1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 50 uint_t zfs_dbuf_evict_key; 51 52 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 53 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 54 55 #ifndef __lint 56 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 57 dmu_buf_evict_func_t *evict_func_sync, 58 dmu_buf_evict_func_t *evict_func_async, 59 dmu_buf_t **clear_on_evict_dbufp); 60 #endif /* ! __lint */ 61 62 /* 63 * Global data structures and functions for the dbuf cache. 64 */ 65 static kmem_cache_t *dbuf_kmem_cache; 66 static taskq_t *dbu_evict_taskq; 67 68 static kthread_t *dbuf_cache_evict_thread; 69 static kmutex_t dbuf_evict_lock; 70 static kcondvar_t dbuf_evict_cv; 71 static boolean_t dbuf_evict_thread_exit; 72 73 /* 74 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 75 * are not currently held but have been recently released. These dbufs 76 * are not eligible for arc eviction until they are aged out of the cache. 77 * Dbufs are added to the dbuf cache once the last hold is released. If a 78 * dbuf is later accessed and still exists in the dbuf cache, then it will 79 * be removed from the cache and later re-added to the head of the cache. 80 * Dbufs that are aged out of the cache will be immediately destroyed and 81 * become eligible for arc eviction. 82 */ 83 static multilist_t dbuf_cache; 84 static refcount_t dbuf_cache_size; 85 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024; 86 87 /* Cap the size of the dbuf cache to log2 fraction of arc size. */ 88 int dbuf_cache_max_shift = 5; 89 90 /* 91 * The dbuf cache uses a three-stage eviction policy: 92 * - A low water marker designates when the dbuf eviction thread 93 * should stop evicting from the dbuf cache. 94 * - When we reach the maximum size (aka mid water mark), we 95 * signal the eviction thread to run. 96 * - The high water mark indicates when the eviction thread 97 * is unable to keep up with the incoming load and eviction must 98 * happen in the context of the calling thread. 99 * 100 * The dbuf cache: 101 * (max size) 102 * low water mid water hi water 103 * +----------------------------------------+----------+----------+ 104 * | | | | 105 * | | | | 106 * | | | | 107 * | | | | 108 * +----------------------------------------+----------+----------+ 109 * stop signal evict 110 * evicting eviction directly 111 * thread 112 * 113 * The high and low water marks indicate the operating range for the eviction 114 * thread. The low water mark is, by default, 90% of the total size of the 115 * cache and the high water mark is at 110% (both of these percentages can be 116 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 117 * respectively). The eviction thread will try to ensure that the cache remains 118 * within this range by waking up every second and checking if the cache is 119 * above the low water mark. The thread can also be woken up by callers adding 120 * elements into the cache if the cache is larger than the mid water (i.e max 121 * cache size). Once the eviction thread is woken up and eviction is required, 122 * it will continue evicting buffers until it's able to reduce the cache size 123 * to the low water mark. If the cache size continues to grow and hits the high 124 * water mark, then callers adding elments to the cache will begin to evict 125 * directly from the cache until the cache is no longer above the high water 126 * mark. 127 */ 128 129 /* 130 * The percentage above and below the maximum cache size. 131 */ 132 uint_t dbuf_cache_hiwater_pct = 10; 133 uint_t dbuf_cache_lowater_pct = 10; 134 135 /* ARGSUSED */ 136 static int 137 dbuf_cons(void *vdb, void *unused, int kmflag) 138 { 139 dmu_buf_impl_t *db = vdb; 140 bzero(db, sizeof (dmu_buf_impl_t)); 141 142 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 143 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 144 multilist_link_init(&db->db_cache_link); 145 refcount_create(&db->db_holds); 146 147 return (0); 148 } 149 150 /* ARGSUSED */ 151 static void 152 dbuf_dest(void *vdb, void *unused) 153 { 154 dmu_buf_impl_t *db = vdb; 155 mutex_destroy(&db->db_mtx); 156 cv_destroy(&db->db_changed); 157 ASSERT(!multilist_link_active(&db->db_cache_link)); 158 refcount_destroy(&db->db_holds); 159 } 160 161 /* 162 * dbuf hash table routines 163 */ 164 static dbuf_hash_table_t dbuf_hash_table; 165 166 static uint64_t dbuf_hash_count; 167 168 static uint64_t 169 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 170 { 171 uintptr_t osv = (uintptr_t)os; 172 uint64_t crc = -1ULL; 173 174 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 175 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; 176 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; 177 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; 178 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; 179 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; 180 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; 181 182 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); 183 184 return (crc); 185 } 186 187 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 188 ((dbuf)->db.db_object == (obj) && \ 189 (dbuf)->db_objset == (os) && \ 190 (dbuf)->db_level == (level) && \ 191 (dbuf)->db_blkid == (blkid)) 192 193 dmu_buf_impl_t * 194 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 195 { 196 dbuf_hash_table_t *h = &dbuf_hash_table; 197 uint64_t hv = dbuf_hash(os, obj, level, blkid); 198 uint64_t idx = hv & h->hash_table_mask; 199 dmu_buf_impl_t *db; 200 201 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 202 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 203 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 204 mutex_enter(&db->db_mtx); 205 if (db->db_state != DB_EVICTING) { 206 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 207 return (db); 208 } 209 mutex_exit(&db->db_mtx); 210 } 211 } 212 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 213 return (NULL); 214 } 215 216 static dmu_buf_impl_t * 217 dbuf_find_bonus(objset_t *os, uint64_t object) 218 { 219 dnode_t *dn; 220 dmu_buf_impl_t *db = NULL; 221 222 if (dnode_hold(os, object, FTAG, &dn) == 0) { 223 rw_enter(&dn->dn_struct_rwlock, RW_READER); 224 if (dn->dn_bonus != NULL) { 225 db = dn->dn_bonus; 226 mutex_enter(&db->db_mtx); 227 } 228 rw_exit(&dn->dn_struct_rwlock); 229 dnode_rele(dn, FTAG); 230 } 231 return (db); 232 } 233 234 /* 235 * Insert an entry into the hash table. If there is already an element 236 * equal to elem in the hash table, then the already existing element 237 * will be returned and the new element will not be inserted. 238 * Otherwise returns NULL. 239 */ 240 static dmu_buf_impl_t * 241 dbuf_hash_insert(dmu_buf_impl_t *db) 242 { 243 dbuf_hash_table_t *h = &dbuf_hash_table; 244 objset_t *os = db->db_objset; 245 uint64_t obj = db->db.db_object; 246 int level = db->db_level; 247 uint64_t blkid = db->db_blkid; 248 uint64_t hv = dbuf_hash(os, obj, level, blkid); 249 uint64_t idx = hv & h->hash_table_mask; 250 dmu_buf_impl_t *dbf; 251 252 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 253 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 254 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 255 mutex_enter(&dbf->db_mtx); 256 if (dbf->db_state != DB_EVICTING) { 257 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 258 return (dbf); 259 } 260 mutex_exit(&dbf->db_mtx); 261 } 262 } 263 264 mutex_enter(&db->db_mtx); 265 db->db_hash_next = h->hash_table[idx]; 266 h->hash_table[idx] = db; 267 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 268 atomic_inc_64(&dbuf_hash_count); 269 270 return (NULL); 271 } 272 273 /* 274 * Remove an entry from the hash table. It must be in the EVICTING state. 275 */ 276 static void 277 dbuf_hash_remove(dmu_buf_impl_t *db) 278 { 279 dbuf_hash_table_t *h = &dbuf_hash_table; 280 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 281 db->db_level, db->db_blkid); 282 uint64_t idx = hv & h->hash_table_mask; 283 dmu_buf_impl_t *dbf, **dbp; 284 285 /* 286 * We musn't hold db_mtx to maintain lock ordering: 287 * DBUF_HASH_MUTEX > db_mtx. 288 */ 289 ASSERT(refcount_is_zero(&db->db_holds)); 290 ASSERT(db->db_state == DB_EVICTING); 291 ASSERT(!MUTEX_HELD(&db->db_mtx)); 292 293 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 294 dbp = &h->hash_table[idx]; 295 while ((dbf = *dbp) != db) { 296 dbp = &dbf->db_hash_next; 297 ASSERT(dbf != NULL); 298 } 299 *dbp = db->db_hash_next; 300 db->db_hash_next = NULL; 301 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 302 atomic_dec_64(&dbuf_hash_count); 303 } 304 305 typedef enum { 306 DBVU_EVICTING, 307 DBVU_NOT_EVICTING 308 } dbvu_verify_type_t; 309 310 static void 311 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 312 { 313 #ifdef ZFS_DEBUG 314 int64_t holds; 315 316 if (db->db_user == NULL) 317 return; 318 319 /* Only data blocks support the attachment of user data. */ 320 ASSERT(db->db_level == 0); 321 322 /* Clients must resolve a dbuf before attaching user data. */ 323 ASSERT(db->db.db_data != NULL); 324 ASSERT3U(db->db_state, ==, DB_CACHED); 325 326 holds = refcount_count(&db->db_holds); 327 if (verify_type == DBVU_EVICTING) { 328 /* 329 * Immediate eviction occurs when holds == dirtycnt. 330 * For normal eviction buffers, holds is zero on 331 * eviction, except when dbuf_fix_old_data() calls 332 * dbuf_clear_data(). However, the hold count can grow 333 * during eviction even though db_mtx is held (see 334 * dmu_bonus_hold() for an example), so we can only 335 * test the generic invariant that holds >= dirtycnt. 336 */ 337 ASSERT3U(holds, >=, db->db_dirtycnt); 338 } else { 339 if (db->db_user_immediate_evict == TRUE) 340 ASSERT3U(holds, >=, db->db_dirtycnt); 341 else 342 ASSERT3U(holds, >, 0); 343 } 344 #endif 345 } 346 347 static void 348 dbuf_evict_user(dmu_buf_impl_t *db) 349 { 350 dmu_buf_user_t *dbu = db->db_user; 351 352 ASSERT(MUTEX_HELD(&db->db_mtx)); 353 354 if (dbu == NULL) 355 return; 356 357 dbuf_verify_user(db, DBVU_EVICTING); 358 db->db_user = NULL; 359 360 #ifdef ZFS_DEBUG 361 if (dbu->dbu_clear_on_evict_dbufp != NULL) 362 *dbu->dbu_clear_on_evict_dbufp = NULL; 363 #endif 364 365 /* 366 * There are two eviction callbacks - one that we call synchronously 367 * and one that we invoke via a taskq. The async one is useful for 368 * avoiding lock order reversals and limiting stack depth. 369 * 370 * Note that if we have a sync callback but no async callback, 371 * it's likely that the sync callback will free the structure 372 * containing the dbu. In that case we need to take care to not 373 * dereference dbu after calling the sync evict func. 374 */ 375 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 376 377 if (dbu->dbu_evict_func_sync != NULL) 378 dbu->dbu_evict_func_sync(dbu); 379 380 if (has_async) { 381 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 382 dbu, 0, &dbu->dbu_tqent); 383 } 384 } 385 386 boolean_t 387 dbuf_is_metadata(dmu_buf_impl_t *db) 388 { 389 if (db->db_level > 0) { 390 return (B_TRUE); 391 } else { 392 boolean_t is_metadata; 393 394 DB_DNODE_ENTER(db); 395 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 396 DB_DNODE_EXIT(db); 397 398 return (is_metadata); 399 } 400 } 401 402 /* 403 * This function *must* return indices evenly distributed between all 404 * sublists of the multilist. This is needed due to how the dbuf eviction 405 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 406 * distributed between all sublists and uses this assumption when 407 * deciding which sublist to evict from and how much to evict from it. 408 */ 409 unsigned int 410 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 411 { 412 dmu_buf_impl_t *db = obj; 413 414 /* 415 * The assumption here, is the hash value for a given 416 * dmu_buf_impl_t will remain constant throughout it's lifetime 417 * (i.e. it's objset, object, level and blkid fields don't change). 418 * Thus, we don't need to store the dbuf's sublist index 419 * on insertion, as this index can be recalculated on removal. 420 * 421 * Also, the low order bits of the hash value are thought to be 422 * distributed evenly. Otherwise, in the case that the multilist 423 * has a power of two number of sublists, each sublists' usage 424 * would not be evenly distributed. 425 */ 426 return (dbuf_hash(db->db_objset, db->db.db_object, 427 db->db_level, db->db_blkid) % 428 multilist_get_num_sublists(ml)); 429 } 430 431 static inline boolean_t 432 dbuf_cache_above_hiwater(void) 433 { 434 uint64_t dbuf_cache_hiwater_bytes = 435 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 436 437 return (refcount_count(&dbuf_cache_size) > 438 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 439 } 440 441 static inline boolean_t 442 dbuf_cache_above_lowater(void) 443 { 444 uint64_t dbuf_cache_lowater_bytes = 445 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 446 447 return (refcount_count(&dbuf_cache_size) > 448 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 449 } 450 451 /* 452 * Evict the oldest eligible dbuf from the dbuf cache. 453 */ 454 static void 455 dbuf_evict_one(void) 456 { 457 int idx = multilist_get_random_index(&dbuf_cache); 458 multilist_sublist_t *mls = multilist_sublist_lock(&dbuf_cache, idx); 459 460 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 461 462 /* 463 * Set the thread's tsd to indicate that it's processing evictions. 464 * Once a thread stops evicting from the dbuf cache it will 465 * reset its tsd to NULL. 466 */ 467 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL); 468 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE); 469 470 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 471 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 472 db = multilist_sublist_prev(mls, db); 473 } 474 475 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 476 multilist_sublist_t *, mls); 477 478 if (db != NULL) { 479 multilist_sublist_remove(mls, db); 480 multilist_sublist_unlock(mls); 481 (void) refcount_remove_many(&dbuf_cache_size, 482 db->db.db_size, db); 483 dbuf_destroy(db); 484 } else { 485 multilist_sublist_unlock(mls); 486 } 487 (void) tsd_set(zfs_dbuf_evict_key, NULL); 488 } 489 490 /* 491 * The dbuf evict thread is responsible for aging out dbufs from the 492 * cache. Once the cache has reached it's maximum size, dbufs are removed 493 * and destroyed. The eviction thread will continue running until the size 494 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 495 * out of the cache it is destroyed and becomes eligible for arc eviction. 496 */ 497 static void 498 dbuf_evict_thread(void) 499 { 500 callb_cpr_t cpr; 501 502 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 503 504 mutex_enter(&dbuf_evict_lock); 505 while (!dbuf_evict_thread_exit) { 506 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 507 CALLB_CPR_SAFE_BEGIN(&cpr); 508 (void) cv_timedwait_hires(&dbuf_evict_cv, 509 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 510 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 511 } 512 mutex_exit(&dbuf_evict_lock); 513 514 /* 515 * Keep evicting as long as we're above the low water mark 516 * for the cache. We do this without holding the locks to 517 * minimize lock contention. 518 */ 519 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 520 dbuf_evict_one(); 521 } 522 523 mutex_enter(&dbuf_evict_lock); 524 } 525 526 dbuf_evict_thread_exit = B_FALSE; 527 cv_broadcast(&dbuf_evict_cv); 528 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 529 thread_exit(); 530 } 531 532 /* 533 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 534 * If the dbuf cache is at its high water mark, then evict a dbuf from the 535 * dbuf cache using the callers context. 536 */ 537 static void 538 dbuf_evict_notify(void) 539 { 540 541 /* 542 * We use thread specific data to track when a thread has 543 * started processing evictions. This allows us to avoid deeply 544 * nested stacks that would have a call flow similar to this: 545 * 546 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 547 * ^ | 548 * | | 549 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 550 * 551 * The dbuf_eviction_thread will always have its tsd set until 552 * that thread exits. All other threads will only set their tsd 553 * if they are participating in the eviction process. This only 554 * happens if the eviction thread is unable to process evictions 555 * fast enough. To keep the dbuf cache size in check, other threads 556 * can evict from the dbuf cache directly. Those threads will set 557 * their tsd values so that we ensure that they only evict one dbuf 558 * from the dbuf cache. 559 */ 560 if (tsd_get(zfs_dbuf_evict_key) != NULL) 561 return; 562 563 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 564 boolean_t evict_now = B_FALSE; 565 566 mutex_enter(&dbuf_evict_lock); 567 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) { 568 evict_now = dbuf_cache_above_hiwater(); 569 cv_signal(&dbuf_evict_cv); 570 } 571 mutex_exit(&dbuf_evict_lock); 572 573 if (evict_now) { 574 dbuf_evict_one(); 575 } 576 } 577 } 578 579 void 580 dbuf_init(void) 581 { 582 uint64_t hsize = 1ULL << 16; 583 dbuf_hash_table_t *h = &dbuf_hash_table; 584 int i; 585 586 /* 587 * The hash table is big enough to fill all of physical memory 588 * with an average 4K block size. The table will take up 589 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 590 */ 591 while (hsize * 4096 < physmem * PAGESIZE) 592 hsize <<= 1; 593 594 retry: 595 h->hash_table_mask = hsize - 1; 596 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 597 if (h->hash_table == NULL) { 598 /* XXX - we should really return an error instead of assert */ 599 ASSERT(hsize > (1ULL << 10)); 600 hsize >>= 1; 601 goto retry; 602 } 603 604 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 605 sizeof (dmu_buf_impl_t), 606 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 607 608 for (i = 0; i < DBUF_MUTEXES; i++) 609 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 610 611 /* 612 * Setup the parameters for the dbuf cache. We cap the size of the 613 * dbuf cache to 1/32nd (default) of the size of the ARC. 614 */ 615 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes, 616 arc_max_bytes() >> dbuf_cache_max_shift); 617 618 /* 619 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 620 * configuration is not required. 621 */ 622 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 623 624 multilist_create(&dbuf_cache, sizeof (dmu_buf_impl_t), 625 offsetof(dmu_buf_impl_t, db_cache_link), 626 zfs_arc_num_sublists_per_state, 627 dbuf_cache_multilist_index_func); 628 refcount_create(&dbuf_cache_size); 629 630 tsd_create(&zfs_dbuf_evict_key, NULL); 631 dbuf_evict_thread_exit = B_FALSE; 632 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 633 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 634 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 635 NULL, 0, &p0, TS_RUN, minclsyspri); 636 } 637 638 void 639 dbuf_fini(void) 640 { 641 dbuf_hash_table_t *h = &dbuf_hash_table; 642 int i; 643 644 for (i = 0; i < DBUF_MUTEXES; i++) 645 mutex_destroy(&h->hash_mutexes[i]); 646 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 647 kmem_cache_destroy(dbuf_kmem_cache); 648 taskq_destroy(dbu_evict_taskq); 649 650 mutex_enter(&dbuf_evict_lock); 651 dbuf_evict_thread_exit = B_TRUE; 652 while (dbuf_evict_thread_exit) { 653 cv_signal(&dbuf_evict_cv); 654 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 655 } 656 mutex_exit(&dbuf_evict_lock); 657 tsd_destroy(&zfs_dbuf_evict_key); 658 659 mutex_destroy(&dbuf_evict_lock); 660 cv_destroy(&dbuf_evict_cv); 661 662 refcount_destroy(&dbuf_cache_size); 663 multilist_destroy(&dbuf_cache); 664 } 665 666 /* 667 * Other stuff. 668 */ 669 670 #ifdef ZFS_DEBUG 671 static void 672 dbuf_verify(dmu_buf_impl_t *db) 673 { 674 dnode_t *dn; 675 dbuf_dirty_record_t *dr; 676 677 ASSERT(MUTEX_HELD(&db->db_mtx)); 678 679 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 680 return; 681 682 ASSERT(db->db_objset != NULL); 683 DB_DNODE_ENTER(db); 684 dn = DB_DNODE(db); 685 if (dn == NULL) { 686 ASSERT(db->db_parent == NULL); 687 ASSERT(db->db_blkptr == NULL); 688 } else { 689 ASSERT3U(db->db.db_object, ==, dn->dn_object); 690 ASSERT3P(db->db_objset, ==, dn->dn_objset); 691 ASSERT3U(db->db_level, <, dn->dn_nlevels); 692 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 693 db->db_blkid == DMU_SPILL_BLKID || 694 !avl_is_empty(&dn->dn_dbufs)); 695 } 696 if (db->db_blkid == DMU_BONUS_BLKID) { 697 ASSERT(dn != NULL); 698 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 699 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 700 } else if (db->db_blkid == DMU_SPILL_BLKID) { 701 ASSERT(dn != NULL); 702 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 703 ASSERT0(db->db.db_offset); 704 } else { 705 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 706 } 707 708 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 709 ASSERT(dr->dr_dbuf == db); 710 711 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 712 ASSERT(dr->dr_dbuf == db); 713 714 /* 715 * We can't assert that db_size matches dn_datablksz because it 716 * can be momentarily different when another thread is doing 717 * dnode_set_blksz(). 718 */ 719 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 720 dr = db->db_data_pending; 721 /* 722 * It should only be modified in syncing context, so 723 * make sure we only have one copy of the data. 724 */ 725 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 726 } 727 728 /* verify db->db_blkptr */ 729 if (db->db_blkptr) { 730 if (db->db_parent == dn->dn_dbuf) { 731 /* db is pointed to by the dnode */ 732 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 733 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 734 ASSERT(db->db_parent == NULL); 735 else 736 ASSERT(db->db_parent != NULL); 737 if (db->db_blkid != DMU_SPILL_BLKID) 738 ASSERT3P(db->db_blkptr, ==, 739 &dn->dn_phys->dn_blkptr[db->db_blkid]); 740 } else { 741 /* db is pointed to by an indirect block */ 742 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 743 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 744 ASSERT3U(db->db_parent->db.db_object, ==, 745 db->db.db_object); 746 /* 747 * dnode_grow_indblksz() can make this fail if we don't 748 * have the struct_rwlock. XXX indblksz no longer 749 * grows. safe to do this now? 750 */ 751 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 752 ASSERT3P(db->db_blkptr, ==, 753 ((blkptr_t *)db->db_parent->db.db_data + 754 db->db_blkid % epb)); 755 } 756 } 757 } 758 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 759 (db->db_buf == NULL || db->db_buf->b_data) && 760 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 761 db->db_state != DB_FILL && !dn->dn_free_txg) { 762 /* 763 * If the blkptr isn't set but they have nonzero data, 764 * it had better be dirty, otherwise we'll lose that 765 * data when we evict this buffer. 766 * 767 * There is an exception to this rule for indirect blocks; in 768 * this case, if the indirect block is a hole, we fill in a few 769 * fields on each of the child blocks (importantly, birth time) 770 * to prevent hole birth times from being lost when you 771 * partially fill in a hole. 772 */ 773 if (db->db_dirtycnt == 0) { 774 if (db->db_level == 0) { 775 uint64_t *buf = db->db.db_data; 776 int i; 777 778 for (i = 0; i < db->db.db_size >> 3; i++) { 779 ASSERT(buf[i] == 0); 780 } 781 } else { 782 blkptr_t *bps = db->db.db_data; 783 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 784 db->db.db_size); 785 /* 786 * We want to verify that all the blkptrs in the 787 * indirect block are holes, but we may have 788 * automatically set up a few fields for them. 789 * We iterate through each blkptr and verify 790 * they only have those fields set. 791 */ 792 for (int i = 0; 793 i < db->db.db_size / sizeof (blkptr_t); 794 i++) { 795 blkptr_t *bp = &bps[i]; 796 ASSERT(ZIO_CHECKSUM_IS_ZERO( 797 &bp->blk_cksum)); 798 ASSERT( 799 DVA_IS_EMPTY(&bp->blk_dva[0]) && 800 DVA_IS_EMPTY(&bp->blk_dva[1]) && 801 DVA_IS_EMPTY(&bp->blk_dva[2])); 802 ASSERT0(bp->blk_fill); 803 ASSERT0(bp->blk_pad[0]); 804 ASSERT0(bp->blk_pad[1]); 805 ASSERT(!BP_IS_EMBEDDED(bp)); 806 ASSERT(BP_IS_HOLE(bp)); 807 ASSERT0(bp->blk_phys_birth); 808 } 809 } 810 } 811 } 812 DB_DNODE_EXIT(db); 813 } 814 #endif 815 816 static void 817 dbuf_clear_data(dmu_buf_impl_t *db) 818 { 819 ASSERT(MUTEX_HELD(&db->db_mtx)); 820 dbuf_evict_user(db); 821 ASSERT3P(db->db_buf, ==, NULL); 822 db->db.db_data = NULL; 823 if (db->db_state != DB_NOFILL) 824 db->db_state = DB_UNCACHED; 825 } 826 827 static void 828 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 829 { 830 ASSERT(MUTEX_HELD(&db->db_mtx)); 831 ASSERT(buf != NULL); 832 833 db->db_buf = buf; 834 ASSERT(buf->b_data != NULL); 835 db->db.db_data = buf->b_data; 836 } 837 838 /* 839 * Loan out an arc_buf for read. Return the loaned arc_buf. 840 */ 841 arc_buf_t * 842 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 843 { 844 arc_buf_t *abuf; 845 846 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 847 mutex_enter(&db->db_mtx); 848 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { 849 int blksz = db->db.db_size; 850 spa_t *spa = db->db_objset->os_spa; 851 852 mutex_exit(&db->db_mtx); 853 abuf = arc_loan_buf(spa, B_FALSE, blksz); 854 bcopy(db->db.db_data, abuf->b_data, blksz); 855 } else { 856 abuf = db->db_buf; 857 arc_loan_inuse_buf(abuf, db); 858 db->db_buf = NULL; 859 dbuf_clear_data(db); 860 mutex_exit(&db->db_mtx); 861 } 862 return (abuf); 863 } 864 865 /* 866 * Calculate which level n block references the data at the level 0 offset 867 * provided. 868 */ 869 uint64_t 870 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 871 { 872 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 873 /* 874 * The level n blkid is equal to the level 0 blkid divided by 875 * the number of level 0s in a level n block. 876 * 877 * The level 0 blkid is offset >> datablkshift = 878 * offset / 2^datablkshift. 879 * 880 * The number of level 0s in a level n is the number of block 881 * pointers in an indirect block, raised to the power of level. 882 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 883 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 884 * 885 * Thus, the level n blkid is: offset / 886 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 887 * = offset / 2^(datablkshift + level * 888 * (indblkshift - SPA_BLKPTRSHIFT)) 889 * = offset >> (datablkshift + level * 890 * (indblkshift - SPA_BLKPTRSHIFT)) 891 */ 892 return (offset >> (dn->dn_datablkshift + level * 893 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 894 } else { 895 ASSERT3U(offset, <, dn->dn_datablksz); 896 return (0); 897 } 898 } 899 900 static void 901 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) 902 { 903 dmu_buf_impl_t *db = vdb; 904 905 mutex_enter(&db->db_mtx); 906 ASSERT3U(db->db_state, ==, DB_READ); 907 /* 908 * All reads are synchronous, so we must have a hold on the dbuf 909 */ 910 ASSERT(refcount_count(&db->db_holds) > 0); 911 ASSERT(db->db_buf == NULL); 912 ASSERT(db->db.db_data == NULL); 913 if (db->db_level == 0 && db->db_freed_in_flight) { 914 /* we were freed in flight; disregard any error */ 915 arc_release(buf, db); 916 bzero(buf->b_data, db->db.db_size); 917 arc_buf_freeze(buf); 918 db->db_freed_in_flight = FALSE; 919 dbuf_set_data(db, buf); 920 db->db_state = DB_CACHED; 921 } else if (zio == NULL || zio->io_error == 0) { 922 dbuf_set_data(db, buf); 923 db->db_state = DB_CACHED; 924 } else { 925 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 926 ASSERT3P(db->db_buf, ==, NULL); 927 arc_buf_destroy(buf, db); 928 db->db_state = DB_UNCACHED; 929 } 930 cv_broadcast(&db->db_changed); 931 dbuf_rele_and_unlock(db, NULL); 932 } 933 934 static void 935 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 936 { 937 dnode_t *dn; 938 zbookmark_phys_t zb; 939 arc_flags_t aflags = ARC_FLAG_NOWAIT; 940 941 DB_DNODE_ENTER(db); 942 dn = DB_DNODE(db); 943 ASSERT(!refcount_is_zero(&db->db_holds)); 944 /* We need the struct_rwlock to prevent db_blkptr from changing. */ 945 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 946 ASSERT(MUTEX_HELD(&db->db_mtx)); 947 ASSERT(db->db_state == DB_UNCACHED); 948 ASSERT(db->db_buf == NULL); 949 950 if (db->db_blkid == DMU_BONUS_BLKID) { 951 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 952 953 ASSERT3U(bonuslen, <=, db->db.db_size); 954 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); 955 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 956 if (bonuslen < DN_MAX_BONUSLEN) 957 bzero(db->db.db_data, DN_MAX_BONUSLEN); 958 if (bonuslen) 959 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 960 DB_DNODE_EXIT(db); 961 db->db_state = DB_CACHED; 962 mutex_exit(&db->db_mtx); 963 return; 964 } 965 966 /* 967 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 968 * processes the delete record and clears the bp while we are waiting 969 * for the dn_mtx (resulting in a "no" from block_freed). 970 */ 971 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 972 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 973 BP_IS_HOLE(db->db_blkptr)))) { 974 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 975 976 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type, 977 db->db.db_size)); 978 bzero(db->db.db_data, db->db.db_size); 979 980 if (db->db_blkptr != NULL && db->db_level > 0 && 981 BP_IS_HOLE(db->db_blkptr) && 982 db->db_blkptr->blk_birth != 0) { 983 blkptr_t *bps = db->db.db_data; 984 for (int i = 0; i < ((1 << 985 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 986 i++) { 987 blkptr_t *bp = &bps[i]; 988 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 989 1 << dn->dn_indblkshift); 990 BP_SET_LSIZE(bp, 991 BP_GET_LEVEL(db->db_blkptr) == 1 ? 992 dn->dn_datablksz : 993 BP_GET_LSIZE(db->db_blkptr)); 994 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 995 BP_SET_LEVEL(bp, 996 BP_GET_LEVEL(db->db_blkptr) - 1); 997 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 998 } 999 } 1000 DB_DNODE_EXIT(db); 1001 db->db_state = DB_CACHED; 1002 mutex_exit(&db->db_mtx); 1003 return; 1004 } 1005 1006 DB_DNODE_EXIT(db); 1007 1008 db->db_state = DB_READ; 1009 mutex_exit(&db->db_mtx); 1010 1011 if (DBUF_IS_L2CACHEABLE(db)) 1012 aflags |= ARC_FLAG_L2CACHE; 1013 1014 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? 1015 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, 1016 db->db.db_object, db->db_level, db->db_blkid); 1017 1018 dbuf_add_ref(db, NULL); 1019 1020 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, 1021 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, 1022 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, 1023 &aflags, &zb); 1024 } 1025 1026 /* 1027 * This is our just-in-time copy function. It makes a copy of buffers that 1028 * have been modified in a previous transaction group before we access them in 1029 * the current active group. 1030 * 1031 * This function is used in three places: when we are dirtying a buffer for the 1032 * first time in a txg, when we are freeing a range in a dnode that includes 1033 * this buffer, and when we are accessing a buffer which was received compressed 1034 * and later referenced in a WRITE_BYREF record. 1035 * 1036 * Note that when we are called from dbuf_free_range() we do not put a hold on 1037 * the buffer, we just traverse the active dbuf list for the dnode. 1038 */ 1039 static void 1040 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1041 { 1042 dbuf_dirty_record_t *dr = db->db_last_dirty; 1043 1044 ASSERT(MUTEX_HELD(&db->db_mtx)); 1045 ASSERT(db->db.db_data != NULL); 1046 ASSERT(db->db_level == 0); 1047 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1048 1049 if (dr == NULL || 1050 (dr->dt.dl.dr_data != 1051 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1052 return; 1053 1054 /* 1055 * If the last dirty record for this dbuf has not yet synced 1056 * and its referencing the dbuf data, either: 1057 * reset the reference to point to a new copy, 1058 * or (if there a no active holders) 1059 * just null out the current db_data pointer. 1060 */ 1061 ASSERT(dr->dr_txg >= txg - 2); 1062 if (db->db_blkid == DMU_BONUS_BLKID) { 1063 /* Note that the data bufs here are zio_bufs */ 1064 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); 1065 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 1066 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); 1067 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { 1068 int size = arc_buf_size(db->db_buf); 1069 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1070 spa_t *spa = db->db_objset->os_spa; 1071 enum zio_compress compress_type = 1072 arc_get_compression(db->db_buf); 1073 1074 if (compress_type == ZIO_COMPRESS_OFF) { 1075 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1076 } else { 1077 ASSERT3U(type, ==, ARC_BUFC_DATA); 1078 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1079 size, arc_buf_lsize(db->db_buf), compress_type); 1080 } 1081 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1082 } else { 1083 db->db_buf = NULL; 1084 dbuf_clear_data(db); 1085 } 1086 } 1087 1088 int 1089 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1090 { 1091 int err = 0; 1092 boolean_t havepzio = (zio != NULL); 1093 boolean_t prefetch; 1094 dnode_t *dn; 1095 1096 /* 1097 * We don't have to hold the mutex to check db_state because it 1098 * can't be freed while we have a hold on the buffer. 1099 */ 1100 ASSERT(!refcount_is_zero(&db->db_holds)); 1101 1102 if (db->db_state == DB_NOFILL) 1103 return (SET_ERROR(EIO)); 1104 1105 DB_DNODE_ENTER(db); 1106 dn = DB_DNODE(db); 1107 if ((flags & DB_RF_HAVESTRUCT) == 0) 1108 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1109 1110 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1111 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1112 DBUF_IS_CACHEABLE(db); 1113 1114 mutex_enter(&db->db_mtx); 1115 if (db->db_state == DB_CACHED) { 1116 /* 1117 * If the arc buf is compressed, we need to decompress it to 1118 * read the data. This could happen during the "zfs receive" of 1119 * a stream which is compressed and deduplicated. 1120 */ 1121 if (db->db_buf != NULL && 1122 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) { 1123 dbuf_fix_old_data(db, 1124 spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1125 err = arc_decompress(db->db_buf); 1126 dbuf_set_data(db, db->db_buf); 1127 } 1128 mutex_exit(&db->db_mtx); 1129 if (prefetch) 1130 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1131 if ((flags & DB_RF_HAVESTRUCT) == 0) 1132 rw_exit(&dn->dn_struct_rwlock); 1133 DB_DNODE_EXIT(db); 1134 } else if (db->db_state == DB_UNCACHED) { 1135 spa_t *spa = dn->dn_objset->os_spa; 1136 1137 if (zio == NULL) 1138 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1139 dbuf_read_impl(db, zio, flags); 1140 1141 /* dbuf_read_impl has dropped db_mtx for us */ 1142 1143 if (prefetch) 1144 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1145 1146 if ((flags & DB_RF_HAVESTRUCT) == 0) 1147 rw_exit(&dn->dn_struct_rwlock); 1148 DB_DNODE_EXIT(db); 1149 1150 if (!havepzio) 1151 err = zio_wait(zio); 1152 } else { 1153 /* 1154 * Another reader came in while the dbuf was in flight 1155 * between UNCACHED and CACHED. Either a writer will finish 1156 * writing the buffer (sending the dbuf to CACHED) or the 1157 * first reader's request will reach the read_done callback 1158 * and send the dbuf to CACHED. Otherwise, a failure 1159 * occurred and the dbuf went to UNCACHED. 1160 */ 1161 mutex_exit(&db->db_mtx); 1162 if (prefetch) 1163 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE); 1164 if ((flags & DB_RF_HAVESTRUCT) == 0) 1165 rw_exit(&dn->dn_struct_rwlock); 1166 DB_DNODE_EXIT(db); 1167 1168 /* Skip the wait per the caller's request. */ 1169 mutex_enter(&db->db_mtx); 1170 if ((flags & DB_RF_NEVERWAIT) == 0) { 1171 while (db->db_state == DB_READ || 1172 db->db_state == DB_FILL) { 1173 ASSERT(db->db_state == DB_READ || 1174 (flags & DB_RF_HAVESTRUCT) == 0); 1175 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1176 db, zio_t *, zio); 1177 cv_wait(&db->db_changed, &db->db_mtx); 1178 } 1179 if (db->db_state == DB_UNCACHED) 1180 err = SET_ERROR(EIO); 1181 } 1182 mutex_exit(&db->db_mtx); 1183 } 1184 1185 ASSERT(err || havepzio || db->db_state == DB_CACHED); 1186 return (err); 1187 } 1188 1189 static void 1190 dbuf_noread(dmu_buf_impl_t *db) 1191 { 1192 ASSERT(!refcount_is_zero(&db->db_holds)); 1193 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1194 mutex_enter(&db->db_mtx); 1195 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1196 cv_wait(&db->db_changed, &db->db_mtx); 1197 if (db->db_state == DB_UNCACHED) { 1198 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1199 spa_t *spa = db->db_objset->os_spa; 1200 1201 ASSERT(db->db_buf == NULL); 1202 ASSERT(db->db.db_data == NULL); 1203 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size)); 1204 db->db_state = DB_FILL; 1205 } else if (db->db_state == DB_NOFILL) { 1206 dbuf_clear_data(db); 1207 } else { 1208 ASSERT3U(db->db_state, ==, DB_CACHED); 1209 } 1210 mutex_exit(&db->db_mtx); 1211 } 1212 1213 void 1214 dbuf_unoverride(dbuf_dirty_record_t *dr) 1215 { 1216 dmu_buf_impl_t *db = dr->dr_dbuf; 1217 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1218 uint64_t txg = dr->dr_txg; 1219 1220 ASSERT(MUTEX_HELD(&db->db_mtx)); 1221 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1222 ASSERT(db->db_level == 0); 1223 1224 if (db->db_blkid == DMU_BONUS_BLKID || 1225 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1226 return; 1227 1228 ASSERT(db->db_data_pending != dr); 1229 1230 /* free this block */ 1231 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1232 zio_free(db->db_objset->os_spa, txg, bp); 1233 1234 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1235 dr->dt.dl.dr_nopwrite = B_FALSE; 1236 1237 /* 1238 * Release the already-written buffer, so we leave it in 1239 * a consistent dirty state. Note that all callers are 1240 * modifying the buffer, so they will immediately do 1241 * another (redundant) arc_release(). Therefore, leave 1242 * the buf thawed to save the effort of freezing & 1243 * immediately re-thawing it. 1244 */ 1245 arc_release(dr->dt.dl.dr_data, db); 1246 } 1247 1248 /* 1249 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1250 * data blocks in the free range, so that any future readers will find 1251 * empty blocks. 1252 */ 1253 void 1254 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1255 dmu_tx_t *tx) 1256 { 1257 dmu_buf_impl_t db_search; 1258 dmu_buf_impl_t *db, *db_next; 1259 uint64_t txg = tx->tx_txg; 1260 avl_index_t where; 1261 1262 if (end_blkid > dn->dn_maxblkid && 1263 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1264 end_blkid = dn->dn_maxblkid; 1265 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1266 1267 db_search.db_level = 0; 1268 db_search.db_blkid = start_blkid; 1269 db_search.db_state = DB_SEARCH; 1270 1271 mutex_enter(&dn->dn_dbufs_mtx); 1272 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1273 ASSERT3P(db, ==, NULL); 1274 1275 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1276 1277 for (; db != NULL; db = db_next) { 1278 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1279 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1280 1281 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1282 break; 1283 } 1284 ASSERT3U(db->db_blkid, >=, start_blkid); 1285 1286 /* found a level 0 buffer in the range */ 1287 mutex_enter(&db->db_mtx); 1288 if (dbuf_undirty(db, tx)) { 1289 /* mutex has been dropped and dbuf destroyed */ 1290 continue; 1291 } 1292 1293 if (db->db_state == DB_UNCACHED || 1294 db->db_state == DB_NOFILL || 1295 db->db_state == DB_EVICTING) { 1296 ASSERT(db->db.db_data == NULL); 1297 mutex_exit(&db->db_mtx); 1298 continue; 1299 } 1300 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1301 /* will be handled in dbuf_read_done or dbuf_rele */ 1302 db->db_freed_in_flight = TRUE; 1303 mutex_exit(&db->db_mtx); 1304 continue; 1305 } 1306 if (refcount_count(&db->db_holds) == 0) { 1307 ASSERT(db->db_buf); 1308 dbuf_destroy(db); 1309 continue; 1310 } 1311 /* The dbuf is referenced */ 1312 1313 if (db->db_last_dirty != NULL) { 1314 dbuf_dirty_record_t *dr = db->db_last_dirty; 1315 1316 if (dr->dr_txg == txg) { 1317 /* 1318 * This buffer is "in-use", re-adjust the file 1319 * size to reflect that this buffer may 1320 * contain new data when we sync. 1321 */ 1322 if (db->db_blkid != DMU_SPILL_BLKID && 1323 db->db_blkid > dn->dn_maxblkid) 1324 dn->dn_maxblkid = db->db_blkid; 1325 dbuf_unoverride(dr); 1326 } else { 1327 /* 1328 * This dbuf is not dirty in the open context. 1329 * Either uncache it (if its not referenced in 1330 * the open context) or reset its contents to 1331 * empty. 1332 */ 1333 dbuf_fix_old_data(db, txg); 1334 } 1335 } 1336 /* clear the contents if its cached */ 1337 if (db->db_state == DB_CACHED) { 1338 ASSERT(db->db.db_data != NULL); 1339 arc_release(db->db_buf, db); 1340 bzero(db->db.db_data, db->db.db_size); 1341 arc_buf_freeze(db->db_buf); 1342 } 1343 1344 mutex_exit(&db->db_mtx); 1345 } 1346 mutex_exit(&dn->dn_dbufs_mtx); 1347 } 1348 1349 void 1350 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1351 { 1352 arc_buf_t *buf, *obuf; 1353 int osize = db->db.db_size; 1354 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1355 dnode_t *dn; 1356 1357 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1358 1359 DB_DNODE_ENTER(db); 1360 dn = DB_DNODE(db); 1361 1362 /* XXX does *this* func really need the lock? */ 1363 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1364 1365 /* 1366 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held 1367 * is OK, because there can be no other references to the db 1368 * when we are changing its size, so no concurrent DB_FILL can 1369 * be happening. 1370 */ 1371 /* 1372 * XXX we should be doing a dbuf_read, checking the return 1373 * value and returning that up to our callers 1374 */ 1375 dmu_buf_will_dirty(&db->db, tx); 1376 1377 /* create the data buffer for the new block */ 1378 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1379 1380 /* copy old block data to the new block */ 1381 obuf = db->db_buf; 1382 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1383 /* zero the remainder */ 1384 if (size > osize) 1385 bzero((uint8_t *)buf->b_data + osize, size - osize); 1386 1387 mutex_enter(&db->db_mtx); 1388 dbuf_set_data(db, buf); 1389 arc_buf_destroy(obuf, db); 1390 db->db.db_size = size; 1391 1392 if (db->db_level == 0) { 1393 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1394 db->db_last_dirty->dt.dl.dr_data = buf; 1395 } 1396 mutex_exit(&db->db_mtx); 1397 1398 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1399 DB_DNODE_EXIT(db); 1400 } 1401 1402 void 1403 dbuf_release_bp(dmu_buf_impl_t *db) 1404 { 1405 objset_t *os = db->db_objset; 1406 1407 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1408 ASSERT(arc_released(os->os_phys_buf) || 1409 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1410 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1411 1412 (void) arc_release(db->db_buf, db); 1413 } 1414 1415 /* 1416 * We already have a dirty record for this TXG, and we are being 1417 * dirtied again. 1418 */ 1419 static void 1420 dbuf_redirty(dbuf_dirty_record_t *dr) 1421 { 1422 dmu_buf_impl_t *db = dr->dr_dbuf; 1423 1424 ASSERT(MUTEX_HELD(&db->db_mtx)); 1425 1426 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1427 /* 1428 * If this buffer has already been written out, 1429 * we now need to reset its state. 1430 */ 1431 dbuf_unoverride(dr); 1432 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1433 db->db_state != DB_NOFILL) { 1434 /* Already released on initial dirty, so just thaw. */ 1435 ASSERT(arc_released(db->db_buf)); 1436 arc_buf_thaw(db->db_buf); 1437 } 1438 } 1439 } 1440 1441 dbuf_dirty_record_t * 1442 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1443 { 1444 dnode_t *dn; 1445 objset_t *os; 1446 dbuf_dirty_record_t **drp, *dr; 1447 int drop_struct_lock = FALSE; 1448 int txgoff = tx->tx_txg & TXG_MASK; 1449 1450 ASSERT(tx->tx_txg != 0); 1451 ASSERT(!refcount_is_zero(&db->db_holds)); 1452 DMU_TX_DIRTY_BUF(tx, db); 1453 1454 DB_DNODE_ENTER(db); 1455 dn = DB_DNODE(db); 1456 /* 1457 * Shouldn't dirty a regular buffer in syncing context. Private 1458 * objects may be dirtied in syncing context, but only if they 1459 * were already pre-dirtied in open context. 1460 */ 1461 #ifdef DEBUG 1462 if (dn->dn_objset->os_dsl_dataset != NULL) { 1463 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1464 RW_READER, FTAG); 1465 } 1466 ASSERT(!dmu_tx_is_syncing(tx) || 1467 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1468 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1469 dn->dn_objset->os_dsl_dataset == NULL); 1470 if (dn->dn_objset->os_dsl_dataset != NULL) 1471 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 1472 #endif 1473 /* 1474 * We make this assert for private objects as well, but after we 1475 * check if we're already dirty. They are allowed to re-dirty 1476 * in syncing context. 1477 */ 1478 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1479 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1480 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1481 1482 mutex_enter(&db->db_mtx); 1483 /* 1484 * XXX make this true for indirects too? The problem is that 1485 * transactions created with dmu_tx_create_assigned() from 1486 * syncing context don't bother holding ahead. 1487 */ 1488 ASSERT(db->db_level != 0 || 1489 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1490 db->db_state == DB_NOFILL); 1491 1492 mutex_enter(&dn->dn_mtx); 1493 /* 1494 * Don't set dirtyctx to SYNC if we're just modifying this as we 1495 * initialize the objset. 1496 */ 1497 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 1498 if (dn->dn_objset->os_dsl_dataset != NULL) { 1499 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1500 RW_READER, FTAG); 1501 } 1502 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1503 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? 1504 DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1505 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1506 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1507 } 1508 if (dn->dn_objset->os_dsl_dataset != NULL) { 1509 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1510 FTAG); 1511 } 1512 } 1513 mutex_exit(&dn->dn_mtx); 1514 1515 if (db->db_blkid == DMU_SPILL_BLKID) 1516 dn->dn_have_spill = B_TRUE; 1517 1518 /* 1519 * If this buffer is already dirty, we're done. 1520 */ 1521 drp = &db->db_last_dirty; 1522 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1523 db->db.db_object == DMU_META_DNODE_OBJECT); 1524 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1525 drp = &dr->dr_next; 1526 if (dr && dr->dr_txg == tx->tx_txg) { 1527 DB_DNODE_EXIT(db); 1528 1529 dbuf_redirty(dr); 1530 mutex_exit(&db->db_mtx); 1531 return (dr); 1532 } 1533 1534 /* 1535 * Only valid if not already dirty. 1536 */ 1537 ASSERT(dn->dn_object == 0 || 1538 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1539 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1540 1541 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1542 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1543 dn->dn_phys->dn_nlevels > db->db_level || 1544 dn->dn_next_nlevels[txgoff] > db->db_level || 1545 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1546 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1547 1548 /* 1549 * We should only be dirtying in syncing context if it's the 1550 * mos or we're initializing the os or it's a special object. 1551 * However, we are allowed to dirty in syncing context provided 1552 * we already dirtied it in open context. Hence we must make 1553 * this assertion only if we're not already dirty. 1554 */ 1555 os = dn->dn_objset; 1556 #ifdef DEBUG 1557 if (dn->dn_objset->os_dsl_dataset != NULL) 1558 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 1559 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1560 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1561 if (dn->dn_objset->os_dsl_dataset != NULL) 1562 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 1563 #endif 1564 ASSERT(db->db.db_size != 0); 1565 1566 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1567 1568 if (db->db_blkid != DMU_BONUS_BLKID) { 1569 dmu_objset_willuse_space(os, db->db.db_size, tx); 1570 } 1571 1572 /* 1573 * If this buffer is dirty in an old transaction group we need 1574 * to make a copy of it so that the changes we make in this 1575 * transaction group won't leak out when we sync the older txg. 1576 */ 1577 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1578 if (db->db_level == 0) { 1579 void *data_old = db->db_buf; 1580 1581 if (db->db_state != DB_NOFILL) { 1582 if (db->db_blkid == DMU_BONUS_BLKID) { 1583 dbuf_fix_old_data(db, tx->tx_txg); 1584 data_old = db->db.db_data; 1585 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1586 /* 1587 * Release the data buffer from the cache so 1588 * that we can modify it without impacting 1589 * possible other users of this cached data 1590 * block. Note that indirect blocks and 1591 * private objects are not released until the 1592 * syncing state (since they are only modified 1593 * then). 1594 */ 1595 arc_release(db->db_buf, db); 1596 dbuf_fix_old_data(db, tx->tx_txg); 1597 data_old = db->db_buf; 1598 } 1599 ASSERT(data_old != NULL); 1600 } 1601 dr->dt.dl.dr_data = data_old; 1602 } else { 1603 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1604 list_create(&dr->dt.di.dr_children, 1605 sizeof (dbuf_dirty_record_t), 1606 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1607 } 1608 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1609 dr->dr_accounted = db->db.db_size; 1610 dr->dr_dbuf = db; 1611 dr->dr_txg = tx->tx_txg; 1612 dr->dr_next = *drp; 1613 *drp = dr; 1614 1615 /* 1616 * We could have been freed_in_flight between the dbuf_noread 1617 * and dbuf_dirty. We win, as though the dbuf_noread() had 1618 * happened after the free. 1619 */ 1620 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1621 db->db_blkid != DMU_SPILL_BLKID) { 1622 mutex_enter(&dn->dn_mtx); 1623 if (dn->dn_free_ranges[txgoff] != NULL) { 1624 range_tree_clear(dn->dn_free_ranges[txgoff], 1625 db->db_blkid, 1); 1626 } 1627 mutex_exit(&dn->dn_mtx); 1628 db->db_freed_in_flight = FALSE; 1629 } 1630 1631 /* 1632 * This buffer is now part of this txg 1633 */ 1634 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1635 db->db_dirtycnt += 1; 1636 ASSERT3U(db->db_dirtycnt, <=, 3); 1637 1638 mutex_exit(&db->db_mtx); 1639 1640 if (db->db_blkid == DMU_BONUS_BLKID || 1641 db->db_blkid == DMU_SPILL_BLKID) { 1642 mutex_enter(&dn->dn_mtx); 1643 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1644 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1645 mutex_exit(&dn->dn_mtx); 1646 dnode_setdirty(dn, tx); 1647 DB_DNODE_EXIT(db); 1648 return (dr); 1649 } 1650 1651 /* 1652 * The dn_struct_rwlock prevents db_blkptr from changing 1653 * due to a write from syncing context completing 1654 * while we are running, so we want to acquire it before 1655 * looking at db_blkptr. 1656 */ 1657 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1658 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1659 drop_struct_lock = TRUE; 1660 } 1661 1662 /* 1663 * If we are overwriting a dedup BP, then unless it is snapshotted, 1664 * when we get to syncing context we will need to decrement its 1665 * refcount in the DDT. Prefetch the relevant DDT block so that 1666 * syncing context won't have to wait for the i/o. 1667 */ 1668 ddt_prefetch(os->os_spa, db->db_blkptr); 1669 1670 if (db->db_level == 0) { 1671 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); 1672 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1673 } 1674 1675 if (db->db_level+1 < dn->dn_nlevels) { 1676 dmu_buf_impl_t *parent = db->db_parent; 1677 dbuf_dirty_record_t *di; 1678 int parent_held = FALSE; 1679 1680 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1681 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1682 1683 parent = dbuf_hold_level(dn, db->db_level+1, 1684 db->db_blkid >> epbs, FTAG); 1685 ASSERT(parent != NULL); 1686 parent_held = TRUE; 1687 } 1688 if (drop_struct_lock) 1689 rw_exit(&dn->dn_struct_rwlock); 1690 ASSERT3U(db->db_level+1, ==, parent->db_level); 1691 di = dbuf_dirty(parent, tx); 1692 if (parent_held) 1693 dbuf_rele(parent, FTAG); 1694 1695 mutex_enter(&db->db_mtx); 1696 /* 1697 * Since we've dropped the mutex, it's possible that 1698 * dbuf_undirty() might have changed this out from under us. 1699 */ 1700 if (db->db_last_dirty == dr || 1701 dn->dn_object == DMU_META_DNODE_OBJECT) { 1702 mutex_enter(&di->dt.di.dr_mtx); 1703 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1704 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1705 list_insert_tail(&di->dt.di.dr_children, dr); 1706 mutex_exit(&di->dt.di.dr_mtx); 1707 dr->dr_parent = di; 1708 } 1709 mutex_exit(&db->db_mtx); 1710 } else { 1711 ASSERT(db->db_level+1 == dn->dn_nlevels); 1712 ASSERT(db->db_blkid < dn->dn_nblkptr); 1713 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1714 mutex_enter(&dn->dn_mtx); 1715 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1716 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1717 mutex_exit(&dn->dn_mtx); 1718 if (drop_struct_lock) 1719 rw_exit(&dn->dn_struct_rwlock); 1720 } 1721 1722 dnode_setdirty(dn, tx); 1723 DB_DNODE_EXIT(db); 1724 return (dr); 1725 } 1726 1727 /* 1728 * Undirty a buffer in the transaction group referenced by the given 1729 * transaction. Return whether this evicted the dbuf. 1730 */ 1731 static boolean_t 1732 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1733 { 1734 dnode_t *dn; 1735 uint64_t txg = tx->tx_txg; 1736 dbuf_dirty_record_t *dr, **drp; 1737 1738 ASSERT(txg != 0); 1739 1740 /* 1741 * Due to our use of dn_nlevels below, this can only be called 1742 * in open context, unless we are operating on the MOS. 1743 * From syncing context, dn_nlevels may be different from the 1744 * dn_nlevels used when dbuf was dirtied. 1745 */ 1746 ASSERT(db->db_objset == 1747 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1748 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1749 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1750 ASSERT0(db->db_level); 1751 ASSERT(MUTEX_HELD(&db->db_mtx)); 1752 1753 /* 1754 * If this buffer is not dirty, we're done. 1755 */ 1756 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 1757 if (dr->dr_txg <= txg) 1758 break; 1759 if (dr == NULL || dr->dr_txg < txg) 1760 return (B_FALSE); 1761 ASSERT(dr->dr_txg == txg); 1762 ASSERT(dr->dr_dbuf == db); 1763 1764 DB_DNODE_ENTER(db); 1765 dn = DB_DNODE(db); 1766 1767 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1768 1769 ASSERT(db->db.db_size != 0); 1770 1771 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 1772 dr->dr_accounted, txg); 1773 1774 *drp = dr->dr_next; 1775 1776 /* 1777 * Note that there are three places in dbuf_dirty() 1778 * where this dirty record may be put on a list. 1779 * Make sure to do a list_remove corresponding to 1780 * every one of those list_insert calls. 1781 */ 1782 if (dr->dr_parent) { 1783 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 1784 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 1785 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 1786 } else if (db->db_blkid == DMU_SPILL_BLKID || 1787 db->db_level + 1 == dn->dn_nlevels) { 1788 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 1789 mutex_enter(&dn->dn_mtx); 1790 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 1791 mutex_exit(&dn->dn_mtx); 1792 } 1793 DB_DNODE_EXIT(db); 1794 1795 if (db->db_state != DB_NOFILL) { 1796 dbuf_unoverride(dr); 1797 1798 ASSERT(db->db_buf != NULL); 1799 ASSERT(dr->dt.dl.dr_data != NULL); 1800 if (dr->dt.dl.dr_data != db->db_buf) 1801 arc_buf_destroy(dr->dt.dl.dr_data, db); 1802 } 1803 1804 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 1805 1806 ASSERT(db->db_dirtycnt > 0); 1807 db->db_dirtycnt -= 1; 1808 1809 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 1810 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 1811 dbuf_destroy(db); 1812 return (B_TRUE); 1813 } 1814 1815 return (B_FALSE); 1816 } 1817 1818 void 1819 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 1820 { 1821 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1822 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; 1823 1824 ASSERT(tx->tx_txg != 0); 1825 ASSERT(!refcount_is_zero(&db->db_holds)); 1826 1827 /* 1828 * Quick check for dirtyness. For already dirty blocks, this 1829 * reduces runtime of this function by >90%, and overall performance 1830 * by 50% for some workloads (e.g. file deletion with indirect blocks 1831 * cached). 1832 */ 1833 mutex_enter(&db->db_mtx); 1834 dbuf_dirty_record_t *dr; 1835 for (dr = db->db_last_dirty; 1836 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 1837 /* 1838 * It's possible that it is already dirty but not cached, 1839 * because there are some calls to dbuf_dirty() that don't 1840 * go through dmu_buf_will_dirty(). 1841 */ 1842 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 1843 /* This dbuf is already dirty and cached. */ 1844 dbuf_redirty(dr); 1845 mutex_exit(&db->db_mtx); 1846 return; 1847 } 1848 } 1849 mutex_exit(&db->db_mtx); 1850 1851 DB_DNODE_ENTER(db); 1852 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 1853 rf |= DB_RF_HAVESTRUCT; 1854 DB_DNODE_EXIT(db); 1855 (void) dbuf_read(db, NULL, rf); 1856 (void) dbuf_dirty(db, tx); 1857 } 1858 1859 void 1860 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1861 { 1862 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1863 1864 db->db_state = DB_NOFILL; 1865 1866 dmu_buf_will_fill(db_fake, tx); 1867 } 1868 1869 void 1870 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 1871 { 1872 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1873 1874 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1875 ASSERT(tx->tx_txg != 0); 1876 ASSERT(db->db_level == 0); 1877 ASSERT(!refcount_is_zero(&db->db_holds)); 1878 1879 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 1880 dmu_tx_private_ok(tx)); 1881 1882 dbuf_noread(db); 1883 (void) dbuf_dirty(db, tx); 1884 } 1885 1886 #pragma weak dmu_buf_fill_done = dbuf_fill_done 1887 /* ARGSUSED */ 1888 void 1889 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 1890 { 1891 mutex_enter(&db->db_mtx); 1892 DBUF_VERIFY(db); 1893 1894 if (db->db_state == DB_FILL) { 1895 if (db->db_level == 0 && db->db_freed_in_flight) { 1896 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1897 /* we were freed while filling */ 1898 /* XXX dbuf_undirty? */ 1899 bzero(db->db.db_data, db->db.db_size); 1900 db->db_freed_in_flight = FALSE; 1901 } 1902 db->db_state = DB_CACHED; 1903 cv_broadcast(&db->db_changed); 1904 } 1905 mutex_exit(&db->db_mtx); 1906 } 1907 1908 void 1909 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 1910 bp_embedded_type_t etype, enum zio_compress comp, 1911 int uncompressed_size, int compressed_size, int byteorder, 1912 dmu_tx_t *tx) 1913 { 1914 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 1915 struct dirty_leaf *dl; 1916 dmu_object_type_t type; 1917 1918 if (etype == BP_EMBEDDED_TYPE_DATA) { 1919 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 1920 SPA_FEATURE_EMBEDDED_DATA)); 1921 } 1922 1923 DB_DNODE_ENTER(db); 1924 type = DB_DNODE(db)->dn_type; 1925 DB_DNODE_EXIT(db); 1926 1927 ASSERT0(db->db_level); 1928 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1929 1930 dmu_buf_will_not_fill(dbuf, tx); 1931 1932 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1933 dl = &db->db_last_dirty->dt.dl; 1934 encode_embedded_bp_compressed(&dl->dr_overridden_by, 1935 data, comp, uncompressed_size, compressed_size); 1936 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 1937 BP_SET_TYPE(&dl->dr_overridden_by, type); 1938 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 1939 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 1940 1941 dl->dr_override_state = DR_OVERRIDDEN; 1942 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 1943 } 1944 1945 /* 1946 * Directly assign a provided arc buf to a given dbuf if it's not referenced 1947 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 1948 */ 1949 void 1950 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 1951 { 1952 ASSERT(!refcount_is_zero(&db->db_holds)); 1953 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1954 ASSERT(db->db_level == 0); 1955 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 1956 ASSERT(buf != NULL); 1957 ASSERT(arc_buf_lsize(buf) == db->db.db_size); 1958 ASSERT(tx->tx_txg != 0); 1959 1960 arc_return_buf(buf, db); 1961 ASSERT(arc_released(buf)); 1962 1963 mutex_enter(&db->db_mtx); 1964 1965 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1966 cv_wait(&db->db_changed, &db->db_mtx); 1967 1968 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 1969 1970 if (db->db_state == DB_CACHED && 1971 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 1972 mutex_exit(&db->db_mtx); 1973 (void) dbuf_dirty(db, tx); 1974 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 1975 arc_buf_destroy(buf, db); 1976 xuio_stat_wbuf_copied(); 1977 return; 1978 } 1979 1980 xuio_stat_wbuf_nocopy(); 1981 if (db->db_state == DB_CACHED) { 1982 dbuf_dirty_record_t *dr = db->db_last_dirty; 1983 1984 ASSERT(db->db_buf != NULL); 1985 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 1986 ASSERT(dr->dt.dl.dr_data == db->db_buf); 1987 if (!arc_released(db->db_buf)) { 1988 ASSERT(dr->dt.dl.dr_override_state == 1989 DR_OVERRIDDEN); 1990 arc_release(db->db_buf, db); 1991 } 1992 dr->dt.dl.dr_data = buf; 1993 arc_buf_destroy(db->db_buf, db); 1994 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 1995 arc_release(db->db_buf, db); 1996 arc_buf_destroy(db->db_buf, db); 1997 } 1998 db->db_buf = NULL; 1999 } 2000 ASSERT(db->db_buf == NULL); 2001 dbuf_set_data(db, buf); 2002 db->db_state = DB_FILL; 2003 mutex_exit(&db->db_mtx); 2004 (void) dbuf_dirty(db, tx); 2005 dmu_buf_fill_done(&db->db, tx); 2006 } 2007 2008 void 2009 dbuf_destroy(dmu_buf_impl_t *db) 2010 { 2011 dnode_t *dn; 2012 dmu_buf_impl_t *parent = db->db_parent; 2013 dmu_buf_impl_t *dndb; 2014 2015 ASSERT(MUTEX_HELD(&db->db_mtx)); 2016 ASSERT(refcount_is_zero(&db->db_holds)); 2017 2018 if (db->db_buf != NULL) { 2019 arc_buf_destroy(db->db_buf, db); 2020 db->db_buf = NULL; 2021 } 2022 2023 if (db->db_blkid == DMU_BONUS_BLKID) { 2024 ASSERT(db->db.db_data != NULL); 2025 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); 2026 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 2027 db->db_state = DB_UNCACHED; 2028 } 2029 2030 dbuf_clear_data(db); 2031 2032 if (multilist_link_active(&db->db_cache_link)) { 2033 multilist_remove(&dbuf_cache, db); 2034 (void) refcount_remove_many(&dbuf_cache_size, 2035 db->db.db_size, db); 2036 } 2037 2038 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2039 ASSERT(db->db_data_pending == NULL); 2040 2041 db->db_state = DB_EVICTING; 2042 db->db_blkptr = NULL; 2043 2044 /* 2045 * Now that db_state is DB_EVICTING, nobody else can find this via 2046 * the hash table. We can now drop db_mtx, which allows us to 2047 * acquire the dn_dbufs_mtx. 2048 */ 2049 mutex_exit(&db->db_mtx); 2050 2051 DB_DNODE_ENTER(db); 2052 dn = DB_DNODE(db); 2053 dndb = dn->dn_dbuf; 2054 if (db->db_blkid != DMU_BONUS_BLKID) { 2055 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2056 if (needlock) 2057 mutex_enter(&dn->dn_dbufs_mtx); 2058 avl_remove(&dn->dn_dbufs, db); 2059 atomic_dec_32(&dn->dn_dbufs_count); 2060 membar_producer(); 2061 DB_DNODE_EXIT(db); 2062 if (needlock) 2063 mutex_exit(&dn->dn_dbufs_mtx); 2064 /* 2065 * Decrementing the dbuf count means that the hold corresponding 2066 * to the removed dbuf is no longer discounted in dnode_move(), 2067 * so the dnode cannot be moved until after we release the hold. 2068 * The membar_producer() ensures visibility of the decremented 2069 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2070 * release any lock. 2071 */ 2072 dnode_rele(dn, db); 2073 db->db_dnode_handle = NULL; 2074 2075 dbuf_hash_remove(db); 2076 } else { 2077 DB_DNODE_EXIT(db); 2078 } 2079 2080 ASSERT(refcount_is_zero(&db->db_holds)); 2081 2082 db->db_parent = NULL; 2083 2084 ASSERT(db->db_buf == NULL); 2085 ASSERT(db->db.db_data == NULL); 2086 ASSERT(db->db_hash_next == NULL); 2087 ASSERT(db->db_blkptr == NULL); 2088 ASSERT(db->db_data_pending == NULL); 2089 ASSERT(!multilist_link_active(&db->db_cache_link)); 2090 2091 kmem_cache_free(dbuf_kmem_cache, db); 2092 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2093 2094 /* 2095 * If this dbuf is referenced from an indirect dbuf, 2096 * decrement the ref count on the indirect dbuf. 2097 */ 2098 if (parent && parent != dndb) 2099 dbuf_rele(parent, db); 2100 } 2101 2102 /* 2103 * Note: While bpp will always be updated if the function returns success, 2104 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2105 * this happens when the dnode is the meta-dnode, or a userused or groupused 2106 * object. 2107 */ 2108 static int 2109 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2110 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2111 { 2112 *parentp = NULL; 2113 *bpp = NULL; 2114 2115 ASSERT(blkid != DMU_BONUS_BLKID); 2116 2117 if (blkid == DMU_SPILL_BLKID) { 2118 mutex_enter(&dn->dn_mtx); 2119 if (dn->dn_have_spill && 2120 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2121 *bpp = &dn->dn_phys->dn_spill; 2122 else 2123 *bpp = NULL; 2124 dbuf_add_ref(dn->dn_dbuf, NULL); 2125 *parentp = dn->dn_dbuf; 2126 mutex_exit(&dn->dn_mtx); 2127 return (0); 2128 } 2129 2130 int nlevels = 2131 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2132 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2133 2134 ASSERT3U(level * epbs, <, 64); 2135 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2136 /* 2137 * This assertion shouldn't trip as long as the max indirect block size 2138 * is less than 1M. The reason for this is that up to that point, 2139 * the number of levels required to address an entire object with blocks 2140 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2141 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2142 * (i.e. we can address the entire object), objects will all use at most 2143 * N-1 levels and the assertion won't overflow. However, once epbs is 2144 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2145 * enough to address an entire object, so objects will have 5 levels, 2146 * but then this assertion will overflow. 2147 * 2148 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2149 * need to redo this logic to handle overflows. 2150 */ 2151 ASSERT(level >= nlevels || 2152 ((nlevels - level - 1) * epbs) + 2153 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2154 if (level >= nlevels || 2155 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2156 ((nlevels - level - 1) * epbs)) || 2157 (fail_sparse && 2158 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2159 /* the buffer has no parent yet */ 2160 return (SET_ERROR(ENOENT)); 2161 } else if (level < nlevels-1) { 2162 /* this block is referenced from an indirect block */ 2163 int err = dbuf_hold_impl(dn, level+1, 2164 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2165 if (err) 2166 return (err); 2167 err = dbuf_read(*parentp, NULL, 2168 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2169 if (err) { 2170 dbuf_rele(*parentp, NULL); 2171 *parentp = NULL; 2172 return (err); 2173 } 2174 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2175 (blkid & ((1ULL << epbs) - 1)); 2176 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2177 ASSERT(BP_IS_HOLE(*bpp)); 2178 return (0); 2179 } else { 2180 /* the block is referenced from the dnode */ 2181 ASSERT3U(level, ==, nlevels-1); 2182 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2183 blkid < dn->dn_phys->dn_nblkptr); 2184 if (dn->dn_dbuf) { 2185 dbuf_add_ref(dn->dn_dbuf, NULL); 2186 *parentp = dn->dn_dbuf; 2187 } 2188 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2189 return (0); 2190 } 2191 } 2192 2193 static dmu_buf_impl_t * 2194 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2195 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2196 { 2197 objset_t *os = dn->dn_objset; 2198 dmu_buf_impl_t *db, *odb; 2199 2200 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2201 ASSERT(dn->dn_type != DMU_OT_NONE); 2202 2203 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2204 2205 db->db_objset = os; 2206 db->db.db_object = dn->dn_object; 2207 db->db_level = level; 2208 db->db_blkid = blkid; 2209 db->db_last_dirty = NULL; 2210 db->db_dirtycnt = 0; 2211 db->db_dnode_handle = dn->dn_handle; 2212 db->db_parent = parent; 2213 db->db_blkptr = blkptr; 2214 2215 db->db_user = NULL; 2216 db->db_user_immediate_evict = FALSE; 2217 db->db_freed_in_flight = FALSE; 2218 db->db_pending_evict = FALSE; 2219 2220 if (blkid == DMU_BONUS_BLKID) { 2221 ASSERT3P(parent, ==, dn->dn_dbuf); 2222 db->db.db_size = DN_MAX_BONUSLEN - 2223 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2224 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2225 db->db.db_offset = DMU_BONUS_BLKID; 2226 db->db_state = DB_UNCACHED; 2227 /* the bonus dbuf is not placed in the hash table */ 2228 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2229 return (db); 2230 } else if (blkid == DMU_SPILL_BLKID) { 2231 db->db.db_size = (blkptr != NULL) ? 2232 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2233 db->db.db_offset = 0; 2234 } else { 2235 int blocksize = 2236 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2237 db->db.db_size = blocksize; 2238 db->db.db_offset = db->db_blkid * blocksize; 2239 } 2240 2241 /* 2242 * Hold the dn_dbufs_mtx while we get the new dbuf 2243 * in the hash table *and* added to the dbufs list. 2244 * This prevents a possible deadlock with someone 2245 * trying to look up this dbuf before its added to the 2246 * dn_dbufs list. 2247 */ 2248 mutex_enter(&dn->dn_dbufs_mtx); 2249 db->db_state = DB_EVICTING; 2250 if ((odb = dbuf_hash_insert(db)) != NULL) { 2251 /* someone else inserted it first */ 2252 kmem_cache_free(dbuf_kmem_cache, db); 2253 mutex_exit(&dn->dn_dbufs_mtx); 2254 return (odb); 2255 } 2256 avl_add(&dn->dn_dbufs, db); 2257 2258 db->db_state = DB_UNCACHED; 2259 mutex_exit(&dn->dn_dbufs_mtx); 2260 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2261 2262 if (parent && parent != dn->dn_dbuf) 2263 dbuf_add_ref(parent, db); 2264 2265 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2266 refcount_count(&dn->dn_holds) > 0); 2267 (void) refcount_add(&dn->dn_holds, db); 2268 atomic_inc_32(&dn->dn_dbufs_count); 2269 2270 dprintf_dbuf(db, "db=%p\n", db); 2271 2272 return (db); 2273 } 2274 2275 typedef struct dbuf_prefetch_arg { 2276 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2277 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2278 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2279 int dpa_curlevel; /* The current level that we're reading */ 2280 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2281 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2282 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2283 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2284 } dbuf_prefetch_arg_t; 2285 2286 /* 2287 * Actually issue the prefetch read for the block given. 2288 */ 2289 static void 2290 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2291 { 2292 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2293 return; 2294 2295 arc_flags_t aflags = 2296 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2297 2298 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2299 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2300 ASSERT(dpa->dpa_zio != NULL); 2301 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2302 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2303 &aflags, &dpa->dpa_zb); 2304 } 2305 2306 /* 2307 * Called when an indirect block above our prefetch target is read in. This 2308 * will either read in the next indirect block down the tree or issue the actual 2309 * prefetch if the next block down is our target. 2310 */ 2311 static void 2312 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private) 2313 { 2314 dbuf_prefetch_arg_t *dpa = private; 2315 2316 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2317 ASSERT3S(dpa->dpa_curlevel, >, 0); 2318 2319 /* 2320 * The dpa_dnode is only valid if we are called with a NULL 2321 * zio. This indicates that the arc_read() returned without 2322 * first calling zio_read() to issue a physical read. Once 2323 * a physical read is made the dpa_dnode must be invalidated 2324 * as the locks guarding it may have been dropped. If the 2325 * dpa_dnode is still valid, then we want to add it to the dbuf 2326 * cache. To do so, we must hold the dbuf associated with the block 2327 * we just prefetched, read its contents so that we associate it 2328 * with an arc_buf_t, and then release it. 2329 */ 2330 if (zio != NULL) { 2331 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2332 if (zio->io_flags & ZIO_FLAG_RAW) { 2333 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2334 } else { 2335 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2336 } 2337 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2338 2339 dpa->dpa_dnode = NULL; 2340 } else if (dpa->dpa_dnode != NULL) { 2341 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2342 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2343 dpa->dpa_zb.zb_level)); 2344 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2345 dpa->dpa_curlevel, curblkid, FTAG); 2346 (void) dbuf_read(db, NULL, 2347 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2348 dbuf_rele(db, FTAG); 2349 } 2350 2351 dpa->dpa_curlevel--; 2352 2353 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2354 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2355 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2356 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2357 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) { 2358 kmem_free(dpa, sizeof (*dpa)); 2359 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2360 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2361 dbuf_issue_final_prefetch(dpa, bp); 2362 kmem_free(dpa, sizeof (*dpa)); 2363 } else { 2364 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2365 zbookmark_phys_t zb; 2366 2367 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2368 2369 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2370 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2371 2372 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2373 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2374 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2375 &iter_aflags, &zb); 2376 } 2377 2378 arc_buf_destroy(abuf, private); 2379 } 2380 2381 /* 2382 * Issue prefetch reads for the given block on the given level. If the indirect 2383 * blocks above that block are not in memory, we will read them in 2384 * asynchronously. As a result, this call never blocks waiting for a read to 2385 * complete. 2386 */ 2387 void 2388 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2389 arc_flags_t aflags) 2390 { 2391 blkptr_t bp; 2392 int epbs, nlevels, curlevel; 2393 uint64_t curblkid; 2394 2395 ASSERT(blkid != DMU_BONUS_BLKID); 2396 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2397 2398 if (blkid > dn->dn_maxblkid) 2399 return; 2400 2401 if (dnode_block_freed(dn, blkid)) 2402 return; 2403 2404 /* 2405 * This dnode hasn't been written to disk yet, so there's nothing to 2406 * prefetch. 2407 */ 2408 nlevels = dn->dn_phys->dn_nlevels; 2409 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2410 return; 2411 2412 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2413 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2414 return; 2415 2416 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2417 level, blkid); 2418 if (db != NULL) { 2419 mutex_exit(&db->db_mtx); 2420 /* 2421 * This dbuf already exists. It is either CACHED, or 2422 * (we assume) about to be read or filled. 2423 */ 2424 return; 2425 } 2426 2427 /* 2428 * Find the closest ancestor (indirect block) of the target block 2429 * that is present in the cache. In this indirect block, we will 2430 * find the bp that is at curlevel, curblkid. 2431 */ 2432 curlevel = level; 2433 curblkid = blkid; 2434 while (curlevel < nlevels - 1) { 2435 int parent_level = curlevel + 1; 2436 uint64_t parent_blkid = curblkid >> epbs; 2437 dmu_buf_impl_t *db; 2438 2439 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2440 FALSE, TRUE, FTAG, &db) == 0) { 2441 blkptr_t *bpp = db->db_buf->b_data; 2442 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2443 dbuf_rele(db, FTAG); 2444 break; 2445 } 2446 2447 curlevel = parent_level; 2448 curblkid = parent_blkid; 2449 } 2450 2451 if (curlevel == nlevels - 1) { 2452 /* No cached indirect blocks found. */ 2453 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2454 bp = dn->dn_phys->dn_blkptr[curblkid]; 2455 } 2456 if (BP_IS_HOLE(&bp)) 2457 return; 2458 2459 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2460 2461 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2462 ZIO_FLAG_CANFAIL); 2463 2464 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2465 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2466 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2467 dn->dn_object, level, blkid); 2468 dpa->dpa_curlevel = curlevel; 2469 dpa->dpa_prio = prio; 2470 dpa->dpa_aflags = aflags; 2471 dpa->dpa_spa = dn->dn_objset->os_spa; 2472 dpa->dpa_dnode = dn; 2473 dpa->dpa_epbs = epbs; 2474 dpa->dpa_zio = pio; 2475 2476 /* 2477 * If we have the indirect just above us, no need to do the asynchronous 2478 * prefetch chain; we'll just run the last step ourselves. If we're at 2479 * a higher level, though, we want to issue the prefetches for all the 2480 * indirect blocks asynchronously, so we can go on with whatever we were 2481 * doing. 2482 */ 2483 if (curlevel == level) { 2484 ASSERT3U(curblkid, ==, blkid); 2485 dbuf_issue_final_prefetch(dpa, &bp); 2486 kmem_free(dpa, sizeof (*dpa)); 2487 } else { 2488 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2489 zbookmark_phys_t zb; 2490 2491 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2492 dn->dn_object, curlevel, curblkid); 2493 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2494 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2495 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2496 &iter_aflags, &zb); 2497 } 2498 /* 2499 * We use pio here instead of dpa_zio since it's possible that 2500 * dpa may have already been freed. 2501 */ 2502 zio_nowait(pio); 2503 } 2504 2505 /* 2506 * Returns with db_holds incremented, and db_mtx not held. 2507 * Note: dn_struct_rwlock must be held. 2508 */ 2509 int 2510 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2511 boolean_t fail_sparse, boolean_t fail_uncached, 2512 void *tag, dmu_buf_impl_t **dbp) 2513 { 2514 dmu_buf_impl_t *db, *parent = NULL; 2515 2516 ASSERT(blkid != DMU_BONUS_BLKID); 2517 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2518 ASSERT3U(dn->dn_nlevels, >, level); 2519 2520 *dbp = NULL; 2521 top: 2522 /* dbuf_find() returns with db_mtx held */ 2523 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2524 2525 if (db == NULL) { 2526 blkptr_t *bp = NULL; 2527 int err; 2528 2529 if (fail_uncached) 2530 return (SET_ERROR(ENOENT)); 2531 2532 ASSERT3P(parent, ==, NULL); 2533 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2534 if (fail_sparse) { 2535 if (err == 0 && bp && BP_IS_HOLE(bp)) 2536 err = SET_ERROR(ENOENT); 2537 if (err) { 2538 if (parent) 2539 dbuf_rele(parent, NULL); 2540 return (err); 2541 } 2542 } 2543 if (err && err != ENOENT) 2544 return (err); 2545 db = dbuf_create(dn, level, blkid, parent, bp); 2546 } 2547 2548 if (fail_uncached && db->db_state != DB_CACHED) { 2549 mutex_exit(&db->db_mtx); 2550 return (SET_ERROR(ENOENT)); 2551 } 2552 2553 if (db->db_buf != NULL) 2554 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2555 2556 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2557 2558 /* 2559 * If this buffer is currently syncing out, and we are are 2560 * still referencing it from db_data, we need to make a copy 2561 * of it in case we decide we want to dirty it again in this txg. 2562 */ 2563 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2564 dn->dn_object != DMU_META_DNODE_OBJECT && 2565 db->db_state == DB_CACHED && db->db_data_pending) { 2566 dbuf_dirty_record_t *dr = db->db_data_pending; 2567 2568 if (dr->dt.dl.dr_data == db->db_buf) { 2569 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2570 2571 dbuf_set_data(db, 2572 arc_alloc_buf(dn->dn_objset->os_spa, db, type, 2573 db->db.db_size)); 2574 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, 2575 db->db.db_size); 2576 } 2577 } 2578 2579 if (multilist_link_active(&db->db_cache_link)) { 2580 ASSERT(refcount_is_zero(&db->db_holds)); 2581 multilist_remove(&dbuf_cache, db); 2582 (void) refcount_remove_many(&dbuf_cache_size, 2583 db->db.db_size, db); 2584 } 2585 (void) refcount_add(&db->db_holds, tag); 2586 DBUF_VERIFY(db); 2587 mutex_exit(&db->db_mtx); 2588 2589 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2590 if (parent) 2591 dbuf_rele(parent, NULL); 2592 2593 ASSERT3P(DB_DNODE(db), ==, dn); 2594 ASSERT3U(db->db_blkid, ==, blkid); 2595 ASSERT3U(db->db_level, ==, level); 2596 *dbp = db; 2597 2598 return (0); 2599 } 2600 2601 dmu_buf_impl_t * 2602 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2603 { 2604 return (dbuf_hold_level(dn, 0, blkid, tag)); 2605 } 2606 2607 dmu_buf_impl_t * 2608 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2609 { 2610 dmu_buf_impl_t *db; 2611 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2612 return (err ? NULL : db); 2613 } 2614 2615 void 2616 dbuf_create_bonus(dnode_t *dn) 2617 { 2618 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 2619 2620 ASSERT(dn->dn_bonus == NULL); 2621 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 2622 } 2623 2624 int 2625 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 2626 { 2627 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2628 dnode_t *dn; 2629 2630 if (db->db_blkid != DMU_SPILL_BLKID) 2631 return (SET_ERROR(ENOTSUP)); 2632 if (blksz == 0) 2633 blksz = SPA_MINBLOCKSIZE; 2634 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 2635 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 2636 2637 DB_DNODE_ENTER(db); 2638 dn = DB_DNODE(db); 2639 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2640 dbuf_new_size(db, blksz, tx); 2641 rw_exit(&dn->dn_struct_rwlock); 2642 DB_DNODE_EXIT(db); 2643 2644 return (0); 2645 } 2646 2647 void 2648 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 2649 { 2650 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 2651 } 2652 2653 #pragma weak dmu_buf_add_ref = dbuf_add_ref 2654 void 2655 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 2656 { 2657 int64_t holds = refcount_add(&db->db_holds, tag); 2658 ASSERT3S(holds, >, 1); 2659 } 2660 2661 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 2662 boolean_t 2663 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 2664 void *tag) 2665 { 2666 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2667 dmu_buf_impl_t *found_db; 2668 boolean_t result = B_FALSE; 2669 2670 if (db->db_blkid == DMU_BONUS_BLKID) 2671 found_db = dbuf_find_bonus(os, obj); 2672 else 2673 found_db = dbuf_find(os, obj, 0, blkid); 2674 2675 if (found_db != NULL) { 2676 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 2677 (void) refcount_add(&db->db_holds, tag); 2678 result = B_TRUE; 2679 } 2680 mutex_exit(&db->db_mtx); 2681 } 2682 return (result); 2683 } 2684 2685 /* 2686 * If you call dbuf_rele() you had better not be referencing the dnode handle 2687 * unless you have some other direct or indirect hold on the dnode. (An indirect 2688 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 2689 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 2690 * dnode's parent dbuf evicting its dnode handles. 2691 */ 2692 void 2693 dbuf_rele(dmu_buf_impl_t *db, void *tag) 2694 { 2695 mutex_enter(&db->db_mtx); 2696 dbuf_rele_and_unlock(db, tag); 2697 } 2698 2699 void 2700 dmu_buf_rele(dmu_buf_t *db, void *tag) 2701 { 2702 dbuf_rele((dmu_buf_impl_t *)db, tag); 2703 } 2704 2705 /* 2706 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 2707 * db_dirtycnt and db_holds to be updated atomically. 2708 */ 2709 void 2710 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) 2711 { 2712 int64_t holds; 2713 2714 ASSERT(MUTEX_HELD(&db->db_mtx)); 2715 DBUF_VERIFY(db); 2716 2717 /* 2718 * Remove the reference to the dbuf before removing its hold on the 2719 * dnode so we can guarantee in dnode_move() that a referenced bonus 2720 * buffer has a corresponding dnode hold. 2721 */ 2722 holds = refcount_remove(&db->db_holds, tag); 2723 ASSERT(holds >= 0); 2724 2725 /* 2726 * We can't freeze indirects if there is a possibility that they 2727 * may be modified in the current syncing context. 2728 */ 2729 if (db->db_buf != NULL && 2730 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 2731 arc_buf_freeze(db->db_buf); 2732 } 2733 2734 if (holds == db->db_dirtycnt && 2735 db->db_level == 0 && db->db_user_immediate_evict) 2736 dbuf_evict_user(db); 2737 2738 if (holds == 0) { 2739 if (db->db_blkid == DMU_BONUS_BLKID) { 2740 dnode_t *dn; 2741 boolean_t evict_dbuf = db->db_pending_evict; 2742 2743 /* 2744 * If the dnode moves here, we cannot cross this 2745 * barrier until the move completes. 2746 */ 2747 DB_DNODE_ENTER(db); 2748 2749 dn = DB_DNODE(db); 2750 atomic_dec_32(&dn->dn_dbufs_count); 2751 2752 /* 2753 * Decrementing the dbuf count means that the bonus 2754 * buffer's dnode hold is no longer discounted in 2755 * dnode_move(). The dnode cannot move until after 2756 * the dnode_rele() below. 2757 */ 2758 DB_DNODE_EXIT(db); 2759 2760 /* 2761 * Do not reference db after its lock is dropped. 2762 * Another thread may evict it. 2763 */ 2764 mutex_exit(&db->db_mtx); 2765 2766 if (evict_dbuf) 2767 dnode_evict_bonus(dn); 2768 2769 dnode_rele(dn, db); 2770 } else if (db->db_buf == NULL) { 2771 /* 2772 * This is a special case: we never associated this 2773 * dbuf with any data allocated from the ARC. 2774 */ 2775 ASSERT(db->db_state == DB_UNCACHED || 2776 db->db_state == DB_NOFILL); 2777 dbuf_destroy(db); 2778 } else if (arc_released(db->db_buf)) { 2779 /* 2780 * This dbuf has anonymous data associated with it. 2781 */ 2782 dbuf_destroy(db); 2783 } else { 2784 boolean_t do_arc_evict = B_FALSE; 2785 blkptr_t bp; 2786 spa_t *spa = dmu_objset_spa(db->db_objset); 2787 2788 if (!DBUF_IS_CACHEABLE(db) && 2789 db->db_blkptr != NULL && 2790 !BP_IS_HOLE(db->db_blkptr) && 2791 !BP_IS_EMBEDDED(db->db_blkptr)) { 2792 do_arc_evict = B_TRUE; 2793 bp = *db->db_blkptr; 2794 } 2795 2796 if (!DBUF_IS_CACHEABLE(db) || 2797 db->db_pending_evict) { 2798 dbuf_destroy(db); 2799 } else if (!multilist_link_active(&db->db_cache_link)) { 2800 multilist_insert(&dbuf_cache, db); 2801 (void) refcount_add_many(&dbuf_cache_size, 2802 db->db.db_size, db); 2803 mutex_exit(&db->db_mtx); 2804 2805 dbuf_evict_notify(); 2806 } 2807 2808 if (do_arc_evict) 2809 arc_freed(spa, &bp); 2810 } 2811 } else { 2812 mutex_exit(&db->db_mtx); 2813 } 2814 2815 } 2816 2817 #pragma weak dmu_buf_refcount = dbuf_refcount 2818 uint64_t 2819 dbuf_refcount(dmu_buf_impl_t *db) 2820 { 2821 return (refcount_count(&db->db_holds)); 2822 } 2823 2824 void * 2825 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 2826 dmu_buf_user_t *new_user) 2827 { 2828 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2829 2830 mutex_enter(&db->db_mtx); 2831 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2832 if (db->db_user == old_user) 2833 db->db_user = new_user; 2834 else 2835 old_user = db->db_user; 2836 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2837 mutex_exit(&db->db_mtx); 2838 2839 return (old_user); 2840 } 2841 2842 void * 2843 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2844 { 2845 return (dmu_buf_replace_user(db_fake, NULL, user)); 2846 } 2847 2848 void * 2849 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2850 { 2851 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2852 2853 db->db_user_immediate_evict = TRUE; 2854 return (dmu_buf_set_user(db_fake, user)); 2855 } 2856 2857 void * 2858 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 2859 { 2860 return (dmu_buf_replace_user(db_fake, user, NULL)); 2861 } 2862 2863 void * 2864 dmu_buf_get_user(dmu_buf_t *db_fake) 2865 { 2866 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2867 2868 dbuf_verify_user(db, DBVU_NOT_EVICTING); 2869 return (db->db_user); 2870 } 2871 2872 void 2873 dmu_buf_user_evict_wait() 2874 { 2875 taskq_wait(dbu_evict_taskq); 2876 } 2877 2878 blkptr_t * 2879 dmu_buf_get_blkptr(dmu_buf_t *db) 2880 { 2881 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2882 return (dbi->db_blkptr); 2883 } 2884 2885 objset_t * 2886 dmu_buf_get_objset(dmu_buf_t *db) 2887 { 2888 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2889 return (dbi->db_objset); 2890 } 2891 2892 dnode_t * 2893 dmu_buf_dnode_enter(dmu_buf_t *db) 2894 { 2895 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2896 DB_DNODE_ENTER(dbi); 2897 return (DB_DNODE(dbi)); 2898 } 2899 2900 void 2901 dmu_buf_dnode_exit(dmu_buf_t *db) 2902 { 2903 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 2904 DB_DNODE_EXIT(dbi); 2905 } 2906 2907 static void 2908 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 2909 { 2910 /* ASSERT(dmu_tx_is_syncing(tx) */ 2911 ASSERT(MUTEX_HELD(&db->db_mtx)); 2912 2913 if (db->db_blkptr != NULL) 2914 return; 2915 2916 if (db->db_blkid == DMU_SPILL_BLKID) { 2917 db->db_blkptr = &dn->dn_phys->dn_spill; 2918 BP_ZERO(db->db_blkptr); 2919 return; 2920 } 2921 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 2922 /* 2923 * This buffer was allocated at a time when there was 2924 * no available blkptrs from the dnode, or it was 2925 * inappropriate to hook it in (i.e., nlevels mis-match). 2926 */ 2927 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 2928 ASSERT(db->db_parent == NULL); 2929 db->db_parent = dn->dn_dbuf; 2930 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 2931 DBUF_VERIFY(db); 2932 } else { 2933 dmu_buf_impl_t *parent = db->db_parent; 2934 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2935 2936 ASSERT(dn->dn_phys->dn_nlevels > 1); 2937 if (parent == NULL) { 2938 mutex_exit(&db->db_mtx); 2939 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2940 parent = dbuf_hold_level(dn, db->db_level + 1, 2941 db->db_blkid >> epbs, db); 2942 rw_exit(&dn->dn_struct_rwlock); 2943 mutex_enter(&db->db_mtx); 2944 db->db_parent = parent; 2945 } 2946 db->db_blkptr = (blkptr_t *)parent->db.db_data + 2947 (db->db_blkid & ((1ULL << epbs) - 1)); 2948 DBUF_VERIFY(db); 2949 } 2950 } 2951 2952 static void 2953 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 2954 { 2955 dmu_buf_impl_t *db = dr->dr_dbuf; 2956 dnode_t *dn; 2957 zio_t *zio; 2958 2959 ASSERT(dmu_tx_is_syncing(tx)); 2960 2961 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 2962 2963 mutex_enter(&db->db_mtx); 2964 2965 ASSERT(db->db_level > 0); 2966 DBUF_VERIFY(db); 2967 2968 /* Read the block if it hasn't been read yet. */ 2969 if (db->db_buf == NULL) { 2970 mutex_exit(&db->db_mtx); 2971 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 2972 mutex_enter(&db->db_mtx); 2973 } 2974 ASSERT3U(db->db_state, ==, DB_CACHED); 2975 ASSERT(db->db_buf != NULL); 2976 2977 DB_DNODE_ENTER(db); 2978 dn = DB_DNODE(db); 2979 /* Indirect block size must match what the dnode thinks it is. */ 2980 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 2981 dbuf_check_blkptr(dn, db); 2982 DB_DNODE_EXIT(db); 2983 2984 /* Provide the pending dirty record to child dbufs */ 2985 db->db_data_pending = dr; 2986 2987 mutex_exit(&db->db_mtx); 2988 dbuf_write(dr, db->db_buf, tx); 2989 2990 zio = dr->dr_zio; 2991 mutex_enter(&dr->dt.di.dr_mtx); 2992 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 2993 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 2994 mutex_exit(&dr->dt.di.dr_mtx); 2995 zio_nowait(zio); 2996 } 2997 2998 static void 2999 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3000 { 3001 arc_buf_t **datap = &dr->dt.dl.dr_data; 3002 dmu_buf_impl_t *db = dr->dr_dbuf; 3003 dnode_t *dn; 3004 objset_t *os; 3005 uint64_t txg = tx->tx_txg; 3006 3007 ASSERT(dmu_tx_is_syncing(tx)); 3008 3009 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3010 3011 mutex_enter(&db->db_mtx); 3012 /* 3013 * To be synced, we must be dirtied. But we 3014 * might have been freed after the dirty. 3015 */ 3016 if (db->db_state == DB_UNCACHED) { 3017 /* This buffer has been freed since it was dirtied */ 3018 ASSERT(db->db.db_data == NULL); 3019 } else if (db->db_state == DB_FILL) { 3020 /* This buffer was freed and is now being re-filled */ 3021 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3022 } else { 3023 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3024 } 3025 DBUF_VERIFY(db); 3026 3027 DB_DNODE_ENTER(db); 3028 dn = DB_DNODE(db); 3029 3030 if (db->db_blkid == DMU_SPILL_BLKID) { 3031 mutex_enter(&dn->dn_mtx); 3032 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 3033 mutex_exit(&dn->dn_mtx); 3034 } 3035 3036 /* 3037 * If this is a bonus buffer, simply copy the bonus data into the 3038 * dnode. It will be written out when the dnode is synced (and it 3039 * will be synced, since it must have been dirty for dbuf_sync to 3040 * be called). 3041 */ 3042 if (db->db_blkid == DMU_BONUS_BLKID) { 3043 dbuf_dirty_record_t **drp; 3044 3045 ASSERT(*datap != NULL); 3046 ASSERT0(db->db_level); 3047 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); 3048 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); 3049 DB_DNODE_EXIT(db); 3050 3051 if (*datap != db->db.db_data) { 3052 zio_buf_free(*datap, DN_MAX_BONUSLEN); 3053 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); 3054 } 3055 db->db_data_pending = NULL; 3056 drp = &db->db_last_dirty; 3057 while (*drp != dr) 3058 drp = &(*drp)->dr_next; 3059 ASSERT(dr->dr_next == NULL); 3060 ASSERT(dr->dr_dbuf == db); 3061 *drp = dr->dr_next; 3062 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3063 ASSERT(db->db_dirtycnt > 0); 3064 db->db_dirtycnt -= 1; 3065 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 3066 return; 3067 } 3068 3069 os = dn->dn_objset; 3070 3071 /* 3072 * This function may have dropped the db_mtx lock allowing a dmu_sync 3073 * operation to sneak in. As a result, we need to ensure that we 3074 * don't check the dr_override_state until we have returned from 3075 * dbuf_check_blkptr. 3076 */ 3077 dbuf_check_blkptr(dn, db); 3078 3079 /* 3080 * If this buffer is in the middle of an immediate write, 3081 * wait for the synchronous IO to complete. 3082 */ 3083 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 3084 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 3085 cv_wait(&db->db_changed, &db->db_mtx); 3086 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 3087 } 3088 3089 if (db->db_state != DB_NOFILL && 3090 dn->dn_object != DMU_META_DNODE_OBJECT && 3091 refcount_count(&db->db_holds) > 1 && 3092 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 3093 *datap == db->db_buf) { 3094 /* 3095 * If this buffer is currently "in use" (i.e., there 3096 * are active holds and db_data still references it), 3097 * then make a copy before we start the write so that 3098 * any modifications from the open txg will not leak 3099 * into this write. 3100 * 3101 * NOTE: this copy does not need to be made for 3102 * objects only modified in the syncing context (e.g. 3103 * DNONE_DNODE blocks). 3104 */ 3105 int psize = arc_buf_size(*datap); 3106 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 3107 enum zio_compress compress_type = arc_get_compression(*datap); 3108 3109 if (compress_type == ZIO_COMPRESS_OFF) { 3110 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 3111 } else { 3112 ASSERT3U(type, ==, ARC_BUFC_DATA); 3113 int lsize = arc_buf_lsize(*datap); 3114 *datap = arc_alloc_compressed_buf(os->os_spa, db, 3115 psize, lsize, compress_type); 3116 } 3117 bcopy(db->db.db_data, (*datap)->b_data, psize); 3118 } 3119 db->db_data_pending = dr; 3120 3121 mutex_exit(&db->db_mtx); 3122 3123 dbuf_write(dr, *datap, tx); 3124 3125 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3126 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 3127 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 3128 DB_DNODE_EXIT(db); 3129 } else { 3130 /* 3131 * Although zio_nowait() does not "wait for an IO", it does 3132 * initiate the IO. If this is an empty write it seems plausible 3133 * that the IO could actually be completed before the nowait 3134 * returns. We need to DB_DNODE_EXIT() first in case 3135 * zio_nowait() invalidates the dbuf. 3136 */ 3137 DB_DNODE_EXIT(db); 3138 zio_nowait(dr->dr_zio); 3139 } 3140 } 3141 3142 void 3143 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 3144 { 3145 dbuf_dirty_record_t *dr; 3146 3147 while (dr = list_head(list)) { 3148 if (dr->dr_zio != NULL) { 3149 /* 3150 * If we find an already initialized zio then we 3151 * are processing the meta-dnode, and we have finished. 3152 * The dbufs for all dnodes are put back on the list 3153 * during processing, so that we can zio_wait() 3154 * these IOs after initiating all child IOs. 3155 */ 3156 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 3157 DMU_META_DNODE_OBJECT); 3158 break; 3159 } 3160 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 3161 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 3162 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 3163 } 3164 list_remove(list, dr); 3165 if (dr->dr_dbuf->db_level > 0) 3166 dbuf_sync_indirect(dr, tx); 3167 else 3168 dbuf_sync_leaf(dr, tx); 3169 } 3170 } 3171 3172 /* ARGSUSED */ 3173 static void 3174 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3175 { 3176 dmu_buf_impl_t *db = vdb; 3177 dnode_t *dn; 3178 blkptr_t *bp = zio->io_bp; 3179 blkptr_t *bp_orig = &zio->io_bp_orig; 3180 spa_t *spa = zio->io_spa; 3181 int64_t delta; 3182 uint64_t fill = 0; 3183 int i; 3184 3185 ASSERT3P(db->db_blkptr, !=, NULL); 3186 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 3187 3188 DB_DNODE_ENTER(db); 3189 dn = DB_DNODE(db); 3190 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 3191 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 3192 zio->io_prev_space_delta = delta; 3193 3194 if (bp->blk_birth != 0) { 3195 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 3196 BP_GET_TYPE(bp) == dn->dn_type) || 3197 (db->db_blkid == DMU_SPILL_BLKID && 3198 BP_GET_TYPE(bp) == dn->dn_bonustype) || 3199 BP_IS_EMBEDDED(bp)); 3200 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 3201 } 3202 3203 mutex_enter(&db->db_mtx); 3204 3205 #ifdef ZFS_DEBUG 3206 if (db->db_blkid == DMU_SPILL_BLKID) { 3207 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3208 ASSERT(!(BP_IS_HOLE(bp)) && 3209 db->db_blkptr == &dn->dn_phys->dn_spill); 3210 } 3211 #endif 3212 3213 if (db->db_level == 0) { 3214 mutex_enter(&dn->dn_mtx); 3215 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 3216 db->db_blkid != DMU_SPILL_BLKID) 3217 dn->dn_phys->dn_maxblkid = db->db_blkid; 3218 mutex_exit(&dn->dn_mtx); 3219 3220 if (dn->dn_type == DMU_OT_DNODE) { 3221 dnode_phys_t *dnp = db->db.db_data; 3222 for (i = db->db.db_size >> DNODE_SHIFT; i > 0; 3223 i--, dnp++) { 3224 if (dnp->dn_type != DMU_OT_NONE) 3225 fill++; 3226 } 3227 } else { 3228 if (BP_IS_HOLE(bp)) { 3229 fill = 0; 3230 } else { 3231 fill = 1; 3232 } 3233 } 3234 } else { 3235 blkptr_t *ibp = db->db.db_data; 3236 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3237 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 3238 if (BP_IS_HOLE(ibp)) 3239 continue; 3240 fill += BP_GET_FILL(ibp); 3241 } 3242 } 3243 DB_DNODE_EXIT(db); 3244 3245 if (!BP_IS_EMBEDDED(bp)) 3246 bp->blk_fill = fill; 3247 3248 mutex_exit(&db->db_mtx); 3249 3250 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3251 *db->db_blkptr = *bp; 3252 rw_exit(&dn->dn_struct_rwlock); 3253 } 3254 3255 /* ARGSUSED */ 3256 /* 3257 * This function gets called just prior to running through the compression 3258 * stage of the zio pipeline. If we're an indirect block comprised of only 3259 * holes, then we want this indirect to be compressed away to a hole. In 3260 * order to do that we must zero out any information about the holes that 3261 * this indirect points to prior to before we try to compress it. 3262 */ 3263 static void 3264 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3265 { 3266 dmu_buf_impl_t *db = vdb; 3267 dnode_t *dn; 3268 blkptr_t *bp; 3269 unsigned int epbs, i; 3270 3271 ASSERT3U(db->db_level, >, 0); 3272 DB_DNODE_ENTER(db); 3273 dn = DB_DNODE(db); 3274 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3275 ASSERT3U(epbs, <, 31); 3276 3277 /* Determine if all our children are holes */ 3278 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { 3279 if (!BP_IS_HOLE(bp)) 3280 break; 3281 } 3282 3283 /* 3284 * If all the children are holes, then zero them all out so that 3285 * we may get compressed away. 3286 */ 3287 if (i == 1 << epbs) { 3288 /* 3289 * We only found holes. Grab the rwlock to prevent 3290 * anybody from reading the blocks we're about to 3291 * zero out. 3292 */ 3293 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 3294 bzero(db->db.db_data, db->db.db_size); 3295 rw_exit(&dn->dn_struct_rwlock); 3296 } 3297 DB_DNODE_EXIT(db); 3298 } 3299 3300 /* 3301 * The SPA will call this callback several times for each zio - once 3302 * for every physical child i/o (zio->io_phys_children times). This 3303 * allows the DMU to monitor the progress of each logical i/o. For example, 3304 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 3305 * block. There may be a long delay before all copies/fragments are completed, 3306 * so this callback allows us to retire dirty space gradually, as the physical 3307 * i/os complete. 3308 */ 3309 /* ARGSUSED */ 3310 static void 3311 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 3312 { 3313 dmu_buf_impl_t *db = arg; 3314 objset_t *os = db->db_objset; 3315 dsl_pool_t *dp = dmu_objset_pool(os); 3316 dbuf_dirty_record_t *dr; 3317 int delta = 0; 3318 3319 dr = db->db_data_pending; 3320 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 3321 3322 /* 3323 * The callback will be called io_phys_children times. Retire one 3324 * portion of our dirty space each time we are called. Any rounding 3325 * error will be cleaned up by dsl_pool_sync()'s call to 3326 * dsl_pool_undirty_space(). 3327 */ 3328 delta = dr->dr_accounted / zio->io_phys_children; 3329 dsl_pool_undirty_space(dp, delta, zio->io_txg); 3330 } 3331 3332 /* ARGSUSED */ 3333 static void 3334 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 3335 { 3336 dmu_buf_impl_t *db = vdb; 3337 blkptr_t *bp_orig = &zio->io_bp_orig; 3338 blkptr_t *bp = db->db_blkptr; 3339 objset_t *os = db->db_objset; 3340 dmu_tx_t *tx = os->os_synctx; 3341 dbuf_dirty_record_t **drp, *dr; 3342 3343 ASSERT0(zio->io_error); 3344 ASSERT(db->db_blkptr == bp); 3345 3346 /* 3347 * For nopwrites and rewrites we ensure that the bp matches our 3348 * original and bypass all the accounting. 3349 */ 3350 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 3351 ASSERT(BP_EQUAL(bp, bp_orig)); 3352 } else { 3353 dsl_dataset_t *ds = os->os_dsl_dataset; 3354 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 3355 dsl_dataset_block_born(ds, bp, tx); 3356 } 3357 3358 mutex_enter(&db->db_mtx); 3359 3360 DBUF_VERIFY(db); 3361 3362 drp = &db->db_last_dirty; 3363 while ((dr = *drp) != db->db_data_pending) 3364 drp = &dr->dr_next; 3365 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3366 ASSERT(dr->dr_dbuf == db); 3367 ASSERT(dr->dr_next == NULL); 3368 *drp = dr->dr_next; 3369 3370 #ifdef ZFS_DEBUG 3371 if (db->db_blkid == DMU_SPILL_BLKID) { 3372 dnode_t *dn; 3373 3374 DB_DNODE_ENTER(db); 3375 dn = DB_DNODE(db); 3376 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3377 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3378 db->db_blkptr == &dn->dn_phys->dn_spill); 3379 DB_DNODE_EXIT(db); 3380 } 3381 #endif 3382 3383 if (db->db_level == 0) { 3384 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3385 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3386 if (db->db_state != DB_NOFILL) { 3387 if (dr->dt.dl.dr_data != db->db_buf) 3388 arc_buf_destroy(dr->dt.dl.dr_data, db); 3389 } 3390 } else { 3391 dnode_t *dn; 3392 3393 DB_DNODE_ENTER(db); 3394 dn = DB_DNODE(db); 3395 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3396 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3397 if (!BP_IS_HOLE(db->db_blkptr)) { 3398 int epbs = 3399 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3400 ASSERT3U(db->db_blkid, <=, 3401 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3402 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3403 db->db.db_size); 3404 } 3405 DB_DNODE_EXIT(db); 3406 mutex_destroy(&dr->dt.di.dr_mtx); 3407 list_destroy(&dr->dt.di.dr_children); 3408 } 3409 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3410 3411 cv_broadcast(&db->db_changed); 3412 ASSERT(db->db_dirtycnt > 0); 3413 db->db_dirtycnt -= 1; 3414 db->db_data_pending = NULL; 3415 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); 3416 } 3417 3418 static void 3419 dbuf_write_nofill_ready(zio_t *zio) 3420 { 3421 dbuf_write_ready(zio, NULL, zio->io_private); 3422 } 3423 3424 static void 3425 dbuf_write_nofill_done(zio_t *zio) 3426 { 3427 dbuf_write_done(zio, NULL, zio->io_private); 3428 } 3429 3430 static void 3431 dbuf_write_override_ready(zio_t *zio) 3432 { 3433 dbuf_dirty_record_t *dr = zio->io_private; 3434 dmu_buf_impl_t *db = dr->dr_dbuf; 3435 3436 dbuf_write_ready(zio, NULL, db); 3437 } 3438 3439 static void 3440 dbuf_write_override_done(zio_t *zio) 3441 { 3442 dbuf_dirty_record_t *dr = zio->io_private; 3443 dmu_buf_impl_t *db = dr->dr_dbuf; 3444 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3445 3446 mutex_enter(&db->db_mtx); 3447 if (!BP_EQUAL(zio->io_bp, obp)) { 3448 if (!BP_IS_HOLE(obp)) 3449 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3450 arc_release(dr->dt.dl.dr_data, db); 3451 } 3452 mutex_exit(&db->db_mtx); 3453 3454 dbuf_write_done(zio, NULL, db); 3455 } 3456 3457 /* Issue I/O to commit a dirty buffer to disk. */ 3458 static void 3459 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 3460 { 3461 dmu_buf_impl_t *db = dr->dr_dbuf; 3462 dnode_t *dn; 3463 objset_t *os; 3464 dmu_buf_impl_t *parent = db->db_parent; 3465 uint64_t txg = tx->tx_txg; 3466 zbookmark_phys_t zb; 3467 zio_prop_t zp; 3468 zio_t *zio; 3469 int wp_flag = 0; 3470 3471 ASSERT(dmu_tx_is_syncing(tx)); 3472 3473 DB_DNODE_ENTER(db); 3474 dn = DB_DNODE(db); 3475 os = dn->dn_objset; 3476 3477 if (db->db_state != DB_NOFILL) { 3478 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 3479 /* 3480 * Private object buffers are released here rather 3481 * than in dbuf_dirty() since they are only modified 3482 * in the syncing context and we don't want the 3483 * overhead of making multiple copies of the data. 3484 */ 3485 if (BP_IS_HOLE(db->db_blkptr)) { 3486 arc_buf_thaw(data); 3487 } else { 3488 dbuf_release_bp(db); 3489 } 3490 } 3491 } 3492 3493 if (parent != dn->dn_dbuf) { 3494 /* Our parent is an indirect block. */ 3495 /* We have a dirty parent that has been scheduled for write. */ 3496 ASSERT(parent && parent->db_data_pending); 3497 /* Our parent's buffer is one level closer to the dnode. */ 3498 ASSERT(db->db_level == parent->db_level-1); 3499 /* 3500 * We're about to modify our parent's db_data by modifying 3501 * our block pointer, so the parent must be released. 3502 */ 3503 ASSERT(arc_released(parent->db_buf)); 3504 zio = parent->db_data_pending->dr_zio; 3505 } else { 3506 /* Our parent is the dnode itself. */ 3507 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 3508 db->db_blkid != DMU_SPILL_BLKID) || 3509 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 3510 if (db->db_blkid != DMU_SPILL_BLKID) 3511 ASSERT3P(db->db_blkptr, ==, 3512 &dn->dn_phys->dn_blkptr[db->db_blkid]); 3513 zio = dn->dn_zio; 3514 } 3515 3516 ASSERT(db->db_level == 0 || data == db->db_buf); 3517 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 3518 ASSERT(zio); 3519 3520 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 3521 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 3522 db->db.db_object, db->db_level, db->db_blkid); 3523 3524 if (db->db_blkid == DMU_SPILL_BLKID) 3525 wp_flag = WP_SPILL; 3526 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 3527 3528 dmu_write_policy(os, dn, db->db_level, wp_flag, 3529 (data != NULL && arc_get_compression(data) != ZIO_COMPRESS_OFF) ? 3530 arc_get_compression(data) : ZIO_COMPRESS_INHERIT, &zp); 3531 DB_DNODE_EXIT(db); 3532 3533 /* 3534 * We copy the blkptr now (rather than when we instantiate the dirty 3535 * record), because its value can change between open context and 3536 * syncing context. We do not need to hold dn_struct_rwlock to read 3537 * db_blkptr because we are in syncing context. 3538 */ 3539 dr->dr_bp_copy = *db->db_blkptr; 3540 3541 if (db->db_level == 0 && 3542 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 3543 /* 3544 * The BP for this block has been provided by open context 3545 * (by dmu_sync() or dmu_buf_write_embedded()). 3546 */ 3547 void *contents = (data != NULL) ? data->b_data : NULL; 3548 3549 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy, 3550 contents, db->db.db_size, db->db.db_size, &zp, 3551 dbuf_write_override_ready, NULL, NULL, 3552 dbuf_write_override_done, 3553 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3554 mutex_enter(&db->db_mtx); 3555 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 3556 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 3557 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 3558 mutex_exit(&db->db_mtx); 3559 } else if (db->db_state == DB_NOFILL) { 3560 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 3561 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 3562 dr->dr_zio = zio_write(zio, os->os_spa, txg, 3563 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 3564 dbuf_write_nofill_ready, NULL, NULL, 3565 dbuf_write_nofill_done, db, 3566 ZIO_PRIORITY_ASYNC_WRITE, 3567 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 3568 } else { 3569 ASSERT(arc_released(data)); 3570 3571 /* 3572 * For indirect blocks, we want to setup the children 3573 * ready callback so that we can properly handle an indirect 3574 * block that only contains holes. 3575 */ 3576 arc_done_func_t *children_ready_cb = NULL; 3577 if (db->db_level != 0) 3578 children_ready_cb = dbuf_write_children_ready; 3579 3580 dr->dr_zio = arc_write(zio, os->os_spa, txg, 3581 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 3582 &zp, dbuf_write_ready, children_ready_cb, 3583 dbuf_write_physdone, dbuf_write_done, db, 3584 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 3585 } 3586 } 3587