { 1913 ASSERT(db->db_level+1 == dn->dn_nlevels); 1914 ASSERT(db->db_blkid < dn->dn_nblkptr); 1915 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1916 mutex_enter(&dn->dn_mtx); 1917 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1918 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1919 mutex_exit(&dn->dn_mtx); 1920 if (drop_struct_lock) 1921 rw_exit(&dn->dn_struct_rwlock); 1922 } 1923 1924 dnode_setdirty(dn, tx); 1925 DB_DNODE_EXIT(db); 1926 return (dr); 1927 } 1928 1929 /* 1930 * Undirty a buffer in the transaction group referenced by the given 1931 * transaction. Return whether this evicted the dbuf. 1932 */ 1933 static boolean_t 1934 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1935 { 1936 dnode_t *dn; 1937 uint64_t txg = tx->tx_txg; 1938 dbuf_dirty_record_t *dr, **drp; 1939 1940 ASSERT(txg != 0); 1941 1942 /* 1943 * Due to our use of dn_nlevels below, this can only be called 1944 * in open context, unless we are operating on the MOS. 1945 * From syncing context, dn_nlevels may be different from the 1946 * dn_nlevels used when dbuf was dirtied. 1947 */ 1948 ASSERT(db->db_objset == 1949 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1950 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1951 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1952 ASSERT0(db->db_level); 1953 ASSERT(MUTEX_HELD(&db->db_mtx)); 1954 1955 /* 1956 * If this buffer is not dirty, we're done. 1957 */ 1958 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1959 if (dr->dr_txg <= txg) 1960 break; 1961 if (dr == NULL || dr->dr_txg < txg) 1962 return (B_FALSE); 1963 ASSERT(dr->dr_txg == txg); 1964 ASSERT(dr->dr_dbuf == db); 1965 1966 DB_DNODE_ENTER(db); 1967 dn = DB_DNODE(db); 1968 1969 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1970 1971 ASSERT(db->db.db_size != 0); 1972 1973 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1974 dr->dr_accounted, txg); 1975 1976 *drp = dr->dr_next; 1977 1978 /* 1979 * Note that there are three places in dbuf_dirty() 1980 * where this dirty record may be put on a list. 1981 * Make sure to do a list_remove corresponding to 1982 * every one of those list_insert calls. 1983 */ 1984 if (dr->dr_parent) { 1985 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1986 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1987 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1988 } else if (db->db_blkid == DMU_SPILL_BLKID || 1989 db->db_level + 1 == dn->dn_nlevels) { 1990 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1991 mutex_enter(&dn->dn_mtx); 1992 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1993 mutex_exit(&dn->dn_mtx); 1994 } 1995 DB_DNODE_EXIT(db); 1996 1997 if (db->db_state != DB_NOFILL) { 1998 dbuf_unoverride(dr); 1999 2000 ASSERT(db->db_buf != NULL); 2001 ASSERT(dr->dt.dl.dr_data != NULL); 2002 if (dr->dt.dl.dr_data != db->db_buf) 2003 arc_buf_destroy(dr->dt.dl.dr_data, db); 2004 } 2005 2006 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2007 2008 ASSERT(db->db_dirtycnt > 0); 2009 db->db_dirtycnt -= 1; 2010 2011 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2012 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 2013 dbuf_destroy(db); 2014 return (B_TRUE); 2015 } 2016 2017 return (B_FALSE); 2018 } 2019 2020 static void 2021 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2022 { 2023 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2024 2025 ASSERT(tx->tx_txg != 0); 2026 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2027 2028 /* 2029 * Quick check for dirtyness. For already dirty blocks, this 2030 * reduces runtime of this function by >90%, and overall performance 2031 * by 50% for some workloads (e.g. file deletion with indirect blocks 2032 * cached). 2033 */ 2034 mutex_enter(&db->db_mtx); 2035 dbuf_dirty_record_t *dr; 2036 for (dr = db->db_last_dirty; 2037 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 2038 /* 2039 * It's possible that it is already dirty but not cached, 2040 * because there are some calls to dbuf_dirty() that don't 2041 * go through dmu_buf_will_dirty(). 2042 */ 2043 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 2044 /* This dbuf is already dirty and cached. */ 2045 dbuf_redirty(dr); 2046 mutex_exit(&db->db_mtx); 2047 return; 2048 } 2049 } 2050 mutex_exit(&db->db_mtx); 2051 2052 DB_DNODE_ENTER(db); 2053 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2054 flags |= DB_RF_HAVESTRUCT; 2055 DB_DNODE_EXIT(db); 2056 (void) dbuf_read(db, NULL, flags); 2057 (void) dbuf_dirty(db, tx); 2058 } 2059 2060 void 2061 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2062 { 2063 dmu_buf_will_dirty_impl(db_fake, 2064 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2065 } 2066 2067 void 2068 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2069 { 2070 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2071 2072 db->db_state = DB_NOFILL; 2073 2074 dmu_buf_will_fill(db_fake, tx); 2075 } 2076 2077 void 2078 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2079 { 2080 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2081 2082 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2083 ASSERT(tx->tx_txg != 0); 2084 ASSERT(db->db_level == 0); 2085 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2086 2087 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2088 dmu_tx_private_ok(tx)); 2089 2090 dbuf_noread(db); 2091 (void) dbuf_dirty(db, tx); 2092 } 2093 2094 /* 2095 * This function is effectively the same as dmu_buf_will_dirty(), but 2096 * indicates the caller expects raw encrypted data in the db, and provides 2097 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2098 * blkptr_t when this dbuf is written. This is only used for blocks of 2099 * dnodes during a raw receive. 2100 */ 2101 void 2102 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2103 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2104 { 2105 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2106 dbuf_dirty_record_t *dr; 2107 2108 /* 2109 * dr_has_raw_params is only processed for blocks of dnodes 2110 * (see dbuf_sync_dnode_leaf_crypt()). 2111 */ 2112 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2113 ASSERT3U(db->db_level, ==, 0); 2114 2115 dmu_buf_will_dirty_impl(db_fake, 2116 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2117 2118 dr = db->db_last_dirty; 2119 while (dr != NULL && dr->dr_txg > tx->tx_txg) 2120 dr = dr->dr_next; 2121 2122 ASSERT3P(dr, !=, NULL); 2123 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2124 2125 dr->dt.dl.dr_has_raw_params = B_TRUE; 2126 dr->dt.dl.dr_byteorder = byteorder; 2127 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN); 2128 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN); 2129 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN); 2130 } 2131 2132 #pragma weak dmu_buf_fill_done = dbuf_fill_done 2133 /* ARGSUSED */ 2134 void 2135 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 2136 { 2137 mutex_enter(&db->db_mtx); 2138 DBUF_VERIFY(db); 2139 2140 if (db->db_state == DB_FILL) { 2141 if (db->db_level == 0 && db->db_freed_in_flight) { 2142 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2143 /* we were freed while filling */ 2144 /* XXX dbuf_undirty? */ 2145 bzero(db->db.db_data, db->db.db_size); 2146 db->db_freed_in_flight = FALSE; 2147 } 2148 db->db_state = DB_CACHED; 2149 cv_broadcast(&db->db_changed); 2150 } 2151 mutex_exit(&db->db_mtx); 2152 } 2153 2154 void 2155 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2156 bp_embedded_type_t etype, enum zio_compress comp, 2157 int uncompressed_size, int compressed_size, int byteorder, 2158 dmu_tx_t *tx) 2159 { 2160 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2161 struct dirty_leaf *dl; 2162 dmu_object_type_t type; 2163 2164 if (etype == BP_EMBEDDED_TYPE_DATA) { 2165 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2166 SPA_FEATURE_EMBEDDED_DATA)); 2167 } 2168 2169 DB_DNODE_ENTER(db); 2170 type = DB_DNODE(db)->dn_type; 2171 DB_DNODE_EXIT(db); 2172 2173 ASSERT0(db->db_level); 2174 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2175 2176 dmu_buf_will_not_fill(dbuf, tx); 2177 2178 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 2179 dl = &db->db_last_dirty->dt.dl; 2180 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2181 data, comp, uncompressed_size, compressed_size); 2182 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2183 BP_SET_TYPE(&dl->dr_overridden_by, type); 2184 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2185 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2186 2187 dl->dr_override_state = DR_OVERRIDDEN; 2188 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 2189 } 2190 2191 /* 2192 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2193 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2194 */ 2195 void 2196 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2197 { 2198 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2199 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2200 ASSERT(db->db_level == 0); 2201 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2202 ASSERT(buf != NULL); 2203 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2204 ASSERT(tx->tx_txg != 0); 2205 2206 arc_return_buf(buf, db); 2207 ASSERT(arc_released(buf)); 2208 2209 mutex_enter(&db->db_mtx); 2210 2211 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2212 cv_wait(&db->db_changed, &db->db_mtx); 2213 2214 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2215 2216 if (db->db_state == DB_CACHED && 2217 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2218 /* 2219 * In practice, we will never have a case where we have an 2220 * encrypted arc buffer while additional holds exist on the 2221 * dbuf. We don't handle this here so we simply assert that 2222 * fact instead. 2223 */ 2224 ASSERT(!arc_is_encrypted(buf)); 2225 mutex_exit(&db->db_mtx); 2226 (void) dbuf_dirty(db, tx); 2227 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2228 arc_buf_destroy(buf, db); 2229 xuio_stat_wbuf_copied(); 2230 return; 2231 } 2232 2233 xuio_stat_wbuf_nocopy(); 2234 if (db->db_state == DB_CACHED) { 2235 dbuf_dirty_record_t *dr = db->db_last_dirty; 2236 2237 ASSERT(db->db_buf != NULL); 2238 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2239 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2240 2241 if (!arc_released(db->db_buf)) { 2242 ASSERT(dr->dt.dl.dr_override_state == 2243 DR_OVERRIDDEN); 2244 arc_release(db->db_buf, db); 2245 } 2246 dr->dt.dl.dr_data = buf; 2247 arc_buf_destroy(db->db_buf, db); 2248 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2249 arc_release(db->db_buf, db); 2250 arc_buf_destroy(db->db_buf, db); 2251 } 2252 db->db_buf = NULL; 2253 } 2254 ASSERT(db->db_buf == NULL); 2255 dbuf_set_data(db, buf); 2256 db->db_state = DB_FILL; 2257 mutex_exit(&db->db_mtx); 2258 (void) dbuf_dirty(db, tx); 2259 dmu_buf_fill_done(&db->db, tx); 2260 } 2261 2262 void 2263 dbuf_destroy(dmu_buf_impl_t *db) 2264 { 2265 dnode_t *dn; 2266 dmu_buf_impl_t *parent = db->db_parent; 2267 dmu_buf_impl_t *dndb; 2268 2269 ASSERT(MUTEX_HELD(&db->db_mtx)); 2270 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2271 2272 if (db->db_buf != NULL) { 2273 arc_buf_destroy(db->db_buf, db); 2274 db->db_buf = NULL; 2275 } 2276 2277 if (db->db_blkid == DMU_BONUS_BLKID) { 2278 int slots = DB_DNODE(db)->dn_num_slots; 2279 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2280 if (db->db.db_data != NULL) { 2281 zio_buf_free(db->db.db_data, bonuslen); 2282 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2283 db->db_state = DB_UNCACHED; 2284 } 2285 } 2286 2287 dbuf_clear_data(db); 2288 2289 if (multilist_link_active(&db->db_cache_link)) { 2290 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2291 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2292 2293 multilist_remove(dbuf_caches[db->db_caching_status].cache, db); 2294 (void) zfs_refcount_remove_many( 2295 &dbuf_caches[db->db_caching_status].size, 2296 db->db.db_size, db); 2297 2298 db->db_caching_status = DB_NO_CACHE; 2299 } 2300 2301 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2302 ASSERT(db->db_data_pending == NULL); 2303 2304 db->db_state = DB_EVICTING; 2305 db->db_blkptr = NULL; 2306 2307 /* 2308 * Now that db_state is DB_EVICTING, nobody else can find this via 2309 * the hash table. We can now drop db_mtx, which allows us to 2310 * acquire the dn_dbufs_mtx. 2311 */ 2312 mutex_exit(&db->db_mtx); 2313 2314 DB_DNODE_ENTER(db); 2315 dn = DB_DNODE(db); 2316 dndb = dn->dn_dbuf; 2317 if (db->db_blkid != DMU_BONUS_BLKID) { 2318 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2319 if (needlock) 2320 mutex_enter(&dn->dn_dbufs_mtx); 2321 avl_remove(&dn->dn_dbufs, db); 2322 atomic_dec_32(&dn->dn_dbufs_count); 2323 membar_producer(); 2324 DB_DNODE_EXIT(db); 2325 if (needlock) 2326 mutex_exit(&dn->dn_dbufs_mtx); 2327 /* 2328 * Decrementing the dbuf count means that the hold corresponding 2329 * to the removed dbuf is no longer discounted in dnode_move(), 2330 * so the dnode cannot be moved until after we release the hold. 2331 * The membar_producer() ensures visibility of the decremented 2332 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2333 * release any lock. 2334 */ 2335 mutex_enter(&dn->dn_mtx); 2336 dnode_rele_and_unlock(dn, db, B_TRUE); 2337 db->db_dnode_handle = NULL; 2338 2339 dbuf_hash_remove(db); 2340 } else { 2341 DB_DNODE_EXIT(db); 2342 } 2343 2344 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2345 2346 db->db_parent = NULL; 2347 2348 ASSERT(db->db_buf == NULL); 2349 ASSERT(db->db.db_data == NULL); 2350 ASSERT(db->db_hash_next == NULL); 2351 ASSERT(db->db_blkptr == NULL); 2352 ASSERT(db->db_data_pending == NULL); 2353 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 2354 ASSERT(!multilist_link_active(&db->db_cache_link)); 2355 2356 kmem_cache_free(dbuf_kmem_cache, db); 2357 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2358 2359 /* 2360 * If this dbuf is referenced from an indirect dbuf, 2361 * decrement the ref count on the indirect dbuf. 2362 */ 2363 if (parent && parent != dndb) { 2364 mutex_enter(&parent->db_mtx); 2365 dbuf_rele_and_unlock(parent, db, B_TRUE); 2366 } 2367 } 2368 2369 /* 2370 * Note: While bpp will always be updated if the function returns success, 2371 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2372 * this happens when the dnode is the meta-dnode, or {user|group|project}used 2373 * object. 2374 */ 2375 static int 2376 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2377 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2378 { 2379 *parentp = NULL; 2380 *bpp = NULL; 2381 2382 ASSERT(blkid != DMU_BONUS_BLKID); 2383 2384 if (blkid == DMU_SPILL_BLKID) { 2385 mutex_enter(&dn->dn_mtx); 2386 if (dn->dn_have_spill && 2387 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2388 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 2389 else 2390 *bpp = NULL; 2391 dbuf_add_ref(dn->dn_dbuf, NULL); 2392 *parentp = dn->dn_dbuf; 2393 mutex_exit(&dn->dn_mtx); 2394 return (0); 2395 } 2396 2397 int nlevels = 2398 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2399 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2400 2401 ASSERT3U(level * epbs, <, 64); 2402 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2403 /* 2404 * This assertion shouldn't trip as long as the max indirect block size 2405 * is less than 1M. The reason for this is that up to that point, 2406 * the number of levels required to address an entire object with blocks 2407 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2408 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2409 * (i.e. we can address the entire object), objects will all use at most 2410 * N-1 levels and the assertion won't overflow. However, once epbs is 2411 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2412 * enough to address an entire object, so objects will have 5 levels, 2413 * but then this assertion will overflow. 2414 * 2415 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2416 * need to redo this logic to handle overflows. 2417 */ 2418 ASSERT(level >= nlevels || 2419 ((nlevels - level - 1) * epbs) + 2420 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2421 if (level >= nlevels || 2422 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2423 ((nlevels - level - 1) * epbs)) || 2424 (fail_sparse && 2425 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2426 /* the buffer has no parent yet */ 2427 return (SET_ERROR(ENOENT)); 2428 } else if (level < nlevels-1) { 2429 /* this block is referenced from an indirect block */ 2430 int err = dbuf_hold_impl(dn, level+1, 2431 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2432 if (err) 2433 return (err); 2434 err = dbuf_read(*parentp, NULL, 2435 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2436 if (err) { 2437 dbuf_rele(*parentp, NULL); 2438 *parentp = NULL; 2439 return (err); 2440 } 2441 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2442 (blkid & ((1ULL << epbs) - 1)); 2443 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2444 ASSERT(BP_IS_HOLE(*bpp)); 2445 return (0); 2446 } else { 2447 /* the block is referenced from the dnode */ 2448 ASSERT3U(level, ==, nlevels-1); 2449 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2450 blkid < dn->dn_phys->dn_nblkptr); 2451 if (dn->dn_dbuf) { 2452 dbuf_add_ref(dn->dn_dbuf, NULL); 2453 *parentp = dn->dn_dbuf; 2454 } 2455 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2456 return (0); 2457 } 2458 } 2459 2460 static dmu_buf_impl_t * 2461 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2462 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2463 { 2464 objset_t *os = dn->dn_objset; 2465 dmu_buf_impl_t *db, *odb; 2466 2467 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2468 ASSERT(dn->dn_type != DMU_OT_NONE); 2469 2470 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2471 2472 db->db_objset = os; 2473 db->db.db_object = dn->dn_object; 2474 db->db_level = level; 2475 db->db_blkid = blkid; 2476 db->db_last_dirty = NULL; 2477 db->db_dirtycnt = 0; 2478 db->db_dnode_handle = dn->dn_handle; 2479 db->db_parent = parent; 2480 db->db_blkptr = blkptr; 2481 2482 db->db_user = NULL; 2483 db->db_user_immediate_evict = FALSE; 2484 db->db_freed_in_flight = FALSE; 2485 db->db_pending_evict = FALSE; 2486 2487 if (blkid == DMU_BONUS_BLKID) { 2488 ASSERT3P(parent, ==, dn->dn_dbuf); 2489 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 2490 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2491 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2492 db->db.db_offset = DMU_BONUS_BLKID; 2493 db->db_state = DB_UNCACHED; 2494 db->db_caching_status = DB_NO_CACHE; 2495 /* the bonus dbuf is not placed in the hash table */ 2496 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2497 return (db); 2498 } else if (blkid == DMU_SPILL_BLKID) { 2499 db->db.db_size = (blkptr != NULL) ? 2500 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2501 db->db.db_offset = 0; 2502 } else { 2503 int blocksize = 2504 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2505 db->db.db_size = blocksize; 2506 db->db.db_offset = db->db_blkid * blocksize; 2507 } 2508 2509 /* 2510 * Hold the dn_dbufs_mtx while we get the new dbuf 2511 * in the hash table *and* added to the dbufs list. 2512 * This prevents a possible deadlock with someone 2513 * trying to look up this dbuf before its added to the 2514 * dn_dbufs list. 2515 */ 2516 mutex_enter(&dn->dn_dbufs_mtx); 2517 db->db_state = DB_EVICTING; 2518 if ((odb = dbuf_hash_insert(db)) != NULL) { 2519 /* someone else inserted it first */ 2520 kmem_cache_free(dbuf_kmem_cache, db); 2521 mutex_exit(&dn->dn_dbufs_mtx); 2522 return (odb); 2523 } 2524 avl_add(&dn->dn_dbufs, db); 2525 2526 db->db_state = DB_UNCACHED; 2527 db->db_caching_status = DB_NO_CACHE; 2528 mutex_exit(&dn->dn_dbufs_mtx); 2529 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2530 2531 if (parent && parent != dn->dn_dbuf) 2532 dbuf_add_ref(parent, db); 2533 2534 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2535 zfs_refcount_count(&dn->dn_holds) > 0); 2536 (void) zfs_refcount_add(&dn->dn_holds, db); 2537 atomic_inc_32(&dn->dn_dbufs_count); 2538 2539 dprintf_dbuf(db, "db=%p\n", db); 2540 2541 return (db); 2542 } 2543 2544 typedef struct dbuf_prefetch_arg { 2545 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2546 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2547 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2548 int dpa_curlevel; /* The current level that we're reading */ 2549 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2550 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2551 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2552 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2553 } dbuf_prefetch_arg_t; 2554 2555 /* 2556 * Actually issue the prefetch read for the block given. 2557 */ 2558 static void 2559 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2560 { 2561 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2562 return; 2563 2564 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 2565 arc_flags_t aflags = 2566 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2567 2568 /* dnodes are always read as raw and then converted later */ 2569 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 2570 dpa->dpa_curlevel == 0) 2571 zio_flags |= ZIO_FLAG_RAW; 2572 2573 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2574 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2575 ASSERT(dpa->dpa_zio != NULL); 2576 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2577 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 2578 } 2579 2580 /* 2581 * Called when an indirect block above our prefetch target is read in. This 2582 * will either read in the next indirect block down the tree or issue the actual 2583 * prefetch if the next block down is our target. 2584 */ 2585 /* ARGSUSED */ 2586 static void 2587 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 2588 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 2589 { 2590 dbuf_prefetch_arg_t *dpa = private; 2591 2592 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2593 ASSERT3S(dpa->dpa_curlevel, >, 0); 2594 2595 if (abuf == NULL) { 2596 ASSERT(zio == NULL || zio->io_error != 0); 2597 kmem_free(dpa, sizeof (*dpa)); 2598 return; 2599 } 2600 ASSERT(zio == NULL || zio->io_error == 0); 2601 2602 /* 2603 * The dpa_dnode is only valid if we are called with a NULL 2604 * zio. This indicates that the arc_read() returned without 2605 * first calling zio_read() to issue a physical read. Once 2606 * a physical read is made the dpa_dnode must be invalidated 2607 * as the locks guarding it may have been dropped. If the 2608 * dpa_dnode is still valid, then we want to add it to the dbuf 2609 * cache. To do so, we must hold the dbuf associated with the block 2610 * we just prefetched, read its contents so that we associate it 2611 * with an arc_buf_t, and then release it. 2612 */ 2613 if (zio != NULL) { 2614 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2615 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 2616 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2617 } else { 2618 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2619 } 2620 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2621 2622 dpa->dpa_dnode = NULL; 2623 } else if (dpa->dpa_dnode != NULL) { 2624 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2625 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2626 dpa->dpa_zb.zb_level)); 2627 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2628 dpa->dpa_curlevel, curblkid, FTAG); 2629 (void) dbuf_read(db, NULL, 2630 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2631 dbuf_rele(db, FTAG); 2632 } 2633 2634 dpa->dpa_curlevel--; 2635 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2636 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2637 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2638 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2639 2640 if (BP_IS_HOLE(bp)) { 2641 kmem_free(dpa, sizeof (*dpa)); 2642 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2643 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2644 dbuf_issue_final_prefetch(dpa, bp); 2645 kmem_free(dpa, sizeof (*dpa)); 2646 } else { 2647 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2648 zbookmark_phys_t zb; 2649 2650 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2651 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 2652 iter_aflags |= ARC_FLAG_L2CACHE; 2653 2654 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2655 2656 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2657 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2658 2659 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2660 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2661 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2662 &iter_aflags, &zb); 2663 } 2664 2665 arc_buf_destroy(abuf, private); 2666 } 2667 2668 /* 2669 * Issue prefetch reads for the given block on the given level. If the indirect 2670 * blocks above that block are not in memory, we will read them in 2671 * asynchronously. As a result, this call never blocks waiting for a read to 2672 * complete. Note that the prefetch might fail if the dataset is encrypted and 2673 * the encryption key is unmapped before the IO completes. 2674 */ 2675 void 2676 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2677 arc_flags_t aflags) 2678 { 2679 blkptr_t bp; 2680 int epbs, nlevels, curlevel; 2681 uint64_t curblkid; 2682 2683 ASSERT(blkid != DMU_BONUS_BLKID); 2684 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2685 2686 if (blkid > dn->dn_maxblkid) 2687 return; 2688 2689 if (dnode_block_freed(dn, blkid)) 2690 return; 2691 2692 /* 2693 * This dnode hasn't been written to disk yet, so there's nothing to 2694 * prefetch. 2695 */ 2696 nlevels = dn->dn_phys->dn_nlevels; 2697 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2698 return; 2699 2700 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2701 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2702 return; 2703 2704 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2705 level, blkid); 2706 if (db != NULL) { 2707 mutex_exit(&db->db_mtx); 2708 /* 2709 * This dbuf already exists. It is either CACHED, or 2710 * (we assume) about to be read or filled. 2711 */ 2712 return; 2713 } 2714 2715 /* 2716 * Find the closest ancestor (indirect block) of the target block 2717 * that is present in the cache. In this indirect block, we will 2718 * find the bp that is at curlevel, curblkid. 2719 */ 2720 curlevel = level; 2721 curblkid = blkid; 2722 while (curlevel < nlevels - 1) { 2723 int parent_level = curlevel + 1; 2724 uint64_t parent_blkid = curblkid >> epbs; 2725 dmu_buf_impl_t *db; 2726 2727 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2728 FALSE, TRUE, FTAG, &db) == 0) { 2729 blkptr_t *bpp = db->db_buf->b_data; 2730 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2731 dbuf_rele(db, FTAG); 2732 break; 2733 } 2734 2735 curlevel = parent_level; 2736 curblkid = parent_blkid; 2737 } 2738 2739 if (curlevel == nlevels - 1) { 2740 /* No cached indirect blocks found. */ 2741 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2742 bp = dn->dn_phys->dn_blkptr[curblkid]; 2743 } 2744 if (BP_IS_HOLE(&bp)) 2745 return; 2746 2747 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2748 2749 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2750 ZIO_FLAG_CANFAIL); 2751 2752 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2753 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2754 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2755 dn->dn_object, level, blkid); 2756 dpa->dpa_curlevel = curlevel; 2757 dpa->dpa_prio = prio; 2758 dpa->dpa_aflags = aflags; 2759 dpa->dpa_spa = dn->dn_objset->os_spa; 2760 dpa->dpa_dnode = dn; 2761 dpa->dpa_epbs = epbs; 2762 dpa->dpa_zio = pio; 2763 2764 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2765 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 2766 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 2767 2768 /* 2769 * If we have the indirect just above us, no need to do the asynchronous 2770 * prefetch chain; we'll just run the last step ourselves. If we're at 2771 * a higher level, though, we want to issue the prefetches for all the 2772 * indirect blocks asynchronously, so we can go on with whatever we were 2773 * doing. 2774 */ 2775 if (curlevel == level) { 2776 ASSERT3U(curblkid, ==, blkid); 2777 dbuf_issue_final_prefetch(dpa, &bp); 2778 kmem_free(dpa, sizeof (*dpa)); 2779 } else { 2780 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2781 zbookmark_phys_t zb; 2782 2783 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2784 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 2785 iter_aflags |= ARC_FLAG_L2CACHE; 2786 2787 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2788 dn->dn_object, curlevel, curblkid); 2789 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2790 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2791 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2792 &iter_aflags, &zb); 2793 } 2794 /* 2795 * We use pio here instead of dpa_zio since it's possible that 2796 * dpa may have already been freed. 2797 */ 2798 zio_nowait(pio); 2799 } 2800 2801 /* 2802 * Helper function for __dbuf_hold_impl() to copy a buffer. Handles 2803 * the case of encrypted, compressed and uncompressed buffers by 2804 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 2805 * arc_alloc_compressed_buf() or arc_alloc_buf().* 2806 * 2807 * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl(). 2808 */ 2809 static void 2810 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db, dbuf_dirty_record_t *dr) 2811 { 2812 arc_buf_t *data = dr->dt.dl.dr_data; 2813 enum zio_compress compress_type = arc_get_compression(data); 2814 2815 if (arc_is_encrypted(data)) { 2816 boolean_t byteorder; 2817 uint8_t salt[ZIO_DATA_SALT_LEN]; 2818 uint8_t iv[ZIO_DATA_IV_LEN]; 2819 uint8_t mac[ZIO_DATA_MAC_LEN]; 2820 2821 arc_get_raw_params(data, &byteorder, salt, iv, mac); 2822 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 2823 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 2824 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 2825 compress_type)); 2826 } else if (compress_type != ZIO_COMPRESS_OFF) { 2827 dbuf_set_data(db, arc_alloc_compressed_buf( 2828 dn->dn_objset->os_spa, db, arc_buf_size(data), 2829 arc_buf_lsize(data), compress_type)); 2830 } else { 2831 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 2832 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 2833 } 2834 2835 bcopy(data->b_data, db->db.db_data, arc_buf_size(data)); 2836 } 2837 2838 /* 2839 * Returns with db_holds incremented, and db_mtx not held. 2840 * Note: dn_struct_rwlock must be held. 2841 */ 2842 int 2843 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2844 boolean_t fail_sparse, boolean_t fail_uncached, 2845 void *tag, dmu_buf_impl_t **dbp) 2846 { 2847 dmu_buf_impl_t *db, *parent = NULL; 2848 2849 ASSERT(blkid != DMU_BONUS_BLKID); 2850 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2851 ASSERT3U(dn->dn_nlevels, >, level); 2852 2853 *dbp = NULL; 2854 top: 2855 /* dbuf_find() returns with db_mtx held */ 2856 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2857 2858 if (db == NULL) { 2859 blkptr_t *bp = NULL; 2860 int err; 2861 2862 if (fail_uncached) 2863 return (SET_ERROR(ENOENT)); 2864 2865 ASSERT3P(parent, ==, NULL); 2866 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2867 if (fail_sparse) { 2868 if (err == 0 && bp && BP_IS_HOLE(bp)) 2869 err = SET_ERROR(ENOENT); 2870 if (err) { 2871 if (parent) 2872 dbuf_rele(parent, NULL); 2873 return (err); 2874 } 2875 } 2876 if (err && err != ENOENT) 2877 return (err); 2878 db = dbuf_create(dn, level, blkid, parent, bp); 2879 } 2880 2881 if (fail_uncached && db->db_state != DB_CACHED) { 2882 mutex_exit(&db->db_mtx); 2883 return (SET_ERROR(ENOENT)); 2884 } 2885 2886 if (db->db_buf != NULL) { 2887 arc_buf_access(db->db_buf); 2888 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2889 } 2890 2891 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2892 2893 /* 2894 * If this buffer is currently syncing out, and we are are 2895 * still referencing it from db_data, we need to make a copy 2896 * of it in case we decide we want to dirty it again in this txg. 2897 */ 2898 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2899 dn->dn_object != DMU_META_DNODE_OBJECT && 2900 db->db_state == DB_CACHED && db->db_data_pending) { 2901 dbuf_dirty_record_t *dr = db->db_data_pending; 2902 if (dr->dt.dl.dr_data == db->db_buf) 2903 dbuf_hold_copy(dn, db, dr); 2904 } 2905 2906 if (multilist_link_active(&db->db_cache_link)) { 2907 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2908 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2909 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2910 2911 multilist_remove(dbuf_caches[db->db_caching_status].cache, db); 2912 (void) zfs_refcount_remove_many( 2913 &dbuf_caches[db->db_caching_status].size, 2914 db->db.db_size, db); 2915 2916 db->db_caching_status = DB_NO_CACHE; 2917 } 2918 (void) zfs_refcount_add(&db->db_holds, tag); 2919 DBUF_VERIFY(db); 2920 mutex_exit(&db->db_mtx); 2921 2922 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2923 if (parent) 2924 dbuf_rele(parent, NULL); 2925 2926 ASSERT3P(DB_DNODE(db), ==, dn); 2927 ASSERT3U(db->db_blkid, ==, blkid); 2928 ASSERT3U(db->db_level, ==, level); 2929 *dbp = db; 2930 2931 return (0); 2932 } 2933 2934 dmu_buf_impl_t * 2935 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2936 { 2937 return (dbuf_hold_level(dn, 0, blkid, tag)); 2938 } 2939 2940 dmu_buf_impl_t * 2941 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2942 { 2943 dmu_buf_impl_t *db; 2944 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2945 return (err ? NULL : db); 2946 } 2947 2948 void 2949 dbuf_create_bonus(dnode_t *dn) 2950 { 2951 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2952 2953 ASSERT(dn->dn_bonus == NULL); 2954 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2955 } 2956 2957 int 2958 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2959 { 2960 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2961 dnode_t *dn; 2962 2963 if (db->db_blkid != DMU_SPILL_BLKID) 2964 return (SET_ERROR(ENOTSUP)); 2965 if (blksz == 0) 2966 blksz = SPA_MINBLOCKSIZE; 2967 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2968 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2969 2970 DB_DNODE_ENTER(db); 2971 dn = DB_DNODE(db); 2972 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2973 dbuf_new_size(db, blksz, tx); 2974 rw_exit(&dn->dn_struct_rwlock); 2975 DB_DNODE_EXIT(db); 2976 2977 return (0); 2978 } 2979 2980 void 2981 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2982 { 2983 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2984 } 2985 2986 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2987 void 2988 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2989 { 2990 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 2991 ASSERT3S(holds, >, 1); 2992 } 2993 2994 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2995 boolean_t 2996 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2997 void *tag) 2998 { 2999 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3000 dmu_buf_impl_t *found_db; 3001 boolean_t result = B_FALSE; 3002 3003 if (db->db_blkid == DMU_BONUS_BLKID) 3004 found_db = dbuf_find_bonus(os, obj); 3005 else 3006 found_db = dbuf_find(os, obj, 0, blkid); 3007 3008 if (found_db != NULL) { 3009 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3010 (void) zfs_refcount_add(&db->db_holds, tag); 3011 result = B_TRUE; 3012 } 3013 mutex_exit(&db->db_mtx); 3014 } 3015 return (result); 3016 } 3017 3018 /* 3019 * If you call dbuf_rele() you had better not be referencing the dnode handle 3020 * unless you have some other direct or indirect hold on the dnode. (An indirect 3021 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3022 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3023 * dnode's parent dbuf evicting its dnode handles. 3024 */ 3025 void 3026 dbuf_rele(dmu_buf_impl_t *db, void *tag) 3027 { 3028 mutex_enter(&db->db_mtx); 3029 dbuf_rele_and_unlock(db, tag, B_FALSE); 3030 } 3031 3032 void 3033 dmu_buf_rele(dmu_buf_t *db, void *tag) 3034 { 3035 dbuf_rele((dmu_buf_impl_t *)db, tag); 3036 } 3037 3038 /* 3039 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3040 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3041 * argument should be set if we are already in the dbuf-evicting code 3042 * path, in which case we don't want to recursively evict. This allows us to 3043 * avoid deeply nested stacks that would have a call flow similar to this: 3044 * 3045 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3046 * ^ | 3047 * | | 3048 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3049 * 3050 */ 3051 void 3052 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting) 3053 { 3054 int64_t holds; 3055 3056 ASSERT(MUTEX_HELD(&db->db_mtx)); 3057 DBUF_VERIFY(db); 3058 3059 /* 3060 * Remove the reference to the dbuf before removing its hold on the 3061 * dnode so we can guarantee in dnode_move() that a referenced bonus 3062 * buffer has a corresponding dnode hold. 3063 */ 3064 holds = zfs_refcount_remove(&db->db_holds, tag); 3065 ASSERT(holds >= 0); 3066 3067 /* 3068 * We can't freeze indirects if there is a possibility that they 3069 * may be modified in the current syncing context. 3070 */ 3071 if (db->db_buf != NULL && 3072 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3073 arc_buf_freeze(db->db_buf); 3074 } 3075 3076 if (holds == db->db_dirtycnt && 3077 db->db_level == 0 && db->db_user_immediate_evict) 3078 dbuf_evict_user(db); 3079 3080 if (holds == 0) { 3081 if (db->db_blkid == DMU_BONUS_BLKID) { 3082 dnode_t *dn; 3083 boolean_t evict_dbuf = db->db_pending_evict; 3084 3085 /* 3086 * If the dnode moves here, we cannot cross this 3087 * barrier until the move completes. 3088 */ 3089 DB_DNODE_ENTER(db); 3090 3091 dn = DB_DNODE(db); 3092 atomic_dec_32(&dn->dn_dbufs_count); 3093 3094 /* 3095 * Decrementing the dbuf count means that the bonus 3096 * buffer's dnode hold is no longer discounted in 3097 * dnode_move(). The dnode cannot move until after 3098 * the dnode_rele() below. 3099 */ 3100 DB_DNODE_EXIT(db); 3101 3102 /* 3103 * Do not reference db after its lock is dropped. 3104 * Another thread may evict it. 3105 */ 3106 mutex_exit(&db->db_mtx); 3107 3108 if (evict_dbuf) 3109 dnode_evict_bonus(dn); 3110 3111 dnode_rele(dn, db); 3112 } else if (db->db_buf == NULL) { 3113 /* 3114 * This is a special case: we never associated this 3115 * dbuf with any data allocated from the ARC. 3116 */ 3117 ASSERT(db->db_state == DB_UNCACHED || 3118 db->db_state == DB_NOFILL); 3119 dbuf_destroy(db); 3120 } else if (arc_released(db->db_buf)) { 3121 /* 3122 * This dbuf has anonymous data associated with it. 3123 */ 3124 dbuf_destroy(db); 3125 } else { 3126 boolean_t do_arc_evict = B_FALSE; 3127 blkptr_t bp; 3128 spa_t *spa = dmu_objset_spa(db->db_objset); 3129 3130 if (!DBUF_IS_CACHEABLE(db) && 3131 db->db_blkptr != NULL && 3132 !BP_IS_HOLE(db->db_blkptr) && 3133 !BP_IS_EMBEDDED(db->db_blkptr)) { 3134 do_arc_evict = B_TRUE; 3135 bp = *db->db_blkptr; 3136 } 3137 3138 if (!DBUF_IS_CACHEABLE(db) || 3139 db->db_pending_evict) { 3140 dbuf_destroy(db); 3141 } else if (!multilist_link_active(&db->db_cache_link)) { 3142 ASSERT3U(db->db_caching_status, ==, 3143 DB_NO_CACHE); 3144 3145 dbuf_cached_state_t dcs = 3146 dbuf_include_in_metadata_cache(db) ? 3147 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 3148 db->db_caching_status = dcs; 3149 3150 multilist_insert(dbuf_caches[dcs].cache, db); 3151 (void) zfs_refcount_add_many( 3152 &dbuf_caches[dcs].size, db->db.db_size, db); 3153 mutex_exit(&db->db_mtx); 3154 3155 if (db->db_caching_status == DB_DBUF_CACHE && 3156 !evicting) { 3157 dbuf_evict_notify(); 3158 } 3159 } 3160 3161 if (do_arc_evict) 3162 arc_freed(spa, &bp); 3163 } 3164 } else { 3165 mutex_exit(&db->db_mtx); 3166 } 3167 3168 } 3169 3170 #pragma weak dmu_buf_refcount = dbuf_refcount 3171 uint64_t 3172 dbuf_refcount(dmu_buf_impl_t *db) 3173 { 3174 return (zfs_refcount_count(&db->db_holds)); 3175 } 3176 3177 uint64_t 3178 dmu_buf_user_refcount(dmu_buf_t *db_fake) 3179 { 3180 uint64_t holds; 3181 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3182 3183 mutex_enter(&db->db_mtx); 3184 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 3185 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 3186 mutex_exit(&db->db_mtx); 3187 3188 return (holds); 3189 } 3190 3191 void * 3192 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 3193 dmu_buf_user_t *new_user) 3194 { 3195 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3196 3197 mutex_enter(&db->db_mtx); 3198 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3199 if (db->db_user == old_user) 3200 db->db_user = new_user; 3201 else 3202 old_user = db->db_user; 3203 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3204 mutex_exit(&db->db_mtx); 3205 3206 return (old_user); 3207 } 3208 3209 void * 3210 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3211 { 3212 return (dmu_buf_replace_user(db_fake, NULL, user)); 3213 } 3214 3215 void * 3216 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3217 { 3218 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3219 3220 db->db_user_immediate_evict = TRUE; 3221 return (dmu_buf_set_user(db_fake, user)); 3222 } 3223 3224 void * 3225 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3226 { 3227 return (dmu_buf_replace_user(db_fake, user, NULL)); 3228 } 3229 3230 void * 3231 dmu_buf_get_user(dmu_buf_t *db_fake) 3232 { 3233 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3234 3235 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3236 return (db->db_user); 3237 } 3238 3239 void 3240 dmu_buf_user_evict_wait() 3241 { 3242 taskq_wait(dbu_evict_taskq); 3243 } 3244 3245 blkptr_t * 3246 dmu_buf_get_blkptr(dmu_buf_t *db) 3247 { 3248 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3249 return (dbi->db_blkptr); 3250 } 3251 3252 objset_t * 3253 dmu_buf_get_objset(dmu_buf_t *db) 3254 { 3255 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3256 return (dbi->db_objset); 3257 } 3258 3259 dnode_t * 3260 dmu_buf_dnode_enter(dmu_buf_t *db) 3261 { 3262 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3263 DB_DNODE_ENTER(dbi); 3264 return (DB_DNODE(dbi)); 3265 } 3266 3267 void 3268 dmu_buf_dnode_exit(dmu_buf_t *db) 3269 { 3270 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3271 DB_DNODE_EXIT(dbi); 3272 } 3273 3274 static void 3275 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 3276 { 3277 /* ASSERT(dmu_tx_is_syncing(tx) */ 3278 ASSERT(MUTEX_HELD(&db->db_mtx)); 3279 3280 if (db->db_blkptr != NULL) 3281 return; 3282 3283 if (db->db_blkid == DMU_SPILL_BLKID) { 3284 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 3285 BP_ZERO(db->db_blkptr); 3286 return; 3287 } 3288 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 3289 /* 3290 * This buffer was allocated at a time when there was 3291 * no available blkptrs from the dnode, or it was 3292 * inappropriate to hook it in (i.e., nlevels mis-match). 3293 */ 3294 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 3295 ASSERT(db->db_parent == NULL); 3296 db->db_parent = dn->dn_dbuf; 3297 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 3298 DBUF_VERIFY(db); 3299 } else { 3300 dmu_buf_impl_t *parent = db->db_parent; 3301 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3302 3303 ASSERT(dn->dn_phys->dn_nlevels > 1); 3304 if (parent == NULL) { 3305 mutex_exit(&db->db_mtx); 3306 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3307 parent = dbuf_hold_level(dn, db->db_level + 1, 3308 db->db_blkid >> epbs, db); 3309 rw_exit(&dn->dn_struct_rwlock); 3310 mutex_enter(&db->db_mtx); 3311 db->db_parent = parent; 3312 } 3313 db->db_blkptr = (blkptr_t *)parent->db.db_data + 3314 (db->db_blkid & ((1ULL << epbs) - 1)); 3315 DBUF_VERIFY(db); 3316 } 3317 } 3318 3319 /* 3320 * When syncing out blocks of dnodes, adjust the block to deal with 3321 * encryption. Normally, we make sure the block is decrypted before writing 3322 * it. If we have crypt params, then we are writing a raw (encrypted) block, 3323 * from a raw receive. In this case, set the ARC buf's crypt params so 3324 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 3325 * 3326 * XXX we should handle decrypting the dnode block in dbuf_dirty(). 3327 */ 3328 static void 3329 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 3330 { 3331 int err; 3332 dmu_buf_impl_t *db = dr->dr_dbuf; 3333 3334 ASSERT(MUTEX_HELD(&db->db_mtx)); 3335 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 3336 ASSERT3U(db->db_level, ==, 0); 3337 3338 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 3339 zbookmark_phys_t zb; 3340 3341 /* 3342 * Unfortunately, there is currently no mechanism for 3343 * syncing context to handle decryption errors. An error 3344 * here is only possible if an attacker maliciously 3345 * changed a dnode block and updated the associated 3346 * checksums going up the block tree. 3347 */ 3348 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 3349 db->db.db_object, db->db_level, db->db_blkid); 3350 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 3351 &zb, B_TRUE); 3352 if (err) 3353 panic("Invalid dnode block MAC"); 3354 } else if (dr->dt.dl.dr_has_raw_params) { 3355 (void) arc_release(dr->dt.dl.dr_data, db); 3356 arc_convert_to_raw(dr->dt.dl.dr_data, 3357 dmu_objset_id(db->db_objset), 3358 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 3359 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 3360 } 3361 } 3362 3363 static void 3364 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3365 { 3366 dmu_buf_impl_t *db = dr->dr_dbuf; 3367 dnode_t *dn; 3368 zio_t *zio; 3369 3370 ASSERT(dmu_tx_is_syncing(tx)); 3371 3372 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3373 3374 mutex_enter(&db->db_mtx); 3375 3376 ASSERT(db->db_level > 0); 3377 DBUF_VERIFY(db); 3378 3379 /* Read the block if it hasn't been read yet. */ 3380 if (db->db_buf == NULL) { 3381 mutex_exit(&db->db_mtx); 3382 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 3383 mutex_enter(&db->db_mtx); 3384 } 3385 ASSERT3U(db->db_state, ==, DB_CACHED); 3386 ASSERT(db->db_buf != NULL); 3387 3388 DB_DNODE_ENTER(db); 3389 dn = DB_DNODE(db); 3390 /* Indirect block size must match what the dnode thinks it is. */ 3391 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3392 dbuf_check_blkptr(dn, db); 3393 DB_DNODE_EXIT(db); 3394 3395 /* Provide the pending dirty record to child dbufs */ 3396 db->db_data_pending = dr; 3397 3398 mutex_exit(&db->db_mtx); 3399 3400 dbuf_write(dr, db->db_buf, tx); 3401 3402 zio = dr->dr_zio; 3403 mutex_enter(&dr->dt.di.dr_mtx); 3404 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 3405 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3406 mutex_exit(&dr->dt.di.dr_mtx); 3407 zio_nowait(zio); 3408 } 3409 3410 static void 3411 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3412 { 3413 arc_buf_t **datap = &dr->dt.dl.dr_data; 3414 dmu_buf_impl_t *db = dr->dr_dbuf; 3415 dnode_t *dn; 3416 objset_t *os; 3417 uint64_t txg = tx->tx_txg; 3418 3419 ASSERT(dmu_tx_is_syncing(tx)); 3420 3421 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3422 3423 mutex_enter(&db->db_mtx); 3424 /* 3425 * To be synced, we must be dirtied. But we 3426 * might have been freed after the dirty. 3427 */ 3428 if (db->db_state == DB_UNCACHED) { 3429 /* This buffer has been freed since it was dirtied */ 3430 ASSERT(db->db.db_data == NULL); 3431 } else if (db->db_state == DB_FILL) { 3432 /* This buffer was freed and is now being re-filled */ 3433 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3434 } else { 3435 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3436 } 3437 DBUF_VERIFY(db); 3438 3439 DB_DNODE_ENTER(db); 3440 dn = DB_DNODE(db); 3441 3442 if (db->db_blkid == DMU_SPILL_BLKID) { 3443 mutex_enter(&dn->dn_mtx); 3444 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 3445 mutex_exit(&dn->dn_mtx); 3446 } 3447 3448 /* 3449 * If this is a bonus buffer, simply copy the bonus data into the 3450 * dnode. It will be written out when the dnode is synced (and it 3451 * will be synced, since it must have been dirty for dbuf_sync to 3452 * be called). 3453 */ 3454 if (db->db_blkid == DMU_BONUS_BLKID) { 3455 dbuf_dirty_record_t **drp; 3456 3457 ASSERT(*datap != NULL); 3458 ASSERT0(db->db_level); 3459 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 3460 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 3461 bcopy(*datap, DN_BONUS(dn->dn_phys), 3462 DN_MAX_BONUS_LEN(dn->dn_phys)); 3463 DB_DNODE_EXIT(db); 3464 3465 if (*datap != db->db.db_data) { 3466 int slots = DB_DNODE(db)->dn_num_slots; 3467 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 3468 zio_buf_free(*datap, bonuslen); 3469 arc_space_return(bonuslen, ARC_SPACE_BONUS); 3470 } 3471 db->db_data_pending = NULL; 3472 drp = &db->db_last_dirty; 3473 while (*drp != dr) 3474 drp = &(*drp)->dr_next; 3475 ASSERT(dr->dr_next == NULL); 3476 ASSERT(dr->dr_dbuf == db); 3477 *drp = dr->dr_next; 3478 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3479 ASSERT(db->db_dirtycnt > 0); 3480 db->db_dirtycnt -= 1; 3481 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE); 3482 return; 3483 } 3484 3485 os = dn->dn_objset; 3486 3487 /* 3488 * This function may have dropped the db_mtx lock allowing a dmu_sync 3489 * operation to sneak in. As a result, we need to ensure that we 3490 * don't check the dr_override_state until we have returned from 3491 * dbuf_check_blkptr. 3492 */ 3493 dbuf_check_blkptr(dn, db); 3494 3495 /* 3496 * If this buffer is in the middle of an immediate write, 3497 * wait for the synchronous IO to complete. 3498 */ 3499 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 3500 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 3501 cv_wait(&db->db_changed, &db->db_mtx); 3502 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 3503 } 3504 3505 /* 3506 * If this is a dnode block, ensure it is appropriately encrypted 3507 * or decrypted, depending on what we are writing to it this txg. 3508 */ 3509 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 3510 dbuf_prepare_encrypted_dnode_leaf(dr); 3511 3512 if (db->db_state != DB_NOFILL && 3513 dn->dn_object != DMU_META_DNODE_OBJECT && 3514 zfs_refcount_count(&db->db_holds) > 1 && 3515 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 3516 *datap == db->db_buf) { 3517 /* 3518 * If this buffer is currently "in use" (i.e., there 3519 * are active holds and db_data still references it), 3520 * then make a copy before we start the write so that 3521 * any modifications from the open txg will not leak 3522 * into this write. 3523 * 3524 * NOTE: this copy does not need to be made for 3525 * objects only modified in the syncing context (e.g. 3526 * DNONE_DNODE blocks). 3527 */ 3528 int psize = arc_buf_size(*datap); 3529 int lsize = arc_buf_lsize(*datap); 3530 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 3531 enum zio_compress compress_type = arc_get_compression(*datap); 3532 3533 if (arc_is_encrypted(*datap)) { 3534 boolean_t byteorder; 3535 uint8_t salt[ZIO_DATA_SALT_LEN]; 3536 uint8_t iv[ZIO_DATA_IV_LEN]; 3537 uint8_t mac[ZIO_DATA_MAC_LEN]; 3538 3539 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 3540 *datap = arc_alloc_raw_buf(os->os_spa, db, 3541 dmu_objset_id(os), byteorder, salt, iv, mac, 3542 dn->dn_type, psize, lsize, compress_type); 3543 } else if (compress_type != ZIO_COMPRESS_OFF) { 3544 ASSERT3U(type, ==, ARC_BUFC_DATA); 3545 *datap = arc_alloc_compressed_buf(os->os_spa, db, 3546 psize, lsize, compress_type); 3547 } else { 3548 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 3549 } 3550 bcopy(db->db.db_data, (*datap)->b_data, psize); 3551 } 3552 db->db_data_pending = dr; 3553 3554 mutex_exit(&db->db_mtx); 3555 3556 dbuf_write(dr, *datap, tx); 3557 3558 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3559 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 3560 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 3561 DB_DNODE_EXIT(db); 3562 } else { 3563 /* 3564 * Although zio_nowait() does not "wait for an IO", it does 3565 * initiate the IO. If this is an empty write it seems plausible 3566 * that the IO could actually be completed before the nowait 3567 * returns. We need to DB_DNODE_EXIT() first in case 3568 * zio_nowait() invalidates the dbuf. 3569 */ 3570 DB_DNODE_EXIT(db); 3571 zio_nowait(dr->dr_zio); 3572 } 3573 } 3574 3575 void 3576 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 3577 { 3578 dbuf_dirty_record_t *dr; 3579 3580 while (dr = list_head(list)) { 3581 if (dr->dr_zio != NULL) { 3582 /* 3583 * If we find an already initialized zio then we 3584 * are processing the meta-dnode, and we have finished. 3585 * The dbufs for all dnodes are put back on the list 3586 * during processing, so that we can zio_wait() 3587 * these IOs after initiating all child IOs. 3588 */ 3589 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 3590 DMU_META_DNODE_OBJECT); 3591 break; 3592 } 3593 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 3594 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 3595 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 3596 } 3597 list_remove(list, dr); 3598 if (dr->dr_dbuf->db_level > 0) 3599 dbuf_sync_indirect(dr, tx); 3600 else 3601 dbuf_sync_leaf(dr, tx); 3602 } 3603 } 3604 3605 /* ARGSUSED */ 3606 static void 3607 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3608 { 3609 dmu_buf_impl_t *db = vdb; 3610 dnode_t *dn; 3611 blkptr_t *bp = zio->io_bp; 3612 blkptr_t *bp_orig = &zio->io_bp_orig; 3613 spa_t *spa = zio->io_spa; 3614 int64_t delta; 3615 uint64_t fill = 0; 3616 int i; 3617 3618 ASSERT3P(db->db_blkptr, !=, NULL); 3619 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 3620 3621 DB_DNODE_ENTER(db); 3622 dn = DB_DNODE(db); 3623 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 3624 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 3625 zio->io_prev_space_delta = delta; 3626 3627 if (bp->blk_birth != 0) { 3628 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 3629 BP_GET_TYPE(bp) == dn->dn_type) || 3630 (db->db_blkid == DMU_SPILL_BLKID && 3631 BP_GET_TYPE(bp) == dn->dn_bonustype) || 3632 BP_IS_EMBEDDED(bp)); 3633 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 3634 } 3635 3636 mutex_enter(&db->db_mtx); 3637 3638 #ifdef ZFS_DEBUG 3639 if (db->db_blkid == DMU_SPILL_BLKID) { 3640 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3641 ASSERT(!(BP_IS_HOLE(bp)) && 3642 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 3643 } 3644 #endif 3645 3646 if (db->db_level == 0) { 3647 mutex_enter(&dn->dn_mtx); 3648 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 3649 db->db_blkid != DMU_SPILL_BLKID) { 3650 ASSERT0(db->db_objset->os_raw_receive); 3651 dn->dn_phys->dn_maxblkid = db->db_blkid; 3652 } 3653 mutex_exit(&dn->dn_mtx); 3654 3655 if (dn->dn_type == DMU_OT_DNODE) { 3656 i = 0; 3657 while (i < db->db.db_size) { 3658 dnode_phys_t *dnp = 3659 (void *)(((char *)db->db.db_data) + i); 3660 3661 i += DNODE_MIN_SIZE; 3662 if (dnp->dn_type != DMU_OT_NONE) { 3663 fill++; 3664 i += dnp->dn_extra_slots * 3665 DNODE_MIN_SIZE; 3666 } 3667 } 3668 } else { 3669 if (BP_IS_HOLE(bp)) { 3670 fill = 0; 3671 } else { 3672 fill = 1; 3673 } 3674 } 3675 } else { 3676 blkptr_t *ibp = db->db.db_data; 3677 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3678 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 3679 if (BP_IS_HOLE(ibp)) 3680 continue; 3681 fill += BP_GET_FILL(ibp); 3682 } 3683 } 3684 DB_DNODE_EXIT(db); 3685 3686 if (!BP_IS_EMBEDDED(bp)) 3687 BP_SET_FILL(bp, fill); 3688 3689 mutex_exit(&db->db_mtx); 3690 3691 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3692 *db->db_blkptr = *bp; 3693 rw_exit(&dn->dn_struct_rwlock); 3694 } 3695 3696 /* ARGSUSED */ 3697 /* 3698 * This function gets called just prior to running through the compression 3699 * stage of the zio pipeline. If we're an indirect block comprised of only 3700 * holes, then we want this indirect to be compressed away to a hole. In 3701 * order to do that we must zero out any information about the holes that 3702 * this indirect points to prior to before we try to compress it. 3703 */ 3704 static void 3705 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3706 { 3707 dmu_buf_impl_t *db = vdb; 3708 dnode_t *dn; 3709 blkptr_t *bp; 3710 unsigned int epbs, i; 3711 3712 ASSERT3U(db->db_level, >, 0); 3713 DB_DNODE_ENTER(db); 3714 dn = DB_DNODE(db); 3715 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3716 ASSERT3U(epbs, <, 31); 3717 3718 /* Determine if all our children are holes */ 3719 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { 3720 if (!BP_IS_HOLE(bp)) 3721 break; 3722 } 3723 3724 /* 3725 * If all the children are holes, then zero them all out so that 3726 * we may get compressed away. 3727 */ 3728 if (i == 1 << epbs) { 3729 /* 3730 * We only found holes. Grab the rwlock to prevent 3731 * anybody from reading the blocks we're about to 3732 * zero out. 3733 */ 3734 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3735 bzero(db->db.db_data, db->db.db_size); 3736 rw_exit(&dn->dn_struct_rwlock); 3737 } 3738 DB_DNODE_EXIT(db); 3739 } 3740 3741 /* 3742 * The SPA will call this callback several times for each zio - once 3743 * for every physical child i/o (zio->io_phys_children times). This 3744 * allows the DMU to monitor the progress of each logical i/o. For example, 3745 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 3746 * block. There may be a long delay before all copies/fragments are completed, 3747 * so this callback allows us to retire dirty space gradually, as the physical 3748 * i/os complete. 3749 */ 3750 /* ARGSUSED */ 3751 static void 3752 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 3753 { 3754 dmu_buf_impl_t *db = arg; 3755 objset_t *os = db->db_objset; 3756 dsl_pool_t *dp = dmu_objset_pool(os); 3757 dbuf_dirty_record_t *dr; 3758 int delta = 0; 3759 3760 dr = db->db_data_pending; 3761 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 3762 3763 /* 3764 * The callback will be called io_phys_children times. Retire one 3765 * portion of our dirty space each time we are called. Any rounding 3766 * error will be cleaned up by dsl_pool_sync()'s call to 3767 * dsl_pool_undirty_space(). 3768 */ 3769 delta = dr->dr_accounted / zio->io_phys_children; 3770 dsl_pool_undirty_space(dp, delta, zio->io_txg); 3771 } 3772 3773 /* ARGSUSED */ 3774 static void 3775 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 3776 { 3777 dmu_buf_impl_t *db = vdb; 3778 blkptr_t *bp_orig = &zio->io_bp_orig; 3779 blkptr_t *bp = db->db_blkptr; 3780 objset_t *os = db->db_objset; 3781 dmu_tx_t *tx = os->os_synctx; 3782 dbuf_dirty_record_t **drp, *dr; 3783 3784 ASSERT0(zio->io_error); 3785 ASSERT(db->db_blkptr == bp); 3786 3787 /* 3788 * For nopwrites and rewrites we ensure that the bp matches our 3789 * original and bypass all the accounting. 3790 */ 3791 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 3792 ASSERT(BP_EQUAL(bp, bp_orig)); 3793 } else { 3794 dsl_dataset_t *ds = os->os_dsl_dataset; 3795 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 3796 dsl_dataset_block_born(ds, bp, tx); 3797 } 3798 3799 mutex_enter(&db->db_mtx); 3800 3801 DBUF_VERIFY(db); 3802 3803 drp = &db->db_last_dirty; 3804 while ((dr = *drp) != db->db_data_pending) 3805 drp = &dr->dr_next; 3806 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3807 ASSERT(dr->dr_dbuf == db); 3808 ASSERT(dr->dr_next == NULL); 3809 *drp = dr->dr_next; 3810 3811 #ifdef ZFS_DEBUG 3812 if (db->db_blkid == DMU_SPILL_BLKID) { 3813 dnode_t *dn; 3814 3815 DB_DNODE_ENTER(db); 3816 dn = DB_DNODE(db); 3817 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3818 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3819 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 3820 DB_DNODE_EXIT(db); 3821 } 3822 #endif 3823 3824 if (db->db_level == 0) { 3825 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3826 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3827 if (db->db_state != DB_NOFILL) { 3828 if (dr->dt.dl.dr_data != db->db_buf) 3829 arc_buf_destroy(dr->dt.dl.dr_data, db); 3830 } 3831 } else { 3832 dnode_t *dn; 3833 3834 DB_DNODE_ENTER(db); 3835 dn = DB_DNODE(db); 3836 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3837 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3838 if (!BP_IS_HOLE(db->db_blkptr)) { 3839 int epbs = 3840 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3841 ASSERT3U(db->db_blkid, <=, 3842 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3843 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3844 db->db.db_size); 3845 } 3846 DB_DNODE_EXIT(db); 3847 mutex_destroy(&dr->dt.di.dr_mtx); 3848 list_destroy(&dr->dt.di.dr_children); 3849 } 3850 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3851 3852 cv_broadcast(&db->db_changed); 3853 ASSERT(db->db_dirtycnt > 0); 3854 db->db_dirtycnt -= 1; 3855 db->db_data_pending = NULL; 3856 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 3857 } 3858 3859 static void 3860 dbuf_write_nofill_ready(zio_t *zio) 3861 { 3862 dbuf_write_ready(zio, NULL, zio->io_private); 3863 } 3864 3865 static void 3866 dbuf_write_nofill_done(zio_t *zio) 3867 { 3868 dbuf_write_done(zio, NULL, zio->io_private); 3869 } 3870 3871 static void 3872 dbuf_write_override_ready(zio_t *zio) 3873 { 3874 dbuf_dirty_record_t *dr = zio->io_private; 3875 dmu_buf_impl_t *db = dr->dr_dbuf; 3876 3877 dbuf_write_ready(zio, NULL, db); 3878 } 3879 3880 static void 3881 dbuf_write_override_done(zio_t *zio) 3882 { 3883 dbuf_dirty_record_t *dr = zio->io_private; 3884 dmu_buf_impl_t *db = dr->dr_dbuf; 3885 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3886 3887 mutex_enter(&db->db_mtx); 3888 if (!BP_EQUAL(zio->io_bp, obp)) { 3889 if (!BP_IS_HOLE(obp)) 3890 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3891 arc_release(dr->dt.dl.dr_data, db); 3892 } 3893 mutex_exit(&db->db_mtx); 3894 dbuf_write_done(zio, NULL, db); 3895 3896 if (zio->io_abd != NULL) 3897 abd_put(zio->io_abd); 3898 } 3899 3900 typedef struct dbuf_remap_impl_callback_arg { 3901 objset_t *drica_os; 3902 uint64_t drica_blk_birth; 3903 dmu_tx_t *drica_tx; 3904 } dbuf_remap_impl_callback_arg_t; 3905 3906 static void 3907 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 3908 void *arg) 3909 { 3910 dbuf_remap_impl_callback_arg_t *drica = arg; 3911 objset_t *os = drica->drica_os; 3912 spa_t *spa = dmu_objset_spa(os); 3913 dmu_tx_t *tx = drica->drica_tx; 3914 3915 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 3916 3917 if (os == spa_meta_objset(spa)) { 3918 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 3919 } else { 3920 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 3921 size, drica->drica_blk_birth, tx); 3922 } 3923 } 3924 3925 static void 3926 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx) 3927 { 3928 blkptr_t bp_copy = *bp; 3929 spa_t *spa = dmu_objset_spa(dn->dn_objset); 3930 dbuf_remap_impl_callback_arg_t drica; 3931 3932 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 3933 3934 drica.drica_os = dn->dn_objset; 3935 drica.drica_blk_birth = bp->blk_birth; 3936 drica.drica_tx = tx; 3937 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 3938 &drica)) { 3939 /* 3940 * The struct_rwlock prevents dbuf_read_impl() from 3941 * dereferencing the BP while we are changing it. To 3942 * avoid lock contention, only grab it when we are actually 3943 * changing the BP. 3944 */ 3945 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3946 *bp = bp_copy; 3947 rw_exit(&dn->dn_struct_rwlock); 3948 } 3949 } 3950 3951 /* 3952 * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting 3953 * to remap a copy of every bp in the dbuf. 3954 */ 3955 boolean_t 3956 dbuf_can_remap(const dmu_buf_impl_t *db) 3957 { 3958 spa_t *spa = dmu_objset_spa(db->db_objset); 3959 blkptr_t *bp = db->db.db_data; 3960 boolean_t ret = B_FALSE; 3961 3962 ASSERT3U(db->db_level, >, 0); 3963 ASSERT3S(db->db_state, ==, DB_CACHED); 3964 3965 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 3966 3967 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3968 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 3969 blkptr_t bp_copy = bp[i]; 3970 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) { 3971 ret = B_TRUE; 3972 break; 3973 } 3974 } 3975 spa_config_exit(spa, SCL_VDEV, FTAG); 3976 3977 return (ret); 3978 } 3979 3980 boolean_t 3981 dnode_needs_remap(const dnode_t *dn) 3982 { 3983 spa_t *spa = dmu_objset_spa(dn->dn_objset); 3984 boolean_t ret = B_FALSE; 3985 3986 if (dn->dn_phys->dn_nlevels == 0) { 3987 return (B_FALSE); 3988 } 3989 3990 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 3991 3992 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3993 for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) { 3994 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j]; 3995 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) { 3996 ret = B_TRUE; 3997 break; 3998 } 3999 } 4000 spa_config_exit(spa, SCL_VDEV, FTAG); 4001 4002 return (ret); 4003 } 4004 4005 /* 4006 * Remap any existing BP's to concrete vdevs, if possible. 4007 */ 4008 static void 4009 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 4010 { 4011 spa_t *spa = dmu_objset_spa(db->db_objset); 4012 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4013 4014 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 4015 return; 4016 4017 if (db->db_level > 0) { 4018 blkptr_t *bp = db->db.db_data; 4019 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 4020 dbuf_remap_impl(dn, &bp[i], tx); 4021 } 4022 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 4023 dnode_phys_t *dnp = db->db.db_data; 4024 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 4025 DMU_OT_DNODE); 4026 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; i++) { 4027 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 4028 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx); 4029 } 4030 } 4031 } 4032 } 4033 4034 4035 /* Issue I/O to commit a dirty buffer to disk. */ 4036 static void 4037 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 4038 { 4039 dmu_buf_impl_t *db = dr->dr_dbuf; 4040 dnode_t *dn; 4041 objset_t *os; 4042 dmu_buf_impl_t *parent = db->db_parent; 4043 uint64_t txg = tx->tx_txg; 4044 zbookmark_phys_t zb; 4045 zio_prop_t zp; 4046 zio_t *zio; 4047 int wp_flag = 0; 4048 4049 ASSERT(dmu_tx_is_syncing(tx)); 4050 4051 DB_DNODE_ENTER(db); 4052 dn = DB_DNODE(db); 4053 os = dn->dn_objset; 4054 4055 if (db->db_state != DB_NOFILL) { 4056 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 4057 /* 4058 * Private object buffers are released here rather 4059 * than in dbuf_dirty() since they are only modified 4060 * in the syncing context and we don't want the 4061 * overhead of making multiple copies of the data. 4062 */ 4063 if (BP_IS_HOLE(db->db_blkptr)) { 4064 arc_buf_thaw(data); 4065 } else { 4066 dbuf_release_bp(db); 4067 } 4068 dbuf_remap(dn, db, tx); 4069 } 4070 } 4071 4072 if (parent != dn->dn_dbuf) { 4073 /* Our parent is an indirect block. */ 4074 /* We have a dirty parent that has been scheduled for write. */ 4075 ASSERT(parent && parent->db_data_pending); 4076 /* Our parent's buffer is one level closer to the dnode. */ 4077 ASSERT(db->db_level == parent->db_level-1); 4078 /* 4079 * We're about to modify our parent's db_data by modifying 4080 * our block pointer, so the parent must be released. 4081 */ 4082 ASSERT(arc_released(parent->db_buf)); 4083 zio = parent->db_data_pending->dr_zio; 4084 } else { 4085 /* Our parent is the dnode itself. */ 4086 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 4087 db->db_blkid != DMU_SPILL_BLKID) || 4088 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 4089 if (db->db_blkid != DMU_SPILL_BLKID) 4090 ASSERT3P(db->db_blkptr, ==, 4091 &dn->dn_phys->dn_blkptr[db->db_blkid]); 4092 zio = dn->dn_zio; 4093 } 4094 4095 ASSERT(db->db_level == 0 || data == db->db_buf); 4096 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 4097 ASSERT(zio); 4098 4099 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 4100 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 4101 db->db.db_object, db->db_level, db->db_blkid); 4102 4103 if (db->db_blkid == DMU_SPILL_BLKID) 4104 wp_flag = WP_SPILL; 4105 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 4106 4107 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 4108 4109 DB_DNODE_EXIT(db); 4110 4111 /* 4112 * We copy the blkptr now (rather than when we instantiate the dirty 4113 * record), because its value can change between open context and 4114 * syncing context. We do not need to hold dn_struct_rwlock to read 4115 * db_blkptr because we are in syncing context. 4116 */ 4117 dr->dr_bp_copy = *db->db_blkptr; 4118 4119 if (db->db_level == 0 && 4120 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 4121 /* 4122 * The BP for this block has been provided by open context 4123 * (by dmu_sync() or dmu_buf_write_embedded()). 4124 */ 4125 abd_t *contents = (data != NULL) ? 4126 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 4127 4128 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy, 4129 contents, db->db.db_size, db->db.db_size, &zp, 4130 dbuf_write_override_ready, NULL, NULL, 4131 dbuf_write_override_done, 4132 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 4133 mutex_enter(&db->db_mtx); 4134 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 4135 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 4136 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 4137 mutex_exit(&db->db_mtx); 4138 } else if (db->db_state == DB_NOFILL) { 4139 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 4140 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 4141 dr->dr_zio = zio_write(zio, os->os_spa, txg, 4142 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 4143 dbuf_write_nofill_ready, NULL, NULL, 4144 dbuf_write_nofill_done, db, 4145 ZIO_PRIORITY_ASYNC_WRITE, 4146 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 4147 } else { 4148 ASSERT(arc_released(data)); 4149 4150 /* 4151 * For indirect blocks, we want to setup the children 4152 * ready callback so that we can properly handle an indirect 4153 * block that only contains holes. 4154 */ 4155 arc_write_done_func_t *children_ready_cb = NULL; 4156 if (db->db_level != 0) 4157 children_ready_cb = dbuf_write_children_ready; 4158 4159 dr->dr_zio = arc_write(zio, os->os_spa, txg, 4160 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 4161 &zp, dbuf_write_ready, children_ready_cb, 4162 dbuf_write_physdone, dbuf_write_done, db, 4163 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 4164 } 4165 } 4166