1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 #include <sys/abd.h> 50 51 uint_t zfs_dbuf_evict_key; 52 53 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 54 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 55 56 #ifndef __lint 57 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 58 dmu_buf_evict_func_t *evict_func_sync, 59 dmu_buf_evict_func_t *evict_func_async, 60 dmu_buf_t **clear_on_evict_dbufp); 61 #endif /* ! __lint */ 62 63 /* 64 * Global data structures and functions for the dbuf cache. 65 */ 66 static kmem_cache_t *dbuf_kmem_cache; 67 static taskq_t *dbu_evict_taskq; 68 69 static kthread_t *dbuf_cache_evict_thread; 70 static kmutex_t dbuf_evict_lock; 71 static kcondvar_t dbuf_evict_cv; 72 static boolean_t dbuf_evict_thread_exit; 73 74 /* 75 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 76 * are not currently held but have been recently released. These dbufs 77 * are not eligible for arc eviction until they are aged out of the cache. 78 * Dbufs are added to the dbuf cache once the last hold is released. If a 79 * dbuf is later accessed and still exists in the dbuf cache, then it will 80 * be removed from the cache and later re-added to the head of the cache. 81 * Dbufs that are aged out of the cache will be immediately destroyed and 82 * become eligible for arc eviction. 83 */ 84 static multilist_t *dbuf_cache; 85 static refcount_t dbuf_cache_size; 86 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024; 87 88 /* Cap the size of the dbuf cache to log2 fraction of arc size. */ 89 int dbuf_cache_max_shift = 5; 90 91 /* 92 * The dbuf cache uses a three-stage eviction policy: 93 * - A low water marker designates when the dbuf eviction thread 94 * should stop evicting from the dbuf cache. 95 * - When we reach the maximum size (aka mid water mark), we 96 * signal the eviction thread to run. 97 * - The high water mark indicates when the eviction thread 98 * is unable to keep up with the incoming load and eviction must 99 * happen in the context of the calling thread. 100 * 101 * The dbuf cache: 102 * (max size) 103 * low water mid water hi water 104 * +----------------------------------------+----------+----------+ 105 * | | | | 106 * | | | | 107 * | | | | 108 * | | | | 109 * +----------------------------------------+----------+----------+ 110 * stop signal evict 111 * evicting eviction directly 112 * thread 113 * 114 * The high and low water marks indicate the operating range for the eviction 115 * thread. The low water mark is, by default, 90% of the total size of the 116 * cache and the high water mark is at 110% (both of these percentages can be 117 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 118 * respectively). The eviction thread will try to ensure that the cache remains 119 * within this range by waking up every second and checking if the cache is 120 * above the low water mark. The thread can also be woken up by callers adding 121 * elements into the cache if the cache is larger than the mid water (i.e max 122 * cache size). Once the eviction thread is woken up and eviction is required, 123 * it will continue evicting buffers until it's able to reduce the cache size 124 * to the low water mark. If the cache size continues to grow and hits the high 125 * water mark, then callers adding elments to the cache will begin to evict 126 * directly from the cache until the cache is no longer above the high water 127 * mark. 128 */ 129 130 /* 131 * The percentage above and below the maximum cache size. 132 */ 133 uint_t dbuf_cache_hiwater_pct = 10; 134 uint_t dbuf_cache_lowater_pct = 10; 135 136 /* ARGSUSED */ 137 static int 138 dbuf_cons(void *vdb, void *unused, int kmflag) 139 { 140 dmu_buf_impl_t *db = vdb; 141 bzero(db, sizeof (dmu_buf_impl_t)); 142 143 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 144 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 145 multilist_link_init(&db->db_cache_link); 146 refcount_create(&db->db_holds); 147 148 return (0); 149 } 150 151 /* ARGSUSED */ 152 static void 153 dbuf_dest(void *vdb, void *unused) 154 { 155 dmu_buf_impl_t *db = vdb; 156 mutex_destroy(&db->db_mtx); 157 cv_destroy(&db->db_changed); 158 ASSERT(!multilist_link_active(&db->db_cache_link)); 159 refcount_destroy(&db->db_holds); 160 } 161 162 /* 163 * dbuf hash table routines 164 */ 165 static dbuf_hash_table_t dbuf_hash_table; 166 167 static uint64_t dbuf_hash_count; 168 169 static uint64_t 170 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 171 { 172 uintptr_t osv = (uintptr_t)os; 173 uint64_t crc = -1ULL; 174 175 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 176 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 177 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 178 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 179 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 180 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 181 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 182 183 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 184 185 return (crc); 186 } 187 188 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 189 ((dbuf)->db.db_object == (obj) && \ 190 (dbuf)->db_objset == (os) && \ 191 (dbuf)->db_level == (level) && \ 192 (dbuf)->db_blkid == (blkid)) 193 194 dmu_buf_impl_t * 195 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 196 { 197 dbuf_hash_table_t *h = &dbuf_hash_table; 198 uint64_t hv = dbuf_hash(os, obj, level, blkid); 199 uint64_t idx = hv & h->hash_table_mask; 200 dmu_buf_impl_t *db; 201 202 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 203 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 204 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 205 mutex_enter(&db->db_mtx); 206 if (db->db_state != DB_EVICTING) { 207 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 208 return (db); 209 } 210 mutex_exit(&db->db_mtx); 211 } 212 } 213 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 214 return (NULL); 215 } 216 217 static dmu_buf_impl_t * 218 dbuf_find_bonus(objset_t *os, uint64_t object) 219 { 220 dnode_t *dn; 221 dmu_buf_impl_t *db = NULL; 222 223 if (dnode_hold(os, object, FTAG, &dn) == 0) { 224 rw_enter(&dn->dn_struct_rwlock, RW_READER); 225 if (dn->dn_bonus != NULL) { 226 db = dn->dn_bonus; 227 mutex_enter(&db->db_mtx); 228 } 229 rw_exit(&dn->dn_struct_rwlock); 230 dnode_rele(dn, FTAG); 231 } 232 return (db); 233 } 234 235 /* 236 * Insert an entry into the hash table. If there is already an element 237 * equal to elem in the hash table, then the already existing element 238 * will be returned and the new element will not be inserted. 239 * Otherwise returns NULL. 240 */ 241 static dmu_buf_impl_t * 242 dbuf_hash_insert(dmu_buf_impl_t *db) 243 { 244 dbuf_hash_table_t *h = &dbuf_hash_table; 245 objset_t *os = db->db_objset; 246 uint64_t obj = db->db.db_object; 247 int level = db->db_level; 248 uint64_t blkid = db->db_blkid; 249 uint64_t hv = dbuf_hash(os, obj, level, blkid); 250 uint64_t idx = hv & h->hash_table_mask; 251 dmu_buf_impl_t *dbf; 252 253 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 254 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 255 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 256 mutex_enter(&dbf->db_mtx); 257 if (dbf->db_state != DB_EVICTING) { 258 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 259 return (dbf); 260 } 261 mutex_exit(&dbf->db_mtx); 262 } 263 } 264 265 mutex_enter(&db->db_mtx); 266 db->db_hash_next = h->hash_table[idx]; 267 h->hash_table[idx] = db; 268 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 269 atomic_inc_64(&dbuf_hash_count); 270 271 return (NULL); 272 } 273 274 /* 275 * Remove an entry from the hash table. It must be in the EVICTING state. 276 */ 277 static void 278 dbuf_hash_remove(dmu_buf_impl_t *db) 279 { 280 dbuf_hash_table_t *h = &dbuf_hash_table; 281 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 282 db->db_level, db->db_blkid); 283 uint64_t idx = hv & h->hash_table_mask; 284 dmu_buf_impl_t *dbf, **dbp; 285 286 /* 287 * We musn't hold db_mtx to maintain lock ordering: 288 * DBUF_HASH_MUTEX > db_mtx. 289 */ 290 ASSERT(refcount_is_zero(&db->db_holds)); 291 ASSERT(db->db_state == DB_EVICTING); 292 ASSERT(!MUTEX_HELD(&db->db_mtx)); 293 294 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 295 dbp = &h->hash_table[idx]; 296 while ((dbf = *dbp) != db) { 297 dbp = &dbf->db_hash_next; 298 ASSERT(dbf != NULL); 299 } 300 *dbp = db->db_hash_next; 301 db->db_hash_next = NULL; 302 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 303 atomic_dec_64(&dbuf_hash_count); 304 } 305 306 typedef enum { 307 DBVU_EVICTING, 308 DBVU_NOT_EVICTING 309 } dbvu_verify_type_t; 310 311 static void 312 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 313 { 314 #ifdef ZFS_DEBUG 315 int64_t holds; 316 317 if (db->db_user == NULL) 318 return; 319 320 /* Only data blocks support the attachment of user data. */ 321 ASSERT(db->db_level == 0); 322 323 /* Clients must resolve a dbuf before attaching user data. */ 324 ASSERT(db->db.db_data != NULL); 325 ASSERT3U(db->db_state, ==, DB_CACHED); 326 327 holds = refcount_count(&db->db_holds); 328 if (verify_type == DBVU_EVICTING) { 329 /* 330 * Immediate eviction occurs when holds == dirtycnt. 331 * For normal eviction buffers, holds is zero on 332 * eviction, except when dbuf_fix_old_data() calls 333 * dbuf_clear_data(). However, the hold count can grow 334 * during eviction even though db_mtx is held (see 335 * dmu_bonus_hold() for an example), so we can only 336 * test the generic invariant that holds >= dirtycnt. 337 */ 338 ASSERT3U(holds, >=, db->db_dirtycnt); 339 } else { 340 if (db->db_user_immediate_evict == TRUE) 341 ASSERT3U(holds, >=, db->db_dirtycnt); 342 else 343 ASSERT3U(holds, >, 0); 344 } 345 #endif 346 } 347 348 static void 349 dbuf_evict_user(dmu_buf_impl_t *db) 350 { 351 dmu_buf_user_t *dbu = db->db_user; 352 353 ASSERT(MUTEX_HELD(&db->db_mtx)); 354 355 if (dbu == NULL) 356 return; 357 358 dbuf_verify_user(db, DBVU_EVICTING); 359 db->db_user = NULL; 360 361 #ifdef ZFS_DEBUG 362 if (dbu->dbu_clear_on_evict_dbufp != NULL) 363 *dbu->dbu_clear_on_evict_dbufp = NULL; 364 #endif 365 366 /* 367 * There are two eviction callbacks - one that we call synchronously 368 * and one that we invoke via a taskq. The async one is useful for 369 * avoiding lock order reversals and limiting stack depth. 370 * 371 * Note that if we have a sync callback but no async callback, 372 * it's likely that the sync callback will free the structure 373 * containing the dbu. In that case we need to take care to not 374 * dereference dbu after calling the sync evict func. 375 */ 376 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 377 378 if (dbu->dbu_evict_func_sync != NULL) 379 dbu->dbu_evict_func_sync(dbu); 380 381 if (has_async) { 382 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 383 dbu, 0, &dbu->dbu_tqent); 384 } 385 } 386 387 boolean_t 388 dbuf_is_metadata(dmu_buf_impl_t *db) 389 { 390 if (db->db_level > 0) { 391 return (B_TRUE); 392 } else { 393 boolean_t is_metadata; 394 395 DB_DNODE_ENTER(db); 396 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 397 DB_DNODE_EXIT(db); 398 399 return (is_metadata); 400 } 401 } 402 403 /* 404 * This function *must* return indices evenly distributed between all 405 * sublists of the multilist. This is needed due to how the dbuf eviction 406 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 407 * distributed between all sublists and uses this assumption when 408 * deciding which sublist to evict from and how much to evict from it. 409 */ 410 unsigned int 411 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 412 { 413 dmu_buf_impl_t *db = obj; 414 415 /* 416 * The assumption here, is the hash value for a given 417 * dmu_buf_impl_t will remain constant throughout it's lifetime 418 * (i.e. it's objset, object, level and blkid fields don't change). 419 * Thus, we don't need to store the dbuf's sublist index 420 * on insertion, as this index can be recalculated on removal. 421 * 422 * Also, the low order bits of the hash value are thought to be 423 * distributed evenly. Otherwise, in the case that the multilist 424 * has a power of two number of sublists, each sublists' usage 425 * would not be evenly distributed. 426 */ 427 return (dbuf_hash(db->db_objset, db->db.db_object, 428 db->db_level, db->db_blkid) % 429 multilist_get_num_sublists(ml)); 430 } 431 432 static inline boolean_t 433 dbuf_cache_above_hiwater(void) 434 { 435 uint64_t dbuf_cache_hiwater_bytes = 436 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 437 438 return (refcount_count(&dbuf_cache_size) > 439 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 440 } 441 442 static inline boolean_t 443 dbuf_cache_above_lowater(void) 444 { 445 uint64_t dbuf_cache_lowater_bytes = 446 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 447 448 return (refcount_count(&dbuf_cache_size) > 449 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 450 } 451 452 /* 453 * Evict the oldest eligible dbuf from the dbuf cache. 454 */ 455 static void 456 dbuf_evict_one(void) 457 { 458 int idx = multilist_get_random_index(dbuf_cache); 459 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx); 460 461 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 462 463 /* 464 * Set the thread's tsd to indicate that it's processing evictions. 465 * Once a thread stops evicting from the dbuf cache it will 466 * reset its tsd to NULL. 467 */ 468 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL); 469 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE); 470 471 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 472 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 473 db = multilist_sublist_prev(mls, db); 474 } 475 476 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 477 multilist_sublist_t *, mls); 478 479 if (db != NULL) { 480 multilist_sublist_remove(mls, db); 481 multilist_sublist_unlock(mls); 482 (void) refcount_remove_many(&dbuf_cache_size, 483 db->db.db_size, db); 484 dbuf_destroy(db); 485 } else { 486 multilist_sublist_unlock(mls); 487 } 488 (void) tsd_set(zfs_dbuf_evict_key, NULL); 489 } 490 491 /* 492 * The dbuf evict thread is responsible for aging out dbufs from the 493 * cache. Once the cache has reached it's maximum size, dbufs are removed 494 * and destroyed. The eviction thread will continue running until the size 495 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 496 * out of the cache it is destroyed and becomes eligible for arc eviction. 497 */ 498 /* ARGSUSED */ 499 static void 500 dbuf_evict_thread(void *unused) 501 { 502 callb_cpr_t cpr; 503 504 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 505 506 mutex_enter(&dbuf_evict_lock); 507 while (!dbuf_evict_thread_exit) { 508 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 509 CALLB_CPR_SAFE_BEGIN(&cpr); 510 (void) cv_timedwait_hires(&dbuf_evict_cv, 511 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 512 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 513 } 514 mutex_exit(&dbuf_evict_lock); 515 516 /* 517 * Keep evicting as long as we're above the low water mark 518 * for the cache. We do this without holding the locks to 519 * minimize lock contention. 520 */ 521 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 522 dbuf_evict_one(); 523 } 524 525 mutex_enter(&dbuf_evict_lock); 526 } 527 528 dbuf_evict_thread_exit = B_FALSE; 529 cv_broadcast(&dbuf_evict_cv); 530 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 531 thread_exit(); 532 } 533 534 /* 535 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 536 * If the dbuf cache is at its high water mark, then evict a dbuf from the 537 * dbuf cache using the callers context. 538 */ 539 static void 540 dbuf_evict_notify(void) 541 { 542 543 /* 544 * We use thread specific data to track when a thread has 545 * started processing evictions. This allows us to avoid deeply 546 * nested stacks that would have a call flow similar to this: 547 * 548 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 549 * ^ | 550 * | | 551 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 552 * 553 * The dbuf_eviction_thread will always have its tsd set until 554 * that thread exits. All other threads will only set their tsd 555 * if they are participating in the eviction process. This only 556 * happens if the eviction thread is unable to process evictions 557 * fast enough. To keep the dbuf cache size in check, other threads 558 * can evict from the dbuf cache directly. Those threads will set 559 * their tsd values so that we ensure that they only evict one dbuf 560 * from the dbuf cache. 561 */ 562 if (tsd_get(zfs_dbuf_evict_key) != NULL) 563 return; 564 565 /* 566 * We check if we should evict without holding the dbuf_evict_lock, 567 * because it's OK to occasionally make the wrong decision here, 568 * and grabbing the lock results in massive lock contention. 569 */ 570 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 571 if (dbuf_cache_above_hiwater()) 572 dbuf_evict_one(); 573 cv_signal(&dbuf_evict_cv); 574 } 575 } 576 577 void 578 dbuf_init(void) 579 { 580 uint64_t hsize = 1ULL << 16; 581 dbuf_hash_table_t *h = &dbuf_hash_table; 582 int i; 583 584 /* 585 * The hash table is big enough to fill all of physical memory 586 * with an average 4K block size. The table will take up 587 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 588 */ 589 while (hsize * 4096 < physmem * PAGESIZE) 590 hsize <<= 1; 591 592 retry: 593 h->hash_table_mask = hsize - 1; 594 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 595 if (h->hash_table == NULL) { 596 /* XXX - we should really return an error instead of assert */ 597 ASSERT(hsize > (1ULL << 10)); 598 hsize >>= 1; 599 goto retry; 600 } 601 602 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 603 sizeof (dmu_buf_impl_t), 604 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 605 606 for (i = 0; i < DBUF_MUTEXES; i++) 607 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 608 609 /* 610 * Setup the parameters for the dbuf cache. We cap the size of the 611 * dbuf cache to 1/32nd (default) of the size of the ARC. 612 */ 613 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes, 614 arc_max_bytes() >> dbuf_cache_max_shift); 615 616 /* 617 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 618 * configuration is not required. 619 */ 620 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 621 622 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t), 623 offsetof(dmu_buf_impl_t, db_cache_link), 624 dbuf_cache_multilist_index_func); 625 refcount_create(&dbuf_cache_size); 626 627 tsd_create(&zfs_dbuf_evict_key, NULL); 628 dbuf_evict_thread_exit = B_FALSE; 629 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 630 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 631 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 632 NULL, 0, &p0, TS_RUN, minclsyspri); 633 } 634 635 void 636 dbuf_fini(void) 637 { 638 dbuf_hash_table_t *h = &dbuf_hash_table; 639 int i; 640 641 for (i = 0; i < DBUF_MUTEXES; i++) 642 mutex_destroy(&h->hash_mutexes[i]); 643 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 644 kmem_cache_destroy(dbuf_kmem_cache); 645 taskq_destroy(dbu_evict_taskq); 646 647 mutex_enter(&dbuf_evict_lock); 648 dbuf_evict_thread_exit = B_TRUE; 649 while (dbuf_evict_thread_exit) { 650 cv_signal(&dbuf_evict_cv); 651 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 652 } 653 mutex_exit(&dbuf_evict_lock); 654 tsd_destroy(&zfs_dbuf_evict_key); 655 656 mutex_destroy(&dbuf_evict_lock); 657 cv_destroy(&dbuf_evict_cv); 658 659 refcount_destroy(&dbuf_cache_size); 660 multilist_destroy(dbuf_cache); 661 } 662 663 /* 664 * Other stuff. 665 */ 666 667 #ifdef ZFS_DEBUG 668 static void 669 dbuf_verify(dmu_buf_impl_t *db) 670 { 671 dnode_t *dn; 672 dbuf_dirty_record_t *dr; 673 674 ASSERT(MUTEX_HELD(&db->db_mtx)); 675 676 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 677 return; 678 679 ASSERT(db->db_objset != NULL); 680 DB_DNODE_ENTER(db); 681 dn = DB_DNODE(db); 682 if (dn == NULL) { 683 ASSERT(db->db_parent == NULL); 684 ASSERT(db->db_blkptr == NULL); 685 } else { 686 ASSERT3U(db->db.db_object, ==, dn->dn_object); 687 ASSERT3P(db->db_objset, ==, dn->dn_objset); 688 ASSERT3U(db->db_level, <, dn->dn_nlevels); 689 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 690 db->db_blkid == DMU_SPILL_BLKID || 691 !avl_is_empty(&dn->dn_dbufs)); 692 } 693 if (db->db_blkid == DMU_BONUS_BLKID) { 694 ASSERT(dn != NULL); 695 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 696 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 697 } else if (db->db_blkid == DMU_SPILL_BLKID) { 698 ASSERT(dn != NULL); 699 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 700 ASSERT0(db->db.db_offset); 701 } else { 702 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 703 } 704 705 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 706 ASSERT(dr->dr_dbuf == db); 707 708 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 709 ASSERT(dr->dr_dbuf == db); 710 711 /* 712 * We can't assert that db_size matches dn_datablksz because it 713 * can be momentarily different when another thread is doing 714 * dnode_set_blksz(). 715 */ 716 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 717 dr = db->db_data_pending; 718 /* 719 * It should only be modified in syncing context, so 720 * make sure we only have one copy of the data. 721 */ 722 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 723 } 724 725 /* verify db->db_blkptr */ 726 if (db->db_blkptr) { 727 if (db->db_parent == dn->dn_dbuf) { 728 /* db is pointed to by the dnode */ 729 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 730 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 731 ASSERT(db->db_parent == NULL); 732 else 733 ASSERT(db->db_parent != NULL); 734 if (db->db_blkid != DMU_SPILL_BLKID) 735 ASSERT3P(db->db_blkptr, ==, 736 &dn->dn_phys->dn_blkptr[db->db_blkid]); 737 } else { 738 /* db is pointed to by an indirect block */ 739 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 740 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 741 ASSERT3U(db->db_parent->db.db_object, ==, 742 db->db.db_object); 743 /* 744 * dnode_grow_indblksz() can make this fail if we don't 745 * have the struct_rwlock. XXX indblksz no longer 746 * grows. safe to do this now? 747 */ 748 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 749 ASSERT3P(db->db_blkptr, ==, 750 ((blkptr_t *)db->db_parent->db.db_data + 751 db->db_blkid % epb)); 752 } 753 } 754 } 755 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 756 (db->db_buf == NULL || db->db_buf->b_data) && 757 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 758 db->db_state != DB_FILL && !dn->dn_free_txg) { 759 /* 760 * If the blkptr isn't set but they have nonzero data, 761 * it had better be dirty, otherwise we'll lose that 762 * data when we evict this buffer. 763 * 764 * There is an exception to this rule for indirect blocks; in 765 * this case, if the indirect block is a hole, we fill in a few 766 * fields on each of the child blocks (importantly, birth time) 767 * to prevent hole birth times from being lost when you 768 * partially fill in a hole. 769 */ 770 if (db->db_dirtycnt == 0) { 771 if (db->db_level == 0) { 772 uint64_t *buf = db->db.db_data; 773 int i; 774 775 for (i = 0; i < db->db.db_size >> 3; i++) { 776 ASSERT(buf[i] == 0); 777 } 778 } else { 779 blkptr_t *bps = db->db.db_data; 780 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 781 db->db.db_size); 782 /* 783 * We want to verify that all the blkptrs in the 784 * indirect block are holes, but we may have 785 * automatically set up a few fields for them. 786 * We iterate through each blkptr and verify 787 * they only have those fields set. 788 */ 789 for (int i = 0; 790 i < db->db.db_size / sizeof (blkptr_t); 791 i++) { 792 blkptr_t *bp = &bps[i]; 793 ASSERT(ZIO_CHECKSUM_IS_ZERO( 794 &bp->blk_cksum)); 795 ASSERT( 796 DVA_IS_EMPTY(&bp->blk_dva[0]) && 797 DVA_IS_EMPTY(&bp->blk_dva[1]) && 798 DVA_IS_EMPTY(&bp->blk_dva[2])); 799 ASSERT0(bp->blk_fill); 800 ASSERT0(bp->blk_pad[0]); 801 ASSERT0(bp->blk_pad[1]); 802 ASSERT(!BP_IS_EMBEDDED(bp)); 803 ASSERT(BP_IS_HOLE(bp)); 804 ASSERT0(bp->blk_phys_birth); 805 } 806 } 807 } 808 } 809 DB_DNODE_EXIT(db); 810 } 811 #endif 812 813 static void 814 dbuf_clear_data(dmu_buf_impl_t *db) 815 { 816 ASSERT(MUTEX_HELD(&db->db_mtx)); 817 dbuf_evict_user(db); 818 ASSERT3P(db->db_buf, ==, NULL); 819 db->db.db_data = NULL; 820 if (db->db_state != DB_NOFILL) 821 db->db_state = DB_UNCACHED; 822 } 823 824 static void 825 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 826 { 827 ASSERT(MUTEX_HELD(&db->db_mtx)); 828 ASSERT(buf != NULL); 829 830 db->db_buf = buf; 831 ASSERT(buf->b_data != NULL); 832 db->db.db_data = buf->b_data; 833 } 834 835 /* 836 * Loan out an arc_buf for read. Return the loaned arc_buf. 837 */ 838 arc_buf_t * 839 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 840 { 841 arc_buf_t *abuf; 842 843 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 844 mutex_enter(&db->db_mtx); 845 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 846 int blksz = db->db.db_size; 847 spa_t *spa = db->db_objset->os_spa; 848 849 mutex_exit(&db->db_mtx); 850 abuf = arc_loan_buf(spa, B_FALSE, blksz); 851 bcopy(db->db.db_data, abuf->b_data, blksz); 852 } else { 853 abuf = db->db_buf; 854 arc_loan_inuse_buf(abuf, db); 855 db->db_buf = NULL; 856 dbuf_clear_data(db); 857 mutex_exit(&db->db_mtx); 858 } 859 return (abuf); 860 } 861 862 /* 863 * Calculate which level n block references the data at the level 0 offset 864 * provided. 865 */ 866 uint64_t 867 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 868 { 869 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 870 /* 871 * The level n blkid is equal to the level 0 blkid divided by 872 * the number of level 0s in a level n block. 873 * 874 * The level 0 blkid is offset >> datablkshift = 875 * offset / 2^datablkshift. 876 * 877 * The number of level 0s in a level n is the number of block 878 * pointers in an indirect block, raised to the power of level. 879 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 880 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 881 * 882 * Thus, the level n blkid is: offset / 883 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 884 * = offset / 2^(datablkshift + level * 885 * (indblkshift - SPA_BLKPTRSHIFT)) 886 * = offset >> (datablkshift + level * 887 * (indblkshift - SPA_BLKPTRSHIFT)) 888 */ 889 return (offset >> (dn->dn_datablkshift + level * 890 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 891 } else { 892 ASSERT3U(offset, <, dn->dn_datablksz); 893 return (0); 894 } 895 } 896 897 static void 898 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 899 { 900 dmu_buf_impl_t *db = vdb; 901 902 mutex_enter(&db->db_mtx); 903 ASSERT3U(db->db_state, ==, DB_READ); 904 /* 905 * All reads are synchronous, so we must have a hold on the dbuf 906 */ 907 ASSERT(refcount_count(&db->db_holds) > 0); 908 ASSERT(db->db_buf == NULL); 909 ASSERT(db->db.db_data == NULL); 910 if (db->db_level == 0 && db->db_freed_in_flight) { 911 /* we were freed in flight; disregard any error */ 912 arc_release(buf, db); 913 bzero(buf->b_data, db->db.db_size); 914 arc_buf_freeze(buf); 915 db->db_freed_in_flight = FALSE; 916 dbuf_set_data(db, buf); 917 db->db_state = DB_CACHED; 918 } else if (zio == NULL || zio->io_error == 0) { 919 dbuf_set_data(db, buf); 920 db->db_state = DB_CACHED; 921 } else { 922 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 923 ASSERT3P(db->db_buf, ==, NULL); 924 arc_buf_destroy(buf, db); 925 db->db_state = DB_UNCACHED; 926 } 927 cv_broadcast(&db->db_changed); 928 dbuf_rele_and_unlock(db, NULL); 929 } 930 931 static void 932 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 933 { 934 dnode_t *dn; 935 zbookmark_phys_t zb; 936 arc_flags_t aflags = ARC_FLAG_NOWAIT; 937 938 DB_DNODE_ENTER(db); 939 dn = DB_DNODE(db); 940 ASSERT(!refcount_is_zero(&db->db_holds)); 941 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 942 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 943 ASSERT(MUTEX_HELD(&db->db_mtx)); 944 ASSERT(db->db_state == DB_UNCACHED); 945 ASSERT(db->db_buf == NULL); 946 947 if (db->db_blkid == DMU_BONUS_BLKID) { 948 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 949 950 ASSERT3U(bonuslen, <=, db->db.db_size); 951 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 952 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 953 if (bonuslen < DN_MAX_BONUSLEN) 954 bzero(db->db.db_data, DN_MAX_BONUSLEN); 955 if (bonuslen) 956 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 957 DB_DNODE_EXIT(db); 958 db->db_state = DB_CACHED; 959 mutex_exit(&db->db_mtx); 960 return; 961 } 962 963 /* 964 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 965 * processes the delete record and clears the bp while we are waiting 966 * for the dn_mtx (resulting in a "no" from block_freed). 967 */ 968 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 969 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 970 BP_IS_HOLE(db->db_blkptr)))) { 971 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 972 973 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type, 974 db->db.db_size)); 975 bzero(db->db.db_data, db->db.db_size); 976 977 if (db->db_blkptr != NULL && db->db_level > 0 && 978 BP_IS_HOLE(db->db_blkptr) && 979 db->db_blkptr->blk_birth != 0) { 980 blkptr_t *bps = db->db.db_data; 981 for (int i = 0; i < ((1 << 982 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 983 i++) { 984 blkptr_t *bp = &bps[i]; 985 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 986 1 << dn->dn_indblkshift); 987 BP_SET_LSIZE(bp, 988 BP_GET_LEVEL(db->db_blkptr) == 1 ? 989 dn->dn_datablksz : 990 BP_GET_LSIZE(db->db_blkptr)); 991 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 992 BP_SET_LEVEL(bp, 993 BP_GET_LEVEL(db->db_blkptr) - 1); 994 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 995 } 996 } 997 DB_DNODE_EXIT(db); 998 db->db_state = DB_CACHED; 999 mutex_exit(&db->db_mtx); 1000 return; 1001 } 1002 1003 DB_DNODE_EXIT(db); 1004 1005 db->db_state = DB_READ; 1006 mutex_exit(&db->db_mtx); 1007 1008 if (DBUF_IS_L2CACHEABLE(db)) 1009 aflags |= ARC_FLAG_L2CACHE; 1010 1011 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 1012 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 1013 db->db.db_object, db->db_level, db->db_blkid); 1014 1015 dbuf_add_ref(db, NULL); 1016 1017 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 1018 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 1019 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 1020 &aflags, &zb); 1021 } 1022 1023 /* 1024 * This is our just-in-time copy function. It makes a copy of buffers that 1025 * have been modified in a previous transaction group before we access them in 1026 * the current active group. 1027 * 1028 * This function is used in three places: when we are dirtying a buffer for the 1029 * first time in a txg, when we are freeing a range in a dnode that includes 1030 * this buffer, and when we are accessing a buffer which was received compressed 1031 * and later referenced in a WRITE_BYREF record. 1032 * 1033 * Note that when we are called from dbuf_free_range() we do not put a hold on 1034 * the buffer, we just traverse the active dbuf list for the dnode. 1035 */ 1036 static void 1037 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1038 { 1039 dbuf_dirty_record_t *dr = db->db_last_dirty; 1040 1041 ASSERT(MUTEX_HELD(&db->db_mtx)); 1042 ASSERT(db->db.db_data != NULL); 1043 ASSERT(db->db_level == 0); 1044 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1045 1046 if (dr == NULL || 1047 (dr->dt.dl.dr_data != 1048 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1049 return; 1050 1051 /* 1052 * If the last dirty record for this dbuf has not yet synced 1053 * and its referencing the dbuf data, either: 1054 * reset the reference to point to a new copy, 1055 * or (if there a no active holders) 1056 * just null out the current db_data pointer. 1057 */ 1058 ASSERT(dr->dr_txg >= txg - 2); 1059 if (db->db_blkid == DMU_BONUS_BLKID) { 1060 /* Note that the data bufs here are zio_bufs */ 1061 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 1062 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1063 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 1064 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1065 int size = arc_buf_size(db->db_buf); 1066 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1067 spa_t *spa = db->db_objset->os_spa; 1068 enum zio_compress compress_type = 1069 arc_get_compression(db->db_buf); 1070 1071 if (compress_type == ZIO_COMPRESS_OFF) { 1072 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1073 } else { 1074 ASSERT3U(type, ==, ARC_BUFC_DATA); 1075 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1076 size, arc_buf_lsize(db->db_buf), compress_type); 1077 } 1078 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1079 } else { 1080 db->db_buf = NULL; 1081 dbuf_clear_data(db); 1082 } 1083 } 1084 1085 int 1086 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1087 { 1088 int err = 0; 1089 boolean_t prefetch; 1090 dnode_t *dn; 1091 1092 /* 1093 * We don't have to hold the mutex to check db_state because it 1094 * can't be freed while we have a hold on the buffer. 1095 */ 1096 ASSERT(!refcount_is_zero(&db->db_holds)); 1097 1098 if (db->db_state == DB_NOFILL) 1099 return (SET_ERROR(EIO)); 1100 1101 DB_DNODE_ENTER(db); 1102 dn = DB_DNODE(db); 1103 if ((flags & DB_RF_HAVESTRUCT) == 0) 1104 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1105 1106 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1107 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1108 DBUF_IS_CACHEABLE(db); 1109 1110 mutex_enter(&db->db_mtx); 1111 if (db->db_state == DB_CACHED) { 1112 /* 1113 * If the arc buf is compressed, we need to decompress it to 1114 * read the data. This could happen during the "zfs receive" of 1115 * a stream which is compressed and deduplicated. 1116 */ 1117 if (db->db_buf != NULL && 1118 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) { 1119 dbuf_fix_old_data(db, 1120 spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1121 err = arc_decompress(db->db_buf); 1122 dbuf_set_data(db, db->db_buf); 1123 } 1124 mutex_exit(&db->db_mtx); 1125 if (prefetch) 1126 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1127 if ((flags & DB_RF_HAVESTRUCT) == 0) 1128 rw_exit(&dn->dn_struct_rwlock); 1129 DB_DNODE_EXIT(db); 1130 } else if (db->db_state == DB_UNCACHED) { 1131 spa_t *spa = dn->dn_objset->os_spa; 1132 boolean_t need_wait = B_FALSE; 1133 1134 if (zio == NULL && 1135 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1136 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1137 need_wait = B_TRUE; 1138 } 1139 dbuf_read_impl(db, zio, flags); 1140 1141 /* dbuf_read_impl has dropped db_mtx for us */ 1142 1143 if (prefetch) 1144 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1145 1146 if ((flags & DB_RF_HAVESTRUCT) == 0) 1147 rw_exit(&dn->dn_struct_rwlock); 1148 DB_DNODE_EXIT(db); 1149 1150 if (need_wait) 1151 err = zio_wait(zio); 1152 } else { 1153 /* 1154 * Another reader came in while the dbuf was in flight 1155 * between UNCACHED and CACHED. Either a writer will finish 1156 * writing the buffer (sending the dbuf to CACHED) or the 1157 * first reader's request will reach the read_done callback 1158 * and send the dbuf to CACHED. Otherwise, a failure 1159 * occurred and the dbuf went to UNCACHED. 1160 */ 1161 mutex_exit(&db->db_mtx); 1162 if (prefetch) 1163 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1164 if ((flags & DB_RF_HAVESTRUCT) == 0) 1165 rw_exit(&dn->dn_struct_rwlock); 1166 DB_DNODE_EXIT(db); 1167 1168 /* Skip the wait per the caller's request. */ 1169 mutex_enter(&db->db_mtx); 1170 if ((flags & DB_RF_NEVERWAIT) == 0) { 1171 while (db->db_state == DB_READ || 1172 db->db_state == DB_FILL) { 1173 ASSERT(db->db_state == DB_READ || 1174 (flags & DB_RF_HAVESTRUCT) == 0); 1175 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1176 db, zio_t *, zio); 1177 cv_wait(&db->db_changed, &db->db_mtx); 1178 } 1179 if (db->db_state == DB_UNCACHED) 1180 err = SET_ERROR(EIO); 1181 } 1182 mutex_exit(&db->db_mtx); 1183 } 1184 1185 return (err); 1186 } 1187 1188 static void 1189 dbuf_noread(dmu_buf_impl_t *db) 1190 { 1191 ASSERT(!refcount_is_zero(&db->db_holds)); 1192 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1193 mutex_enter(&db->db_mtx); 1194 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1195 cv_wait(&db->db_changed, &db->db_mtx); 1196 if (db->db_state == DB_UNCACHED) { 1197 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1198 spa_t *spa = db->db_objset->os_spa; 1199 1200 ASSERT(db->db_buf == NULL); 1201 ASSERT(db->db.db_data == NULL); 1202 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size)); 1203 db->db_state = DB_FILL; 1204 } else if (db->db_state == DB_NOFILL) { 1205 dbuf_clear_data(db); 1206 } else { 1207 ASSERT3U(db->db_state, ==, DB_CACHED); 1208 } 1209 mutex_exit(&db->db_mtx); 1210 } 1211 1212 void 1213 dbuf_unoverride(dbuf_dirty_record_t *dr) 1214 { 1215 dmu_buf_impl_t *db = dr->dr_dbuf; 1216 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1217 uint64_t txg = dr->dr_txg; 1218 1219 ASSERT(MUTEX_HELD(&db->db_mtx)); 1220 /* 1221 * This assert is valid because dmu_sync() expects to be called by 1222 * a zilog's get_data while holding a range lock. This call only 1223 * comes from dbuf_dirty() callers who must also hold a range lock. 1224 */ 1225 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1226 ASSERT(db->db_level == 0); 1227 1228 if (db->db_blkid == DMU_BONUS_BLKID || 1229 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1230 return; 1231 1232 ASSERT(db->db_data_pending != dr); 1233 1234 /* free this block */ 1235 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1236 zio_free(db->db_objset->os_spa, txg, bp); 1237 1238 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1239 dr->dt.dl.dr_nopwrite = B_FALSE; 1240 1241 /* 1242 * Release the already-written buffer, so we leave it in 1243 * a consistent dirty state. Note that all callers are 1244 * modifying the buffer, so they will immediately do 1245 * another (redundant) arc_release(). Therefore, leave 1246 * the buf thawed to save the effort of freezing & 1247 * immediately re-thawing it. 1248 */ 1249 arc_release(dr->dt.dl.dr_data, db); 1250 } 1251 1252 /* 1253 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1254 * data blocks in the free range, so that any future readers will find 1255 * empty blocks. 1256 */ 1257 void 1258 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1259 dmu_tx_t *tx) 1260 { 1261 dmu_buf_impl_t db_search; 1262 dmu_buf_impl_t *db, *db_next; 1263 uint64_t txg = tx->tx_txg; 1264 avl_index_t where; 1265 1266 if (end_blkid > dn->dn_maxblkid && 1267 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1268 end_blkid = dn->dn_maxblkid; 1269 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1270 1271 db_search.db_level = 0; 1272 db_search.db_blkid = start_blkid; 1273 db_search.db_state = DB_SEARCH; 1274 1275 mutex_enter(&dn->dn_dbufs_mtx); 1276 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1277 ASSERT3P(db, ==, NULL); 1278 1279 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1280 1281 for (; db != NULL; db = db_next) { 1282 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1283 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1284 1285 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1286 break; 1287 } 1288 ASSERT3U(db->db_blkid, >=, start_blkid); 1289 1290 /* found a level 0 buffer in the range */ 1291 mutex_enter(&db->db_mtx); 1292 if (dbuf_undirty(db, tx)) { 1293 /* mutex has been dropped and dbuf destroyed */ 1294 continue; 1295 } 1296 1297 if (db->db_state == DB_UNCACHED || 1298 db->db_state == DB_NOFILL || 1299 db->db_state == DB_EVICTING) { 1300 ASSERT(db->db.db_data == NULL); 1301 mutex_exit(&db->db_mtx); 1302 continue; 1303 } 1304 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1305 /* will be handled in dbuf_read_done or dbuf_rele */ 1306 db->db_freed_in_flight = TRUE; 1307 mutex_exit(&db->db_mtx); 1308 continue; 1309 } 1310 if (refcount_count(&db->db_holds) == 0) { 1311 ASSERT(db->db_buf); 1312 dbuf_destroy(db); 1313 continue; 1314 } 1315 /* The dbuf is referenced */ 1316 1317 if (db->db_last_dirty != NULL) { 1318 dbuf_dirty_record_t *dr = db->db_last_dirty; 1319 1320 if (dr->dr_txg == txg) { 1321 /* 1322 * This buffer is "in-use", re-adjust the file 1323 * size to reflect that this buffer may 1324 * contain new data when we sync. 1325 */ 1326 if (db->db_blkid != DMU_SPILL_BLKID && 1327 db->db_blkid > dn->dn_maxblkid) 1328 dn->dn_maxblkid = db->db_blkid; 1329 dbuf_unoverride(dr); 1330 } else { 1331 /* 1332 * This dbuf is not dirty in the open context. 1333 * Either uncache it (if its not referenced in 1334 * the open context) or reset its contents to 1335 * empty. 1336 */ 1337 dbuf_fix_old_data(db, txg); 1338 } 1339 } 1340 /* clear the contents if its cached */ 1341 if (db->db_state == DB_CACHED) { 1342 ASSERT(db->db.db_data != NULL); 1343 arc_release(db->db_buf, db); 1344 bzero(db->db.db_data, db->db.db_size); 1345 arc_buf_freeze(db->db_buf); 1346 } 1347 1348 mutex_exit(&db->db_mtx); 1349 } 1350 mutex_exit(&dn->dn_dbufs_mtx); 1351 } 1352 1353 void 1354 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1355 { 1356 arc_buf_t *buf, *obuf; 1357 int osize = db->db.db_size; 1358 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1359 dnode_t *dn; 1360 1361 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1362 1363 DB_DNODE_ENTER(db); 1364 dn = DB_DNODE(db); 1365 1366 /* XXX does *this* func really need the lock? */ 1367 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1368 1369 /* 1370 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1371 * is OK, because there can be no other references to the db 1372 * when we are changing its size, so no concurrent DB_FILL can 1373 * be happening. 1374 */ 1375 /* 1376 * XXX we should be doing a dbuf_read, checking the return 1377 * value and returning that up to our callers 1378 */ 1379 dmu_buf_will_dirty(&db->db, tx); 1380 1381 /* create the data buffer for the new block */ 1382 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1383 1384 /* copy old block data to the new block */ 1385 obuf = db->db_buf; 1386 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1387 /* zero the remainder */ 1388 if (size > osize) 1389 bzero((uint8_t *)buf->b_data + osize, size - osize); 1390 1391 mutex_enter(&db->db_mtx); 1392 dbuf_set_data(db, buf); 1393 arc_buf_destroy(obuf, db); 1394 db->db.db_size = size; 1395 1396 if (db->db_level == 0) { 1397 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1398 db->db_last_dirty->dt.dl.dr_data = buf; 1399 } 1400 mutex_exit(&db->db_mtx); 1401 1402 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1403 DB_DNODE_EXIT(db); 1404 } 1405 1406 void 1407 dbuf_release_bp(dmu_buf_impl_t *db) 1408 { 1409 objset_t *os = db->db_objset; 1410 1411 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1412 ASSERT(arc_released(os->os_phys_buf) || 1413 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1414 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1415 1416 (void) arc_release(db->db_buf, db); 1417 } 1418 1419 /* 1420 * We already have a dirty record for this TXG, and we are being 1421 * dirtied again. 1422 */ 1423 static void 1424 dbuf_redirty(dbuf_dirty_record_t *dr) 1425 { 1426 dmu_buf_impl_t *db = dr->dr_dbuf; 1427 1428 ASSERT(MUTEX_HELD(&db->db_mtx)); 1429 1430 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1431 /* 1432 * If this buffer has already been written out, 1433 * we now need to reset its state. 1434 */ 1435 dbuf_unoverride(dr); 1436 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1437 db->db_state != DB_NOFILL) { 1438 /* Already released on initial dirty, so just thaw. */ 1439 ASSERT(arc_released(db->db_buf)); 1440 arc_buf_thaw(db->db_buf); 1441 } 1442 } 1443 } 1444 1445 dbuf_dirty_record_t * 1446 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1447 { 1448 dnode_t *dn; 1449 objset_t *os; 1450 dbuf_dirty_record_t **drp, *dr; 1451 int drop_struct_lock = FALSE; 1452 int txgoff = tx->tx_txg & TXG_MASK; 1453 1454 ASSERT(tx->tx_txg != 0); 1455 ASSERT(!refcount_is_zero(&db->db_holds)); 1456 DMU_TX_DIRTY_BUF(tx, db); 1457 1458 DB_DNODE_ENTER(db); 1459 dn = DB_DNODE(db); 1460 /* 1461 * Shouldn't dirty a regular buffer in syncing context. Private 1462 * objects may be dirtied in syncing context, but only if they 1463 * were already pre-dirtied in open context. 1464 */ 1465 #ifdef DEBUG 1466 if (dn->dn_objset->os_dsl_dataset != NULL) { 1467 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1468 RW_READER, FTAG); 1469 } 1470 ASSERT(!dmu_tx_is_syncing(tx) || 1471 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1472 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1473 dn->dn_objset->os_dsl_dataset == NULL); 1474 if (dn->dn_objset->os_dsl_dataset != NULL) 1475 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 1476 #endif 1477 /* 1478 * We make this assert for private objects as well, but after we 1479 * check if we're already dirty. They are allowed to re-dirty 1480 * in syncing context. 1481 */ 1482 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1483 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1484 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1485 1486 mutex_enter(&db->db_mtx); 1487 /* 1488 * XXX make this true for indirects too? The problem is that 1489 * transactions created with dmu_tx_create_assigned() from 1490 * syncing context don't bother holding ahead. 1491 */ 1492 ASSERT(db->db_level != 0 || 1493 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1494 db->db_state == DB_NOFILL); 1495 1496 mutex_enter(&dn->dn_mtx); 1497 /* 1498 * Don't set dirtyctx to SYNC if we're just modifying this as we 1499 * initialize the objset. 1500 */ 1501 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 1502 if (dn->dn_objset->os_dsl_dataset != NULL) { 1503 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1504 RW_READER, FTAG); 1505 } 1506 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1507 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? 1508 DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1509 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1510 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1511 } 1512 if (dn->dn_objset->os_dsl_dataset != NULL) { 1513 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1514 FTAG); 1515 } 1516 } 1517 mutex_exit(&dn->dn_mtx); 1518 1519 if (db->db_blkid == DMU_SPILL_BLKID) 1520 dn->dn_have_spill = B_TRUE; 1521 1522 /* 1523 * If this buffer is already dirty, we're done. 1524 */ 1525 drp = &db->db_last_dirty; 1526 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1527 db->db.db_object == DMU_META_DNODE_OBJECT); 1528 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1529 drp = &dr->dr_next; 1530 if (dr && dr->dr_txg == tx->tx_txg) { 1531 DB_DNODE_EXIT(db); 1532 1533 dbuf_redirty(dr); 1534 mutex_exit(&db->db_mtx); 1535 return (dr); 1536 } 1537 1538 /* 1539 * Only valid if not already dirty. 1540 */ 1541 ASSERT(dn->dn_object == 0 || 1542 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1543 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1544 1545 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1546 1547 /* 1548 * We should only be dirtying in syncing context if it's the 1549 * mos or we're initializing the os or it's a special object. 1550 * However, we are allowed to dirty in syncing context provided 1551 * we already dirtied it in open context. Hence we must make 1552 * this assertion only if we're not already dirty. 1553 */ 1554 os = dn->dn_objset; 1555 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 1556 #ifdef DEBUG 1557 if (dn->dn_objset->os_dsl_dataset != NULL) 1558 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 1559 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1560 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1561 if (dn->dn_objset->os_dsl_dataset != NULL) 1562 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 1563 #endif 1564 ASSERT(db->db.db_size != 0); 1565 1566 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1567 1568 if (db->db_blkid != DMU_BONUS_BLKID) { 1569 dmu_objset_willuse_space(os, db->db.db_size, tx); 1570 } 1571 1572 /* 1573 * If this buffer is dirty in an old transaction group we need 1574 * to make a copy of it so that the changes we make in this 1575 * transaction group won't leak out when we sync the older txg. 1576 */ 1577 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1578 if (db->db_level == 0) { 1579 void *data_old = db->db_buf; 1580 1581 if (db->db_state != DB_NOFILL) { 1582 if (db->db_blkid == DMU_BONUS_BLKID) { 1583 dbuf_fix_old_data(db, tx->tx_txg); 1584 data_old = db->db.db_data; 1585 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1586 /* 1587 * Release the data buffer from the cache so 1588 * that we can modify it without impacting 1589 * possible other users of this cached data 1590 * block. Note that indirect blocks and 1591 * private objects are not released until the 1592 * syncing state (since they are only modified 1593 * then). 1594 */ 1595 arc_release(db->db_buf, db); 1596 dbuf_fix_old_data(db, tx->tx_txg); 1597 data_old = db->db_buf; 1598 } 1599 ASSERT(data_old != NULL); 1600 } 1601 dr->dt.dl.dr_data = data_old; 1602 } else { 1603 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1604 list_create(&dr->dt.di.dr_children, 1605 sizeof (dbuf_dirty_record_t), 1606 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1607 } 1608 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1609 dr->dr_accounted = db->db.db_size; 1610 dr->dr_dbuf = db; 1611 dr->dr_txg = tx->tx_txg; 1612 dr->dr_next = *drp; 1613 *drp = dr; 1614 1615 /* 1616 * We could have been freed_in_flight between the dbuf_noread 1617 * and dbuf_dirty. We win, as though the dbuf_noread() had 1618 * happened after the free. 1619 */ 1620 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1621 db->db_blkid != DMU_SPILL_BLKID) { 1622 mutex_enter(&dn->dn_mtx); 1623 if (dn->dn_free_ranges[txgoff] != NULL) { 1624 range_tree_clear(dn->dn_free_ranges[txgoff], 1625 db->db_blkid, 1); 1626 } 1627 mutex_exit(&dn->dn_mtx); 1628 db->db_freed_in_flight = FALSE; 1629 } 1630 1631 /* 1632 * This buffer is now part of this txg 1633 */ 1634 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1635 db->db_dirtycnt += 1; 1636 ASSERT3U(db->db_dirtycnt, <=, 3); 1637 1638 mutex_exit(&db->db_mtx); 1639 1640 if (db->db_blkid == DMU_BONUS_BLKID || 1641 db->db_blkid == DMU_SPILL_BLKID) { 1642 mutex_enter(&dn->dn_mtx); 1643 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1644 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1645 mutex_exit(&dn->dn_mtx); 1646 dnode_setdirty(dn, tx); 1647 DB_DNODE_EXIT(db); 1648 return (dr); 1649 } 1650 1651 /* 1652 * The dn_struct_rwlock prevents db_blkptr from changing 1653 * due to a write from syncing context completing 1654 * while we are running, so we want to acquire it before 1655 * looking at db_blkptr. 1656 */ 1657 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1658 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1659 drop_struct_lock = TRUE; 1660 } 1661 1662 /* 1663 * We need to hold the dn_struct_rwlock to make this assertion, 1664 * because it protects dn_phys / dn_next_nlevels from changing. 1665 */ 1666 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1667 dn->dn_phys->dn_nlevels > db->db_level || 1668 dn->dn_next_nlevels[txgoff] > db->db_level || 1669 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1670 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1671 1672 /* 1673 * If we are overwriting a dedup BP, then unless it is snapshotted, 1674 * when we get to syncing context we will need to decrement its 1675 * refcount in the DDT. Prefetch the relevant DDT block so that 1676 * syncing context won't have to wait for the i/o. 1677 */ 1678 ddt_prefetch(os->os_spa, db->db_blkptr); 1679 1680 if (db->db_level == 0) { 1681 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1682 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1683 } 1684 1685 if (db->db_level+1 < dn->dn_nlevels) { 1686 dmu_buf_impl_t *parent = db->db_parent; 1687 dbuf_dirty_record_t *di; 1688 int parent_held = FALSE; 1689 1690 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1691 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1692 1693 parent = dbuf_hold_level(dn, db->db_level+1, 1694 db->db_blkid >> epbs, FTAG); 1695 ASSERT(parent != NULL); 1696 parent_held = TRUE; 1697 } 1698 if (drop_struct_lock) 1699 rw_exit(&dn->dn_struct_rwlock); 1700 ASSERT3U(db->db_level+1, ==, parent->db_level); 1701 di = dbuf_dirty(parent, tx); 1702 if (parent_held) 1703 dbuf_rele(parent, FTAG); 1704 1705 mutex_enter(&db->db_mtx); 1706 /* 1707 * Since we've dropped the mutex, it's possible that 1708 * dbuf_undirty() might have changed this out from under us. 1709 */ 1710 if (db->db_last_dirty == dr || 1711 dn->dn_object == DMU_META_DNODE_OBJECT) { 1712 mutex_enter(&di->dt.di.dr_mtx); 1713 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1714 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1715 list_insert_tail(&di->dt.di.dr_children, dr); 1716 mutex_exit(&di->dt.di.dr_mtx); 1717 dr->dr_parent = di; 1718 } 1719 mutex_exit(&db->db_mtx); 1720 } else { 1721 ASSERT(db->db_level+1 == dn->dn_nlevels); 1722 ASSERT(db->db_blkid < dn->dn_nblkptr); 1723 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1724 mutex_enter(&dn->dn_mtx); 1725 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1726 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1727 mutex_exit(&dn->dn_mtx); 1728 if (drop_struct_lock) 1729 rw_exit(&dn->dn_struct_rwlock); 1730 } 1731 1732 dnode_setdirty(dn, tx); 1733 DB_DNODE_EXIT(db); 1734 return (dr); 1735 } 1736 1737 /* 1738 * Undirty a buffer in the transaction group referenced by the given 1739 * transaction. Return whether this evicted the dbuf. 1740 */ 1741 static boolean_t 1742 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1743 { 1744 dnode_t *dn; 1745 uint64_t txg = tx->tx_txg; 1746 dbuf_dirty_record_t *dr, **drp; 1747 1748 ASSERT(txg != 0); 1749 1750 /* 1751 * Due to our use of dn_nlevels below, this can only be called 1752 * in open context, unless we are operating on the MOS. 1753 * From syncing context, dn_nlevels may be different from the 1754 * dn_nlevels used when dbuf was dirtied. 1755 */ 1756 ASSERT(db->db_objset == 1757 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1758 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1759 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1760 ASSERT0(db->db_level); 1761 ASSERT(MUTEX_HELD(&db->db_mtx)); 1762 1763 /* 1764 * If this buffer is not dirty, we're done. 1765 */ 1766 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1767 if (dr->dr_txg <= txg) 1768 break; 1769 if (dr == NULL || dr->dr_txg < txg) 1770 return (B_FALSE); 1771 ASSERT(dr->dr_txg == txg); 1772 ASSERT(dr->dr_dbuf == db); 1773 1774 DB_DNODE_ENTER(db); 1775 dn = DB_DNODE(db); 1776 1777 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1778 1779 ASSERT(db->db.db_size != 0); 1780 1781 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1782 dr->dr_accounted, txg); 1783 1784 *drp = dr->dr_next; 1785 1786 /* 1787 * Note that there are three places in dbuf_dirty() 1788 * where this dirty record may be put on a list. 1789 * Make sure to do a list_remove corresponding to 1790 * every one of those list_insert calls. 1791 */ 1792 if (dr->dr_parent) { 1793 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1794 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1795 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1796 } else if (db->db_blkid == DMU_SPILL_BLKID || 1797 db->db_level + 1 == dn->dn_nlevels) { 1798 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1799 mutex_enter(&dn->dn_mtx); 1800 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1801 mutex_exit(&dn->dn_mtx); 1802 } 1803 DB_DNODE_EXIT(db); 1804 1805 if (db->db_state != DB_NOFILL) { 1806 dbuf_unoverride(dr); 1807 1808 ASSERT(db->db_buf != NULL); 1809 ASSERT(dr->dt.dl.dr_data != NULL); 1810 if (dr->dt.dl.dr_data != db->db_buf) 1811 arc_buf_destroy(dr->dt.dl.dr_data, db); 1812 } 1813 1814 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1815 1816 ASSERT(db->db_dirtycnt > 0); 1817 db->db_dirtycnt -= 1; 1818 1819 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1820 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 1821 dbuf_destroy(db); 1822 return (B_TRUE); 1823 } 1824 1825 return (B_FALSE); 1826 } 1827 1828 void 1829 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1830 { 1831 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1832 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1833 1834 ASSERT(tx->tx_txg != 0); 1835 ASSERT(!refcount_is_zero(&db->db_holds)); 1836 1837 /* 1838 * Quick check for dirtyness. For already dirty blocks, this 1839 * reduces runtime of this function by >90%, and overall performance 1840 * by 50% for some workloads (e.g. file deletion with indirect blocks 1841 * cached). 1842 */ 1843 mutex_enter(&db->db_mtx); 1844 dbuf_dirty_record_t *dr; 1845 for (dr = db->db_last_dirty; 1846 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 1847 /* 1848 * It's possible that it is already dirty but not cached, 1849 * because there are some calls to dbuf_dirty() that don't 1850 * go through dmu_buf_will_dirty(). 1851 */ 1852 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 1853 /* This dbuf is already dirty and cached. */ 1854 dbuf_redirty(dr); 1855 mutex_exit(&db->db_mtx); 1856 return; 1857 } 1858 } 1859 mutex_exit(&db->db_mtx); 1860 1861 DB_DNODE_ENTER(db); 1862 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1863 rf |= DB_RF_HAVESTRUCT; 1864 DB_DNODE_EXIT(db); 1865 (void) dbuf_read(db, NULL, rf); 1866 (void) dbuf_dirty(db, tx); 1867 } 1868 1869 void 1870 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1871 { 1872 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1873 1874 db->db_state = DB_NOFILL; 1875 1876 dmu_buf_will_fill(db_fake, tx); 1877 } 1878 1879 void 1880 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1881 { 1882 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1883 1884 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1885 ASSERT(tx->tx_txg != 0); 1886 ASSERT(db->db_level == 0); 1887 ASSERT(!refcount_is_zero(&db->db_holds)); 1888 1889 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1890 dmu_tx_private_ok(tx)); 1891 1892 dbuf_noread(db); 1893 (void) dbuf_dirty(db, tx); 1894 } 1895 1896 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1897 /* ARGSUSED */ 1898 void 1899 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1900 { 1901 mutex_enter(&db->db_mtx); 1902 DBUF_VERIFY(db); 1903 1904 if (db->db_state == DB_FILL) { 1905 if (db->db_level == 0 && db->db_freed_in_flight) { 1906 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1907 /* we were freed while filling */ 1908 /* XXX dbuf_undirty? */ 1909 bzero(db->db.db_data, db->db.db_size); 1910 db->db_freed_in_flight = FALSE; 1911 } 1912 db->db_state = DB_CACHED; 1913 cv_broadcast(&db->db_changed); 1914 } 1915 mutex_exit(&db->db_mtx); 1916 } 1917 1918 void 1919 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1920 bp_embedded_type_t etype, enum zio_compress comp, 1921 int uncompressed_size, int compressed_size, int byteorder, 1922 dmu_tx_t *tx) 1923 { 1924 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1925 struct dirty_leaf *dl; 1926 dmu_object_type_t type; 1927 1928 if (etype == BP_EMBEDDED_TYPE_DATA) { 1929 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 1930 SPA_FEATURE_EMBEDDED_DATA)); 1931 } 1932 1933 DB_DNODE_ENTER(db); 1934 type = DB_DNODE(db)->dn_type; 1935 DB_DNODE_EXIT(db); 1936 1937 ASSERT0(db->db_level); 1938 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1939 1940 dmu_buf_will_not_fill(dbuf, tx); 1941 1942 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1943 dl = &db->db_last_dirty->dt.dl; 1944 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1945 data, comp, uncompressed_size, compressed_size); 1946 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1947 BP_SET_TYPE(&dl->dr_overridden_by, type); 1948 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1949 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1950 1951 dl->dr_override_state = DR_OVERRIDDEN; 1952 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1953 } 1954 1955 /* 1956 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1957 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1958 */ 1959 void 1960 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1961 { 1962 ASSERT(!refcount_is_zero(&db->db_holds)); 1963 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1964 ASSERT(db->db_level == 0); 1965 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 1966 ASSERT(buf != NULL); 1967 ASSERT(arc_buf_lsize(buf) == db->db.db_size); 1968 ASSERT(tx->tx_txg != 0); 1969 1970 arc_return_buf(buf, db); 1971 ASSERT(arc_released(buf)); 1972 1973 mutex_enter(&db->db_mtx); 1974 1975 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1976 cv_wait(&db->db_changed, &db->db_mtx); 1977 1978 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1979 1980 if (db->db_state == DB_CACHED && 1981 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1982 mutex_exit(&db->db_mtx); 1983 (void) dbuf_dirty(db, tx); 1984 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1985 arc_buf_destroy(buf, db); 1986 xuio_stat_wbuf_copied(); 1987 return; 1988 } 1989 1990 xuio_stat_wbuf_nocopy(); 1991 if (db->db_state == DB_CACHED) { 1992 dbuf_dirty_record_t *dr = db->db_last_dirty; 1993 1994 ASSERT(db->db_buf != NULL); 1995 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1996 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1997 if (!arc_released(db->db_buf)) { 1998 ASSERT(dr->dt.dl.dr_override_state == 1999 DR_OVERRIDDEN); 2000 arc_release(db->db_buf, db); 2001 } 2002 dr->dt.dl.dr_data = buf; 2003 arc_buf_destroy(db->db_buf, db); 2004 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2005 arc_release(db->db_buf, db); 2006 arc_buf_destroy(db->db_buf, db); 2007 } 2008 db->db_buf = NULL; 2009 } 2010 ASSERT(db->db_buf == NULL); 2011 dbuf_set_data(db, buf); 2012 db->db_state = DB_FILL; 2013 mutex_exit(&db->db_mtx); 2014 (void) dbuf_dirty(db, tx); 2015 dmu_buf_fill_done(&db->db, tx); 2016 } 2017 2018 void 2019 dbuf_destroy(dmu_buf_impl_t *db) 2020 { 2021 dnode_t *dn; 2022 dmu_buf_impl_t *parent = db->db_parent; 2023 dmu_buf_impl_t *dndb; 2024 2025 ASSERT(MUTEX_HELD(&db->db_mtx)); 2026 ASSERT(refcount_is_zero(&db->db_holds)); 2027 2028 if (db->db_buf != NULL) { 2029 arc_buf_destroy(db->db_buf, db); 2030 db->db_buf = NULL; 2031 } 2032 2033 if (db->db_blkid == DMU_BONUS_BLKID) { 2034 ASSERT(db->db.db_data != NULL); 2035 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 2036 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2037 db->db_state = DB_UNCACHED; 2038 } 2039 2040 dbuf_clear_data(db); 2041 2042 if (multilist_link_active(&db->db_cache_link)) { 2043 multilist_remove(dbuf_cache, db); 2044 (void) refcount_remove_many(&dbuf_cache_size, 2045 db->db.db_size, db); 2046 } 2047 2048 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2049 ASSERT(db->db_data_pending == NULL); 2050 2051 db->db_state = DB_EVICTING; 2052 db->db_blkptr = NULL; 2053 2054 /* 2055 * Now that db_state is DB_EVICTING, nobody else can find this via 2056 * the hash table. We can now drop db_mtx, which allows us to 2057 * acquire the dn_dbufs_mtx. 2058 */ 2059 mutex_exit(&db->db_mtx); 2060 2061 DB_DNODE_ENTER(db); 2062 dn = DB_DNODE(db); 2063 dndb = dn->dn_dbuf; 2064 if (db->db_blkid != DMU_BONUS_BLKID) { 2065 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2066 if (needlock) 2067 mutex_enter(&dn->dn_dbufs_mtx); 2068 avl_remove(&dn->dn_dbufs, db); 2069 atomic_dec_32(&dn->dn_dbufs_count); 2070 membar_producer(); 2071 DB_DNODE_EXIT(db); 2072 if (needlock) 2073 mutex_exit(&dn->dn_dbufs_mtx); 2074 /* 2075 * Decrementing the dbuf count means that the hold corresponding 2076 * to the removed dbuf is no longer discounted in dnode_move(), 2077 * so the dnode cannot be moved until after we release the hold. 2078 * The membar_producer() ensures visibility of the decremented 2079 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2080 * release any lock. 2081 */ 2082 dnode_rele(dn, db); 2083 db->db_dnode_handle = NULL; 2084 2085 dbuf_hash_remove(db); 2086 } else { 2087 DB_DNODE_EXIT(db); 2088 } 2089 2090 ASSERT(refcount_is_zero(&db->db_holds)); 2091 2092 db->db_parent = NULL; 2093 2094 ASSERT(db->db_buf == NULL); 2095 ASSERT(db->db.db_data == NULL); 2096 ASSERT(db->db_hash_next == NULL); 2097 ASSERT(db->db_blkptr == NULL); 2098 ASSERT(db->db_data_pending == NULL); 2099 ASSERT(!multilist_link_active(&db->db_cache_link)); 2100 2101 kmem_cache_free(dbuf_kmem_cache, db); 2102 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2103 2104 /* 2105 * If this dbuf is referenced from an indirect dbuf, 2106 * decrement the ref count on the indirect dbuf. 2107 */ 2108 if (parent && parent != dndb) 2109 dbuf_rele(parent, db); 2110 } 2111 2112 /* 2113 * Note: While bpp will always be updated if the function returns success, 2114 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2115 * this happens when the dnode is the meta-dnode, or a userused or groupused 2116 * object. 2117 */ 2118 static int 2119 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2120 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2121 { 2122 *parentp = NULL; 2123 *bpp = NULL; 2124 2125 ASSERT(blkid != DMU_BONUS_BLKID); 2126 2127 if (blkid == DMU_SPILL_BLKID) { 2128 mutex_enter(&dn->dn_mtx); 2129 if (dn->dn_have_spill && 2130 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2131 *bpp = &dn->dn_phys->dn_spill; 2132 else 2133 *bpp = NULL; 2134 dbuf_add_ref(dn->dn_dbuf, NULL); 2135 *parentp = dn->dn_dbuf; 2136 mutex_exit(&dn->dn_mtx); 2137 return (0); 2138 } 2139 2140 int nlevels = 2141 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2142 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2143 2144 ASSERT3U(level * epbs, <, 64); 2145 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2146 /* 2147 * This assertion shouldn't trip as long as the max indirect block size 2148 * is less than 1M. The reason for this is that up to that point, 2149 * the number of levels required to address an entire object with blocks 2150 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2151 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2152 * (i.e. we can address the entire object), objects will all use at most 2153 * N-1 levels and the assertion won't overflow. However, once epbs is 2154 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2155 * enough to address an entire object, so objects will have 5 levels, 2156 * but then this assertion will overflow. 2157 * 2158 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2159 * need to redo this logic to handle overflows. 2160 */ 2161 ASSERT(level >= nlevels || 2162 ((nlevels - level - 1) * epbs) + 2163 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2164 if (level >= nlevels || 2165 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2166 ((nlevels - level - 1) * epbs)) || 2167 (fail_sparse && 2168 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2169 /* the buffer has no parent yet */ 2170 return (SET_ERROR(ENOENT)); 2171 } else if (level < nlevels-1) { 2172 /* this block is referenced from an indirect block */ 2173 int err = dbuf_hold_impl(dn, level+1, 2174 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2175 if (err) 2176 return (err); 2177 err = dbuf_read(*parentp, NULL, 2178 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2179 if (err) { 2180 dbuf_rele(*parentp, NULL); 2181 *parentp = NULL; 2182 return (err); 2183 } 2184 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2185 (blkid & ((1ULL << epbs) - 1)); 2186 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2187 ASSERT(BP_IS_HOLE(*bpp)); 2188 return (0); 2189 } else { 2190 /* the block is referenced from the dnode */ 2191 ASSERT3U(level, ==, nlevels-1); 2192 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2193 blkid < dn->dn_phys->dn_nblkptr); 2194 if (dn->dn_dbuf) { 2195 dbuf_add_ref(dn->dn_dbuf, NULL); 2196 *parentp = dn->dn_dbuf; 2197 } 2198 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2199 return (0); 2200 } 2201 } 2202 2203 static dmu_buf_impl_t * 2204 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2205 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2206 { 2207 objset_t *os = dn->dn_objset; 2208 dmu_buf_impl_t *db, *odb; 2209 2210 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2211 ASSERT(dn->dn_type != DMU_OT_NONE); 2212 2213 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2214 2215 db->db_objset = os; 2216 db->db.db_object = dn->dn_object; 2217 db->db_level = level; 2218 db->db_blkid = blkid; 2219 db->db_last_dirty = NULL; 2220 db->db_dirtycnt = 0; 2221 db->db_dnode_handle = dn->dn_handle; 2222 db->db_parent = parent; 2223 db->db_blkptr = blkptr; 2224 2225 db->db_user = NULL; 2226 db->db_user_immediate_evict = FALSE; 2227 db->db_freed_in_flight = FALSE; 2228 db->db_pending_evict = FALSE; 2229 2230 if (blkid == DMU_BONUS_BLKID) { 2231 ASSERT3P(parent, ==, dn->dn_dbuf); 2232 db->db.db_size = DN_MAX_BONUSLEN - 2233 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2234 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2235 db->db.db_offset = DMU_BONUS_BLKID; 2236 db->db_state = DB_UNCACHED; 2237 /* the bonus dbuf is not placed in the hash table */ 2238 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2239 return (db); 2240 } else if (blkid == DMU_SPILL_BLKID) { 2241 db->db.db_size = (blkptr != NULL) ? 2242 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2243 db->db.db_offset = 0; 2244 } else { 2245 int blocksize = 2246 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2247 db->db.db_size = blocksize; 2248 db->db.db_offset = db->db_blkid * blocksize; 2249 } 2250 2251 /* 2252 * Hold the dn_dbufs_mtx while we get the new dbuf 2253 * in the hash table *and* added to the dbufs list. 2254 * This prevents a possible deadlock with someone 2255 * trying to look up this dbuf before its added to the 2256 * dn_dbufs list. 2257 */ 2258 mutex_enter(&dn->dn_dbufs_mtx); 2259 db->db_state = DB_EVICTING; 2260 if ((odb = dbuf_hash_insert(db)) != NULL) { 2261 /* someone else inserted it first */ 2262 kmem_cache_free(dbuf_kmem_cache, db); 2263 mutex_exit(&dn->dn_dbufs_mtx); 2264 return (odb); 2265 } 2266 avl_add(&dn->dn_dbufs, db); 2267 2268 db->db_state = DB_UNCACHED; 2269 mutex_exit(&dn->dn_dbufs_mtx); 2270 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2271 2272 if (parent && parent != dn->dn_dbuf) 2273 dbuf_add_ref(parent, db); 2274 2275 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2276 refcount_count(&dn->dn_holds) > 0); 2277 (void) refcount_add(&dn->dn_holds, db); 2278 atomic_inc_32(&dn->dn_dbufs_count); 2279 2280 dprintf_dbuf(db, "db=%p\n", db); 2281 2282 return (db); 2283 } 2284 2285 typedef struct dbuf_prefetch_arg { 2286 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2287 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2288 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2289 int dpa_curlevel; /* The current level that we're reading */ 2290 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2291 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2292 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2293 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2294 } dbuf_prefetch_arg_t; 2295 2296 /* 2297 * Actually issue the prefetch read for the block given. 2298 */ 2299 static void 2300 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2301 { 2302 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2303 return; 2304 2305 arc_flags_t aflags = 2306 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2307 2308 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2309 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2310 ASSERT(dpa->dpa_zio != NULL); 2311 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2312 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2313 &aflags, &dpa->dpa_zb); 2314 } 2315 2316 /* 2317 * Called when an indirect block above our prefetch target is read in. This 2318 * will either read in the next indirect block down the tree or issue the actual 2319 * prefetch if the next block down is our target. 2320 */ 2321 static void 2322 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) 2323 { 2324 dbuf_prefetch_arg_t *dpa = private; 2325 2326 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2327 ASSERT3S(dpa->dpa_curlevel, >, 0); 2328 2329 /* 2330 * The dpa_dnode is only valid if we are called with a NULL 2331 * zio. This indicates that the arc_read() returned without 2332 * first calling zio_read() to issue a physical read. Once 2333 * a physical read is made the dpa_dnode must be invalidated 2334 * as the locks guarding it may have been dropped. If the 2335 * dpa_dnode is still valid, then we want to add it to the dbuf 2336 * cache. To do so, we must hold the dbuf associated with the block 2337 * we just prefetched, read its contents so that we associate it 2338 * with an arc_buf_t, and then release it. 2339 */ 2340 if (zio != NULL) { 2341 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2342 if (zio->io_flags & ZIO_FLAG_RAW) { 2343 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2344 } else { 2345 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2346 } 2347 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2348 2349 dpa->dpa_dnode = NULL; 2350 } else if (dpa->dpa_dnode != NULL) { 2351 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2352 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2353 dpa->dpa_zb.zb_level)); 2354 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2355 dpa->dpa_curlevel, curblkid, FTAG); 2356 (void) dbuf_read(db, NULL, 2357 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2358 dbuf_rele(db, FTAG); 2359 } 2360 2361 dpa->dpa_curlevel--; 2362 2363 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2364 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2365 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2366 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2367 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) { 2368 kmem_free(dpa, sizeof (*dpa)); 2369 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2370 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2371 dbuf_issue_final_prefetch(dpa, bp); 2372 kmem_free(dpa, sizeof (*dpa)); 2373 } else { 2374 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2375 zbookmark_phys_t zb; 2376 2377 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2378 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 2379 iter_aflags |= ARC_FLAG_L2CACHE; 2380 2381 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2382 2383 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2384 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2385 2386 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2387 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2388 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2389 &iter_aflags, &zb); 2390 } 2391 2392 arc_buf_destroy(abuf, private); 2393 } 2394 2395 /* 2396 * Issue prefetch reads for the given block on the given level. If the indirect 2397 * blocks above that block are not in memory, we will read them in 2398 * asynchronously. As a result, this call never blocks waiting for a read to 2399 * complete. 2400 */ 2401 void 2402 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2403 arc_flags_t aflags) 2404 { 2405 blkptr_t bp; 2406 int epbs, nlevels, curlevel; 2407 uint64_t curblkid; 2408 2409 ASSERT(blkid != DMU_BONUS_BLKID); 2410 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2411 2412 if (blkid > dn->dn_maxblkid) 2413 return; 2414 2415 if (dnode_block_freed(dn, blkid)) 2416 return; 2417 2418 /* 2419 * This dnode hasn't been written to disk yet, so there's nothing to 2420 * prefetch. 2421 */ 2422 nlevels = dn->dn_phys->dn_nlevels; 2423 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2424 return; 2425 2426 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2427 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2428 return; 2429 2430 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2431 level, blkid); 2432 if (db != NULL) { 2433 mutex_exit(&db->db_mtx); 2434 /* 2435 * This dbuf already exists. It is either CACHED, or 2436 * (we assume) about to be read or filled. 2437 */ 2438 return; 2439 } 2440 2441 /* 2442 * Find the closest ancestor (indirect block) of the target block 2443 * that is present in the cache. In this indirect block, we will 2444 * find the bp that is at curlevel, curblkid. 2445 */ 2446 curlevel = level; 2447 curblkid = blkid; 2448 while (curlevel < nlevels - 1) { 2449 int parent_level = curlevel + 1; 2450 uint64_t parent_blkid = curblkid >> epbs; 2451 dmu_buf_impl_t *db; 2452 2453 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2454 FALSE, TRUE, FTAG, &db) == 0) { 2455 blkptr_t *bpp = db->db_buf->b_data; 2456 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2457 dbuf_rele(db, FTAG); 2458 break; 2459 } 2460 2461 curlevel = parent_level; 2462 curblkid = parent_blkid; 2463 } 2464 2465 if (curlevel == nlevels - 1) { 2466 /* No cached indirect blocks found. */ 2467 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2468 bp = dn->dn_phys->dn_blkptr[curblkid]; 2469 } 2470 if (BP_IS_HOLE(&bp)) 2471 return; 2472 2473 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2474 2475 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2476 ZIO_FLAG_CANFAIL); 2477 2478 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2479 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2480 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2481 dn->dn_object, level, blkid); 2482 dpa->dpa_curlevel = curlevel; 2483 dpa->dpa_prio = prio; 2484 dpa->dpa_aflags = aflags; 2485 dpa->dpa_spa = dn->dn_objset->os_spa; 2486 dpa->dpa_dnode = dn; 2487 dpa->dpa_epbs = epbs; 2488 dpa->dpa_zio = pio; 2489 2490 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2491 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 2492 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 2493 2494 /* 2495 * If we have the indirect just above us, no need to do the asynchronous 2496 * prefetch chain; we'll just run the last step ourselves. If we're at 2497 * a higher level, though, we want to issue the prefetches for all the 2498 * indirect blocks asynchronously, so we can go on with whatever we were 2499 * doing. 2500 */ 2501 if (curlevel == level) { 2502 ASSERT3U(curblkid, ==, blkid); 2503 dbuf_issue_final_prefetch(dpa, &bp); 2504 kmem_free(dpa, sizeof (*dpa)); 2505 } else { 2506 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2507 zbookmark_phys_t zb; 2508 2509 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2510 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 2511 iter_aflags |= ARC_FLAG_L2CACHE; 2512 2513 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2514 dn->dn_object, curlevel, curblkid); 2515 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2516 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2517 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2518 &iter_aflags, &zb); 2519 } 2520 /* 2521 * We use pio here instead of dpa_zio since it's possible that 2522 * dpa may have already been freed. 2523 */ 2524 zio_nowait(pio); 2525 } 2526 2527 /* 2528 * Returns with db_holds incremented, and db_mtx not held. 2529 * Note: dn_struct_rwlock must be held. 2530 */ 2531 int 2532 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2533 boolean_t fail_sparse, boolean_t fail_uncached, 2534 void *tag, dmu_buf_impl_t **dbp) 2535 { 2536 dmu_buf_impl_t *db, *parent = NULL; 2537 2538 ASSERT(blkid != DMU_BONUS_BLKID); 2539 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2540 ASSERT3U(dn->dn_nlevels, >, level); 2541 2542 *dbp = NULL; 2543 top: 2544 /* dbuf_find() returns with db_mtx held */ 2545 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2546 2547 if (db == NULL) { 2548 blkptr_t *bp = NULL; 2549 int err; 2550 2551 if (fail_uncached) 2552 return (SET_ERROR(ENOENT)); 2553 2554 ASSERT3P(parent, ==, NULL); 2555 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2556 if (fail_sparse) { 2557 if (err == 0 && bp && BP_IS_HOLE(bp)) 2558 err = SET_ERROR(ENOENT); 2559 if (err) { 2560 if (parent) 2561 dbuf_rele(parent, NULL); 2562 return (err); 2563 } 2564 } 2565 if (err && err != ENOENT) 2566 return (err); 2567 db = dbuf_create(dn, level, blkid, parent, bp); 2568 } 2569 2570 if (fail_uncached && db->db_state != DB_CACHED) { 2571 mutex_exit(&db->db_mtx); 2572 return (SET_ERROR(ENOENT)); 2573 } 2574 2575 if (db->db_buf != NULL) 2576 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2577 2578 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2579 2580 /* 2581 * If this buffer is currently syncing out, and we are are 2582 * still referencing it from db_data, we need to make a copy 2583 * of it in case we decide we want to dirty it again in this txg. 2584 */ 2585 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2586 dn->dn_object != DMU_META_DNODE_OBJECT && 2587 db->db_state == DB_CACHED && db->db_data_pending) { 2588 dbuf_dirty_record_t *dr = db->db_data_pending; 2589 2590 if (dr->dt.dl.dr_data == db->db_buf) { 2591 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2592 2593 dbuf_set_data(db, 2594 arc_alloc_buf(dn->dn_objset->os_spa, db, type, 2595 db->db.db_size)); 2596 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2597 db->db.db_size); 2598 } 2599 } 2600 2601 if (multilist_link_active(&db->db_cache_link)) { 2602 ASSERT(refcount_is_zero(&db->db_holds)); 2603 multilist_remove(dbuf_cache, db); 2604 (void) refcount_remove_many(&dbuf_cache_size, 2605 db->db.db_size, db); 2606 } 2607 (void) refcount_add(&db->db_holds, tag); 2608 DBUF_VERIFY(db); 2609 mutex_exit(&db->db_mtx); 2610 2611 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2612 if (parent) 2613 dbuf_rele(parent, NULL); 2614 2615 ASSERT3P(DB_DNODE(db), ==, dn); 2616 ASSERT3U(db->db_blkid, ==, blkid); 2617 ASSERT3U(db->db_level, ==, level); 2618 *dbp = db; 2619 2620 return (0); 2621 } 2622 2623 dmu_buf_impl_t * 2624 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2625 { 2626 return (dbuf_hold_level(dn, 0, blkid, tag)); 2627 } 2628 2629 dmu_buf_impl_t * 2630 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2631 { 2632 dmu_buf_impl_t *db; 2633 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2634 return (err ? NULL : db); 2635 } 2636 2637 void 2638 dbuf_create_bonus(dnode_t *dn) 2639 { 2640 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2641 2642 ASSERT(dn->dn_bonus == NULL); 2643 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2644 } 2645 2646 int 2647 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2648 { 2649 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2650 dnode_t *dn; 2651 2652 if (db->db_blkid != DMU_SPILL_BLKID) 2653 return (SET_ERROR(ENOTSUP)); 2654 if (blksz == 0) 2655 blksz = SPA_MINBLOCKSIZE; 2656 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2657 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2658 2659 DB_DNODE_ENTER(db); 2660 dn = DB_DNODE(db); 2661 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2662 dbuf_new_size(db, blksz, tx); 2663 rw_exit(&dn->dn_struct_rwlock); 2664 DB_DNODE_EXIT(db); 2665 2666 return (0); 2667 } 2668 2669 void 2670 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2671 { 2672 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2673 } 2674 2675 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2676 void 2677 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2678 { 2679 int64_t holds = refcount_add(&db->db_holds, tag); 2680 ASSERT3S(holds, >, 1); 2681 } 2682 2683 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2684 boolean_t 2685 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2686 void *tag) 2687 { 2688 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2689 dmu_buf_impl_t *found_db; 2690 boolean_t result = B_FALSE; 2691 2692 if (db->db_blkid == DMU_BONUS_BLKID) 2693 found_db = dbuf_find_bonus(os, obj); 2694 else 2695 found_db = dbuf_find(os, obj, 0, blkid); 2696 2697 if (found_db != NULL) { 2698 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 2699 (void) refcount_add(&db->db_holds, tag); 2700 result = B_TRUE; 2701 } 2702 mutex_exit(&db->db_mtx); 2703 } 2704 return (result); 2705 } 2706 2707 /* 2708 * If you call dbuf_rele() you had better not be referencing the dnode handle 2709 * unless you have some other direct or indirect hold on the dnode. (An indirect 2710 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2711 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2712 * dnode's parent dbuf evicting its dnode handles. 2713 */ 2714 void 2715 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2716 { 2717 mutex_enter(&db->db_mtx); 2718 dbuf_rele_and_unlock(db, tag); 2719 } 2720 2721 void 2722 dmu_buf_rele(dmu_buf_t *db, void *tag) 2723 { 2724 dbuf_rele((dmu_buf_impl_t *)db, tag); 2725 } 2726 2727 /* 2728 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2729 * db_dirtycnt and db_holds to be updated atomically. 2730 */ 2731 void 2732 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2733 { 2734 int64_t holds; 2735 2736 ASSERT(MUTEX_HELD(&db->db_mtx)); 2737 DBUF_VERIFY(db); 2738 2739 /* 2740 * Remove the reference to the dbuf before removing its hold on the 2741 * dnode so we can guarantee in dnode_move() that a referenced bonus 2742 * buffer has a corresponding dnode hold. 2743 */ 2744 holds = refcount_remove(&db->db_holds, tag); 2745 ASSERT(holds >= 0); 2746 2747 /* 2748 * We can't freeze indirects if there is a possibility that they 2749 * may be modified in the current syncing context. 2750 */ 2751 if (db->db_buf != NULL && 2752 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 2753 arc_buf_freeze(db->db_buf); 2754 } 2755 2756 if (holds == db->db_dirtycnt && 2757 db->db_level == 0 && db->db_user_immediate_evict) 2758 dbuf_evict_user(db); 2759 2760 if (holds == 0) { 2761 if (db->db_blkid == DMU_BONUS_BLKID) { 2762 dnode_t *dn; 2763 boolean_t evict_dbuf = db->db_pending_evict; 2764 2765 /* 2766 * If the dnode moves here, we cannot cross this 2767 * barrier until the move completes. 2768 */ 2769 DB_DNODE_ENTER(db); 2770 2771 dn = DB_DNODE(db); 2772 atomic_dec_32(&dn->dn_dbufs_count); 2773 2774 /* 2775 * Decrementing the dbuf count means that the bonus 2776 * buffer's dnode hold is no longer discounted in 2777 * dnode_move(). The dnode cannot move until after 2778 * the dnode_rele() below. 2779 */ 2780 DB_DNODE_EXIT(db); 2781 2782 /* 2783 * Do not reference db after its lock is dropped. 2784 * Another thread may evict it. 2785 */ 2786 mutex_exit(&db->db_mtx); 2787 2788 if (evict_dbuf) 2789 dnode_evict_bonus(dn); 2790 2791 dnode_rele(dn, db); 2792 } else if (db->db_buf == NULL) { 2793 /* 2794 * This is a special case: we never associated this 2795 * dbuf with any data allocated from the ARC. 2796 */ 2797 ASSERT(db->db_state == DB_UNCACHED || 2798 db->db_state == DB_NOFILL); 2799 dbuf_destroy(db); 2800 } else if (arc_released(db->db_buf)) { 2801 /* 2802 * This dbuf has anonymous data associated with it. 2803 */ 2804 dbuf_destroy(db); 2805 } else { 2806 boolean_t do_arc_evict = B_FALSE; 2807 blkptr_t bp; 2808 spa_t *spa = dmu_objset_spa(db->db_objset); 2809 2810 if (!DBUF_IS_CACHEABLE(db) && 2811 db->db_blkptr != NULL && 2812 !BP_IS_HOLE(db->db_blkptr) && 2813 !BP_IS_EMBEDDED(db->db_blkptr)) { 2814 do_arc_evict = B_TRUE; 2815 bp = *db->db_blkptr; 2816 } 2817 2818 if (!DBUF_IS_CACHEABLE(db) || 2819 db->db_pending_evict) { 2820 dbuf_destroy(db); 2821 } else if (!multilist_link_active(&db->db_cache_link)) { 2822 multilist_insert(dbuf_cache, db); 2823 (void) refcount_add_many(&dbuf_cache_size, 2824 db->db.db_size, db); 2825 mutex_exit(&db->db_mtx); 2826 2827 dbuf_evict_notify(); 2828 } 2829 2830 if (do_arc_evict) 2831 arc_freed(spa, &bp); 2832 } 2833 } else { 2834 mutex_exit(&db->db_mtx); 2835 } 2836 2837 } 2838 2839 #pragma weak dmu_buf_refcount = dbuf_refcount 2840 uint64_t 2841 dbuf_refcount(dmu_buf_impl_t *db) 2842 { 2843 return (refcount_count(&db->db_holds)); 2844 } 2845 2846 void * 2847 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 2848 dmu_buf_user_t *new_user) 2849 { 2850 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2851 2852 mutex_enter(&db->db_mtx); 2853 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2854 if (db->db_user == old_user) 2855 db->db_user = new_user; 2856 else 2857 old_user = db->db_user; 2858 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2859 mutex_exit(&db->db_mtx); 2860 2861 return (old_user); 2862 } 2863 2864 void * 2865 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2866 { 2867 return (dmu_buf_replace_user(db_fake, NULL, user)); 2868 } 2869 2870 void * 2871 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2872 { 2873 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2874 2875 db->db_user_immediate_evict = TRUE; 2876 return (dmu_buf_set_user(db_fake, user)); 2877 } 2878 2879 void * 2880 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2881 { 2882 return (dmu_buf_replace_user(db_fake, user, NULL)); 2883 } 2884 2885 void * 2886 dmu_buf_get_user(dmu_buf_t *db_fake) 2887 { 2888 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2889 2890 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2891 return (db->db_user); 2892 } 2893 2894 void 2895 dmu_buf_user_evict_wait() 2896 { 2897 taskq_wait(dbu_evict_taskq); 2898 } 2899 2900 blkptr_t * 2901 dmu_buf_get_blkptr(dmu_buf_t *db) 2902 { 2903 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2904 return (dbi->db_blkptr); 2905 } 2906 2907 objset_t * 2908 dmu_buf_get_objset(dmu_buf_t *db) 2909 { 2910 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2911 return (dbi->db_objset); 2912 } 2913 2914 dnode_t * 2915 dmu_buf_dnode_enter(dmu_buf_t *db) 2916 { 2917 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2918 DB_DNODE_ENTER(dbi); 2919 return (DB_DNODE(dbi)); 2920 } 2921 2922 void 2923 dmu_buf_dnode_exit(dmu_buf_t *db) 2924 { 2925 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2926 DB_DNODE_EXIT(dbi); 2927 } 2928 2929 static void 2930 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2931 { 2932 /* ASSERT(dmu_tx_is_syncing(tx) */ 2933 ASSERT(MUTEX_HELD(&db->db_mtx)); 2934 2935 if (db->db_blkptr != NULL) 2936 return; 2937 2938 if (db->db_blkid == DMU_SPILL_BLKID) { 2939 db->db_blkptr = &dn->dn_phys->dn_spill; 2940 BP_ZERO(db->db_blkptr); 2941 return; 2942 } 2943 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2944 /* 2945 * This buffer was allocated at a time when there was 2946 * no available blkptrs from the dnode, or it was 2947 * inappropriate to hook it in (i.e., nlevels mis-match). 2948 */ 2949 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2950 ASSERT(db->db_parent == NULL); 2951 db->db_parent = dn->dn_dbuf; 2952 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2953 DBUF_VERIFY(db); 2954 } else { 2955 dmu_buf_impl_t *parent = db->db_parent; 2956 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2957 2958 ASSERT(dn->dn_phys->dn_nlevels > 1); 2959 if (parent == NULL) { 2960 mutex_exit(&db->db_mtx); 2961 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2962 parent = dbuf_hold_level(dn, db->db_level + 1, 2963 db->db_blkid >> epbs, db); 2964 rw_exit(&dn->dn_struct_rwlock); 2965 mutex_enter(&db->db_mtx); 2966 db->db_parent = parent; 2967 } 2968 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2969 (db->db_blkid & ((1ULL << epbs) - 1)); 2970 DBUF_VERIFY(db); 2971 } 2972 } 2973 2974 static void 2975 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2976 { 2977 dmu_buf_impl_t *db = dr->dr_dbuf; 2978 dnode_t *dn; 2979 zio_t *zio; 2980 2981 ASSERT(dmu_tx_is_syncing(tx)); 2982 2983 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2984 2985 mutex_enter(&db->db_mtx); 2986 2987 ASSERT(db->db_level > 0); 2988 DBUF_VERIFY(db); 2989 2990 /* Read the block if it hasn't been read yet. */ 2991 if (db->db_buf == NULL) { 2992 mutex_exit(&db->db_mtx); 2993 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2994 mutex_enter(&db->db_mtx); 2995 } 2996 ASSERT3U(db->db_state, ==, DB_CACHED); 2997 ASSERT(db->db_buf != NULL); 2998 2999 DB_DNODE_ENTER(db); 3000 dn = DB_DNODE(db); 3001 /* Indirect block size must match what the dnode thinks it is. */ 3002 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3003 dbuf_check_blkptr(dn, db); 3004 DB_DNODE_EXIT(db); 3005 3006 /* Provide the pending dirty record to child dbufs */ 3007 db->db_data_pending = dr; 3008 3009 mutex_exit(&db->db_mtx); 3010 dbuf_write(dr, db->db_buf, tx); 3011 3012 zio = dr->dr_zio; 3013 mutex_enter(&dr->dt.di.dr_mtx); 3014 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 3015 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3016 mutex_exit(&dr->dt.di.dr_mtx); 3017 zio_nowait(zio); 3018 } 3019 3020 static void 3021 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3022 { 3023 arc_buf_t **datap = &dr->dt.dl.dr_data; 3024 dmu_buf_impl_t *db = dr->dr_dbuf; 3025 dnode_t *dn; 3026 objset_t *os; 3027 uint64_t txg = tx->tx_txg; 3028 3029 ASSERT(dmu_tx_is_syncing(tx)); 3030 3031 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3032 3033 mutex_enter(&db->db_mtx); 3034 /* 3035 * To be synced, we must be dirtied. But we 3036 * might have been freed after the dirty. 3037 */ 3038 if (db->db_state == DB_UNCACHED) { 3039 /* This buffer has been freed since it was dirtied */ 3040 ASSERT(db->db.db_data == NULL); 3041 } else if (db->db_state == DB_FILL) { 3042 /* This buffer was freed and is now being re-filled */ 3043 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3044 } else { 3045 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3046 } 3047 DBUF_VERIFY(db); 3048 3049 DB_DNODE_ENTER(db); 3050 dn = DB_DNODE(db); 3051 3052 if (db->db_blkid == DMU_SPILL_BLKID) { 3053 mutex_enter(&dn->dn_mtx); 3054 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 3055 mutex_exit(&dn->dn_mtx); 3056 } 3057 3058 /* 3059 * If this is a bonus buffer, simply copy the bonus data into the 3060 * dnode. It will be written out when the dnode is synced (and it 3061 * will be synced, since it must have been dirty for dbuf_sync to 3062 * be called). 3063 */ 3064 if (db->db_blkid == DMU_BONUS_BLKID) { 3065 dbuf_dirty_record_t **drp; 3066 3067 ASSERT(*datap != NULL); 3068 ASSERT0(db->db_level); 3069 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 3070 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 3071 DB_DNODE_EXIT(db); 3072 3073 if (*datap != db->db.db_data) { 3074 zio_buf_free(*datap, DN_MAX_BONUSLEN); 3075 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 3076 } 3077 db->db_data_pending = NULL; 3078 drp = &db->db_last_dirty; 3079 while (*drp != dr) 3080 drp = &(*drp)->dr_next; 3081 ASSERT(dr->dr_next == NULL); 3082 ASSERT(dr->dr_dbuf == db); 3083 *drp = dr->dr_next; 3084 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3085 ASSERT(db->db_dirtycnt > 0); 3086 db->db_dirtycnt -= 1; 3087 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 3088 return; 3089 } 3090 3091 os = dn->dn_objset; 3092 3093 /* 3094 * This function may have dropped the db_mtx lock allowing a dmu_sync 3095 * operation to sneak in. As a result, we need to ensure that we 3096 * don't check the dr_override_state until we have returned from 3097 * dbuf_check_blkptr. 3098 */ 3099 dbuf_check_blkptr(dn, db); 3100 3101 /* 3102 * If this buffer is in the middle of an immediate write, 3103 * wait for the synchronous IO to complete. 3104 */ 3105 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 3106 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 3107 cv_wait(&db->db_changed, &db->db_mtx); 3108 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 3109 } 3110 3111 if (db->db_state != DB_NOFILL && 3112 dn->dn_object != DMU_META_DNODE_OBJECT && 3113 refcount_count(&db->db_holds) > 1 && 3114 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 3115 *datap == db->db_buf) { 3116 /* 3117 * If this buffer is currently "in use" (i.e., there 3118 * are active holds and db_data still references it), 3119 * then make a copy before we start the write so that 3120 * any modifications from the open txg will not leak 3121 * into this write. 3122 * 3123 * NOTE: this copy does not need to be made for 3124 * objects only modified in the syncing context (e.g. 3125 * DNONE_DNODE blocks). 3126 */ 3127 int psize = arc_buf_size(*datap); 3128 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 3129 enum zio_compress compress_type = arc_get_compression(*datap); 3130 3131 if (compress_type == ZIO_COMPRESS_OFF) { 3132 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 3133 } else { 3134 ASSERT3U(type, ==, ARC_BUFC_DATA); 3135 int lsize = arc_buf_lsize(*datap); 3136 *datap = arc_alloc_compressed_buf(os->os_spa, db, 3137 psize, lsize, compress_type); 3138 } 3139 bcopy(db->db.db_data, (*datap)->b_data, psize); 3140 } 3141 db->db_data_pending = dr; 3142 3143 mutex_exit(&db->db_mtx); 3144 3145 dbuf_write(dr, *datap, tx); 3146 3147 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3148 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 3149 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 3150 DB_DNODE_EXIT(db); 3151 } else { 3152 /* 3153 * Although zio_nowait() does not "wait for an IO", it does 3154 * initiate the IO. If this is an empty write it seems plausible 3155 * that the IO could actually be completed before the nowait 3156 * returns. We need to DB_DNODE_EXIT() first in case 3157 * zio_nowait() invalidates the dbuf. 3158 */ 3159 DB_DNODE_EXIT(db); 3160 zio_nowait(dr->dr_zio); 3161 } 3162 } 3163 3164 void 3165 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 3166 { 3167 dbuf_dirty_record_t *dr; 3168 3169 while (dr = list_head(list)) { 3170 if (dr->dr_zio != NULL) { 3171 /* 3172 * If we find an already initialized zio then we 3173 * are processing the meta-dnode, and we have finished. 3174 * The dbufs for all dnodes are put back on the list 3175 * during processing, so that we can zio_wait() 3176 * these IOs after initiating all child IOs. 3177 */ 3178 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 3179 DMU_META_DNODE_OBJECT); 3180 break; 3181 } 3182 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 3183 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 3184 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 3185 } 3186 list_remove(list, dr); 3187 if (dr->dr_dbuf->db_level > 0) 3188 dbuf_sync_indirect(dr, tx); 3189 else 3190 dbuf_sync_leaf(dr, tx); 3191 } 3192 } 3193 3194 /* ARGSUSED */ 3195 static void 3196 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3197 { 3198 dmu_buf_impl_t *db = vdb; 3199 dnode_t *dn; 3200 blkptr_t *bp = zio->io_bp; 3201 blkptr_t *bp_orig = &zio->io_bp_orig; 3202 spa_t *spa = zio->io_spa; 3203 int64_t delta; 3204 uint64_t fill = 0; 3205 int i; 3206 3207 ASSERT3P(db->db_blkptr, !=, NULL); 3208 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 3209 3210 DB_DNODE_ENTER(db); 3211 dn = DB_DNODE(db); 3212 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 3213 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 3214 zio->io_prev_space_delta = delta; 3215 3216 if (bp->blk_birth != 0) { 3217 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 3218 BP_GET_TYPE(bp) == dn->dn_type) || 3219 (db->db_blkid == DMU_SPILL_BLKID && 3220 BP_GET_TYPE(bp) == dn->dn_bonustype) || 3221 BP_IS_EMBEDDED(bp)); 3222 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 3223 } 3224 3225 mutex_enter(&db->db_mtx); 3226 3227 #ifdef ZFS_DEBUG 3228 if (db->db_blkid == DMU_SPILL_BLKID) { 3229 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3230 ASSERT(!(BP_IS_HOLE(bp)) && 3231 db->db_blkptr == &dn->dn_phys->dn_spill); 3232 } 3233 #endif 3234 3235 if (db->db_level == 0) { 3236 mutex_enter(&dn->dn_mtx); 3237 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 3238 db->db_blkid != DMU_SPILL_BLKID) 3239 dn->dn_phys->dn_maxblkid = db->db_blkid; 3240 mutex_exit(&dn->dn_mtx); 3241 3242 if (dn->dn_type == DMU_OT_DNODE) { 3243 dnode_phys_t *dnp = db->db.db_data; 3244 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 3245 i--, dnp++) { 3246 if (dnp->dn_type != DMU_OT_NONE) 3247 fill++; 3248 } 3249 } else { 3250 if (BP_IS_HOLE(bp)) { 3251 fill = 0; 3252 } else { 3253 fill = 1; 3254 } 3255 } 3256 } else { 3257 blkptr_t *ibp = db->db.db_data; 3258 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3259 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 3260 if (BP_IS_HOLE(ibp)) 3261 continue; 3262 fill += BP_GET_FILL(ibp); 3263 } 3264 } 3265 DB_DNODE_EXIT(db); 3266 3267 if (!BP_IS_EMBEDDED(bp)) 3268 bp->blk_fill = fill; 3269 3270 mutex_exit(&db->db_mtx); 3271 3272 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3273 *db->db_blkptr = *bp; 3274 rw_exit(&dn->dn_struct_rwlock); 3275 } 3276 3277 /* ARGSUSED */ 3278 /* 3279 * This function gets called just prior to running through the compression 3280 * stage of the zio pipeline. If we're an indirect block comprised of only 3281 * holes, then we want this indirect to be compressed away to a hole. In 3282 * order to do that we must zero out any information about the holes that 3283 * this indirect points to prior to before we try to compress it. 3284 */ 3285 static void 3286 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3287 { 3288 dmu_buf_impl_t *db = vdb; 3289 dnode_t *dn; 3290 blkptr_t *bp; 3291 unsigned int epbs, i; 3292 3293 ASSERT3U(db->db_level, >, 0); 3294 DB_DNODE_ENTER(db); 3295 dn = DB_DNODE(db); 3296 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3297 ASSERT3U(epbs, <, 31); 3298 3299 /* Determine if all our children are holes */ 3300 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { 3301 if (!BP_IS_HOLE(bp)) 3302 break; 3303 } 3304 3305 /* 3306 * If all the children are holes, then zero them all out so that 3307 * we may get compressed away. 3308 */ 3309 if (i == 1 << epbs) { 3310 /* 3311 * We only found holes. Grab the rwlock to prevent 3312 * anybody from reading the blocks we're about to 3313 * zero out. 3314 */ 3315 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3316 bzero(db->db.db_data, db->db.db_size); 3317 rw_exit(&dn->dn_struct_rwlock); 3318 } 3319 DB_DNODE_EXIT(db); 3320 } 3321 3322 /* 3323 * The SPA will call this callback several times for each zio - once 3324 * for every physical child i/o (zio->io_phys_children times). This 3325 * allows the DMU to monitor the progress of each logical i/o. For example, 3326 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 3327 * block. There may be a long delay before all copies/fragments are completed, 3328 * so this callback allows us to retire dirty space gradually, as the physical 3329 * i/os complete. 3330 */ 3331 /* ARGSUSED */ 3332 static void 3333 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 3334 { 3335 dmu_buf_impl_t *db = arg; 3336 objset_t *os = db->db_objset; 3337 dsl_pool_t *dp = dmu_objset_pool(os); 3338 dbuf_dirty_record_t *dr; 3339 int delta = 0; 3340 3341 dr = db->db_data_pending; 3342 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 3343 3344 /* 3345 * The callback will be called io_phys_children times. Retire one 3346 * portion of our dirty space each time we are called. Any rounding 3347 * error will be cleaned up by dsl_pool_sync()'s call to 3348 * dsl_pool_undirty_space(). 3349 */ 3350 delta = dr->dr_accounted / zio->io_phys_children; 3351 dsl_pool_undirty_space(dp, delta, zio->io_txg); 3352 } 3353 3354 /* ARGSUSED */ 3355 static void 3356 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 3357 { 3358 dmu_buf_impl_t *db = vdb; 3359 blkptr_t *bp_orig = &zio->io_bp_orig; 3360 blkptr_t *bp = db->db_blkptr; 3361 objset_t *os = db->db_objset; 3362 dmu_tx_t *tx = os->os_synctx; 3363 dbuf_dirty_record_t **drp, *dr; 3364 3365 ASSERT0(zio->io_error); 3366 ASSERT(db->db_blkptr == bp); 3367 3368 /* 3369 * For nopwrites and rewrites we ensure that the bp matches our 3370 * original and bypass all the accounting. 3371 */ 3372 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 3373 ASSERT(BP_EQUAL(bp, bp_orig)); 3374 } else { 3375 dsl_dataset_t *ds = os->os_dsl_dataset; 3376 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 3377 dsl_dataset_block_born(ds, bp, tx); 3378 } 3379 3380 mutex_enter(&db->db_mtx); 3381 3382 DBUF_VERIFY(db); 3383 3384 drp = &db->db_last_dirty; 3385 while ((dr = *drp) != db->db_data_pending) 3386 drp = &dr->dr_next; 3387 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3388 ASSERT(dr->dr_dbuf == db); 3389 ASSERT(dr->dr_next == NULL); 3390 *drp = dr->dr_next; 3391 3392 #ifdef ZFS_DEBUG 3393 if (db->db_blkid == DMU_SPILL_BLKID) { 3394 dnode_t *dn; 3395 3396 DB_DNODE_ENTER(db); 3397 dn = DB_DNODE(db); 3398 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3399 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3400 db->db_blkptr == &dn->dn_phys->dn_spill); 3401 DB_DNODE_EXIT(db); 3402 } 3403 #endif 3404 3405 if (db->db_level == 0) { 3406 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3407 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3408 if (db->db_state != DB_NOFILL) { 3409 if (dr->dt.dl.dr_data != db->db_buf) 3410 arc_buf_destroy(dr->dt.dl.dr_data, db); 3411 } 3412 } else { 3413 dnode_t *dn; 3414 3415 DB_DNODE_ENTER(db); 3416 dn = DB_DNODE(db); 3417 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3418 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3419 if (!BP_IS_HOLE(db->db_blkptr)) { 3420 int epbs = 3421 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3422 ASSERT3U(db->db_blkid, <=, 3423 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3424 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3425 db->db.db_size); 3426 } 3427 DB_DNODE_EXIT(db); 3428 mutex_destroy(&dr->dt.di.dr_mtx); 3429 list_destroy(&dr->dt.di.dr_children); 3430 } 3431 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3432 3433 cv_broadcast(&db->db_changed); 3434 ASSERT(db->db_dirtycnt > 0); 3435 db->db_dirtycnt -= 1; 3436 db->db_data_pending = NULL; 3437 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 3438 } 3439 3440 static void 3441 dbuf_write_nofill_ready(zio_t *zio) 3442 { 3443 dbuf_write_ready(zio, NULL, zio->io_private); 3444 } 3445 3446 static void 3447 dbuf_write_nofill_done(zio_t *zio) 3448 { 3449 dbuf_write_done(zio, NULL, zio->io_private); 3450 } 3451 3452 static void 3453 dbuf_write_override_ready(zio_t *zio) 3454 { 3455 dbuf_dirty_record_t *dr = zio->io_private; 3456 dmu_buf_impl_t *db = dr->dr_dbuf; 3457 3458 dbuf_write_ready(zio, NULL, db); 3459 } 3460 3461 static void 3462 dbuf_write_override_done(zio_t *zio) 3463 { 3464 dbuf_dirty_record_t *dr = zio->io_private; 3465 dmu_buf_impl_t *db = dr->dr_dbuf; 3466 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3467 3468 mutex_enter(&db->db_mtx); 3469 if (!BP_EQUAL(zio->io_bp, obp)) { 3470 if (!BP_IS_HOLE(obp)) 3471 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3472 arc_release(dr->dt.dl.dr_data, db); 3473 } 3474 mutex_exit(&db->db_mtx); 3475 dbuf_write_done(zio, NULL, db); 3476 3477 if (zio->io_abd != NULL) 3478 abd_put(zio->io_abd); 3479 } 3480 3481 /* Issue I/O to commit a dirty buffer to disk. */ 3482 static void 3483 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 3484 { 3485 dmu_buf_impl_t *db = dr->dr_dbuf; 3486 dnode_t *dn; 3487 objset_t *os; 3488 dmu_buf_impl_t *parent = db->db_parent; 3489 uint64_t txg = tx->tx_txg; 3490 zbookmark_phys_t zb; 3491 zio_prop_t zp; 3492 zio_t *zio; 3493 int wp_flag = 0; 3494 3495 ASSERT(dmu_tx_is_syncing(tx)); 3496 3497 DB_DNODE_ENTER(db); 3498 dn = DB_DNODE(db); 3499 os = dn->dn_objset; 3500 3501 if (db->db_state != DB_NOFILL) { 3502 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 3503 /* 3504 * Private object buffers are released here rather 3505 * than in dbuf_dirty() since they are only modified 3506 * in the syncing context and we don't want the 3507 * overhead of making multiple copies of the data. 3508 */ 3509 if (BP_IS_HOLE(db->db_blkptr)) { 3510 arc_buf_thaw(data); 3511 } else { 3512 dbuf_release_bp(db); 3513 } 3514 } 3515 } 3516 3517 if (parent != dn->dn_dbuf) { 3518 /* Our parent is an indirect block. */ 3519 /* We have a dirty parent that has been scheduled for write. */ 3520 ASSERT(parent && parent->db_data_pending); 3521 /* Our parent's buffer is one level closer to the dnode. */ 3522 ASSERT(db->db_level == parent->db_level-1); 3523 /* 3524 * We're about to modify our parent's db_data by modifying 3525 * our block pointer, so the parent must be released. 3526 */ 3527 ASSERT(arc_released(parent->db_buf)); 3528 zio = parent->db_data_pending->dr_zio; 3529 } else { 3530 /* Our parent is the dnode itself. */ 3531 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 3532 db->db_blkid != DMU_SPILL_BLKID) || 3533 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 3534 if (db->db_blkid != DMU_SPILL_BLKID) 3535 ASSERT3P(db->db_blkptr, ==, 3536 &dn->dn_phys->dn_blkptr[db->db_blkid]); 3537 zio = dn->dn_zio; 3538 } 3539 3540 ASSERT(db->db_level == 0 || data == db->db_buf); 3541 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 3542 ASSERT(zio); 3543 3544 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 3545 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 3546 db->db.db_object, db->db_level, db->db_blkid); 3547 3548 if (db->db_blkid == DMU_SPILL_BLKID) 3549 wp_flag = WP_SPILL; 3550 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 3551 3552 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 3553 DB_DNODE_EXIT(db); 3554 3555 /* 3556 * We copy the blkptr now (rather than when we instantiate the dirty 3557 * record), because its value can change between open context and 3558 * syncing context. We do not need to hold dn_struct_rwlock to read 3559 * db_blkptr because we are in syncing context. 3560 */ 3561 dr->dr_bp_copy = *db->db_blkptr; 3562 3563 if (db->db_level == 0 && 3564 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 3565 /* 3566 * The BP for this block has been provided by open context 3567 * (by dmu_sync() or dmu_buf_write_embedded()). 3568 */ 3569 abd_t *contents = (data != NULL) ? 3570 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 3571 3572 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy, 3573 contents, db->db.db_size, db->db.db_size, &zp, 3574 dbuf_write_override_ready, NULL, NULL, 3575 dbuf_write_override_done, 3576 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3577 mutex_enter(&db->db_mtx); 3578 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 3579 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 3580 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 3581 mutex_exit(&db->db_mtx); 3582 } else if (db->db_state == DB_NOFILL) { 3583 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 3584 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 3585 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3586 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 3587 dbuf_write_nofill_ready, NULL, NULL, 3588 dbuf_write_nofill_done, db, 3589 ZIO_PRIORITY_ASYNC_WRITE, 3590 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 3591 } else { 3592 ASSERT(arc_released(data)); 3593 3594 /* 3595 * For indirect blocks, we want to setup the children 3596 * ready callback so that we can properly handle an indirect 3597 * block that only contains holes. 3598 */ 3599 arc_done_func_t *children_ready_cb = NULL; 3600 if (db->db_level != 0) 3601 children_ready_cb = dbuf_write_children_ready; 3602 3603 dr->dr_zio = arc_write(zio, os->os_spa, txg, 3604 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 3605 &zp, dbuf_write_ready, children_ready_cb, 3606 dbuf_write_physdone, dbuf_write_done, db, 3607 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3608 } 3609 } 3610