1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 50 uint_t zfs_dbuf_evict_key; 51 52 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 53 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 54 55 #ifndef __lint 56 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 57 dmu_buf_evict_func_t *evict_func_sync, 58 dmu_buf_evict_func_t *evict_func_async, 59 dmu_buf_t **clear_on_evict_dbufp); 60 #endif /* ! __lint */ 61 62 /* 63 * Global data structures and functions for the dbuf cache. 64 */ 65 static kmem_cache_t *dbuf_kmem_cache; 66 static taskq_t *dbu_evict_taskq; 67 68 static kthread_t *dbuf_cache_evict_thread; 69 static kmutex_t dbuf_evict_lock; 70 static kcondvar_t dbuf_evict_cv; 71 static boolean_t dbuf_evict_thread_exit; 72 73 /* 74 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 75 * are not currently held but have been recently released. These dbufs 76 * are not eligible for arc eviction until they are aged out of the cache. 77 * Dbufs are added to the dbuf cache once the last hold is released. If a 78 * dbuf is later accessed and still exists in the dbuf cache, then it will 79 * be removed from the cache and later re-added to the head of the cache. 80 * Dbufs that are aged out of the cache will be immediately destroyed and 81 * become eligible for arc eviction. 82 */ 83 static multilist_t dbuf_cache; 84 static refcount_t dbuf_cache_size; 85 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024; 86 87 /* Cap the size of the dbuf cache to log2 fraction of arc size. */ 88 int dbuf_cache_max_shift = 5; 89 90 /* 91 * The dbuf cache uses a three-stage eviction policy: 92 * - A low water marker designates when the dbuf eviction thread 93 * should stop evicting from the dbuf cache. 94 * - When we reach the maximum size (aka mid water mark), we 95 * signal the eviction thread to run. 96 * - The high water mark indicates when the eviction thread 97 * is unable to keep up with the incoming load and eviction must 98 * happen in the context of the calling thread. 99 * 100 * The dbuf cache: 101 * (max size) 102 * low water mid water hi water 103 * +----------------------------------------+----------+----------+ 104 * | | | | 105 * | | | | 106 * | | | | 107 * | | | | 108 * +----------------------------------------+----------+----------+ 109 * stop signal evict 110 * evicting eviction directly 111 * thread 112 * 113 * The high and low water marks indicate the operating range for the eviction 114 * thread. The low water mark is, by default, 90% of the total size of the 115 * cache and the high water mark is at 110% (both of these percentages can be 116 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 117 * respectively). The eviction thread will try to ensure that the cache remains 118 * within this range by waking up every second and checking if the cache is 119 * above the low water mark. The thread can also be woken up by callers adding 120 * elements into the cache if the cache is larger than the mid water (i.e max 121 * cache size). Once the eviction thread is woken up and eviction is required, 122 * it will continue evicting buffers until it's able to reduce the cache size 123 * to the low water mark. If the cache size continues to grow and hits the high 124 * water mark, then callers adding elments to the cache will begin to evict 125 * directly from the cache until the cache is no longer above the high water 126 * mark. 127 */ 128 129 /* 130 * The percentage above and below the maximum cache size. 131 */ 132 uint_t dbuf_cache_hiwater_pct = 10; 133 uint_t dbuf_cache_lowater_pct = 10; 134 135 /* ARGSUSED */ 136 static int 137 dbuf_cons(void *vdb, void *unused, int kmflag) 138 { 139 dmu_buf_impl_t *db = vdb; 140 bzero(db, sizeof (dmu_buf_impl_t)); 141 142 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 143 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 144 multilist_link_init(&db->db_cache_link); 145 refcount_create(&db->db_holds); 146 147 return (0); 148 } 149 150 /* ARGSUSED */ 151 static void 152 dbuf_dest(void *vdb, void *unused) 153 { 154 dmu_buf_impl_t *db = vdb; 155 mutex_destroy(&db->db_mtx); 156 cv_destroy(&db->db_changed); 157 ASSERT(!multilist_link_active(&db->db_cache_link)); 158 refcount_destroy(&db->db_holds); 159 } 160 161 /* 162 * dbuf hash table routines 163 */ 164 static dbuf_hash_table_t dbuf_hash_table; 165 166 static uint64_t dbuf_hash_count; 167 168 static uint64_t 169 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 170 { 171 uintptr_t osv = (uintptr_t)os; 172 uint64_t crc = -1ULL; 173 174 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 175 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 176 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 177 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 178 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 179 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 180 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 181 182 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 183 184 return (crc); 185 } 186 187 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 188 ((dbuf)->db.db_object == (obj) && \ 189 (dbuf)->db_objset == (os) && \ 190 (dbuf)->db_level == (level) && \ 191 (dbuf)->db_blkid == (blkid)) 192 193 dmu_buf_impl_t * 194 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 195 { 196 dbuf_hash_table_t *h = &dbuf_hash_table; 197 uint64_t hv = dbuf_hash(os, obj, level, blkid); 198 uint64_t idx = hv & h->hash_table_mask; 199 dmu_buf_impl_t *db; 200 201 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 202 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 203 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 204 mutex_enter(&db->db_mtx); 205 if (db->db_state != DB_EVICTING) { 206 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 207 return (db); 208 } 209 mutex_exit(&db->db_mtx); 210 } 211 } 212 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 213 return (NULL); 214 } 215 216 static dmu_buf_impl_t * 217 dbuf_find_bonus(objset_t *os, uint64_t object) 218 { 219 dnode_t *dn; 220 dmu_buf_impl_t *db = NULL; 221 222 if (dnode_hold(os, object, FTAG, &dn) == 0) { 223 rw_enter(&dn->dn_struct_rwlock, RW_READER); 224 if (dn->dn_bonus != NULL) { 225 db = dn->dn_bonus; 226 mutex_enter(&db->db_mtx); 227 } 228 rw_exit(&dn->dn_struct_rwlock); 229 dnode_rele(dn, FTAG); 230 } 231 return (db); 232 } 233 234 /* 235 * Insert an entry into the hash table. If there is already an element 236 * equal to elem in the hash table, then the already existing element 237 * will be returned and the new element will not be inserted. 238 * Otherwise returns NULL. 239 */ 240 static dmu_buf_impl_t * 241 dbuf_hash_insert(dmu_buf_impl_t *db) 242 { 243 dbuf_hash_table_t *h = &dbuf_hash_table; 244 objset_t *os = db->db_objset; 245 uint64_t obj = db->db.db_object; 246 int level = db->db_level; 247 uint64_t blkid = db->db_blkid; 248 uint64_t hv = dbuf_hash(os, obj, level, blkid); 249 uint64_t idx = hv & h->hash_table_mask; 250 dmu_buf_impl_t *dbf; 251 252 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 253 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 254 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 255 mutex_enter(&dbf->db_mtx); 256 if (dbf->db_state != DB_EVICTING) { 257 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 258 return (dbf); 259 } 260 mutex_exit(&dbf->db_mtx); 261 } 262 } 263 264 mutex_enter(&db->db_mtx); 265 db->db_hash_next = h->hash_table[idx]; 266 h->hash_table[idx] = db; 267 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 268 atomic_inc_64(&dbuf_hash_count); 269 270 return (NULL); 271 } 272 273 /* 274 * Remove an entry from the hash table. It must be in the EVICTING state. 275 */ 276 static void 277 dbuf_hash_remove(dmu_buf_impl_t *db) 278 { 279 dbuf_hash_table_t *h = &dbuf_hash_table; 280 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 281 db->db_level, db->db_blkid); 282 uint64_t idx = hv & h->hash_table_mask; 283 dmu_buf_impl_t *dbf, **dbp; 284 285 /* 286 * We musn't hold db_mtx to maintain lock ordering: 287 * DBUF_HASH_MUTEX > db_mtx. 288 */ 289 ASSERT(refcount_is_zero(&db->db_holds)); 290 ASSERT(db->db_state == DB_EVICTING); 291 ASSERT(!MUTEX_HELD(&db->db_mtx)); 292 293 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 294 dbp = &h->hash_table[idx]; 295 while ((dbf = *dbp) != db) { 296 dbp = &dbf->db_hash_next; 297 ASSERT(dbf != NULL); 298 } 299 *dbp = db->db_hash_next; 300 db->db_hash_next = NULL; 301 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 302 atomic_dec_64(&dbuf_hash_count); 303 } 304 305 typedef enum { 306 DBVU_EVICTING, 307 DBVU_NOT_EVICTING 308 } dbvu_verify_type_t; 309 310 static void 311 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 312 { 313 #ifdef ZFS_DEBUG 314 int64_t holds; 315 316 if (db->db_user == NULL) 317 return; 318 319 /* Only data blocks support the attachment of user data. */ 320 ASSERT(db->db_level == 0); 321 322 /* Clients must resolve a dbuf before attaching user data. */ 323 ASSERT(db->db.db_data != NULL); 324 ASSERT3U(db->db_state, ==, DB_CACHED); 325 326 holds = refcount_count(&db->db_holds); 327 if (verify_type == DBVU_EVICTING) { 328 /* 329 * Immediate eviction occurs when holds == dirtycnt. 330 * For normal eviction buffers, holds is zero on 331 * eviction, except when dbuf_fix_old_data() calls 332 * dbuf_clear_data(). However, the hold count can grow 333 * during eviction even though db_mtx is held (see 334 * dmu_bonus_hold() for an example), so we can only 335 * test the generic invariant that holds >= dirtycnt. 336 */ 337 ASSERT3U(holds, >=, db->db_dirtycnt); 338 } else { 339 if (db->db_user_immediate_evict == TRUE) 340 ASSERT3U(holds, >=, db->db_dirtycnt); 341 else 342 ASSERT3U(holds, >, 0); 343 } 344 #endif 345 } 346 347 static void 348 dbuf_evict_user(dmu_buf_impl_t *db) 349 { 350 dmu_buf_user_t *dbu = db->db_user; 351 352 ASSERT(MUTEX_HELD(&db->db_mtx)); 353 354 if (dbu == NULL) 355 return; 356 357 dbuf_verify_user(db, DBVU_EVICTING); 358 db->db_user = NULL; 359 360 #ifdef ZFS_DEBUG 361 if (dbu->dbu_clear_on_evict_dbufp != NULL) 362 *dbu->dbu_clear_on_evict_dbufp = NULL; 363 #endif 364 365 /* 366 * There are two eviction callbacks - one that we call synchronously 367 * and one that we invoke via a taskq. The async one is useful for 368 * avoiding lock order reversals and limiting stack depth. 369 * 370 * Note that if we have a sync callback but no async callback, 371 * it's likely that the sync callback will free the structure 372 * containing the dbu. In that case we need to take care to not 373 * dereference dbu after calling the sync evict func. 374 */ 375 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 376 377 if (dbu->dbu_evict_func_sync != NULL) 378 dbu->dbu_evict_func_sync(dbu); 379 380 if (has_async) { 381 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 382 dbu, 0, &dbu->dbu_tqent); 383 } 384 } 385 386 boolean_t 387 dbuf_is_metadata(dmu_buf_impl_t *db) 388 { 389 if (db->db_level > 0) { 390 return (B_TRUE); 391 } else { 392 boolean_t is_metadata; 393 394 DB_DNODE_ENTER(db); 395 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 396 DB_DNODE_EXIT(db); 397 398 return (is_metadata); 399 } 400 } 401 402 /* 403 * This function *must* return indices evenly distributed between all 404 * sublists of the multilist. This is needed due to how the dbuf eviction 405 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 406 * distributed between all sublists and uses this assumption when 407 * deciding which sublist to evict from and how much to evict from it. 408 */ 409 unsigned int 410 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 411 { 412 dmu_buf_impl_t *db = obj; 413 414 /* 415 * The assumption here, is the hash value for a given 416 * dmu_buf_impl_t will remain constant throughout it's lifetime 417 * (i.e. it's objset, object, level and blkid fields don't change). 418 * Thus, we don't need to store the dbuf's sublist index 419 * on insertion, as this index can be recalculated on removal. 420 * 421 * Also, the low order bits of the hash value are thought to be 422 * distributed evenly. Otherwise, in the case that the multilist 423 * has a power of two number of sublists, each sublists' usage 424 * would not be evenly distributed. 425 */ 426 return (dbuf_hash(db->db_objset, db->db.db_object, 427 db->db_level, db->db_blkid) % 428 multilist_get_num_sublists(ml)); 429 } 430 431 static inline boolean_t 432 dbuf_cache_above_hiwater(void) 433 { 434 uint64_t dbuf_cache_hiwater_bytes = 435 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 436 437 return (refcount_count(&dbuf_cache_size) > 438 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 439 } 440 441 static inline boolean_t 442 dbuf_cache_above_lowater(void) 443 { 444 uint64_t dbuf_cache_lowater_bytes = 445 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 446 447 return (refcount_count(&dbuf_cache_size) > 448 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 449 } 450 451 /* 452 * Evict the oldest eligible dbuf from the dbuf cache. 453 */ 454 static void 455 dbuf_evict_one(void) 456 { 457 int idx = multilist_get_random_index(&dbuf_cache); 458 multilist_sublist_t *mls = multilist_sublist_lock(&dbuf_cache, idx); 459 460 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 461 462 /* 463 * Set the thread's tsd to indicate that it's processing evictions. 464 * Once a thread stops evicting from the dbuf cache it will 465 * reset its tsd to NULL. 466 */ 467 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL); 468 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE); 469 470 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 471 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 472 db = multilist_sublist_prev(mls, db); 473 } 474 475 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 476 multilist_sublist_t *, mls); 477 478 if (db != NULL) { 479 multilist_sublist_remove(mls, db); 480 multilist_sublist_unlock(mls); 481 (void) refcount_remove_many(&dbuf_cache_size, 482 db->db.db_size, db); 483 dbuf_destroy(db); 484 } else { 485 multilist_sublist_unlock(mls); 486 } 487 (void) tsd_set(zfs_dbuf_evict_key, NULL); 488 } 489 490 /* 491 * The dbuf evict thread is responsible for aging out dbufs from the 492 * cache. Once the cache has reached it's maximum size, dbufs are removed 493 * and destroyed. The eviction thread will continue running until the size 494 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 495 * out of the cache it is destroyed and becomes eligible for arc eviction. 496 */ 497 static void 498 dbuf_evict_thread(void) 499 { 500 callb_cpr_t cpr; 501 502 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 503 504 mutex_enter(&dbuf_evict_lock); 505 while (!dbuf_evict_thread_exit) { 506 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 507 CALLB_CPR_SAFE_BEGIN(&cpr); 508 (void) cv_timedwait_hires(&dbuf_evict_cv, 509 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 510 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 511 } 512 mutex_exit(&dbuf_evict_lock); 513 514 /* 515 * Keep evicting as long as we're above the low water mark 516 * for the cache. We do this without holding the locks to 517 * minimize lock contention. 518 */ 519 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 520 dbuf_evict_one(); 521 } 522 523 mutex_enter(&dbuf_evict_lock); 524 } 525 526 dbuf_evict_thread_exit = B_FALSE; 527 cv_broadcast(&dbuf_evict_cv); 528 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 529 thread_exit(); 530 } 531 532 /* 533 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 534 * If the dbuf cache is at its high water mark, then evict a dbuf from the 535 * dbuf cache using the callers context. 536 */ 537 static void 538 dbuf_evict_notify(void) 539 { 540 541 /* 542 * We use thread specific data to track when a thread has 543 * started processing evictions. This allows us to avoid deeply 544 * nested stacks that would have a call flow similar to this: 545 * 546 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 547 * ^ | 548 * | | 549 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 550 * 551 * The dbuf_eviction_thread will always have its tsd set until 552 * that thread exits. All other threads will only set their tsd 553 * if they are participating in the eviction process. This only 554 * happens if the eviction thread is unable to process evictions 555 * fast enough. To keep the dbuf cache size in check, other threads 556 * can evict from the dbuf cache directly. Those threads will set 557 * their tsd values so that we ensure that they only evict one dbuf 558 * from the dbuf cache. 559 */ 560 if (tsd_get(zfs_dbuf_evict_key) != NULL) 561 return; 562 563 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 564 boolean_t evict_now = B_FALSE; 565 566 mutex_enter(&dbuf_evict_lock); 567 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 568 evict_now = dbuf_cache_above_hiwater(); 569 cv_signal(&dbuf_evict_cv); 570 } 571 mutex_exit(&dbuf_evict_lock); 572 573 if (evict_now) { 574 dbuf_evict_one(); 575 } 576 } 577 } 578 579 void 580 dbuf_init(void) 581 { 582 uint64_t hsize = 1ULL << 16; 583 dbuf_hash_table_t *h = &dbuf_hash_table; 584 int i; 585 586 /* 587 * The hash table is big enough to fill all of physical memory 588 * with an average 4K block size. The table will take up 589 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 590 */ 591 while (hsize * 4096 < physmem * PAGESIZE) 592 hsize <<= 1; 593 594 retry: 595 h->hash_table_mask = hsize - 1; 596 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 597 if (h->hash_table == NULL) { 598 /* XXX - we should really return an error instead of assert */ 599 ASSERT(hsize > (1ULL << 10)); 600 hsize >>= 1; 601 goto retry; 602 } 603 604 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 605 sizeof (dmu_buf_impl_t), 606 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 607 608 for (i = 0; i < DBUF_MUTEXES; i++) 609 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 610 611 /* 612 * Setup the parameters for the dbuf cache. We cap the size of the 613 * dbuf cache to 1/32nd (default) of the size of the ARC. 614 */ 615 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes, 616 arc_max_bytes() >> dbuf_cache_max_shift); 617 618 /* 619 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 620 * configuration is not required. 621 */ 622 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 623 624 multilist_create(&dbuf_cache, sizeof (dmu_buf_impl_t), 625 offsetof(dmu_buf_impl_t, db_cache_link), 626 zfs_arc_num_sublists_per_state, 627 dbuf_cache_multilist_index_func); 628 refcount_create(&dbuf_cache_size); 629 630 tsd_create(&zfs_dbuf_evict_key, NULL); 631 dbuf_evict_thread_exit = B_FALSE; 632 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 633 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 634 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 635 NULL, 0, &p0, TS_RUN, minclsyspri); 636 } 637 638 void 639 dbuf_fini(void) 640 { 641 dbuf_hash_table_t *h = &dbuf_hash_table; 642 int i; 643 644 for (i = 0; i < DBUF_MUTEXES; i++) 645 mutex_destroy(&h->hash_mutexes[i]); 646 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 647 kmem_cache_destroy(dbuf_kmem_cache); 648 taskq_destroy(dbu_evict_taskq); 649 650 mutex_enter(&dbuf_evict_lock); 651 dbuf_evict_thread_exit = B_TRUE; 652 while (dbuf_evict_thread_exit) { 653 cv_signal(&dbuf_evict_cv); 654 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 655 } 656 mutex_exit(&dbuf_evict_lock); 657 tsd_destroy(&zfs_dbuf_evict_key); 658 659 mutex_destroy(&dbuf_evict_lock); 660 cv_destroy(&dbuf_evict_cv); 661 662 refcount_destroy(&dbuf_cache_size); 663 multilist_destroy(&dbuf_cache); 664 } 665 666 /* 667 * Other stuff. 668 */ 669 670 #ifdef ZFS_DEBUG 671 static void 672 dbuf_verify(dmu_buf_impl_t *db) 673 { 674 dnode_t *dn; 675 dbuf_dirty_record_t *dr; 676 677 ASSERT(MUTEX_HELD(&db->db_mtx)); 678 679 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 680 return; 681 682 ASSERT(db->db_objset != NULL); 683 DB_DNODE_ENTER(db); 684 dn = DB_DNODE(db); 685 if (dn == NULL) { 686 ASSERT(db->db_parent == NULL); 687 ASSERT(db->db_blkptr == NULL); 688 } else { 689 ASSERT3U(db->db.db_object, ==, dn->dn_object); 690 ASSERT3P(db->db_objset, ==, dn->dn_objset); 691 ASSERT3U(db->db_level, <, dn->dn_nlevels); 692 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 693 db->db_blkid == DMU_SPILL_BLKID || 694 !avl_is_empty(&dn->dn_dbufs)); 695 } 696 if (db->db_blkid == DMU_BONUS_BLKID) { 697 ASSERT(dn != NULL); 698 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 699 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 700 } else if (db->db_blkid == DMU_SPILL_BLKID) { 701 ASSERT(dn != NULL); 702 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 703 ASSERT0(db->db.db_offset); 704 } else { 705 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 706 } 707 708 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 709 ASSERT(dr->dr_dbuf == db); 710 711 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 712 ASSERT(dr->dr_dbuf == db); 713 714 /* 715 * We can't assert that db_size matches dn_datablksz because it 716 * can be momentarily different when another thread is doing 717 * dnode_set_blksz(). 718 */ 719 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 720 dr = db->db_data_pending; 721 /* 722 * It should only be modified in syncing context, so 723 * make sure we only have one copy of the data. 724 */ 725 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 726 } 727 728 /* verify db->db_blkptr */ 729 if (db->db_blkptr) { 730 if (db->db_parent == dn->dn_dbuf) { 731 /* db is pointed to by the dnode */ 732 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 733 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 734 ASSERT(db->db_parent == NULL); 735 else 736 ASSERT(db->db_parent != NULL); 737 if (db->db_blkid != DMU_SPILL_BLKID) 738 ASSERT3P(db->db_blkptr, ==, 739 &dn->dn_phys->dn_blkptr[db->db_blkid]); 740 } else { 741 /* db is pointed to by an indirect block */ 742 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 743 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 744 ASSERT3U(db->db_parent->db.db_object, ==, 745 db->db.db_object); 746 /* 747 * dnode_grow_indblksz() can make this fail if we don't 748 * have the struct_rwlock. XXX indblksz no longer 749 * grows. safe to do this now? 750 */ 751 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 752 ASSERT3P(db->db_blkptr, ==, 753 ((blkptr_t *)db->db_parent->db.db_data + 754 db->db_blkid % epb)); 755 } 756 } 757 } 758 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 759 (db->db_buf == NULL || db->db_buf->b_data) && 760 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 761 db->db_state != DB_FILL && !dn->dn_free_txg) { 762 /* 763 * If the blkptr isn't set but they have nonzero data, 764 * it had better be dirty, otherwise we'll lose that 765 * data when we evict this buffer. 766 * 767 * There is an exception to this rule for indirect blocks; in 768 * this case, if the indirect block is a hole, we fill in a few 769 * fields on each of the child blocks (importantly, birth time) 770 * to prevent hole birth times from being lost when you 771 * partially fill in a hole. 772 */ 773 if (db->db_dirtycnt == 0) { 774 if (db->db_level == 0) { 775 uint64_t *buf = db->db.db_data; 776 int i; 777 778 for (i = 0; i < db->db.db_size >> 3; i++) { 779 ASSERT(buf[i] == 0); 780 } 781 } else { 782 blkptr_t *bps = db->db.db_data; 783 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 784 db->db.db_size); 785 /* 786 * We want to verify that all the blkptrs in the 787 * indirect block are holes, but we may have 788 * automatically set up a few fields for them. 789 * We iterate through each blkptr and verify 790 * they only have those fields set. 791 */ 792 for (int i = 0; 793 i < db->db.db_size / sizeof (blkptr_t); 794 i++) { 795 blkptr_t *bp = &bps[i]; 796 ASSERT(ZIO_CHECKSUM_IS_ZERO( 797 &bp->blk_cksum)); 798 ASSERT( 799 DVA_IS_EMPTY(&bp->blk_dva[0]) && 800 DVA_IS_EMPTY(&bp->blk_dva[1]) && 801 DVA_IS_EMPTY(&bp->blk_dva[2])); 802 ASSERT0(bp->blk_fill); 803 ASSERT0(bp->blk_pad[0]); 804 ASSERT0(bp->blk_pad[1]); 805 ASSERT(!BP_IS_EMBEDDED(bp)); 806 ASSERT(BP_IS_HOLE(bp)); 807 ASSERT0(bp->blk_phys_birth); 808 } 809 } 810 } 811 } 812 DB_DNODE_EXIT(db); 813 } 814 #endif 815 816 static void 817 dbuf_clear_data(dmu_buf_impl_t *db) 818 { 819 ASSERT(MUTEX_HELD(&db->db_mtx)); 820 dbuf_evict_user(db); 821 ASSERT3P(db->db_buf, ==, NULL); 822 db->db.db_data = NULL; 823 if (db->db_state != DB_NOFILL) 824 db->db_state = DB_UNCACHED; 825 } 826 827 static void 828 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 829 { 830 ASSERT(MUTEX_HELD(&db->db_mtx)); 831 ASSERT(buf != NULL); 832 833 db->db_buf = buf; 834 ASSERT(buf->b_data != NULL); 835 db->db.db_data = buf->b_data; 836 } 837 838 /* 839 * Loan out an arc_buf for read. Return the loaned arc_buf. 840 */ 841 arc_buf_t * 842 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 843 { 844 arc_buf_t *abuf; 845 846 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 847 mutex_enter(&db->db_mtx); 848 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 849 int blksz = db->db.db_size; 850 spa_t *spa = db->db_objset->os_spa; 851 852 mutex_exit(&db->db_mtx); 853 abuf = arc_loan_buf(spa, B_FALSE, blksz); 854 bcopy(db->db.db_data, abuf->b_data, blksz); 855 } else { 856 abuf = db->db_buf; 857 arc_loan_inuse_buf(abuf, db); 858 db->db_buf = NULL; 859 dbuf_clear_data(db); 860 mutex_exit(&db->db_mtx); 861 } 862 return (abuf); 863 } 864 865 /* 866 * Calculate which level n block references the data at the level 0 offset 867 * provided. 868 */ 869 uint64_t 870 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 871 { 872 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 873 /* 874 * The level n blkid is equal to the level 0 blkid divided by 875 * the number of level 0s in a level n block. 876 * 877 * The level 0 blkid is offset >> datablkshift = 878 * offset / 2^datablkshift. 879 * 880 * The number of level 0s in a level n is the number of block 881 * pointers in an indirect block, raised to the power of level. 882 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 883 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 884 * 885 * Thus, the level n blkid is: offset / 886 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 887 * = offset / 2^(datablkshift + level * 888 * (indblkshift - SPA_BLKPTRSHIFT)) 889 * = offset >> (datablkshift + level * 890 * (indblkshift - SPA_BLKPTRSHIFT)) 891 */ 892 return (offset >> (dn->dn_datablkshift + level * 893 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 894 } else { 895 ASSERT3U(offset, <, dn->dn_datablksz); 896 return (0); 897 } 898 } 899 900 static void 901 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 902 { 903 dmu_buf_impl_t *db = vdb; 904 905 mutex_enter(&db->db_mtx); 906 ASSERT3U(db->db_state, ==, DB_READ); 907 /* 908 * All reads are synchronous, so we must have a hold on the dbuf 909 */ 910 ASSERT(refcount_count(&db->db_holds) > 0); 911 ASSERT(db->db_buf == NULL); 912 ASSERT(db->db.db_data == NULL); 913 if (db->db_level == 0 && db->db_freed_in_flight) { 914 /* we were freed in flight; disregard any error */ 915 arc_release(buf, db); 916 bzero(buf->b_data, db->db.db_size); 917 arc_buf_freeze(buf); 918 db->db_freed_in_flight = FALSE; 919 dbuf_set_data(db, buf); 920 db->db_state = DB_CACHED; 921 } else if (zio == NULL || zio->io_error == 0) { 922 dbuf_set_data(db, buf); 923 db->db_state = DB_CACHED; 924 } else { 925 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 926 ASSERT3P(db->db_buf, ==, NULL); 927 arc_buf_destroy(buf, db); 928 db->db_state = DB_UNCACHED; 929 } 930 cv_broadcast(&db->db_changed); 931 dbuf_rele_and_unlock(db, NULL); 932 } 933 934 static void 935 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 936 { 937 dnode_t *dn; 938 zbookmark_phys_t zb; 939 arc_flags_t aflags = ARC_FLAG_NOWAIT; 940 941 DB_DNODE_ENTER(db); 942 dn = DB_DNODE(db); 943 ASSERT(!refcount_is_zero(&db->db_holds)); 944 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 945 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 946 ASSERT(MUTEX_HELD(&db->db_mtx)); 947 ASSERT(db->db_state == DB_UNCACHED); 948 ASSERT(db->db_buf == NULL); 949 950 if (db->db_blkid == DMU_BONUS_BLKID) { 951 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 952 953 ASSERT3U(bonuslen, <=, db->db.db_size); 954 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 955 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 956 if (bonuslen < DN_MAX_BONUSLEN) 957 bzero(db->db.db_data, DN_MAX_BONUSLEN); 958 if (bonuslen) 959 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 960 DB_DNODE_EXIT(db); 961 db->db_state = DB_CACHED; 962 mutex_exit(&db->db_mtx); 963 return; 964 } 965 966 /* 967 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 968 * processes the delete record and clears the bp while we are waiting 969 * for the dn_mtx (resulting in a "no" from block_freed). 970 */ 971 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 972 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 973 BP_IS_HOLE(db->db_blkptr)))) { 974 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 975 976 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type, 977 db->db.db_size)); 978 bzero(db->db.db_data, db->db.db_size); 979 980 if (db->db_blkptr != NULL && db->db_level > 0 && 981 BP_IS_HOLE(db->db_blkptr) && 982 db->db_blkptr->blk_birth != 0) { 983 blkptr_t *bps = db->db.db_data; 984 for (int i = 0; i < ((1 << 985 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 986 i++) { 987 blkptr_t *bp = &bps[i]; 988 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 989 1 << dn->dn_indblkshift); 990 BP_SET_LSIZE(bp, 991 BP_GET_LEVEL(db->db_blkptr) == 1 ? 992 dn->dn_datablksz : 993 BP_GET_LSIZE(db->db_blkptr)); 994 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 995 BP_SET_LEVEL(bp, 996 BP_GET_LEVEL(db->db_blkptr) - 1); 997 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 998 } 999 } 1000 DB_DNODE_EXIT(db); 1001 db->db_state = DB_CACHED; 1002 mutex_exit(&db->db_mtx); 1003 return; 1004 } 1005 1006 DB_DNODE_EXIT(db); 1007 1008 db->db_state = DB_READ; 1009 mutex_exit(&db->db_mtx); 1010 1011 if (DBUF_IS_L2CACHEABLE(db)) 1012 aflags |= ARC_FLAG_L2CACHE; 1013 1014 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 1015 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 1016 db->db.db_object, db->db_level, db->db_blkid); 1017 1018 dbuf_add_ref(db, NULL); 1019 1020 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 1021 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 1022 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 1023 &aflags, &zb); 1024 } 1025 1026 /* 1027 * This is our just-in-time copy function. It makes a copy of buffers that 1028 * have been modified in a previous transaction group before we access them in 1029 * the current active group. 1030 * 1031 * This function is used in three places: when we are dirtying a buffer for the 1032 * first time in a txg, when we are freeing a range in a dnode that includes 1033 * this buffer, and when we are accessing a buffer which was received compressed 1034 * and later referenced in a WRITE_BYREF record. 1035 * 1036 * Note that when we are called from dbuf_free_range() we do not put a hold on 1037 * the buffer, we just traverse the active dbuf list for the dnode. 1038 */ 1039 static void 1040 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1041 { 1042 dbuf_dirty_record_t *dr = db->db_last_dirty; 1043 1044 ASSERT(MUTEX_HELD(&db->db_mtx)); 1045 ASSERT(db->db.db_data != NULL); 1046 ASSERT(db->db_level == 0); 1047 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1048 1049 if (dr == NULL || 1050 (dr->dt.dl.dr_data != 1051 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1052 return; 1053 1054 /* 1055 * If the last dirty record for this dbuf has not yet synced 1056 * and its referencing the dbuf data, either: 1057 * reset the reference to point to a new copy, 1058 * or (if there a no active holders) 1059 * just null out the current db_data pointer. 1060 */ 1061 ASSERT(dr->dr_txg >= txg - 2); 1062 if (db->db_blkid == DMU_BONUS_BLKID) { 1063 /* Note that the data bufs here are zio_bufs */ 1064 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 1065 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1066 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 1067 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1068 int size = arc_buf_size(db->db_buf); 1069 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1070 spa_t *spa = db->db_objset->os_spa; 1071 enum zio_compress compress_type = 1072 arc_get_compression(db->db_buf); 1073 1074 if (compress_type == ZIO_COMPRESS_OFF) { 1075 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1076 } else { 1077 ASSERT3U(type, ==, ARC_BUFC_DATA); 1078 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1079 size, arc_buf_lsize(db->db_buf), compress_type); 1080 } 1081 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1082 } else { 1083 db->db_buf = NULL; 1084 dbuf_clear_data(db); 1085 } 1086 } 1087 1088 int 1089 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1090 { 1091 int err = 0; 1092 boolean_t havepzio = (zio != NULL); 1093 boolean_t prefetch; 1094 dnode_t *dn; 1095 1096 /* 1097 * We don't have to hold the mutex to check db_state because it 1098 * can't be freed while we have a hold on the buffer. 1099 */ 1100 ASSERT(!refcount_is_zero(&db->db_holds)); 1101 1102 if (db->db_state == DB_NOFILL) 1103 return (SET_ERROR(EIO)); 1104 1105 DB_DNODE_ENTER(db); 1106 dn = DB_DNODE(db); 1107 if ((flags & DB_RF_HAVESTRUCT) == 0) 1108 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1109 1110 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1111 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1112 DBUF_IS_CACHEABLE(db); 1113 1114 mutex_enter(&db->db_mtx); 1115 if (db->db_state == DB_CACHED) { 1116 /* 1117 * If the arc buf is compressed, we need to decompress it to 1118 * read the data. This could happen during the "zfs receive" of 1119 * a stream which is compressed and deduplicated. 1120 */ 1121 if (db->db_buf != NULL && 1122 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) { 1123 dbuf_fix_old_data(db, 1124 spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1125 err = arc_decompress(db->db_buf); 1126 dbuf_set_data(db, db->db_buf); 1127 } 1128 mutex_exit(&db->db_mtx); 1129 if (prefetch) 1130 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1131 if ((flags & DB_RF_HAVESTRUCT) == 0) 1132 rw_exit(&dn->dn_struct_rwlock); 1133 DB_DNODE_EXIT(db); 1134 } else if (db->db_state == DB_UNCACHED) { 1135 spa_t *spa = dn->dn_objset->os_spa; 1136 1137 if (zio == NULL) 1138 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1139 dbuf_read_impl(db, zio, flags); 1140 1141 /* dbuf_read_impl has dropped db_mtx for us */ 1142 1143 if (prefetch) 1144 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1145 1146 if ((flags & DB_RF_HAVESTRUCT) == 0) 1147 rw_exit(&dn->dn_struct_rwlock); 1148 DB_DNODE_EXIT(db); 1149 1150 if (!havepzio) 1151 err = zio_wait(zio); 1152 } else { 1153 /* 1154 * Another reader came in while the dbuf was in flight 1155 * between UNCACHED and CACHED. Either a writer will finish 1156 * writing the buffer (sending the dbuf to CACHED) or the 1157 * first reader's request will reach the read_done callback 1158 * and send the dbuf to CACHED. Otherwise, a failure 1159 * occurred and the dbuf went to UNCACHED. 1160 */ 1161 mutex_exit(&db->db_mtx); 1162 if (prefetch) 1163 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1164 if ((flags & DB_RF_HAVESTRUCT) == 0) 1165 rw_exit(&dn->dn_struct_rwlock); 1166 DB_DNODE_EXIT(db); 1167 1168 /* Skip the wait per the caller's request. */ 1169 mutex_enter(&db->db_mtx); 1170 if ((flags & DB_RF_NEVERWAIT) == 0) { 1171 while (db->db_state == DB_READ || 1172 db->db_state == DB_FILL) { 1173 ASSERT(db->db_state == DB_READ || 1174 (flags & DB_RF_HAVESTRUCT) == 0); 1175 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1176 db, zio_t *, zio); 1177 cv_wait(&db->db_changed, &db->db_mtx); 1178 } 1179 if (db->db_state == DB_UNCACHED) 1180 err = SET_ERROR(EIO); 1181 } 1182 mutex_exit(&db->db_mtx); 1183 } 1184 1185 ASSERT(err || havepzio || db->db_state == DB_CACHED); 1186 return (err); 1187 } 1188 1189 static void 1190 dbuf_noread(dmu_buf_impl_t *db) 1191 { 1192 ASSERT(!refcount_is_zero(&db->db_holds)); 1193 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1194 mutex_enter(&db->db_mtx); 1195 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1196 cv_wait(&db->db_changed, &db->db_mtx); 1197 if (db->db_state == DB_UNCACHED) { 1198 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1199 spa_t *spa = db->db_objset->os_spa; 1200 1201 ASSERT(db->db_buf == NULL); 1202 ASSERT(db->db.db_data == NULL); 1203 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size)); 1204 db->db_state = DB_FILL; 1205 } else if (db->db_state == DB_NOFILL) { 1206 dbuf_clear_data(db); 1207 } else { 1208 ASSERT3U(db->db_state, ==, DB_CACHED); 1209 } 1210 mutex_exit(&db->db_mtx); 1211 } 1212 1213 void 1214 dbuf_unoverride(dbuf_dirty_record_t *dr) 1215 { 1216 dmu_buf_impl_t *db = dr->dr_dbuf; 1217 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1218 uint64_t txg = dr->dr_txg; 1219 1220 ASSERT(MUTEX_HELD(&db->db_mtx)); 1221 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1222 ASSERT(db->db_level == 0); 1223 1224 if (db->db_blkid == DMU_BONUS_BLKID || 1225 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1226 return; 1227 1228 ASSERT(db->db_data_pending != dr); 1229 1230 /* free this block */ 1231 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1232 zio_free(db->db_objset->os_spa, txg, bp); 1233 1234 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1235 dr->dt.dl.dr_nopwrite = B_FALSE; 1236 1237 /* 1238 * Release the already-written buffer, so we leave it in 1239 * a consistent dirty state. Note that all callers are 1240 * modifying the buffer, so they will immediately do 1241 * another (redundant) arc_release(). Therefore, leave 1242 * the buf thawed to save the effort of freezing & 1243 * immediately re-thawing it. 1244 */ 1245 arc_release(dr->dt.dl.dr_data, db); 1246 } 1247 1248 /* 1249 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1250 * data blocks in the free range, so that any future readers will find 1251 * empty blocks. 1252 */ 1253 void 1254 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1255 dmu_tx_t *tx) 1256 { 1257 dmu_buf_impl_t db_search; 1258 dmu_buf_impl_t *db, *db_next; 1259 uint64_t txg = tx->tx_txg; 1260 avl_index_t where; 1261 1262 if (end_blkid > dn->dn_maxblkid && 1263 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1264 end_blkid = dn->dn_maxblkid; 1265 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1266 1267 db_search.db_level = 0; 1268 db_search.db_blkid = start_blkid; 1269 db_search.db_state = DB_SEARCH; 1270 1271 mutex_enter(&dn->dn_dbufs_mtx); 1272 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1273 ASSERT3P(db, ==, NULL); 1274 1275 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1276 1277 for (; db != NULL; db = db_next) { 1278 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1279 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1280 1281 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1282 break; 1283 } 1284 ASSERT3U(db->db_blkid, >=, start_blkid); 1285 1286 /* found a level 0 buffer in the range */ 1287 mutex_enter(&db->db_mtx); 1288 if (dbuf_undirty(db, tx)) { 1289 /* mutex has been dropped and dbuf destroyed */ 1290 continue; 1291 } 1292 1293 if (db->db_state == DB_UNCACHED || 1294 db->db_state == DB_NOFILL || 1295 db->db_state == DB_EVICTING) { 1296 ASSERT(db->db.db_data == NULL); 1297 mutex_exit(&db->db_mtx); 1298 continue; 1299 } 1300 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1301 /* will be handled in dbuf_read_done or dbuf_rele */ 1302 db->db_freed_in_flight = TRUE; 1303 mutex_exit(&db->db_mtx); 1304 continue; 1305 } 1306 if (refcount_count(&db->db_holds) == 0) { 1307 ASSERT(db->db_buf); 1308 dbuf_destroy(db); 1309 continue; 1310 } 1311 /* The dbuf is referenced */ 1312 1313 if (db->db_last_dirty != NULL) { 1314 dbuf_dirty_record_t *dr = db->db_last_dirty; 1315 1316 if (dr->dr_txg == txg) { 1317 /* 1318 * This buffer is "in-use", re-adjust the file 1319 * size to reflect that this buffer may 1320 * contain new data when we sync. 1321 */ 1322 if (db->db_blkid != DMU_SPILL_BLKID && 1323 db->db_blkid > dn->dn_maxblkid) 1324 dn->dn_maxblkid = db->db_blkid; 1325 dbuf_unoverride(dr); 1326 } else { 1327 /* 1328 * This dbuf is not dirty in the open context. 1329 * Either uncache it (if its not referenced in 1330 * the open context) or reset its contents to 1331 * empty. 1332 */ 1333 dbuf_fix_old_data(db, txg); 1334 } 1335 } 1336 /* clear the contents if its cached */ 1337 if (db->db_state == DB_CACHED) { 1338 ASSERT(db->db.db_data != NULL); 1339 arc_release(db->db_buf, db); 1340 bzero(db->db.db_data, db->db.db_size); 1341 arc_buf_freeze(db->db_buf); 1342 } 1343 1344 mutex_exit(&db->db_mtx); 1345 } 1346 mutex_exit(&dn->dn_dbufs_mtx); 1347 } 1348 1349 static int 1350 dbuf_block_freeable(dmu_buf_impl_t *db) 1351 { 1352 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; 1353 uint64_t birth_txg = 0; 1354 1355 /* 1356 * We don't need any locking to protect db_blkptr: 1357 * If it's syncing, then db_last_dirty will be set 1358 * so we'll ignore db_blkptr. 1359 * 1360 * This logic ensures that only block births for 1361 * filled blocks are considered. 1362 */ 1363 ASSERT(MUTEX_HELD(&db->db_mtx)); 1364 if (db->db_last_dirty && (db->db_blkptr == NULL || 1365 !BP_IS_HOLE(db->db_blkptr))) { 1366 birth_txg = db->db_last_dirty->dr_txg; 1367 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1368 birth_txg = db->db_blkptr->blk_birth; 1369 } 1370 1371 /* 1372 * If this block don't exist or is in a snapshot, it can't be freed. 1373 * Don't pass the bp to dsl_dataset_block_freeable() since we 1374 * are holding the db_mtx lock and might deadlock if we are 1375 * prefetching a dedup-ed block. 1376 */ 1377 if (birth_txg != 0) 1378 return (ds == NULL || 1379 dsl_dataset_block_freeable(ds, NULL, birth_txg)); 1380 else 1381 return (B_FALSE); 1382 } 1383 1384 void 1385 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1386 { 1387 arc_buf_t *buf, *obuf; 1388 int osize = db->db.db_size; 1389 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1390 dnode_t *dn; 1391 1392 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1393 1394 DB_DNODE_ENTER(db); 1395 dn = DB_DNODE(db); 1396 1397 /* XXX does *this* func really need the lock? */ 1398 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1399 1400 /* 1401 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1402 * is OK, because there can be no other references to the db 1403 * when we are changing its size, so no concurrent DB_FILL can 1404 * be happening. 1405 */ 1406 /* 1407 * XXX we should be doing a dbuf_read, checking the return 1408 * value and returning that up to our callers 1409 */ 1410 dmu_buf_will_dirty(&db->db, tx); 1411 1412 /* create the data buffer for the new block */ 1413 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1414 1415 /* copy old block data to the new block */ 1416 obuf = db->db_buf; 1417 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1418 /* zero the remainder */ 1419 if (size > osize) 1420 bzero((uint8_t *)buf->b_data + osize, size - osize); 1421 1422 mutex_enter(&db->db_mtx); 1423 dbuf_set_data(db, buf); 1424 arc_buf_destroy(obuf, db); 1425 db->db.db_size = size; 1426 1427 if (db->db_level == 0) { 1428 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1429 db->db_last_dirty->dt.dl.dr_data = buf; 1430 } 1431 mutex_exit(&db->db_mtx); 1432 1433 dnode_willuse_space(dn, size-osize, tx); 1434 DB_DNODE_EXIT(db); 1435 } 1436 1437 void 1438 dbuf_release_bp(dmu_buf_impl_t *db) 1439 { 1440 objset_t *os = db->db_objset; 1441 1442 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1443 ASSERT(arc_released(os->os_phys_buf) || 1444 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1445 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1446 1447 (void) arc_release(db->db_buf, db); 1448 } 1449 1450 /* 1451 * We already have a dirty record for this TXG, and we are being 1452 * dirtied again. 1453 */ 1454 static void 1455 dbuf_redirty(dbuf_dirty_record_t *dr) 1456 { 1457 dmu_buf_impl_t *db = dr->dr_dbuf; 1458 1459 ASSERT(MUTEX_HELD(&db->db_mtx)); 1460 1461 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1462 /* 1463 * If this buffer has already been written out, 1464 * we now need to reset its state. 1465 */ 1466 dbuf_unoverride(dr); 1467 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1468 db->db_state != DB_NOFILL) { 1469 /* Already released on initial dirty, so just thaw. */ 1470 ASSERT(arc_released(db->db_buf)); 1471 arc_buf_thaw(db->db_buf); 1472 } 1473 } 1474 } 1475 1476 dbuf_dirty_record_t * 1477 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1478 { 1479 dnode_t *dn; 1480 objset_t *os; 1481 dbuf_dirty_record_t **drp, *dr; 1482 int drop_struct_lock = FALSE; 1483 boolean_t do_free_accounting = B_FALSE; 1484 int txgoff = tx->tx_txg & TXG_MASK; 1485 1486 ASSERT(tx->tx_txg != 0); 1487 ASSERT(!refcount_is_zero(&db->db_holds)); 1488 DMU_TX_DIRTY_BUF(tx, db); 1489 1490 DB_DNODE_ENTER(db); 1491 dn = DB_DNODE(db); 1492 /* 1493 * Shouldn't dirty a regular buffer in syncing context. Private 1494 * objects may be dirtied in syncing context, but only if they 1495 * were already pre-dirtied in open context. 1496 */ 1497 #ifdef DEBUG 1498 if (dn->dn_objset->os_dsl_dataset != NULL) { 1499 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1500 RW_READER, FTAG); 1501 } 1502 ASSERT(!dmu_tx_is_syncing(tx) || 1503 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1504 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1505 dn->dn_objset->os_dsl_dataset == NULL); 1506 if (dn->dn_objset->os_dsl_dataset != NULL) 1507 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 1508 #endif 1509 /* 1510 * We make this assert for private objects as well, but after we 1511 * check if we're already dirty. They are allowed to re-dirty 1512 * in syncing context. 1513 */ 1514 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1515 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1516 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1517 1518 mutex_enter(&db->db_mtx); 1519 /* 1520 * XXX make this true for indirects too? The problem is that 1521 * transactions created with dmu_tx_create_assigned() from 1522 * syncing context don't bother holding ahead. 1523 */ 1524 ASSERT(db->db_level != 0 || 1525 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1526 db->db_state == DB_NOFILL); 1527 1528 mutex_enter(&dn->dn_mtx); 1529 /* 1530 * Don't set dirtyctx to SYNC if we're just modifying this as we 1531 * initialize the objset. 1532 */ 1533 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 1534 if (dn->dn_objset->os_dsl_dataset != NULL) { 1535 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1536 RW_READER, FTAG); 1537 } 1538 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1539 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? 1540 DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1541 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1542 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1543 } 1544 if (dn->dn_objset->os_dsl_dataset != NULL) { 1545 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1546 FTAG); 1547 } 1548 } 1549 mutex_exit(&dn->dn_mtx); 1550 1551 if (db->db_blkid == DMU_SPILL_BLKID) 1552 dn->dn_have_spill = B_TRUE; 1553 1554 /* 1555 * If this buffer is already dirty, we're done. 1556 */ 1557 drp = &db->db_last_dirty; 1558 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1559 db->db.db_object == DMU_META_DNODE_OBJECT); 1560 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1561 drp = &dr->dr_next; 1562 if (dr && dr->dr_txg == tx->tx_txg) { 1563 DB_DNODE_EXIT(db); 1564 1565 dbuf_redirty(dr); 1566 mutex_exit(&db->db_mtx); 1567 return (dr); 1568 } 1569 1570 /* 1571 * Only valid if not already dirty. 1572 */ 1573 ASSERT(dn->dn_object == 0 || 1574 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1575 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1576 1577 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1578 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1579 dn->dn_phys->dn_nlevels > db->db_level || 1580 dn->dn_next_nlevels[txgoff] > db->db_level || 1581 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1582 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1583 1584 /* 1585 * We should only be dirtying in syncing context if it's the 1586 * mos or we're initializing the os or it's a special object. 1587 * However, we are allowed to dirty in syncing context provided 1588 * we already dirtied it in open context. Hence we must make 1589 * this assertion only if we're not already dirty. 1590 */ 1591 os = dn->dn_objset; 1592 #ifdef DEBUG 1593 if (dn->dn_objset->os_dsl_dataset != NULL) 1594 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 1595 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1596 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1597 if (dn->dn_objset->os_dsl_dataset != NULL) 1598 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 1599 #endif 1600 ASSERT(db->db.db_size != 0); 1601 1602 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1603 1604 if (db->db_blkid != DMU_BONUS_BLKID) { 1605 /* 1606 * Update the accounting. 1607 * Note: we delay "free accounting" until after we drop 1608 * the db_mtx. This keeps us from grabbing other locks 1609 * (and possibly deadlocking) in bp_get_dsize() while 1610 * also holding the db_mtx. 1611 */ 1612 dnode_willuse_space(dn, db->db.db_size, tx); 1613 do_free_accounting = dbuf_block_freeable(db); 1614 } 1615 1616 /* 1617 * If this buffer is dirty in an old transaction group we need 1618 * to make a copy of it so that the changes we make in this 1619 * transaction group won't leak out when we sync the older txg. 1620 */ 1621 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1622 if (db->db_level == 0) { 1623 void *data_old = db->db_buf; 1624 1625 if (db->db_state != DB_NOFILL) { 1626 if (db->db_blkid == DMU_BONUS_BLKID) { 1627 dbuf_fix_old_data(db, tx->tx_txg); 1628 data_old = db->db.db_data; 1629 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1630 /* 1631 * Release the data buffer from the cache so 1632 * that we can modify it without impacting 1633 * possible other users of this cached data 1634 * block. Note that indirect blocks and 1635 * private objects are not released until the 1636 * syncing state (since they are only modified 1637 * then). 1638 */ 1639 arc_release(db->db_buf, db); 1640 dbuf_fix_old_data(db, tx->tx_txg); 1641 data_old = db->db_buf; 1642 } 1643 ASSERT(data_old != NULL); 1644 } 1645 dr->dt.dl.dr_data = data_old; 1646 } else { 1647 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1648 list_create(&dr->dt.di.dr_children, 1649 sizeof (dbuf_dirty_record_t), 1650 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1651 } 1652 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1653 dr->dr_accounted = db->db.db_size; 1654 dr->dr_dbuf = db; 1655 dr->dr_txg = tx->tx_txg; 1656 dr->dr_next = *drp; 1657 *drp = dr; 1658 1659 /* 1660 * We could have been freed_in_flight between the dbuf_noread 1661 * and dbuf_dirty. We win, as though the dbuf_noread() had 1662 * happened after the free. 1663 */ 1664 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1665 db->db_blkid != DMU_SPILL_BLKID) { 1666 mutex_enter(&dn->dn_mtx); 1667 if (dn->dn_free_ranges[txgoff] != NULL) { 1668 range_tree_clear(dn->dn_free_ranges[txgoff], 1669 db->db_blkid, 1); 1670 } 1671 mutex_exit(&dn->dn_mtx); 1672 db->db_freed_in_flight = FALSE; 1673 } 1674 1675 /* 1676 * This buffer is now part of this txg 1677 */ 1678 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1679 db->db_dirtycnt += 1; 1680 ASSERT3U(db->db_dirtycnt, <=, 3); 1681 1682 mutex_exit(&db->db_mtx); 1683 1684 if (db->db_blkid == DMU_BONUS_BLKID || 1685 db->db_blkid == DMU_SPILL_BLKID) { 1686 mutex_enter(&dn->dn_mtx); 1687 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1688 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1689 mutex_exit(&dn->dn_mtx); 1690 dnode_setdirty(dn, tx); 1691 DB_DNODE_EXIT(db); 1692 return (dr); 1693 } 1694 1695 /* 1696 * The dn_struct_rwlock prevents db_blkptr from changing 1697 * due to a write from syncing context completing 1698 * while we are running, so we want to acquire it before 1699 * looking at db_blkptr. 1700 */ 1701 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1702 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1703 drop_struct_lock = TRUE; 1704 } 1705 1706 if (do_free_accounting) { 1707 blkptr_t *bp = db->db_blkptr; 1708 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? 1709 bp_get_dsize(os->os_spa, bp) : db->db.db_size; 1710 /* 1711 * This is only a guess -- if the dbuf is dirty 1712 * in a previous txg, we don't know how much 1713 * space it will use on disk yet. We should 1714 * really have the struct_rwlock to access 1715 * db_blkptr, but since this is just a guess, 1716 * it's OK if we get an odd answer. 1717 */ 1718 ddt_prefetch(os->os_spa, bp); 1719 dnode_willuse_space(dn, -willfree, tx); 1720 } 1721 1722 if (db->db_level == 0) { 1723 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1724 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1725 } 1726 1727 if (db->db_level+1 < dn->dn_nlevels) { 1728 dmu_buf_impl_t *parent = db->db_parent; 1729 dbuf_dirty_record_t *di; 1730 int parent_held = FALSE; 1731 1732 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1733 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1734 1735 parent = dbuf_hold_level(dn, db->db_level+1, 1736 db->db_blkid >> epbs, FTAG); 1737 ASSERT(parent != NULL); 1738 parent_held = TRUE; 1739 } 1740 if (drop_struct_lock) 1741 rw_exit(&dn->dn_struct_rwlock); 1742 ASSERT3U(db->db_level+1, ==, parent->db_level); 1743 di = dbuf_dirty(parent, tx); 1744 if (parent_held) 1745 dbuf_rele(parent, FTAG); 1746 1747 mutex_enter(&db->db_mtx); 1748 /* 1749 * Since we've dropped the mutex, it's possible that 1750 * dbuf_undirty() might have changed this out from under us. 1751 */ 1752 if (db->db_last_dirty == dr || 1753 dn->dn_object == DMU_META_DNODE_OBJECT) { 1754 mutex_enter(&di->dt.di.dr_mtx); 1755 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1756 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1757 list_insert_tail(&di->dt.di.dr_children, dr); 1758 mutex_exit(&di->dt.di.dr_mtx); 1759 dr->dr_parent = di; 1760 } 1761 mutex_exit(&db->db_mtx); 1762 } else { 1763 ASSERT(db->db_level+1 == dn->dn_nlevels); 1764 ASSERT(db->db_blkid < dn->dn_nblkptr); 1765 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1766 mutex_enter(&dn->dn_mtx); 1767 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1768 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1769 mutex_exit(&dn->dn_mtx); 1770 if (drop_struct_lock) 1771 rw_exit(&dn->dn_struct_rwlock); 1772 } 1773 1774 dnode_setdirty(dn, tx); 1775 DB_DNODE_EXIT(db); 1776 return (dr); 1777 } 1778 1779 /* 1780 * Undirty a buffer in the transaction group referenced by the given 1781 * transaction. Return whether this evicted the dbuf. 1782 */ 1783 static boolean_t 1784 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1785 { 1786 dnode_t *dn; 1787 uint64_t txg = tx->tx_txg; 1788 dbuf_dirty_record_t *dr, **drp; 1789 1790 ASSERT(txg != 0); 1791 1792 /* 1793 * Due to our use of dn_nlevels below, this can only be called 1794 * in open context, unless we are operating on the MOS. 1795 * From syncing context, dn_nlevels may be different from the 1796 * dn_nlevels used when dbuf was dirtied. 1797 */ 1798 ASSERT(db->db_objset == 1799 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1800 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1801 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1802 ASSERT0(db->db_level); 1803 ASSERT(MUTEX_HELD(&db->db_mtx)); 1804 1805 /* 1806 * If this buffer is not dirty, we're done. 1807 */ 1808 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1809 if (dr->dr_txg <= txg) 1810 break; 1811 if (dr == NULL || dr->dr_txg < txg) 1812 return (B_FALSE); 1813 ASSERT(dr->dr_txg == txg); 1814 ASSERT(dr->dr_dbuf == db); 1815 1816 DB_DNODE_ENTER(db); 1817 dn = DB_DNODE(db); 1818 1819 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1820 1821 ASSERT(db->db.db_size != 0); 1822 1823 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1824 dr->dr_accounted, txg); 1825 1826 *drp = dr->dr_next; 1827 1828 /* 1829 * Note that there are three places in dbuf_dirty() 1830 * where this dirty record may be put on a list. 1831 * Make sure to do a list_remove corresponding to 1832 * every one of those list_insert calls. 1833 */ 1834 if (dr->dr_parent) { 1835 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1836 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1837 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1838 } else if (db->db_blkid == DMU_SPILL_BLKID || 1839 db->db_level + 1 == dn->dn_nlevels) { 1840 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1841 mutex_enter(&dn->dn_mtx); 1842 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1843 mutex_exit(&dn->dn_mtx); 1844 } 1845 DB_DNODE_EXIT(db); 1846 1847 if (db->db_state != DB_NOFILL) { 1848 dbuf_unoverride(dr); 1849 1850 ASSERT(db->db_buf != NULL); 1851 ASSERT(dr->dt.dl.dr_data != NULL); 1852 if (dr->dt.dl.dr_data != db->db_buf) 1853 arc_buf_destroy(dr->dt.dl.dr_data, db); 1854 } 1855 1856 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1857 1858 ASSERT(db->db_dirtycnt > 0); 1859 db->db_dirtycnt -= 1; 1860 1861 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1862 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 1863 dbuf_destroy(db); 1864 return (B_TRUE); 1865 } 1866 1867 return (B_FALSE); 1868 } 1869 1870 void 1871 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1872 { 1873 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1874 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1875 1876 ASSERT(tx->tx_txg != 0); 1877 ASSERT(!refcount_is_zero(&db->db_holds)); 1878 1879 /* 1880 * Quick check for dirtyness. For already dirty blocks, this 1881 * reduces runtime of this function by >90%, and overall performance 1882 * by 50% for some workloads (e.g. file deletion with indirect blocks 1883 * cached). 1884 */ 1885 mutex_enter(&db->db_mtx); 1886 dbuf_dirty_record_t *dr; 1887 for (dr = db->db_last_dirty; 1888 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 1889 /* 1890 * It's possible that it is already dirty but not cached, 1891 * because there are some calls to dbuf_dirty() that don't 1892 * go through dmu_buf_will_dirty(). 1893 */ 1894 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 1895 /* This dbuf is already dirty and cached. */ 1896 dbuf_redirty(dr); 1897 mutex_exit(&db->db_mtx); 1898 return; 1899 } 1900 } 1901 mutex_exit(&db->db_mtx); 1902 1903 DB_DNODE_ENTER(db); 1904 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1905 rf |= DB_RF_HAVESTRUCT; 1906 DB_DNODE_EXIT(db); 1907 (void) dbuf_read(db, NULL, rf); 1908 (void) dbuf_dirty(db, tx); 1909 } 1910 1911 void 1912 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1913 { 1914 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1915 1916 db->db_state = DB_NOFILL; 1917 1918 dmu_buf_will_fill(db_fake, tx); 1919 } 1920 1921 void 1922 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1923 { 1924 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1925 1926 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1927 ASSERT(tx->tx_txg != 0); 1928 ASSERT(db->db_level == 0); 1929 ASSERT(!refcount_is_zero(&db->db_holds)); 1930 1931 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1932 dmu_tx_private_ok(tx)); 1933 1934 dbuf_noread(db); 1935 (void) dbuf_dirty(db, tx); 1936 } 1937 1938 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1939 /* ARGSUSED */ 1940 void 1941 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1942 { 1943 mutex_enter(&db->db_mtx); 1944 DBUF_VERIFY(db); 1945 1946 if (db->db_state == DB_FILL) { 1947 if (db->db_level == 0 && db->db_freed_in_flight) { 1948 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1949 /* we were freed while filling */ 1950 /* XXX dbuf_undirty? */ 1951 bzero(db->db.db_data, db->db.db_size); 1952 db->db_freed_in_flight = FALSE; 1953 } 1954 db->db_state = DB_CACHED; 1955 cv_broadcast(&db->db_changed); 1956 } 1957 mutex_exit(&db->db_mtx); 1958 } 1959 1960 void 1961 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1962 bp_embedded_type_t etype, enum zio_compress comp, 1963 int uncompressed_size, int compressed_size, int byteorder, 1964 dmu_tx_t *tx) 1965 { 1966 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1967 struct dirty_leaf *dl; 1968 dmu_object_type_t type; 1969 1970 if (etype == BP_EMBEDDED_TYPE_DATA) { 1971 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 1972 SPA_FEATURE_EMBEDDED_DATA)); 1973 } 1974 1975 DB_DNODE_ENTER(db); 1976 type = DB_DNODE(db)->dn_type; 1977 DB_DNODE_EXIT(db); 1978 1979 ASSERT0(db->db_level); 1980 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1981 1982 dmu_buf_will_not_fill(dbuf, tx); 1983 1984 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1985 dl = &db->db_last_dirty->dt.dl; 1986 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1987 data, comp, uncompressed_size, compressed_size); 1988 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1989 BP_SET_TYPE(&dl->dr_overridden_by, type); 1990 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1991 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1992 1993 dl->dr_override_state = DR_OVERRIDDEN; 1994 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1995 } 1996 1997 /* 1998 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1999 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2000 */ 2001 void 2002 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2003 { 2004 ASSERT(!refcount_is_zero(&db->db_holds)); 2005 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2006 ASSERT(db->db_level == 0); 2007 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2008 ASSERT(buf != NULL); 2009 ASSERT(arc_buf_lsize(buf) == db->db.db_size); 2010 ASSERT(tx->tx_txg != 0); 2011 2012 arc_return_buf(buf, db); 2013 ASSERT(arc_released(buf)); 2014 2015 mutex_enter(&db->db_mtx); 2016 2017 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2018 cv_wait(&db->db_changed, &db->db_mtx); 2019 2020 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2021 2022 if (db->db_state == DB_CACHED && 2023 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2024 mutex_exit(&db->db_mtx); 2025 (void) dbuf_dirty(db, tx); 2026 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2027 arc_buf_destroy(buf, db); 2028 xuio_stat_wbuf_copied(); 2029 return; 2030 } 2031 2032 xuio_stat_wbuf_nocopy(); 2033 if (db->db_state == DB_CACHED) { 2034 dbuf_dirty_record_t *dr = db->db_last_dirty; 2035 2036 ASSERT(db->db_buf != NULL); 2037 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2038 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2039 if (!arc_released(db->db_buf)) { 2040 ASSERT(dr->dt.dl.dr_override_state == 2041 DR_OVERRIDDEN); 2042 arc_release(db->db_buf, db); 2043 } 2044 dr->dt.dl.dr_data = buf; 2045 arc_buf_destroy(db->db_buf, db); 2046 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2047 arc_release(db->db_buf, db); 2048 arc_buf_destroy(db->db_buf, db); 2049 } 2050 db->db_buf = NULL; 2051 } 2052 ASSERT(db->db_buf == NULL); 2053 dbuf_set_data(db, buf); 2054 db->db_state = DB_FILL; 2055 mutex_exit(&db->db_mtx); 2056 (void) dbuf_dirty(db, tx); 2057 dmu_buf_fill_done(&db->db, tx); 2058 } 2059 2060 void 2061 dbuf_destroy(dmu_buf_impl_t *db) 2062 { 2063 dnode_t *dn; 2064 dmu_buf_impl_t *parent = db->db_parent; 2065 dmu_buf_impl_t *dndb; 2066 2067 ASSERT(MUTEX_HELD(&db->db_mtx)); 2068 ASSERT(refcount_is_zero(&db->db_holds)); 2069 2070 if (db->db_buf != NULL) { 2071 arc_buf_destroy(db->db_buf, db); 2072 db->db_buf = NULL; 2073 } 2074 2075 if (db->db_blkid == DMU_BONUS_BLKID) { 2076 ASSERT(db->db.db_data != NULL); 2077 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 2078 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2079 db->db_state = DB_UNCACHED; 2080 } 2081 2082 dbuf_clear_data(db); 2083 2084 if (multilist_link_active(&db->db_cache_link)) { 2085 multilist_remove(&dbuf_cache, db); 2086 (void) refcount_remove_many(&dbuf_cache_size, 2087 db->db.db_size, db); 2088 } 2089 2090 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2091 ASSERT(db->db_data_pending == NULL); 2092 2093 db->db_state = DB_EVICTING; 2094 db->db_blkptr = NULL; 2095 2096 /* 2097 * Now that db_state is DB_EVICTING, nobody else can find this via 2098 * the hash table. We can now drop db_mtx, which allows us to 2099 * acquire the dn_dbufs_mtx. 2100 */ 2101 mutex_exit(&db->db_mtx); 2102 2103 DB_DNODE_ENTER(db); 2104 dn = DB_DNODE(db); 2105 dndb = dn->dn_dbuf; 2106 if (db->db_blkid != DMU_BONUS_BLKID) { 2107 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2108 if (needlock) 2109 mutex_enter(&dn->dn_dbufs_mtx); 2110 avl_remove(&dn->dn_dbufs, db); 2111 atomic_dec_32(&dn->dn_dbufs_count); 2112 membar_producer(); 2113 DB_DNODE_EXIT(db); 2114 if (needlock) 2115 mutex_exit(&dn->dn_dbufs_mtx); 2116 /* 2117 * Decrementing the dbuf count means that the hold corresponding 2118 * to the removed dbuf is no longer discounted in dnode_move(), 2119 * so the dnode cannot be moved until after we release the hold. 2120 * The membar_producer() ensures visibility of the decremented 2121 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2122 * release any lock. 2123 */ 2124 dnode_rele(dn, db); 2125 db->db_dnode_handle = NULL; 2126 2127 dbuf_hash_remove(db); 2128 } else { 2129 DB_DNODE_EXIT(db); 2130 } 2131 2132 ASSERT(refcount_is_zero(&db->db_holds)); 2133 2134 db->db_parent = NULL; 2135 2136 ASSERT(db->db_buf == NULL); 2137 ASSERT(db->db.db_data == NULL); 2138 ASSERT(db->db_hash_next == NULL); 2139 ASSERT(db->db_blkptr == NULL); 2140 ASSERT(db->db_data_pending == NULL); 2141 ASSERT(!multilist_link_active(&db->db_cache_link)); 2142 2143 kmem_cache_free(dbuf_kmem_cache, db); 2144 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2145 2146 /* 2147 * If this dbuf is referenced from an indirect dbuf, 2148 * decrement the ref count on the indirect dbuf. 2149 */ 2150 if (parent && parent != dndb) 2151 dbuf_rele(parent, db); 2152 } 2153 2154 /* 2155 * Note: While bpp will always be updated if the function returns success, 2156 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2157 * this happens when the dnode is the meta-dnode, or a userused or groupused 2158 * object. 2159 */ 2160 static int 2161 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2162 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2163 { 2164 *parentp = NULL; 2165 *bpp = NULL; 2166 2167 ASSERT(blkid != DMU_BONUS_BLKID); 2168 2169 if (blkid == DMU_SPILL_BLKID) { 2170 mutex_enter(&dn->dn_mtx); 2171 if (dn->dn_have_spill && 2172 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2173 *bpp = &dn->dn_phys->dn_spill; 2174 else 2175 *bpp = NULL; 2176 dbuf_add_ref(dn->dn_dbuf, NULL); 2177 *parentp = dn->dn_dbuf; 2178 mutex_exit(&dn->dn_mtx); 2179 return (0); 2180 } 2181 2182 int nlevels = 2183 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2184 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2185 2186 ASSERT3U(level * epbs, <, 64); 2187 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2188 /* 2189 * This assertion shouldn't trip as long as the max indirect block size 2190 * is less than 1M. The reason for this is that up to that point, 2191 * the number of levels required to address an entire object with blocks 2192 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2193 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2194 * (i.e. we can address the entire object), objects will all use at most 2195 * N-1 levels and the assertion won't overflow. However, once epbs is 2196 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2197 * enough to address an entire object, so objects will have 5 levels, 2198 * but then this assertion will overflow. 2199 * 2200 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2201 * need to redo this logic to handle overflows. 2202 */ 2203 ASSERT(level >= nlevels || 2204 ((nlevels - level - 1) * epbs) + 2205 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2206 if (level >= nlevels || 2207 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2208 ((nlevels - level - 1) * epbs)) || 2209 (fail_sparse && 2210 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2211 /* the buffer has no parent yet */ 2212 return (SET_ERROR(ENOENT)); 2213 } else if (level < nlevels-1) { 2214 /* this block is referenced from an indirect block */ 2215 int err = dbuf_hold_impl(dn, level+1, 2216 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2217 if (err) 2218 return (err); 2219 err = dbuf_read(*parentp, NULL, 2220 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2221 if (err) { 2222 dbuf_rele(*parentp, NULL); 2223 *parentp = NULL; 2224 return (err); 2225 } 2226 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2227 (blkid & ((1ULL << epbs) - 1)); 2228 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2229 ASSERT(BP_IS_HOLE(*bpp)); 2230 return (0); 2231 } else { 2232 /* the block is referenced from the dnode */ 2233 ASSERT3U(level, ==, nlevels-1); 2234 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2235 blkid < dn->dn_phys->dn_nblkptr); 2236 if (dn->dn_dbuf) { 2237 dbuf_add_ref(dn->dn_dbuf, NULL); 2238 *parentp = dn->dn_dbuf; 2239 } 2240 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2241 return (0); 2242 } 2243 } 2244 2245 static dmu_buf_impl_t * 2246 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2247 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2248 { 2249 objset_t *os = dn->dn_objset; 2250 dmu_buf_impl_t *db, *odb; 2251 2252 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2253 ASSERT(dn->dn_type != DMU_OT_NONE); 2254 2255 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2256 2257 db->db_objset = os; 2258 db->db.db_object = dn->dn_object; 2259 db->db_level = level; 2260 db->db_blkid = blkid; 2261 db->db_last_dirty = NULL; 2262 db->db_dirtycnt = 0; 2263 db->db_dnode_handle = dn->dn_handle; 2264 db->db_parent = parent; 2265 db->db_blkptr = blkptr; 2266 2267 db->db_user = NULL; 2268 db->db_user_immediate_evict = FALSE; 2269 db->db_freed_in_flight = FALSE; 2270 db->db_pending_evict = FALSE; 2271 2272 if (blkid == DMU_BONUS_BLKID) { 2273 ASSERT3P(parent, ==, dn->dn_dbuf); 2274 db->db.db_size = DN_MAX_BONUSLEN - 2275 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2276 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2277 db->db.db_offset = DMU_BONUS_BLKID; 2278 db->db_state = DB_UNCACHED; 2279 /* the bonus dbuf is not placed in the hash table */ 2280 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2281 return (db); 2282 } else if (blkid == DMU_SPILL_BLKID) { 2283 db->db.db_size = (blkptr != NULL) ? 2284 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2285 db->db.db_offset = 0; 2286 } else { 2287 int blocksize = 2288 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2289 db->db.db_size = blocksize; 2290 db->db.db_offset = db->db_blkid * blocksize; 2291 } 2292 2293 /* 2294 * Hold the dn_dbufs_mtx while we get the new dbuf 2295 * in the hash table *and* added to the dbufs list. 2296 * This prevents a possible deadlock with someone 2297 * trying to look up this dbuf before its added to the 2298 * dn_dbufs list. 2299 */ 2300 mutex_enter(&dn->dn_dbufs_mtx); 2301 db->db_state = DB_EVICTING; 2302 if ((odb = dbuf_hash_insert(db)) != NULL) { 2303 /* someone else inserted it first */ 2304 kmem_cache_free(dbuf_kmem_cache, db); 2305 mutex_exit(&dn->dn_dbufs_mtx); 2306 return (odb); 2307 } 2308 avl_add(&dn->dn_dbufs, db); 2309 2310 db->db_state = DB_UNCACHED; 2311 mutex_exit(&dn->dn_dbufs_mtx); 2312 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2313 2314 if (parent && parent != dn->dn_dbuf) 2315 dbuf_add_ref(parent, db); 2316 2317 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2318 refcount_count(&dn->dn_holds) > 0); 2319 (void) refcount_add(&dn->dn_holds, db); 2320 atomic_inc_32(&dn->dn_dbufs_count); 2321 2322 dprintf_dbuf(db, "db=%p\n", db); 2323 2324 return (db); 2325 } 2326 2327 typedef struct dbuf_prefetch_arg { 2328 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2329 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2330 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2331 int dpa_curlevel; /* The current level that we're reading */ 2332 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2333 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2334 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2335 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2336 } dbuf_prefetch_arg_t; 2337 2338 /* 2339 * Actually issue the prefetch read for the block given. 2340 */ 2341 static void 2342 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2343 { 2344 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2345 return; 2346 2347 arc_flags_t aflags = 2348 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2349 2350 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2351 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2352 ASSERT(dpa->dpa_zio != NULL); 2353 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2354 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2355 &aflags, &dpa->dpa_zb); 2356 } 2357 2358 /* 2359 * Called when an indirect block above our prefetch target is read in. This 2360 * will either read in the next indirect block down the tree or issue the actual 2361 * prefetch if the next block down is our target. 2362 */ 2363 static void 2364 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) 2365 { 2366 dbuf_prefetch_arg_t *dpa = private; 2367 2368 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2369 ASSERT3S(dpa->dpa_curlevel, >, 0); 2370 2371 /* 2372 * The dpa_dnode is only valid if we are called with a NULL 2373 * zio. This indicates that the arc_read() returned without 2374 * first calling zio_read() to issue a physical read. Once 2375 * a physical read is made the dpa_dnode must be invalidated 2376 * as the locks guarding it may have been dropped. If the 2377 * dpa_dnode is still valid, then we want to add it to the dbuf 2378 * cache. To do so, we must hold the dbuf associated with the block 2379 * we just prefetched, read its contents so that we associate it 2380 * with an arc_buf_t, and then release it. 2381 */ 2382 if (zio != NULL) { 2383 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2384 if (zio->io_flags & ZIO_FLAG_RAW) { 2385 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2386 } else { 2387 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2388 } 2389 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2390 2391 dpa->dpa_dnode = NULL; 2392 } else if (dpa->dpa_dnode != NULL) { 2393 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2394 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2395 dpa->dpa_zb.zb_level)); 2396 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2397 dpa->dpa_curlevel, curblkid, FTAG); 2398 (void) dbuf_read(db, NULL, 2399 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2400 dbuf_rele(db, FTAG); 2401 } 2402 2403 dpa->dpa_curlevel--; 2404 2405 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2406 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2407 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2408 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2409 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) { 2410 kmem_free(dpa, sizeof (*dpa)); 2411 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2412 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2413 dbuf_issue_final_prefetch(dpa, bp); 2414 kmem_free(dpa, sizeof (*dpa)); 2415 } else { 2416 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2417 zbookmark_phys_t zb; 2418 2419 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2420 2421 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2422 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2423 2424 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2425 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2426 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2427 &iter_aflags, &zb); 2428 } 2429 2430 arc_buf_destroy(abuf, private); 2431 } 2432 2433 /* 2434 * Issue prefetch reads for the given block on the given level. If the indirect 2435 * blocks above that block are not in memory, we will read them in 2436 * asynchronously. As a result, this call never blocks waiting for a read to 2437 * complete. 2438 */ 2439 void 2440 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2441 arc_flags_t aflags) 2442 { 2443 blkptr_t bp; 2444 int epbs, nlevels, curlevel; 2445 uint64_t curblkid; 2446 2447 ASSERT(blkid != DMU_BONUS_BLKID); 2448 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2449 2450 if (blkid > dn->dn_maxblkid) 2451 return; 2452 2453 if (dnode_block_freed(dn, blkid)) 2454 return; 2455 2456 /* 2457 * This dnode hasn't been written to disk yet, so there's nothing to 2458 * prefetch. 2459 */ 2460 nlevels = dn->dn_phys->dn_nlevels; 2461 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2462 return; 2463 2464 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2465 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2466 return; 2467 2468 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2469 level, blkid); 2470 if (db != NULL) { 2471 mutex_exit(&db->db_mtx); 2472 /* 2473 * This dbuf already exists. It is either CACHED, or 2474 * (we assume) about to be read or filled. 2475 */ 2476 return; 2477 } 2478 2479 /* 2480 * Find the closest ancestor (indirect block) of the target block 2481 * that is present in the cache. In this indirect block, we will 2482 * find the bp that is at curlevel, curblkid. 2483 */ 2484 curlevel = level; 2485 curblkid = blkid; 2486 while (curlevel < nlevels - 1) { 2487 int parent_level = curlevel + 1; 2488 uint64_t parent_blkid = curblkid >> epbs; 2489 dmu_buf_impl_t *db; 2490 2491 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2492 FALSE, TRUE, FTAG, &db) == 0) { 2493 blkptr_t *bpp = db->db_buf->b_data; 2494 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2495 dbuf_rele(db, FTAG); 2496 break; 2497 } 2498 2499 curlevel = parent_level; 2500 curblkid = parent_blkid; 2501 } 2502 2503 if (curlevel == nlevels - 1) { 2504 /* No cached indirect blocks found. */ 2505 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2506 bp = dn->dn_phys->dn_blkptr[curblkid]; 2507 } 2508 if (BP_IS_HOLE(&bp)) 2509 return; 2510 2511 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2512 2513 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2514 ZIO_FLAG_CANFAIL); 2515 2516 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2517 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2518 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2519 dn->dn_object, level, blkid); 2520 dpa->dpa_curlevel = curlevel; 2521 dpa->dpa_prio = prio; 2522 dpa->dpa_aflags = aflags; 2523 dpa->dpa_spa = dn->dn_objset->os_spa; 2524 dpa->dpa_dnode = dn; 2525 dpa->dpa_epbs = epbs; 2526 dpa->dpa_zio = pio; 2527 2528 /* 2529 * If we have the indirect just above us, no need to do the asynchronous 2530 * prefetch chain; we'll just run the last step ourselves. If we're at 2531 * a higher level, though, we want to issue the prefetches for all the 2532 * indirect blocks asynchronously, so we can go on with whatever we were 2533 * doing. 2534 */ 2535 if (curlevel == level) { 2536 ASSERT3U(curblkid, ==, blkid); 2537 dbuf_issue_final_prefetch(dpa, &bp); 2538 kmem_free(dpa, sizeof (*dpa)); 2539 } else { 2540 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2541 zbookmark_phys_t zb; 2542 2543 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2544 dn->dn_object, curlevel, curblkid); 2545 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2546 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2547 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2548 &iter_aflags, &zb); 2549 } 2550 /* 2551 * We use pio here instead of dpa_zio since it's possible that 2552 * dpa may have already been freed. 2553 */ 2554 zio_nowait(pio); 2555 } 2556 2557 /* 2558 * Returns with db_holds incremented, and db_mtx not held. 2559 * Note: dn_struct_rwlock must be held. 2560 */ 2561 int 2562 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2563 boolean_t fail_sparse, boolean_t fail_uncached, 2564 void *tag, dmu_buf_impl_t **dbp) 2565 { 2566 dmu_buf_impl_t *db, *parent = NULL; 2567 2568 ASSERT(blkid != DMU_BONUS_BLKID); 2569 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2570 ASSERT3U(dn->dn_nlevels, >, level); 2571 2572 *dbp = NULL; 2573 top: 2574 /* dbuf_find() returns with db_mtx held */ 2575 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2576 2577 if (db == NULL) { 2578 blkptr_t *bp = NULL; 2579 int err; 2580 2581 if (fail_uncached) 2582 return (SET_ERROR(ENOENT)); 2583 2584 ASSERT3P(parent, ==, NULL); 2585 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2586 if (fail_sparse) { 2587 if (err == 0 && bp && BP_IS_HOLE(bp)) 2588 err = SET_ERROR(ENOENT); 2589 if (err) { 2590 if (parent) 2591 dbuf_rele(parent, NULL); 2592 return (err); 2593 } 2594 } 2595 if (err && err != ENOENT) 2596 return (err); 2597 db = dbuf_create(dn, level, blkid, parent, bp); 2598 } 2599 2600 if (fail_uncached && db->db_state != DB_CACHED) { 2601 mutex_exit(&db->db_mtx); 2602 return (SET_ERROR(ENOENT)); 2603 } 2604 2605 if (db->db_buf != NULL) 2606 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2607 2608 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2609 2610 /* 2611 * If this buffer is currently syncing out, and we are are 2612 * still referencing it from db_data, we need to make a copy 2613 * of it in case we decide we want to dirty it again in this txg. 2614 */ 2615 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2616 dn->dn_object != DMU_META_DNODE_OBJECT && 2617 db->db_state == DB_CACHED && db->db_data_pending) { 2618 dbuf_dirty_record_t *dr = db->db_data_pending; 2619 2620 if (dr->dt.dl.dr_data == db->db_buf) { 2621 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2622 2623 dbuf_set_data(db, 2624 arc_alloc_buf(dn->dn_objset->os_spa, db, type, 2625 db->db.db_size)); 2626 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2627 db->db.db_size); 2628 } 2629 } 2630 2631 if (multilist_link_active(&db->db_cache_link)) { 2632 ASSERT(refcount_is_zero(&db->db_holds)); 2633 multilist_remove(&dbuf_cache, db); 2634 (void) refcount_remove_many(&dbuf_cache_size, 2635 db->db.db_size, db); 2636 } 2637 (void) refcount_add(&db->db_holds, tag); 2638 DBUF_VERIFY(db); 2639 mutex_exit(&db->db_mtx); 2640 2641 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2642 if (parent) 2643 dbuf_rele(parent, NULL); 2644 2645 ASSERT3P(DB_DNODE(db), ==, dn); 2646 ASSERT3U(db->db_blkid, ==, blkid); 2647 ASSERT3U(db->db_level, ==, level); 2648 *dbp = db; 2649 2650 return (0); 2651 } 2652 2653 dmu_buf_impl_t * 2654 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2655 { 2656 return (dbuf_hold_level(dn, 0, blkid, tag)); 2657 } 2658 2659 dmu_buf_impl_t * 2660 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2661 { 2662 dmu_buf_impl_t *db; 2663 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2664 return (err ? NULL : db); 2665 } 2666 2667 void 2668 dbuf_create_bonus(dnode_t *dn) 2669 { 2670 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2671 2672 ASSERT(dn->dn_bonus == NULL); 2673 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2674 } 2675 2676 int 2677 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2678 { 2679 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2680 dnode_t *dn; 2681 2682 if (db->db_blkid != DMU_SPILL_BLKID) 2683 return (SET_ERROR(ENOTSUP)); 2684 if (blksz == 0) 2685 blksz = SPA_MINBLOCKSIZE; 2686 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2687 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2688 2689 DB_DNODE_ENTER(db); 2690 dn = DB_DNODE(db); 2691 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2692 dbuf_new_size(db, blksz, tx); 2693 rw_exit(&dn->dn_struct_rwlock); 2694 DB_DNODE_EXIT(db); 2695 2696 return (0); 2697 } 2698 2699 void 2700 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2701 { 2702 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2703 } 2704 2705 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2706 void 2707 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2708 { 2709 int64_t holds = refcount_add(&db->db_holds, tag); 2710 ASSERT3S(holds, >, 1); 2711 } 2712 2713 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2714 boolean_t 2715 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2716 void *tag) 2717 { 2718 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2719 dmu_buf_impl_t *found_db; 2720 boolean_t result = B_FALSE; 2721 2722 if (db->db_blkid == DMU_BONUS_BLKID) 2723 found_db = dbuf_find_bonus(os, obj); 2724 else 2725 found_db = dbuf_find(os, obj, 0, blkid); 2726 2727 if (found_db != NULL) { 2728 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 2729 (void) refcount_add(&db->db_holds, tag); 2730 result = B_TRUE; 2731 } 2732 mutex_exit(&db->db_mtx); 2733 } 2734 return (result); 2735 } 2736 2737 /* 2738 * If you call dbuf_rele() you had better not be referencing the dnode handle 2739 * unless you have some other direct or indirect hold on the dnode. (An indirect 2740 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2741 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2742 * dnode's parent dbuf evicting its dnode handles. 2743 */ 2744 void 2745 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2746 { 2747 mutex_enter(&db->db_mtx); 2748 dbuf_rele_and_unlock(db, tag); 2749 } 2750 2751 void 2752 dmu_buf_rele(dmu_buf_t *db, void *tag) 2753 { 2754 dbuf_rele((dmu_buf_impl_t *)db, tag); 2755 } 2756 2757 /* 2758 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2759 * db_dirtycnt and db_holds to be updated atomically. 2760 */ 2761 void 2762 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2763 { 2764 int64_t holds; 2765 2766 ASSERT(MUTEX_HELD(&db->db_mtx)); 2767 DBUF_VERIFY(db); 2768 2769 /* 2770 * Remove the reference to the dbuf before removing its hold on the 2771 * dnode so we can guarantee in dnode_move() that a referenced bonus 2772 * buffer has a corresponding dnode hold. 2773 */ 2774 holds = refcount_remove(&db->db_holds, tag); 2775 ASSERT(holds >= 0); 2776 2777 /* 2778 * We can't freeze indirects if there is a possibility that they 2779 * may be modified in the current syncing context. 2780 */ 2781 if (db->db_buf != NULL && 2782 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 2783 arc_buf_freeze(db->db_buf); 2784 } 2785 2786 if (holds == db->db_dirtycnt && 2787 db->db_level == 0 && db->db_user_immediate_evict) 2788 dbuf_evict_user(db); 2789 2790 if (holds == 0) { 2791 if (db->db_blkid == DMU_BONUS_BLKID) { 2792 dnode_t *dn; 2793 boolean_t evict_dbuf = db->db_pending_evict; 2794 2795 /* 2796 * If the dnode moves here, we cannot cross this 2797 * barrier until the move completes. 2798 */ 2799 DB_DNODE_ENTER(db); 2800 2801 dn = DB_DNODE(db); 2802 atomic_dec_32(&dn->dn_dbufs_count); 2803 2804 /* 2805 * Decrementing the dbuf count means that the bonus 2806 * buffer's dnode hold is no longer discounted in 2807 * dnode_move(). The dnode cannot move until after 2808 * the dnode_rele() below. 2809 */ 2810 DB_DNODE_EXIT(db); 2811 2812 /* 2813 * Do not reference db after its lock is dropped. 2814 * Another thread may evict it. 2815 */ 2816 mutex_exit(&db->db_mtx); 2817 2818 if (evict_dbuf) 2819 dnode_evict_bonus(dn); 2820 2821 dnode_rele(dn, db); 2822 } else if (db->db_buf == NULL) { 2823 /* 2824 * This is a special case: we never associated this 2825 * dbuf with any data allocated from the ARC. 2826 */ 2827 ASSERT(db->db_state == DB_UNCACHED || 2828 db->db_state == DB_NOFILL); 2829 dbuf_destroy(db); 2830 } else if (arc_released(db->db_buf)) { 2831 /* 2832 * This dbuf has anonymous data associated with it. 2833 */ 2834 dbuf_destroy(db); 2835 } else { 2836 boolean_t do_arc_evict = B_FALSE; 2837 blkptr_t bp; 2838 spa_t *spa = dmu_objset_spa(db->db_objset); 2839 2840 if (!DBUF_IS_CACHEABLE(db) && 2841 db->db_blkptr != NULL && 2842 !BP_IS_HOLE(db->db_blkptr) && 2843 !BP_IS_EMBEDDED(db->db_blkptr)) { 2844 do_arc_evict = B_TRUE; 2845 bp = *db->db_blkptr; 2846 } 2847 2848 if (!DBUF_IS_CACHEABLE(db) || 2849 db->db_pending_evict) { 2850 dbuf_destroy(db); 2851 } else if (!multilist_link_active(&db->db_cache_link)) { 2852 multilist_insert(&dbuf_cache, db); 2853 (void) refcount_add_many(&dbuf_cache_size, 2854 db->db.db_size, db); 2855 mutex_exit(&db->db_mtx); 2856 2857 dbuf_evict_notify(); 2858 } 2859 2860 if (do_arc_evict) 2861 arc_freed(spa, &bp); 2862 } 2863 } else { 2864 mutex_exit(&db->db_mtx); 2865 } 2866 2867 } 2868 2869 #pragma weak dmu_buf_refcount = dbuf_refcount 2870 uint64_t 2871 dbuf_refcount(dmu_buf_impl_t *db) 2872 { 2873 return (refcount_count(&db->db_holds)); 2874 } 2875 2876 void * 2877 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 2878 dmu_buf_user_t *new_user) 2879 { 2880 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2881 2882 mutex_enter(&db->db_mtx); 2883 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2884 if (db->db_user == old_user) 2885 db->db_user = new_user; 2886 else 2887 old_user = db->db_user; 2888 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2889 mutex_exit(&db->db_mtx); 2890 2891 return (old_user); 2892 } 2893 2894 void * 2895 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2896 { 2897 return (dmu_buf_replace_user(db_fake, NULL, user)); 2898 } 2899 2900 void * 2901 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2902 { 2903 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2904 2905 db->db_user_immediate_evict = TRUE; 2906 return (dmu_buf_set_user(db_fake, user)); 2907 } 2908 2909 void * 2910 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2911 { 2912 return (dmu_buf_replace_user(db_fake, user, NULL)); 2913 } 2914 2915 void * 2916 dmu_buf_get_user(dmu_buf_t *db_fake) 2917 { 2918 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2919 2920 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2921 return (db->db_user); 2922 } 2923 2924 void 2925 dmu_buf_user_evict_wait() 2926 { 2927 taskq_wait(dbu_evict_taskq); 2928 } 2929 2930 boolean_t 2931 dmu_buf_freeable(dmu_buf_t *dbuf) 2932 { 2933 boolean_t res = B_FALSE; 2934 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2935 2936 if (db->db_blkptr) 2937 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, 2938 db->db_blkptr, db->db_blkptr->blk_birth); 2939 2940 return (res); 2941 } 2942 2943 blkptr_t * 2944 dmu_buf_get_blkptr(dmu_buf_t *db) 2945 { 2946 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2947 return (dbi->db_blkptr); 2948 } 2949 2950 objset_t * 2951 dmu_buf_get_objset(dmu_buf_t *db) 2952 { 2953 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2954 return (dbi->db_objset); 2955 } 2956 2957 dnode_t * 2958 dmu_buf_dnode_enter(dmu_buf_t *db) 2959 { 2960 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2961 DB_DNODE_ENTER(dbi); 2962 return (DB_DNODE(dbi)); 2963 } 2964 2965 void 2966 dmu_buf_dnode_exit(dmu_buf_t *db) 2967 { 2968 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2969 DB_DNODE_EXIT(dbi); 2970 } 2971 2972 static void 2973 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2974 { 2975 /* ASSERT(dmu_tx_is_syncing(tx) */ 2976 ASSERT(MUTEX_HELD(&db->db_mtx)); 2977 2978 if (db->db_blkptr != NULL) 2979 return; 2980 2981 if (db->db_blkid == DMU_SPILL_BLKID) { 2982 db->db_blkptr = &dn->dn_phys->dn_spill; 2983 BP_ZERO(db->db_blkptr); 2984 return; 2985 } 2986 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2987 /* 2988 * This buffer was allocated at a time when there was 2989 * no available blkptrs from the dnode, or it was 2990 * inappropriate to hook it in (i.e., nlevels mis-match). 2991 */ 2992 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2993 ASSERT(db->db_parent == NULL); 2994 db->db_parent = dn->dn_dbuf; 2995 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2996 DBUF_VERIFY(db); 2997 } else { 2998 dmu_buf_impl_t *parent = db->db_parent; 2999 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3000 3001 ASSERT(dn->dn_phys->dn_nlevels > 1); 3002 if (parent == NULL) { 3003 mutex_exit(&db->db_mtx); 3004 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3005 parent = dbuf_hold_level(dn, db->db_level + 1, 3006 db->db_blkid >> epbs, db); 3007 rw_exit(&dn->dn_struct_rwlock); 3008 mutex_enter(&db->db_mtx); 3009 db->db_parent = parent; 3010 } 3011 db->db_blkptr = (blkptr_t *)parent->db.db_data + 3012 (db->db_blkid & ((1ULL << epbs) - 1)); 3013 DBUF_VERIFY(db); 3014 } 3015 } 3016 3017 static void 3018 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3019 { 3020 dmu_buf_impl_t *db = dr->dr_dbuf; 3021 dnode_t *dn; 3022 zio_t *zio; 3023 3024 ASSERT(dmu_tx_is_syncing(tx)); 3025 3026 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3027 3028 mutex_enter(&db->db_mtx); 3029 3030 ASSERT(db->db_level > 0); 3031 DBUF_VERIFY(db); 3032 3033 /* Read the block if it hasn't been read yet. */ 3034 if (db->db_buf == NULL) { 3035 mutex_exit(&db->db_mtx); 3036 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 3037 mutex_enter(&db->db_mtx); 3038 } 3039 ASSERT3U(db->db_state, ==, DB_CACHED); 3040 ASSERT(db->db_buf != NULL); 3041 3042 DB_DNODE_ENTER(db); 3043 dn = DB_DNODE(db); 3044 /* Indirect block size must match what the dnode thinks it is. */ 3045 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3046 dbuf_check_blkptr(dn, db); 3047 DB_DNODE_EXIT(db); 3048 3049 /* Provide the pending dirty record to child dbufs */ 3050 db->db_data_pending = dr; 3051 3052 mutex_exit(&db->db_mtx); 3053 dbuf_write(dr, db->db_buf, tx); 3054 3055 zio = dr->dr_zio; 3056 mutex_enter(&dr->dt.di.dr_mtx); 3057 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 3058 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3059 mutex_exit(&dr->dt.di.dr_mtx); 3060 zio_nowait(zio); 3061 } 3062 3063 static void 3064 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3065 { 3066 arc_buf_t **datap = &dr->dt.dl.dr_data; 3067 dmu_buf_impl_t *db = dr->dr_dbuf; 3068 dnode_t *dn; 3069 objset_t *os; 3070 uint64_t txg = tx->tx_txg; 3071 3072 ASSERT(dmu_tx_is_syncing(tx)); 3073 3074 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3075 3076 mutex_enter(&db->db_mtx); 3077 /* 3078 * To be synced, we must be dirtied. But we 3079 * might have been freed after the dirty. 3080 */ 3081 if (db->db_state == DB_UNCACHED) { 3082 /* This buffer has been freed since it was dirtied */ 3083 ASSERT(db->db.db_data == NULL); 3084 } else if (db->db_state == DB_FILL) { 3085 /* This buffer was freed and is now being re-filled */ 3086 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3087 } else { 3088 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3089 } 3090 DBUF_VERIFY(db); 3091 3092 DB_DNODE_ENTER(db); 3093 dn = DB_DNODE(db); 3094 3095 if (db->db_blkid == DMU_SPILL_BLKID) { 3096 mutex_enter(&dn->dn_mtx); 3097 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 3098 mutex_exit(&dn->dn_mtx); 3099 } 3100 3101 /* 3102 * If this is a bonus buffer, simply copy the bonus data into the 3103 * dnode. It will be written out when the dnode is synced (and it 3104 * will be synced, since it must have been dirty for dbuf_sync to 3105 * be called). 3106 */ 3107 if (db->db_blkid == DMU_BONUS_BLKID) { 3108 dbuf_dirty_record_t **drp; 3109 3110 ASSERT(*datap != NULL); 3111 ASSERT0(db->db_level); 3112 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 3113 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 3114 DB_DNODE_EXIT(db); 3115 3116 if (*datap != db->db.db_data) { 3117 zio_buf_free(*datap, DN_MAX_BONUSLEN); 3118 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 3119 } 3120 db->db_data_pending = NULL; 3121 drp = &db->db_last_dirty; 3122 while (*drp != dr) 3123 drp = &(*drp)->dr_next; 3124 ASSERT(dr->dr_next == NULL); 3125 ASSERT(dr->dr_dbuf == db); 3126 *drp = dr->dr_next; 3127 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3128 ASSERT(db->db_dirtycnt > 0); 3129 db->db_dirtycnt -= 1; 3130 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 3131 return; 3132 } 3133 3134 os = dn->dn_objset; 3135 3136 /* 3137 * This function may have dropped the db_mtx lock allowing a dmu_sync 3138 * operation to sneak in. As a result, we need to ensure that we 3139 * don't check the dr_override_state until we have returned from 3140 * dbuf_check_blkptr. 3141 */ 3142 dbuf_check_blkptr(dn, db); 3143 3144 /* 3145 * If this buffer is in the middle of an immediate write, 3146 * wait for the synchronous IO to complete. 3147 */ 3148 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 3149 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 3150 cv_wait(&db->db_changed, &db->db_mtx); 3151 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 3152 } 3153 3154 if (db->db_state != DB_NOFILL && 3155 dn->dn_object != DMU_META_DNODE_OBJECT && 3156 refcount_count(&db->db_holds) > 1 && 3157 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 3158 *datap == db->db_buf) { 3159 /* 3160 * If this buffer is currently "in use" (i.e., there 3161 * are active holds and db_data still references it), 3162 * then make a copy before we start the write so that 3163 * any modifications from the open txg will not leak 3164 * into this write. 3165 * 3166 * NOTE: this copy does not need to be made for 3167 * objects only modified in the syncing context (e.g. 3168 * DNONE_DNODE blocks). 3169 */ 3170 int psize = arc_buf_size(*datap); 3171 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 3172 enum zio_compress compress_type = arc_get_compression(*datap); 3173 3174 if (compress_type == ZIO_COMPRESS_OFF) { 3175 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 3176 } else { 3177 ASSERT3U(type, ==, ARC_BUFC_DATA); 3178 int lsize = arc_buf_lsize(*datap); 3179 *datap = arc_alloc_compressed_buf(os->os_spa, db, 3180 psize, lsize, compress_type); 3181 } 3182 bcopy(db->db.db_data, (*datap)->b_data, psize); 3183 } 3184 db->db_data_pending = dr; 3185 3186 mutex_exit(&db->db_mtx); 3187 3188 dbuf_write(dr, *datap, tx); 3189 3190 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3191 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 3192 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 3193 DB_DNODE_EXIT(db); 3194 } else { 3195 /* 3196 * Although zio_nowait() does not "wait for an IO", it does 3197 * initiate the IO. If this is an empty write it seems plausible 3198 * that the IO could actually be completed before the nowait 3199 * returns. We need to DB_DNODE_EXIT() first in case 3200 * zio_nowait() invalidates the dbuf. 3201 */ 3202 DB_DNODE_EXIT(db); 3203 zio_nowait(dr->dr_zio); 3204 } 3205 } 3206 3207 void 3208 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 3209 { 3210 dbuf_dirty_record_t *dr; 3211 3212 while (dr = list_head(list)) { 3213 if (dr->dr_zio != NULL) { 3214 /* 3215 * If we find an already initialized zio then we 3216 * are processing the meta-dnode, and we have finished. 3217 * The dbufs for all dnodes are put back on the list 3218 * during processing, so that we can zio_wait() 3219 * these IOs after initiating all child IOs. 3220 */ 3221 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 3222 DMU_META_DNODE_OBJECT); 3223 break; 3224 } 3225 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 3226 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 3227 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 3228 } 3229 list_remove(list, dr); 3230 if (dr->dr_dbuf->db_level > 0) 3231 dbuf_sync_indirect(dr, tx); 3232 else 3233 dbuf_sync_leaf(dr, tx); 3234 } 3235 } 3236 3237 /* ARGSUSED */ 3238 static void 3239 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3240 { 3241 dmu_buf_impl_t *db = vdb; 3242 dnode_t *dn; 3243 blkptr_t *bp = zio->io_bp; 3244 blkptr_t *bp_orig = &zio->io_bp_orig; 3245 spa_t *spa = zio->io_spa; 3246 int64_t delta; 3247 uint64_t fill = 0; 3248 int i; 3249 3250 ASSERT3P(db->db_blkptr, !=, NULL); 3251 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 3252 3253 DB_DNODE_ENTER(db); 3254 dn = DB_DNODE(db); 3255 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 3256 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 3257 zio->io_prev_space_delta = delta; 3258 3259 if (bp->blk_birth != 0) { 3260 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 3261 BP_GET_TYPE(bp) == dn->dn_type) || 3262 (db->db_blkid == DMU_SPILL_BLKID && 3263 BP_GET_TYPE(bp) == dn->dn_bonustype) || 3264 BP_IS_EMBEDDED(bp)); 3265 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 3266 } 3267 3268 mutex_enter(&db->db_mtx); 3269 3270 #ifdef ZFS_DEBUG 3271 if (db->db_blkid == DMU_SPILL_BLKID) { 3272 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3273 ASSERT(!(BP_IS_HOLE(bp)) && 3274 db->db_blkptr == &dn->dn_phys->dn_spill); 3275 } 3276 #endif 3277 3278 if (db->db_level == 0) { 3279 mutex_enter(&dn->dn_mtx); 3280 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 3281 db->db_blkid != DMU_SPILL_BLKID) 3282 dn->dn_phys->dn_maxblkid = db->db_blkid; 3283 mutex_exit(&dn->dn_mtx); 3284 3285 if (dn->dn_type == DMU_OT_DNODE) { 3286 dnode_phys_t *dnp = db->db.db_data; 3287 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 3288 i--, dnp++) { 3289 if (dnp->dn_type != DMU_OT_NONE) 3290 fill++; 3291 } 3292 } else { 3293 if (BP_IS_HOLE(bp)) { 3294 fill = 0; 3295 } else { 3296 fill = 1; 3297 } 3298 } 3299 } else { 3300 blkptr_t *ibp = db->db.db_data; 3301 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3302 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 3303 if (BP_IS_HOLE(ibp)) 3304 continue; 3305 fill += BP_GET_FILL(ibp); 3306 } 3307 } 3308 DB_DNODE_EXIT(db); 3309 3310 if (!BP_IS_EMBEDDED(bp)) 3311 bp->blk_fill = fill; 3312 3313 mutex_exit(&db->db_mtx); 3314 3315 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3316 *db->db_blkptr = *bp; 3317 rw_exit(&dn->dn_struct_rwlock); 3318 } 3319 3320 /* ARGSUSED */ 3321 /* 3322 * This function gets called just prior to running through the compression 3323 * stage of the zio pipeline. If we're an indirect block comprised of only 3324 * holes, then we want this indirect to be compressed away to a hole. In 3325 * order to do that we must zero out any information about the holes that 3326 * this indirect points to prior to before we try to compress it. 3327 */ 3328 static void 3329 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3330 { 3331 dmu_buf_impl_t *db = vdb; 3332 dnode_t *dn; 3333 blkptr_t *bp; 3334 unsigned int epbs, i; 3335 3336 ASSERT3U(db->db_level, >, 0); 3337 DB_DNODE_ENTER(db); 3338 dn = DB_DNODE(db); 3339 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3340 ASSERT3U(epbs, <, 31); 3341 3342 /* Determine if all our children are holes */ 3343 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { 3344 if (!BP_IS_HOLE(bp)) 3345 break; 3346 } 3347 3348 /* 3349 * If all the children are holes, then zero them all out so that 3350 * we may get compressed away. 3351 */ 3352 if (i == 1 << epbs) { 3353 /* 3354 * We only found holes. Grab the rwlock to prevent 3355 * anybody from reading the blocks we're about to 3356 * zero out. 3357 */ 3358 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3359 bzero(db->db.db_data, db->db.db_size); 3360 rw_exit(&dn->dn_struct_rwlock); 3361 } 3362 DB_DNODE_EXIT(db); 3363 } 3364 3365 /* 3366 * The SPA will call this callback several times for each zio - once 3367 * for every physical child i/o (zio->io_phys_children times). This 3368 * allows the DMU to monitor the progress of each logical i/o. For example, 3369 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 3370 * block. There may be a long delay before all copies/fragments are completed, 3371 * so this callback allows us to retire dirty space gradually, as the physical 3372 * i/os complete. 3373 */ 3374 /* ARGSUSED */ 3375 static void 3376 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 3377 { 3378 dmu_buf_impl_t *db = arg; 3379 objset_t *os = db->db_objset; 3380 dsl_pool_t *dp = dmu_objset_pool(os); 3381 dbuf_dirty_record_t *dr; 3382 int delta = 0; 3383 3384 dr = db->db_data_pending; 3385 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 3386 3387 /* 3388 * The callback will be called io_phys_children times. Retire one 3389 * portion of our dirty space each time we are called. Any rounding 3390 * error will be cleaned up by dsl_pool_sync()'s call to 3391 * dsl_pool_undirty_space(). 3392 */ 3393 delta = dr->dr_accounted / zio->io_phys_children; 3394 dsl_pool_undirty_space(dp, delta, zio->io_txg); 3395 } 3396 3397 /* ARGSUSED */ 3398 static void 3399 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 3400 { 3401 dmu_buf_impl_t *db = vdb; 3402 blkptr_t *bp_orig = &zio->io_bp_orig; 3403 blkptr_t *bp = db->db_blkptr; 3404 objset_t *os = db->db_objset; 3405 dmu_tx_t *tx = os->os_synctx; 3406 dbuf_dirty_record_t **drp, *dr; 3407 3408 ASSERT0(zio->io_error); 3409 ASSERT(db->db_blkptr == bp); 3410 3411 /* 3412 * For nopwrites and rewrites we ensure that the bp matches our 3413 * original and bypass all the accounting. 3414 */ 3415 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 3416 ASSERT(BP_EQUAL(bp, bp_orig)); 3417 } else { 3418 dsl_dataset_t *ds = os->os_dsl_dataset; 3419 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 3420 dsl_dataset_block_born(ds, bp, tx); 3421 } 3422 3423 mutex_enter(&db->db_mtx); 3424 3425 DBUF_VERIFY(db); 3426 3427 drp = &db->db_last_dirty; 3428 while ((dr = *drp) != db->db_data_pending) 3429 drp = &dr->dr_next; 3430 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3431 ASSERT(dr->dr_dbuf == db); 3432 ASSERT(dr->dr_next == NULL); 3433 *drp = dr->dr_next; 3434 3435 #ifdef ZFS_DEBUG 3436 if (db->db_blkid == DMU_SPILL_BLKID) { 3437 dnode_t *dn; 3438 3439 DB_DNODE_ENTER(db); 3440 dn = DB_DNODE(db); 3441 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3442 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3443 db->db_blkptr == &dn->dn_phys->dn_spill); 3444 DB_DNODE_EXIT(db); 3445 } 3446 #endif 3447 3448 if (db->db_level == 0) { 3449 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3450 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3451 if (db->db_state != DB_NOFILL) { 3452 if (dr->dt.dl.dr_data != db->db_buf) 3453 arc_buf_destroy(dr->dt.dl.dr_data, db); 3454 } 3455 } else { 3456 dnode_t *dn; 3457 3458 DB_DNODE_ENTER(db); 3459 dn = DB_DNODE(db); 3460 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3461 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3462 if (!BP_IS_HOLE(db->db_blkptr)) { 3463 int epbs = 3464 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3465 ASSERT3U(db->db_blkid, <=, 3466 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3467 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3468 db->db.db_size); 3469 } 3470 DB_DNODE_EXIT(db); 3471 mutex_destroy(&dr->dt.di.dr_mtx); 3472 list_destroy(&dr->dt.di.dr_children); 3473 } 3474 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3475 3476 cv_broadcast(&db->db_changed); 3477 ASSERT(db->db_dirtycnt > 0); 3478 db->db_dirtycnt -= 1; 3479 db->db_data_pending = NULL; 3480 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 3481 } 3482 3483 static void 3484 dbuf_write_nofill_ready(zio_t *zio) 3485 { 3486 dbuf_write_ready(zio, NULL, zio->io_private); 3487 } 3488 3489 static void 3490 dbuf_write_nofill_done(zio_t *zio) 3491 { 3492 dbuf_write_done(zio, NULL, zio->io_private); 3493 } 3494 3495 static void 3496 dbuf_write_override_ready(zio_t *zio) 3497 { 3498 dbuf_dirty_record_t *dr = zio->io_private; 3499 dmu_buf_impl_t *db = dr->dr_dbuf; 3500 3501 dbuf_write_ready(zio, NULL, db); 3502 } 3503 3504 static void 3505 dbuf_write_override_done(zio_t *zio) 3506 { 3507 dbuf_dirty_record_t *dr = zio->io_private; 3508 dmu_buf_impl_t *db = dr->dr_dbuf; 3509 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3510 3511 mutex_enter(&db->db_mtx); 3512 if (!BP_EQUAL(zio->io_bp, obp)) { 3513 if (!BP_IS_HOLE(obp)) 3514 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3515 arc_release(dr->dt.dl.dr_data, db); 3516 } 3517 mutex_exit(&db->db_mtx); 3518 3519 dbuf_write_done(zio, NULL, db); 3520 } 3521 3522 /* Issue I/O to commit a dirty buffer to disk. */ 3523 static void 3524 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 3525 { 3526 dmu_buf_impl_t *db = dr->dr_dbuf; 3527 dnode_t *dn; 3528 objset_t *os; 3529 dmu_buf_impl_t *parent = db->db_parent; 3530 uint64_t txg = tx->tx_txg; 3531 zbookmark_phys_t zb; 3532 zio_prop_t zp; 3533 zio_t *zio; 3534 int wp_flag = 0; 3535 3536 ASSERT(dmu_tx_is_syncing(tx)); 3537 3538 DB_DNODE_ENTER(db); 3539 dn = DB_DNODE(db); 3540 os = dn->dn_objset; 3541 3542 if (db->db_state != DB_NOFILL) { 3543 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 3544 /* 3545 * Private object buffers are released here rather 3546 * than in dbuf_dirty() since they are only modified 3547 * in the syncing context and we don't want the 3548 * overhead of making multiple copies of the data. 3549 */ 3550 if (BP_IS_HOLE(db->db_blkptr)) { 3551 arc_buf_thaw(data); 3552 } else { 3553 dbuf_release_bp(db); 3554 } 3555 } 3556 } 3557 3558 if (parent != dn->dn_dbuf) { 3559 /* Our parent is an indirect block. */ 3560 /* We have a dirty parent that has been scheduled for write. */ 3561 ASSERT(parent && parent->db_data_pending); 3562 /* Our parent's buffer is one level closer to the dnode. */ 3563 ASSERT(db->db_level == parent->db_level-1); 3564 /* 3565 * We're about to modify our parent's db_data by modifying 3566 * our block pointer, so the parent must be released. 3567 */ 3568 ASSERT(arc_released(parent->db_buf)); 3569 zio = parent->db_data_pending->dr_zio; 3570 } else { 3571 /* Our parent is the dnode itself. */ 3572 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 3573 db->db_blkid != DMU_SPILL_BLKID) || 3574 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 3575 if (db->db_blkid != DMU_SPILL_BLKID) 3576 ASSERT3P(db->db_blkptr, ==, 3577 &dn->dn_phys->dn_blkptr[db->db_blkid]); 3578 zio = dn->dn_zio; 3579 } 3580 3581 ASSERT(db->db_level == 0 || data == db->db_buf); 3582 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 3583 ASSERT(zio); 3584 3585 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 3586 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 3587 db->db.db_object, db->db_level, db->db_blkid); 3588 3589 if (db->db_blkid == DMU_SPILL_BLKID) 3590 wp_flag = WP_SPILL; 3591 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 3592 3593 dmu_write_policy(os, dn, db->db_level, wp_flag, 3594 (data != NULL && arc_get_compression(data) != ZIO_COMPRESS_OFF) ? 3595 arc_get_compression(data) : ZIO_COMPRESS_INHERIT, &zp); 3596 DB_DNODE_EXIT(db); 3597 3598 /* 3599 * We copy the blkptr now (rather than when we instantiate the dirty 3600 * record), because its value can change between open context and 3601 * syncing context. We do not need to hold dn_struct_rwlock to read 3602 * db_blkptr because we are in syncing context. 3603 */ 3604 dr->dr_bp_copy = *db->db_blkptr; 3605 3606 if (db->db_level == 0 && 3607 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 3608 /* 3609 * The BP for this block has been provided by open context 3610 * (by dmu_sync() or dmu_buf_write_embedded()). 3611 */ 3612 void *contents = (data != NULL) ? data->b_data : NULL; 3613 3614 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy, 3615 contents, db->db.db_size, db->db.db_size, &zp, 3616 dbuf_write_override_ready, NULL, NULL, 3617 dbuf_write_override_done, 3618 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3619 mutex_enter(&db->db_mtx); 3620 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 3621 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 3622 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 3623 mutex_exit(&db->db_mtx); 3624 } else if (db->db_state == DB_NOFILL) { 3625 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 3626 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 3627 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3628 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 3629 dbuf_write_nofill_ready, NULL, NULL, 3630 dbuf_write_nofill_done, db, 3631 ZIO_PRIORITY_ASYNC_WRITE, 3632 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 3633 } else { 3634 ASSERT(arc_released(data)); 3635 3636 /* 3637 * For indirect blocks, we want to setup the children 3638 * ready callback so that we can properly handle an indirect 3639 * block that only contains holes. 3640 */ 3641 arc_done_func_t *children_ready_cb = NULL; 3642 if (db->db_level != 0) 3643 children_ready_cb = dbuf_write_children_ready; 3644 3645 dr->dr_zio = arc_write(zio, os->os_spa, txg, 3646 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 3647 &zp, dbuf_write_ready, children_ready_cb, 3648 dbuf_write_physdone, dbuf_write_done, db, 3649 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3650 } 3651 } 3652