xref: /illumos-gate/usr/src/uts/common/fs/zfs/dbuf.c (revision 6f0e4dc91b854250fff5c24de2d27aed3375ac69)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51 #include <sys/cityhash.h>
52 #include <sys/spa_impl.h>
53 
54 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
55 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
56 
57 #ifndef __lint
58 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
59     dmu_buf_evict_func_t *evict_func_sync,
60     dmu_buf_evict_func_t *evict_func_async,
61     dmu_buf_t **clear_on_evict_dbufp);
62 #endif /* ! __lint */
63 
64 /*
65  * Global data structures and functions for the dbuf cache.
66  */
67 static kmem_cache_t *dbuf_kmem_cache;
68 static taskq_t *dbu_evict_taskq;
69 
70 static kthread_t *dbuf_cache_evict_thread;
71 static kmutex_t dbuf_evict_lock;
72 static kcondvar_t dbuf_evict_cv;
73 static boolean_t dbuf_evict_thread_exit;
74 
75 /*
76  * There are two dbuf caches; each dbuf can only be in one of them at a time.
77  *
78  * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
79  *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
80  *    that represent the metadata that describes filesystems/snapshots/
81  *    bookmarks/properties/etc. We only evict from this cache when we export a
82  *    pool, to short-circuit as much I/O as possible for all administrative
83  *    commands that need the metadata. There is no eviction policy for this
84  *    cache, because we try to only include types in it which would occupy a
85  *    very small amount of space per object but create a large impact on the
86  *    performance of these commands. Instead, after it reaches a maximum size
87  *    (which should only happen on very small memory systems with a very large
88  *    number of filesystem objects), we stop taking new dbufs into the
89  *    metadata cache, instead putting them in the normal dbuf cache.
90  *
91  * 2. LRU cache of dbufs. The "dbuf cache" maintains a list of dbufs that
92  *    are not currently held but have been recently released. These dbufs
93  *    are not eligible for arc eviction until they are aged out of the cache.
94  *    Dbufs that are aged out of the cache will be immediately destroyed and
95  *    become eligible for arc eviction.
96  *
97  * Dbufs are added to these caches once the last hold is released. If a dbuf is
98  * later accessed and still exists in the dbuf cache, then it will be removed
99  * from the cache and later re-added to the head of the cache.
100  *
101  * If a given dbuf meets the requirements for the metadata cache, it will go
102  * there, otherwise it will be considered for the generic LRU dbuf cache. The
103  * caches and the refcounts tracking their sizes are stored in an array indexed
104  * by those caches' matching enum values (from dbuf_cached_state_t).
105  */
106 typedef struct dbuf_cache {
107 	multilist_t *cache;
108 	zfs_refcount_t size;
109 } dbuf_cache_t;
110 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
111 
112 /* Size limits for the caches */
113 uint64_t dbuf_cache_max_bytes = 0;
114 uint64_t dbuf_metadata_cache_max_bytes = 0;
115 /* Set the default sizes of the caches to log2 fraction of arc size */
116 int dbuf_cache_shift = 5;
117 int dbuf_metadata_cache_shift = 6;
118 
119 /*
120  * For diagnostic purposes, this is incremented whenever we can't add
121  * something to the metadata cache because it's full, and instead put
122  * the data in the regular dbuf cache.
123  */
124 uint64_t dbuf_metadata_cache_overflow;
125 
126 /*
127  * The LRU dbuf cache uses a three-stage eviction policy:
128  *	- A low water marker designates when the dbuf eviction thread
129  *	should stop evicting from the dbuf cache.
130  *	- When we reach the maximum size (aka mid water mark), we
131  *	signal the eviction thread to run.
132  *	- The high water mark indicates when the eviction thread
133  *	is unable to keep up with the incoming load and eviction must
134  *	happen in the context of the calling thread.
135  *
136  * The dbuf cache:
137  *                                                 (max size)
138  *                                      low water   mid water   hi water
139  * +----------------------------------------+----------+----------+
140  * |                                        |          |          |
141  * |                                        |          |          |
142  * |                                        |          |          |
143  * |                                        |          |          |
144  * +----------------------------------------+----------+----------+
145  *                                        stop        signal     evict
146  *                                      evicting     eviction   directly
147  *                                                    thread
148  *
149  * The high and low water marks indicate the operating range for the eviction
150  * thread. The low water mark is, by default, 90% of the total size of the
151  * cache and the high water mark is at 110% (both of these percentages can be
152  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
153  * respectively). The eviction thread will try to ensure that the cache remains
154  * within this range by waking up every second and checking if the cache is
155  * above the low water mark. The thread can also be woken up by callers adding
156  * elements into the cache if the cache is larger than the mid water (i.e max
157  * cache size). Once the eviction thread is woken up and eviction is required,
158  * it will continue evicting buffers until it's able to reduce the cache size
159  * to the low water mark. If the cache size continues to grow and hits the high
160  * water mark, then callers adding elements to the cache will begin to evict
161  * directly from the cache until the cache is no longer above the high water
162  * mark.
163  */
164 
165 /*
166  * The percentage above and below the maximum cache size.
167  */
168 uint_t dbuf_cache_hiwater_pct = 10;
169 uint_t dbuf_cache_lowater_pct = 10;
170 
171 /* ARGSUSED */
172 static int
173 dbuf_cons(void *vdb, void *unused, int kmflag)
174 {
175 	dmu_buf_impl_t *db = vdb;
176 	bzero(db, sizeof (dmu_buf_impl_t));
177 
178 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
179 	rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
180 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
181 	multilist_link_init(&db->db_cache_link);
182 	zfs_refcount_create(&db->db_holds);
183 
184 	return (0);
185 }
186 
187 /* ARGSUSED */
188 static void
189 dbuf_dest(void *vdb, void *unused)
190 {
191 	dmu_buf_impl_t *db = vdb;
192 	mutex_destroy(&db->db_mtx);
193 	rw_destroy(&db->db_rwlock);
194 	cv_destroy(&db->db_changed);
195 	ASSERT(!multilist_link_active(&db->db_cache_link));
196 	zfs_refcount_destroy(&db->db_holds);
197 }
198 
199 /*
200  * dbuf hash table routines
201  */
202 static dbuf_hash_table_t dbuf_hash_table;
203 
204 static uint64_t dbuf_hash_count;
205 
206 /*
207  * We use Cityhash for this. It's fast, and has good hash properties without
208  * requiring any large static buffers.
209  */
210 static uint64_t
211 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
212 {
213 	return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
214 }
215 
216 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
217 	((dbuf)->db.db_object == (obj) &&		\
218 	(dbuf)->db_objset == (os) &&			\
219 	(dbuf)->db_level == (level) &&			\
220 	(dbuf)->db_blkid == (blkid))
221 
222 dmu_buf_impl_t *
223 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
224 {
225 	dbuf_hash_table_t *h = &dbuf_hash_table;
226 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
227 	uint64_t idx = hv & h->hash_table_mask;
228 	dmu_buf_impl_t *db;
229 
230 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
231 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
232 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
233 			mutex_enter(&db->db_mtx);
234 			if (db->db_state != DB_EVICTING) {
235 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
236 				return (db);
237 			}
238 			mutex_exit(&db->db_mtx);
239 		}
240 	}
241 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
242 	return (NULL);
243 }
244 
245 static dmu_buf_impl_t *
246 dbuf_find_bonus(objset_t *os, uint64_t object)
247 {
248 	dnode_t *dn;
249 	dmu_buf_impl_t *db = NULL;
250 
251 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
252 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
253 		if (dn->dn_bonus != NULL) {
254 			db = dn->dn_bonus;
255 			mutex_enter(&db->db_mtx);
256 		}
257 		rw_exit(&dn->dn_struct_rwlock);
258 		dnode_rele(dn, FTAG);
259 	}
260 	return (db);
261 }
262 
263 /*
264  * Insert an entry into the hash table.  If there is already an element
265  * equal to elem in the hash table, then the already existing element
266  * will be returned and the new element will not be inserted.
267  * Otherwise returns NULL.
268  */
269 static dmu_buf_impl_t *
270 dbuf_hash_insert(dmu_buf_impl_t *db)
271 {
272 	dbuf_hash_table_t *h = &dbuf_hash_table;
273 	objset_t *os = db->db_objset;
274 	uint64_t obj = db->db.db_object;
275 	int level = db->db_level;
276 	uint64_t blkid = db->db_blkid;
277 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
278 	uint64_t idx = hv & h->hash_table_mask;
279 	dmu_buf_impl_t *dbf;
280 
281 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
282 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
283 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
284 			mutex_enter(&dbf->db_mtx);
285 			if (dbf->db_state != DB_EVICTING) {
286 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
287 				return (dbf);
288 			}
289 			mutex_exit(&dbf->db_mtx);
290 		}
291 	}
292 
293 	mutex_enter(&db->db_mtx);
294 	db->db_hash_next = h->hash_table[idx];
295 	h->hash_table[idx] = db;
296 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
297 	atomic_inc_64(&dbuf_hash_count);
298 
299 	return (NULL);
300 }
301 
302 /*
303  * Remove an entry from the hash table.  It must be in the EVICTING state.
304  */
305 static void
306 dbuf_hash_remove(dmu_buf_impl_t *db)
307 {
308 	dbuf_hash_table_t *h = &dbuf_hash_table;
309 	uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
310 	    db->db_level, db->db_blkid);
311 	uint64_t idx = hv & h->hash_table_mask;
312 	dmu_buf_impl_t *dbf, **dbp;
313 
314 	/*
315 	 * We mustn't hold db_mtx to maintain lock ordering:
316 	 * DBUF_HASH_MUTEX > db_mtx.
317 	 */
318 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
319 	ASSERT(db->db_state == DB_EVICTING);
320 	ASSERT(!MUTEX_HELD(&db->db_mtx));
321 
322 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
323 	dbp = &h->hash_table[idx];
324 	while ((dbf = *dbp) != db) {
325 		dbp = &dbf->db_hash_next;
326 		ASSERT(dbf != NULL);
327 	}
328 	*dbp = db->db_hash_next;
329 	db->db_hash_next = NULL;
330 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
331 	atomic_dec_64(&dbuf_hash_count);
332 }
333 
334 typedef enum {
335 	DBVU_EVICTING,
336 	DBVU_NOT_EVICTING
337 } dbvu_verify_type_t;
338 
339 static void
340 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
341 {
342 #ifdef ZFS_DEBUG
343 	int64_t holds;
344 
345 	if (db->db_user == NULL)
346 		return;
347 
348 	/* Only data blocks support the attachment of user data. */
349 	ASSERT(db->db_level == 0);
350 
351 	/* Clients must resolve a dbuf before attaching user data. */
352 	ASSERT(db->db.db_data != NULL);
353 	ASSERT3U(db->db_state, ==, DB_CACHED);
354 
355 	holds = zfs_refcount_count(&db->db_holds);
356 	if (verify_type == DBVU_EVICTING) {
357 		/*
358 		 * Immediate eviction occurs when holds == dirtycnt.
359 		 * For normal eviction buffers, holds is zero on
360 		 * eviction, except when dbuf_fix_old_data() calls
361 		 * dbuf_clear_data().  However, the hold count can grow
362 		 * during eviction even though db_mtx is held (see
363 		 * dmu_bonus_hold() for an example), so we can only
364 		 * test the generic invariant that holds >= dirtycnt.
365 		 */
366 		ASSERT3U(holds, >=, db->db_dirtycnt);
367 	} else {
368 		if (db->db_user_immediate_evict == TRUE)
369 			ASSERT3U(holds, >=, db->db_dirtycnt);
370 		else
371 			ASSERT3U(holds, >, 0);
372 	}
373 #endif
374 }
375 
376 static void
377 dbuf_evict_user(dmu_buf_impl_t *db)
378 {
379 	dmu_buf_user_t *dbu = db->db_user;
380 
381 	ASSERT(MUTEX_HELD(&db->db_mtx));
382 
383 	if (dbu == NULL)
384 		return;
385 
386 	dbuf_verify_user(db, DBVU_EVICTING);
387 	db->db_user = NULL;
388 
389 #ifdef ZFS_DEBUG
390 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
391 		*dbu->dbu_clear_on_evict_dbufp = NULL;
392 #endif
393 
394 	/*
395 	 * There are two eviction callbacks - one that we call synchronously
396 	 * and one that we invoke via a taskq.  The async one is useful for
397 	 * avoiding lock order reversals and limiting stack depth.
398 	 *
399 	 * Note that if we have a sync callback but no async callback,
400 	 * it's likely that the sync callback will free the structure
401 	 * containing the dbu.  In that case we need to take care to not
402 	 * dereference dbu after calling the sync evict func.
403 	 */
404 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
405 
406 	if (dbu->dbu_evict_func_sync != NULL)
407 		dbu->dbu_evict_func_sync(dbu);
408 
409 	if (has_async) {
410 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
411 		    dbu, 0, &dbu->dbu_tqent);
412 	}
413 }
414 
415 boolean_t
416 dbuf_is_metadata(dmu_buf_impl_t *db)
417 {
418 	if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
419 		return (B_TRUE);
420 	} else {
421 		boolean_t is_metadata;
422 
423 		DB_DNODE_ENTER(db);
424 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
425 		DB_DNODE_EXIT(db);
426 
427 		return (is_metadata);
428 	}
429 }
430 
431 /*
432  * This returns whether this dbuf should be stored in the metadata cache, which
433  * is based on whether it's from one of the dnode types that store data related
434  * to traversing dataset hierarchies.
435  */
436 static boolean_t
437 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
438 {
439 	DB_DNODE_ENTER(db);
440 	dmu_object_type_t type = DB_DNODE(db)->dn_type;
441 	DB_DNODE_EXIT(db);
442 
443 	/* Check if this dbuf is one of the types we care about */
444 	if (DMU_OT_IS_METADATA_CACHED(type)) {
445 		/* If we hit this, then we set something up wrong in dmu_ot */
446 		ASSERT(DMU_OT_IS_METADATA(type));
447 
448 		/*
449 		 * Sanity check for small-memory systems: don't allocate too
450 		 * much memory for this purpose.
451 		 */
452 		if (zfs_refcount_count(
453 		    &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
454 		    dbuf_metadata_cache_max_bytes) {
455 			dbuf_metadata_cache_overflow++;
456 			DTRACE_PROBE1(dbuf__metadata__cache__overflow,
457 			    dmu_buf_impl_t *, db);
458 			return (B_FALSE);
459 		}
460 
461 		return (B_TRUE);
462 	}
463 
464 	return (B_FALSE);
465 }
466 
467 /*
468  * This function *must* return indices evenly distributed between all
469  * sublists of the multilist. This is needed due to how the dbuf eviction
470  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
471  * distributed between all sublists and uses this assumption when
472  * deciding which sublist to evict from and how much to evict from it.
473  */
474 unsigned int
475 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
476 {
477 	dmu_buf_impl_t *db = obj;
478 
479 	/*
480 	 * The assumption here, is the hash value for a given
481 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
482 	 * (i.e. it's objset, object, level and blkid fields don't change).
483 	 * Thus, we don't need to store the dbuf's sublist index
484 	 * on insertion, as this index can be recalculated on removal.
485 	 *
486 	 * Also, the low order bits of the hash value are thought to be
487 	 * distributed evenly. Otherwise, in the case that the multilist
488 	 * has a power of two number of sublists, each sublists' usage
489 	 * would not be evenly distributed.
490 	 */
491 	return (dbuf_hash(db->db_objset, db->db.db_object,
492 	    db->db_level, db->db_blkid) %
493 	    multilist_get_num_sublists(ml));
494 }
495 
496 static inline boolean_t
497 dbuf_cache_above_hiwater(void)
498 {
499 	uint64_t dbuf_cache_hiwater_bytes =
500 	    (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
501 
502 	return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
503 	    dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
504 }
505 
506 static inline boolean_t
507 dbuf_cache_above_lowater(void)
508 {
509 	uint64_t dbuf_cache_lowater_bytes =
510 	    (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
511 
512 	return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
513 	    dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
514 }
515 
516 /*
517  * Evict the oldest eligible dbuf from the dbuf cache.
518  */
519 static void
520 dbuf_evict_one(void)
521 {
522 	int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
523 	multilist_sublist_t *mls = multilist_sublist_lock(
524 	    dbuf_caches[DB_DBUF_CACHE].cache, idx);
525 
526 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
527 
528 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
529 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
530 		db = multilist_sublist_prev(mls, db);
531 	}
532 
533 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
534 	    multilist_sublist_t *, mls);
535 
536 	if (db != NULL) {
537 		multilist_sublist_remove(mls, db);
538 		multilist_sublist_unlock(mls);
539 		(void) zfs_refcount_remove_many(
540 		    &dbuf_caches[DB_DBUF_CACHE].size,
541 		    db->db.db_size, db);
542 		ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
543 		db->db_caching_status = DB_NO_CACHE;
544 		dbuf_destroy(db);
545 	} else {
546 		multilist_sublist_unlock(mls);
547 	}
548 }
549 
550 /*
551  * The dbuf evict thread is responsible for aging out dbufs from the
552  * cache. Once the cache has reached it's maximum size, dbufs are removed
553  * and destroyed. The eviction thread will continue running until the size
554  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
555  * out of the cache it is destroyed and becomes eligible for arc eviction.
556  */
557 /* ARGSUSED */
558 static void
559 dbuf_evict_thread(void *unused)
560 {
561 	callb_cpr_t cpr;
562 
563 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
564 
565 	mutex_enter(&dbuf_evict_lock);
566 	while (!dbuf_evict_thread_exit) {
567 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
568 			CALLB_CPR_SAFE_BEGIN(&cpr);
569 			(void) cv_timedwait_hires(&dbuf_evict_cv,
570 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
571 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
572 		}
573 		mutex_exit(&dbuf_evict_lock);
574 
575 		/*
576 		 * Keep evicting as long as we're above the low water mark
577 		 * for the cache. We do this without holding the locks to
578 		 * minimize lock contention.
579 		 */
580 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
581 			dbuf_evict_one();
582 		}
583 
584 		mutex_enter(&dbuf_evict_lock);
585 	}
586 
587 	dbuf_evict_thread_exit = B_FALSE;
588 	cv_broadcast(&dbuf_evict_cv);
589 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
590 	thread_exit();
591 }
592 
593 /*
594  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
595  * If the dbuf cache is at its high water mark, then evict a dbuf from the
596  * dbuf cache using the callers context.
597  */
598 static void
599 dbuf_evict_notify(void)
600 {
601 	/*
602 	 * We check if we should evict without holding the dbuf_evict_lock,
603 	 * because it's OK to occasionally make the wrong decision here,
604 	 * and grabbing the lock results in massive lock contention.
605 	 */
606 	if (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
607 	    dbuf_cache_max_bytes) {
608 		if (dbuf_cache_above_hiwater())
609 			dbuf_evict_one();
610 		cv_signal(&dbuf_evict_cv);
611 	}
612 }
613 
614 void
615 dbuf_init(void)
616 {
617 	uint64_t hsize = 1ULL << 16;
618 	dbuf_hash_table_t *h = &dbuf_hash_table;
619 	int i;
620 
621 	/*
622 	 * The hash table is big enough to fill all of physical memory
623 	 * with an average 4K block size.  The table will take up
624 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
625 	 */
626 	while (hsize * 4096 < physmem * PAGESIZE)
627 		hsize <<= 1;
628 
629 retry:
630 	h->hash_table_mask = hsize - 1;
631 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
632 	if (h->hash_table == NULL) {
633 		/* XXX - we should really return an error instead of assert */
634 		ASSERT(hsize > (1ULL << 10));
635 		hsize >>= 1;
636 		goto retry;
637 	}
638 
639 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
640 	    sizeof (dmu_buf_impl_t),
641 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
642 
643 	for (i = 0; i < DBUF_MUTEXES; i++)
644 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
645 
646 	/*
647 	 * Setup the parameters for the dbuf caches. We set the sizes of the
648 	 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
649 	 * of the size of the ARC, respectively. If the values are set in
650 	 * /etc/system and they're not greater than the size of the ARC, then
651 	 * we honor that value.
652 	 */
653 	if (dbuf_cache_max_bytes == 0 ||
654 	    dbuf_cache_max_bytes >= arc_max_bytes())  {
655 		dbuf_cache_max_bytes = arc_max_bytes() >> dbuf_cache_shift;
656 	}
657 	if (dbuf_metadata_cache_max_bytes == 0 ||
658 	    dbuf_metadata_cache_max_bytes >= arc_max_bytes()) {
659 		dbuf_metadata_cache_max_bytes =
660 		    arc_max_bytes() >> dbuf_metadata_cache_shift;
661 	}
662 
663 	/*
664 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
665 	 * configuration is not required.
666 	 */
667 	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
668 
669 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
670 		dbuf_caches[dcs].cache =
671 		    multilist_create(sizeof (dmu_buf_impl_t),
672 		    offsetof(dmu_buf_impl_t, db_cache_link),
673 		    dbuf_cache_multilist_index_func);
674 		zfs_refcount_create(&dbuf_caches[dcs].size);
675 	}
676 
677 	dbuf_evict_thread_exit = B_FALSE;
678 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
679 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
680 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
681 	    NULL, 0, &p0, TS_RUN, minclsyspri);
682 }
683 
684 void
685 dbuf_fini(void)
686 {
687 	dbuf_hash_table_t *h = &dbuf_hash_table;
688 	int i;
689 
690 	for (i = 0; i < DBUF_MUTEXES; i++)
691 		mutex_destroy(&h->hash_mutexes[i]);
692 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
693 	kmem_cache_destroy(dbuf_kmem_cache);
694 	taskq_destroy(dbu_evict_taskq);
695 
696 	mutex_enter(&dbuf_evict_lock);
697 	dbuf_evict_thread_exit = B_TRUE;
698 	while (dbuf_evict_thread_exit) {
699 		cv_signal(&dbuf_evict_cv);
700 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
701 	}
702 	mutex_exit(&dbuf_evict_lock);
703 
704 	mutex_destroy(&dbuf_evict_lock);
705 	cv_destroy(&dbuf_evict_cv);
706 
707 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
708 		zfs_refcount_destroy(&dbuf_caches[dcs].size);
709 		multilist_destroy(dbuf_caches[dcs].cache);
710 	}
711 }
712 
713 /*
714  * Other stuff.
715  */
716 
717 #ifdef ZFS_DEBUG
718 static void
719 dbuf_verify(dmu_buf_impl_t *db)
720 {
721 	dnode_t *dn;
722 	dbuf_dirty_record_t *dr;
723 
724 	ASSERT(MUTEX_HELD(&db->db_mtx));
725 
726 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
727 		return;
728 
729 	ASSERT(db->db_objset != NULL);
730 	DB_DNODE_ENTER(db);
731 	dn = DB_DNODE(db);
732 	if (dn == NULL) {
733 		ASSERT(db->db_parent == NULL);
734 		ASSERT(db->db_blkptr == NULL);
735 	} else {
736 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
737 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
738 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
739 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
740 		    db->db_blkid == DMU_SPILL_BLKID ||
741 		    !avl_is_empty(&dn->dn_dbufs));
742 	}
743 	if (db->db_blkid == DMU_BONUS_BLKID) {
744 		ASSERT(dn != NULL);
745 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
746 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
747 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
748 		ASSERT(dn != NULL);
749 		ASSERT0(db->db.db_offset);
750 	} else {
751 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
752 	}
753 
754 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
755 		ASSERT(dr->dr_dbuf == db);
756 
757 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
758 		ASSERT(dr->dr_dbuf == db);
759 
760 	/*
761 	 * We can't assert that db_size matches dn_datablksz because it
762 	 * can be momentarily different when another thread is doing
763 	 * dnode_set_blksz().
764 	 */
765 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
766 		dr = db->db_data_pending;
767 		/*
768 		 * It should only be modified in syncing context, so
769 		 * make sure we only have one copy of the data.
770 		 */
771 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
772 	}
773 
774 	/* verify db->db_blkptr */
775 	if (db->db_blkptr) {
776 		if (db->db_parent == dn->dn_dbuf) {
777 			/* db is pointed to by the dnode */
778 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
779 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
780 				ASSERT(db->db_parent == NULL);
781 			else
782 				ASSERT(db->db_parent != NULL);
783 			if (db->db_blkid != DMU_SPILL_BLKID)
784 				ASSERT3P(db->db_blkptr, ==,
785 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
786 		} else {
787 			/* db is pointed to by an indirect block */
788 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
789 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
790 			ASSERT3U(db->db_parent->db.db_object, ==,
791 			    db->db.db_object);
792 			/*
793 			 * dnode_grow_indblksz() can make this fail if we don't
794 			 * have the parent's rwlock.  XXX indblksz no longer
795 			 * grows.  safe to do this now?
796 			 */
797 			if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
798 				ASSERT3P(db->db_blkptr, ==,
799 				    ((blkptr_t *)db->db_parent->db.db_data +
800 				    db->db_blkid % epb));
801 			}
802 		}
803 	}
804 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
805 	    (db->db_buf == NULL || db->db_buf->b_data) &&
806 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
807 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
808 		/*
809 		 * If the blkptr isn't set but they have nonzero data,
810 		 * it had better be dirty, otherwise we'll lose that
811 		 * data when we evict this buffer.
812 		 *
813 		 * There is an exception to this rule for indirect blocks; in
814 		 * this case, if the indirect block is a hole, we fill in a few
815 		 * fields on each of the child blocks (importantly, birth time)
816 		 * to prevent hole birth times from being lost when you
817 		 * partially fill in a hole.
818 		 */
819 		if (db->db_dirtycnt == 0) {
820 			if (db->db_level == 0) {
821 				uint64_t *buf = db->db.db_data;
822 				int i;
823 
824 				for (i = 0; i < db->db.db_size >> 3; i++) {
825 					ASSERT(buf[i] == 0);
826 				}
827 			} else {
828 				blkptr_t *bps = db->db.db_data;
829 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
830 				    db->db.db_size);
831 				/*
832 				 * We want to verify that all the blkptrs in the
833 				 * indirect block are holes, but we may have
834 				 * automatically set up a few fields for them.
835 				 * We iterate through each blkptr and verify
836 				 * they only have those fields set.
837 				 */
838 				for (int i = 0;
839 				    i < db->db.db_size / sizeof (blkptr_t);
840 				    i++) {
841 					blkptr_t *bp = &bps[i];
842 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
843 					    &bp->blk_cksum));
844 					ASSERT(
845 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
846 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
847 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
848 					ASSERT0(bp->blk_fill);
849 					ASSERT0(bp->blk_pad[0]);
850 					ASSERT0(bp->blk_pad[1]);
851 					ASSERT(!BP_IS_EMBEDDED(bp));
852 					ASSERT(BP_IS_HOLE(bp));
853 					ASSERT0(bp->blk_phys_birth);
854 				}
855 			}
856 		}
857 	}
858 	DB_DNODE_EXIT(db);
859 }
860 #endif
861 
862 static void
863 dbuf_clear_data(dmu_buf_impl_t *db)
864 {
865 	ASSERT(MUTEX_HELD(&db->db_mtx));
866 	dbuf_evict_user(db);
867 	ASSERT3P(db->db_buf, ==, NULL);
868 	db->db.db_data = NULL;
869 	if (db->db_state != DB_NOFILL)
870 		db->db_state = DB_UNCACHED;
871 }
872 
873 /*
874  * This function is used to lock the parent of the provided dbuf. This should be
875  * used when modifying or reading db_blkptr.
876  */
877 db_lock_type_t
878 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag)
879 {
880 	enum db_lock_type ret = DLT_NONE;
881 	if (db->db_parent != NULL) {
882 		rw_enter(&db->db_parent->db_rwlock, rw);
883 		ret = DLT_PARENT;
884 	} else if (dmu_objset_ds(db->db_objset) != NULL) {
885 		rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
886 		    tag);
887 		ret = DLT_OBJSET;
888 	}
889 	/*
890 	 * We only return a DLT_NONE lock when it's the top-most indirect block
891 	 * of the meta-dnode of the MOS.
892 	 */
893 	return (ret);
894 }
895 
896 /*
897  * We need to pass the lock type in because it's possible that the block will
898  * move from being the topmost indirect block in a dnode (and thus, have no
899  * parent) to not the top-most via an indirection increase. This would cause a
900  * panic if we didn't pass the lock type in.
901  */
902 void
903 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag)
904 {
905 	if (type == DLT_PARENT)
906 		rw_exit(&db->db_parent->db_rwlock);
907 	else if (type == DLT_OBJSET)
908 		rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
909 }
910 
911 static void
912 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
913 {
914 	ASSERT(MUTEX_HELD(&db->db_mtx));
915 	ASSERT(buf != NULL);
916 
917 	db->db_buf = buf;
918 	ASSERT(buf->b_data != NULL);
919 	db->db.db_data = buf->b_data;
920 }
921 
922 /*
923  * Loan out an arc_buf for read.  Return the loaned arc_buf.
924  */
925 arc_buf_t *
926 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
927 {
928 	arc_buf_t *abuf;
929 
930 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
931 	mutex_enter(&db->db_mtx);
932 	if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
933 		int blksz = db->db.db_size;
934 		spa_t *spa = db->db_objset->os_spa;
935 
936 		mutex_exit(&db->db_mtx);
937 		abuf = arc_loan_buf(spa, B_FALSE, blksz);
938 		bcopy(db->db.db_data, abuf->b_data, blksz);
939 	} else {
940 		abuf = db->db_buf;
941 		arc_loan_inuse_buf(abuf, db);
942 		db->db_buf = NULL;
943 		dbuf_clear_data(db);
944 		mutex_exit(&db->db_mtx);
945 	}
946 	return (abuf);
947 }
948 
949 /*
950  * Calculate which level n block references the data at the level 0 offset
951  * provided.
952  */
953 uint64_t
954 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
955 {
956 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
957 		/*
958 		 * The level n blkid is equal to the level 0 blkid divided by
959 		 * the number of level 0s in a level n block.
960 		 *
961 		 * The level 0 blkid is offset >> datablkshift =
962 		 * offset / 2^datablkshift.
963 		 *
964 		 * The number of level 0s in a level n is the number of block
965 		 * pointers in an indirect block, raised to the power of level.
966 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
967 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
968 		 *
969 		 * Thus, the level n blkid is: offset /
970 		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
971 		 * = offset / 2^(datablkshift + level *
972 		 *   (indblkshift - SPA_BLKPTRSHIFT))
973 		 * = offset >> (datablkshift + level *
974 		 *   (indblkshift - SPA_BLKPTRSHIFT))
975 		 */
976 		return (offset >> (dn->dn_datablkshift + level *
977 		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
978 	} else {
979 		ASSERT3U(offset, <, dn->dn_datablksz);
980 		return (0);
981 	}
982 }
983 
984 /* ARGSUSED */
985 static void
986 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
987     arc_buf_t *buf, void *vdb)
988 {
989 	dmu_buf_impl_t *db = vdb;
990 
991 	mutex_enter(&db->db_mtx);
992 	ASSERT3U(db->db_state, ==, DB_READ);
993 	/*
994 	 * All reads are synchronous, so we must have a hold on the dbuf
995 	 */
996 	ASSERT(zfs_refcount_count(&db->db_holds) > 0);
997 	ASSERT(db->db_buf == NULL);
998 	ASSERT(db->db.db_data == NULL);
999 	if (buf == NULL) {
1000 		/* i/o error */
1001 		ASSERT(zio == NULL || zio->io_error != 0);
1002 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1003 		ASSERT3P(db->db_buf, ==, NULL);
1004 		db->db_state = DB_UNCACHED;
1005 	} else if (db->db_level == 0 && db->db_freed_in_flight) {
1006 		/* we were freed in flight; disregard any error */
1007 		ASSERT(zio == NULL || zio->io_error == 0);
1008 		if (buf == NULL) {
1009 			buf = arc_alloc_buf(db->db_objset->os_spa,
1010 			    db, DBUF_GET_BUFC_TYPE(db), db->db.db_size);
1011 		}
1012 		arc_release(buf, db);
1013 		bzero(buf->b_data, db->db.db_size);
1014 		arc_buf_freeze(buf);
1015 		db->db_freed_in_flight = FALSE;
1016 		dbuf_set_data(db, buf);
1017 		db->db_state = DB_CACHED;
1018 	} else if (buf != NULL) {
1019 		/* success */
1020 		ASSERT(zio == NULL || zio->io_error == 0);
1021 		dbuf_set_data(db, buf);
1022 		db->db_state = DB_CACHED;
1023 	}
1024 	cv_broadcast(&db->db_changed);
1025 	dbuf_rele_and_unlock(db, NULL, B_FALSE);
1026 }
1027 
1028 
1029 /*
1030  * This function ensures that, when doing a decrypting read of a block,
1031  * we make sure we have decrypted the dnode associated with it. We must do
1032  * this so that we ensure we are fully authenticating the checksum-of-MACs
1033  * tree from the root of the objset down to this block. Indirect blocks are
1034  * always verified against their secure checksum-of-MACs assuming that the
1035  * dnode containing them is correct. Now that we are doing a decrypting read,
1036  * we can be sure that the key is loaded and verify that assumption. This is
1037  * especially important considering that we always read encrypted dnode
1038  * blocks as raw data (without verifying their MACs) to start, and
1039  * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1040  */
1041 static int
1042 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1043 {
1044 	int err = 0;
1045 	objset_t *os = db->db_objset;
1046 	arc_buf_t *dnode_abuf;
1047 	dnode_t *dn;
1048 	zbookmark_phys_t zb;
1049 
1050 	ASSERT(MUTEX_HELD(&db->db_mtx));
1051 
1052 	if (!os->os_encrypted || os->os_raw_receive ||
1053 	    (flags & DB_RF_NO_DECRYPT) != 0)
1054 		return (0);
1055 
1056 	DB_DNODE_ENTER(db);
1057 	dn = DB_DNODE(db);
1058 	dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1059 
1060 	if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1061 		DB_DNODE_EXIT(db);
1062 		return (0);
1063 	}
1064 
1065 	SET_BOOKMARK(&zb, dmu_objset_id(os),
1066 	    DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1067 	err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1068 
1069 	/*
1070 	 * An error code of EACCES tells us that the key is still not
1071 	 * available. This is ok if we are only reading authenticated
1072 	 * (and therefore non-encrypted) blocks.
1073 	 */
1074 	if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1075 	    !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1076 	    (db->db_blkid == DMU_BONUS_BLKID &&
1077 	    !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1078 		err = 0;
1079 
1080 	DB_DNODE_EXIT(db);
1081 
1082 	return (err);
1083 }
1084 
1085 /*
1086  * Drops db_mtx and the parent lock specified by dblt and tag before
1087  * returning.
1088  */
1089 static int
1090 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1091     db_lock_type_t dblt, void *tag)
1092 {
1093 	dnode_t *dn;
1094 	zbookmark_phys_t zb;
1095 	arc_flags_t aflags = ARC_FLAG_NOWAIT;
1096 	int err, zio_flags = 0;
1097 
1098 	DB_DNODE_ENTER(db);
1099 	dn = DB_DNODE(db);
1100 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1101 	ASSERT(MUTEX_HELD(&db->db_mtx));
1102 	ASSERT(db->db_state == DB_UNCACHED);
1103 	ASSERT(db->db_buf == NULL);
1104 	ASSERT(db->db_parent == NULL ||
1105 	    RW_LOCK_HELD(&db->db_parent->db_rwlock));
1106 
1107 	if (db->db_blkid == DMU_BONUS_BLKID) {
1108 		/*
1109 		 * The bonus length stored in the dnode may be less than
1110 		 * the maximum available space in the bonus buffer.
1111 		 */
1112 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1113 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1114 
1115 		/* if the underlying dnode block is encrypted, decrypt it */
1116 		err = dbuf_read_verify_dnode_crypt(db, flags);
1117 		if (err != 0) {
1118 			DB_DNODE_EXIT(db);
1119 			mutex_exit(&db->db_mtx);
1120 			return (err);
1121 		}
1122 
1123 		ASSERT3U(bonuslen, <=, db->db.db_size);
1124 		db->db.db_data = zio_buf_alloc(max_bonuslen);
1125 		arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1126 		if (bonuslen < max_bonuslen)
1127 			bzero(db->db.db_data, max_bonuslen);
1128 		if (bonuslen)
1129 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1130 		DB_DNODE_EXIT(db);
1131 		db->db_state = DB_CACHED;
1132 		mutex_exit(&db->db_mtx);
1133 		dmu_buf_unlock_parent(db, dblt, tag);
1134 		return (0);
1135 	}
1136 
1137 	/*
1138 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1139 	 * processes the delete record and clears the bp while we are waiting
1140 	 * for the dn_mtx (resulting in a "no" from block_freed).
1141 	 */
1142 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1143 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1144 	    BP_IS_HOLE(db->db_blkptr)))) {
1145 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1146 
1147 		dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1148 		    db->db.db_size));
1149 		bzero(db->db.db_data, db->db.db_size);
1150 
1151 		if (db->db_blkptr != NULL && db->db_level > 0 &&
1152 		    BP_IS_HOLE(db->db_blkptr) &&
1153 		    db->db_blkptr->blk_birth != 0) {
1154 			blkptr_t *bps = db->db.db_data;
1155 			for (int i = 0; i < ((1 <<
1156 			    DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1157 			    i++) {
1158 				blkptr_t *bp = &bps[i];
1159 				ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1160 				    1 << dn->dn_indblkshift);
1161 				BP_SET_LSIZE(bp,
1162 				    BP_GET_LEVEL(db->db_blkptr) == 1 ?
1163 				    dn->dn_datablksz :
1164 				    BP_GET_LSIZE(db->db_blkptr));
1165 				BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1166 				BP_SET_LEVEL(bp,
1167 				    BP_GET_LEVEL(db->db_blkptr) - 1);
1168 				BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1169 			}
1170 		}
1171 		DB_DNODE_EXIT(db);
1172 		db->db_state = DB_CACHED;
1173 		mutex_exit(&db->db_mtx);
1174 		dmu_buf_unlock_parent(db, dblt, tag);
1175 		return (0);
1176 	}
1177 
1178 	SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1179 	    db->db.db_object, db->db_level, db->db_blkid);
1180 
1181 	/*
1182 	 * All bps of an encrypted os should have the encryption bit set.
1183 	 * If this is not true it indicates tampering and we report an error.
1184 	 */
1185 	if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1186 		spa_log_error(db->db_objset->os_spa, &zb);
1187 		zfs_panic_recover("unencrypted block in encrypted "
1188 		    "object set %llu", dmu_objset_id(db->db_objset));
1189 		DB_DNODE_EXIT(db);
1190 		mutex_exit(&db->db_mtx);
1191 		dmu_buf_unlock_parent(db, dblt, tag);
1192 		return (SET_ERROR(EIO));
1193 	}
1194 
1195 	err = dbuf_read_verify_dnode_crypt(db, flags);
1196 	if (err != 0) {
1197 		DB_DNODE_EXIT(db);
1198 		dmu_buf_unlock_parent(db, dblt, tag);
1199 		mutex_exit(&db->db_mtx);
1200 		return (err);
1201 	}
1202 
1203 	DB_DNODE_EXIT(db);
1204 
1205 	db->db_state = DB_READ;
1206 	mutex_exit(&db->db_mtx);
1207 
1208 	if (DBUF_IS_L2CACHEABLE(db))
1209 		aflags |= ARC_FLAG_L2CACHE;
1210 
1211 	dbuf_add_ref(db, NULL);
1212 
1213 	zio_flags = (flags & DB_RF_CANFAIL) ?
1214 	    ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1215 
1216 	if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1217 		zio_flags |= ZIO_FLAG_RAW;
1218 	/*
1219 	 * The zio layer will copy the provided blkptr later, but we need to
1220 	 * do this now so that we can release the parent's rwlock. We have to
1221 	 * do that now so that if dbuf_read_done is called synchronously (on
1222 	 * an l1 cache hit) we don't acquire the db_mtx while holding the
1223 	 * parent's rwlock, which would be a lock ordering violation.
1224 	 */
1225 	blkptr_t bp = *db->db_blkptr;
1226 	dmu_buf_unlock_parent(db, dblt, tag);
1227 	(void) arc_read(zio, db->db_objset->os_spa, &bp,
1228 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1229 	    &aflags, &zb);
1230 	return (err);
1231 }
1232 
1233 /*
1234  * This is our just-in-time copy function.  It makes a copy of buffers that
1235  * have been modified in a previous transaction group before we access them in
1236  * the current active group.
1237  *
1238  * This function is used in three places: when we are dirtying a buffer for the
1239  * first time in a txg, when we are freeing a range in a dnode that includes
1240  * this buffer, and when we are accessing a buffer which was received compressed
1241  * and later referenced in a WRITE_BYREF record.
1242  *
1243  * Note that when we are called from dbuf_free_range() we do not put a hold on
1244  * the buffer, we just traverse the active dbuf list for the dnode.
1245  */
1246 static void
1247 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1248 {
1249 	dbuf_dirty_record_t *dr = db->db_last_dirty;
1250 
1251 	ASSERT(MUTEX_HELD(&db->db_mtx));
1252 	ASSERT(db->db.db_data != NULL);
1253 	ASSERT(db->db_level == 0);
1254 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1255 
1256 	if (dr == NULL ||
1257 	    (dr->dt.dl.dr_data !=
1258 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1259 		return;
1260 
1261 	/*
1262 	 * If the last dirty record for this dbuf has not yet synced
1263 	 * and its referencing the dbuf data, either:
1264 	 *	reset the reference to point to a new copy,
1265 	 * or (if there a no active holders)
1266 	 *	just null out the current db_data pointer.
1267 	 */
1268 	ASSERT3U(dr->dr_txg, >=, txg - 2);
1269 	if (db->db_blkid == DMU_BONUS_BLKID) {
1270 		/* Note that the data bufs here are zio_bufs */
1271 		dnode_t *dn = DB_DNODE(db);
1272 		int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1273 		dr->dt.dl.dr_data = zio_buf_alloc(bonuslen);
1274 		arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1275 		bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1276 	} else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1277 		dnode_t *dn = DB_DNODE(db);
1278 		int size = arc_buf_size(db->db_buf);
1279 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1280 		spa_t *spa = db->db_objset->os_spa;
1281 		enum zio_compress compress_type =
1282 		    arc_get_compression(db->db_buf);
1283 
1284 		if (arc_is_encrypted(db->db_buf)) {
1285 			boolean_t byteorder;
1286 			uint8_t salt[ZIO_DATA_SALT_LEN];
1287 			uint8_t iv[ZIO_DATA_IV_LEN];
1288 			uint8_t mac[ZIO_DATA_MAC_LEN];
1289 
1290 			arc_get_raw_params(db->db_buf, &byteorder, salt,
1291 			    iv, mac);
1292 			dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1293 			    dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1294 			    mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1295 			    compress_type);
1296 		} else if (compress_type != ZIO_COMPRESS_OFF) {
1297 			ASSERT3U(type, ==, ARC_BUFC_DATA);
1298 			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1299 			    size, arc_buf_lsize(db->db_buf), compress_type);
1300 		} else {
1301 			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1302 		}
1303 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1304 	} else {
1305 		db->db_buf = NULL;
1306 		dbuf_clear_data(db);
1307 	}
1308 }
1309 
1310 int
1311 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1312 {
1313 	int err = 0;
1314 	boolean_t prefetch;
1315 	dnode_t *dn;
1316 
1317 	/*
1318 	 * We don't have to hold the mutex to check db_state because it
1319 	 * can't be freed while we have a hold on the buffer.
1320 	 */
1321 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1322 
1323 	if (db->db_state == DB_NOFILL)
1324 		return (SET_ERROR(EIO));
1325 
1326 	DB_DNODE_ENTER(db);
1327 	dn = DB_DNODE(db);
1328 
1329 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1330 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1331 	    DBUF_IS_CACHEABLE(db);
1332 
1333 	mutex_enter(&db->db_mtx);
1334 	if (db->db_state == DB_CACHED) {
1335 		spa_t *spa = dn->dn_objset->os_spa;
1336 
1337 		/*
1338 		 * Ensure that this block's dnode has been decrypted if
1339 		 * the caller has requested decrypted data.
1340 		 */
1341 		err = dbuf_read_verify_dnode_crypt(db, flags);
1342 
1343 		/*
1344 		 * If the arc buf is compressed or encrypted and the caller
1345 		 * requested uncompressed data, we need to untransform it
1346 		 * before returning. We also call arc_untransform() on any
1347 		 * unauthenticated blocks, which will verify their MAC if
1348 		 * the key is now available.
1349 		 */
1350 		if (err == 0 && db->db_buf != NULL &&
1351 		    (flags & DB_RF_NO_DECRYPT) == 0 &&
1352 		    (arc_is_encrypted(db->db_buf) ||
1353 		    arc_is_unauthenticated(db->db_buf) ||
1354 		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1355 			zbookmark_phys_t zb;
1356 
1357 			SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1358 			    db->db.db_object, db->db_level, db->db_blkid);
1359 			dbuf_fix_old_data(db, spa_syncing_txg(spa));
1360 			err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1361 			dbuf_set_data(db, db->db_buf);
1362 		}
1363 		mutex_exit(&db->db_mtx);
1364 		if (err == 0 && prefetch) {
1365 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1366 			    flags & DB_RF_HAVESTRUCT);
1367 		}
1368 		DB_DNODE_EXIT(db);
1369 	} else if (db->db_state == DB_UNCACHED) {
1370 		spa_t *spa = dn->dn_objset->os_spa;
1371 		boolean_t need_wait = B_FALSE;
1372 
1373 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1374 
1375 		if (zio == NULL &&
1376 		    db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1377 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1378 			need_wait = B_TRUE;
1379 		}
1380 		err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1381 		/*
1382 		 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1383 		 * for us
1384 		 */
1385 		if (!err && prefetch) {
1386 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1387 			    flags & DB_RF_HAVESTRUCT);
1388 		}
1389 
1390 		DB_DNODE_EXIT(db);
1391 
1392 		if (!err && need_wait)
1393 			err = zio_wait(zio);
1394 	} else {
1395 		/*
1396 		 * Another reader came in while the dbuf was in flight
1397 		 * between UNCACHED and CACHED.  Either a writer will finish
1398 		 * writing the buffer (sending the dbuf to CACHED) or the
1399 		 * first reader's request will reach the read_done callback
1400 		 * and send the dbuf to CACHED.  Otherwise, a failure
1401 		 * occurred and the dbuf went to UNCACHED.
1402 		 */
1403 		mutex_exit(&db->db_mtx);
1404 		if (prefetch) {
1405 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1406 			    flags & DB_RF_HAVESTRUCT);
1407 		}
1408 		DB_DNODE_EXIT(db);
1409 
1410 		/* Skip the wait per the caller's request. */
1411 		mutex_enter(&db->db_mtx);
1412 		if ((flags & DB_RF_NEVERWAIT) == 0) {
1413 			while (db->db_state == DB_READ ||
1414 			    db->db_state == DB_FILL) {
1415 				ASSERT(db->db_state == DB_READ ||
1416 				    (flags & DB_RF_HAVESTRUCT) == 0);
1417 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1418 				    db, zio_t *, zio);
1419 				cv_wait(&db->db_changed, &db->db_mtx);
1420 			}
1421 			if (db->db_state == DB_UNCACHED)
1422 				err = SET_ERROR(EIO);
1423 		}
1424 		mutex_exit(&db->db_mtx);
1425 	}
1426 
1427 	return (err);
1428 }
1429 
1430 static void
1431 dbuf_noread(dmu_buf_impl_t *db)
1432 {
1433 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1434 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1435 	mutex_enter(&db->db_mtx);
1436 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1437 		cv_wait(&db->db_changed, &db->db_mtx);
1438 	if (db->db_state == DB_UNCACHED) {
1439 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1440 		spa_t *spa = db->db_objset->os_spa;
1441 
1442 		ASSERT(db->db_buf == NULL);
1443 		ASSERT(db->db.db_data == NULL);
1444 		dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1445 		db->db_state = DB_FILL;
1446 	} else if (db->db_state == DB_NOFILL) {
1447 		dbuf_clear_data(db);
1448 	} else {
1449 		ASSERT3U(db->db_state, ==, DB_CACHED);
1450 	}
1451 	mutex_exit(&db->db_mtx);
1452 }
1453 
1454 void
1455 dbuf_unoverride(dbuf_dirty_record_t *dr)
1456 {
1457 	dmu_buf_impl_t *db = dr->dr_dbuf;
1458 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1459 	uint64_t txg = dr->dr_txg;
1460 
1461 	ASSERT(MUTEX_HELD(&db->db_mtx));
1462 	/*
1463 	 * This assert is valid because dmu_sync() expects to be called by
1464 	 * a zilog's get_data while holding a range lock.  This call only
1465 	 * comes from dbuf_dirty() callers who must also hold a range lock.
1466 	 */
1467 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1468 	ASSERT(db->db_level == 0);
1469 
1470 	if (db->db_blkid == DMU_BONUS_BLKID ||
1471 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1472 		return;
1473 
1474 	ASSERT(db->db_data_pending != dr);
1475 
1476 	/* free this block */
1477 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1478 		zio_free(db->db_objset->os_spa, txg, bp);
1479 
1480 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1481 	dr->dt.dl.dr_nopwrite = B_FALSE;
1482 	dr->dt.dl.dr_has_raw_params = B_FALSE;
1483 
1484 	/*
1485 	 * Release the already-written buffer, so we leave it in
1486 	 * a consistent dirty state.  Note that all callers are
1487 	 * modifying the buffer, so they will immediately do
1488 	 * another (redundant) arc_release().  Therefore, leave
1489 	 * the buf thawed to save the effort of freezing &
1490 	 * immediately re-thawing it.
1491 	 */
1492 	arc_release(dr->dt.dl.dr_data, db);
1493 }
1494 
1495 /*
1496  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1497  * data blocks in the free range, so that any future readers will find
1498  * empty blocks.
1499  */
1500 void
1501 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1502     dmu_tx_t *tx)
1503 {
1504 	dmu_buf_impl_t db_search;
1505 	dmu_buf_impl_t *db, *db_next;
1506 	uint64_t txg = tx->tx_txg;
1507 	avl_index_t where;
1508 
1509 	if (end_blkid > dn->dn_maxblkid &&
1510 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1511 		end_blkid = dn->dn_maxblkid;
1512 	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1513 
1514 	db_search.db_level = 0;
1515 	db_search.db_blkid = start_blkid;
1516 	db_search.db_state = DB_SEARCH;
1517 
1518 	mutex_enter(&dn->dn_dbufs_mtx);
1519 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1520 	ASSERT3P(db, ==, NULL);
1521 
1522 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1523 
1524 	for (; db != NULL; db = db_next) {
1525 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1526 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1527 
1528 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1529 			break;
1530 		}
1531 		ASSERT3U(db->db_blkid, >=, start_blkid);
1532 
1533 		/* found a level 0 buffer in the range */
1534 		mutex_enter(&db->db_mtx);
1535 		if (dbuf_undirty(db, tx)) {
1536 			/* mutex has been dropped and dbuf destroyed */
1537 			continue;
1538 		}
1539 
1540 		if (db->db_state == DB_UNCACHED ||
1541 		    db->db_state == DB_NOFILL ||
1542 		    db->db_state == DB_EVICTING) {
1543 			ASSERT(db->db.db_data == NULL);
1544 			mutex_exit(&db->db_mtx);
1545 			continue;
1546 		}
1547 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1548 			/* will be handled in dbuf_read_done or dbuf_rele */
1549 			db->db_freed_in_flight = TRUE;
1550 			mutex_exit(&db->db_mtx);
1551 			continue;
1552 		}
1553 		if (zfs_refcount_count(&db->db_holds) == 0) {
1554 			ASSERT(db->db_buf);
1555 			dbuf_destroy(db);
1556 			continue;
1557 		}
1558 		/* The dbuf is referenced */
1559 
1560 		if (db->db_last_dirty != NULL) {
1561 			dbuf_dirty_record_t *dr = db->db_last_dirty;
1562 
1563 			if (dr->dr_txg == txg) {
1564 				/*
1565 				 * This buffer is "in-use", re-adjust the file
1566 				 * size to reflect that this buffer may
1567 				 * contain new data when we sync.
1568 				 */
1569 				if (db->db_blkid != DMU_SPILL_BLKID &&
1570 				    db->db_blkid > dn->dn_maxblkid)
1571 					dn->dn_maxblkid = db->db_blkid;
1572 				dbuf_unoverride(dr);
1573 			} else {
1574 				/*
1575 				 * This dbuf is not dirty in the open context.
1576 				 * Either uncache it (if its not referenced in
1577 				 * the open context) or reset its contents to
1578 				 * empty.
1579 				 */
1580 				dbuf_fix_old_data(db, txg);
1581 			}
1582 		}
1583 		/* clear the contents if its cached */
1584 		if (db->db_state == DB_CACHED) {
1585 			ASSERT(db->db.db_data != NULL);
1586 			arc_release(db->db_buf, db);
1587 			rw_enter(&db->db_rwlock, RW_WRITER);
1588 			bzero(db->db.db_data, db->db.db_size);
1589 			rw_exit(&db->db_rwlock);
1590 			arc_buf_freeze(db->db_buf);
1591 		}
1592 
1593 		mutex_exit(&db->db_mtx);
1594 	}
1595 	mutex_exit(&dn->dn_dbufs_mtx);
1596 }
1597 
1598 void
1599 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1600 {
1601 	arc_buf_t *buf, *obuf;
1602 	int osize = db->db.db_size;
1603 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1604 	dnode_t *dn;
1605 
1606 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1607 
1608 	DB_DNODE_ENTER(db);
1609 	dn = DB_DNODE(db);
1610 
1611 	/*
1612 	 * XXX we should be doing a dbuf_read, checking the return
1613 	 * value and returning that up to our callers
1614 	 */
1615 	dmu_buf_will_dirty(&db->db, tx);
1616 
1617 	/* create the data buffer for the new block */
1618 	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1619 
1620 	/* copy old block data to the new block */
1621 	obuf = db->db_buf;
1622 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1623 	/* zero the remainder */
1624 	if (size > osize)
1625 		bzero((uint8_t *)buf->b_data + osize, size - osize);
1626 
1627 	mutex_enter(&db->db_mtx);
1628 	dbuf_set_data(db, buf);
1629 	arc_buf_destroy(obuf, db);
1630 	db->db.db_size = size;
1631 
1632 	if (db->db_level == 0) {
1633 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1634 		db->db_last_dirty->dt.dl.dr_data = buf;
1635 	}
1636 	mutex_exit(&db->db_mtx);
1637 
1638 	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1639 	DB_DNODE_EXIT(db);
1640 }
1641 
1642 void
1643 dbuf_release_bp(dmu_buf_impl_t *db)
1644 {
1645 	objset_t *os = db->db_objset;
1646 
1647 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1648 	ASSERT(arc_released(os->os_phys_buf) ||
1649 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1650 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1651 
1652 	(void) arc_release(db->db_buf, db);
1653 }
1654 
1655 /*
1656  * We already have a dirty record for this TXG, and we are being
1657  * dirtied again.
1658  */
1659 static void
1660 dbuf_redirty(dbuf_dirty_record_t *dr)
1661 {
1662 	dmu_buf_impl_t *db = dr->dr_dbuf;
1663 
1664 	ASSERT(MUTEX_HELD(&db->db_mtx));
1665 
1666 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1667 		/*
1668 		 * If this buffer has already been written out,
1669 		 * we now need to reset its state.
1670 		 */
1671 		dbuf_unoverride(dr);
1672 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1673 		    db->db_state != DB_NOFILL) {
1674 			/* Already released on initial dirty, so just thaw. */
1675 			ASSERT(arc_released(db->db_buf));
1676 			arc_buf_thaw(db->db_buf);
1677 		}
1678 	}
1679 }
1680 
1681 dbuf_dirty_record_t *
1682 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1683 {
1684 	dnode_t *dn;
1685 	objset_t *os;
1686 	dbuf_dirty_record_t **drp, *dr;
1687 	int txgoff = tx->tx_txg & TXG_MASK;
1688 	boolean_t drop_struct_rwlock = B_FALSE;
1689 
1690 	ASSERT(tx->tx_txg != 0);
1691 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1692 	DMU_TX_DIRTY_BUF(tx, db);
1693 
1694 	DB_DNODE_ENTER(db);
1695 	dn = DB_DNODE(db);
1696 	/*
1697 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1698 	 * objects may be dirtied in syncing context, but only if they
1699 	 * were already pre-dirtied in open context.
1700 	 */
1701 #ifdef DEBUG
1702 	if (dn->dn_objset->os_dsl_dataset != NULL) {
1703 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1704 		    RW_READER, FTAG);
1705 	}
1706 	ASSERT(!dmu_tx_is_syncing(tx) ||
1707 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1708 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1709 	    dn->dn_objset->os_dsl_dataset == NULL);
1710 	if (dn->dn_objset->os_dsl_dataset != NULL)
1711 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1712 #endif
1713 	/*
1714 	 * We make this assert for private objects as well, but after we
1715 	 * check if we're already dirty.  They are allowed to re-dirty
1716 	 * in syncing context.
1717 	 */
1718 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1719 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1720 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1721 
1722 	mutex_enter(&db->db_mtx);
1723 	/*
1724 	 * XXX make this true for indirects too?  The problem is that
1725 	 * transactions created with dmu_tx_create_assigned() from
1726 	 * syncing context don't bother holding ahead.
1727 	 */
1728 	ASSERT(db->db_level != 0 ||
1729 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1730 	    db->db_state == DB_NOFILL);
1731 
1732 	mutex_enter(&dn->dn_mtx);
1733 	/*
1734 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1735 	 * initialize the objset.
1736 	 */
1737 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1738 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1739 			rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1740 			    RW_READER, FTAG);
1741 		}
1742 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1743 			dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1744 			    DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1745 			ASSERT(dn->dn_dirtyctx_firstset == NULL);
1746 			dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1747 		}
1748 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1749 			rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1750 			    FTAG);
1751 		}
1752 	}
1753 
1754 	if (tx->tx_txg > dn->dn_dirty_txg)
1755 		dn->dn_dirty_txg = tx->tx_txg;
1756 	mutex_exit(&dn->dn_mtx);
1757 
1758 	if (db->db_blkid == DMU_SPILL_BLKID)
1759 		dn->dn_have_spill = B_TRUE;
1760 
1761 	/*
1762 	 * If this buffer is already dirty, we're done.
1763 	 */
1764 	drp = &db->db_last_dirty;
1765 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1766 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1767 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1768 		drp = &dr->dr_next;
1769 	if (dr && dr->dr_txg == tx->tx_txg) {
1770 		DB_DNODE_EXIT(db);
1771 
1772 		dbuf_redirty(dr);
1773 		mutex_exit(&db->db_mtx);
1774 		return (dr);
1775 	}
1776 
1777 	/*
1778 	 * Only valid if not already dirty.
1779 	 */
1780 	ASSERT(dn->dn_object == 0 ||
1781 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1782 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1783 
1784 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1785 
1786 	/*
1787 	 * We should only be dirtying in syncing context if it's the
1788 	 * mos or we're initializing the os or it's a special object.
1789 	 * However, we are allowed to dirty in syncing context provided
1790 	 * we already dirtied it in open context.  Hence we must make
1791 	 * this assertion only if we're not already dirty.
1792 	 */
1793 	os = dn->dn_objset;
1794 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1795 #ifdef DEBUG
1796 	if (dn->dn_objset->os_dsl_dataset != NULL)
1797 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1798 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1799 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1800 	if (dn->dn_objset->os_dsl_dataset != NULL)
1801 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1802 #endif
1803 	ASSERT(db->db.db_size != 0);
1804 
1805 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1806 
1807 	if (db->db_blkid != DMU_BONUS_BLKID) {
1808 		dmu_objset_willuse_space(os, db->db.db_size, tx);
1809 	}
1810 
1811 	/*
1812 	 * If this buffer is dirty in an old transaction group we need
1813 	 * to make a copy of it so that the changes we make in this
1814 	 * transaction group won't leak out when we sync the older txg.
1815 	 */
1816 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1817 	if (db->db_level == 0) {
1818 		void *data_old = db->db_buf;
1819 
1820 		if (db->db_state != DB_NOFILL) {
1821 			if (db->db_blkid == DMU_BONUS_BLKID) {
1822 				dbuf_fix_old_data(db, tx->tx_txg);
1823 				data_old = db->db.db_data;
1824 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1825 				/*
1826 				 * Release the data buffer from the cache so
1827 				 * that we can modify it without impacting
1828 				 * possible other users of this cached data
1829 				 * block.  Note that indirect blocks and
1830 				 * private objects are not released until the
1831 				 * syncing state (since they are only modified
1832 				 * then).
1833 				 */
1834 				arc_release(db->db_buf, db);
1835 				dbuf_fix_old_data(db, tx->tx_txg);
1836 				data_old = db->db_buf;
1837 			}
1838 			ASSERT(data_old != NULL);
1839 		}
1840 		dr->dt.dl.dr_data = data_old;
1841 	} else {
1842 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1843 		list_create(&dr->dt.di.dr_children,
1844 		    sizeof (dbuf_dirty_record_t),
1845 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1846 	}
1847 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1848 		dr->dr_accounted = db->db.db_size;
1849 	dr->dr_dbuf = db;
1850 	dr->dr_txg = tx->tx_txg;
1851 	dr->dr_next = *drp;
1852 	*drp = dr;
1853 
1854 	/*
1855 	 * We could have been freed_in_flight between the dbuf_noread
1856 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1857 	 * happened after the free.
1858 	 */
1859 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1860 	    db->db_blkid != DMU_SPILL_BLKID) {
1861 		mutex_enter(&dn->dn_mtx);
1862 		if (dn->dn_free_ranges[txgoff] != NULL) {
1863 			range_tree_clear(dn->dn_free_ranges[txgoff],
1864 			    db->db_blkid, 1);
1865 		}
1866 		mutex_exit(&dn->dn_mtx);
1867 		db->db_freed_in_flight = FALSE;
1868 	}
1869 
1870 	/*
1871 	 * This buffer is now part of this txg
1872 	 */
1873 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1874 	db->db_dirtycnt += 1;
1875 	ASSERT3U(db->db_dirtycnt, <=, 3);
1876 
1877 	mutex_exit(&db->db_mtx);
1878 
1879 	if (db->db_blkid == DMU_BONUS_BLKID ||
1880 	    db->db_blkid == DMU_SPILL_BLKID) {
1881 		mutex_enter(&dn->dn_mtx);
1882 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1883 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1884 		mutex_exit(&dn->dn_mtx);
1885 		dnode_setdirty(dn, tx);
1886 		DB_DNODE_EXIT(db);
1887 		return (dr);
1888 	}
1889 
1890 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1891 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1892 		drop_struct_rwlock = B_TRUE;
1893 	}
1894 
1895 	/*
1896 	 * If we are overwriting a dedup BP, then unless it is snapshotted,
1897 	 * when we get to syncing context we will need to decrement its
1898 	 * refcount in the DDT.  Prefetch the relevant DDT block so that
1899 	 * syncing context won't have to wait for the i/o.
1900 	 */
1901 	if (db->db_blkptr != NULL) {
1902 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1903 		ddt_prefetch(os->os_spa, db->db_blkptr);
1904 		dmu_buf_unlock_parent(db, dblt, FTAG);
1905 	}
1906 
1907 	/*
1908 	 * We need to hold the dn_struct_rwlock to make this assertion,
1909 	 * because it protects dn_phys / dn_next_nlevels from changing.
1910 	 */
1911 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1912 	    dn->dn_phys->dn_nlevels > db->db_level ||
1913 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1914 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1915 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1916 
1917 
1918 	if (db->db_level == 0) {
1919 		ASSERT(!db->db_objset->os_raw_receive ||
1920 		    dn->dn_maxblkid >= db->db_blkid);
1921 		dnode_new_blkid(dn, db->db_blkid, tx,
1922 		    drop_struct_rwlock, B_FALSE);
1923 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1924 	}
1925 
1926 	if (db->db_level+1 < dn->dn_nlevels) {
1927 		dmu_buf_impl_t *parent = db->db_parent;
1928 		dbuf_dirty_record_t *di;
1929 		int parent_held = FALSE;
1930 
1931 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1932 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1933 			parent = dbuf_hold_level(dn, db->db_level + 1,
1934 			    db->db_blkid >> epbs, FTAG);
1935 			ASSERT(parent != NULL);
1936 			parent_held = TRUE;
1937 		}
1938 		if (drop_struct_rwlock)
1939 			rw_exit(&dn->dn_struct_rwlock);
1940 		ASSERT3U(db->db_level + 1, ==, parent->db_level);
1941 		di = dbuf_dirty(parent, tx);
1942 		if (parent_held)
1943 			dbuf_rele(parent, FTAG);
1944 
1945 		mutex_enter(&db->db_mtx);
1946 		/*
1947 		 * Since we've dropped the mutex, it's possible that
1948 		 * dbuf_undirty() might have changed this out from under us.
1949 		 */
1950 		if (db->db_last_dirty == dr ||
1951 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1952 			mutex_enter(&di->dt.di.dr_mtx);
1953 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1954 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1955 			list_insert_tail(&di->dt.di.dr_children, dr);
1956 			mutex_exit(&di->dt.di.dr_mtx);
1957 			dr->dr_parent = di;
1958 		}
1959 		mutex_exit(&db->db_mtx);
1960 	} else {
1961 		ASSERT(db->db_level + 1 == dn->dn_nlevels);
1962 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1963 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1964 		mutex_enter(&dn->dn_mtx);
1965 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1966 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1967 		mutex_exit(&dn->dn_mtx);
1968 		if (drop_struct_rwlock)
1969 			rw_exit(&dn->dn_struct_rwlock);
1970 	}
1971 
1972 	dnode_setdirty(dn, tx);
1973 	DB_DNODE_EXIT(db);
1974 	return (dr);
1975 }
1976 
1977 /*
1978  * Undirty a buffer in the transaction group referenced by the given
1979  * transaction.  Return whether this evicted the dbuf.
1980  */
1981 static boolean_t
1982 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1983 {
1984 	dnode_t *dn;
1985 	uint64_t txg = tx->tx_txg;
1986 	dbuf_dirty_record_t *dr, **drp;
1987 
1988 	ASSERT(txg != 0);
1989 
1990 	/*
1991 	 * Due to our use of dn_nlevels below, this can only be called
1992 	 * in open context, unless we are operating on the MOS.
1993 	 * From syncing context, dn_nlevels may be different from the
1994 	 * dn_nlevels used when dbuf was dirtied.
1995 	 */
1996 	ASSERT(db->db_objset ==
1997 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1998 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1999 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2000 	ASSERT0(db->db_level);
2001 	ASSERT(MUTEX_HELD(&db->db_mtx));
2002 
2003 	/*
2004 	 * If this buffer is not dirty, we're done.
2005 	 */
2006 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2007 		if (dr->dr_txg <= txg)
2008 			break;
2009 	if (dr == NULL || dr->dr_txg < txg)
2010 		return (B_FALSE);
2011 	ASSERT(dr->dr_txg == txg);
2012 	ASSERT(dr->dr_dbuf == db);
2013 
2014 	DB_DNODE_ENTER(db);
2015 	dn = DB_DNODE(db);
2016 
2017 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2018 
2019 	ASSERT(db->db.db_size != 0);
2020 
2021 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2022 	    dr->dr_accounted, txg);
2023 
2024 	*drp = dr->dr_next;
2025 
2026 	/*
2027 	 * Note that there are three places in dbuf_dirty()
2028 	 * where this dirty record may be put on a list.
2029 	 * Make sure to do a list_remove corresponding to
2030 	 * every one of those list_insert calls.
2031 	 */
2032 	if (dr->dr_parent) {
2033 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2034 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2035 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2036 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
2037 	    db->db_level + 1 == dn->dn_nlevels) {
2038 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2039 		mutex_enter(&dn->dn_mtx);
2040 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2041 		mutex_exit(&dn->dn_mtx);
2042 	}
2043 	DB_DNODE_EXIT(db);
2044 
2045 	if (db->db_state != DB_NOFILL) {
2046 		dbuf_unoverride(dr);
2047 
2048 		ASSERT(db->db_buf != NULL);
2049 		ASSERT(dr->dt.dl.dr_data != NULL);
2050 		if (dr->dt.dl.dr_data != db->db_buf)
2051 			arc_buf_destroy(dr->dt.dl.dr_data, db);
2052 	}
2053 
2054 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2055 
2056 	ASSERT(db->db_dirtycnt > 0);
2057 	db->db_dirtycnt -= 1;
2058 
2059 	if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2060 		ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2061 		dbuf_destroy(db);
2062 		return (B_TRUE);
2063 	}
2064 
2065 	return (B_FALSE);
2066 }
2067 
2068 static void
2069 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2070 {
2071 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2072 
2073 	ASSERT(tx->tx_txg != 0);
2074 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2075 
2076 	/*
2077 	 * Quick check for dirtyness.  For already dirty blocks, this
2078 	 * reduces runtime of this function by >90%, and overall performance
2079 	 * by 50% for some workloads (e.g. file deletion with indirect blocks
2080 	 * cached).
2081 	 */
2082 	mutex_enter(&db->db_mtx);
2083 	dbuf_dirty_record_t *dr;
2084 	for (dr = db->db_last_dirty;
2085 	    dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2086 		/*
2087 		 * It's possible that it is already dirty but not cached,
2088 		 * because there are some calls to dbuf_dirty() that don't
2089 		 * go through dmu_buf_will_dirty().
2090 		 */
2091 		if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2092 			/* This dbuf is already dirty and cached. */
2093 			dbuf_redirty(dr);
2094 			mutex_exit(&db->db_mtx);
2095 			return;
2096 		}
2097 	}
2098 	mutex_exit(&db->db_mtx);
2099 
2100 	DB_DNODE_ENTER(db);
2101 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2102 		flags |= DB_RF_HAVESTRUCT;
2103 	DB_DNODE_EXIT(db);
2104 	(void) dbuf_read(db, NULL, flags);
2105 	(void) dbuf_dirty(db, tx);
2106 }
2107 
2108 void
2109 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2110 {
2111 	dmu_buf_will_dirty_impl(db_fake,
2112 	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2113 }
2114 
2115 void
2116 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2117 {
2118 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2119 
2120 	db->db_state = DB_NOFILL;
2121 
2122 	dmu_buf_will_fill(db_fake, tx);
2123 }
2124 
2125 void
2126 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2127 {
2128 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2129 
2130 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2131 	ASSERT(tx->tx_txg != 0);
2132 	ASSERT(db->db_level == 0);
2133 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2134 
2135 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2136 	    dmu_tx_private_ok(tx));
2137 
2138 	dbuf_noread(db);
2139 	(void) dbuf_dirty(db, tx);
2140 }
2141 
2142 /*
2143  * This function is effectively the same as dmu_buf_will_dirty(), but
2144  * indicates the caller expects raw encrypted data in the db, and provides
2145  * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2146  * blkptr_t when this dbuf is written.  This is only used for blocks of
2147  * dnodes during a raw receive.
2148  */
2149 void
2150 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2151     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2152 {
2153 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2154 	dbuf_dirty_record_t *dr;
2155 
2156 	/*
2157 	 * dr_has_raw_params is only processed for blocks of dnodes
2158 	 * (see dbuf_sync_dnode_leaf_crypt()).
2159 	 */
2160 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2161 	ASSERT3U(db->db_level, ==, 0);
2162 
2163 	dmu_buf_will_dirty_impl(db_fake,
2164 	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2165 
2166 	dr = db->db_last_dirty;
2167 	while (dr != NULL && dr->dr_txg > tx->tx_txg)
2168 		dr = dr->dr_next;
2169 
2170 	ASSERT3P(dr, !=, NULL);
2171 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2172 
2173 	dr->dt.dl.dr_has_raw_params = B_TRUE;
2174 	dr->dt.dl.dr_byteorder = byteorder;
2175 	bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
2176 	bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
2177 	bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
2178 }
2179 
2180 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2181 /* ARGSUSED */
2182 void
2183 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2184 {
2185 	mutex_enter(&db->db_mtx);
2186 	DBUF_VERIFY(db);
2187 
2188 	if (db->db_state == DB_FILL) {
2189 		if (db->db_level == 0 && db->db_freed_in_flight) {
2190 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2191 			/* we were freed while filling */
2192 			/* XXX dbuf_undirty? */
2193 			bzero(db->db.db_data, db->db.db_size);
2194 			db->db_freed_in_flight = FALSE;
2195 		}
2196 		db->db_state = DB_CACHED;
2197 		cv_broadcast(&db->db_changed);
2198 	}
2199 	mutex_exit(&db->db_mtx);
2200 }
2201 
2202 void
2203 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2204     bp_embedded_type_t etype, enum zio_compress comp,
2205     int uncompressed_size, int compressed_size, int byteorder,
2206     dmu_tx_t *tx)
2207 {
2208 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2209 	struct dirty_leaf *dl;
2210 	dmu_object_type_t type;
2211 
2212 	if (etype == BP_EMBEDDED_TYPE_DATA) {
2213 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2214 		    SPA_FEATURE_EMBEDDED_DATA));
2215 	}
2216 
2217 	DB_DNODE_ENTER(db);
2218 	type = DB_DNODE(db)->dn_type;
2219 	DB_DNODE_EXIT(db);
2220 
2221 	ASSERT0(db->db_level);
2222 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2223 
2224 	dmu_buf_will_not_fill(dbuf, tx);
2225 
2226 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2227 	dl = &db->db_last_dirty->dt.dl;
2228 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
2229 	    data, comp, uncompressed_size, compressed_size);
2230 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2231 	BP_SET_TYPE(&dl->dr_overridden_by, type);
2232 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2233 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2234 
2235 	dl->dr_override_state = DR_OVERRIDDEN;
2236 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2237 }
2238 
2239 /*
2240  * Directly assign a provided arc buf to a given dbuf if it's not referenced
2241  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2242  */
2243 void
2244 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2245 {
2246 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2247 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2248 	ASSERT(db->db_level == 0);
2249 	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2250 	ASSERT(buf != NULL);
2251 	ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2252 	ASSERT(tx->tx_txg != 0);
2253 
2254 	arc_return_buf(buf, db);
2255 	ASSERT(arc_released(buf));
2256 
2257 	mutex_enter(&db->db_mtx);
2258 
2259 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
2260 		cv_wait(&db->db_changed, &db->db_mtx);
2261 
2262 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2263 
2264 	if (db->db_state == DB_CACHED &&
2265 	    zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2266 		/*
2267 		 * In practice, we will never have a case where we have an
2268 		 * encrypted arc buffer while additional holds exist on the
2269 		 * dbuf. We don't handle this here so we simply assert that
2270 		 * fact instead.
2271 		 */
2272 		ASSERT(!arc_is_encrypted(buf));
2273 		mutex_exit(&db->db_mtx);
2274 		(void) dbuf_dirty(db, tx);
2275 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2276 		arc_buf_destroy(buf, db);
2277 		xuio_stat_wbuf_copied();
2278 		return;
2279 	}
2280 
2281 	xuio_stat_wbuf_nocopy();
2282 	if (db->db_state == DB_CACHED) {
2283 		dbuf_dirty_record_t *dr = db->db_last_dirty;
2284 
2285 		ASSERT(db->db_buf != NULL);
2286 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2287 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
2288 
2289 			if (!arc_released(db->db_buf)) {
2290 				ASSERT(dr->dt.dl.dr_override_state ==
2291 				    DR_OVERRIDDEN);
2292 				arc_release(db->db_buf, db);
2293 			}
2294 			dr->dt.dl.dr_data = buf;
2295 			arc_buf_destroy(db->db_buf, db);
2296 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2297 			arc_release(db->db_buf, db);
2298 			arc_buf_destroy(db->db_buf, db);
2299 		}
2300 		db->db_buf = NULL;
2301 	}
2302 	ASSERT(db->db_buf == NULL);
2303 	dbuf_set_data(db, buf);
2304 	db->db_state = DB_FILL;
2305 	mutex_exit(&db->db_mtx);
2306 	(void) dbuf_dirty(db, tx);
2307 	dmu_buf_fill_done(&db->db, tx);
2308 }
2309 
2310 void
2311 dbuf_destroy(dmu_buf_impl_t *db)
2312 {
2313 	dnode_t *dn;
2314 	dmu_buf_impl_t *parent = db->db_parent;
2315 	dmu_buf_impl_t *dndb;
2316 
2317 	ASSERT(MUTEX_HELD(&db->db_mtx));
2318 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
2319 
2320 	if (db->db_buf != NULL) {
2321 		arc_buf_destroy(db->db_buf, db);
2322 		db->db_buf = NULL;
2323 	}
2324 
2325 	if (db->db_blkid == DMU_BONUS_BLKID) {
2326 		int slots = DB_DNODE(db)->dn_num_slots;
2327 		int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2328 		if (db->db.db_data != NULL) {
2329 			zio_buf_free(db->db.db_data, bonuslen);
2330 			arc_space_return(bonuslen, ARC_SPACE_BONUS);
2331 			db->db_state = DB_UNCACHED;
2332 		}
2333 	}
2334 
2335 	dbuf_clear_data(db);
2336 
2337 	if (multilist_link_active(&db->db_cache_link)) {
2338 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2339 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
2340 
2341 		multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2342 		(void) zfs_refcount_remove_many(
2343 		    &dbuf_caches[db->db_caching_status].size,
2344 		    db->db.db_size, db);
2345 
2346 		db->db_caching_status = DB_NO_CACHE;
2347 	}
2348 
2349 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2350 	ASSERT(db->db_data_pending == NULL);
2351 
2352 	db->db_state = DB_EVICTING;
2353 	db->db_blkptr = NULL;
2354 
2355 	/*
2356 	 * Now that db_state is DB_EVICTING, nobody else can find this via
2357 	 * the hash table.  We can now drop db_mtx, which allows us to
2358 	 * acquire the dn_dbufs_mtx.
2359 	 */
2360 	mutex_exit(&db->db_mtx);
2361 
2362 	DB_DNODE_ENTER(db);
2363 	dn = DB_DNODE(db);
2364 	dndb = dn->dn_dbuf;
2365 	if (db->db_blkid != DMU_BONUS_BLKID) {
2366 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2367 		if (needlock)
2368 			mutex_enter(&dn->dn_dbufs_mtx);
2369 		avl_remove(&dn->dn_dbufs, db);
2370 		atomic_dec_32(&dn->dn_dbufs_count);
2371 		membar_producer();
2372 		DB_DNODE_EXIT(db);
2373 		if (needlock)
2374 			mutex_exit(&dn->dn_dbufs_mtx);
2375 		/*
2376 		 * Decrementing the dbuf count means that the hold corresponding
2377 		 * to the removed dbuf is no longer discounted in dnode_move(),
2378 		 * so the dnode cannot be moved until after we release the hold.
2379 		 * The membar_producer() ensures visibility of the decremented
2380 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2381 		 * release any lock.
2382 		 */
2383 		mutex_enter(&dn->dn_mtx);
2384 		dnode_rele_and_unlock(dn, db, B_TRUE);
2385 		db->db_dnode_handle = NULL;
2386 
2387 		dbuf_hash_remove(db);
2388 	} else {
2389 		DB_DNODE_EXIT(db);
2390 	}
2391 
2392 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
2393 
2394 	db->db_parent = NULL;
2395 
2396 	ASSERT(db->db_buf == NULL);
2397 	ASSERT(db->db.db_data == NULL);
2398 	ASSERT(db->db_hash_next == NULL);
2399 	ASSERT(db->db_blkptr == NULL);
2400 	ASSERT(db->db_data_pending == NULL);
2401 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2402 	ASSERT(!multilist_link_active(&db->db_cache_link));
2403 
2404 	kmem_cache_free(dbuf_kmem_cache, db);
2405 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2406 
2407 	/*
2408 	 * If this dbuf is referenced from an indirect dbuf,
2409 	 * decrement the ref count on the indirect dbuf.
2410 	 */
2411 	if (parent && parent != dndb) {
2412 		mutex_enter(&parent->db_mtx);
2413 		dbuf_rele_and_unlock(parent, db, B_TRUE);
2414 	}
2415 }
2416 
2417 /*
2418  * Note: While bpp will always be updated if the function returns success,
2419  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2420  * this happens when the dnode is the meta-dnode, or {user|group|project}used
2421  * object.
2422  */
2423 static int
2424 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2425     dmu_buf_impl_t **parentp, blkptr_t **bpp)
2426 {
2427 	*parentp = NULL;
2428 	*bpp = NULL;
2429 
2430 	ASSERT(blkid != DMU_BONUS_BLKID);
2431 
2432 	if (blkid == DMU_SPILL_BLKID) {
2433 		mutex_enter(&dn->dn_mtx);
2434 		if (dn->dn_have_spill &&
2435 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2436 			*bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2437 		else
2438 			*bpp = NULL;
2439 		dbuf_add_ref(dn->dn_dbuf, NULL);
2440 		*parentp = dn->dn_dbuf;
2441 		mutex_exit(&dn->dn_mtx);
2442 		return (0);
2443 	}
2444 
2445 	int nlevels =
2446 	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2447 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2448 
2449 	ASSERT3U(level * epbs, <, 64);
2450 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2451 	/*
2452 	 * This assertion shouldn't trip as long as the max indirect block size
2453 	 * is less than 1M.  The reason for this is that up to that point,
2454 	 * the number of levels required to address an entire object with blocks
2455 	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.  In
2456 	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2457 	 * (i.e. we can address the entire object), objects will all use at most
2458 	 * N-1 levels and the assertion won't overflow.  However, once epbs is
2459 	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
2460 	 * enough to address an entire object, so objects will have 5 levels,
2461 	 * but then this assertion will overflow.
2462 	 *
2463 	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2464 	 * need to redo this logic to handle overflows.
2465 	 */
2466 	ASSERT(level >= nlevels ||
2467 	    ((nlevels - level - 1) * epbs) +
2468 	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2469 	if (level >= nlevels ||
2470 	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2471 	    ((nlevels - level - 1) * epbs)) ||
2472 	    (fail_sparse &&
2473 	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2474 		/* the buffer has no parent yet */
2475 		return (SET_ERROR(ENOENT));
2476 	} else if (level < nlevels-1) {
2477 		/* this block is referenced from an indirect block */
2478 		int err = dbuf_hold_impl(dn, level+1,
2479 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2480 		if (err)
2481 			return (err);
2482 		err = dbuf_read(*parentp, NULL,
2483 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2484 		if (err) {
2485 			dbuf_rele(*parentp, NULL);
2486 			*parentp = NULL;
2487 			return (err);
2488 		}
2489 		rw_enter(&(*parentp)->db_rwlock, RW_READER);
2490 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2491 		    (blkid & ((1ULL << epbs) - 1));
2492 		if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2493 			ASSERT(BP_IS_HOLE(*bpp));
2494 		rw_exit(&(*parentp)->db_rwlock);
2495 		return (0);
2496 	} else {
2497 		/* the block is referenced from the dnode */
2498 		ASSERT3U(level, ==, nlevels-1);
2499 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2500 		    blkid < dn->dn_phys->dn_nblkptr);
2501 		if (dn->dn_dbuf) {
2502 			dbuf_add_ref(dn->dn_dbuf, NULL);
2503 			*parentp = dn->dn_dbuf;
2504 		}
2505 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
2506 		return (0);
2507 	}
2508 }
2509 
2510 static dmu_buf_impl_t *
2511 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2512     dmu_buf_impl_t *parent, blkptr_t *blkptr)
2513 {
2514 	objset_t *os = dn->dn_objset;
2515 	dmu_buf_impl_t *db, *odb;
2516 
2517 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2518 	ASSERT(dn->dn_type != DMU_OT_NONE);
2519 
2520 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2521 
2522 	db->db_objset = os;
2523 	db->db.db_object = dn->dn_object;
2524 	db->db_level = level;
2525 	db->db_blkid = blkid;
2526 	db->db_last_dirty = NULL;
2527 	db->db_dirtycnt = 0;
2528 	db->db_dnode_handle = dn->dn_handle;
2529 	db->db_parent = parent;
2530 	db->db_blkptr = blkptr;
2531 
2532 	db->db_user = NULL;
2533 	db->db_user_immediate_evict = FALSE;
2534 	db->db_freed_in_flight = FALSE;
2535 	db->db_pending_evict = FALSE;
2536 
2537 	if (blkid == DMU_BONUS_BLKID) {
2538 		ASSERT3P(parent, ==, dn->dn_dbuf);
2539 		db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2540 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2541 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2542 		db->db.db_offset = DMU_BONUS_BLKID;
2543 		db->db_state = DB_UNCACHED;
2544 		db->db_caching_status = DB_NO_CACHE;
2545 		/* the bonus dbuf is not placed in the hash table */
2546 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2547 		return (db);
2548 	} else if (blkid == DMU_SPILL_BLKID) {
2549 		db->db.db_size = (blkptr != NULL) ?
2550 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2551 		db->db.db_offset = 0;
2552 	} else {
2553 		int blocksize =
2554 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2555 		db->db.db_size = blocksize;
2556 		db->db.db_offset = db->db_blkid * blocksize;
2557 	}
2558 
2559 	/*
2560 	 * Hold the dn_dbufs_mtx while we get the new dbuf
2561 	 * in the hash table *and* added to the dbufs list.
2562 	 * This prevents a possible deadlock with someone
2563 	 * trying to look up this dbuf before its added to the
2564 	 * dn_dbufs list.
2565 	 */
2566 	mutex_enter(&dn->dn_dbufs_mtx);
2567 	db->db_state = DB_EVICTING;
2568 	if ((odb = dbuf_hash_insert(db)) != NULL) {
2569 		/* someone else inserted it first */
2570 		kmem_cache_free(dbuf_kmem_cache, db);
2571 		mutex_exit(&dn->dn_dbufs_mtx);
2572 		return (odb);
2573 	}
2574 	avl_add(&dn->dn_dbufs, db);
2575 
2576 	db->db_state = DB_UNCACHED;
2577 	db->db_caching_status = DB_NO_CACHE;
2578 	mutex_exit(&dn->dn_dbufs_mtx);
2579 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2580 
2581 	if (parent && parent != dn->dn_dbuf)
2582 		dbuf_add_ref(parent, db);
2583 
2584 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2585 	    zfs_refcount_count(&dn->dn_holds) > 0);
2586 	(void) zfs_refcount_add(&dn->dn_holds, db);
2587 	atomic_inc_32(&dn->dn_dbufs_count);
2588 
2589 	dprintf_dbuf(db, "db=%p\n", db);
2590 
2591 	return (db);
2592 }
2593 
2594 typedef struct dbuf_prefetch_arg {
2595 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
2596 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2597 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2598 	int dpa_curlevel; /* The current level that we're reading */
2599 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2600 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2601 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2602 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2603 	dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
2604 	void *dpa_arg; /* prefetch completion arg */
2605 } dbuf_prefetch_arg_t;
2606 
2607 static void
2608 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
2609 {
2610 	if (dpa->dpa_cb != NULL)
2611 		dpa->dpa_cb(dpa->dpa_arg, io_done);
2612 	kmem_free(dpa, sizeof (*dpa));
2613 }
2614 
2615 static void
2616 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
2617     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2618 {
2619 	dbuf_prefetch_arg_t *dpa = private;
2620 
2621 	dbuf_prefetch_fini(dpa, B_TRUE);
2622 	if (abuf != NULL)
2623 		arc_buf_destroy(abuf, private);
2624 }
2625 
2626 /*
2627  * Actually issue the prefetch read for the block given.
2628  */
2629 static void
2630 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2631 {
2632 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2633 		return (dbuf_prefetch_fini(dpa, B_FALSE));
2634 
2635 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2636 	arc_flags_t aflags =
2637 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2638 
2639 	/* dnodes are always read as raw and then converted later */
2640 	if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2641 	    dpa->dpa_curlevel == 0)
2642 		zio_flags |= ZIO_FLAG_RAW;
2643 
2644 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2645 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2646 	ASSERT(dpa->dpa_zio != NULL);
2647 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
2648 	    dbuf_issue_final_prefetch_done, dpa,
2649 	    dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
2650 }
2651 
2652 /*
2653  * Called when an indirect block above our prefetch target is read in.  This
2654  * will either read in the next indirect block down the tree or issue the actual
2655  * prefetch if the next block down is our target.
2656  */
2657 /* ARGSUSED */
2658 static void
2659 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2660     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2661 {
2662 	dbuf_prefetch_arg_t *dpa = private;
2663 
2664 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2665 	ASSERT3S(dpa->dpa_curlevel, >, 0);
2666 
2667 	if (abuf == NULL) {
2668 		ASSERT(zio == NULL || zio->io_error != 0);
2669 		return (dbuf_prefetch_fini(dpa, B_TRUE));
2670 	}
2671 	ASSERT(zio == NULL || zio->io_error == 0);
2672 
2673 	/*
2674 	 * The dpa_dnode is only valid if we are called with a NULL
2675 	 * zio. This indicates that the arc_read() returned without
2676 	 * first calling zio_read() to issue a physical read. Once
2677 	 * a physical read is made the dpa_dnode must be invalidated
2678 	 * as the locks guarding it may have been dropped. If the
2679 	 * dpa_dnode is still valid, then we want to add it to the dbuf
2680 	 * cache. To do so, we must hold the dbuf associated with the block
2681 	 * we just prefetched, read its contents so that we associate it
2682 	 * with an arc_buf_t, and then release it.
2683 	 */
2684 	if (zio != NULL) {
2685 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2686 		if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2687 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2688 		} else {
2689 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2690 		}
2691 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2692 
2693 		dpa->dpa_dnode = NULL;
2694 	} else if (dpa->dpa_dnode != NULL) {
2695 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2696 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
2697 		    dpa->dpa_zb.zb_level));
2698 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2699 		    dpa->dpa_curlevel, curblkid, FTAG);
2700 		if (db == NULL) {
2701 			arc_buf_destroy(abuf, private);
2702 			return (dbuf_prefetch_fini(dpa, B_TRUE));
2703 		}
2704 		(void) dbuf_read(db, NULL,
2705 		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2706 		dbuf_rele(db, FTAG);
2707 	}
2708 
2709 	dpa->dpa_curlevel--;
2710 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2711 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2712 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2713 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2714 
2715 	if (BP_IS_HOLE(bp)) {
2716 		dbuf_prefetch_fini(dpa, B_TRUE);
2717 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2718 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2719 		dbuf_issue_final_prefetch(dpa, bp);
2720 	} else {
2721 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2722 		zbookmark_phys_t zb;
2723 
2724 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
2725 		if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2726 			iter_aflags |= ARC_FLAG_L2CACHE;
2727 
2728 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2729 
2730 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2731 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2732 
2733 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2734 		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2735 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2736 		    &iter_aflags, &zb);
2737 	}
2738 
2739 	arc_buf_destroy(abuf, private);
2740 }
2741 
2742 /*
2743  * Issue prefetch reads for the given block on the given level.  If the indirect
2744  * blocks above that block are not in memory, we will read them in
2745  * asynchronously.  As a result, this call never blocks waiting for a read to
2746  * complete. Note that the prefetch might fail if the dataset is encrypted and
2747  * the encryption key is unmapped before the IO completes.
2748  */
2749 int
2750 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
2751     zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
2752     void *arg)
2753 {
2754 	blkptr_t bp;
2755 	int epbs, nlevels, curlevel;
2756 	uint64_t curblkid;
2757 
2758 	ASSERT(blkid != DMU_BONUS_BLKID);
2759 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2760 
2761 	if (blkid > dn->dn_maxblkid)
2762 		goto no_issue;
2763 
2764 	if (level == 0 && dnode_block_freed(dn, blkid))
2765 		goto no_issue;
2766 
2767 	/*
2768 	 * This dnode hasn't been written to disk yet, so there's nothing to
2769 	 * prefetch.
2770 	 */
2771 	nlevels = dn->dn_phys->dn_nlevels;
2772 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2773 		goto no_issue;
2774 
2775 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2776 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2777 		goto no_issue;
2778 
2779 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2780 	    level, blkid);
2781 	if (db != NULL) {
2782 		mutex_exit(&db->db_mtx);
2783 		/*
2784 		 * This dbuf already exists.  It is either CACHED, or
2785 		 * (we assume) about to be read or filled.
2786 		 */
2787 		goto no_issue;
2788 	}
2789 
2790 	/*
2791 	 * Find the closest ancestor (indirect block) of the target block
2792 	 * that is present in the cache.  In this indirect block, we will
2793 	 * find the bp that is at curlevel, curblkid.
2794 	 */
2795 	curlevel = level;
2796 	curblkid = blkid;
2797 	while (curlevel < nlevels - 1) {
2798 		int parent_level = curlevel + 1;
2799 		uint64_t parent_blkid = curblkid >> epbs;
2800 		dmu_buf_impl_t *db;
2801 
2802 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2803 		    FALSE, TRUE, FTAG, &db) == 0) {
2804 			blkptr_t *bpp = db->db_buf->b_data;
2805 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2806 			dbuf_rele(db, FTAG);
2807 			break;
2808 		}
2809 
2810 		curlevel = parent_level;
2811 		curblkid = parent_blkid;
2812 	}
2813 
2814 	if (curlevel == nlevels - 1) {
2815 		/* No cached indirect blocks found. */
2816 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2817 		bp = dn->dn_phys->dn_blkptr[curblkid];
2818 	}
2819 	if (BP_IS_HOLE(&bp))
2820 		goto no_issue;
2821 
2822 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2823 
2824 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2825 	    ZIO_FLAG_CANFAIL);
2826 
2827 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2828 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2829 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2830 	    dn->dn_object, level, blkid);
2831 	dpa->dpa_curlevel = curlevel;
2832 	dpa->dpa_prio = prio;
2833 	dpa->dpa_aflags = aflags;
2834 	dpa->dpa_spa = dn->dn_objset->os_spa;
2835 	dpa->dpa_dnode = dn;
2836 	dpa->dpa_epbs = epbs;
2837 	dpa->dpa_zio = pio;
2838 	dpa->dpa_cb = cb;
2839 	dpa->dpa_arg = arg;
2840 
2841 	/* flag if L2ARC eligible, l2arc_noprefetch then decides */
2842 	if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2843 		dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2844 
2845 	/*
2846 	 * If we have the indirect just above us, no need to do the asynchronous
2847 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2848 	 * a higher level, though, we want to issue the prefetches for all the
2849 	 * indirect blocks asynchronously, so we can go on with whatever we were
2850 	 * doing.
2851 	 */
2852 	if (curlevel == level) {
2853 		ASSERT3U(curblkid, ==, blkid);
2854 		dbuf_issue_final_prefetch(dpa, &bp);
2855 	} else {
2856 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2857 		zbookmark_phys_t zb;
2858 
2859 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
2860 		if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2861 			iter_aflags |= ARC_FLAG_L2CACHE;
2862 
2863 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2864 		    dn->dn_object, curlevel, curblkid);
2865 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2866 		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2867 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2868 		    &iter_aflags, &zb);
2869 	}
2870 	/*
2871 	 * We use pio here instead of dpa_zio since it's possible that
2872 	 * dpa may have already been freed.
2873 	 */
2874 	zio_nowait(pio);
2875 	return (1);
2876 no_issue:
2877 	if (cb != NULL)
2878 		cb(arg, B_FALSE);
2879 	return (0);
2880 }
2881 
2882 int
2883 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2884     arc_flags_t aflags)
2885 {
2886 
2887 	return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
2888 }
2889 
2890 /*
2891  * Helper function for __dbuf_hold_impl() to copy a buffer. Handles
2892  * the case of encrypted, compressed and uncompressed buffers by
2893  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
2894  * arc_alloc_compressed_buf() or arc_alloc_buf().*
2895  *
2896  * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl().
2897  */
2898 static void
2899 dbuf_hold_copy(dnode_t *dn,	dmu_buf_impl_t *db, dbuf_dirty_record_t *dr)
2900 {
2901 	arc_buf_t *data = dr->dt.dl.dr_data;
2902 	enum zio_compress compress_type = arc_get_compression(data);
2903 
2904 	if (arc_is_encrypted(data)) {
2905 		boolean_t byteorder;
2906 		uint8_t salt[ZIO_DATA_SALT_LEN];
2907 		uint8_t iv[ZIO_DATA_IV_LEN];
2908 		uint8_t mac[ZIO_DATA_MAC_LEN];
2909 
2910 		arc_get_raw_params(data, &byteorder, salt, iv, mac);
2911 		dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
2912 		    dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
2913 		    dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
2914 		    compress_type));
2915 	} else if (compress_type != ZIO_COMPRESS_OFF) {
2916 		dbuf_set_data(db, arc_alloc_compressed_buf(
2917 		    dn->dn_objset->os_spa, db, arc_buf_size(data),
2918 		    arc_buf_lsize(data), compress_type));
2919 	} else {
2920 		dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
2921 		    DBUF_GET_BUFC_TYPE(db), db->db.db_size));
2922 	}
2923 
2924 	rw_enter(&db->db_rwlock, RW_WRITER);
2925 	bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
2926 	rw_exit(&db->db_rwlock);
2927 }
2928 
2929 /*
2930  * Returns with db_holds incremented, and db_mtx not held.
2931  * Note: dn_struct_rwlock must be held.
2932  */
2933 int
2934 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2935     boolean_t fail_sparse, boolean_t fail_uncached,
2936     void *tag, dmu_buf_impl_t **dbp)
2937 {
2938 	dmu_buf_impl_t *db, *parent = NULL;
2939 
2940 	ASSERT(blkid != DMU_BONUS_BLKID);
2941 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2942 	ASSERT3U(dn->dn_nlevels, >, level);
2943 
2944 	*dbp = NULL;
2945 top:
2946 	/* dbuf_find() returns with db_mtx held */
2947 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2948 
2949 	if (db == NULL) {
2950 		blkptr_t *bp = NULL;
2951 		int err;
2952 
2953 		if (fail_uncached)
2954 			return (SET_ERROR(ENOENT));
2955 
2956 		ASSERT3P(parent, ==, NULL);
2957 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2958 		if (fail_sparse) {
2959 			if (err == 0 && bp && BP_IS_HOLE(bp))
2960 				err = SET_ERROR(ENOENT);
2961 			if (err) {
2962 				if (parent)
2963 					dbuf_rele(parent, NULL);
2964 				return (err);
2965 			}
2966 		}
2967 		if (err && err != ENOENT)
2968 			return (err);
2969 		db = dbuf_create(dn, level, blkid, parent, bp);
2970 	}
2971 
2972 	if (fail_uncached && db->db_state != DB_CACHED) {
2973 		mutex_exit(&db->db_mtx);
2974 		return (SET_ERROR(ENOENT));
2975 	}
2976 
2977 	if (db->db_buf != NULL) {
2978 		arc_buf_access(db->db_buf);
2979 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2980 	}
2981 
2982 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2983 
2984 	/*
2985 	 * If this buffer is currently syncing out, and we are are
2986 	 * still referencing it from db_data, we need to make a copy
2987 	 * of it in case we decide we want to dirty it again in this txg.
2988 	 */
2989 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2990 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2991 	    db->db_state == DB_CACHED && db->db_data_pending) {
2992 		dbuf_dirty_record_t *dr = db->db_data_pending;
2993 		if (dr->dt.dl.dr_data == db->db_buf)
2994 			dbuf_hold_copy(dn, db, dr);
2995 	}
2996 
2997 	if (multilist_link_active(&db->db_cache_link)) {
2998 		ASSERT(zfs_refcount_is_zero(&db->db_holds));
2999 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3000 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3001 
3002 		multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
3003 		(void) zfs_refcount_remove_many(
3004 		    &dbuf_caches[db->db_caching_status].size,
3005 		    db->db.db_size, db);
3006 
3007 		db->db_caching_status = DB_NO_CACHE;
3008 	}
3009 	(void) zfs_refcount_add(&db->db_holds, tag);
3010 	DBUF_VERIFY(db);
3011 	mutex_exit(&db->db_mtx);
3012 
3013 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
3014 	if (parent)
3015 		dbuf_rele(parent, NULL);
3016 
3017 	ASSERT3P(DB_DNODE(db), ==, dn);
3018 	ASSERT3U(db->db_blkid, ==, blkid);
3019 	ASSERT3U(db->db_level, ==, level);
3020 	*dbp = db;
3021 
3022 	return (0);
3023 }
3024 
3025 dmu_buf_impl_t *
3026 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3027 {
3028 	return (dbuf_hold_level(dn, 0, blkid, tag));
3029 }
3030 
3031 dmu_buf_impl_t *
3032 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3033 {
3034 	dmu_buf_impl_t *db;
3035 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3036 	return (err ? NULL : db);
3037 }
3038 
3039 void
3040 dbuf_create_bonus(dnode_t *dn)
3041 {
3042 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3043 
3044 	ASSERT(dn->dn_bonus == NULL);
3045 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3046 }
3047 
3048 int
3049 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3050 {
3051 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3052 
3053 	if (db->db_blkid != DMU_SPILL_BLKID)
3054 		return (SET_ERROR(ENOTSUP));
3055 	if (blksz == 0)
3056 		blksz = SPA_MINBLOCKSIZE;
3057 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3058 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3059 
3060 	dbuf_new_size(db, blksz, tx);
3061 
3062 	return (0);
3063 }
3064 
3065 void
3066 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3067 {
3068 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3069 }
3070 
3071 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3072 void
3073 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3074 {
3075 	int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3076 	ASSERT3S(holds, >, 1);
3077 }
3078 
3079 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3080 boolean_t
3081 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3082     void *tag)
3083 {
3084 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3085 	dmu_buf_impl_t *found_db;
3086 	boolean_t result = B_FALSE;
3087 
3088 	if (blkid == DMU_BONUS_BLKID)
3089 		found_db = dbuf_find_bonus(os, obj);
3090 	else
3091 		found_db = dbuf_find(os, obj, 0, blkid);
3092 
3093 	if (found_db != NULL) {
3094 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3095 			(void) zfs_refcount_add(&db->db_holds, tag);
3096 			result = B_TRUE;
3097 		}
3098 		mutex_exit(&found_db->db_mtx);
3099 	}
3100 	return (result);
3101 }
3102 
3103 /*
3104  * If you call dbuf_rele() you had better not be referencing the dnode handle
3105  * unless you have some other direct or indirect hold on the dnode. (An indirect
3106  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3107  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3108  * dnode's parent dbuf evicting its dnode handles.
3109  */
3110 void
3111 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3112 {
3113 	mutex_enter(&db->db_mtx);
3114 	dbuf_rele_and_unlock(db, tag, B_FALSE);
3115 }
3116 
3117 void
3118 dmu_buf_rele(dmu_buf_t *db, void *tag)
3119 {
3120 	dbuf_rele((dmu_buf_impl_t *)db, tag);
3121 }
3122 
3123 /*
3124  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
3125  * db_dirtycnt and db_holds to be updated atomically.  The 'evicting'
3126  * argument should be set if we are already in the dbuf-evicting code
3127  * path, in which case we don't want to recursively evict.  This allows us to
3128  * avoid deeply nested stacks that would have a call flow similar to this:
3129  *
3130  * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3131  *	^						|
3132  *	|						|
3133  *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
3134  *
3135  */
3136 void
3137 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
3138 {
3139 	int64_t holds;
3140 
3141 	ASSERT(MUTEX_HELD(&db->db_mtx));
3142 	DBUF_VERIFY(db);
3143 
3144 	/*
3145 	 * Remove the reference to the dbuf before removing its hold on the
3146 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
3147 	 * buffer has a corresponding dnode hold.
3148 	 */
3149 	holds = zfs_refcount_remove(&db->db_holds, tag);
3150 	ASSERT(holds >= 0);
3151 
3152 	/*
3153 	 * We can't freeze indirects if there is a possibility that they
3154 	 * may be modified in the current syncing context.
3155 	 */
3156 	if (db->db_buf != NULL &&
3157 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3158 		arc_buf_freeze(db->db_buf);
3159 	}
3160 
3161 	if (holds == db->db_dirtycnt &&
3162 	    db->db_level == 0 && db->db_user_immediate_evict)
3163 		dbuf_evict_user(db);
3164 
3165 	if (holds == 0) {
3166 		if (db->db_blkid == DMU_BONUS_BLKID) {
3167 			dnode_t *dn;
3168 			boolean_t evict_dbuf = db->db_pending_evict;
3169 
3170 			/*
3171 			 * If the dnode moves here, we cannot cross this
3172 			 * barrier until the move completes.
3173 			 */
3174 			DB_DNODE_ENTER(db);
3175 
3176 			dn = DB_DNODE(db);
3177 			atomic_dec_32(&dn->dn_dbufs_count);
3178 
3179 			/*
3180 			 * Decrementing the dbuf count means that the bonus
3181 			 * buffer's dnode hold is no longer discounted in
3182 			 * dnode_move(). The dnode cannot move until after
3183 			 * the dnode_rele() below.
3184 			 */
3185 			DB_DNODE_EXIT(db);
3186 
3187 			/*
3188 			 * Do not reference db after its lock is dropped.
3189 			 * Another thread may evict it.
3190 			 */
3191 			mutex_exit(&db->db_mtx);
3192 
3193 			if (evict_dbuf)
3194 				dnode_evict_bonus(dn);
3195 
3196 			dnode_rele(dn, db);
3197 		} else if (db->db_buf == NULL) {
3198 			/*
3199 			 * This is a special case: we never associated this
3200 			 * dbuf with any data allocated from the ARC.
3201 			 */
3202 			ASSERT(db->db_state == DB_UNCACHED ||
3203 			    db->db_state == DB_NOFILL);
3204 			dbuf_destroy(db);
3205 		} else if (arc_released(db->db_buf)) {
3206 			/*
3207 			 * This dbuf has anonymous data associated with it.
3208 			 */
3209 			dbuf_destroy(db);
3210 		} else {
3211 			boolean_t do_arc_evict = B_FALSE;
3212 			blkptr_t bp;
3213 			spa_t *spa = dmu_objset_spa(db->db_objset);
3214 
3215 			if (!DBUF_IS_CACHEABLE(db) &&
3216 			    db->db_blkptr != NULL &&
3217 			    !BP_IS_HOLE(db->db_blkptr) &&
3218 			    !BP_IS_EMBEDDED(db->db_blkptr)) {
3219 				do_arc_evict = B_TRUE;
3220 				bp = *db->db_blkptr;
3221 			}
3222 
3223 			if (!DBUF_IS_CACHEABLE(db) ||
3224 			    db->db_pending_evict) {
3225 				dbuf_destroy(db);
3226 			} else if (!multilist_link_active(&db->db_cache_link)) {
3227 				ASSERT3U(db->db_caching_status, ==,
3228 				    DB_NO_CACHE);
3229 
3230 				dbuf_cached_state_t dcs =
3231 				    dbuf_include_in_metadata_cache(db) ?
3232 				    DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3233 				db->db_caching_status = dcs;
3234 
3235 				multilist_insert(dbuf_caches[dcs].cache, db);
3236 				(void) zfs_refcount_add_many(
3237 				    &dbuf_caches[dcs].size, db->db.db_size, db);
3238 				mutex_exit(&db->db_mtx);
3239 
3240 				if (db->db_caching_status == DB_DBUF_CACHE &&
3241 				    !evicting) {
3242 					dbuf_evict_notify();
3243 				}
3244 			}
3245 
3246 			if (do_arc_evict)
3247 				arc_freed(spa, &bp);
3248 		}
3249 	} else {
3250 		mutex_exit(&db->db_mtx);
3251 	}
3252 
3253 }
3254 
3255 #pragma weak dmu_buf_refcount = dbuf_refcount
3256 uint64_t
3257 dbuf_refcount(dmu_buf_impl_t *db)
3258 {
3259 	return (zfs_refcount_count(&db->db_holds));
3260 }
3261 
3262 uint64_t
3263 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3264 {
3265 	uint64_t holds;
3266 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3267 
3268 	mutex_enter(&db->db_mtx);
3269 	ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3270 	holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3271 	mutex_exit(&db->db_mtx);
3272 
3273 	return (holds);
3274 }
3275 
3276 void *
3277 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3278     dmu_buf_user_t *new_user)
3279 {
3280 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3281 
3282 	mutex_enter(&db->db_mtx);
3283 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
3284 	if (db->db_user == old_user)
3285 		db->db_user = new_user;
3286 	else
3287 		old_user = db->db_user;
3288 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
3289 	mutex_exit(&db->db_mtx);
3290 
3291 	return (old_user);
3292 }
3293 
3294 void *
3295 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3296 {
3297 	return (dmu_buf_replace_user(db_fake, NULL, user));
3298 }
3299 
3300 void *
3301 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3302 {
3303 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3304 
3305 	db->db_user_immediate_evict = TRUE;
3306 	return (dmu_buf_set_user(db_fake, user));
3307 }
3308 
3309 void *
3310 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3311 {
3312 	return (dmu_buf_replace_user(db_fake, user, NULL));
3313 }
3314 
3315 void *
3316 dmu_buf_get_user(dmu_buf_t *db_fake)
3317 {
3318 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3319 
3320 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
3321 	return (db->db_user);
3322 }
3323 
3324 void
3325 dmu_buf_user_evict_wait()
3326 {
3327 	taskq_wait(dbu_evict_taskq);
3328 }
3329 
3330 blkptr_t *
3331 dmu_buf_get_blkptr(dmu_buf_t *db)
3332 {
3333 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3334 	return (dbi->db_blkptr);
3335 }
3336 
3337 objset_t *
3338 dmu_buf_get_objset(dmu_buf_t *db)
3339 {
3340 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3341 	return (dbi->db_objset);
3342 }
3343 
3344 dnode_t *
3345 dmu_buf_dnode_enter(dmu_buf_t *db)
3346 {
3347 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3348 	DB_DNODE_ENTER(dbi);
3349 	return (DB_DNODE(dbi));
3350 }
3351 
3352 void
3353 dmu_buf_dnode_exit(dmu_buf_t *db)
3354 {
3355 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3356 	DB_DNODE_EXIT(dbi);
3357 }
3358 
3359 static void
3360 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3361 {
3362 	/* ASSERT(dmu_tx_is_syncing(tx) */
3363 	ASSERT(MUTEX_HELD(&db->db_mtx));
3364 
3365 	if (db->db_blkptr != NULL)
3366 		return;
3367 
3368 	if (db->db_blkid == DMU_SPILL_BLKID) {
3369 		db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3370 		BP_ZERO(db->db_blkptr);
3371 		return;
3372 	}
3373 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3374 		/*
3375 		 * This buffer was allocated at a time when there was
3376 		 * no available blkptrs from the dnode, or it was
3377 		 * inappropriate to hook it in (i.e., nlevels mis-match).
3378 		 */
3379 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3380 		ASSERT(db->db_parent == NULL);
3381 		db->db_parent = dn->dn_dbuf;
3382 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3383 		DBUF_VERIFY(db);
3384 	} else {
3385 		dmu_buf_impl_t *parent = db->db_parent;
3386 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3387 
3388 		ASSERT(dn->dn_phys->dn_nlevels > 1);
3389 		if (parent == NULL) {
3390 			mutex_exit(&db->db_mtx);
3391 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
3392 			parent = dbuf_hold_level(dn, db->db_level + 1,
3393 			    db->db_blkid >> epbs, db);
3394 			rw_exit(&dn->dn_struct_rwlock);
3395 			mutex_enter(&db->db_mtx);
3396 			db->db_parent = parent;
3397 		}
3398 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
3399 		    (db->db_blkid & ((1ULL << epbs) - 1));
3400 		DBUF_VERIFY(db);
3401 	}
3402 }
3403 
3404 /*
3405  * When syncing out blocks of dnodes, adjust the block to deal with
3406  * encryption.  Normally, we make sure the block is decrypted before writing
3407  * it.  If we have crypt params, then we are writing a raw (encrypted) block,
3408  * from a raw receive.  In this case, set the ARC buf's crypt params so
3409  * that the BP will be filled with the correct byteorder, salt, iv, and mac.
3410  *
3411  * XXX we should handle decrypting the dnode block in dbuf_dirty().
3412  */
3413 static void
3414 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
3415 {
3416 	int err;
3417 	dmu_buf_impl_t *db = dr->dr_dbuf;
3418 
3419 	ASSERT(MUTEX_HELD(&db->db_mtx));
3420 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
3421 	ASSERT3U(db->db_level, ==, 0);
3422 
3423 	if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
3424 		zbookmark_phys_t zb;
3425 
3426 		/*
3427 		 * Unfortunately, there is currently no mechanism for
3428 		 * syncing context to handle decryption errors. An error
3429 		 * here is only possible if an attacker maliciously
3430 		 * changed a dnode block and updated the associated
3431 		 * checksums going up the block tree.
3432 		 */
3433 		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3434 		    db->db.db_object, db->db_level, db->db_blkid);
3435 		err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3436 		    &zb, B_TRUE);
3437 		if (err)
3438 			panic("Invalid dnode block MAC");
3439 	} else if (dr->dt.dl.dr_has_raw_params) {
3440 		(void) arc_release(dr->dt.dl.dr_data, db);
3441 		arc_convert_to_raw(dr->dt.dl.dr_data,
3442 		    dmu_objset_id(db->db_objset),
3443 		    dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
3444 		    dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
3445 	}
3446 }
3447 
3448 static void
3449 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3450 {
3451 	dmu_buf_impl_t *db = dr->dr_dbuf;
3452 	dnode_t *dn;
3453 	zio_t *zio;
3454 
3455 	ASSERT(dmu_tx_is_syncing(tx));
3456 
3457 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3458 
3459 	mutex_enter(&db->db_mtx);
3460 
3461 	ASSERT(db->db_level > 0);
3462 	DBUF_VERIFY(db);
3463 
3464 	/* Read the block if it hasn't been read yet. */
3465 	if (db->db_buf == NULL) {
3466 		mutex_exit(&db->db_mtx);
3467 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3468 		mutex_enter(&db->db_mtx);
3469 	}
3470 	ASSERT3U(db->db_state, ==, DB_CACHED);
3471 	ASSERT(db->db_buf != NULL);
3472 
3473 	DB_DNODE_ENTER(db);
3474 	dn = DB_DNODE(db);
3475 	/* Indirect block size must match what the dnode thinks it is. */
3476 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3477 	dbuf_check_blkptr(dn, db);
3478 	DB_DNODE_EXIT(db);
3479 
3480 	/* Provide the pending dirty record to child dbufs */
3481 	db->db_data_pending = dr;
3482 
3483 	mutex_exit(&db->db_mtx);
3484 
3485 	dbuf_write(dr, db->db_buf, tx);
3486 
3487 	zio = dr->dr_zio;
3488 	mutex_enter(&dr->dt.di.dr_mtx);
3489 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3490 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3491 	mutex_exit(&dr->dt.di.dr_mtx);
3492 	zio_nowait(zio);
3493 }
3494 
3495 static void
3496 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3497 {
3498 	arc_buf_t **datap = &dr->dt.dl.dr_data;
3499 	dmu_buf_impl_t *db = dr->dr_dbuf;
3500 	dnode_t *dn;
3501 	objset_t *os;
3502 	uint64_t txg = tx->tx_txg;
3503 
3504 	ASSERT(dmu_tx_is_syncing(tx));
3505 
3506 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3507 
3508 	mutex_enter(&db->db_mtx);
3509 	/*
3510 	 * To be synced, we must be dirtied.  But we
3511 	 * might have been freed after the dirty.
3512 	 */
3513 	if (db->db_state == DB_UNCACHED) {
3514 		/* This buffer has been freed since it was dirtied */
3515 		ASSERT(db->db.db_data == NULL);
3516 	} else if (db->db_state == DB_FILL) {
3517 		/* This buffer was freed and is now being re-filled */
3518 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3519 	} else {
3520 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3521 	}
3522 	DBUF_VERIFY(db);
3523 
3524 	DB_DNODE_ENTER(db);
3525 	dn = DB_DNODE(db);
3526 
3527 	if (db->db_blkid == DMU_SPILL_BLKID) {
3528 		mutex_enter(&dn->dn_mtx);
3529 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3530 		mutex_exit(&dn->dn_mtx);
3531 	}
3532 
3533 	/*
3534 	 * If this is a bonus buffer, simply copy the bonus data into the
3535 	 * dnode.  It will be written out when the dnode is synced (and it
3536 	 * will be synced, since it must have been dirty for dbuf_sync to
3537 	 * be called).
3538 	 */
3539 	if (db->db_blkid == DMU_BONUS_BLKID) {
3540 		dbuf_dirty_record_t **drp;
3541 
3542 		ASSERT(*datap != NULL);
3543 		ASSERT0(db->db_level);
3544 		ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3545 		    DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3546 		bcopy(*datap, DN_BONUS(dn->dn_phys),
3547 		    DN_MAX_BONUS_LEN(dn->dn_phys));
3548 		DB_DNODE_EXIT(db);
3549 
3550 		if (*datap != db->db.db_data) {
3551 			int slots = DB_DNODE(db)->dn_num_slots;
3552 			int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3553 			zio_buf_free(*datap, bonuslen);
3554 			arc_space_return(bonuslen, ARC_SPACE_BONUS);
3555 		}
3556 		db->db_data_pending = NULL;
3557 		drp = &db->db_last_dirty;
3558 		while (*drp != dr)
3559 			drp = &(*drp)->dr_next;
3560 		ASSERT(dr->dr_next == NULL);
3561 		ASSERT(dr->dr_dbuf == db);
3562 		*drp = dr->dr_next;
3563 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
3564 		ASSERT(db->db_dirtycnt > 0);
3565 		db->db_dirtycnt -= 1;
3566 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
3567 		return;
3568 	}
3569 
3570 	os = dn->dn_objset;
3571 
3572 	/*
3573 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
3574 	 * operation to sneak in. As a result, we need to ensure that we
3575 	 * don't check the dr_override_state until we have returned from
3576 	 * dbuf_check_blkptr.
3577 	 */
3578 	dbuf_check_blkptr(dn, db);
3579 
3580 	/*
3581 	 * If this buffer is in the middle of an immediate write,
3582 	 * wait for the synchronous IO to complete.
3583 	 */
3584 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3585 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3586 		cv_wait(&db->db_changed, &db->db_mtx);
3587 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3588 	}
3589 
3590 	/*
3591 	 * If this is a dnode block, ensure it is appropriately encrypted
3592 	 * or decrypted, depending on what we are writing to it this txg.
3593 	 */
3594 	if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3595 		dbuf_prepare_encrypted_dnode_leaf(dr);
3596 
3597 	if (db->db_state != DB_NOFILL &&
3598 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3599 	    zfs_refcount_count(&db->db_holds) > 1 &&
3600 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3601 	    *datap == db->db_buf) {
3602 		/*
3603 		 * If this buffer is currently "in use" (i.e., there
3604 		 * are active holds and db_data still references it),
3605 		 * then make a copy before we start the write so that
3606 		 * any modifications from the open txg will not leak
3607 		 * into this write.
3608 		 *
3609 		 * NOTE: this copy does not need to be made for
3610 		 * objects only modified in the syncing context (e.g.
3611 		 * DNONE_DNODE blocks).
3612 		 */
3613 		int psize = arc_buf_size(*datap);
3614 		int lsize = arc_buf_lsize(*datap);
3615 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3616 		enum zio_compress compress_type = arc_get_compression(*datap);
3617 
3618 		if (arc_is_encrypted(*datap)) {
3619 			boolean_t byteorder;
3620 			uint8_t salt[ZIO_DATA_SALT_LEN];
3621 			uint8_t iv[ZIO_DATA_IV_LEN];
3622 			uint8_t mac[ZIO_DATA_MAC_LEN];
3623 
3624 			arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3625 			*datap = arc_alloc_raw_buf(os->os_spa, db,
3626 			    dmu_objset_id(os), byteorder, salt, iv, mac,
3627 			    dn->dn_type, psize, lsize, compress_type);
3628 		} else if (compress_type != ZIO_COMPRESS_OFF) {
3629 			ASSERT3U(type, ==, ARC_BUFC_DATA);
3630 			*datap = arc_alloc_compressed_buf(os->os_spa, db,
3631 			    psize, lsize, compress_type);
3632 		} else {
3633 			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
3634 		}
3635 		bcopy(db->db.db_data, (*datap)->b_data, psize);
3636 	}
3637 	db->db_data_pending = dr;
3638 
3639 	mutex_exit(&db->db_mtx);
3640 
3641 	dbuf_write(dr, *datap, tx);
3642 
3643 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3644 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3645 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3646 		DB_DNODE_EXIT(db);
3647 	} else {
3648 		/*
3649 		 * Although zio_nowait() does not "wait for an IO", it does
3650 		 * initiate the IO. If this is an empty write it seems plausible
3651 		 * that the IO could actually be completed before the nowait
3652 		 * returns. We need to DB_DNODE_EXIT() first in case
3653 		 * zio_nowait() invalidates the dbuf.
3654 		 */
3655 		DB_DNODE_EXIT(db);
3656 		zio_nowait(dr->dr_zio);
3657 	}
3658 }
3659 
3660 void
3661 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3662 {
3663 	dbuf_dirty_record_t *dr;
3664 
3665 	while (dr = list_head(list)) {
3666 		if (dr->dr_zio != NULL) {
3667 			/*
3668 			 * If we find an already initialized zio then we
3669 			 * are processing the meta-dnode, and we have finished.
3670 			 * The dbufs for all dnodes are put back on the list
3671 			 * during processing, so that we can zio_wait()
3672 			 * these IOs after initiating all child IOs.
3673 			 */
3674 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3675 			    DMU_META_DNODE_OBJECT);
3676 			break;
3677 		}
3678 		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3679 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3680 			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3681 		}
3682 		list_remove(list, dr);
3683 		if (dr->dr_dbuf->db_level > 0)
3684 			dbuf_sync_indirect(dr, tx);
3685 		else
3686 			dbuf_sync_leaf(dr, tx);
3687 	}
3688 }
3689 
3690 /* ARGSUSED */
3691 static void
3692 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3693 {
3694 	dmu_buf_impl_t *db = vdb;
3695 	dnode_t *dn;
3696 	blkptr_t *bp = zio->io_bp;
3697 	blkptr_t *bp_orig = &zio->io_bp_orig;
3698 	spa_t *spa = zio->io_spa;
3699 	int64_t delta;
3700 	uint64_t fill = 0;
3701 	int i;
3702 
3703 	ASSERT3P(db->db_blkptr, !=, NULL);
3704 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3705 
3706 	DB_DNODE_ENTER(db);
3707 	dn = DB_DNODE(db);
3708 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3709 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3710 	zio->io_prev_space_delta = delta;
3711 
3712 	if (bp->blk_birth != 0) {
3713 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3714 		    BP_GET_TYPE(bp) == dn->dn_type) ||
3715 		    (db->db_blkid == DMU_SPILL_BLKID &&
3716 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3717 		    BP_IS_EMBEDDED(bp));
3718 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3719 	}
3720 
3721 	mutex_enter(&db->db_mtx);
3722 
3723 #ifdef ZFS_DEBUG
3724 	if (db->db_blkid == DMU_SPILL_BLKID) {
3725 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3726 		ASSERT(!(BP_IS_HOLE(bp)) &&
3727 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3728 	}
3729 #endif
3730 
3731 	if (db->db_level == 0) {
3732 		mutex_enter(&dn->dn_mtx);
3733 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3734 		    db->db_blkid != DMU_SPILL_BLKID) {
3735 			ASSERT0(db->db_objset->os_raw_receive);
3736 			dn->dn_phys->dn_maxblkid = db->db_blkid;
3737 		}
3738 		mutex_exit(&dn->dn_mtx);
3739 
3740 		if (dn->dn_type == DMU_OT_DNODE) {
3741 			i = 0;
3742 			while (i < db->db.db_size) {
3743 				dnode_phys_t *dnp =
3744 				    (void *)(((char *)db->db.db_data) + i);
3745 
3746 				i += DNODE_MIN_SIZE;
3747 				if (dnp->dn_type != DMU_OT_NONE) {
3748 					fill++;
3749 					i += dnp->dn_extra_slots *
3750 					    DNODE_MIN_SIZE;
3751 				}
3752 			}
3753 		} else {
3754 			if (BP_IS_HOLE(bp)) {
3755 				fill = 0;
3756 			} else {
3757 				fill = 1;
3758 			}
3759 		}
3760 	} else {
3761 		blkptr_t *ibp = db->db.db_data;
3762 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3763 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3764 			if (BP_IS_HOLE(ibp))
3765 				continue;
3766 			fill += BP_GET_FILL(ibp);
3767 		}
3768 	}
3769 	DB_DNODE_EXIT(db);
3770 
3771 	if (!BP_IS_EMBEDDED(bp))
3772 		BP_SET_FILL(bp, fill);
3773 
3774 	mutex_exit(&db->db_mtx);
3775 
3776 	db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
3777 	*db->db_blkptr = *bp;
3778 	dmu_buf_unlock_parent(db, dblt, FTAG);
3779 }
3780 
3781 /* ARGSUSED */
3782 /*
3783  * This function gets called just prior to running through the compression
3784  * stage of the zio pipeline. If we're an indirect block comprised of only
3785  * holes, then we want this indirect to be compressed away to a hole. In
3786  * order to do that we must zero out any information about the holes that
3787  * this indirect points to prior to before we try to compress it.
3788  */
3789 static void
3790 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3791 {
3792 	dmu_buf_impl_t *db = vdb;
3793 	dnode_t *dn;
3794 	blkptr_t *bp;
3795 	unsigned int epbs, i;
3796 
3797 	ASSERT3U(db->db_level, >, 0);
3798 	DB_DNODE_ENTER(db);
3799 	dn = DB_DNODE(db);
3800 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3801 	ASSERT3U(epbs, <, 31);
3802 
3803 	/* Determine if all our children are holes */
3804 	for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3805 		if (!BP_IS_HOLE(bp))
3806 			break;
3807 	}
3808 
3809 	/*
3810 	 * If all the children are holes, then zero them all out so that
3811 	 * we may get compressed away.
3812 	 */
3813 	if (i == 1 << epbs) {
3814 		/*
3815 		 * We only found holes. Grab the rwlock to prevent
3816 		 * anybody from reading the blocks we're about to
3817 		 * zero out.
3818 		 */
3819 		rw_enter(&db->db_rwlock, RW_WRITER);
3820 		bzero(db->db.db_data, db->db.db_size);
3821 		rw_exit(&db->db_rwlock);
3822 	}
3823 	DB_DNODE_EXIT(db);
3824 }
3825 
3826 /*
3827  * The SPA will call this callback several times for each zio - once
3828  * for every physical child i/o (zio->io_phys_children times).  This
3829  * allows the DMU to monitor the progress of each logical i/o.  For example,
3830  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3831  * block.  There may be a long delay before all copies/fragments are completed,
3832  * so this callback allows us to retire dirty space gradually, as the physical
3833  * i/os complete.
3834  */
3835 /* ARGSUSED */
3836 static void
3837 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3838 {
3839 	dmu_buf_impl_t *db = arg;
3840 	objset_t *os = db->db_objset;
3841 	dsl_pool_t *dp = dmu_objset_pool(os);
3842 	dbuf_dirty_record_t *dr;
3843 	int delta = 0;
3844 
3845 	dr = db->db_data_pending;
3846 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3847 
3848 	/*
3849 	 * The callback will be called io_phys_children times.  Retire one
3850 	 * portion of our dirty space each time we are called.  Any rounding
3851 	 * error will be cleaned up by dsl_pool_sync()'s call to
3852 	 * dsl_pool_undirty_space().
3853 	 */
3854 	delta = dr->dr_accounted / zio->io_phys_children;
3855 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
3856 }
3857 
3858 /* ARGSUSED */
3859 static void
3860 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3861 {
3862 	dmu_buf_impl_t *db = vdb;
3863 	blkptr_t *bp_orig = &zio->io_bp_orig;
3864 	blkptr_t *bp = db->db_blkptr;
3865 	objset_t *os = db->db_objset;
3866 	dmu_tx_t *tx = os->os_synctx;
3867 	dbuf_dirty_record_t **drp, *dr;
3868 
3869 	ASSERT0(zio->io_error);
3870 	ASSERT(db->db_blkptr == bp);
3871 
3872 	/*
3873 	 * For nopwrites and rewrites we ensure that the bp matches our
3874 	 * original and bypass all the accounting.
3875 	 */
3876 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3877 		ASSERT(BP_EQUAL(bp, bp_orig));
3878 	} else {
3879 		dsl_dataset_t *ds = os->os_dsl_dataset;
3880 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3881 		dsl_dataset_block_born(ds, bp, tx);
3882 	}
3883 
3884 	mutex_enter(&db->db_mtx);
3885 
3886 	DBUF_VERIFY(db);
3887 
3888 	drp = &db->db_last_dirty;
3889 	while ((dr = *drp) != db->db_data_pending)
3890 		drp = &dr->dr_next;
3891 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3892 	ASSERT(dr->dr_dbuf == db);
3893 	ASSERT(dr->dr_next == NULL);
3894 	*drp = dr->dr_next;
3895 
3896 #ifdef ZFS_DEBUG
3897 	if (db->db_blkid == DMU_SPILL_BLKID) {
3898 		dnode_t *dn;
3899 
3900 		DB_DNODE_ENTER(db);
3901 		dn = DB_DNODE(db);
3902 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3903 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3904 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3905 		DB_DNODE_EXIT(db);
3906 	}
3907 #endif
3908 
3909 	if (db->db_level == 0) {
3910 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3911 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3912 		if (db->db_state != DB_NOFILL) {
3913 			if (dr->dt.dl.dr_data != db->db_buf)
3914 				arc_buf_destroy(dr->dt.dl.dr_data, db);
3915 		}
3916 	} else {
3917 		dnode_t *dn;
3918 
3919 		DB_DNODE_ENTER(db);
3920 		dn = DB_DNODE(db);
3921 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3922 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3923 		if (!BP_IS_HOLE(db->db_blkptr)) {
3924 			int epbs =
3925 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3926 			ASSERT3U(db->db_blkid, <=,
3927 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3928 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3929 			    db->db.db_size);
3930 		}
3931 		DB_DNODE_EXIT(db);
3932 		mutex_destroy(&dr->dt.di.dr_mtx);
3933 		list_destroy(&dr->dt.di.dr_children);
3934 	}
3935 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3936 
3937 	cv_broadcast(&db->db_changed);
3938 	ASSERT(db->db_dirtycnt > 0);
3939 	db->db_dirtycnt -= 1;
3940 	db->db_data_pending = NULL;
3941 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
3942 }
3943 
3944 static void
3945 dbuf_write_nofill_ready(zio_t *zio)
3946 {
3947 	dbuf_write_ready(zio, NULL, zio->io_private);
3948 }
3949 
3950 static void
3951 dbuf_write_nofill_done(zio_t *zio)
3952 {
3953 	dbuf_write_done(zio, NULL, zio->io_private);
3954 }
3955 
3956 static void
3957 dbuf_write_override_ready(zio_t *zio)
3958 {
3959 	dbuf_dirty_record_t *dr = zio->io_private;
3960 	dmu_buf_impl_t *db = dr->dr_dbuf;
3961 
3962 	dbuf_write_ready(zio, NULL, db);
3963 }
3964 
3965 static void
3966 dbuf_write_override_done(zio_t *zio)
3967 {
3968 	dbuf_dirty_record_t *dr = zio->io_private;
3969 	dmu_buf_impl_t *db = dr->dr_dbuf;
3970 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3971 
3972 	mutex_enter(&db->db_mtx);
3973 	if (!BP_EQUAL(zio->io_bp, obp)) {
3974 		if (!BP_IS_HOLE(obp))
3975 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3976 		arc_release(dr->dt.dl.dr_data, db);
3977 	}
3978 	mutex_exit(&db->db_mtx);
3979 	dbuf_write_done(zio, NULL, db);
3980 
3981 	if (zio->io_abd != NULL)
3982 		abd_put(zio->io_abd);
3983 }
3984 
3985 typedef struct dbuf_remap_impl_callback_arg {
3986 	objset_t	*drica_os;
3987 	uint64_t	drica_blk_birth;
3988 	dmu_tx_t	*drica_tx;
3989 } dbuf_remap_impl_callback_arg_t;
3990 
3991 static void
3992 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
3993     void *arg)
3994 {
3995 	dbuf_remap_impl_callback_arg_t *drica = arg;
3996 	objset_t *os = drica->drica_os;
3997 	spa_t *spa = dmu_objset_spa(os);
3998 	dmu_tx_t *tx = drica->drica_tx;
3999 
4000 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4001 
4002 	if (os == spa_meta_objset(spa)) {
4003 		spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4004 	} else {
4005 		dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4006 		    size, drica->drica_blk_birth, tx);
4007 	}
4008 }
4009 
4010 static void
4011 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4012 {
4013 	blkptr_t bp_copy = *bp;
4014 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4015 	dbuf_remap_impl_callback_arg_t drica;
4016 
4017 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4018 
4019 	drica.drica_os = dn->dn_objset;
4020 	drica.drica_blk_birth = bp->blk_birth;
4021 	drica.drica_tx = tx;
4022 	if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4023 	    &drica)) {
4024 		/*
4025 		 * The db_rwlock prevents dbuf_read_impl() from
4026 		 * dereferencing the BP while we are changing it.  To
4027 		 * avoid lock contention, only grab it when we are actually
4028 		 * changing the BP.
4029 		 */
4030 		if (rw != NULL)
4031 			rw_enter(rw, RW_WRITER);
4032 		*bp = bp_copy;
4033 		if (rw != NULL)
4034 			rw_exit(rw);
4035 	}
4036 }
4037 
4038 /*
4039  * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
4040  * to remap a copy of every bp in the dbuf.
4041  */
4042 boolean_t
4043 dbuf_can_remap(const dmu_buf_impl_t *db)
4044 {
4045 	spa_t *spa = dmu_objset_spa(db->db_objset);
4046 	blkptr_t *bp = db->db.db_data;
4047 	boolean_t ret = B_FALSE;
4048 
4049 	ASSERT3U(db->db_level, >, 0);
4050 	ASSERT3S(db->db_state, ==, DB_CACHED);
4051 
4052 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4053 
4054 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4055 	for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4056 		blkptr_t bp_copy = bp[i];
4057 		if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4058 			ret = B_TRUE;
4059 			break;
4060 		}
4061 	}
4062 	spa_config_exit(spa, SCL_VDEV, FTAG);
4063 
4064 	return (ret);
4065 }
4066 
4067 boolean_t
4068 dnode_needs_remap(const dnode_t *dn)
4069 {
4070 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4071 	boolean_t ret = B_FALSE;
4072 
4073 	if (dn->dn_phys->dn_nlevels == 0) {
4074 		return (B_FALSE);
4075 	}
4076 
4077 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4078 
4079 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4080 	for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
4081 		blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
4082 		if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4083 			ret = B_TRUE;
4084 			break;
4085 		}
4086 	}
4087 	spa_config_exit(spa, SCL_VDEV, FTAG);
4088 
4089 	return (ret);
4090 }
4091 
4092 /*
4093  * Remap any existing BP's to concrete vdevs, if possible.
4094  */
4095 static void
4096 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4097 {
4098 	spa_t *spa = dmu_objset_spa(db->db_objset);
4099 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4100 
4101 	if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4102 		return;
4103 
4104 	if (db->db_level > 0) {
4105 		blkptr_t *bp = db->db.db_data;
4106 		for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4107 			dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
4108 		}
4109 	} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4110 		dnode_phys_t *dnp = db->db.db_data;
4111 		ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4112 		    DMU_OT_DNODE);
4113 		for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; i++) {
4114 			for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4115 				krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
4116 				    &dn->dn_dbuf->db_rwlock);
4117 				dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
4118 				    tx);
4119 			}
4120 		}
4121 	}
4122 }
4123 
4124 
4125 /* Issue I/O to commit a dirty buffer to disk. */
4126 static void
4127 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4128 {
4129 	dmu_buf_impl_t *db = dr->dr_dbuf;
4130 	dnode_t *dn;
4131 	objset_t *os;
4132 	dmu_buf_impl_t *parent = db->db_parent;
4133 	uint64_t txg = tx->tx_txg;
4134 	zbookmark_phys_t zb;
4135 	zio_prop_t zp;
4136 	zio_t *zio;
4137 	int wp_flag = 0;
4138 
4139 	ASSERT(dmu_tx_is_syncing(tx));
4140 
4141 	DB_DNODE_ENTER(db);
4142 	dn = DB_DNODE(db);
4143 	os = dn->dn_objset;
4144 
4145 	if (db->db_state != DB_NOFILL) {
4146 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4147 			/*
4148 			 * Private object buffers are released here rather
4149 			 * than in dbuf_dirty() since they are only modified
4150 			 * in the syncing context and we don't want the
4151 			 * overhead of making multiple copies of the data.
4152 			 */
4153 			if (BP_IS_HOLE(db->db_blkptr)) {
4154 				arc_buf_thaw(data);
4155 			} else {
4156 				dbuf_release_bp(db);
4157 			}
4158 			dbuf_remap(dn, db, tx);
4159 		}
4160 	}
4161 
4162 	if (parent != dn->dn_dbuf) {
4163 		/* Our parent is an indirect block. */
4164 		/* We have a dirty parent that has been scheduled for write. */
4165 		ASSERT(parent && parent->db_data_pending);
4166 		/* Our parent's buffer is one level closer to the dnode. */
4167 		ASSERT(db->db_level == parent->db_level-1);
4168 		/*
4169 		 * We're about to modify our parent's db_data by modifying
4170 		 * our block pointer, so the parent must be released.
4171 		 */
4172 		ASSERT(arc_released(parent->db_buf));
4173 		zio = parent->db_data_pending->dr_zio;
4174 	} else {
4175 		/* Our parent is the dnode itself. */
4176 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4177 		    db->db_blkid != DMU_SPILL_BLKID) ||
4178 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4179 		if (db->db_blkid != DMU_SPILL_BLKID)
4180 			ASSERT3P(db->db_blkptr, ==,
4181 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
4182 		zio = dn->dn_zio;
4183 	}
4184 
4185 	ASSERT(db->db_level == 0 || data == db->db_buf);
4186 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4187 	ASSERT(zio);
4188 
4189 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4190 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4191 	    db->db.db_object, db->db_level, db->db_blkid);
4192 
4193 	if (db->db_blkid == DMU_SPILL_BLKID)
4194 		wp_flag = WP_SPILL;
4195 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4196 
4197 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4198 
4199 	DB_DNODE_EXIT(db);
4200 
4201 	/*
4202 	 * We copy the blkptr now (rather than when we instantiate the dirty
4203 	 * record), because its value can change between open context and
4204 	 * syncing context. We do not need to hold dn_struct_rwlock to read
4205 	 * db_blkptr because we are in syncing context.
4206 	 */
4207 	dr->dr_bp_copy = *db->db_blkptr;
4208 
4209 	if (db->db_level == 0 &&
4210 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4211 		/*
4212 		 * The BP for this block has been provided by open context
4213 		 * (by dmu_sync() or dmu_buf_write_embedded()).
4214 		 */
4215 		abd_t *contents = (data != NULL) ?
4216 		    abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4217 
4218 		dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy,
4219 		    contents, db->db.db_size, db->db.db_size, &zp,
4220 		    dbuf_write_override_ready, NULL, NULL,
4221 		    dbuf_write_override_done,
4222 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4223 		mutex_enter(&db->db_mtx);
4224 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4225 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4226 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4227 		mutex_exit(&db->db_mtx);
4228 	} else if (db->db_state == DB_NOFILL) {
4229 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4230 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4231 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
4232 		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4233 		    dbuf_write_nofill_ready, NULL, NULL,
4234 		    dbuf_write_nofill_done, db,
4235 		    ZIO_PRIORITY_ASYNC_WRITE,
4236 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4237 	} else {
4238 		ASSERT(arc_released(data));
4239 
4240 		/*
4241 		 * For indirect blocks, we want to setup the children
4242 		 * ready callback so that we can properly handle an indirect
4243 		 * block that only contains holes.
4244 		 */
4245 		arc_write_done_func_t *children_ready_cb = NULL;
4246 		if (db->db_level != 0)
4247 			children_ready_cb = dbuf_write_children_ready;
4248 
4249 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
4250 		    &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4251 		    &zp, dbuf_write_ready, children_ready_cb,
4252 		    dbuf_write_physdone, dbuf_write_done, db,
4253 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4254 	}
4255 }
4256