1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 #include <sys/abd.h> 50 #include <sys/vdev.h> 51 #include <sys/cityhash.h> 52 #include <sys/spa_impl.h> 53 54 uint_t zfs_dbuf_evict_key; 55 56 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 57 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 58 59 #ifndef __lint 60 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 61 dmu_buf_evict_func_t *evict_func_sync, 62 dmu_buf_evict_func_t *evict_func_async, 63 dmu_buf_t **clear_on_evict_dbufp); 64 #endif /* ! __lint */ 65 66 /* 67 * Global data structures and functions for the dbuf cache. 68 */ 69 static kmem_cache_t *dbuf_kmem_cache; 70 static taskq_t *dbu_evict_taskq; 71 72 static kthread_t *dbuf_cache_evict_thread; 73 static kmutex_t dbuf_evict_lock; 74 static kcondvar_t dbuf_evict_cv; 75 static boolean_t dbuf_evict_thread_exit; 76 77 /* 78 * There are two dbuf caches; each dbuf can only be in one of them at a time. 79 * 80 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 81 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 82 * that represent the metadata that describes filesystems/snapshots/ 83 * bookmarks/properties/etc. We only evict from this cache when we export a 84 * pool, to short-circuit as much I/O as possible for all administrative 85 * commands that need the metadata. There is no eviction policy for this 86 * cache, because we try to only include types in it which would occupy a 87 * very small amount of space per object but create a large impact on the 88 * performance of these commands. Instead, after it reaches a maximum size 89 * (which should only happen on very small memory systems with a very large 90 * number of filesystem objects), we stop taking new dbufs into the 91 * metadata cache, instead putting them in the normal dbuf cache. 92 * 93 * 2. LRU cache of dbufs. The "dbuf cache" maintains a list of dbufs that 94 * are not currently held but have been recently released. These dbufs 95 * are not eligible for arc eviction until they are aged out of the cache. 96 * Dbufs that are aged out of the cache will be immediately destroyed and 97 * become eligible for arc eviction. 98 * 99 * Dbufs are added to these caches once the last hold is released. If a dbuf is 100 * later accessed and still exists in the dbuf cache, then it will be removed 101 * from the cache and later re-added to the head of the cache. 102 * 103 * If a given dbuf meets the requirements for the metadata cache, it will go 104 * there, otherwise it will be considered for the generic LRU dbuf cache. The 105 * caches and the refcounts tracking their sizes are stored in an array indexed 106 * by those caches' matching enum values (from dbuf_cached_state_t). 107 */ 108 typedef struct dbuf_cache { 109 multilist_t *cache; 110 refcount_t size; 111 } dbuf_cache_t; 112 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 113 114 /* Size limits for the caches */ 115 uint64_t dbuf_cache_max_bytes = 0; 116 uint64_t dbuf_metadata_cache_max_bytes = 0; 117 /* Set the default sizes of the caches to log2 fraction of arc size */ 118 int dbuf_cache_shift = 5; 119 int dbuf_metadata_cache_shift = 6; 120 121 /* 122 * For diagnostic purposes, this is incremented whenever we can't add 123 * something to the metadata cache because it's full, and instead put 124 * the data in the regular dbuf cache. 125 */ 126 uint64_t dbuf_metadata_cache_overflow; 127 128 /* 129 * The LRU dbuf cache uses a three-stage eviction policy: 130 * - A low water marker designates when the dbuf eviction thread 131 * should stop evicting from the dbuf cache. 132 * - When we reach the maximum size (aka mid water mark), we 133 * signal the eviction thread to run. 134 * - The high water mark indicates when the eviction thread 135 * is unable to keep up with the incoming load and eviction must 136 * happen in the context of the calling thread. 137 * 138 * The dbuf cache: 139 * (max size) 140 * low water mid water hi water 141 * +----------------------------------------+----------+----------+ 142 * | | | | 143 * | | | | 144 * | | | | 145 * | | | | 146 * +----------------------------------------+----------+----------+ 147 * stop signal evict 148 * evicting eviction directly 149 * thread 150 * 151 * The high and low water marks indicate the operating range for the eviction 152 * thread. The low water mark is, by default, 90% of the total size of the 153 * cache and the high water mark is at 110% (both of these percentages can be 154 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 155 * respectively). The eviction thread will try to ensure that the cache remains 156 * within this range by waking up every second and checking if the cache is 157 * above the low water mark. The thread can also be woken up by callers adding 158 * elements into the cache if the cache is larger than the mid water (i.e max 159 * cache size). Once the eviction thread is woken up and eviction is required, 160 * it will continue evicting buffers until it's able to reduce the cache size 161 * to the low water mark. If the cache size continues to grow and hits the high 162 * water mark, then callers adding elments to the cache will begin to evict 163 * directly from the cache until the cache is no longer above the high water 164 * mark. 165 */ 166 167 /* 168 * The percentage above and below the maximum cache size. 169 */ 170 uint_t dbuf_cache_hiwater_pct = 10; 171 uint_t dbuf_cache_lowater_pct = 10; 172 173 /* ARGSUSED */ 174 static int 175 dbuf_cons(void *vdb, void *unused, int kmflag) 176 { 177 dmu_buf_impl_t *db = vdb; 178 bzero(db, sizeof (dmu_buf_impl_t)); 179 180 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 181 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 182 multilist_link_init(&db->db_cache_link); 183 refcount_create(&db->db_holds); 184 185 return (0); 186 } 187 188 /* ARGSUSED */ 189 static void 190 dbuf_dest(void *vdb, void *unused) 191 { 192 dmu_buf_impl_t *db = vdb; 193 mutex_destroy(&db->db_mtx); 194 cv_destroy(&db->db_changed); 195 ASSERT(!multilist_link_active(&db->db_cache_link)); 196 refcount_destroy(&db->db_holds); 197 } 198 199 /* 200 * dbuf hash table routines 201 */ 202 static dbuf_hash_table_t dbuf_hash_table; 203 204 static uint64_t dbuf_hash_count; 205 206 /* 207 * We use Cityhash for this. It's fast, and has good hash properties without 208 * requiring any large static buffers. 209 */ 210 static uint64_t 211 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 212 { 213 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 214 } 215 216 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 217 ((dbuf)->db.db_object == (obj) && \ 218 (dbuf)->db_objset == (os) && \ 219 (dbuf)->db_level == (level) && \ 220 (dbuf)->db_blkid == (blkid)) 221 222 dmu_buf_impl_t * 223 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 224 { 225 dbuf_hash_table_t *h = &dbuf_hash_table; 226 uint64_t hv = dbuf_hash(os, obj, level, blkid); 227 uint64_t idx = hv & h->hash_table_mask; 228 dmu_buf_impl_t *db; 229 230 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 231 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 232 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 233 mutex_enter(&db->db_mtx); 234 if (db->db_state != DB_EVICTING) { 235 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 236 return (db); 237 } 238 mutex_exit(&db->db_mtx); 239 } 240 } 241 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 242 return (NULL); 243 } 244 245 static dmu_buf_impl_t * 246 dbuf_find_bonus(objset_t *os, uint64_t object) 247 { 248 dnode_t *dn; 249 dmu_buf_impl_t *db = NULL; 250 251 if (dnode_hold(os, object, FTAG, &dn) == 0) { 252 rw_enter(&dn->dn_struct_rwlock, RW_READER); 253 if (dn->dn_bonus != NULL) { 254 db = dn->dn_bonus; 255 mutex_enter(&db->db_mtx); 256 } 257 rw_exit(&dn->dn_struct_rwlock); 258 dnode_rele(dn, FTAG); 259 } 260 return (db); 261 } 262 263 /* 264 * Insert an entry into the hash table. If there is already an element 265 * equal to elem in the hash table, then the already existing element 266 * will be returned and the new element will not be inserted. 267 * Otherwise returns NULL. 268 */ 269 static dmu_buf_impl_t * 270 dbuf_hash_insert(dmu_buf_impl_t *db) 271 { 272 dbuf_hash_table_t *h = &dbuf_hash_table; 273 objset_t *os = db->db_objset; 274 uint64_t obj = db->db.db_object; 275 int level = db->db_level; 276 uint64_t blkid = db->db_blkid; 277 uint64_t hv = dbuf_hash(os, obj, level, blkid); 278 uint64_t idx = hv & h->hash_table_mask; 279 dmu_buf_impl_t *dbf; 280 281 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 282 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 283 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 284 mutex_enter(&dbf->db_mtx); 285 if (dbf->db_state != DB_EVICTING) { 286 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 287 return (dbf); 288 } 289 mutex_exit(&dbf->db_mtx); 290 } 291 } 292 293 mutex_enter(&db->db_mtx); 294 db->db_hash_next = h->hash_table[idx]; 295 h->hash_table[idx] = db; 296 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 297 atomic_inc_64(&dbuf_hash_count); 298 299 return (NULL); 300 } 301 302 /* 303 * Remove an entry from the hash table. It must be in the EVICTING state. 304 */ 305 static void 306 dbuf_hash_remove(dmu_buf_impl_t *db) 307 { 308 dbuf_hash_table_t *h = &dbuf_hash_table; 309 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 310 db->db_level, db->db_blkid); 311 uint64_t idx = hv & h->hash_table_mask; 312 dmu_buf_impl_t *dbf, **dbp; 313 314 /* 315 * We musn't hold db_mtx to maintain lock ordering: 316 * DBUF_HASH_MUTEX > db_mtx. 317 */ 318 ASSERT(refcount_is_zero(&db->db_holds)); 319 ASSERT(db->db_state == DB_EVICTING); 320 ASSERT(!MUTEX_HELD(&db->db_mtx)); 321 322 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 323 dbp = &h->hash_table[idx]; 324 while ((dbf = *dbp) != db) { 325 dbp = &dbf->db_hash_next; 326 ASSERT(dbf != NULL); 327 } 328 *dbp = db->db_hash_next; 329 db->db_hash_next = NULL; 330 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 331 atomic_dec_64(&dbuf_hash_count); 332 } 333 334 typedef enum { 335 DBVU_EVICTING, 336 DBVU_NOT_EVICTING 337 } dbvu_verify_type_t; 338 339 static void 340 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 341 { 342 #ifdef ZFS_DEBUG 343 int64_t holds; 344 345 if (db->db_user == NULL) 346 return; 347 348 /* Only data blocks support the attachment of user data. */ 349 ASSERT(db->db_level == 0); 350 351 /* Clients must resolve a dbuf before attaching user data. */ 352 ASSERT(db->db.db_data != NULL); 353 ASSERT3U(db->db_state, ==, DB_CACHED); 354 355 holds = refcount_count(&db->db_holds); 356 if (verify_type == DBVU_EVICTING) { 357 /* 358 * Immediate eviction occurs when holds == dirtycnt. 359 * For normal eviction buffers, holds is zero on 360 * eviction, except when dbuf_fix_old_data() calls 361 * dbuf_clear_data(). However, the hold count can grow 362 * during eviction even though db_mtx is held (see 363 * dmu_bonus_hold() for an example), so we can only 364 * test the generic invariant that holds >= dirtycnt. 365 */ 366 ASSERT3U(holds, >=, db->db_dirtycnt); 367 } else { 368 if (db->db_user_immediate_evict == TRUE) 369 ASSERT3U(holds, >=, db->db_dirtycnt); 370 else 371 ASSERT3U(holds, >, 0); 372 } 373 #endif 374 } 375 376 static void 377 dbuf_evict_user(dmu_buf_impl_t *db) 378 { 379 dmu_buf_user_t *dbu = db->db_user; 380 381 ASSERT(MUTEX_HELD(&db->db_mtx)); 382 383 if (dbu == NULL) 384 return; 385 386 dbuf_verify_user(db, DBVU_EVICTING); 387 db->db_user = NULL; 388 389 #ifdef ZFS_DEBUG 390 if (dbu->dbu_clear_on_evict_dbufp != NULL) 391 *dbu->dbu_clear_on_evict_dbufp = NULL; 392 #endif 393 394 /* 395 * There are two eviction callbacks - one that we call synchronously 396 * and one that we invoke via a taskq. The async one is useful for 397 * avoiding lock order reversals and limiting stack depth. 398 * 399 * Note that if we have a sync callback but no async callback, 400 * it's likely that the sync callback will free the structure 401 * containing the dbu. In that case we need to take care to not 402 * dereference dbu after calling the sync evict func. 403 */ 404 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 405 406 if (dbu->dbu_evict_func_sync != NULL) 407 dbu->dbu_evict_func_sync(dbu); 408 409 if (has_async) { 410 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 411 dbu, 0, &dbu->dbu_tqent); 412 } 413 } 414 415 boolean_t 416 dbuf_is_metadata(dmu_buf_impl_t *db) 417 { 418 if (db->db_level > 0) { 419 return (B_TRUE); 420 } else { 421 boolean_t is_metadata; 422 423 DB_DNODE_ENTER(db); 424 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 425 DB_DNODE_EXIT(db); 426 427 return (is_metadata); 428 } 429 } 430 431 /* 432 * This returns whether this dbuf should be stored in the metadata cache, which 433 * is based on whether it's from one of the dnode types that store data related 434 * to traversing dataset hierarchies. 435 */ 436 static boolean_t 437 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 438 { 439 DB_DNODE_ENTER(db); 440 dmu_object_type_t type = DB_DNODE(db)->dn_type; 441 DB_DNODE_EXIT(db); 442 443 /* Check if this dbuf is one of the types we care about */ 444 if (DMU_OT_IS_METADATA_CACHED(type)) { 445 /* If we hit this, then we set something up wrong in dmu_ot */ 446 ASSERT(DMU_OT_IS_METADATA(type)); 447 448 /* 449 * Sanity check for small-memory systems: don't allocate too 450 * much memory for this purpose. 451 */ 452 if (refcount_count(&dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 453 dbuf_metadata_cache_max_bytes) { 454 dbuf_metadata_cache_overflow++; 455 DTRACE_PROBE1(dbuf__metadata__cache__overflow, 456 dmu_buf_impl_t *, db); 457 return (B_FALSE); 458 } 459 460 return (B_TRUE); 461 } 462 463 return (B_FALSE); 464 } 465 466 /* 467 * This function *must* return indices evenly distributed between all 468 * sublists of the multilist. This is needed due to how the dbuf eviction 469 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 470 * distributed between all sublists and uses this assumption when 471 * deciding which sublist to evict from and how much to evict from it. 472 */ 473 unsigned int 474 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 475 { 476 dmu_buf_impl_t *db = obj; 477 478 /* 479 * The assumption here, is the hash value for a given 480 * dmu_buf_impl_t will remain constant throughout it's lifetime 481 * (i.e. it's objset, object, level and blkid fields don't change). 482 * Thus, we don't need to store the dbuf's sublist index 483 * on insertion, as this index can be recalculated on removal. 484 * 485 * Also, the low order bits of the hash value are thought to be 486 * distributed evenly. Otherwise, in the case that the multilist 487 * has a power of two number of sublists, each sublists' usage 488 * would not be evenly distributed. 489 */ 490 return (dbuf_hash(db->db_objset, db->db.db_object, 491 db->db_level, db->db_blkid) % 492 multilist_get_num_sublists(ml)); 493 } 494 495 static inline boolean_t 496 dbuf_cache_above_hiwater(void) 497 { 498 uint64_t dbuf_cache_hiwater_bytes = 499 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 500 501 return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 502 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 503 } 504 505 static inline boolean_t 506 dbuf_cache_above_lowater(void) 507 { 508 uint64_t dbuf_cache_lowater_bytes = 509 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 510 511 return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 512 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 513 } 514 515 /* 516 * Evict the oldest eligible dbuf from the dbuf cache. 517 */ 518 static void 519 dbuf_evict_one(void) 520 { 521 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache); 522 multilist_sublist_t *mls = multilist_sublist_lock( 523 dbuf_caches[DB_DBUF_CACHE].cache, idx); 524 525 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 526 527 /* 528 * Set the thread's tsd to indicate that it's processing evictions. 529 * Once a thread stops evicting from the dbuf cache it will 530 * reset its tsd to NULL. 531 */ 532 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL); 533 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE); 534 535 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 536 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 537 db = multilist_sublist_prev(mls, db); 538 } 539 540 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 541 multilist_sublist_t *, mls); 542 543 if (db != NULL) { 544 multilist_sublist_remove(mls, db); 545 multilist_sublist_unlock(mls); 546 (void) refcount_remove_many(&dbuf_caches[DB_DBUF_CACHE].size, 547 db->db.db_size, db); 548 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 549 db->db_caching_status = DB_NO_CACHE; 550 dbuf_destroy(db); 551 } else { 552 multilist_sublist_unlock(mls); 553 } 554 (void) tsd_set(zfs_dbuf_evict_key, NULL); 555 } 556 557 /* 558 * The dbuf evict thread is responsible for aging out dbufs from the 559 * cache. Once the cache has reached it's maximum size, dbufs are removed 560 * and destroyed. The eviction thread will continue running until the size 561 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 562 * out of the cache it is destroyed and becomes eligible for arc eviction. 563 */ 564 /* ARGSUSED */ 565 static void 566 dbuf_evict_thread(void *unused) 567 { 568 callb_cpr_t cpr; 569 570 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 571 572 mutex_enter(&dbuf_evict_lock); 573 while (!dbuf_evict_thread_exit) { 574 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 575 CALLB_CPR_SAFE_BEGIN(&cpr); 576 (void) cv_timedwait_hires(&dbuf_evict_cv, 577 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 578 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 579 } 580 mutex_exit(&dbuf_evict_lock); 581 582 /* 583 * Keep evicting as long as we're above the low water mark 584 * for the cache. We do this without holding the locks to 585 * minimize lock contention. 586 */ 587 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 588 dbuf_evict_one(); 589 } 590 591 mutex_enter(&dbuf_evict_lock); 592 } 593 594 dbuf_evict_thread_exit = B_FALSE; 595 cv_broadcast(&dbuf_evict_cv); 596 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 597 thread_exit(); 598 } 599 600 /* 601 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 602 * If the dbuf cache is at its high water mark, then evict a dbuf from the 603 * dbuf cache using the callers context. 604 */ 605 static void 606 dbuf_evict_notify(void) 607 { 608 609 /* 610 * We use thread specific data to track when a thread has 611 * started processing evictions. This allows us to avoid deeply 612 * nested stacks that would have a call flow similar to this: 613 * 614 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 615 * ^ | 616 * | | 617 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 618 * 619 * The dbuf_eviction_thread will always have its tsd set until 620 * that thread exits. All other threads will only set their tsd 621 * if they are participating in the eviction process. This only 622 * happens if the eviction thread is unable to process evictions 623 * fast enough. To keep the dbuf cache size in check, other threads 624 * can evict from the dbuf cache directly. Those threads will set 625 * their tsd values so that we ensure that they only evict one dbuf 626 * from the dbuf cache. 627 */ 628 if (tsd_get(zfs_dbuf_evict_key) != NULL) 629 return; 630 631 /* 632 * We check if we should evict without holding the dbuf_evict_lock, 633 * because it's OK to occasionally make the wrong decision here, 634 * and grabbing the lock results in massive lock contention. 635 */ 636 if (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 637 dbuf_cache_max_bytes) { 638 if (dbuf_cache_above_hiwater()) 639 dbuf_evict_one(); 640 cv_signal(&dbuf_evict_cv); 641 } 642 } 643 644 void 645 dbuf_init(void) 646 { 647 uint64_t hsize = 1ULL << 16; 648 dbuf_hash_table_t *h = &dbuf_hash_table; 649 int i; 650 651 /* 652 * The hash table is big enough to fill all of physical memory 653 * with an average 4K block size. The table will take up 654 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 655 */ 656 while (hsize * 4096 < physmem * PAGESIZE) 657 hsize <<= 1; 658 659 retry: 660 h->hash_table_mask = hsize - 1; 661 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 662 if (h->hash_table == NULL) { 663 /* XXX - we should really return an error instead of assert */ 664 ASSERT(hsize > (1ULL << 10)); 665 hsize >>= 1; 666 goto retry; 667 } 668 669 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 670 sizeof (dmu_buf_impl_t), 671 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 672 673 for (i = 0; i < DBUF_MUTEXES; i++) 674 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 675 676 /* 677 * Setup the parameters for the dbuf caches. We set the sizes of the 678 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default) 679 * of the size of the ARC, respectively. If the values are set in 680 * /etc/system and they're not greater than the size of the ARC, then 681 * we honor that value. 682 */ 683 if (dbuf_cache_max_bytes == 0 || 684 dbuf_cache_max_bytes >= arc_max_bytes()) { 685 dbuf_cache_max_bytes = arc_max_bytes() >> dbuf_cache_shift; 686 } 687 if (dbuf_metadata_cache_max_bytes == 0 || 688 dbuf_metadata_cache_max_bytes >= arc_max_bytes()) { 689 dbuf_metadata_cache_max_bytes = 690 arc_max_bytes() >> dbuf_metadata_cache_shift; 691 } 692 693 /* 694 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 695 * configuration is not required. 696 */ 697 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 698 699 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 700 dbuf_caches[dcs].cache = 701 multilist_create(sizeof (dmu_buf_impl_t), 702 offsetof(dmu_buf_impl_t, db_cache_link), 703 dbuf_cache_multilist_index_func); 704 refcount_create(&dbuf_caches[dcs].size); 705 } 706 707 tsd_create(&zfs_dbuf_evict_key, NULL); 708 dbuf_evict_thread_exit = B_FALSE; 709 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 710 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 711 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 712 NULL, 0, &p0, TS_RUN, minclsyspri); 713 } 714 715 void 716 dbuf_fini(void) 717 { 718 dbuf_hash_table_t *h = &dbuf_hash_table; 719 int i; 720 721 for (i = 0; i < DBUF_MUTEXES; i++) 722 mutex_destroy(&h->hash_mutexes[i]); 723 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 724 kmem_cache_destroy(dbuf_kmem_cache); 725 taskq_destroy(dbu_evict_taskq); 726 727 mutex_enter(&dbuf_evict_lock); 728 dbuf_evict_thread_exit = B_TRUE; 729 while (dbuf_evict_thread_exit) { 730 cv_signal(&dbuf_evict_cv); 731 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 732 } 733 mutex_exit(&dbuf_evict_lock); 734 tsd_destroy(&zfs_dbuf_evict_key); 735 736 mutex_destroy(&dbuf_evict_lock); 737 cv_destroy(&dbuf_evict_cv); 738 739 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 740 refcount_destroy(&dbuf_caches[dcs].size); 741 multilist_destroy(dbuf_caches[dcs].cache); 742 } 743 } 744 745 /* 746 * Other stuff. 747 */ 748 749 #ifdef ZFS_DEBUG 750 static void 751 dbuf_verify(dmu_buf_impl_t *db) 752 { 753 dnode_t *dn; 754 dbuf_dirty_record_t *dr; 755 756 ASSERT(MUTEX_HELD(&db->db_mtx)); 757 758 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 759 return; 760 761 ASSERT(db->db_objset != NULL); 762 DB_DNODE_ENTER(db); 763 dn = DB_DNODE(db); 764 if (dn == NULL) { 765 ASSERT(db->db_parent == NULL); 766 ASSERT(db->db_blkptr == NULL); 767 } else { 768 ASSERT3U(db->db.db_object, ==, dn->dn_object); 769 ASSERT3P(db->db_objset, ==, dn->dn_objset); 770 ASSERT3U(db->db_level, <, dn->dn_nlevels); 771 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 772 db->db_blkid == DMU_SPILL_BLKID || 773 !avl_is_empty(&dn->dn_dbufs)); 774 } 775 if (db->db_blkid == DMU_BONUS_BLKID) { 776 ASSERT(dn != NULL); 777 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 778 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 779 } else if (db->db_blkid == DMU_SPILL_BLKID) { 780 ASSERT(dn != NULL); 781 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 782 ASSERT0(db->db.db_offset); 783 } else { 784 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 785 } 786 787 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 788 ASSERT(dr->dr_dbuf == db); 789 790 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 791 ASSERT(dr->dr_dbuf == db); 792 793 /* 794 * We can't assert that db_size matches dn_datablksz because it 795 * can be momentarily different when another thread is doing 796 * dnode_set_blksz(). 797 */ 798 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 799 dr = db->db_data_pending; 800 /* 801 * It should only be modified in syncing context, so 802 * make sure we only have one copy of the data. 803 */ 804 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 805 } 806 807 /* verify db->db_blkptr */ 808 if (db->db_blkptr) { 809 if (db->db_parent == dn->dn_dbuf) { 810 /* db is pointed to by the dnode */ 811 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 812 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 813 ASSERT(db->db_parent == NULL); 814 else 815 ASSERT(db->db_parent != NULL); 816 if (db->db_blkid != DMU_SPILL_BLKID) 817 ASSERT3P(db->db_blkptr, ==, 818 &dn->dn_phys->dn_blkptr[db->db_blkid]); 819 } else { 820 /* db is pointed to by an indirect block */ 821 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 822 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 823 ASSERT3U(db->db_parent->db.db_object, ==, 824 db->db.db_object); 825 /* 826 * dnode_grow_indblksz() can make this fail if we don't 827 * have the struct_rwlock. XXX indblksz no longer 828 * grows. safe to do this now? 829 */ 830 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 831 ASSERT3P(db->db_blkptr, ==, 832 ((blkptr_t *)db->db_parent->db.db_data + 833 db->db_blkid % epb)); 834 } 835 } 836 } 837 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 838 (db->db_buf == NULL || db->db_buf->b_data) && 839 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 840 db->db_state != DB_FILL && !dn->dn_free_txg) { 841 /* 842 * If the blkptr isn't set but they have nonzero data, 843 * it had better be dirty, otherwise we'll lose that 844 * data when we evict this buffer. 845 * 846 * There is an exception to this rule for indirect blocks; in 847 * this case, if the indirect block is a hole, we fill in a few 848 * fields on each of the child blocks (importantly, birth time) 849 * to prevent hole birth times from being lost when you 850 * partially fill in a hole. 851 */ 852 if (db->db_dirtycnt == 0) { 853 if (db->db_level == 0) { 854 uint64_t *buf = db->db.db_data; 855 int i; 856 857 for (i = 0; i < db->db.db_size >> 3; i++) { 858 ASSERT(buf[i] == 0); 859 } 860 } else { 861 blkptr_t *bps = db->db.db_data; 862 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 863 db->db.db_size); 864 /* 865 * We want to verify that all the blkptrs in the 866 * indirect block are holes, but we may have 867 * automatically set up a few fields for them. 868 * We iterate through each blkptr and verify 869 * they only have those fields set. 870 */ 871 for (int i = 0; 872 i < db->db.db_size / sizeof (blkptr_t); 873 i++) { 874 blkptr_t *bp = &bps[i]; 875 ASSERT(ZIO_CHECKSUM_IS_ZERO( 876 &bp->blk_cksum)); 877 ASSERT( 878 DVA_IS_EMPTY(&bp->blk_dva[0]) && 879 DVA_IS_EMPTY(&bp->blk_dva[1]) && 880 DVA_IS_EMPTY(&bp->blk_dva[2])); 881 ASSERT0(bp->blk_fill); 882 ASSERT0(bp->blk_pad[0]); 883 ASSERT0(bp->blk_pad[1]); 884 ASSERT(!BP_IS_EMBEDDED(bp)); 885 ASSERT(BP_IS_HOLE(bp)); 886 ASSERT0(bp->blk_phys_birth); 887 } 888 } 889 } 890 } 891 DB_DNODE_EXIT(db); 892 } 893 #endif 894 895 static void 896 dbuf_clear_data(dmu_buf_impl_t *db) 897 { 898 ASSERT(MUTEX_HELD(&db->db_mtx)); 899 dbuf_evict_user(db); 900 ASSERT3P(db->db_buf, ==, NULL); 901 db->db.db_data = NULL; 902 if (db->db_state != DB_NOFILL) 903 db->db_state = DB_UNCACHED; 904 } 905 906 static void 907 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 908 { 909 ASSERT(MUTEX_HELD(&db->db_mtx)); 910 ASSERT(buf != NULL); 911 912 db->db_buf = buf; 913 ASSERT(buf->b_data != NULL); 914 db->db.db_data = buf->b_data; 915 } 916 917 /* 918 * Loan out an arc_buf for read. Return the loaned arc_buf. 919 */ 920 arc_buf_t * 921 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 922 { 923 arc_buf_t *abuf; 924 925 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 926 mutex_enter(&db->db_mtx); 927 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 928 int blksz = db->db.db_size; 929 spa_t *spa = db->db_objset->os_spa; 930 931 mutex_exit(&db->db_mtx); 932 abuf = arc_loan_buf(spa, B_FALSE, blksz); 933 bcopy(db->db.db_data, abuf->b_data, blksz); 934 } else { 935 abuf = db->db_buf; 936 arc_loan_inuse_buf(abuf, db); 937 db->db_buf = NULL; 938 dbuf_clear_data(db); 939 mutex_exit(&db->db_mtx); 940 } 941 return (abuf); 942 } 943 944 /* 945 * Calculate which level n block references the data at the level 0 offset 946 * provided. 947 */ 948 uint64_t 949 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 950 { 951 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 952 /* 953 * The level n blkid is equal to the level 0 blkid divided by 954 * the number of level 0s in a level n block. 955 * 956 * The level 0 blkid is offset >> datablkshift = 957 * offset / 2^datablkshift. 958 * 959 * The number of level 0s in a level n is the number of block 960 * pointers in an indirect block, raised to the power of level. 961 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 962 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 963 * 964 * Thus, the level n blkid is: offset / 965 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 966 * = offset / 2^(datablkshift + level * 967 * (indblkshift - SPA_BLKPTRSHIFT)) 968 * = offset >> (datablkshift + level * 969 * (indblkshift - SPA_BLKPTRSHIFT)) 970 */ 971 return (offset >> (dn->dn_datablkshift + level * 972 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 973 } else { 974 ASSERT3U(offset, <, dn->dn_datablksz); 975 return (0); 976 } 977 } 978 979 static void 980 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 981 { 982 dmu_buf_impl_t *db = vdb; 983 984 mutex_enter(&db->db_mtx); 985 ASSERT3U(db->db_state, ==, DB_READ); 986 /* 987 * All reads are synchronous, so we must have a hold on the dbuf 988 */ 989 ASSERT(refcount_count(&db->db_holds) > 0); 990 ASSERT(db->db_buf == NULL); 991 ASSERT(db->db.db_data == NULL); 992 if (buf == NULL) { 993 /* i/o error */ 994 ASSERT(zio == NULL || zio->io_error != 0); 995 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 996 ASSERT3P(db->db_buf, ==, NULL); 997 db->db_state = DB_UNCACHED; 998 } else if (db->db_level == 0 && db->db_freed_in_flight) { 999 /* freed in flight */ 1000 ASSERT(zio == NULL || zio->io_error == 0); 1001 arc_release(buf, db); 1002 bzero(buf->b_data, db->db.db_size); 1003 arc_buf_freeze(buf); 1004 db->db_freed_in_flight = FALSE; 1005 dbuf_set_data(db, buf); 1006 db->db_state = DB_CACHED; 1007 } else { 1008 /* success */ 1009 ASSERT(zio == NULL || zio->io_error == 0); 1010 dbuf_set_data(db, buf); 1011 db->db_state = DB_CACHED; 1012 } 1013 cv_broadcast(&db->db_changed); 1014 dbuf_rele_and_unlock(db, NULL); 1015 } 1016 1017 static void 1018 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1019 { 1020 dnode_t *dn; 1021 zbookmark_phys_t zb; 1022 arc_flags_t aflags = ARC_FLAG_NOWAIT; 1023 1024 DB_DNODE_ENTER(db); 1025 dn = DB_DNODE(db); 1026 ASSERT(!refcount_is_zero(&db->db_holds)); 1027 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 1028 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 1029 ASSERT(MUTEX_HELD(&db->db_mtx)); 1030 ASSERT(db->db_state == DB_UNCACHED); 1031 ASSERT(db->db_buf == NULL); 1032 1033 if (db->db_blkid == DMU_BONUS_BLKID) { 1034 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1035 1036 ASSERT3U(bonuslen, <=, db->db.db_size); 1037 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 1038 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1039 if (bonuslen < DN_MAX_BONUSLEN) 1040 bzero(db->db.db_data, DN_MAX_BONUSLEN); 1041 if (bonuslen) 1042 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 1043 DB_DNODE_EXIT(db); 1044 db->db_state = DB_CACHED; 1045 mutex_exit(&db->db_mtx); 1046 return; 1047 } 1048 1049 /* 1050 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1051 * processes the delete record and clears the bp while we are waiting 1052 * for the dn_mtx (resulting in a "no" from block_freed). 1053 */ 1054 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 1055 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 1056 BP_IS_HOLE(db->db_blkptr)))) { 1057 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1058 1059 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type, 1060 db->db.db_size)); 1061 bzero(db->db.db_data, db->db.db_size); 1062 1063 if (db->db_blkptr != NULL && db->db_level > 0 && 1064 BP_IS_HOLE(db->db_blkptr) && 1065 db->db_blkptr->blk_birth != 0) { 1066 blkptr_t *bps = db->db.db_data; 1067 for (int i = 0; i < ((1 << 1068 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 1069 i++) { 1070 blkptr_t *bp = &bps[i]; 1071 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 1072 1 << dn->dn_indblkshift); 1073 BP_SET_LSIZE(bp, 1074 BP_GET_LEVEL(db->db_blkptr) == 1 ? 1075 dn->dn_datablksz : 1076 BP_GET_LSIZE(db->db_blkptr)); 1077 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 1078 BP_SET_LEVEL(bp, 1079 BP_GET_LEVEL(db->db_blkptr) - 1); 1080 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 1081 } 1082 } 1083 DB_DNODE_EXIT(db); 1084 db->db_state = DB_CACHED; 1085 mutex_exit(&db->db_mtx); 1086 return; 1087 } 1088 1089 DB_DNODE_EXIT(db); 1090 1091 db->db_state = DB_READ; 1092 mutex_exit(&db->db_mtx); 1093 1094 if (DBUF_IS_L2CACHEABLE(db)) 1095 aflags |= ARC_FLAG_L2CACHE; 1096 1097 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 1098 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 1099 db->db.db_object, db->db_level, db->db_blkid); 1100 1101 dbuf_add_ref(db, NULL); 1102 1103 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 1104 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 1105 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 1106 &aflags, &zb); 1107 } 1108 1109 /* 1110 * This is our just-in-time copy function. It makes a copy of buffers that 1111 * have been modified in a previous transaction group before we access them in 1112 * the current active group. 1113 * 1114 * This function is used in three places: when we are dirtying a buffer for the 1115 * first time in a txg, when we are freeing a range in a dnode that includes 1116 * this buffer, and when we are accessing a buffer which was received compressed 1117 * and later referenced in a WRITE_BYREF record. 1118 * 1119 * Note that when we are called from dbuf_free_range() we do not put a hold on 1120 * the buffer, we just traverse the active dbuf list for the dnode. 1121 */ 1122 static void 1123 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1124 { 1125 dbuf_dirty_record_t *dr = db->db_last_dirty; 1126 1127 ASSERT(MUTEX_HELD(&db->db_mtx)); 1128 ASSERT(db->db.db_data != NULL); 1129 ASSERT(db->db_level == 0); 1130 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1131 1132 if (dr == NULL || 1133 (dr->dt.dl.dr_data != 1134 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1135 return; 1136 1137 /* 1138 * If the last dirty record for this dbuf has not yet synced 1139 * and its referencing the dbuf data, either: 1140 * reset the reference to point to a new copy, 1141 * or (if there a no active holders) 1142 * just null out the current db_data pointer. 1143 */ 1144 ASSERT(dr->dr_txg >= txg - 2); 1145 if (db->db_blkid == DMU_BONUS_BLKID) { 1146 /* Note that the data bufs here are zio_bufs */ 1147 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 1148 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1149 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 1150 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1151 int size = arc_buf_size(db->db_buf); 1152 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1153 spa_t *spa = db->db_objset->os_spa; 1154 enum zio_compress compress_type = 1155 arc_get_compression(db->db_buf); 1156 1157 if (compress_type == ZIO_COMPRESS_OFF) { 1158 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1159 } else { 1160 ASSERT3U(type, ==, ARC_BUFC_DATA); 1161 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1162 size, arc_buf_lsize(db->db_buf), compress_type); 1163 } 1164 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1165 } else { 1166 db->db_buf = NULL; 1167 dbuf_clear_data(db); 1168 } 1169 } 1170 1171 int 1172 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1173 { 1174 int err = 0; 1175 boolean_t prefetch; 1176 dnode_t *dn; 1177 1178 /* 1179 * We don't have to hold the mutex to check db_state because it 1180 * can't be freed while we have a hold on the buffer. 1181 */ 1182 ASSERT(!refcount_is_zero(&db->db_holds)); 1183 1184 if (db->db_state == DB_NOFILL) 1185 return (SET_ERROR(EIO)); 1186 1187 DB_DNODE_ENTER(db); 1188 dn = DB_DNODE(db); 1189 if ((flags & DB_RF_HAVESTRUCT) == 0) 1190 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1191 1192 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1193 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1194 DBUF_IS_CACHEABLE(db); 1195 1196 mutex_enter(&db->db_mtx); 1197 if (db->db_state == DB_CACHED) { 1198 /* 1199 * If the arc buf is compressed, we need to decompress it to 1200 * read the data. This could happen during the "zfs receive" of 1201 * a stream which is compressed and deduplicated. 1202 */ 1203 if (db->db_buf != NULL && 1204 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) { 1205 dbuf_fix_old_data(db, 1206 spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1207 err = arc_decompress(db->db_buf); 1208 dbuf_set_data(db, db->db_buf); 1209 } 1210 mutex_exit(&db->db_mtx); 1211 if (prefetch) 1212 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1213 if ((flags & DB_RF_HAVESTRUCT) == 0) 1214 rw_exit(&dn->dn_struct_rwlock); 1215 DB_DNODE_EXIT(db); 1216 } else if (db->db_state == DB_UNCACHED) { 1217 spa_t *spa = dn->dn_objset->os_spa; 1218 boolean_t need_wait = B_FALSE; 1219 1220 if (zio == NULL && 1221 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1222 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1223 need_wait = B_TRUE; 1224 } 1225 dbuf_read_impl(db, zio, flags); 1226 1227 /* dbuf_read_impl has dropped db_mtx for us */ 1228 1229 if (prefetch) 1230 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1231 1232 if ((flags & DB_RF_HAVESTRUCT) == 0) 1233 rw_exit(&dn->dn_struct_rwlock); 1234 DB_DNODE_EXIT(db); 1235 1236 if (need_wait) 1237 err = zio_wait(zio); 1238 } else { 1239 /* 1240 * Another reader came in while the dbuf was in flight 1241 * between UNCACHED and CACHED. Either a writer will finish 1242 * writing the buffer (sending the dbuf to CACHED) or the 1243 * first reader's request will reach the read_done callback 1244 * and send the dbuf to CACHED. Otherwise, a failure 1245 * occurred and the dbuf went to UNCACHED. 1246 */ 1247 mutex_exit(&db->db_mtx); 1248 if (prefetch) 1249 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1250 if ((flags & DB_RF_HAVESTRUCT) == 0) 1251 rw_exit(&dn->dn_struct_rwlock); 1252 DB_DNODE_EXIT(db); 1253 1254 /* Skip the wait per the caller's request. */ 1255 mutex_enter(&db->db_mtx); 1256 if ((flags & DB_RF_NEVERWAIT) == 0) { 1257 while (db->db_state == DB_READ || 1258 db->db_state == DB_FILL) { 1259 ASSERT(db->db_state == DB_READ || 1260 (flags & DB_RF_HAVESTRUCT) == 0); 1261 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1262 db, zio_t *, zio); 1263 cv_wait(&db->db_changed, &db->db_mtx); 1264 } 1265 if (db->db_state == DB_UNCACHED) 1266 err = SET_ERROR(EIO); 1267 } 1268 mutex_exit(&db->db_mtx); 1269 } 1270 1271 return (err); 1272 } 1273 1274 static void 1275 dbuf_noread(dmu_buf_impl_t *db) 1276 { 1277 ASSERT(!refcount_is_zero(&db->db_holds)); 1278 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1279 mutex_enter(&db->db_mtx); 1280 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1281 cv_wait(&db->db_changed, &db->db_mtx); 1282 if (db->db_state == DB_UNCACHED) { 1283 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1284 spa_t *spa = db->db_objset->os_spa; 1285 1286 ASSERT(db->db_buf == NULL); 1287 ASSERT(db->db.db_data == NULL); 1288 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size)); 1289 db->db_state = DB_FILL; 1290 } else if (db->db_state == DB_NOFILL) { 1291 dbuf_clear_data(db); 1292 } else { 1293 ASSERT3U(db->db_state, ==, DB_CACHED); 1294 } 1295 mutex_exit(&db->db_mtx); 1296 } 1297 1298 void 1299 dbuf_unoverride(dbuf_dirty_record_t *dr) 1300 { 1301 dmu_buf_impl_t *db = dr->dr_dbuf; 1302 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1303 uint64_t txg = dr->dr_txg; 1304 1305 ASSERT(MUTEX_HELD(&db->db_mtx)); 1306 /* 1307 * This assert is valid because dmu_sync() expects to be called by 1308 * a zilog's get_data while holding a range lock. This call only 1309 * comes from dbuf_dirty() callers who must also hold a range lock. 1310 */ 1311 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1312 ASSERT(db->db_level == 0); 1313 1314 if (db->db_blkid == DMU_BONUS_BLKID || 1315 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1316 return; 1317 1318 ASSERT(db->db_data_pending != dr); 1319 1320 /* free this block */ 1321 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1322 zio_free(db->db_objset->os_spa, txg, bp); 1323 1324 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1325 dr->dt.dl.dr_nopwrite = B_FALSE; 1326 1327 /* 1328 * Release the already-written buffer, so we leave it in 1329 * a consistent dirty state. Note that all callers are 1330 * modifying the buffer, so they will immediately do 1331 * another (redundant) arc_release(). Therefore, leave 1332 * the buf thawed to save the effort of freezing & 1333 * immediately re-thawing it. 1334 */ 1335 arc_release(dr->dt.dl.dr_data, db); 1336 } 1337 1338 /* 1339 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1340 * data blocks in the free range, so that any future readers will find 1341 * empty blocks. 1342 */ 1343 void 1344 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1345 dmu_tx_t *tx) 1346 { 1347 dmu_buf_impl_t db_search; 1348 dmu_buf_impl_t *db, *db_next; 1349 uint64_t txg = tx->tx_txg; 1350 avl_index_t where; 1351 1352 if (end_blkid > dn->dn_maxblkid && 1353 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1354 end_blkid = dn->dn_maxblkid; 1355 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1356 1357 db_search.db_level = 0; 1358 db_search.db_blkid = start_blkid; 1359 db_search.db_state = DB_SEARCH; 1360 1361 mutex_enter(&dn->dn_dbufs_mtx); 1362 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1363 ASSERT3P(db, ==, NULL); 1364 1365 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1366 1367 for (; db != NULL; db = db_next) { 1368 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1369 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1370 1371 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1372 break; 1373 } 1374 ASSERT3U(db->db_blkid, >=, start_blkid); 1375 1376 /* found a level 0 buffer in the range */ 1377 mutex_enter(&db->db_mtx); 1378 if (dbuf_undirty(db, tx)) { 1379 /* mutex has been dropped and dbuf destroyed */ 1380 continue; 1381 } 1382 1383 if (db->db_state == DB_UNCACHED || 1384 db->db_state == DB_NOFILL || 1385 db->db_state == DB_EVICTING) { 1386 ASSERT(db->db.db_data == NULL); 1387 mutex_exit(&db->db_mtx); 1388 continue; 1389 } 1390 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1391 /* will be handled in dbuf_read_done or dbuf_rele */ 1392 db->db_freed_in_flight = TRUE; 1393 mutex_exit(&db->db_mtx); 1394 continue; 1395 } 1396 if (refcount_count(&db->db_holds) == 0) { 1397 ASSERT(db->db_buf); 1398 dbuf_destroy(db); 1399 continue; 1400 } 1401 /* The dbuf is referenced */ 1402 1403 if (db->db_last_dirty != NULL) { 1404 dbuf_dirty_record_t *dr = db->db_last_dirty; 1405 1406 if (dr->dr_txg == txg) { 1407 /* 1408 * This buffer is "in-use", re-adjust the file 1409 * size to reflect that this buffer may 1410 * contain new data when we sync. 1411 */ 1412 if (db->db_blkid != DMU_SPILL_BLKID && 1413 db->db_blkid > dn->dn_maxblkid) 1414 dn->dn_maxblkid = db->db_blkid; 1415 dbuf_unoverride(dr); 1416 } else { 1417 /* 1418 * This dbuf is not dirty in the open context. 1419 * Either uncache it (if its not referenced in 1420 * the open context) or reset its contents to 1421 * empty. 1422 */ 1423 dbuf_fix_old_data(db, txg); 1424 } 1425 } 1426 /* clear the contents if its cached */ 1427 if (db->db_state == DB_CACHED) { 1428 ASSERT(db->db.db_data != NULL); 1429 arc_release(db->db_buf, db); 1430 bzero(db->db.db_data, db->db.db_size); 1431 arc_buf_freeze(db->db_buf); 1432 } 1433 1434 mutex_exit(&db->db_mtx); 1435 } 1436 mutex_exit(&dn->dn_dbufs_mtx); 1437 } 1438 1439 void 1440 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1441 { 1442 arc_buf_t *buf, *obuf; 1443 int osize = db->db.db_size; 1444 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1445 dnode_t *dn; 1446 1447 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1448 1449 DB_DNODE_ENTER(db); 1450 dn = DB_DNODE(db); 1451 1452 /* XXX does *this* func really need the lock? */ 1453 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1454 1455 /* 1456 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1457 * is OK, because there can be no other references to the db 1458 * when we are changing its size, so no concurrent DB_FILL can 1459 * be happening. 1460 */ 1461 /* 1462 * XXX we should be doing a dbuf_read, checking the return 1463 * value and returning that up to our callers 1464 */ 1465 dmu_buf_will_dirty(&db->db, tx); 1466 1467 /* create the data buffer for the new block */ 1468 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1469 1470 /* copy old block data to the new block */ 1471 obuf = db->db_buf; 1472 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1473 /* zero the remainder */ 1474 if (size > osize) 1475 bzero((uint8_t *)buf->b_data + osize, size - osize); 1476 1477 mutex_enter(&db->db_mtx); 1478 dbuf_set_data(db, buf); 1479 arc_buf_destroy(obuf, db); 1480 db->db.db_size = size; 1481 1482 if (db->db_level == 0) { 1483 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1484 db->db_last_dirty->dt.dl.dr_data = buf; 1485 } 1486 mutex_exit(&db->db_mtx); 1487 1488 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1489 DB_DNODE_EXIT(db); 1490 } 1491 1492 void 1493 dbuf_release_bp(dmu_buf_impl_t *db) 1494 { 1495 objset_t *os = db->db_objset; 1496 1497 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1498 ASSERT(arc_released(os->os_phys_buf) || 1499 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1500 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1501 1502 (void) arc_release(db->db_buf, db); 1503 } 1504 1505 /* 1506 * We already have a dirty record for this TXG, and we are being 1507 * dirtied again. 1508 */ 1509 static void 1510 dbuf_redirty(dbuf_dirty_record_t *dr) 1511 { 1512 dmu_buf_impl_t *db = dr->dr_dbuf; 1513 1514 ASSERT(MUTEX_HELD(&db->db_mtx)); 1515 1516 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1517 /* 1518 * If this buffer has already been written out, 1519 * we now need to reset its state. 1520 */ 1521 dbuf_unoverride(dr); 1522 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1523 db->db_state != DB_NOFILL) { 1524 /* Already released on initial dirty, so just thaw. */ 1525 ASSERT(arc_released(db->db_buf)); 1526 arc_buf_thaw(db->db_buf); 1527 } 1528 } 1529 } 1530 1531 dbuf_dirty_record_t * 1532 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1533 { 1534 dnode_t *dn; 1535 objset_t *os; 1536 dbuf_dirty_record_t **drp, *dr; 1537 int drop_struct_lock = FALSE; 1538 int txgoff = tx->tx_txg & TXG_MASK; 1539 1540 ASSERT(tx->tx_txg != 0); 1541 ASSERT(!refcount_is_zero(&db->db_holds)); 1542 DMU_TX_DIRTY_BUF(tx, db); 1543 1544 DB_DNODE_ENTER(db); 1545 dn = DB_DNODE(db); 1546 /* 1547 * Shouldn't dirty a regular buffer in syncing context. Private 1548 * objects may be dirtied in syncing context, but only if they 1549 * were already pre-dirtied in open context. 1550 */ 1551 #ifdef DEBUG 1552 if (dn->dn_objset->os_dsl_dataset != NULL) { 1553 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1554 RW_READER, FTAG); 1555 } 1556 ASSERT(!dmu_tx_is_syncing(tx) || 1557 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1558 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1559 dn->dn_objset->os_dsl_dataset == NULL); 1560 if (dn->dn_objset->os_dsl_dataset != NULL) 1561 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 1562 #endif 1563 /* 1564 * We make this assert for private objects as well, but after we 1565 * check if we're already dirty. They are allowed to re-dirty 1566 * in syncing context. 1567 */ 1568 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1569 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1570 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1571 1572 mutex_enter(&db->db_mtx); 1573 /* 1574 * XXX make this true for indirects too? The problem is that 1575 * transactions created with dmu_tx_create_assigned() from 1576 * syncing context don't bother holding ahead. 1577 */ 1578 ASSERT(db->db_level != 0 || 1579 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1580 db->db_state == DB_NOFILL); 1581 1582 mutex_enter(&dn->dn_mtx); 1583 /* 1584 * Don't set dirtyctx to SYNC if we're just modifying this as we 1585 * initialize the objset. 1586 */ 1587 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 1588 if (dn->dn_objset->os_dsl_dataset != NULL) { 1589 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1590 RW_READER, FTAG); 1591 } 1592 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1593 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? 1594 DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1595 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1596 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1597 } 1598 if (dn->dn_objset->os_dsl_dataset != NULL) { 1599 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1600 FTAG); 1601 } 1602 } 1603 mutex_exit(&dn->dn_mtx); 1604 1605 if (db->db_blkid == DMU_SPILL_BLKID) 1606 dn->dn_have_spill = B_TRUE; 1607 1608 /* 1609 * If this buffer is already dirty, we're done. 1610 */ 1611 drp = &db->db_last_dirty; 1612 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1613 db->db.db_object == DMU_META_DNODE_OBJECT); 1614 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1615 drp = &dr->dr_next; 1616 if (dr && dr->dr_txg == tx->tx_txg) { 1617 DB_DNODE_EXIT(db); 1618 1619 dbuf_redirty(dr); 1620 mutex_exit(&db->db_mtx); 1621 return (dr); 1622 } 1623 1624 /* 1625 * Only valid if not already dirty. 1626 */ 1627 ASSERT(dn->dn_object == 0 || 1628 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1629 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1630 1631 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1632 1633 /* 1634 * We should only be dirtying in syncing context if it's the 1635 * mos or we're initializing the os or it's a special object. 1636 * However, we are allowed to dirty in syncing context provided 1637 * we already dirtied it in open context. Hence we must make 1638 * this assertion only if we're not already dirty. 1639 */ 1640 os = dn->dn_objset; 1641 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 1642 #ifdef DEBUG 1643 if (dn->dn_objset->os_dsl_dataset != NULL) 1644 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 1645 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1646 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1647 if (dn->dn_objset->os_dsl_dataset != NULL) 1648 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 1649 #endif 1650 ASSERT(db->db.db_size != 0); 1651 1652 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1653 1654 if (db->db_blkid != DMU_BONUS_BLKID) { 1655 dmu_objset_willuse_space(os, db->db.db_size, tx); 1656 } 1657 1658 /* 1659 * If this buffer is dirty in an old transaction group we need 1660 * to make a copy of it so that the changes we make in this 1661 * transaction group won't leak out when we sync the older txg. 1662 */ 1663 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1664 if (db->db_level == 0) { 1665 void *data_old = db->db_buf; 1666 1667 if (db->db_state != DB_NOFILL) { 1668 if (db->db_blkid == DMU_BONUS_BLKID) { 1669 dbuf_fix_old_data(db, tx->tx_txg); 1670 data_old = db->db.db_data; 1671 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1672 /* 1673 * Release the data buffer from the cache so 1674 * that we can modify it without impacting 1675 * possible other users of this cached data 1676 * block. Note that indirect blocks and 1677 * private objects are not released until the 1678 * syncing state (since they are only modified 1679 * then). 1680 */ 1681 arc_release(db->db_buf, db); 1682 dbuf_fix_old_data(db, tx->tx_txg); 1683 data_old = db->db_buf; 1684 } 1685 ASSERT(data_old != NULL); 1686 } 1687 dr->dt.dl.dr_data = data_old; 1688 } else { 1689 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1690 list_create(&dr->dt.di.dr_children, 1691 sizeof (dbuf_dirty_record_t), 1692 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1693 } 1694 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1695 dr->dr_accounted = db->db.db_size; 1696 dr->dr_dbuf = db; 1697 dr->dr_txg = tx->tx_txg; 1698 dr->dr_next = *drp; 1699 *drp = dr; 1700 1701 /* 1702 * We could have been freed_in_flight between the dbuf_noread 1703 * and dbuf_dirty. We win, as though the dbuf_noread() had 1704 * happened after the free. 1705 */ 1706 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1707 db->db_blkid != DMU_SPILL_BLKID) { 1708 mutex_enter(&dn->dn_mtx); 1709 if (dn->dn_free_ranges[txgoff] != NULL) { 1710 range_tree_clear(dn->dn_free_ranges[txgoff], 1711 db->db_blkid, 1); 1712 } 1713 mutex_exit(&dn->dn_mtx); 1714 db->db_freed_in_flight = FALSE; 1715 } 1716 1717 /* 1718 * This buffer is now part of this txg 1719 */ 1720 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1721 db->db_dirtycnt += 1; 1722 ASSERT3U(db->db_dirtycnt, <=, 3); 1723 1724 mutex_exit(&db->db_mtx); 1725 1726 if (db->db_blkid == DMU_BONUS_BLKID || 1727 db->db_blkid == DMU_SPILL_BLKID) { 1728 mutex_enter(&dn->dn_mtx); 1729 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1730 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1731 mutex_exit(&dn->dn_mtx); 1732 dnode_setdirty(dn, tx); 1733 DB_DNODE_EXIT(db); 1734 return (dr); 1735 } 1736 1737 /* 1738 * The dn_struct_rwlock prevents db_blkptr from changing 1739 * due to a write from syncing context completing 1740 * while we are running, so we want to acquire it before 1741 * looking at db_blkptr. 1742 */ 1743 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1744 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1745 drop_struct_lock = TRUE; 1746 } 1747 1748 /* 1749 * We need to hold the dn_struct_rwlock to make this assertion, 1750 * because it protects dn_phys / dn_next_nlevels from changing. 1751 */ 1752 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1753 dn->dn_phys->dn_nlevels > db->db_level || 1754 dn->dn_next_nlevels[txgoff] > db->db_level || 1755 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1756 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1757 1758 /* 1759 * If we are overwriting a dedup BP, then unless it is snapshotted, 1760 * when we get to syncing context we will need to decrement its 1761 * refcount in the DDT. Prefetch the relevant DDT block so that 1762 * syncing context won't have to wait for the i/o. 1763 */ 1764 ddt_prefetch(os->os_spa, db->db_blkptr); 1765 1766 if (db->db_level == 0) { 1767 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1768 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1769 } 1770 1771 if (db->db_level+1 < dn->dn_nlevels) { 1772 dmu_buf_impl_t *parent = db->db_parent; 1773 dbuf_dirty_record_t *di; 1774 int parent_held = FALSE; 1775 1776 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1777 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1778 1779 parent = dbuf_hold_level(dn, db->db_level+1, 1780 db->db_blkid >> epbs, FTAG); 1781 ASSERT(parent != NULL); 1782 parent_held = TRUE; 1783 } 1784 if (drop_struct_lock) 1785 rw_exit(&dn->dn_struct_rwlock); 1786 ASSERT3U(db->db_level+1, ==, parent->db_level); 1787 di = dbuf_dirty(parent, tx); 1788 if (parent_held) 1789 dbuf_rele(parent, FTAG); 1790 1791 mutex_enter(&db->db_mtx); 1792 /* 1793 * Since we've dropped the mutex, it's possible that 1794 * dbuf_undirty() might have changed this out from under us. 1795 */ 1796 if (db->db_last_dirty == dr || 1797 dn->dn_object == DMU_META_DNODE_OBJECT) { 1798 mutex_enter(&di->dt.di.dr_mtx); 1799 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1800 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1801 list_insert_tail(&di->dt.di.dr_children, dr); 1802 mutex_exit(&di->dt.di.dr_mtx); 1803 dr->dr_parent = di; 1804 } 1805 mutex_exit(&db->db_mtx); 1806 } else { 1807 ASSERT(db->db_level+1 == dn->dn_nlevels); 1808 ASSERT(db->db_blkid < dn->dn_nblkptr); 1809 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1810 mutex_enter(&dn->dn_mtx); 1811 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1812 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1813 mutex_exit(&dn->dn_mtx); 1814 if (drop_struct_lock) 1815 rw_exit(&dn->dn_struct_rwlock); 1816 } 1817 1818 dnode_setdirty(dn, tx); 1819 DB_DNODE_EXIT(db); 1820 return (dr); 1821 } 1822 1823 /* 1824 * Undirty a buffer in the transaction group referenced by the given 1825 * transaction. Return whether this evicted the dbuf. 1826 */ 1827 static boolean_t 1828 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1829 { 1830 dnode_t *dn; 1831 uint64_t txg = tx->tx_txg; 1832 dbuf_dirty_record_t *dr, **drp; 1833 1834 ASSERT(txg != 0); 1835 1836 /* 1837 * Due to our use of dn_nlevels below, this can only be called 1838 * in open context, unless we are operating on the MOS. 1839 * From syncing context, dn_nlevels may be different from the 1840 * dn_nlevels used when dbuf was dirtied. 1841 */ 1842 ASSERT(db->db_objset == 1843 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1844 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1845 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1846 ASSERT0(db->db_level); 1847 ASSERT(MUTEX_HELD(&db->db_mtx)); 1848 1849 /* 1850 * If this buffer is not dirty, we're done. 1851 */ 1852 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1853 if (dr->dr_txg <= txg) 1854 break; 1855 if (dr == NULL || dr->dr_txg < txg) 1856 return (B_FALSE); 1857 ASSERT(dr->dr_txg == txg); 1858 ASSERT(dr->dr_dbuf == db); 1859 1860 DB_DNODE_ENTER(db); 1861 dn = DB_DNODE(db); 1862 1863 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1864 1865 ASSERT(db->db.db_size != 0); 1866 1867 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1868 dr->dr_accounted, txg); 1869 1870 *drp = dr->dr_next; 1871 1872 /* 1873 * Note that there are three places in dbuf_dirty() 1874 * where this dirty record may be put on a list. 1875 * Make sure to do a list_remove corresponding to 1876 * every one of those list_insert calls. 1877 */ 1878 if (dr->dr_parent) { 1879 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1880 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1881 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1882 } else if (db->db_blkid == DMU_SPILL_BLKID || 1883 db->db_level + 1 == dn->dn_nlevels) { 1884 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1885 mutex_enter(&dn->dn_mtx); 1886 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1887 mutex_exit(&dn->dn_mtx); 1888 } 1889 DB_DNODE_EXIT(db); 1890 1891 if (db->db_state != DB_NOFILL) { 1892 dbuf_unoverride(dr); 1893 1894 ASSERT(db->db_buf != NULL); 1895 ASSERT(dr->dt.dl.dr_data != NULL); 1896 if (dr->dt.dl.dr_data != db->db_buf) 1897 arc_buf_destroy(dr->dt.dl.dr_data, db); 1898 } 1899 1900 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1901 1902 ASSERT(db->db_dirtycnt > 0); 1903 db->db_dirtycnt -= 1; 1904 1905 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1906 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 1907 dbuf_destroy(db); 1908 return (B_TRUE); 1909 } 1910 1911 return (B_FALSE); 1912 } 1913 1914 void 1915 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1916 { 1917 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1918 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1919 1920 ASSERT(tx->tx_txg != 0); 1921 ASSERT(!refcount_is_zero(&db->db_holds)); 1922 1923 /* 1924 * Quick check for dirtyness. For already dirty blocks, this 1925 * reduces runtime of this function by >90%, and overall performance 1926 * by 50% for some workloads (e.g. file deletion with indirect blocks 1927 * cached). 1928 */ 1929 mutex_enter(&db->db_mtx); 1930 dbuf_dirty_record_t *dr; 1931 for (dr = db->db_last_dirty; 1932 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 1933 /* 1934 * It's possible that it is already dirty but not cached, 1935 * because there are some calls to dbuf_dirty() that don't 1936 * go through dmu_buf_will_dirty(). 1937 */ 1938 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 1939 /* This dbuf is already dirty and cached. */ 1940 dbuf_redirty(dr); 1941 mutex_exit(&db->db_mtx); 1942 return; 1943 } 1944 } 1945 mutex_exit(&db->db_mtx); 1946 1947 DB_DNODE_ENTER(db); 1948 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1949 rf |= DB_RF_HAVESTRUCT; 1950 DB_DNODE_EXIT(db); 1951 (void) dbuf_read(db, NULL, rf); 1952 (void) dbuf_dirty(db, tx); 1953 } 1954 1955 void 1956 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1957 { 1958 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1959 1960 db->db_state = DB_NOFILL; 1961 1962 dmu_buf_will_fill(db_fake, tx); 1963 } 1964 1965 void 1966 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1967 { 1968 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1969 1970 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1971 ASSERT(tx->tx_txg != 0); 1972 ASSERT(db->db_level == 0); 1973 ASSERT(!refcount_is_zero(&db->db_holds)); 1974 1975 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1976 dmu_tx_private_ok(tx)); 1977 1978 dbuf_noread(db); 1979 (void) dbuf_dirty(db, tx); 1980 } 1981 1982 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1983 /* ARGSUSED */ 1984 void 1985 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1986 { 1987 mutex_enter(&db->db_mtx); 1988 DBUF_VERIFY(db); 1989 1990 if (db->db_state == DB_FILL) { 1991 if (db->db_level == 0 && db->db_freed_in_flight) { 1992 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1993 /* we were freed while filling */ 1994 /* XXX dbuf_undirty? */ 1995 bzero(db->db.db_data, db->db.db_size); 1996 db->db_freed_in_flight = FALSE; 1997 } 1998 db->db_state = DB_CACHED; 1999 cv_broadcast(&db->db_changed); 2000 } 2001 mutex_exit(&db->db_mtx); 2002 } 2003 2004 void 2005 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2006 bp_embedded_type_t etype, enum zio_compress comp, 2007 int uncompressed_size, int compressed_size, int byteorder, 2008 dmu_tx_t *tx) 2009 { 2010 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2011 struct dirty_leaf *dl; 2012 dmu_object_type_t type; 2013 2014 if (etype == BP_EMBEDDED_TYPE_DATA) { 2015 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2016 SPA_FEATURE_EMBEDDED_DATA)); 2017 } 2018 2019 DB_DNODE_ENTER(db); 2020 type = DB_DNODE(db)->dn_type; 2021 DB_DNODE_EXIT(db); 2022 2023 ASSERT0(db->db_level); 2024 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2025 2026 dmu_buf_will_not_fill(dbuf, tx); 2027 2028 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 2029 dl = &db->db_last_dirty->dt.dl; 2030 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2031 data, comp, uncompressed_size, compressed_size); 2032 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2033 BP_SET_TYPE(&dl->dr_overridden_by, type); 2034 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2035 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2036 2037 dl->dr_override_state = DR_OVERRIDDEN; 2038 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 2039 } 2040 2041 /* 2042 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2043 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2044 */ 2045 void 2046 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2047 { 2048 ASSERT(!refcount_is_zero(&db->db_holds)); 2049 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2050 ASSERT(db->db_level == 0); 2051 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2052 ASSERT(buf != NULL); 2053 ASSERT(arc_buf_lsize(buf) == db->db.db_size); 2054 ASSERT(tx->tx_txg != 0); 2055 2056 arc_return_buf(buf, db); 2057 ASSERT(arc_released(buf)); 2058 2059 mutex_enter(&db->db_mtx); 2060 2061 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2062 cv_wait(&db->db_changed, &db->db_mtx); 2063 2064 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2065 2066 if (db->db_state == DB_CACHED && 2067 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2068 mutex_exit(&db->db_mtx); 2069 (void) dbuf_dirty(db, tx); 2070 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2071 arc_buf_destroy(buf, db); 2072 xuio_stat_wbuf_copied(); 2073 return; 2074 } 2075 2076 xuio_stat_wbuf_nocopy(); 2077 if (db->db_state == DB_CACHED) { 2078 dbuf_dirty_record_t *dr = db->db_last_dirty; 2079 2080 ASSERT(db->db_buf != NULL); 2081 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2082 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2083 if (!arc_released(db->db_buf)) { 2084 ASSERT(dr->dt.dl.dr_override_state == 2085 DR_OVERRIDDEN); 2086 arc_release(db->db_buf, db); 2087 } 2088 dr->dt.dl.dr_data = buf; 2089 arc_buf_destroy(db->db_buf, db); 2090 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2091 arc_release(db->db_buf, db); 2092 arc_buf_destroy(db->db_buf, db); 2093 } 2094 db->db_buf = NULL; 2095 } 2096 ASSERT(db->db_buf == NULL); 2097 dbuf_set_data(db, buf); 2098 db->db_state = DB_FILL; 2099 mutex_exit(&db->db_mtx); 2100 (void) dbuf_dirty(db, tx); 2101 dmu_buf_fill_done(&db->db, tx); 2102 } 2103 2104 void 2105 dbuf_destroy(dmu_buf_impl_t *db) 2106 { 2107 dnode_t *dn; 2108 dmu_buf_impl_t *parent = db->db_parent; 2109 dmu_buf_impl_t *dndb; 2110 2111 ASSERT(MUTEX_HELD(&db->db_mtx)); 2112 ASSERT(refcount_is_zero(&db->db_holds)); 2113 2114 if (db->db_buf != NULL) { 2115 arc_buf_destroy(db->db_buf, db); 2116 db->db_buf = NULL; 2117 } 2118 2119 if (db->db_blkid == DMU_BONUS_BLKID) { 2120 ASSERT(db->db.db_data != NULL); 2121 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 2122 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2123 db->db_state = DB_UNCACHED; 2124 } 2125 2126 dbuf_clear_data(db); 2127 2128 if (multilist_link_active(&db->db_cache_link)) { 2129 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2130 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2131 2132 multilist_remove(dbuf_caches[db->db_caching_status].cache, db); 2133 (void) refcount_remove_many( 2134 &dbuf_caches[db->db_caching_status].size, 2135 db->db.db_size, db); 2136 2137 db->db_caching_status = DB_NO_CACHE; 2138 } 2139 2140 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2141 ASSERT(db->db_data_pending == NULL); 2142 2143 db->db_state = DB_EVICTING; 2144 db->db_blkptr = NULL; 2145 2146 /* 2147 * Now that db_state is DB_EVICTING, nobody else can find this via 2148 * the hash table. We can now drop db_mtx, which allows us to 2149 * acquire the dn_dbufs_mtx. 2150 */ 2151 mutex_exit(&db->db_mtx); 2152 2153 DB_DNODE_ENTER(db); 2154 dn = DB_DNODE(db); 2155 dndb = dn->dn_dbuf; 2156 if (db->db_blkid != DMU_BONUS_BLKID) { 2157 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2158 if (needlock) 2159 mutex_enter(&dn->dn_dbufs_mtx); 2160 avl_remove(&dn->dn_dbufs, db); 2161 atomic_dec_32(&dn->dn_dbufs_count); 2162 membar_producer(); 2163 DB_DNODE_EXIT(db); 2164 if (needlock) 2165 mutex_exit(&dn->dn_dbufs_mtx); 2166 /* 2167 * Decrementing the dbuf count means that the hold corresponding 2168 * to the removed dbuf is no longer discounted in dnode_move(), 2169 * so the dnode cannot be moved until after we release the hold. 2170 * The membar_producer() ensures visibility of the decremented 2171 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2172 * release any lock. 2173 */ 2174 dnode_rele(dn, db); 2175 db->db_dnode_handle = NULL; 2176 2177 dbuf_hash_remove(db); 2178 } else { 2179 DB_DNODE_EXIT(db); 2180 } 2181 2182 ASSERT(refcount_is_zero(&db->db_holds)); 2183 2184 db->db_parent = NULL; 2185 2186 ASSERT(db->db_buf == NULL); 2187 ASSERT(db->db.db_data == NULL); 2188 ASSERT(db->db_hash_next == NULL); 2189 ASSERT(db->db_blkptr == NULL); 2190 ASSERT(db->db_data_pending == NULL); 2191 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 2192 ASSERT(!multilist_link_active(&db->db_cache_link)); 2193 2194 kmem_cache_free(dbuf_kmem_cache, db); 2195 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2196 2197 /* 2198 * If this dbuf is referenced from an indirect dbuf, 2199 * decrement the ref count on the indirect dbuf. 2200 */ 2201 if (parent && parent != dndb) 2202 dbuf_rele(parent, db); 2203 } 2204 2205 /* 2206 * Note: While bpp will always be updated if the function returns success, 2207 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2208 * this happens when the dnode is the meta-dnode, or a userused or groupused 2209 * object. 2210 */ 2211 static int 2212 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2213 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2214 { 2215 *parentp = NULL; 2216 *bpp = NULL; 2217 2218 ASSERT(blkid != DMU_BONUS_BLKID); 2219 2220 if (blkid == DMU_SPILL_BLKID) { 2221 mutex_enter(&dn->dn_mtx); 2222 if (dn->dn_have_spill && 2223 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2224 *bpp = &dn->dn_phys->dn_spill; 2225 else 2226 *bpp = NULL; 2227 dbuf_add_ref(dn->dn_dbuf, NULL); 2228 *parentp = dn->dn_dbuf; 2229 mutex_exit(&dn->dn_mtx); 2230 return (0); 2231 } 2232 2233 int nlevels = 2234 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2235 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2236 2237 ASSERT3U(level * epbs, <, 64); 2238 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2239 /* 2240 * This assertion shouldn't trip as long as the max indirect block size 2241 * is less than 1M. The reason for this is that up to that point, 2242 * the number of levels required to address an entire object with blocks 2243 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2244 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2245 * (i.e. we can address the entire object), objects will all use at most 2246 * N-1 levels and the assertion won't overflow. However, once epbs is 2247 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2248 * enough to address an entire object, so objects will have 5 levels, 2249 * but then this assertion will overflow. 2250 * 2251 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2252 * need to redo this logic to handle overflows. 2253 */ 2254 ASSERT(level >= nlevels || 2255 ((nlevels - level - 1) * epbs) + 2256 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2257 if (level >= nlevels || 2258 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2259 ((nlevels - level - 1) * epbs)) || 2260 (fail_sparse && 2261 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2262 /* the buffer has no parent yet */ 2263 return (SET_ERROR(ENOENT)); 2264 } else if (level < nlevels-1) { 2265 /* this block is referenced from an indirect block */ 2266 int err = dbuf_hold_impl(dn, level+1, 2267 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2268 if (err) 2269 return (err); 2270 err = dbuf_read(*parentp, NULL, 2271 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2272 if (err) { 2273 dbuf_rele(*parentp, NULL); 2274 *parentp = NULL; 2275 return (err); 2276 } 2277 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2278 (blkid & ((1ULL << epbs) - 1)); 2279 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2280 ASSERT(BP_IS_HOLE(*bpp)); 2281 return (0); 2282 } else { 2283 /* the block is referenced from the dnode */ 2284 ASSERT3U(level, ==, nlevels-1); 2285 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2286 blkid < dn->dn_phys->dn_nblkptr); 2287 if (dn->dn_dbuf) { 2288 dbuf_add_ref(dn->dn_dbuf, NULL); 2289 *parentp = dn->dn_dbuf; 2290 } 2291 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2292 return (0); 2293 } 2294 } 2295 2296 static dmu_buf_impl_t * 2297 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2298 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2299 { 2300 objset_t *os = dn->dn_objset; 2301 dmu_buf_impl_t *db, *odb; 2302 2303 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2304 ASSERT(dn->dn_type != DMU_OT_NONE); 2305 2306 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2307 2308 db->db_objset = os; 2309 db->db.db_object = dn->dn_object; 2310 db->db_level = level; 2311 db->db_blkid = blkid; 2312 db->db_last_dirty = NULL; 2313 db->db_dirtycnt = 0; 2314 db->db_dnode_handle = dn->dn_handle; 2315 db->db_parent = parent; 2316 db->db_blkptr = blkptr; 2317 2318 db->db_user = NULL; 2319 db->db_user_immediate_evict = FALSE; 2320 db->db_freed_in_flight = FALSE; 2321 db->db_pending_evict = FALSE; 2322 2323 if (blkid == DMU_BONUS_BLKID) { 2324 ASSERT3P(parent, ==, dn->dn_dbuf); 2325 db->db.db_size = DN_MAX_BONUSLEN - 2326 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2327 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2328 db->db.db_offset = DMU_BONUS_BLKID; 2329 db->db_state = DB_UNCACHED; 2330 db->db_caching_status = DB_NO_CACHE; 2331 /* the bonus dbuf is not placed in the hash table */ 2332 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2333 return (db); 2334 } else if (blkid == DMU_SPILL_BLKID) { 2335 db->db.db_size = (blkptr != NULL) ? 2336 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2337 db->db.db_offset = 0; 2338 } else { 2339 int blocksize = 2340 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2341 db->db.db_size = blocksize; 2342 db->db.db_offset = db->db_blkid * blocksize; 2343 } 2344 2345 /* 2346 * Hold the dn_dbufs_mtx while we get the new dbuf 2347 * in the hash table *and* added to the dbufs list. 2348 * This prevents a possible deadlock with someone 2349 * trying to look up this dbuf before its added to the 2350 * dn_dbufs list. 2351 */ 2352 mutex_enter(&dn->dn_dbufs_mtx); 2353 db->db_state = DB_EVICTING; 2354 if ((odb = dbuf_hash_insert(db)) != NULL) { 2355 /* someone else inserted it first */ 2356 kmem_cache_free(dbuf_kmem_cache, db); 2357 mutex_exit(&dn->dn_dbufs_mtx); 2358 return (odb); 2359 } 2360 avl_add(&dn->dn_dbufs, db); 2361 2362 db->db_state = DB_UNCACHED; 2363 db->db_caching_status = DB_NO_CACHE; 2364 mutex_exit(&dn->dn_dbufs_mtx); 2365 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2366 2367 if (parent && parent != dn->dn_dbuf) 2368 dbuf_add_ref(parent, db); 2369 2370 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2371 refcount_count(&dn->dn_holds) > 0); 2372 (void) refcount_add(&dn->dn_holds, db); 2373 atomic_inc_32(&dn->dn_dbufs_count); 2374 2375 dprintf_dbuf(db, "db=%p\n", db); 2376 2377 return (db); 2378 } 2379 2380 typedef struct dbuf_prefetch_arg { 2381 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2382 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2383 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2384 int dpa_curlevel; /* The current level that we're reading */ 2385 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2386 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2387 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2388 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2389 } dbuf_prefetch_arg_t; 2390 2391 /* 2392 * Actually issue the prefetch read for the block given. 2393 */ 2394 static void 2395 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2396 { 2397 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2398 return; 2399 2400 arc_flags_t aflags = 2401 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2402 2403 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2404 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2405 ASSERT(dpa->dpa_zio != NULL); 2406 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2407 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2408 &aflags, &dpa->dpa_zb); 2409 } 2410 2411 /* 2412 * Called when an indirect block above our prefetch target is read in. This 2413 * will either read in the next indirect block down the tree or issue the actual 2414 * prefetch if the next block down is our target. 2415 */ 2416 static void 2417 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) 2418 { 2419 dbuf_prefetch_arg_t *dpa = private; 2420 2421 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2422 ASSERT3S(dpa->dpa_curlevel, >, 0); 2423 2424 if (abuf == NULL) { 2425 ASSERT(zio == NULL || zio->io_error != 0); 2426 kmem_free(dpa, sizeof (*dpa)); 2427 return; 2428 } 2429 ASSERT(zio == NULL || zio->io_error == 0); 2430 2431 /* 2432 * The dpa_dnode is only valid if we are called with a NULL 2433 * zio. This indicates that the arc_read() returned without 2434 * first calling zio_read() to issue a physical read. Once 2435 * a physical read is made the dpa_dnode must be invalidated 2436 * as the locks guarding it may have been dropped. If the 2437 * dpa_dnode is still valid, then we want to add it to the dbuf 2438 * cache. To do so, we must hold the dbuf associated with the block 2439 * we just prefetched, read its contents so that we associate it 2440 * with an arc_buf_t, and then release it. 2441 */ 2442 if (zio != NULL) { 2443 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2444 if (zio->io_flags & ZIO_FLAG_RAW) { 2445 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2446 } else { 2447 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2448 } 2449 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2450 2451 dpa->dpa_dnode = NULL; 2452 } else if (dpa->dpa_dnode != NULL) { 2453 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2454 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2455 dpa->dpa_zb.zb_level)); 2456 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2457 dpa->dpa_curlevel, curblkid, FTAG); 2458 (void) dbuf_read(db, NULL, 2459 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2460 dbuf_rele(db, FTAG); 2461 } 2462 2463 dpa->dpa_curlevel--; 2464 2465 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2466 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2467 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2468 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2469 if (BP_IS_HOLE(bp)) { 2470 kmem_free(dpa, sizeof (*dpa)); 2471 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2472 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2473 dbuf_issue_final_prefetch(dpa, bp); 2474 kmem_free(dpa, sizeof (*dpa)); 2475 } else { 2476 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2477 zbookmark_phys_t zb; 2478 2479 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2480 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 2481 iter_aflags |= ARC_FLAG_L2CACHE; 2482 2483 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2484 2485 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2486 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2487 2488 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2489 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2490 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2491 &iter_aflags, &zb); 2492 } 2493 2494 arc_buf_destroy(abuf, private); 2495 } 2496 2497 /* 2498 * Issue prefetch reads for the given block on the given level. If the indirect 2499 * blocks above that block are not in memory, we will read them in 2500 * asynchronously. As a result, this call never blocks waiting for a read to 2501 * complete. 2502 */ 2503 void 2504 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2505 arc_flags_t aflags) 2506 { 2507 blkptr_t bp; 2508 int epbs, nlevels, curlevel; 2509 uint64_t curblkid; 2510 2511 ASSERT(blkid != DMU_BONUS_BLKID); 2512 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2513 2514 if (blkid > dn->dn_maxblkid) 2515 return; 2516 2517 if (dnode_block_freed(dn, blkid)) 2518 return; 2519 2520 /* 2521 * This dnode hasn't been written to disk yet, so there's nothing to 2522 * prefetch. 2523 */ 2524 nlevels = dn->dn_phys->dn_nlevels; 2525 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2526 return; 2527 2528 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2529 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2530 return; 2531 2532 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2533 level, blkid); 2534 if (db != NULL) { 2535 mutex_exit(&db->db_mtx); 2536 /* 2537 * This dbuf already exists. It is either CACHED, or 2538 * (we assume) about to be read or filled. 2539 */ 2540 return; 2541 } 2542 2543 /* 2544 * Find the closest ancestor (indirect block) of the target block 2545 * that is present in the cache. In this indirect block, we will 2546 * find the bp that is at curlevel, curblkid. 2547 */ 2548 curlevel = level; 2549 curblkid = blkid; 2550 while (curlevel < nlevels - 1) { 2551 int parent_level = curlevel + 1; 2552 uint64_t parent_blkid = curblkid >> epbs; 2553 dmu_buf_impl_t *db; 2554 2555 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2556 FALSE, TRUE, FTAG, &db) == 0) { 2557 blkptr_t *bpp = db->db_buf->b_data; 2558 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2559 dbuf_rele(db, FTAG); 2560 break; 2561 } 2562 2563 curlevel = parent_level; 2564 curblkid = parent_blkid; 2565 } 2566 2567 if (curlevel == nlevels - 1) { 2568 /* No cached indirect blocks found. */ 2569 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2570 bp = dn->dn_phys->dn_blkptr[curblkid]; 2571 } 2572 if (BP_IS_HOLE(&bp)) 2573 return; 2574 2575 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2576 2577 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2578 ZIO_FLAG_CANFAIL); 2579 2580 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2581 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2582 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2583 dn->dn_object, level, blkid); 2584 dpa->dpa_curlevel = curlevel; 2585 dpa->dpa_prio = prio; 2586 dpa->dpa_aflags = aflags; 2587 dpa->dpa_spa = dn->dn_objset->os_spa; 2588 dpa->dpa_dnode = dn; 2589 dpa->dpa_epbs = epbs; 2590 dpa->dpa_zio = pio; 2591 2592 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2593 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 2594 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 2595 2596 /* 2597 * If we have the indirect just above us, no need to do the asynchronous 2598 * prefetch chain; we'll just run the last step ourselves. If we're at 2599 * a higher level, though, we want to issue the prefetches for all the 2600 * indirect blocks asynchronously, so we can go on with whatever we were 2601 * doing. 2602 */ 2603 if (curlevel == level) { 2604 ASSERT3U(curblkid, ==, blkid); 2605 dbuf_issue_final_prefetch(dpa, &bp); 2606 kmem_free(dpa, sizeof (*dpa)); 2607 } else { 2608 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2609 zbookmark_phys_t zb; 2610 2611 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2612 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 2613 iter_aflags |= ARC_FLAG_L2CACHE; 2614 2615 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2616 dn->dn_object, curlevel, curblkid); 2617 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2618 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2619 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2620 &iter_aflags, &zb); 2621 } 2622 /* 2623 * We use pio here instead of dpa_zio since it's possible that 2624 * dpa may have already been freed. 2625 */ 2626 zio_nowait(pio); 2627 } 2628 2629 /* 2630 * Returns with db_holds incremented, and db_mtx not held. 2631 * Note: dn_struct_rwlock must be held. 2632 */ 2633 int 2634 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2635 boolean_t fail_sparse, boolean_t fail_uncached, 2636 void *tag, dmu_buf_impl_t **dbp) 2637 { 2638 dmu_buf_impl_t *db, *parent = NULL; 2639 2640 ASSERT(blkid != DMU_BONUS_BLKID); 2641 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2642 ASSERT3U(dn->dn_nlevels, >, level); 2643 2644 *dbp = NULL; 2645 top: 2646 /* dbuf_find() returns with db_mtx held */ 2647 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2648 2649 if (db == NULL) { 2650 blkptr_t *bp = NULL; 2651 int err; 2652 2653 if (fail_uncached) 2654 return (SET_ERROR(ENOENT)); 2655 2656 ASSERT3P(parent, ==, NULL); 2657 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2658 if (fail_sparse) { 2659 if (err == 0 && bp && BP_IS_HOLE(bp)) 2660 err = SET_ERROR(ENOENT); 2661 if (err) { 2662 if (parent) 2663 dbuf_rele(parent, NULL); 2664 return (err); 2665 } 2666 } 2667 if (err && err != ENOENT) 2668 return (err); 2669 db = dbuf_create(dn, level, blkid, parent, bp); 2670 } 2671 2672 if (fail_uncached && db->db_state != DB_CACHED) { 2673 mutex_exit(&db->db_mtx); 2674 return (SET_ERROR(ENOENT)); 2675 } 2676 2677 if (db->db_buf != NULL) 2678 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2679 2680 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2681 2682 /* 2683 * If this buffer is currently syncing out, and we are are 2684 * still referencing it from db_data, we need to make a copy 2685 * of it in case we decide we want to dirty it again in this txg. 2686 */ 2687 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2688 dn->dn_object != DMU_META_DNODE_OBJECT && 2689 db->db_state == DB_CACHED && db->db_data_pending) { 2690 dbuf_dirty_record_t *dr = db->db_data_pending; 2691 2692 if (dr->dt.dl.dr_data == db->db_buf) { 2693 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2694 2695 dbuf_set_data(db, 2696 arc_alloc_buf(dn->dn_objset->os_spa, db, type, 2697 db->db.db_size)); 2698 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2699 db->db.db_size); 2700 } 2701 } 2702 2703 if (multilist_link_active(&db->db_cache_link)) { 2704 ASSERT(refcount_is_zero(&db->db_holds)); 2705 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2706 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2707 2708 multilist_remove(dbuf_caches[db->db_caching_status].cache, db); 2709 (void) refcount_remove_many( 2710 &dbuf_caches[db->db_caching_status].size, 2711 db->db.db_size, db); 2712 2713 db->db_caching_status = DB_NO_CACHE; 2714 } 2715 (void) refcount_add(&db->db_holds, tag); 2716 DBUF_VERIFY(db); 2717 mutex_exit(&db->db_mtx); 2718 2719 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2720 if (parent) 2721 dbuf_rele(parent, NULL); 2722 2723 ASSERT3P(DB_DNODE(db), ==, dn); 2724 ASSERT3U(db->db_blkid, ==, blkid); 2725 ASSERT3U(db->db_level, ==, level); 2726 *dbp = db; 2727 2728 return (0); 2729 } 2730 2731 dmu_buf_impl_t * 2732 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2733 { 2734 return (dbuf_hold_level(dn, 0, blkid, tag)); 2735 } 2736 2737 dmu_buf_impl_t * 2738 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2739 { 2740 dmu_buf_impl_t *db; 2741 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2742 return (err ? NULL : db); 2743 } 2744 2745 void 2746 dbuf_create_bonus(dnode_t *dn) 2747 { 2748 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2749 2750 ASSERT(dn->dn_bonus == NULL); 2751 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2752 } 2753 2754 int 2755 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2756 { 2757 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2758 dnode_t *dn; 2759 2760 if (db->db_blkid != DMU_SPILL_BLKID) 2761 return (SET_ERROR(ENOTSUP)); 2762 if (blksz == 0) 2763 blksz = SPA_MINBLOCKSIZE; 2764 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2765 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2766 2767 DB_DNODE_ENTER(db); 2768 dn = DB_DNODE(db); 2769 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2770 dbuf_new_size(db, blksz, tx); 2771 rw_exit(&dn->dn_struct_rwlock); 2772 DB_DNODE_EXIT(db); 2773 2774 return (0); 2775 } 2776 2777 void 2778 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2779 { 2780 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2781 } 2782 2783 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2784 void 2785 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2786 { 2787 int64_t holds = refcount_add(&db->db_holds, tag); 2788 ASSERT3S(holds, >, 1); 2789 } 2790 2791 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2792 boolean_t 2793 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2794 void *tag) 2795 { 2796 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2797 dmu_buf_impl_t *found_db; 2798 boolean_t result = B_FALSE; 2799 2800 if (db->db_blkid == DMU_BONUS_BLKID) 2801 found_db = dbuf_find_bonus(os, obj); 2802 else 2803 found_db = dbuf_find(os, obj, 0, blkid); 2804 2805 if (found_db != NULL) { 2806 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 2807 (void) refcount_add(&db->db_holds, tag); 2808 result = B_TRUE; 2809 } 2810 mutex_exit(&db->db_mtx); 2811 } 2812 return (result); 2813 } 2814 2815 /* 2816 * If you call dbuf_rele() you had better not be referencing the dnode handle 2817 * unless you have some other direct or indirect hold on the dnode. (An indirect 2818 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2819 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2820 * dnode's parent dbuf evicting its dnode handles. 2821 */ 2822 void 2823 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2824 { 2825 mutex_enter(&db->db_mtx); 2826 dbuf_rele_and_unlock(db, tag); 2827 } 2828 2829 void 2830 dmu_buf_rele(dmu_buf_t *db, void *tag) 2831 { 2832 dbuf_rele((dmu_buf_impl_t *)db, tag); 2833 } 2834 2835 /* 2836 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2837 * db_dirtycnt and db_holds to be updated atomically. 2838 */ 2839 void 2840 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2841 { 2842 int64_t holds; 2843 2844 ASSERT(MUTEX_HELD(&db->db_mtx)); 2845 DBUF_VERIFY(db); 2846 2847 /* 2848 * Remove the reference to the dbuf before removing its hold on the 2849 * dnode so we can guarantee in dnode_move() that a referenced bonus 2850 * buffer has a corresponding dnode hold. 2851 */ 2852 holds = refcount_remove(&db->db_holds, tag); 2853 ASSERT(holds >= 0); 2854 2855 /* 2856 * We can't freeze indirects if there is a possibility that they 2857 * may be modified in the current syncing context. 2858 */ 2859 if (db->db_buf != NULL && 2860 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 2861 arc_buf_freeze(db->db_buf); 2862 } 2863 2864 if (holds == db->db_dirtycnt && 2865 db->db_level == 0 && db->db_user_immediate_evict) 2866 dbuf_evict_user(db); 2867 2868 if (holds == 0) { 2869 if (db->db_blkid == DMU_BONUS_BLKID) { 2870 dnode_t *dn; 2871 boolean_t evict_dbuf = db->db_pending_evict; 2872 2873 /* 2874 * If the dnode moves here, we cannot cross this 2875 * barrier until the move completes. 2876 */ 2877 DB_DNODE_ENTER(db); 2878 2879 dn = DB_DNODE(db); 2880 atomic_dec_32(&dn->dn_dbufs_count); 2881 2882 /* 2883 * Decrementing the dbuf count means that the bonus 2884 * buffer's dnode hold is no longer discounted in 2885 * dnode_move(). The dnode cannot move until after 2886 * the dnode_rele() below. 2887 */ 2888 DB_DNODE_EXIT(db); 2889 2890 /* 2891 * Do not reference db after its lock is dropped. 2892 * Another thread may evict it. 2893 */ 2894 mutex_exit(&db->db_mtx); 2895 2896 if (evict_dbuf) 2897 dnode_evict_bonus(dn); 2898 2899 dnode_rele(dn, db); 2900 } else if (db->db_buf == NULL) { 2901 /* 2902 * This is a special case: we never associated this 2903 * dbuf with any data allocated from the ARC. 2904 */ 2905 ASSERT(db->db_state == DB_UNCACHED || 2906 db->db_state == DB_NOFILL); 2907 dbuf_destroy(db); 2908 } else if (arc_released(db->db_buf)) { 2909 /* 2910 * This dbuf has anonymous data associated with it. 2911 */ 2912 dbuf_destroy(db); 2913 } else { 2914 boolean_t do_arc_evict = B_FALSE; 2915 blkptr_t bp; 2916 spa_t *spa = dmu_objset_spa(db->db_objset); 2917 2918 if (!DBUF_IS_CACHEABLE(db) && 2919 db->db_blkptr != NULL && 2920 !BP_IS_HOLE(db->db_blkptr) && 2921 !BP_IS_EMBEDDED(db->db_blkptr)) { 2922 do_arc_evict = B_TRUE; 2923 bp = *db->db_blkptr; 2924 } 2925 2926 if (!DBUF_IS_CACHEABLE(db) || 2927 db->db_pending_evict) { 2928 dbuf_destroy(db); 2929 } else if (!multilist_link_active(&db->db_cache_link)) { 2930 ASSERT3U(db->db_caching_status, ==, 2931 DB_NO_CACHE); 2932 2933 dbuf_cached_state_t dcs = 2934 dbuf_include_in_metadata_cache(db) ? 2935 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 2936 db->db_caching_status = dcs; 2937 2938 multilist_insert(dbuf_caches[dcs].cache, db); 2939 (void) refcount_add_many(&dbuf_caches[dcs].size, 2940 db->db.db_size, db); 2941 mutex_exit(&db->db_mtx); 2942 2943 if (db->db_caching_status == DB_DBUF_CACHE) { 2944 dbuf_evict_notify(); 2945 } 2946 } 2947 2948 if (do_arc_evict) 2949 arc_freed(spa, &bp); 2950 } 2951 } else { 2952 mutex_exit(&db->db_mtx); 2953 } 2954 2955 } 2956 2957 #pragma weak dmu_buf_refcount = dbuf_refcount 2958 uint64_t 2959 dbuf_refcount(dmu_buf_impl_t *db) 2960 { 2961 return (refcount_count(&db->db_holds)); 2962 } 2963 2964 void * 2965 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 2966 dmu_buf_user_t *new_user) 2967 { 2968 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2969 2970 mutex_enter(&db->db_mtx); 2971 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2972 if (db->db_user == old_user) 2973 db->db_user = new_user; 2974 else 2975 old_user = db->db_user; 2976 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2977 mutex_exit(&db->db_mtx); 2978 2979 return (old_user); 2980 } 2981 2982 void * 2983 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2984 { 2985 return (dmu_buf_replace_user(db_fake, NULL, user)); 2986 } 2987 2988 void * 2989 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2990 { 2991 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2992 2993 db->db_user_immediate_evict = TRUE; 2994 return (dmu_buf_set_user(db_fake, user)); 2995 } 2996 2997 void * 2998 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2999 { 3000 return (dmu_buf_replace_user(db_fake, user, NULL)); 3001 } 3002 3003 void * 3004 dmu_buf_get_user(dmu_buf_t *db_fake) 3005 { 3006 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3007 3008 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3009 return (db->db_user); 3010 } 3011 3012 void 3013 dmu_buf_user_evict_wait() 3014 { 3015 taskq_wait(dbu_evict_taskq); 3016 } 3017 3018 blkptr_t * 3019 dmu_buf_get_blkptr(dmu_buf_t *db) 3020 { 3021 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3022 return (dbi->db_blkptr); 3023 } 3024 3025 objset_t * 3026 dmu_buf_get_objset(dmu_buf_t *db) 3027 { 3028 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3029 return (dbi->db_objset); 3030 } 3031 3032 dnode_t * 3033 dmu_buf_dnode_enter(dmu_buf_t *db) 3034 { 3035 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3036 DB_DNODE_ENTER(dbi); 3037 return (DB_DNODE(dbi)); 3038 } 3039 3040 void 3041 dmu_buf_dnode_exit(dmu_buf_t *db) 3042 { 3043 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3044 DB_DNODE_EXIT(dbi); 3045 } 3046 3047 static void 3048 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 3049 { 3050 /* ASSERT(dmu_tx_is_syncing(tx) */ 3051 ASSERT(MUTEX_HELD(&db->db_mtx)); 3052 3053 if (db->db_blkptr != NULL) 3054 return; 3055 3056 if (db->db_blkid == DMU_SPILL_BLKID) { 3057 db->db_blkptr = &dn->dn_phys->dn_spill; 3058 BP_ZERO(db->db_blkptr); 3059 return; 3060 } 3061 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 3062 /* 3063 * This buffer was allocated at a time when there was 3064 * no available blkptrs from the dnode, or it was 3065 * inappropriate to hook it in (i.e., nlevels mis-match). 3066 */ 3067 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 3068 ASSERT(db->db_parent == NULL); 3069 db->db_parent = dn->dn_dbuf; 3070 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 3071 DBUF_VERIFY(db); 3072 } else { 3073 dmu_buf_impl_t *parent = db->db_parent; 3074 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3075 3076 ASSERT(dn->dn_phys->dn_nlevels > 1); 3077 if (parent == NULL) { 3078 mutex_exit(&db->db_mtx); 3079 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3080 parent = dbuf_hold_level(dn, db->db_level + 1, 3081 db->db_blkid >> epbs, db); 3082 rw_exit(&dn->dn_struct_rwlock); 3083 mutex_enter(&db->db_mtx); 3084 db->db_parent = parent; 3085 } 3086 db->db_blkptr = (blkptr_t *)parent->db.db_data + 3087 (db->db_blkid & ((1ULL << epbs) - 1)); 3088 DBUF_VERIFY(db); 3089 } 3090 } 3091 3092 static void 3093 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3094 { 3095 dmu_buf_impl_t *db = dr->dr_dbuf; 3096 dnode_t *dn; 3097 zio_t *zio; 3098 3099 ASSERT(dmu_tx_is_syncing(tx)); 3100 3101 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3102 3103 mutex_enter(&db->db_mtx); 3104 3105 ASSERT(db->db_level > 0); 3106 DBUF_VERIFY(db); 3107 3108 /* Read the block if it hasn't been read yet. */ 3109 if (db->db_buf == NULL) { 3110 mutex_exit(&db->db_mtx); 3111 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 3112 mutex_enter(&db->db_mtx); 3113 } 3114 ASSERT3U(db->db_state, ==, DB_CACHED); 3115 ASSERT(db->db_buf != NULL); 3116 3117 DB_DNODE_ENTER(db); 3118 dn = DB_DNODE(db); 3119 /* Indirect block size must match what the dnode thinks it is. */ 3120 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3121 dbuf_check_blkptr(dn, db); 3122 DB_DNODE_EXIT(db); 3123 3124 /* Provide the pending dirty record to child dbufs */ 3125 db->db_data_pending = dr; 3126 3127 mutex_exit(&db->db_mtx); 3128 3129 dbuf_write(dr, db->db_buf, tx); 3130 3131 zio = dr->dr_zio; 3132 mutex_enter(&dr->dt.di.dr_mtx); 3133 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 3134 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3135 mutex_exit(&dr->dt.di.dr_mtx); 3136 zio_nowait(zio); 3137 } 3138 3139 static void 3140 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3141 { 3142 arc_buf_t **datap = &dr->dt.dl.dr_data; 3143 dmu_buf_impl_t *db = dr->dr_dbuf; 3144 dnode_t *dn; 3145 objset_t *os; 3146 uint64_t txg = tx->tx_txg; 3147 3148 ASSERT(dmu_tx_is_syncing(tx)); 3149 3150 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3151 3152 mutex_enter(&db->db_mtx); 3153 /* 3154 * To be synced, we must be dirtied. But we 3155 * might have been freed after the dirty. 3156 */ 3157 if (db->db_state == DB_UNCACHED) { 3158 /* This buffer has been freed since it was dirtied */ 3159 ASSERT(db->db.db_data == NULL); 3160 } else if (db->db_state == DB_FILL) { 3161 /* This buffer was freed and is now being re-filled */ 3162 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3163 } else { 3164 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3165 } 3166 DBUF_VERIFY(db); 3167 3168 DB_DNODE_ENTER(db); 3169 dn = DB_DNODE(db); 3170 3171 if (db->db_blkid == DMU_SPILL_BLKID) { 3172 mutex_enter(&dn->dn_mtx); 3173 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 3174 mutex_exit(&dn->dn_mtx); 3175 } 3176 3177 /* 3178 * If this is a bonus buffer, simply copy the bonus data into the 3179 * dnode. It will be written out when the dnode is synced (and it 3180 * will be synced, since it must have been dirty for dbuf_sync to 3181 * be called). 3182 */ 3183 if (db->db_blkid == DMU_BONUS_BLKID) { 3184 dbuf_dirty_record_t **drp; 3185 3186 ASSERT(*datap != NULL); 3187 ASSERT0(db->db_level); 3188 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 3189 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 3190 DB_DNODE_EXIT(db); 3191 3192 if (*datap != db->db.db_data) { 3193 zio_buf_free(*datap, DN_MAX_BONUSLEN); 3194 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 3195 } 3196 db->db_data_pending = NULL; 3197 drp = &db->db_last_dirty; 3198 while (*drp != dr) 3199 drp = &(*drp)->dr_next; 3200 ASSERT(dr->dr_next == NULL); 3201 ASSERT(dr->dr_dbuf == db); 3202 *drp = dr->dr_next; 3203 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3204 ASSERT(db->db_dirtycnt > 0); 3205 db->db_dirtycnt -= 1; 3206 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 3207 return; 3208 } 3209 3210 os = dn->dn_objset; 3211 3212 /* 3213 * This function may have dropped the db_mtx lock allowing a dmu_sync 3214 * operation to sneak in. As a result, we need to ensure that we 3215 * don't check the dr_override_state until we have returned from 3216 * dbuf_check_blkptr. 3217 */ 3218 dbuf_check_blkptr(dn, db); 3219 3220 /* 3221 * If this buffer is in the middle of an immediate write, 3222 * wait for the synchronous IO to complete. 3223 */ 3224 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 3225 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 3226 cv_wait(&db->db_changed, &db->db_mtx); 3227 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 3228 } 3229 3230 if (db->db_state != DB_NOFILL && 3231 dn->dn_object != DMU_META_DNODE_OBJECT && 3232 refcount_count(&db->db_holds) > 1 && 3233 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 3234 *datap == db->db_buf) { 3235 /* 3236 * If this buffer is currently "in use" (i.e., there 3237 * are active holds and db_data still references it), 3238 * then make a copy before we start the write so that 3239 * any modifications from the open txg will not leak 3240 * into this write. 3241 * 3242 * NOTE: this copy does not need to be made for 3243 * objects only modified in the syncing context (e.g. 3244 * DNONE_DNODE blocks). 3245 */ 3246 int psize = arc_buf_size(*datap); 3247 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 3248 enum zio_compress compress_type = arc_get_compression(*datap); 3249 3250 if (compress_type == ZIO_COMPRESS_OFF) { 3251 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 3252 } else { 3253 ASSERT3U(type, ==, ARC_BUFC_DATA); 3254 int lsize = arc_buf_lsize(*datap); 3255 *datap = arc_alloc_compressed_buf(os->os_spa, db, 3256 psize, lsize, compress_type); 3257 } 3258 bcopy(db->db.db_data, (*datap)->b_data, psize); 3259 } 3260 db->db_data_pending = dr; 3261 3262 mutex_exit(&db->db_mtx); 3263 3264 dbuf_write(dr, *datap, tx); 3265 3266 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3267 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 3268 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 3269 DB_DNODE_EXIT(db); 3270 } else { 3271 /* 3272 * Although zio_nowait() does not "wait for an IO", it does 3273 * initiate the IO. If this is an empty write it seems plausible 3274 * that the IO could actually be completed before the nowait 3275 * returns. We need to DB_DNODE_EXIT() first in case 3276 * zio_nowait() invalidates the dbuf. 3277 */ 3278 DB_DNODE_EXIT(db); 3279 zio_nowait(dr->dr_zio); 3280 } 3281 } 3282 3283 void 3284 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 3285 { 3286 dbuf_dirty_record_t *dr; 3287 3288 while (dr = list_head(list)) { 3289 if (dr->dr_zio != NULL) { 3290 /* 3291 * If we find an already initialized zio then we 3292 * are processing the meta-dnode, and we have finished. 3293 * The dbufs for all dnodes are put back on the list 3294 * during processing, so that we can zio_wait() 3295 * these IOs after initiating all child IOs. 3296 */ 3297 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 3298 DMU_META_DNODE_OBJECT); 3299 break; 3300 } 3301 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 3302 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 3303 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 3304 } 3305 list_remove(list, dr); 3306 if (dr->dr_dbuf->db_level > 0) 3307 dbuf_sync_indirect(dr, tx); 3308 else 3309 dbuf_sync_leaf(dr, tx); 3310 } 3311 } 3312 3313 /* ARGSUSED */ 3314 static void 3315 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3316 { 3317 dmu_buf_impl_t *db = vdb; 3318 dnode_t *dn; 3319 blkptr_t *bp = zio->io_bp; 3320 blkptr_t *bp_orig = &zio->io_bp_orig; 3321 spa_t *spa = zio->io_spa; 3322 int64_t delta; 3323 uint64_t fill = 0; 3324 int i; 3325 3326 ASSERT3P(db->db_blkptr, !=, NULL); 3327 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 3328 3329 DB_DNODE_ENTER(db); 3330 dn = DB_DNODE(db); 3331 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 3332 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 3333 zio->io_prev_space_delta = delta; 3334 3335 if (bp->blk_birth != 0) { 3336 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 3337 BP_GET_TYPE(bp) == dn->dn_type) || 3338 (db->db_blkid == DMU_SPILL_BLKID && 3339 BP_GET_TYPE(bp) == dn->dn_bonustype) || 3340 BP_IS_EMBEDDED(bp)); 3341 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 3342 } 3343 3344 mutex_enter(&db->db_mtx); 3345 3346 #ifdef ZFS_DEBUG 3347 if (db->db_blkid == DMU_SPILL_BLKID) { 3348 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3349 ASSERT(!(BP_IS_HOLE(bp)) && 3350 db->db_blkptr == &dn->dn_phys->dn_spill); 3351 } 3352 #endif 3353 3354 if (db->db_level == 0) { 3355 mutex_enter(&dn->dn_mtx); 3356 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 3357 db->db_blkid != DMU_SPILL_BLKID) 3358 dn->dn_phys->dn_maxblkid = db->db_blkid; 3359 mutex_exit(&dn->dn_mtx); 3360 3361 if (dn->dn_type == DMU_OT_DNODE) { 3362 dnode_phys_t *dnp = db->db.db_data; 3363 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 3364 i--, dnp++) { 3365 if (dnp->dn_type != DMU_OT_NONE) 3366 fill++; 3367 } 3368 } else { 3369 if (BP_IS_HOLE(bp)) { 3370 fill = 0; 3371 } else { 3372 fill = 1; 3373 } 3374 } 3375 } else { 3376 blkptr_t *ibp = db->db.db_data; 3377 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3378 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 3379 if (BP_IS_HOLE(ibp)) 3380 continue; 3381 fill += BP_GET_FILL(ibp); 3382 } 3383 } 3384 DB_DNODE_EXIT(db); 3385 3386 if (!BP_IS_EMBEDDED(bp)) 3387 bp->blk_fill = fill; 3388 3389 mutex_exit(&db->db_mtx); 3390 3391 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3392 *db->db_blkptr = *bp; 3393 rw_exit(&dn->dn_struct_rwlock); 3394 } 3395 3396 /* ARGSUSED */ 3397 /* 3398 * This function gets called just prior to running through the compression 3399 * stage of the zio pipeline. If we're an indirect block comprised of only 3400 * holes, then we want this indirect to be compressed away to a hole. In 3401 * order to do that we must zero out any information about the holes that 3402 * this indirect points to prior to before we try to compress it. 3403 */ 3404 static void 3405 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3406 { 3407 dmu_buf_impl_t *db = vdb; 3408 dnode_t *dn; 3409 blkptr_t *bp; 3410 unsigned int epbs, i; 3411 3412 ASSERT3U(db->db_level, >, 0); 3413 DB_DNODE_ENTER(db); 3414 dn = DB_DNODE(db); 3415 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3416 ASSERT3U(epbs, <, 31); 3417 3418 /* Determine if all our children are holes */ 3419 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { 3420 if (!BP_IS_HOLE(bp)) 3421 break; 3422 } 3423 3424 /* 3425 * If all the children are holes, then zero them all out so that 3426 * we may get compressed away. 3427 */ 3428 if (i == 1 << epbs) { 3429 /* 3430 * We only found holes. Grab the rwlock to prevent 3431 * anybody from reading the blocks we're about to 3432 * zero out. 3433 */ 3434 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3435 bzero(db->db.db_data, db->db.db_size); 3436 rw_exit(&dn->dn_struct_rwlock); 3437 } 3438 DB_DNODE_EXIT(db); 3439 } 3440 3441 /* 3442 * The SPA will call this callback several times for each zio - once 3443 * for every physical child i/o (zio->io_phys_children times). This 3444 * allows the DMU to monitor the progress of each logical i/o. For example, 3445 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 3446 * block. There may be a long delay before all copies/fragments are completed, 3447 * so this callback allows us to retire dirty space gradually, as the physical 3448 * i/os complete. 3449 */ 3450 /* ARGSUSED */ 3451 static void 3452 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 3453 { 3454 dmu_buf_impl_t *db = arg; 3455 objset_t *os = db->db_objset; 3456 dsl_pool_t *dp = dmu_objset_pool(os); 3457 dbuf_dirty_record_t *dr; 3458 int delta = 0; 3459 3460 dr = db->db_data_pending; 3461 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 3462 3463 /* 3464 * The callback will be called io_phys_children times. Retire one 3465 * portion of our dirty space each time we are called. Any rounding 3466 * error will be cleaned up by dsl_pool_sync()'s call to 3467 * dsl_pool_undirty_space(). 3468 */ 3469 delta = dr->dr_accounted / zio->io_phys_children; 3470 dsl_pool_undirty_space(dp, delta, zio->io_txg); 3471 } 3472 3473 /* ARGSUSED */ 3474 static void 3475 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 3476 { 3477 dmu_buf_impl_t *db = vdb; 3478 blkptr_t *bp_orig = &zio->io_bp_orig; 3479 blkptr_t *bp = db->db_blkptr; 3480 objset_t *os = db->db_objset; 3481 dmu_tx_t *tx = os->os_synctx; 3482 dbuf_dirty_record_t **drp, *dr; 3483 3484 ASSERT0(zio->io_error); 3485 ASSERT(db->db_blkptr == bp); 3486 3487 /* 3488 * For nopwrites and rewrites we ensure that the bp matches our 3489 * original and bypass all the accounting. 3490 */ 3491 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 3492 ASSERT(BP_EQUAL(bp, bp_orig)); 3493 } else { 3494 dsl_dataset_t *ds = os->os_dsl_dataset; 3495 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 3496 dsl_dataset_block_born(ds, bp, tx); 3497 } 3498 3499 mutex_enter(&db->db_mtx); 3500 3501 DBUF_VERIFY(db); 3502 3503 drp = &db->db_last_dirty; 3504 while ((dr = *drp) != db->db_data_pending) 3505 drp = &dr->dr_next; 3506 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3507 ASSERT(dr->dr_dbuf == db); 3508 ASSERT(dr->dr_next == NULL); 3509 *drp = dr->dr_next; 3510 3511 #ifdef ZFS_DEBUG 3512 if (db->db_blkid == DMU_SPILL_BLKID) { 3513 dnode_t *dn; 3514 3515 DB_DNODE_ENTER(db); 3516 dn = DB_DNODE(db); 3517 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3518 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3519 db->db_blkptr == &dn->dn_phys->dn_spill); 3520 DB_DNODE_EXIT(db); 3521 } 3522 #endif 3523 3524 if (db->db_level == 0) { 3525 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3526 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3527 if (db->db_state != DB_NOFILL) { 3528 if (dr->dt.dl.dr_data != db->db_buf) 3529 arc_buf_destroy(dr->dt.dl.dr_data, db); 3530 } 3531 } else { 3532 dnode_t *dn; 3533 3534 DB_DNODE_ENTER(db); 3535 dn = DB_DNODE(db); 3536 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3537 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3538 if (!BP_IS_HOLE(db->db_blkptr)) { 3539 int epbs = 3540 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3541 ASSERT3U(db->db_blkid, <=, 3542 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3543 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3544 db->db.db_size); 3545 } 3546 DB_DNODE_EXIT(db); 3547 mutex_destroy(&dr->dt.di.dr_mtx); 3548 list_destroy(&dr->dt.di.dr_children); 3549 } 3550 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3551 3552 cv_broadcast(&db->db_changed); 3553 ASSERT(db->db_dirtycnt > 0); 3554 db->db_dirtycnt -= 1; 3555 db->db_data_pending = NULL; 3556 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 3557 } 3558 3559 static void 3560 dbuf_write_nofill_ready(zio_t *zio) 3561 { 3562 dbuf_write_ready(zio, NULL, zio->io_private); 3563 } 3564 3565 static void 3566 dbuf_write_nofill_done(zio_t *zio) 3567 { 3568 dbuf_write_done(zio, NULL, zio->io_private); 3569 } 3570 3571 static void 3572 dbuf_write_override_ready(zio_t *zio) 3573 { 3574 dbuf_dirty_record_t *dr = zio->io_private; 3575 dmu_buf_impl_t *db = dr->dr_dbuf; 3576 3577 dbuf_write_ready(zio, NULL, db); 3578 } 3579 3580 static void 3581 dbuf_write_override_done(zio_t *zio) 3582 { 3583 dbuf_dirty_record_t *dr = zio->io_private; 3584 dmu_buf_impl_t *db = dr->dr_dbuf; 3585 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3586 3587 mutex_enter(&db->db_mtx); 3588 if (!BP_EQUAL(zio->io_bp, obp)) { 3589 if (!BP_IS_HOLE(obp)) 3590 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3591 arc_release(dr->dt.dl.dr_data, db); 3592 } 3593 mutex_exit(&db->db_mtx); 3594 dbuf_write_done(zio, NULL, db); 3595 3596 if (zio->io_abd != NULL) 3597 abd_put(zio->io_abd); 3598 } 3599 3600 typedef struct dbuf_remap_impl_callback_arg { 3601 objset_t *drica_os; 3602 uint64_t drica_blk_birth; 3603 dmu_tx_t *drica_tx; 3604 } dbuf_remap_impl_callback_arg_t; 3605 3606 static void 3607 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 3608 void *arg) 3609 { 3610 dbuf_remap_impl_callback_arg_t *drica = arg; 3611 objset_t *os = drica->drica_os; 3612 spa_t *spa = dmu_objset_spa(os); 3613 dmu_tx_t *tx = drica->drica_tx; 3614 3615 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 3616 3617 if (os == spa_meta_objset(spa)) { 3618 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 3619 } else { 3620 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 3621 size, drica->drica_blk_birth, tx); 3622 } 3623 } 3624 3625 static void 3626 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx) 3627 { 3628 blkptr_t bp_copy = *bp; 3629 spa_t *spa = dmu_objset_spa(dn->dn_objset); 3630 dbuf_remap_impl_callback_arg_t drica; 3631 3632 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 3633 3634 drica.drica_os = dn->dn_objset; 3635 drica.drica_blk_birth = bp->blk_birth; 3636 drica.drica_tx = tx; 3637 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 3638 &drica)) { 3639 /* 3640 * The struct_rwlock prevents dbuf_read_impl() from 3641 * dereferencing the BP while we are changing it. To 3642 * avoid lock contention, only grab it when we are actually 3643 * changing the BP. 3644 */ 3645 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3646 *bp = bp_copy; 3647 rw_exit(&dn->dn_struct_rwlock); 3648 } 3649 } 3650 3651 /* 3652 * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting 3653 * to remap a copy of every bp in the dbuf. 3654 */ 3655 boolean_t 3656 dbuf_can_remap(const dmu_buf_impl_t *db) 3657 { 3658 spa_t *spa = dmu_objset_spa(db->db_objset); 3659 blkptr_t *bp = db->db.db_data; 3660 boolean_t ret = B_FALSE; 3661 3662 ASSERT3U(db->db_level, >, 0); 3663 ASSERT3S(db->db_state, ==, DB_CACHED); 3664 3665 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 3666 3667 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3668 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 3669 blkptr_t bp_copy = bp[i]; 3670 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) { 3671 ret = B_TRUE; 3672 break; 3673 } 3674 } 3675 spa_config_exit(spa, SCL_VDEV, FTAG); 3676 3677 return (ret); 3678 } 3679 3680 boolean_t 3681 dnode_needs_remap(const dnode_t *dn) 3682 { 3683 spa_t *spa = dmu_objset_spa(dn->dn_objset); 3684 boolean_t ret = B_FALSE; 3685 3686 if (dn->dn_phys->dn_nlevels == 0) { 3687 return (B_FALSE); 3688 } 3689 3690 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 3691 3692 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3693 for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) { 3694 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j]; 3695 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) { 3696 ret = B_TRUE; 3697 break; 3698 } 3699 } 3700 spa_config_exit(spa, SCL_VDEV, FTAG); 3701 3702 return (ret); 3703 } 3704 3705 /* 3706 * Remap any existing BP's to concrete vdevs, if possible. 3707 */ 3708 static void 3709 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 3710 { 3711 spa_t *spa = dmu_objset_spa(db->db_objset); 3712 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 3713 3714 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 3715 return; 3716 3717 if (db->db_level > 0) { 3718 blkptr_t *bp = db->db.db_data; 3719 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 3720 dbuf_remap_impl(dn, &bp[i], tx); 3721 } 3722 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 3723 dnode_phys_t *dnp = db->db.db_data; 3724 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 3725 DMU_OT_DNODE); 3726 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; i++) { 3727 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 3728 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx); 3729 } 3730 } 3731 } 3732 } 3733 3734 3735 /* Issue I/O to commit a dirty buffer to disk. */ 3736 static void 3737 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 3738 { 3739 dmu_buf_impl_t *db = dr->dr_dbuf; 3740 dnode_t *dn; 3741 objset_t *os; 3742 dmu_buf_impl_t *parent = db->db_parent; 3743 uint64_t txg = tx->tx_txg; 3744 zbookmark_phys_t zb; 3745 zio_prop_t zp; 3746 zio_t *zio; 3747 int wp_flag = 0; 3748 3749 ASSERT(dmu_tx_is_syncing(tx)); 3750 3751 DB_DNODE_ENTER(db); 3752 dn = DB_DNODE(db); 3753 os = dn->dn_objset; 3754 3755 if (db->db_state != DB_NOFILL) { 3756 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 3757 /* 3758 * Private object buffers are released here rather 3759 * than in dbuf_dirty() since they are only modified 3760 * in the syncing context and we don't want the 3761 * overhead of making multiple copies of the data. 3762 */ 3763 if (BP_IS_HOLE(db->db_blkptr)) { 3764 arc_buf_thaw(data); 3765 } else { 3766 dbuf_release_bp(db); 3767 } 3768 dbuf_remap(dn, db, tx); 3769 } 3770 } 3771 3772 if (parent != dn->dn_dbuf) { 3773 /* Our parent is an indirect block. */ 3774 /* We have a dirty parent that has been scheduled for write. */ 3775 ASSERT(parent && parent->db_data_pending); 3776 /* Our parent's buffer is one level closer to the dnode. */ 3777 ASSERT(db->db_level == parent->db_level-1); 3778 /* 3779 * We're about to modify our parent's db_data by modifying 3780 * our block pointer, so the parent must be released. 3781 */ 3782 ASSERT(arc_released(parent->db_buf)); 3783 zio = parent->db_data_pending->dr_zio; 3784 } else { 3785 /* Our parent is the dnode itself. */ 3786 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 3787 db->db_blkid != DMU_SPILL_BLKID) || 3788 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 3789 if (db->db_blkid != DMU_SPILL_BLKID) 3790 ASSERT3P(db->db_blkptr, ==, 3791 &dn->dn_phys->dn_blkptr[db->db_blkid]); 3792 zio = dn->dn_zio; 3793 } 3794 3795 ASSERT(db->db_level == 0 || data == db->db_buf); 3796 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 3797 ASSERT(zio); 3798 3799 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 3800 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 3801 db->db.db_object, db->db_level, db->db_blkid); 3802 3803 if (db->db_blkid == DMU_SPILL_BLKID) 3804 wp_flag = WP_SPILL; 3805 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 3806 3807 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 3808 DB_DNODE_EXIT(db); 3809 3810 /* 3811 * We copy the blkptr now (rather than when we instantiate the dirty 3812 * record), because its value can change between open context and 3813 * syncing context. We do not need to hold dn_struct_rwlock to read 3814 * db_blkptr because we are in syncing context. 3815 */ 3816 dr->dr_bp_copy = *db->db_blkptr; 3817 3818 if (db->db_level == 0 && 3819 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 3820 /* 3821 * The BP for this block has been provided by open context 3822 * (by dmu_sync() or dmu_buf_write_embedded()). 3823 */ 3824 abd_t *contents = (data != NULL) ? 3825 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 3826 3827 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy, 3828 contents, db->db.db_size, db->db.db_size, &zp, 3829 dbuf_write_override_ready, NULL, NULL, 3830 dbuf_write_override_done, 3831 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3832 mutex_enter(&db->db_mtx); 3833 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 3834 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 3835 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 3836 mutex_exit(&db->db_mtx); 3837 } else if (db->db_state == DB_NOFILL) { 3838 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 3839 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 3840 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3841 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 3842 dbuf_write_nofill_ready, NULL, NULL, 3843 dbuf_write_nofill_done, db, 3844 ZIO_PRIORITY_ASYNC_WRITE, 3845 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 3846 } else { 3847 ASSERT(arc_released(data)); 3848 3849 /* 3850 * For indirect blocks, we want to setup the children 3851 * ready callback so that we can properly handle an indirect 3852 * block that only contains holes. 3853 */ 3854 arc_done_func_t *children_ready_cb = NULL; 3855 if (db->db_level != 0) 3856 children_ready_cb = dbuf_write_children_ready; 3857 3858 dr->dr_zio = arc_write(zio, os->os_spa, txg, 3859 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 3860 &zp, dbuf_write_ready, children_ready_cb, 3861 dbuf_write_physdone, dbuf_write_done, db, 3862 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3863 } 3864 } 3865