xref: /illumos-gate/usr/src/uts/common/fs/zfs/dbuf.c (revision 3e6960d70408b9f4e09714ed3341173673ed28b2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
49 
50 uint_t zfs_dbuf_evict_key;
51 
52 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
53 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
54 
55 #ifndef __lint
56 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
57     dmu_buf_evict_func_t *evict_func_sync,
58     dmu_buf_evict_func_t *evict_func_async,
59     dmu_buf_t **clear_on_evict_dbufp);
60 #endif /* ! __lint */
61 
62 /*
63  * Global data structures and functions for the dbuf cache.
64  */
65 static kmem_cache_t *dbuf_kmem_cache;
66 static taskq_t *dbu_evict_taskq;
67 
68 static kthread_t *dbuf_cache_evict_thread;
69 static kmutex_t dbuf_evict_lock;
70 static kcondvar_t dbuf_evict_cv;
71 static boolean_t dbuf_evict_thread_exit;
72 
73 /*
74  * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
75  * are not currently held but have been recently released. These dbufs
76  * are not eligible for arc eviction until they are aged out of the cache.
77  * Dbufs are added to the dbuf cache once the last hold is released. If a
78  * dbuf is later accessed and still exists in the dbuf cache, then it will
79  * be removed from the cache and later re-added to the head of the cache.
80  * Dbufs that are aged out of the cache will be immediately destroyed and
81  * become eligible for arc eviction.
82  */
83 static multilist_t dbuf_cache;
84 static refcount_t dbuf_cache_size;
85 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024;
86 
87 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
88 int dbuf_cache_max_shift = 5;
89 
90 /*
91  * The dbuf cache uses a three-stage eviction policy:
92  *	- A low water marker designates when the dbuf eviction thread
93  *	should stop evicting from the dbuf cache.
94  *	- When we reach the maximum size (aka mid water mark), we
95  *	signal the eviction thread to run.
96  *	- The high water mark indicates when the eviction thread
97  *	is unable to keep up with the incoming load and eviction must
98  *	happen in the context of the calling thread.
99  *
100  * The dbuf cache:
101  *                                                 (max size)
102  *                                      low water   mid water   hi water
103  * +----------------------------------------+----------+----------+
104  * |                                        |          |          |
105  * |                                        |          |          |
106  * |                                        |          |          |
107  * |                                        |          |          |
108  * +----------------------------------------+----------+----------+
109  *                                        stop        signal     evict
110  *                                      evicting     eviction   directly
111  *                                                    thread
112  *
113  * The high and low water marks indicate the operating range for the eviction
114  * thread. The low water mark is, by default, 90% of the total size of the
115  * cache and the high water mark is at 110% (both of these percentages can be
116  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
117  * respectively). The eviction thread will try to ensure that the cache remains
118  * within this range by waking up every second and checking if the cache is
119  * above the low water mark. The thread can also be woken up by callers adding
120  * elements into the cache if the cache is larger than the mid water (i.e max
121  * cache size). Once the eviction thread is woken up and eviction is required,
122  * it will continue evicting buffers until it's able to reduce the cache size
123  * to the low water mark. If the cache size continues to grow and hits the high
124  * water mark, then callers adding elments to the cache will begin to evict
125  * directly from the cache until the cache is no longer above the high water
126  * mark.
127  */
128 
129 /*
130  * The percentage above and below the maximum cache size.
131  */
132 uint_t dbuf_cache_hiwater_pct = 10;
133 uint_t dbuf_cache_lowater_pct = 10;
134 
135 /* ARGSUSED */
136 static int
137 dbuf_cons(void *vdb, void *unused, int kmflag)
138 {
139 	dmu_buf_impl_t *db = vdb;
140 	bzero(db, sizeof (dmu_buf_impl_t));
141 
142 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
143 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
144 	multilist_link_init(&db->db_cache_link);
145 	refcount_create(&db->db_holds);
146 
147 	return (0);
148 }
149 
150 /* ARGSUSED */
151 static void
152 dbuf_dest(void *vdb, void *unused)
153 {
154 	dmu_buf_impl_t *db = vdb;
155 	mutex_destroy(&db->db_mtx);
156 	cv_destroy(&db->db_changed);
157 	ASSERT(!multilist_link_active(&db->db_cache_link));
158 	refcount_destroy(&db->db_holds);
159 }
160 
161 /*
162  * dbuf hash table routines
163  */
164 static dbuf_hash_table_t dbuf_hash_table;
165 
166 static uint64_t dbuf_hash_count;
167 
168 static uint64_t
169 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
170 {
171 	uintptr_t osv = (uintptr_t)os;
172 	uint64_t crc = -1ULL;
173 
174 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
175 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
176 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
177 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
178 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
179 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
180 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
181 
182 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
183 
184 	return (crc);
185 }
186 
187 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
188 	((dbuf)->db.db_object == (obj) &&		\
189 	(dbuf)->db_objset == (os) &&			\
190 	(dbuf)->db_level == (level) &&			\
191 	(dbuf)->db_blkid == (blkid))
192 
193 dmu_buf_impl_t *
194 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
195 {
196 	dbuf_hash_table_t *h = &dbuf_hash_table;
197 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
198 	uint64_t idx = hv & h->hash_table_mask;
199 	dmu_buf_impl_t *db;
200 
201 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
202 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
203 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
204 			mutex_enter(&db->db_mtx);
205 			if (db->db_state != DB_EVICTING) {
206 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
207 				return (db);
208 			}
209 			mutex_exit(&db->db_mtx);
210 		}
211 	}
212 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
213 	return (NULL);
214 }
215 
216 static dmu_buf_impl_t *
217 dbuf_find_bonus(objset_t *os, uint64_t object)
218 {
219 	dnode_t *dn;
220 	dmu_buf_impl_t *db = NULL;
221 
222 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
223 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
224 		if (dn->dn_bonus != NULL) {
225 			db = dn->dn_bonus;
226 			mutex_enter(&db->db_mtx);
227 		}
228 		rw_exit(&dn->dn_struct_rwlock);
229 		dnode_rele(dn, FTAG);
230 	}
231 	return (db);
232 }
233 
234 /*
235  * Insert an entry into the hash table.  If there is already an element
236  * equal to elem in the hash table, then the already existing element
237  * will be returned and the new element will not be inserted.
238  * Otherwise returns NULL.
239  */
240 static dmu_buf_impl_t *
241 dbuf_hash_insert(dmu_buf_impl_t *db)
242 {
243 	dbuf_hash_table_t *h = &dbuf_hash_table;
244 	objset_t *os = db->db_objset;
245 	uint64_t obj = db->db.db_object;
246 	int level = db->db_level;
247 	uint64_t blkid = db->db_blkid;
248 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
249 	uint64_t idx = hv & h->hash_table_mask;
250 	dmu_buf_impl_t *dbf;
251 
252 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
253 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
254 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
255 			mutex_enter(&dbf->db_mtx);
256 			if (dbf->db_state != DB_EVICTING) {
257 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
258 				return (dbf);
259 			}
260 			mutex_exit(&dbf->db_mtx);
261 		}
262 	}
263 
264 	mutex_enter(&db->db_mtx);
265 	db->db_hash_next = h->hash_table[idx];
266 	h->hash_table[idx] = db;
267 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
268 	atomic_inc_64(&dbuf_hash_count);
269 
270 	return (NULL);
271 }
272 
273 /*
274  * Remove an entry from the hash table.  It must be in the EVICTING state.
275  */
276 static void
277 dbuf_hash_remove(dmu_buf_impl_t *db)
278 {
279 	dbuf_hash_table_t *h = &dbuf_hash_table;
280 	uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
281 	    db->db_level, db->db_blkid);
282 	uint64_t idx = hv & h->hash_table_mask;
283 	dmu_buf_impl_t *dbf, **dbp;
284 
285 	/*
286 	 * We musn't hold db_mtx to maintain lock ordering:
287 	 * DBUF_HASH_MUTEX > db_mtx.
288 	 */
289 	ASSERT(refcount_is_zero(&db->db_holds));
290 	ASSERT(db->db_state == DB_EVICTING);
291 	ASSERT(!MUTEX_HELD(&db->db_mtx));
292 
293 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
294 	dbp = &h->hash_table[idx];
295 	while ((dbf = *dbp) != db) {
296 		dbp = &dbf->db_hash_next;
297 		ASSERT(dbf != NULL);
298 	}
299 	*dbp = db->db_hash_next;
300 	db->db_hash_next = NULL;
301 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
302 	atomic_dec_64(&dbuf_hash_count);
303 }
304 
305 typedef enum {
306 	DBVU_EVICTING,
307 	DBVU_NOT_EVICTING
308 } dbvu_verify_type_t;
309 
310 static void
311 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
312 {
313 #ifdef ZFS_DEBUG
314 	int64_t holds;
315 
316 	if (db->db_user == NULL)
317 		return;
318 
319 	/* Only data blocks support the attachment of user data. */
320 	ASSERT(db->db_level == 0);
321 
322 	/* Clients must resolve a dbuf before attaching user data. */
323 	ASSERT(db->db.db_data != NULL);
324 	ASSERT3U(db->db_state, ==, DB_CACHED);
325 
326 	holds = refcount_count(&db->db_holds);
327 	if (verify_type == DBVU_EVICTING) {
328 		/*
329 		 * Immediate eviction occurs when holds == dirtycnt.
330 		 * For normal eviction buffers, holds is zero on
331 		 * eviction, except when dbuf_fix_old_data() calls
332 		 * dbuf_clear_data().  However, the hold count can grow
333 		 * during eviction even though db_mtx is held (see
334 		 * dmu_bonus_hold() for an example), so we can only
335 		 * test the generic invariant that holds >= dirtycnt.
336 		 */
337 		ASSERT3U(holds, >=, db->db_dirtycnt);
338 	} else {
339 		if (db->db_user_immediate_evict == TRUE)
340 			ASSERT3U(holds, >=, db->db_dirtycnt);
341 		else
342 			ASSERT3U(holds, >, 0);
343 	}
344 #endif
345 }
346 
347 static void
348 dbuf_evict_user(dmu_buf_impl_t *db)
349 {
350 	dmu_buf_user_t *dbu = db->db_user;
351 
352 	ASSERT(MUTEX_HELD(&db->db_mtx));
353 
354 	if (dbu == NULL)
355 		return;
356 
357 	dbuf_verify_user(db, DBVU_EVICTING);
358 	db->db_user = NULL;
359 
360 #ifdef ZFS_DEBUG
361 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
362 		*dbu->dbu_clear_on_evict_dbufp = NULL;
363 #endif
364 
365 	/*
366 	 * There are two eviction callbacks - one that we call synchronously
367 	 * and one that we invoke via a taskq.  The async one is useful for
368 	 * avoiding lock order reversals and limiting stack depth.
369 	 *
370 	 * Note that if we have a sync callback but no async callback,
371 	 * it's likely that the sync callback will free the structure
372 	 * containing the dbu.  In that case we need to take care to not
373 	 * dereference dbu after calling the sync evict func.
374 	 */
375 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
376 
377 	if (dbu->dbu_evict_func_sync != NULL)
378 		dbu->dbu_evict_func_sync(dbu);
379 
380 	if (has_async) {
381 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
382 		    dbu, 0, &dbu->dbu_tqent);
383 	}
384 }
385 
386 boolean_t
387 dbuf_is_metadata(dmu_buf_impl_t *db)
388 {
389 	if (db->db_level > 0) {
390 		return (B_TRUE);
391 	} else {
392 		boolean_t is_metadata;
393 
394 		DB_DNODE_ENTER(db);
395 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
396 		DB_DNODE_EXIT(db);
397 
398 		return (is_metadata);
399 	}
400 }
401 
402 /*
403  * This function *must* return indices evenly distributed between all
404  * sublists of the multilist. This is needed due to how the dbuf eviction
405  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
406  * distributed between all sublists and uses this assumption when
407  * deciding which sublist to evict from and how much to evict from it.
408  */
409 unsigned int
410 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
411 {
412 	dmu_buf_impl_t *db = obj;
413 
414 	/*
415 	 * The assumption here, is the hash value for a given
416 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
417 	 * (i.e. it's objset, object, level and blkid fields don't change).
418 	 * Thus, we don't need to store the dbuf's sublist index
419 	 * on insertion, as this index can be recalculated on removal.
420 	 *
421 	 * Also, the low order bits of the hash value are thought to be
422 	 * distributed evenly. Otherwise, in the case that the multilist
423 	 * has a power of two number of sublists, each sublists' usage
424 	 * would not be evenly distributed.
425 	 */
426 	return (dbuf_hash(db->db_objset, db->db.db_object,
427 	    db->db_level, db->db_blkid) %
428 	    multilist_get_num_sublists(ml));
429 }
430 
431 static inline boolean_t
432 dbuf_cache_above_hiwater(void)
433 {
434 	uint64_t dbuf_cache_hiwater_bytes =
435 	    (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
436 
437 	return (refcount_count(&dbuf_cache_size) >
438 	    dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
439 }
440 
441 static inline boolean_t
442 dbuf_cache_above_lowater(void)
443 {
444 	uint64_t dbuf_cache_lowater_bytes =
445 	    (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
446 
447 	return (refcount_count(&dbuf_cache_size) >
448 	    dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
449 }
450 
451 /*
452  * Evict the oldest eligible dbuf from the dbuf cache.
453  */
454 static void
455 dbuf_evict_one(void)
456 {
457 	int idx = multilist_get_random_index(&dbuf_cache);
458 	multilist_sublist_t *mls = multilist_sublist_lock(&dbuf_cache, idx);
459 
460 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
461 
462 	/*
463 	 * Set the thread's tsd to indicate that it's processing evictions.
464 	 * Once a thread stops evicting from the dbuf cache it will
465 	 * reset its tsd to NULL.
466 	 */
467 	ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
468 	(void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
469 
470 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
471 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
472 		db = multilist_sublist_prev(mls, db);
473 	}
474 
475 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
476 	    multilist_sublist_t *, mls);
477 
478 	if (db != NULL) {
479 		multilist_sublist_remove(mls, db);
480 		multilist_sublist_unlock(mls);
481 		(void) refcount_remove_many(&dbuf_cache_size,
482 		    db->db.db_size, db);
483 		dbuf_destroy(db);
484 	} else {
485 		multilist_sublist_unlock(mls);
486 	}
487 	(void) tsd_set(zfs_dbuf_evict_key, NULL);
488 }
489 
490 /*
491  * The dbuf evict thread is responsible for aging out dbufs from the
492  * cache. Once the cache has reached it's maximum size, dbufs are removed
493  * and destroyed. The eviction thread will continue running until the size
494  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
495  * out of the cache it is destroyed and becomes eligible for arc eviction.
496  */
497 static void
498 dbuf_evict_thread(void)
499 {
500 	callb_cpr_t cpr;
501 
502 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
503 
504 	mutex_enter(&dbuf_evict_lock);
505 	while (!dbuf_evict_thread_exit) {
506 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
507 			CALLB_CPR_SAFE_BEGIN(&cpr);
508 			(void) cv_timedwait_hires(&dbuf_evict_cv,
509 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
510 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
511 		}
512 		mutex_exit(&dbuf_evict_lock);
513 
514 		/*
515 		 * Keep evicting as long as we're above the low water mark
516 		 * for the cache. We do this without holding the locks to
517 		 * minimize lock contention.
518 		 */
519 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
520 			dbuf_evict_one();
521 		}
522 
523 		mutex_enter(&dbuf_evict_lock);
524 	}
525 
526 	dbuf_evict_thread_exit = B_FALSE;
527 	cv_broadcast(&dbuf_evict_cv);
528 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
529 	thread_exit();
530 }
531 
532 /*
533  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
534  * If the dbuf cache is at its high water mark, then evict a dbuf from the
535  * dbuf cache using the callers context.
536  */
537 static void
538 dbuf_evict_notify(void)
539 {
540 
541 	/*
542 	 * We use thread specific data to track when a thread has
543 	 * started processing evictions. This allows us to avoid deeply
544 	 * nested stacks that would have a call flow similar to this:
545 	 *
546 	 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
547 	 *	^						|
548 	 *	|						|
549 	 *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
550 	 *
551 	 * The dbuf_eviction_thread will always have its tsd set until
552 	 * that thread exits. All other threads will only set their tsd
553 	 * if they are participating in the eviction process. This only
554 	 * happens if the eviction thread is unable to process evictions
555 	 * fast enough. To keep the dbuf cache size in check, other threads
556 	 * can evict from the dbuf cache directly. Those threads will set
557 	 * their tsd values so that we ensure that they only evict one dbuf
558 	 * from the dbuf cache.
559 	 */
560 	if (tsd_get(zfs_dbuf_evict_key) != NULL)
561 		return;
562 
563 	if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
564 		boolean_t evict_now = B_FALSE;
565 
566 		mutex_enter(&dbuf_evict_lock);
567 		if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
568 			evict_now = dbuf_cache_above_hiwater();
569 			cv_signal(&dbuf_evict_cv);
570 		}
571 		mutex_exit(&dbuf_evict_lock);
572 
573 		if (evict_now) {
574 			dbuf_evict_one();
575 		}
576 	}
577 }
578 
579 void
580 dbuf_init(void)
581 {
582 	uint64_t hsize = 1ULL << 16;
583 	dbuf_hash_table_t *h = &dbuf_hash_table;
584 	int i;
585 
586 	/*
587 	 * The hash table is big enough to fill all of physical memory
588 	 * with an average 4K block size.  The table will take up
589 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
590 	 */
591 	while (hsize * 4096 < physmem * PAGESIZE)
592 		hsize <<= 1;
593 
594 retry:
595 	h->hash_table_mask = hsize - 1;
596 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
597 	if (h->hash_table == NULL) {
598 		/* XXX - we should really return an error instead of assert */
599 		ASSERT(hsize > (1ULL << 10));
600 		hsize >>= 1;
601 		goto retry;
602 	}
603 
604 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
605 	    sizeof (dmu_buf_impl_t),
606 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
607 
608 	for (i = 0; i < DBUF_MUTEXES; i++)
609 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
610 
611 	/*
612 	 * Setup the parameters for the dbuf cache. We cap the size of the
613 	 * dbuf cache to 1/32nd (default) of the size of the ARC.
614 	 */
615 	dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
616 	    arc_max_bytes() >> dbuf_cache_max_shift);
617 
618 	/*
619 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
620 	 * configuration is not required.
621 	 */
622 	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
623 
624 	multilist_create(&dbuf_cache, sizeof (dmu_buf_impl_t),
625 	    offsetof(dmu_buf_impl_t, db_cache_link),
626 	    zfs_arc_num_sublists_per_state,
627 	    dbuf_cache_multilist_index_func);
628 	refcount_create(&dbuf_cache_size);
629 
630 	tsd_create(&zfs_dbuf_evict_key, NULL);
631 	dbuf_evict_thread_exit = B_FALSE;
632 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
633 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
634 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
635 	    NULL, 0, &p0, TS_RUN, minclsyspri);
636 }
637 
638 void
639 dbuf_fini(void)
640 {
641 	dbuf_hash_table_t *h = &dbuf_hash_table;
642 	int i;
643 
644 	for (i = 0; i < DBUF_MUTEXES; i++)
645 		mutex_destroy(&h->hash_mutexes[i]);
646 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
647 	kmem_cache_destroy(dbuf_kmem_cache);
648 	taskq_destroy(dbu_evict_taskq);
649 
650 	mutex_enter(&dbuf_evict_lock);
651 	dbuf_evict_thread_exit = B_TRUE;
652 	while (dbuf_evict_thread_exit) {
653 		cv_signal(&dbuf_evict_cv);
654 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
655 	}
656 	mutex_exit(&dbuf_evict_lock);
657 	tsd_destroy(&zfs_dbuf_evict_key);
658 
659 	mutex_destroy(&dbuf_evict_lock);
660 	cv_destroy(&dbuf_evict_cv);
661 
662 	refcount_destroy(&dbuf_cache_size);
663 	multilist_destroy(&dbuf_cache);
664 }
665 
666 /*
667  * Other stuff.
668  */
669 
670 #ifdef ZFS_DEBUG
671 static void
672 dbuf_verify(dmu_buf_impl_t *db)
673 {
674 	dnode_t *dn;
675 	dbuf_dirty_record_t *dr;
676 
677 	ASSERT(MUTEX_HELD(&db->db_mtx));
678 
679 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
680 		return;
681 
682 	ASSERT(db->db_objset != NULL);
683 	DB_DNODE_ENTER(db);
684 	dn = DB_DNODE(db);
685 	if (dn == NULL) {
686 		ASSERT(db->db_parent == NULL);
687 		ASSERT(db->db_blkptr == NULL);
688 	} else {
689 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
690 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
691 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
692 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
693 		    db->db_blkid == DMU_SPILL_BLKID ||
694 		    !avl_is_empty(&dn->dn_dbufs));
695 	}
696 	if (db->db_blkid == DMU_BONUS_BLKID) {
697 		ASSERT(dn != NULL);
698 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
699 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
700 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
701 		ASSERT(dn != NULL);
702 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
703 		ASSERT0(db->db.db_offset);
704 	} else {
705 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
706 	}
707 
708 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
709 		ASSERT(dr->dr_dbuf == db);
710 
711 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
712 		ASSERT(dr->dr_dbuf == db);
713 
714 	/*
715 	 * We can't assert that db_size matches dn_datablksz because it
716 	 * can be momentarily different when another thread is doing
717 	 * dnode_set_blksz().
718 	 */
719 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
720 		dr = db->db_data_pending;
721 		/*
722 		 * It should only be modified in syncing context, so
723 		 * make sure we only have one copy of the data.
724 		 */
725 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
726 	}
727 
728 	/* verify db->db_blkptr */
729 	if (db->db_blkptr) {
730 		if (db->db_parent == dn->dn_dbuf) {
731 			/* db is pointed to by the dnode */
732 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
733 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
734 				ASSERT(db->db_parent == NULL);
735 			else
736 				ASSERT(db->db_parent != NULL);
737 			if (db->db_blkid != DMU_SPILL_BLKID)
738 				ASSERT3P(db->db_blkptr, ==,
739 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
740 		} else {
741 			/* db is pointed to by an indirect block */
742 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
743 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
744 			ASSERT3U(db->db_parent->db.db_object, ==,
745 			    db->db.db_object);
746 			/*
747 			 * dnode_grow_indblksz() can make this fail if we don't
748 			 * have the struct_rwlock.  XXX indblksz no longer
749 			 * grows.  safe to do this now?
750 			 */
751 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
752 				ASSERT3P(db->db_blkptr, ==,
753 				    ((blkptr_t *)db->db_parent->db.db_data +
754 				    db->db_blkid % epb));
755 			}
756 		}
757 	}
758 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
759 	    (db->db_buf == NULL || db->db_buf->b_data) &&
760 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
761 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
762 		/*
763 		 * If the blkptr isn't set but they have nonzero data,
764 		 * it had better be dirty, otherwise we'll lose that
765 		 * data when we evict this buffer.
766 		 *
767 		 * There is an exception to this rule for indirect blocks; in
768 		 * this case, if the indirect block is a hole, we fill in a few
769 		 * fields on each of the child blocks (importantly, birth time)
770 		 * to prevent hole birth times from being lost when you
771 		 * partially fill in a hole.
772 		 */
773 		if (db->db_dirtycnt == 0) {
774 			if (db->db_level == 0) {
775 				uint64_t *buf = db->db.db_data;
776 				int i;
777 
778 				for (i = 0; i < db->db.db_size >> 3; i++) {
779 					ASSERT(buf[i] == 0);
780 				}
781 			} else {
782 				blkptr_t *bps = db->db.db_data;
783 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
784 				    db->db.db_size);
785 				/*
786 				 * We want to verify that all the blkptrs in the
787 				 * indirect block are holes, but we may have
788 				 * automatically set up a few fields for them.
789 				 * We iterate through each blkptr and verify
790 				 * they only have those fields set.
791 				 */
792 				for (int i = 0;
793 				    i < db->db.db_size / sizeof (blkptr_t);
794 				    i++) {
795 					blkptr_t *bp = &bps[i];
796 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
797 					    &bp->blk_cksum));
798 					ASSERT(
799 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
800 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
801 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
802 					ASSERT0(bp->blk_fill);
803 					ASSERT0(bp->blk_pad[0]);
804 					ASSERT0(bp->blk_pad[1]);
805 					ASSERT(!BP_IS_EMBEDDED(bp));
806 					ASSERT(BP_IS_HOLE(bp));
807 					ASSERT0(bp->blk_phys_birth);
808 				}
809 			}
810 		}
811 	}
812 	DB_DNODE_EXIT(db);
813 }
814 #endif
815 
816 static void
817 dbuf_clear_data(dmu_buf_impl_t *db)
818 {
819 	ASSERT(MUTEX_HELD(&db->db_mtx));
820 	dbuf_evict_user(db);
821 	ASSERT3P(db->db_buf, ==, NULL);
822 	db->db.db_data = NULL;
823 	if (db->db_state != DB_NOFILL)
824 		db->db_state = DB_UNCACHED;
825 }
826 
827 static void
828 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
829 {
830 	ASSERT(MUTEX_HELD(&db->db_mtx));
831 	ASSERT(buf != NULL);
832 
833 	db->db_buf = buf;
834 	ASSERT(buf->b_data != NULL);
835 	db->db.db_data = buf->b_data;
836 }
837 
838 /*
839  * Loan out an arc_buf for read.  Return the loaned arc_buf.
840  */
841 arc_buf_t *
842 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
843 {
844 	arc_buf_t *abuf;
845 
846 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
847 	mutex_enter(&db->db_mtx);
848 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
849 		int blksz = db->db.db_size;
850 		spa_t *spa = db->db_objset->os_spa;
851 
852 		mutex_exit(&db->db_mtx);
853 		abuf = arc_loan_buf(spa, B_FALSE, blksz);
854 		bcopy(db->db.db_data, abuf->b_data, blksz);
855 	} else {
856 		abuf = db->db_buf;
857 		arc_loan_inuse_buf(abuf, db);
858 		db->db_buf = NULL;
859 		dbuf_clear_data(db);
860 		mutex_exit(&db->db_mtx);
861 	}
862 	return (abuf);
863 }
864 
865 /*
866  * Calculate which level n block references the data at the level 0 offset
867  * provided.
868  */
869 uint64_t
870 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
871 {
872 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
873 		/*
874 		 * The level n blkid is equal to the level 0 blkid divided by
875 		 * the number of level 0s in a level n block.
876 		 *
877 		 * The level 0 blkid is offset >> datablkshift =
878 		 * offset / 2^datablkshift.
879 		 *
880 		 * The number of level 0s in a level n is the number of block
881 		 * pointers in an indirect block, raised to the power of level.
882 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
883 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
884 		 *
885 		 * Thus, the level n blkid is: offset /
886 		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
887 		 * = offset / 2^(datablkshift + level *
888 		 *   (indblkshift - SPA_BLKPTRSHIFT))
889 		 * = offset >> (datablkshift + level *
890 		 *   (indblkshift - SPA_BLKPTRSHIFT))
891 		 */
892 		return (offset >> (dn->dn_datablkshift + level *
893 		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
894 	} else {
895 		ASSERT3U(offset, <, dn->dn_datablksz);
896 		return (0);
897 	}
898 }
899 
900 static void
901 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
902 {
903 	dmu_buf_impl_t *db = vdb;
904 
905 	mutex_enter(&db->db_mtx);
906 	ASSERT3U(db->db_state, ==, DB_READ);
907 	/*
908 	 * All reads are synchronous, so we must have a hold on the dbuf
909 	 */
910 	ASSERT(refcount_count(&db->db_holds) > 0);
911 	ASSERT(db->db_buf == NULL);
912 	ASSERT(db->db.db_data == NULL);
913 	if (db->db_level == 0 && db->db_freed_in_flight) {
914 		/* we were freed in flight; disregard any error */
915 		arc_release(buf, db);
916 		bzero(buf->b_data, db->db.db_size);
917 		arc_buf_freeze(buf);
918 		db->db_freed_in_flight = FALSE;
919 		dbuf_set_data(db, buf);
920 		db->db_state = DB_CACHED;
921 	} else if (zio == NULL || zio->io_error == 0) {
922 		dbuf_set_data(db, buf);
923 		db->db_state = DB_CACHED;
924 	} else {
925 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
926 		ASSERT3P(db->db_buf, ==, NULL);
927 		arc_buf_destroy(buf, db);
928 		db->db_state = DB_UNCACHED;
929 	}
930 	cv_broadcast(&db->db_changed);
931 	dbuf_rele_and_unlock(db, NULL);
932 }
933 
934 static void
935 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
936 {
937 	dnode_t *dn;
938 	zbookmark_phys_t zb;
939 	arc_flags_t aflags = ARC_FLAG_NOWAIT;
940 
941 	DB_DNODE_ENTER(db);
942 	dn = DB_DNODE(db);
943 	ASSERT(!refcount_is_zero(&db->db_holds));
944 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
945 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
946 	ASSERT(MUTEX_HELD(&db->db_mtx));
947 	ASSERT(db->db_state == DB_UNCACHED);
948 	ASSERT(db->db_buf == NULL);
949 
950 	if (db->db_blkid == DMU_BONUS_BLKID) {
951 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
952 
953 		ASSERT3U(bonuslen, <=, db->db.db_size);
954 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
955 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
956 		if (bonuslen < DN_MAX_BONUSLEN)
957 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
958 		if (bonuslen)
959 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
960 		DB_DNODE_EXIT(db);
961 		db->db_state = DB_CACHED;
962 		mutex_exit(&db->db_mtx);
963 		return;
964 	}
965 
966 	/*
967 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
968 	 * processes the delete record and clears the bp while we are waiting
969 	 * for the dn_mtx (resulting in a "no" from block_freed).
970 	 */
971 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
972 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
973 	    BP_IS_HOLE(db->db_blkptr)))) {
974 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
975 
976 		dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
977 		    db->db.db_size));
978 		bzero(db->db.db_data, db->db.db_size);
979 
980 		if (db->db_blkptr != NULL && db->db_level > 0 &&
981 		    BP_IS_HOLE(db->db_blkptr) &&
982 		    db->db_blkptr->blk_birth != 0) {
983 			blkptr_t *bps = db->db.db_data;
984 			for (int i = 0; i < ((1 <<
985 			    DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
986 			    i++) {
987 				blkptr_t *bp = &bps[i];
988 				ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
989 				    1 << dn->dn_indblkshift);
990 				BP_SET_LSIZE(bp,
991 				    BP_GET_LEVEL(db->db_blkptr) == 1 ?
992 				    dn->dn_datablksz :
993 				    BP_GET_LSIZE(db->db_blkptr));
994 				BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
995 				BP_SET_LEVEL(bp,
996 				    BP_GET_LEVEL(db->db_blkptr) - 1);
997 				BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
998 			}
999 		}
1000 		DB_DNODE_EXIT(db);
1001 		db->db_state = DB_CACHED;
1002 		mutex_exit(&db->db_mtx);
1003 		return;
1004 	}
1005 
1006 	DB_DNODE_EXIT(db);
1007 
1008 	db->db_state = DB_READ;
1009 	mutex_exit(&db->db_mtx);
1010 
1011 	if (DBUF_IS_L2CACHEABLE(db))
1012 		aflags |= ARC_FLAG_L2CACHE;
1013 
1014 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1015 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1016 	    db->db.db_object, db->db_level, db->db_blkid);
1017 
1018 	dbuf_add_ref(db, NULL);
1019 
1020 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1021 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1022 	    (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1023 	    &aflags, &zb);
1024 }
1025 
1026 /*
1027  * This is our just-in-time copy function.  It makes a copy of buffers that
1028  * have been modified in a previous transaction group before we access them in
1029  * the current active group.
1030  *
1031  * This function is used in three places: when we are dirtying a buffer for the
1032  * first time in a txg, when we are freeing a range in a dnode that includes
1033  * this buffer, and when we are accessing a buffer which was received compressed
1034  * and later referenced in a WRITE_BYREF record.
1035  *
1036  * Note that when we are called from dbuf_free_range() we do not put a hold on
1037  * the buffer, we just traverse the active dbuf list for the dnode.
1038  */
1039 static void
1040 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1041 {
1042 	dbuf_dirty_record_t *dr = db->db_last_dirty;
1043 
1044 	ASSERT(MUTEX_HELD(&db->db_mtx));
1045 	ASSERT(db->db.db_data != NULL);
1046 	ASSERT(db->db_level == 0);
1047 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1048 
1049 	if (dr == NULL ||
1050 	    (dr->dt.dl.dr_data !=
1051 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1052 		return;
1053 
1054 	/*
1055 	 * If the last dirty record for this dbuf has not yet synced
1056 	 * and its referencing the dbuf data, either:
1057 	 *	reset the reference to point to a new copy,
1058 	 * or (if there a no active holders)
1059 	 *	just null out the current db_data pointer.
1060 	 */
1061 	ASSERT(dr->dr_txg >= txg - 2);
1062 	if (db->db_blkid == DMU_BONUS_BLKID) {
1063 		/* Note that the data bufs here are zio_bufs */
1064 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1065 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1066 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1067 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1068 		int size = arc_buf_size(db->db_buf);
1069 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1070 		spa_t *spa = db->db_objset->os_spa;
1071 		enum zio_compress compress_type =
1072 		    arc_get_compression(db->db_buf);
1073 
1074 		if (compress_type == ZIO_COMPRESS_OFF) {
1075 			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1076 		} else {
1077 			ASSERT3U(type, ==, ARC_BUFC_DATA);
1078 			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1079 			    size, arc_buf_lsize(db->db_buf), compress_type);
1080 		}
1081 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1082 	} else {
1083 		db->db_buf = NULL;
1084 		dbuf_clear_data(db);
1085 	}
1086 }
1087 
1088 int
1089 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1090 {
1091 	int err = 0;
1092 	boolean_t havepzio = (zio != NULL);
1093 	boolean_t prefetch;
1094 	dnode_t *dn;
1095 
1096 	/*
1097 	 * We don't have to hold the mutex to check db_state because it
1098 	 * can't be freed while we have a hold on the buffer.
1099 	 */
1100 	ASSERT(!refcount_is_zero(&db->db_holds));
1101 
1102 	if (db->db_state == DB_NOFILL)
1103 		return (SET_ERROR(EIO));
1104 
1105 	DB_DNODE_ENTER(db);
1106 	dn = DB_DNODE(db);
1107 	if ((flags & DB_RF_HAVESTRUCT) == 0)
1108 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1109 
1110 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1111 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1112 	    DBUF_IS_CACHEABLE(db);
1113 
1114 	mutex_enter(&db->db_mtx);
1115 	if (db->db_state == DB_CACHED) {
1116 		/*
1117 		 * If the arc buf is compressed, we need to decompress it to
1118 		 * read the data. This could happen during the "zfs receive" of
1119 		 * a stream which is compressed and deduplicated.
1120 		 */
1121 		if (db->db_buf != NULL &&
1122 		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1123 			dbuf_fix_old_data(db,
1124 			    spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1125 			err = arc_decompress(db->db_buf);
1126 			dbuf_set_data(db, db->db_buf);
1127 		}
1128 		mutex_exit(&db->db_mtx);
1129 		if (prefetch)
1130 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1131 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1132 			rw_exit(&dn->dn_struct_rwlock);
1133 		DB_DNODE_EXIT(db);
1134 	} else if (db->db_state == DB_UNCACHED) {
1135 		spa_t *spa = dn->dn_objset->os_spa;
1136 
1137 		if (zio == NULL)
1138 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1139 		dbuf_read_impl(db, zio, flags);
1140 
1141 		/* dbuf_read_impl has dropped db_mtx for us */
1142 
1143 		if (prefetch)
1144 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1145 
1146 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1147 			rw_exit(&dn->dn_struct_rwlock);
1148 		DB_DNODE_EXIT(db);
1149 
1150 		if (!havepzio)
1151 			err = zio_wait(zio);
1152 	} else {
1153 		/*
1154 		 * Another reader came in while the dbuf was in flight
1155 		 * between UNCACHED and CACHED.  Either a writer will finish
1156 		 * writing the buffer (sending the dbuf to CACHED) or the
1157 		 * first reader's request will reach the read_done callback
1158 		 * and send the dbuf to CACHED.  Otherwise, a failure
1159 		 * occurred and the dbuf went to UNCACHED.
1160 		 */
1161 		mutex_exit(&db->db_mtx);
1162 		if (prefetch)
1163 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1164 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1165 			rw_exit(&dn->dn_struct_rwlock);
1166 		DB_DNODE_EXIT(db);
1167 
1168 		/* Skip the wait per the caller's request. */
1169 		mutex_enter(&db->db_mtx);
1170 		if ((flags & DB_RF_NEVERWAIT) == 0) {
1171 			while (db->db_state == DB_READ ||
1172 			    db->db_state == DB_FILL) {
1173 				ASSERT(db->db_state == DB_READ ||
1174 				    (flags & DB_RF_HAVESTRUCT) == 0);
1175 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1176 				    db, zio_t *, zio);
1177 				cv_wait(&db->db_changed, &db->db_mtx);
1178 			}
1179 			if (db->db_state == DB_UNCACHED)
1180 				err = SET_ERROR(EIO);
1181 		}
1182 		mutex_exit(&db->db_mtx);
1183 	}
1184 
1185 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
1186 	return (err);
1187 }
1188 
1189 static void
1190 dbuf_noread(dmu_buf_impl_t *db)
1191 {
1192 	ASSERT(!refcount_is_zero(&db->db_holds));
1193 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1194 	mutex_enter(&db->db_mtx);
1195 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1196 		cv_wait(&db->db_changed, &db->db_mtx);
1197 	if (db->db_state == DB_UNCACHED) {
1198 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1199 		spa_t *spa = db->db_objset->os_spa;
1200 
1201 		ASSERT(db->db_buf == NULL);
1202 		ASSERT(db->db.db_data == NULL);
1203 		dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1204 		db->db_state = DB_FILL;
1205 	} else if (db->db_state == DB_NOFILL) {
1206 		dbuf_clear_data(db);
1207 	} else {
1208 		ASSERT3U(db->db_state, ==, DB_CACHED);
1209 	}
1210 	mutex_exit(&db->db_mtx);
1211 }
1212 
1213 void
1214 dbuf_unoverride(dbuf_dirty_record_t *dr)
1215 {
1216 	dmu_buf_impl_t *db = dr->dr_dbuf;
1217 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1218 	uint64_t txg = dr->dr_txg;
1219 
1220 	ASSERT(MUTEX_HELD(&db->db_mtx));
1221 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1222 	ASSERT(db->db_level == 0);
1223 
1224 	if (db->db_blkid == DMU_BONUS_BLKID ||
1225 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1226 		return;
1227 
1228 	ASSERT(db->db_data_pending != dr);
1229 
1230 	/* free this block */
1231 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1232 		zio_free(db->db_objset->os_spa, txg, bp);
1233 
1234 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1235 	dr->dt.dl.dr_nopwrite = B_FALSE;
1236 
1237 	/*
1238 	 * Release the already-written buffer, so we leave it in
1239 	 * a consistent dirty state.  Note that all callers are
1240 	 * modifying the buffer, so they will immediately do
1241 	 * another (redundant) arc_release().  Therefore, leave
1242 	 * the buf thawed to save the effort of freezing &
1243 	 * immediately re-thawing it.
1244 	 */
1245 	arc_release(dr->dt.dl.dr_data, db);
1246 }
1247 
1248 /*
1249  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1250  * data blocks in the free range, so that any future readers will find
1251  * empty blocks.
1252  */
1253 void
1254 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1255     dmu_tx_t *tx)
1256 {
1257 	dmu_buf_impl_t db_search;
1258 	dmu_buf_impl_t *db, *db_next;
1259 	uint64_t txg = tx->tx_txg;
1260 	avl_index_t where;
1261 
1262 	if (end_blkid > dn->dn_maxblkid &&
1263 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1264 		end_blkid = dn->dn_maxblkid;
1265 	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1266 
1267 	db_search.db_level = 0;
1268 	db_search.db_blkid = start_blkid;
1269 	db_search.db_state = DB_SEARCH;
1270 
1271 	mutex_enter(&dn->dn_dbufs_mtx);
1272 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1273 	ASSERT3P(db, ==, NULL);
1274 
1275 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1276 
1277 	for (; db != NULL; db = db_next) {
1278 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1279 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1280 
1281 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1282 			break;
1283 		}
1284 		ASSERT3U(db->db_blkid, >=, start_blkid);
1285 
1286 		/* found a level 0 buffer in the range */
1287 		mutex_enter(&db->db_mtx);
1288 		if (dbuf_undirty(db, tx)) {
1289 			/* mutex has been dropped and dbuf destroyed */
1290 			continue;
1291 		}
1292 
1293 		if (db->db_state == DB_UNCACHED ||
1294 		    db->db_state == DB_NOFILL ||
1295 		    db->db_state == DB_EVICTING) {
1296 			ASSERT(db->db.db_data == NULL);
1297 			mutex_exit(&db->db_mtx);
1298 			continue;
1299 		}
1300 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1301 			/* will be handled in dbuf_read_done or dbuf_rele */
1302 			db->db_freed_in_flight = TRUE;
1303 			mutex_exit(&db->db_mtx);
1304 			continue;
1305 		}
1306 		if (refcount_count(&db->db_holds) == 0) {
1307 			ASSERT(db->db_buf);
1308 			dbuf_destroy(db);
1309 			continue;
1310 		}
1311 		/* The dbuf is referenced */
1312 
1313 		if (db->db_last_dirty != NULL) {
1314 			dbuf_dirty_record_t *dr = db->db_last_dirty;
1315 
1316 			if (dr->dr_txg == txg) {
1317 				/*
1318 				 * This buffer is "in-use", re-adjust the file
1319 				 * size to reflect that this buffer may
1320 				 * contain new data when we sync.
1321 				 */
1322 				if (db->db_blkid != DMU_SPILL_BLKID &&
1323 				    db->db_blkid > dn->dn_maxblkid)
1324 					dn->dn_maxblkid = db->db_blkid;
1325 				dbuf_unoverride(dr);
1326 			} else {
1327 				/*
1328 				 * This dbuf is not dirty in the open context.
1329 				 * Either uncache it (if its not referenced in
1330 				 * the open context) or reset its contents to
1331 				 * empty.
1332 				 */
1333 				dbuf_fix_old_data(db, txg);
1334 			}
1335 		}
1336 		/* clear the contents if its cached */
1337 		if (db->db_state == DB_CACHED) {
1338 			ASSERT(db->db.db_data != NULL);
1339 			arc_release(db->db_buf, db);
1340 			bzero(db->db.db_data, db->db.db_size);
1341 			arc_buf_freeze(db->db_buf);
1342 		}
1343 
1344 		mutex_exit(&db->db_mtx);
1345 	}
1346 	mutex_exit(&dn->dn_dbufs_mtx);
1347 }
1348 
1349 void
1350 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1351 {
1352 	arc_buf_t *buf, *obuf;
1353 	int osize = db->db.db_size;
1354 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1355 	dnode_t *dn;
1356 
1357 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1358 
1359 	DB_DNODE_ENTER(db);
1360 	dn = DB_DNODE(db);
1361 
1362 	/* XXX does *this* func really need the lock? */
1363 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1364 
1365 	/*
1366 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1367 	 * is OK, because there can be no other references to the db
1368 	 * when we are changing its size, so no concurrent DB_FILL can
1369 	 * be happening.
1370 	 */
1371 	/*
1372 	 * XXX we should be doing a dbuf_read, checking the return
1373 	 * value and returning that up to our callers
1374 	 */
1375 	dmu_buf_will_dirty(&db->db, tx);
1376 
1377 	/* create the data buffer for the new block */
1378 	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1379 
1380 	/* copy old block data to the new block */
1381 	obuf = db->db_buf;
1382 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1383 	/* zero the remainder */
1384 	if (size > osize)
1385 		bzero((uint8_t *)buf->b_data + osize, size - osize);
1386 
1387 	mutex_enter(&db->db_mtx);
1388 	dbuf_set_data(db, buf);
1389 	arc_buf_destroy(obuf, db);
1390 	db->db.db_size = size;
1391 
1392 	if (db->db_level == 0) {
1393 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1394 		db->db_last_dirty->dt.dl.dr_data = buf;
1395 	}
1396 	mutex_exit(&db->db_mtx);
1397 
1398 	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1399 	DB_DNODE_EXIT(db);
1400 }
1401 
1402 void
1403 dbuf_release_bp(dmu_buf_impl_t *db)
1404 {
1405 	objset_t *os = db->db_objset;
1406 
1407 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1408 	ASSERT(arc_released(os->os_phys_buf) ||
1409 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1410 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1411 
1412 	(void) arc_release(db->db_buf, db);
1413 }
1414 
1415 /*
1416  * We already have a dirty record for this TXG, and we are being
1417  * dirtied again.
1418  */
1419 static void
1420 dbuf_redirty(dbuf_dirty_record_t *dr)
1421 {
1422 	dmu_buf_impl_t *db = dr->dr_dbuf;
1423 
1424 	ASSERT(MUTEX_HELD(&db->db_mtx));
1425 
1426 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1427 		/*
1428 		 * If this buffer has already been written out,
1429 		 * we now need to reset its state.
1430 		 */
1431 		dbuf_unoverride(dr);
1432 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1433 		    db->db_state != DB_NOFILL) {
1434 			/* Already released on initial dirty, so just thaw. */
1435 			ASSERT(arc_released(db->db_buf));
1436 			arc_buf_thaw(db->db_buf);
1437 		}
1438 	}
1439 }
1440 
1441 dbuf_dirty_record_t *
1442 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1443 {
1444 	dnode_t *dn;
1445 	objset_t *os;
1446 	dbuf_dirty_record_t **drp, *dr;
1447 	int drop_struct_lock = FALSE;
1448 	int txgoff = tx->tx_txg & TXG_MASK;
1449 
1450 	ASSERT(tx->tx_txg != 0);
1451 	ASSERT(!refcount_is_zero(&db->db_holds));
1452 	DMU_TX_DIRTY_BUF(tx, db);
1453 
1454 	DB_DNODE_ENTER(db);
1455 	dn = DB_DNODE(db);
1456 	/*
1457 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1458 	 * objects may be dirtied in syncing context, but only if they
1459 	 * were already pre-dirtied in open context.
1460 	 */
1461 #ifdef DEBUG
1462 	if (dn->dn_objset->os_dsl_dataset != NULL) {
1463 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1464 		    RW_READER, FTAG);
1465 	}
1466 	ASSERT(!dmu_tx_is_syncing(tx) ||
1467 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1468 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1469 	    dn->dn_objset->os_dsl_dataset == NULL);
1470 	if (dn->dn_objset->os_dsl_dataset != NULL)
1471 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1472 #endif
1473 	/*
1474 	 * We make this assert for private objects as well, but after we
1475 	 * check if we're already dirty.  They are allowed to re-dirty
1476 	 * in syncing context.
1477 	 */
1478 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1479 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1480 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1481 
1482 	mutex_enter(&db->db_mtx);
1483 	/*
1484 	 * XXX make this true for indirects too?  The problem is that
1485 	 * transactions created with dmu_tx_create_assigned() from
1486 	 * syncing context don't bother holding ahead.
1487 	 */
1488 	ASSERT(db->db_level != 0 ||
1489 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1490 	    db->db_state == DB_NOFILL);
1491 
1492 	mutex_enter(&dn->dn_mtx);
1493 	/*
1494 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1495 	 * initialize the objset.
1496 	 */
1497 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1498 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1499 			rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1500 			    RW_READER, FTAG);
1501 		}
1502 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1503 			dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1504 			    DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1505 			ASSERT(dn->dn_dirtyctx_firstset == NULL);
1506 			dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1507 		}
1508 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1509 			rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1510 			    FTAG);
1511 		}
1512 	}
1513 	mutex_exit(&dn->dn_mtx);
1514 
1515 	if (db->db_blkid == DMU_SPILL_BLKID)
1516 		dn->dn_have_spill = B_TRUE;
1517 
1518 	/*
1519 	 * If this buffer is already dirty, we're done.
1520 	 */
1521 	drp = &db->db_last_dirty;
1522 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1523 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1524 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1525 		drp = &dr->dr_next;
1526 	if (dr && dr->dr_txg == tx->tx_txg) {
1527 		DB_DNODE_EXIT(db);
1528 
1529 		dbuf_redirty(dr);
1530 		mutex_exit(&db->db_mtx);
1531 		return (dr);
1532 	}
1533 
1534 	/*
1535 	 * Only valid if not already dirty.
1536 	 */
1537 	ASSERT(dn->dn_object == 0 ||
1538 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1539 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1540 
1541 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1542 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1543 	    dn->dn_phys->dn_nlevels > db->db_level ||
1544 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1545 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1546 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1547 
1548 	/*
1549 	 * We should only be dirtying in syncing context if it's the
1550 	 * mos or we're initializing the os or it's a special object.
1551 	 * However, we are allowed to dirty in syncing context provided
1552 	 * we already dirtied it in open context.  Hence we must make
1553 	 * this assertion only if we're not already dirty.
1554 	 */
1555 	os = dn->dn_objset;
1556 #ifdef DEBUG
1557 	if (dn->dn_objset->os_dsl_dataset != NULL)
1558 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1559 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1560 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1561 	if (dn->dn_objset->os_dsl_dataset != NULL)
1562 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1563 #endif
1564 	ASSERT(db->db.db_size != 0);
1565 
1566 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1567 
1568 	if (db->db_blkid != DMU_BONUS_BLKID) {
1569 		dmu_objset_willuse_space(os, db->db.db_size, tx);
1570 	}
1571 
1572 	/*
1573 	 * If this buffer is dirty in an old transaction group we need
1574 	 * to make a copy of it so that the changes we make in this
1575 	 * transaction group won't leak out when we sync the older txg.
1576 	 */
1577 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1578 	if (db->db_level == 0) {
1579 		void *data_old = db->db_buf;
1580 
1581 		if (db->db_state != DB_NOFILL) {
1582 			if (db->db_blkid == DMU_BONUS_BLKID) {
1583 				dbuf_fix_old_data(db, tx->tx_txg);
1584 				data_old = db->db.db_data;
1585 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1586 				/*
1587 				 * Release the data buffer from the cache so
1588 				 * that we can modify it without impacting
1589 				 * possible other users of this cached data
1590 				 * block.  Note that indirect blocks and
1591 				 * private objects are not released until the
1592 				 * syncing state (since they are only modified
1593 				 * then).
1594 				 */
1595 				arc_release(db->db_buf, db);
1596 				dbuf_fix_old_data(db, tx->tx_txg);
1597 				data_old = db->db_buf;
1598 			}
1599 			ASSERT(data_old != NULL);
1600 		}
1601 		dr->dt.dl.dr_data = data_old;
1602 	} else {
1603 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1604 		list_create(&dr->dt.di.dr_children,
1605 		    sizeof (dbuf_dirty_record_t),
1606 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1607 	}
1608 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1609 		dr->dr_accounted = db->db.db_size;
1610 	dr->dr_dbuf = db;
1611 	dr->dr_txg = tx->tx_txg;
1612 	dr->dr_next = *drp;
1613 	*drp = dr;
1614 
1615 	/*
1616 	 * We could have been freed_in_flight between the dbuf_noread
1617 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1618 	 * happened after the free.
1619 	 */
1620 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1621 	    db->db_blkid != DMU_SPILL_BLKID) {
1622 		mutex_enter(&dn->dn_mtx);
1623 		if (dn->dn_free_ranges[txgoff] != NULL) {
1624 			range_tree_clear(dn->dn_free_ranges[txgoff],
1625 			    db->db_blkid, 1);
1626 		}
1627 		mutex_exit(&dn->dn_mtx);
1628 		db->db_freed_in_flight = FALSE;
1629 	}
1630 
1631 	/*
1632 	 * This buffer is now part of this txg
1633 	 */
1634 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1635 	db->db_dirtycnt += 1;
1636 	ASSERT3U(db->db_dirtycnt, <=, 3);
1637 
1638 	mutex_exit(&db->db_mtx);
1639 
1640 	if (db->db_blkid == DMU_BONUS_BLKID ||
1641 	    db->db_blkid == DMU_SPILL_BLKID) {
1642 		mutex_enter(&dn->dn_mtx);
1643 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1644 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1645 		mutex_exit(&dn->dn_mtx);
1646 		dnode_setdirty(dn, tx);
1647 		DB_DNODE_EXIT(db);
1648 		return (dr);
1649 	}
1650 
1651 	/*
1652 	 * The dn_struct_rwlock prevents db_blkptr from changing
1653 	 * due to a write from syncing context completing
1654 	 * while we are running, so we want to acquire it before
1655 	 * looking at db_blkptr.
1656 	 */
1657 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1658 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1659 		drop_struct_lock = TRUE;
1660 	}
1661 
1662 	/*
1663 	 * If we are overwriting a dedup BP, then unless it is snapshotted,
1664 	 * when we get to syncing context we will need to decrement its
1665 	 * refcount in the DDT.  Prefetch the relevant DDT block so that
1666 	 * syncing context won't have to wait for the i/o.
1667 	 */
1668 	ddt_prefetch(os->os_spa, db->db_blkptr);
1669 
1670 	if (db->db_level == 0) {
1671 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1672 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1673 	}
1674 
1675 	if (db->db_level+1 < dn->dn_nlevels) {
1676 		dmu_buf_impl_t *parent = db->db_parent;
1677 		dbuf_dirty_record_t *di;
1678 		int parent_held = FALSE;
1679 
1680 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1681 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1682 
1683 			parent = dbuf_hold_level(dn, db->db_level+1,
1684 			    db->db_blkid >> epbs, FTAG);
1685 			ASSERT(parent != NULL);
1686 			parent_held = TRUE;
1687 		}
1688 		if (drop_struct_lock)
1689 			rw_exit(&dn->dn_struct_rwlock);
1690 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1691 		di = dbuf_dirty(parent, tx);
1692 		if (parent_held)
1693 			dbuf_rele(parent, FTAG);
1694 
1695 		mutex_enter(&db->db_mtx);
1696 		/*
1697 		 * Since we've dropped the mutex, it's possible that
1698 		 * dbuf_undirty() might have changed this out from under us.
1699 		 */
1700 		if (db->db_last_dirty == dr ||
1701 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1702 			mutex_enter(&di->dt.di.dr_mtx);
1703 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1704 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1705 			list_insert_tail(&di->dt.di.dr_children, dr);
1706 			mutex_exit(&di->dt.di.dr_mtx);
1707 			dr->dr_parent = di;
1708 		}
1709 		mutex_exit(&db->db_mtx);
1710 	} else {
1711 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1712 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1713 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1714 		mutex_enter(&dn->dn_mtx);
1715 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1716 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1717 		mutex_exit(&dn->dn_mtx);
1718 		if (drop_struct_lock)
1719 			rw_exit(&dn->dn_struct_rwlock);
1720 	}
1721 
1722 	dnode_setdirty(dn, tx);
1723 	DB_DNODE_EXIT(db);
1724 	return (dr);
1725 }
1726 
1727 /*
1728  * Undirty a buffer in the transaction group referenced by the given
1729  * transaction.  Return whether this evicted the dbuf.
1730  */
1731 static boolean_t
1732 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1733 {
1734 	dnode_t *dn;
1735 	uint64_t txg = tx->tx_txg;
1736 	dbuf_dirty_record_t *dr, **drp;
1737 
1738 	ASSERT(txg != 0);
1739 
1740 	/*
1741 	 * Due to our use of dn_nlevels below, this can only be called
1742 	 * in open context, unless we are operating on the MOS.
1743 	 * From syncing context, dn_nlevels may be different from the
1744 	 * dn_nlevels used when dbuf was dirtied.
1745 	 */
1746 	ASSERT(db->db_objset ==
1747 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1748 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1749 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1750 	ASSERT0(db->db_level);
1751 	ASSERT(MUTEX_HELD(&db->db_mtx));
1752 
1753 	/*
1754 	 * If this buffer is not dirty, we're done.
1755 	 */
1756 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1757 		if (dr->dr_txg <= txg)
1758 			break;
1759 	if (dr == NULL || dr->dr_txg < txg)
1760 		return (B_FALSE);
1761 	ASSERT(dr->dr_txg == txg);
1762 	ASSERT(dr->dr_dbuf == db);
1763 
1764 	DB_DNODE_ENTER(db);
1765 	dn = DB_DNODE(db);
1766 
1767 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1768 
1769 	ASSERT(db->db.db_size != 0);
1770 
1771 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1772 	    dr->dr_accounted, txg);
1773 
1774 	*drp = dr->dr_next;
1775 
1776 	/*
1777 	 * Note that there are three places in dbuf_dirty()
1778 	 * where this dirty record may be put on a list.
1779 	 * Make sure to do a list_remove corresponding to
1780 	 * every one of those list_insert calls.
1781 	 */
1782 	if (dr->dr_parent) {
1783 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1784 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1785 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1786 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1787 	    db->db_level + 1 == dn->dn_nlevels) {
1788 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1789 		mutex_enter(&dn->dn_mtx);
1790 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1791 		mutex_exit(&dn->dn_mtx);
1792 	}
1793 	DB_DNODE_EXIT(db);
1794 
1795 	if (db->db_state != DB_NOFILL) {
1796 		dbuf_unoverride(dr);
1797 
1798 		ASSERT(db->db_buf != NULL);
1799 		ASSERT(dr->dt.dl.dr_data != NULL);
1800 		if (dr->dt.dl.dr_data != db->db_buf)
1801 			arc_buf_destroy(dr->dt.dl.dr_data, db);
1802 	}
1803 
1804 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1805 
1806 	ASSERT(db->db_dirtycnt > 0);
1807 	db->db_dirtycnt -= 1;
1808 
1809 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1810 		ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1811 		dbuf_destroy(db);
1812 		return (B_TRUE);
1813 	}
1814 
1815 	return (B_FALSE);
1816 }
1817 
1818 void
1819 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1820 {
1821 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1822 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1823 
1824 	ASSERT(tx->tx_txg != 0);
1825 	ASSERT(!refcount_is_zero(&db->db_holds));
1826 
1827 	/*
1828 	 * Quick check for dirtyness.  For already dirty blocks, this
1829 	 * reduces runtime of this function by >90%, and overall performance
1830 	 * by 50% for some workloads (e.g. file deletion with indirect blocks
1831 	 * cached).
1832 	 */
1833 	mutex_enter(&db->db_mtx);
1834 	dbuf_dirty_record_t *dr;
1835 	for (dr = db->db_last_dirty;
1836 	    dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1837 		/*
1838 		 * It's possible that it is already dirty but not cached,
1839 		 * because there are some calls to dbuf_dirty() that don't
1840 		 * go through dmu_buf_will_dirty().
1841 		 */
1842 		if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1843 			/* This dbuf is already dirty and cached. */
1844 			dbuf_redirty(dr);
1845 			mutex_exit(&db->db_mtx);
1846 			return;
1847 		}
1848 	}
1849 	mutex_exit(&db->db_mtx);
1850 
1851 	DB_DNODE_ENTER(db);
1852 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1853 		rf |= DB_RF_HAVESTRUCT;
1854 	DB_DNODE_EXIT(db);
1855 	(void) dbuf_read(db, NULL, rf);
1856 	(void) dbuf_dirty(db, tx);
1857 }
1858 
1859 void
1860 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1861 {
1862 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1863 
1864 	db->db_state = DB_NOFILL;
1865 
1866 	dmu_buf_will_fill(db_fake, tx);
1867 }
1868 
1869 void
1870 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1871 {
1872 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1873 
1874 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1875 	ASSERT(tx->tx_txg != 0);
1876 	ASSERT(db->db_level == 0);
1877 	ASSERT(!refcount_is_zero(&db->db_holds));
1878 
1879 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1880 	    dmu_tx_private_ok(tx));
1881 
1882 	dbuf_noread(db);
1883 	(void) dbuf_dirty(db, tx);
1884 }
1885 
1886 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1887 /* ARGSUSED */
1888 void
1889 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1890 {
1891 	mutex_enter(&db->db_mtx);
1892 	DBUF_VERIFY(db);
1893 
1894 	if (db->db_state == DB_FILL) {
1895 		if (db->db_level == 0 && db->db_freed_in_flight) {
1896 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1897 			/* we were freed while filling */
1898 			/* XXX dbuf_undirty? */
1899 			bzero(db->db.db_data, db->db.db_size);
1900 			db->db_freed_in_flight = FALSE;
1901 		}
1902 		db->db_state = DB_CACHED;
1903 		cv_broadcast(&db->db_changed);
1904 	}
1905 	mutex_exit(&db->db_mtx);
1906 }
1907 
1908 void
1909 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1910     bp_embedded_type_t etype, enum zio_compress comp,
1911     int uncompressed_size, int compressed_size, int byteorder,
1912     dmu_tx_t *tx)
1913 {
1914 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1915 	struct dirty_leaf *dl;
1916 	dmu_object_type_t type;
1917 
1918 	if (etype == BP_EMBEDDED_TYPE_DATA) {
1919 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1920 		    SPA_FEATURE_EMBEDDED_DATA));
1921 	}
1922 
1923 	DB_DNODE_ENTER(db);
1924 	type = DB_DNODE(db)->dn_type;
1925 	DB_DNODE_EXIT(db);
1926 
1927 	ASSERT0(db->db_level);
1928 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1929 
1930 	dmu_buf_will_not_fill(dbuf, tx);
1931 
1932 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1933 	dl = &db->db_last_dirty->dt.dl;
1934 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1935 	    data, comp, uncompressed_size, compressed_size);
1936 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1937 	BP_SET_TYPE(&dl->dr_overridden_by, type);
1938 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1939 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1940 
1941 	dl->dr_override_state = DR_OVERRIDDEN;
1942 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1943 }
1944 
1945 /*
1946  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1947  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1948  */
1949 void
1950 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1951 {
1952 	ASSERT(!refcount_is_zero(&db->db_holds));
1953 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1954 	ASSERT(db->db_level == 0);
1955 	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
1956 	ASSERT(buf != NULL);
1957 	ASSERT(arc_buf_lsize(buf) == db->db.db_size);
1958 	ASSERT(tx->tx_txg != 0);
1959 
1960 	arc_return_buf(buf, db);
1961 	ASSERT(arc_released(buf));
1962 
1963 	mutex_enter(&db->db_mtx);
1964 
1965 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1966 		cv_wait(&db->db_changed, &db->db_mtx);
1967 
1968 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1969 
1970 	if (db->db_state == DB_CACHED &&
1971 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1972 		mutex_exit(&db->db_mtx);
1973 		(void) dbuf_dirty(db, tx);
1974 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1975 		arc_buf_destroy(buf, db);
1976 		xuio_stat_wbuf_copied();
1977 		return;
1978 	}
1979 
1980 	xuio_stat_wbuf_nocopy();
1981 	if (db->db_state == DB_CACHED) {
1982 		dbuf_dirty_record_t *dr = db->db_last_dirty;
1983 
1984 		ASSERT(db->db_buf != NULL);
1985 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1986 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1987 			if (!arc_released(db->db_buf)) {
1988 				ASSERT(dr->dt.dl.dr_override_state ==
1989 				    DR_OVERRIDDEN);
1990 				arc_release(db->db_buf, db);
1991 			}
1992 			dr->dt.dl.dr_data = buf;
1993 			arc_buf_destroy(db->db_buf, db);
1994 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1995 			arc_release(db->db_buf, db);
1996 			arc_buf_destroy(db->db_buf, db);
1997 		}
1998 		db->db_buf = NULL;
1999 	}
2000 	ASSERT(db->db_buf == NULL);
2001 	dbuf_set_data(db, buf);
2002 	db->db_state = DB_FILL;
2003 	mutex_exit(&db->db_mtx);
2004 	(void) dbuf_dirty(db, tx);
2005 	dmu_buf_fill_done(&db->db, tx);
2006 }
2007 
2008 void
2009 dbuf_destroy(dmu_buf_impl_t *db)
2010 {
2011 	dnode_t *dn;
2012 	dmu_buf_impl_t *parent = db->db_parent;
2013 	dmu_buf_impl_t *dndb;
2014 
2015 	ASSERT(MUTEX_HELD(&db->db_mtx));
2016 	ASSERT(refcount_is_zero(&db->db_holds));
2017 
2018 	if (db->db_buf != NULL) {
2019 		arc_buf_destroy(db->db_buf, db);
2020 		db->db_buf = NULL;
2021 	}
2022 
2023 	if (db->db_blkid == DMU_BONUS_BLKID) {
2024 		ASSERT(db->db.db_data != NULL);
2025 		zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2026 		arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2027 		db->db_state = DB_UNCACHED;
2028 	}
2029 
2030 	dbuf_clear_data(db);
2031 
2032 	if (multilist_link_active(&db->db_cache_link)) {
2033 		multilist_remove(&dbuf_cache, db);
2034 		(void) refcount_remove_many(&dbuf_cache_size,
2035 		    db->db.db_size, db);
2036 	}
2037 
2038 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2039 	ASSERT(db->db_data_pending == NULL);
2040 
2041 	db->db_state = DB_EVICTING;
2042 	db->db_blkptr = NULL;
2043 
2044 	/*
2045 	 * Now that db_state is DB_EVICTING, nobody else can find this via
2046 	 * the hash table.  We can now drop db_mtx, which allows us to
2047 	 * acquire the dn_dbufs_mtx.
2048 	 */
2049 	mutex_exit(&db->db_mtx);
2050 
2051 	DB_DNODE_ENTER(db);
2052 	dn = DB_DNODE(db);
2053 	dndb = dn->dn_dbuf;
2054 	if (db->db_blkid != DMU_BONUS_BLKID) {
2055 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2056 		if (needlock)
2057 			mutex_enter(&dn->dn_dbufs_mtx);
2058 		avl_remove(&dn->dn_dbufs, db);
2059 		atomic_dec_32(&dn->dn_dbufs_count);
2060 		membar_producer();
2061 		DB_DNODE_EXIT(db);
2062 		if (needlock)
2063 			mutex_exit(&dn->dn_dbufs_mtx);
2064 		/*
2065 		 * Decrementing the dbuf count means that the hold corresponding
2066 		 * to the removed dbuf is no longer discounted in dnode_move(),
2067 		 * so the dnode cannot be moved until after we release the hold.
2068 		 * The membar_producer() ensures visibility of the decremented
2069 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2070 		 * release any lock.
2071 		 */
2072 		dnode_rele(dn, db);
2073 		db->db_dnode_handle = NULL;
2074 
2075 		dbuf_hash_remove(db);
2076 	} else {
2077 		DB_DNODE_EXIT(db);
2078 	}
2079 
2080 	ASSERT(refcount_is_zero(&db->db_holds));
2081 
2082 	db->db_parent = NULL;
2083 
2084 	ASSERT(db->db_buf == NULL);
2085 	ASSERT(db->db.db_data == NULL);
2086 	ASSERT(db->db_hash_next == NULL);
2087 	ASSERT(db->db_blkptr == NULL);
2088 	ASSERT(db->db_data_pending == NULL);
2089 	ASSERT(!multilist_link_active(&db->db_cache_link));
2090 
2091 	kmem_cache_free(dbuf_kmem_cache, db);
2092 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2093 
2094 	/*
2095 	 * If this dbuf is referenced from an indirect dbuf,
2096 	 * decrement the ref count on the indirect dbuf.
2097 	 */
2098 	if (parent && parent != dndb)
2099 		dbuf_rele(parent, db);
2100 }
2101 
2102 /*
2103  * Note: While bpp will always be updated if the function returns success,
2104  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2105  * this happens when the dnode is the meta-dnode, or a userused or groupused
2106  * object.
2107  */
2108 static int
2109 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2110     dmu_buf_impl_t **parentp, blkptr_t **bpp)
2111 {
2112 	*parentp = NULL;
2113 	*bpp = NULL;
2114 
2115 	ASSERT(blkid != DMU_BONUS_BLKID);
2116 
2117 	if (blkid == DMU_SPILL_BLKID) {
2118 		mutex_enter(&dn->dn_mtx);
2119 		if (dn->dn_have_spill &&
2120 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2121 			*bpp = &dn->dn_phys->dn_spill;
2122 		else
2123 			*bpp = NULL;
2124 		dbuf_add_ref(dn->dn_dbuf, NULL);
2125 		*parentp = dn->dn_dbuf;
2126 		mutex_exit(&dn->dn_mtx);
2127 		return (0);
2128 	}
2129 
2130 	int nlevels =
2131 	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2132 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2133 
2134 	ASSERT3U(level * epbs, <, 64);
2135 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2136 	/*
2137 	 * This assertion shouldn't trip as long as the max indirect block size
2138 	 * is less than 1M.  The reason for this is that up to that point,
2139 	 * the number of levels required to address an entire object with blocks
2140 	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.  In
2141 	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2142 	 * (i.e. we can address the entire object), objects will all use at most
2143 	 * N-1 levels and the assertion won't overflow.  However, once epbs is
2144 	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
2145 	 * enough to address an entire object, so objects will have 5 levels,
2146 	 * but then this assertion will overflow.
2147 	 *
2148 	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2149 	 * need to redo this logic to handle overflows.
2150 	 */
2151 	ASSERT(level >= nlevels ||
2152 	    ((nlevels - level - 1) * epbs) +
2153 	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2154 	if (level >= nlevels ||
2155 	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2156 	    ((nlevels - level - 1) * epbs)) ||
2157 	    (fail_sparse &&
2158 	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2159 		/* the buffer has no parent yet */
2160 		return (SET_ERROR(ENOENT));
2161 	} else if (level < nlevels-1) {
2162 		/* this block is referenced from an indirect block */
2163 		int err = dbuf_hold_impl(dn, level+1,
2164 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2165 		if (err)
2166 			return (err);
2167 		err = dbuf_read(*parentp, NULL,
2168 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2169 		if (err) {
2170 			dbuf_rele(*parentp, NULL);
2171 			*parentp = NULL;
2172 			return (err);
2173 		}
2174 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2175 		    (blkid & ((1ULL << epbs) - 1));
2176 		if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2177 			ASSERT(BP_IS_HOLE(*bpp));
2178 		return (0);
2179 	} else {
2180 		/* the block is referenced from the dnode */
2181 		ASSERT3U(level, ==, nlevels-1);
2182 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2183 		    blkid < dn->dn_phys->dn_nblkptr);
2184 		if (dn->dn_dbuf) {
2185 			dbuf_add_ref(dn->dn_dbuf, NULL);
2186 			*parentp = dn->dn_dbuf;
2187 		}
2188 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
2189 		return (0);
2190 	}
2191 }
2192 
2193 static dmu_buf_impl_t *
2194 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2195     dmu_buf_impl_t *parent, blkptr_t *blkptr)
2196 {
2197 	objset_t *os = dn->dn_objset;
2198 	dmu_buf_impl_t *db, *odb;
2199 
2200 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2201 	ASSERT(dn->dn_type != DMU_OT_NONE);
2202 
2203 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2204 
2205 	db->db_objset = os;
2206 	db->db.db_object = dn->dn_object;
2207 	db->db_level = level;
2208 	db->db_blkid = blkid;
2209 	db->db_last_dirty = NULL;
2210 	db->db_dirtycnt = 0;
2211 	db->db_dnode_handle = dn->dn_handle;
2212 	db->db_parent = parent;
2213 	db->db_blkptr = blkptr;
2214 
2215 	db->db_user = NULL;
2216 	db->db_user_immediate_evict = FALSE;
2217 	db->db_freed_in_flight = FALSE;
2218 	db->db_pending_evict = FALSE;
2219 
2220 	if (blkid == DMU_BONUS_BLKID) {
2221 		ASSERT3P(parent, ==, dn->dn_dbuf);
2222 		db->db.db_size = DN_MAX_BONUSLEN -
2223 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2224 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2225 		db->db.db_offset = DMU_BONUS_BLKID;
2226 		db->db_state = DB_UNCACHED;
2227 		/* the bonus dbuf is not placed in the hash table */
2228 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2229 		return (db);
2230 	} else if (blkid == DMU_SPILL_BLKID) {
2231 		db->db.db_size = (blkptr != NULL) ?
2232 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2233 		db->db.db_offset = 0;
2234 	} else {
2235 		int blocksize =
2236 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2237 		db->db.db_size = blocksize;
2238 		db->db.db_offset = db->db_blkid * blocksize;
2239 	}
2240 
2241 	/*
2242 	 * Hold the dn_dbufs_mtx while we get the new dbuf
2243 	 * in the hash table *and* added to the dbufs list.
2244 	 * This prevents a possible deadlock with someone
2245 	 * trying to look up this dbuf before its added to the
2246 	 * dn_dbufs list.
2247 	 */
2248 	mutex_enter(&dn->dn_dbufs_mtx);
2249 	db->db_state = DB_EVICTING;
2250 	if ((odb = dbuf_hash_insert(db)) != NULL) {
2251 		/* someone else inserted it first */
2252 		kmem_cache_free(dbuf_kmem_cache, db);
2253 		mutex_exit(&dn->dn_dbufs_mtx);
2254 		return (odb);
2255 	}
2256 	avl_add(&dn->dn_dbufs, db);
2257 
2258 	db->db_state = DB_UNCACHED;
2259 	mutex_exit(&dn->dn_dbufs_mtx);
2260 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2261 
2262 	if (parent && parent != dn->dn_dbuf)
2263 		dbuf_add_ref(parent, db);
2264 
2265 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2266 	    refcount_count(&dn->dn_holds) > 0);
2267 	(void) refcount_add(&dn->dn_holds, db);
2268 	atomic_inc_32(&dn->dn_dbufs_count);
2269 
2270 	dprintf_dbuf(db, "db=%p\n", db);
2271 
2272 	return (db);
2273 }
2274 
2275 typedef struct dbuf_prefetch_arg {
2276 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
2277 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2278 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2279 	int dpa_curlevel; /* The current level that we're reading */
2280 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2281 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2282 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2283 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2284 } dbuf_prefetch_arg_t;
2285 
2286 /*
2287  * Actually issue the prefetch read for the block given.
2288  */
2289 static void
2290 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2291 {
2292 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2293 		return;
2294 
2295 	arc_flags_t aflags =
2296 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2297 
2298 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2299 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2300 	ASSERT(dpa->dpa_zio != NULL);
2301 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2302 	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2303 	    &aflags, &dpa->dpa_zb);
2304 }
2305 
2306 /*
2307  * Called when an indirect block above our prefetch target is read in.  This
2308  * will either read in the next indirect block down the tree or issue the actual
2309  * prefetch if the next block down is our target.
2310  */
2311 static void
2312 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2313 {
2314 	dbuf_prefetch_arg_t *dpa = private;
2315 
2316 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2317 	ASSERT3S(dpa->dpa_curlevel, >, 0);
2318 
2319 	/*
2320 	 * The dpa_dnode is only valid if we are called with a NULL
2321 	 * zio. This indicates that the arc_read() returned without
2322 	 * first calling zio_read() to issue a physical read. Once
2323 	 * a physical read is made the dpa_dnode must be invalidated
2324 	 * as the locks guarding it may have been dropped. If the
2325 	 * dpa_dnode is still valid, then we want to add it to the dbuf
2326 	 * cache. To do so, we must hold the dbuf associated with the block
2327 	 * we just prefetched, read its contents so that we associate it
2328 	 * with an arc_buf_t, and then release it.
2329 	 */
2330 	if (zio != NULL) {
2331 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2332 		if (zio->io_flags & ZIO_FLAG_RAW) {
2333 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2334 		} else {
2335 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2336 		}
2337 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2338 
2339 		dpa->dpa_dnode = NULL;
2340 	} else if (dpa->dpa_dnode != NULL) {
2341 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2342 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
2343 		    dpa->dpa_zb.zb_level));
2344 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2345 		    dpa->dpa_curlevel, curblkid, FTAG);
2346 		(void) dbuf_read(db, NULL,
2347 		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2348 		dbuf_rele(db, FTAG);
2349 	}
2350 
2351 	dpa->dpa_curlevel--;
2352 
2353 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2354 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2355 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2356 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2357 	if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2358 		kmem_free(dpa, sizeof (*dpa));
2359 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2360 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2361 		dbuf_issue_final_prefetch(dpa, bp);
2362 		kmem_free(dpa, sizeof (*dpa));
2363 	} else {
2364 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2365 		zbookmark_phys_t zb;
2366 
2367 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2368 
2369 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2370 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2371 
2372 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2373 		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2374 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2375 		    &iter_aflags, &zb);
2376 	}
2377 
2378 	arc_buf_destroy(abuf, private);
2379 }
2380 
2381 /*
2382  * Issue prefetch reads for the given block on the given level.  If the indirect
2383  * blocks above that block are not in memory, we will read them in
2384  * asynchronously.  As a result, this call never blocks waiting for a read to
2385  * complete.
2386  */
2387 void
2388 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2389     arc_flags_t aflags)
2390 {
2391 	blkptr_t bp;
2392 	int epbs, nlevels, curlevel;
2393 	uint64_t curblkid;
2394 
2395 	ASSERT(blkid != DMU_BONUS_BLKID);
2396 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2397 
2398 	if (blkid > dn->dn_maxblkid)
2399 		return;
2400 
2401 	if (dnode_block_freed(dn, blkid))
2402 		return;
2403 
2404 	/*
2405 	 * This dnode hasn't been written to disk yet, so there's nothing to
2406 	 * prefetch.
2407 	 */
2408 	nlevels = dn->dn_phys->dn_nlevels;
2409 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2410 		return;
2411 
2412 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2413 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2414 		return;
2415 
2416 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2417 	    level, blkid);
2418 	if (db != NULL) {
2419 		mutex_exit(&db->db_mtx);
2420 		/*
2421 		 * This dbuf already exists.  It is either CACHED, or
2422 		 * (we assume) about to be read or filled.
2423 		 */
2424 		return;
2425 	}
2426 
2427 	/*
2428 	 * Find the closest ancestor (indirect block) of the target block
2429 	 * that is present in the cache.  In this indirect block, we will
2430 	 * find the bp that is at curlevel, curblkid.
2431 	 */
2432 	curlevel = level;
2433 	curblkid = blkid;
2434 	while (curlevel < nlevels - 1) {
2435 		int parent_level = curlevel + 1;
2436 		uint64_t parent_blkid = curblkid >> epbs;
2437 		dmu_buf_impl_t *db;
2438 
2439 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2440 		    FALSE, TRUE, FTAG, &db) == 0) {
2441 			blkptr_t *bpp = db->db_buf->b_data;
2442 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2443 			dbuf_rele(db, FTAG);
2444 			break;
2445 		}
2446 
2447 		curlevel = parent_level;
2448 		curblkid = parent_blkid;
2449 	}
2450 
2451 	if (curlevel == nlevels - 1) {
2452 		/* No cached indirect blocks found. */
2453 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2454 		bp = dn->dn_phys->dn_blkptr[curblkid];
2455 	}
2456 	if (BP_IS_HOLE(&bp))
2457 		return;
2458 
2459 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2460 
2461 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2462 	    ZIO_FLAG_CANFAIL);
2463 
2464 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2465 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2466 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2467 	    dn->dn_object, level, blkid);
2468 	dpa->dpa_curlevel = curlevel;
2469 	dpa->dpa_prio = prio;
2470 	dpa->dpa_aflags = aflags;
2471 	dpa->dpa_spa = dn->dn_objset->os_spa;
2472 	dpa->dpa_dnode = dn;
2473 	dpa->dpa_epbs = epbs;
2474 	dpa->dpa_zio = pio;
2475 
2476 	/*
2477 	 * If we have the indirect just above us, no need to do the asynchronous
2478 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2479 	 * a higher level, though, we want to issue the prefetches for all the
2480 	 * indirect blocks asynchronously, so we can go on with whatever we were
2481 	 * doing.
2482 	 */
2483 	if (curlevel == level) {
2484 		ASSERT3U(curblkid, ==, blkid);
2485 		dbuf_issue_final_prefetch(dpa, &bp);
2486 		kmem_free(dpa, sizeof (*dpa));
2487 	} else {
2488 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2489 		zbookmark_phys_t zb;
2490 
2491 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2492 		    dn->dn_object, curlevel, curblkid);
2493 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2494 		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2495 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2496 		    &iter_aflags, &zb);
2497 	}
2498 	/*
2499 	 * We use pio here instead of dpa_zio since it's possible that
2500 	 * dpa may have already been freed.
2501 	 */
2502 	zio_nowait(pio);
2503 }
2504 
2505 /*
2506  * Returns with db_holds incremented, and db_mtx not held.
2507  * Note: dn_struct_rwlock must be held.
2508  */
2509 int
2510 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2511     boolean_t fail_sparse, boolean_t fail_uncached,
2512     void *tag, dmu_buf_impl_t **dbp)
2513 {
2514 	dmu_buf_impl_t *db, *parent = NULL;
2515 
2516 	ASSERT(blkid != DMU_BONUS_BLKID);
2517 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2518 	ASSERT3U(dn->dn_nlevels, >, level);
2519 
2520 	*dbp = NULL;
2521 top:
2522 	/* dbuf_find() returns with db_mtx held */
2523 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2524 
2525 	if (db == NULL) {
2526 		blkptr_t *bp = NULL;
2527 		int err;
2528 
2529 		if (fail_uncached)
2530 			return (SET_ERROR(ENOENT));
2531 
2532 		ASSERT3P(parent, ==, NULL);
2533 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2534 		if (fail_sparse) {
2535 			if (err == 0 && bp && BP_IS_HOLE(bp))
2536 				err = SET_ERROR(ENOENT);
2537 			if (err) {
2538 				if (parent)
2539 					dbuf_rele(parent, NULL);
2540 				return (err);
2541 			}
2542 		}
2543 		if (err && err != ENOENT)
2544 			return (err);
2545 		db = dbuf_create(dn, level, blkid, parent, bp);
2546 	}
2547 
2548 	if (fail_uncached && db->db_state != DB_CACHED) {
2549 		mutex_exit(&db->db_mtx);
2550 		return (SET_ERROR(ENOENT));
2551 	}
2552 
2553 	if (db->db_buf != NULL)
2554 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2555 
2556 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2557 
2558 	/*
2559 	 * If this buffer is currently syncing out, and we are are
2560 	 * still referencing it from db_data, we need to make a copy
2561 	 * of it in case we decide we want to dirty it again in this txg.
2562 	 */
2563 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2564 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2565 	    db->db_state == DB_CACHED && db->db_data_pending) {
2566 		dbuf_dirty_record_t *dr = db->db_data_pending;
2567 
2568 		if (dr->dt.dl.dr_data == db->db_buf) {
2569 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2570 
2571 			dbuf_set_data(db,
2572 			    arc_alloc_buf(dn->dn_objset->os_spa, db, type,
2573 			    db->db.db_size));
2574 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2575 			    db->db.db_size);
2576 		}
2577 	}
2578 
2579 	if (multilist_link_active(&db->db_cache_link)) {
2580 		ASSERT(refcount_is_zero(&db->db_holds));
2581 		multilist_remove(&dbuf_cache, db);
2582 		(void) refcount_remove_many(&dbuf_cache_size,
2583 		    db->db.db_size, db);
2584 	}
2585 	(void) refcount_add(&db->db_holds, tag);
2586 	DBUF_VERIFY(db);
2587 	mutex_exit(&db->db_mtx);
2588 
2589 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2590 	if (parent)
2591 		dbuf_rele(parent, NULL);
2592 
2593 	ASSERT3P(DB_DNODE(db), ==, dn);
2594 	ASSERT3U(db->db_blkid, ==, blkid);
2595 	ASSERT3U(db->db_level, ==, level);
2596 	*dbp = db;
2597 
2598 	return (0);
2599 }
2600 
2601 dmu_buf_impl_t *
2602 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2603 {
2604 	return (dbuf_hold_level(dn, 0, blkid, tag));
2605 }
2606 
2607 dmu_buf_impl_t *
2608 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2609 {
2610 	dmu_buf_impl_t *db;
2611 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2612 	return (err ? NULL : db);
2613 }
2614 
2615 void
2616 dbuf_create_bonus(dnode_t *dn)
2617 {
2618 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2619 
2620 	ASSERT(dn->dn_bonus == NULL);
2621 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2622 }
2623 
2624 int
2625 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2626 {
2627 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2628 	dnode_t *dn;
2629 
2630 	if (db->db_blkid != DMU_SPILL_BLKID)
2631 		return (SET_ERROR(ENOTSUP));
2632 	if (blksz == 0)
2633 		blksz = SPA_MINBLOCKSIZE;
2634 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2635 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2636 
2637 	DB_DNODE_ENTER(db);
2638 	dn = DB_DNODE(db);
2639 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2640 	dbuf_new_size(db, blksz, tx);
2641 	rw_exit(&dn->dn_struct_rwlock);
2642 	DB_DNODE_EXIT(db);
2643 
2644 	return (0);
2645 }
2646 
2647 void
2648 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2649 {
2650 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2651 }
2652 
2653 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2654 void
2655 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2656 {
2657 	int64_t holds = refcount_add(&db->db_holds, tag);
2658 	ASSERT3S(holds, >, 1);
2659 }
2660 
2661 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2662 boolean_t
2663 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2664     void *tag)
2665 {
2666 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2667 	dmu_buf_impl_t *found_db;
2668 	boolean_t result = B_FALSE;
2669 
2670 	if (db->db_blkid == DMU_BONUS_BLKID)
2671 		found_db = dbuf_find_bonus(os, obj);
2672 	else
2673 		found_db = dbuf_find(os, obj, 0, blkid);
2674 
2675 	if (found_db != NULL) {
2676 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2677 			(void) refcount_add(&db->db_holds, tag);
2678 			result = B_TRUE;
2679 		}
2680 		mutex_exit(&db->db_mtx);
2681 	}
2682 	return (result);
2683 }
2684 
2685 /*
2686  * If you call dbuf_rele() you had better not be referencing the dnode handle
2687  * unless you have some other direct or indirect hold on the dnode. (An indirect
2688  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2689  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2690  * dnode's parent dbuf evicting its dnode handles.
2691  */
2692 void
2693 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2694 {
2695 	mutex_enter(&db->db_mtx);
2696 	dbuf_rele_and_unlock(db, tag);
2697 }
2698 
2699 void
2700 dmu_buf_rele(dmu_buf_t *db, void *tag)
2701 {
2702 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2703 }
2704 
2705 /*
2706  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2707  * db_dirtycnt and db_holds to be updated atomically.
2708  */
2709 void
2710 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2711 {
2712 	int64_t holds;
2713 
2714 	ASSERT(MUTEX_HELD(&db->db_mtx));
2715 	DBUF_VERIFY(db);
2716 
2717 	/*
2718 	 * Remove the reference to the dbuf before removing its hold on the
2719 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2720 	 * buffer has a corresponding dnode hold.
2721 	 */
2722 	holds = refcount_remove(&db->db_holds, tag);
2723 	ASSERT(holds >= 0);
2724 
2725 	/*
2726 	 * We can't freeze indirects if there is a possibility that they
2727 	 * may be modified in the current syncing context.
2728 	 */
2729 	if (db->db_buf != NULL &&
2730 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2731 		arc_buf_freeze(db->db_buf);
2732 	}
2733 
2734 	if (holds == db->db_dirtycnt &&
2735 	    db->db_level == 0 && db->db_user_immediate_evict)
2736 		dbuf_evict_user(db);
2737 
2738 	if (holds == 0) {
2739 		if (db->db_blkid == DMU_BONUS_BLKID) {
2740 			dnode_t *dn;
2741 			boolean_t evict_dbuf = db->db_pending_evict;
2742 
2743 			/*
2744 			 * If the dnode moves here, we cannot cross this
2745 			 * barrier until the move completes.
2746 			 */
2747 			DB_DNODE_ENTER(db);
2748 
2749 			dn = DB_DNODE(db);
2750 			atomic_dec_32(&dn->dn_dbufs_count);
2751 
2752 			/*
2753 			 * Decrementing the dbuf count means that the bonus
2754 			 * buffer's dnode hold is no longer discounted in
2755 			 * dnode_move(). The dnode cannot move until after
2756 			 * the dnode_rele() below.
2757 			 */
2758 			DB_DNODE_EXIT(db);
2759 
2760 			/*
2761 			 * Do not reference db after its lock is dropped.
2762 			 * Another thread may evict it.
2763 			 */
2764 			mutex_exit(&db->db_mtx);
2765 
2766 			if (evict_dbuf)
2767 				dnode_evict_bonus(dn);
2768 
2769 			dnode_rele(dn, db);
2770 		} else if (db->db_buf == NULL) {
2771 			/*
2772 			 * This is a special case: we never associated this
2773 			 * dbuf with any data allocated from the ARC.
2774 			 */
2775 			ASSERT(db->db_state == DB_UNCACHED ||
2776 			    db->db_state == DB_NOFILL);
2777 			dbuf_destroy(db);
2778 		} else if (arc_released(db->db_buf)) {
2779 			/*
2780 			 * This dbuf has anonymous data associated with it.
2781 			 */
2782 			dbuf_destroy(db);
2783 		} else {
2784 			boolean_t do_arc_evict = B_FALSE;
2785 			blkptr_t bp;
2786 			spa_t *spa = dmu_objset_spa(db->db_objset);
2787 
2788 			if (!DBUF_IS_CACHEABLE(db) &&
2789 			    db->db_blkptr != NULL &&
2790 			    !BP_IS_HOLE(db->db_blkptr) &&
2791 			    !BP_IS_EMBEDDED(db->db_blkptr)) {
2792 				do_arc_evict = B_TRUE;
2793 				bp = *db->db_blkptr;
2794 			}
2795 
2796 			if (!DBUF_IS_CACHEABLE(db) ||
2797 			    db->db_pending_evict) {
2798 				dbuf_destroy(db);
2799 			} else if (!multilist_link_active(&db->db_cache_link)) {
2800 				multilist_insert(&dbuf_cache, db);
2801 				(void) refcount_add_many(&dbuf_cache_size,
2802 				    db->db.db_size, db);
2803 				mutex_exit(&db->db_mtx);
2804 
2805 				dbuf_evict_notify();
2806 			}
2807 
2808 			if (do_arc_evict)
2809 				arc_freed(spa, &bp);
2810 		}
2811 	} else {
2812 		mutex_exit(&db->db_mtx);
2813 	}
2814 
2815 }
2816 
2817 #pragma weak dmu_buf_refcount = dbuf_refcount
2818 uint64_t
2819 dbuf_refcount(dmu_buf_impl_t *db)
2820 {
2821 	return (refcount_count(&db->db_holds));
2822 }
2823 
2824 void *
2825 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2826     dmu_buf_user_t *new_user)
2827 {
2828 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2829 
2830 	mutex_enter(&db->db_mtx);
2831 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2832 	if (db->db_user == old_user)
2833 		db->db_user = new_user;
2834 	else
2835 		old_user = db->db_user;
2836 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2837 	mutex_exit(&db->db_mtx);
2838 
2839 	return (old_user);
2840 }
2841 
2842 void *
2843 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2844 {
2845 	return (dmu_buf_replace_user(db_fake, NULL, user));
2846 }
2847 
2848 void *
2849 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2850 {
2851 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2852 
2853 	db->db_user_immediate_evict = TRUE;
2854 	return (dmu_buf_set_user(db_fake, user));
2855 }
2856 
2857 void *
2858 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2859 {
2860 	return (dmu_buf_replace_user(db_fake, user, NULL));
2861 }
2862 
2863 void *
2864 dmu_buf_get_user(dmu_buf_t *db_fake)
2865 {
2866 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2867 
2868 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2869 	return (db->db_user);
2870 }
2871 
2872 void
2873 dmu_buf_user_evict_wait()
2874 {
2875 	taskq_wait(dbu_evict_taskq);
2876 }
2877 
2878 blkptr_t *
2879 dmu_buf_get_blkptr(dmu_buf_t *db)
2880 {
2881 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2882 	return (dbi->db_blkptr);
2883 }
2884 
2885 objset_t *
2886 dmu_buf_get_objset(dmu_buf_t *db)
2887 {
2888 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2889 	return (dbi->db_objset);
2890 }
2891 
2892 dnode_t *
2893 dmu_buf_dnode_enter(dmu_buf_t *db)
2894 {
2895 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2896 	DB_DNODE_ENTER(dbi);
2897 	return (DB_DNODE(dbi));
2898 }
2899 
2900 void
2901 dmu_buf_dnode_exit(dmu_buf_t *db)
2902 {
2903 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2904 	DB_DNODE_EXIT(dbi);
2905 }
2906 
2907 static void
2908 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2909 {
2910 	/* ASSERT(dmu_tx_is_syncing(tx) */
2911 	ASSERT(MUTEX_HELD(&db->db_mtx));
2912 
2913 	if (db->db_blkptr != NULL)
2914 		return;
2915 
2916 	if (db->db_blkid == DMU_SPILL_BLKID) {
2917 		db->db_blkptr = &dn->dn_phys->dn_spill;
2918 		BP_ZERO(db->db_blkptr);
2919 		return;
2920 	}
2921 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2922 		/*
2923 		 * This buffer was allocated at a time when there was
2924 		 * no available blkptrs from the dnode, or it was
2925 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2926 		 */
2927 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2928 		ASSERT(db->db_parent == NULL);
2929 		db->db_parent = dn->dn_dbuf;
2930 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2931 		DBUF_VERIFY(db);
2932 	} else {
2933 		dmu_buf_impl_t *parent = db->db_parent;
2934 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2935 
2936 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2937 		if (parent == NULL) {
2938 			mutex_exit(&db->db_mtx);
2939 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2940 			parent = dbuf_hold_level(dn, db->db_level + 1,
2941 			    db->db_blkid >> epbs, db);
2942 			rw_exit(&dn->dn_struct_rwlock);
2943 			mutex_enter(&db->db_mtx);
2944 			db->db_parent = parent;
2945 		}
2946 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2947 		    (db->db_blkid & ((1ULL << epbs) - 1));
2948 		DBUF_VERIFY(db);
2949 	}
2950 }
2951 
2952 static void
2953 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2954 {
2955 	dmu_buf_impl_t *db = dr->dr_dbuf;
2956 	dnode_t *dn;
2957 	zio_t *zio;
2958 
2959 	ASSERT(dmu_tx_is_syncing(tx));
2960 
2961 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2962 
2963 	mutex_enter(&db->db_mtx);
2964 
2965 	ASSERT(db->db_level > 0);
2966 	DBUF_VERIFY(db);
2967 
2968 	/* Read the block if it hasn't been read yet. */
2969 	if (db->db_buf == NULL) {
2970 		mutex_exit(&db->db_mtx);
2971 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2972 		mutex_enter(&db->db_mtx);
2973 	}
2974 	ASSERT3U(db->db_state, ==, DB_CACHED);
2975 	ASSERT(db->db_buf != NULL);
2976 
2977 	DB_DNODE_ENTER(db);
2978 	dn = DB_DNODE(db);
2979 	/* Indirect block size must match what the dnode thinks it is. */
2980 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2981 	dbuf_check_blkptr(dn, db);
2982 	DB_DNODE_EXIT(db);
2983 
2984 	/* Provide the pending dirty record to child dbufs */
2985 	db->db_data_pending = dr;
2986 
2987 	mutex_exit(&db->db_mtx);
2988 	dbuf_write(dr, db->db_buf, tx);
2989 
2990 	zio = dr->dr_zio;
2991 	mutex_enter(&dr->dt.di.dr_mtx);
2992 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2993 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2994 	mutex_exit(&dr->dt.di.dr_mtx);
2995 	zio_nowait(zio);
2996 }
2997 
2998 static void
2999 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3000 {
3001 	arc_buf_t **datap = &dr->dt.dl.dr_data;
3002 	dmu_buf_impl_t *db = dr->dr_dbuf;
3003 	dnode_t *dn;
3004 	objset_t *os;
3005 	uint64_t txg = tx->tx_txg;
3006 
3007 	ASSERT(dmu_tx_is_syncing(tx));
3008 
3009 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3010 
3011 	mutex_enter(&db->db_mtx);
3012 	/*
3013 	 * To be synced, we must be dirtied.  But we
3014 	 * might have been freed after the dirty.
3015 	 */
3016 	if (db->db_state == DB_UNCACHED) {
3017 		/* This buffer has been freed since it was dirtied */
3018 		ASSERT(db->db.db_data == NULL);
3019 	} else if (db->db_state == DB_FILL) {
3020 		/* This buffer was freed and is now being re-filled */
3021 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3022 	} else {
3023 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3024 	}
3025 	DBUF_VERIFY(db);
3026 
3027 	DB_DNODE_ENTER(db);
3028 	dn = DB_DNODE(db);
3029 
3030 	if (db->db_blkid == DMU_SPILL_BLKID) {
3031 		mutex_enter(&dn->dn_mtx);
3032 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3033 		mutex_exit(&dn->dn_mtx);
3034 	}
3035 
3036 	/*
3037 	 * If this is a bonus buffer, simply copy the bonus data into the
3038 	 * dnode.  It will be written out when the dnode is synced (and it
3039 	 * will be synced, since it must have been dirty for dbuf_sync to
3040 	 * be called).
3041 	 */
3042 	if (db->db_blkid == DMU_BONUS_BLKID) {
3043 		dbuf_dirty_record_t **drp;
3044 
3045 		ASSERT(*datap != NULL);
3046 		ASSERT0(db->db_level);
3047 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3048 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3049 		DB_DNODE_EXIT(db);
3050 
3051 		if (*datap != db->db.db_data) {
3052 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
3053 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3054 		}
3055 		db->db_data_pending = NULL;
3056 		drp = &db->db_last_dirty;
3057 		while (*drp != dr)
3058 			drp = &(*drp)->dr_next;
3059 		ASSERT(dr->dr_next == NULL);
3060 		ASSERT(dr->dr_dbuf == db);
3061 		*drp = dr->dr_next;
3062 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
3063 		ASSERT(db->db_dirtycnt > 0);
3064 		db->db_dirtycnt -= 1;
3065 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3066 		return;
3067 	}
3068 
3069 	os = dn->dn_objset;
3070 
3071 	/*
3072 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
3073 	 * operation to sneak in. As a result, we need to ensure that we
3074 	 * don't check the dr_override_state until we have returned from
3075 	 * dbuf_check_blkptr.
3076 	 */
3077 	dbuf_check_blkptr(dn, db);
3078 
3079 	/*
3080 	 * If this buffer is in the middle of an immediate write,
3081 	 * wait for the synchronous IO to complete.
3082 	 */
3083 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3084 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3085 		cv_wait(&db->db_changed, &db->db_mtx);
3086 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3087 	}
3088 
3089 	if (db->db_state != DB_NOFILL &&
3090 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3091 	    refcount_count(&db->db_holds) > 1 &&
3092 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3093 	    *datap == db->db_buf) {
3094 		/*
3095 		 * If this buffer is currently "in use" (i.e., there
3096 		 * are active holds and db_data still references it),
3097 		 * then make a copy before we start the write so that
3098 		 * any modifications from the open txg will not leak
3099 		 * into this write.
3100 		 *
3101 		 * NOTE: this copy does not need to be made for
3102 		 * objects only modified in the syncing context (e.g.
3103 		 * DNONE_DNODE blocks).
3104 		 */
3105 		int psize = arc_buf_size(*datap);
3106 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3107 		enum zio_compress compress_type = arc_get_compression(*datap);
3108 
3109 		if (compress_type == ZIO_COMPRESS_OFF) {
3110 			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
3111 		} else {
3112 			ASSERT3U(type, ==, ARC_BUFC_DATA);
3113 			int lsize = arc_buf_lsize(*datap);
3114 			*datap = arc_alloc_compressed_buf(os->os_spa, db,
3115 			    psize, lsize, compress_type);
3116 		}
3117 		bcopy(db->db.db_data, (*datap)->b_data, psize);
3118 	}
3119 	db->db_data_pending = dr;
3120 
3121 	mutex_exit(&db->db_mtx);
3122 
3123 	dbuf_write(dr, *datap, tx);
3124 
3125 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3126 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3127 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3128 		DB_DNODE_EXIT(db);
3129 	} else {
3130 		/*
3131 		 * Although zio_nowait() does not "wait for an IO", it does
3132 		 * initiate the IO. If this is an empty write it seems plausible
3133 		 * that the IO could actually be completed before the nowait
3134 		 * returns. We need to DB_DNODE_EXIT() first in case
3135 		 * zio_nowait() invalidates the dbuf.
3136 		 */
3137 		DB_DNODE_EXIT(db);
3138 		zio_nowait(dr->dr_zio);
3139 	}
3140 }
3141 
3142 void
3143 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3144 {
3145 	dbuf_dirty_record_t *dr;
3146 
3147 	while (dr = list_head(list)) {
3148 		if (dr->dr_zio != NULL) {
3149 			/*
3150 			 * If we find an already initialized zio then we
3151 			 * are processing the meta-dnode, and we have finished.
3152 			 * The dbufs for all dnodes are put back on the list
3153 			 * during processing, so that we can zio_wait()
3154 			 * these IOs after initiating all child IOs.
3155 			 */
3156 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3157 			    DMU_META_DNODE_OBJECT);
3158 			break;
3159 		}
3160 		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3161 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3162 			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3163 		}
3164 		list_remove(list, dr);
3165 		if (dr->dr_dbuf->db_level > 0)
3166 			dbuf_sync_indirect(dr, tx);
3167 		else
3168 			dbuf_sync_leaf(dr, tx);
3169 	}
3170 }
3171 
3172 /* ARGSUSED */
3173 static void
3174 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3175 {
3176 	dmu_buf_impl_t *db = vdb;
3177 	dnode_t *dn;
3178 	blkptr_t *bp = zio->io_bp;
3179 	blkptr_t *bp_orig = &zio->io_bp_orig;
3180 	spa_t *spa = zio->io_spa;
3181 	int64_t delta;
3182 	uint64_t fill = 0;
3183 	int i;
3184 
3185 	ASSERT3P(db->db_blkptr, !=, NULL);
3186 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3187 
3188 	DB_DNODE_ENTER(db);
3189 	dn = DB_DNODE(db);
3190 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3191 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3192 	zio->io_prev_space_delta = delta;
3193 
3194 	if (bp->blk_birth != 0) {
3195 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3196 		    BP_GET_TYPE(bp) == dn->dn_type) ||
3197 		    (db->db_blkid == DMU_SPILL_BLKID &&
3198 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3199 		    BP_IS_EMBEDDED(bp));
3200 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3201 	}
3202 
3203 	mutex_enter(&db->db_mtx);
3204 
3205 #ifdef ZFS_DEBUG
3206 	if (db->db_blkid == DMU_SPILL_BLKID) {
3207 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3208 		ASSERT(!(BP_IS_HOLE(bp)) &&
3209 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3210 	}
3211 #endif
3212 
3213 	if (db->db_level == 0) {
3214 		mutex_enter(&dn->dn_mtx);
3215 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3216 		    db->db_blkid != DMU_SPILL_BLKID)
3217 			dn->dn_phys->dn_maxblkid = db->db_blkid;
3218 		mutex_exit(&dn->dn_mtx);
3219 
3220 		if (dn->dn_type == DMU_OT_DNODE) {
3221 			dnode_phys_t *dnp = db->db.db_data;
3222 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3223 			    i--, dnp++) {
3224 				if (dnp->dn_type != DMU_OT_NONE)
3225 					fill++;
3226 			}
3227 		} else {
3228 			if (BP_IS_HOLE(bp)) {
3229 				fill = 0;
3230 			} else {
3231 				fill = 1;
3232 			}
3233 		}
3234 	} else {
3235 		blkptr_t *ibp = db->db.db_data;
3236 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3237 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3238 			if (BP_IS_HOLE(ibp))
3239 				continue;
3240 			fill += BP_GET_FILL(ibp);
3241 		}
3242 	}
3243 	DB_DNODE_EXIT(db);
3244 
3245 	if (!BP_IS_EMBEDDED(bp))
3246 		bp->blk_fill = fill;
3247 
3248 	mutex_exit(&db->db_mtx);
3249 
3250 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3251 	*db->db_blkptr = *bp;
3252 	rw_exit(&dn->dn_struct_rwlock);
3253 }
3254 
3255 /* ARGSUSED */
3256 /*
3257  * This function gets called just prior to running through the compression
3258  * stage of the zio pipeline. If we're an indirect block comprised of only
3259  * holes, then we want this indirect to be compressed away to a hole. In
3260  * order to do that we must zero out any information about the holes that
3261  * this indirect points to prior to before we try to compress it.
3262  */
3263 static void
3264 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3265 {
3266 	dmu_buf_impl_t *db = vdb;
3267 	dnode_t *dn;
3268 	blkptr_t *bp;
3269 	unsigned int epbs, i;
3270 
3271 	ASSERT3U(db->db_level, >, 0);
3272 	DB_DNODE_ENTER(db);
3273 	dn = DB_DNODE(db);
3274 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3275 	ASSERT3U(epbs, <, 31);
3276 
3277 	/* Determine if all our children are holes */
3278 	for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3279 		if (!BP_IS_HOLE(bp))
3280 			break;
3281 	}
3282 
3283 	/*
3284 	 * If all the children are holes, then zero them all out so that
3285 	 * we may get compressed away.
3286 	 */
3287 	if (i == 1 << epbs) {
3288 		/*
3289 		 * We only found holes. Grab the rwlock to prevent
3290 		 * anybody from reading the blocks we're about to
3291 		 * zero out.
3292 		 */
3293 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3294 		bzero(db->db.db_data, db->db.db_size);
3295 		rw_exit(&dn->dn_struct_rwlock);
3296 	}
3297 	DB_DNODE_EXIT(db);
3298 }
3299 
3300 /*
3301  * The SPA will call this callback several times for each zio - once
3302  * for every physical child i/o (zio->io_phys_children times).  This
3303  * allows the DMU to monitor the progress of each logical i/o.  For example,
3304  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3305  * block.  There may be a long delay before all copies/fragments are completed,
3306  * so this callback allows us to retire dirty space gradually, as the physical
3307  * i/os complete.
3308  */
3309 /* ARGSUSED */
3310 static void
3311 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3312 {
3313 	dmu_buf_impl_t *db = arg;
3314 	objset_t *os = db->db_objset;
3315 	dsl_pool_t *dp = dmu_objset_pool(os);
3316 	dbuf_dirty_record_t *dr;
3317 	int delta = 0;
3318 
3319 	dr = db->db_data_pending;
3320 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3321 
3322 	/*
3323 	 * The callback will be called io_phys_children times.  Retire one
3324 	 * portion of our dirty space each time we are called.  Any rounding
3325 	 * error will be cleaned up by dsl_pool_sync()'s call to
3326 	 * dsl_pool_undirty_space().
3327 	 */
3328 	delta = dr->dr_accounted / zio->io_phys_children;
3329 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
3330 }
3331 
3332 /* ARGSUSED */
3333 static void
3334 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3335 {
3336 	dmu_buf_impl_t *db = vdb;
3337 	blkptr_t *bp_orig = &zio->io_bp_orig;
3338 	blkptr_t *bp = db->db_blkptr;
3339 	objset_t *os = db->db_objset;
3340 	dmu_tx_t *tx = os->os_synctx;
3341 	dbuf_dirty_record_t **drp, *dr;
3342 
3343 	ASSERT0(zio->io_error);
3344 	ASSERT(db->db_blkptr == bp);
3345 
3346 	/*
3347 	 * For nopwrites and rewrites we ensure that the bp matches our
3348 	 * original and bypass all the accounting.
3349 	 */
3350 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3351 		ASSERT(BP_EQUAL(bp, bp_orig));
3352 	} else {
3353 		dsl_dataset_t *ds = os->os_dsl_dataset;
3354 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3355 		dsl_dataset_block_born(ds, bp, tx);
3356 	}
3357 
3358 	mutex_enter(&db->db_mtx);
3359 
3360 	DBUF_VERIFY(db);
3361 
3362 	drp = &db->db_last_dirty;
3363 	while ((dr = *drp) != db->db_data_pending)
3364 		drp = &dr->dr_next;
3365 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3366 	ASSERT(dr->dr_dbuf == db);
3367 	ASSERT(dr->dr_next == NULL);
3368 	*drp = dr->dr_next;
3369 
3370 #ifdef ZFS_DEBUG
3371 	if (db->db_blkid == DMU_SPILL_BLKID) {
3372 		dnode_t *dn;
3373 
3374 		DB_DNODE_ENTER(db);
3375 		dn = DB_DNODE(db);
3376 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3377 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3378 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3379 		DB_DNODE_EXIT(db);
3380 	}
3381 #endif
3382 
3383 	if (db->db_level == 0) {
3384 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3385 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3386 		if (db->db_state != DB_NOFILL) {
3387 			if (dr->dt.dl.dr_data != db->db_buf)
3388 				arc_buf_destroy(dr->dt.dl.dr_data, db);
3389 		}
3390 	} else {
3391 		dnode_t *dn;
3392 
3393 		DB_DNODE_ENTER(db);
3394 		dn = DB_DNODE(db);
3395 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3396 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3397 		if (!BP_IS_HOLE(db->db_blkptr)) {
3398 			int epbs =
3399 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3400 			ASSERT3U(db->db_blkid, <=,
3401 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3402 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3403 			    db->db.db_size);
3404 		}
3405 		DB_DNODE_EXIT(db);
3406 		mutex_destroy(&dr->dt.di.dr_mtx);
3407 		list_destroy(&dr->dt.di.dr_children);
3408 	}
3409 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3410 
3411 	cv_broadcast(&db->db_changed);
3412 	ASSERT(db->db_dirtycnt > 0);
3413 	db->db_dirtycnt -= 1;
3414 	db->db_data_pending = NULL;
3415 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3416 }
3417 
3418 static void
3419 dbuf_write_nofill_ready(zio_t *zio)
3420 {
3421 	dbuf_write_ready(zio, NULL, zio->io_private);
3422 }
3423 
3424 static void
3425 dbuf_write_nofill_done(zio_t *zio)
3426 {
3427 	dbuf_write_done(zio, NULL, zio->io_private);
3428 }
3429 
3430 static void
3431 dbuf_write_override_ready(zio_t *zio)
3432 {
3433 	dbuf_dirty_record_t *dr = zio->io_private;
3434 	dmu_buf_impl_t *db = dr->dr_dbuf;
3435 
3436 	dbuf_write_ready(zio, NULL, db);
3437 }
3438 
3439 static void
3440 dbuf_write_override_done(zio_t *zio)
3441 {
3442 	dbuf_dirty_record_t *dr = zio->io_private;
3443 	dmu_buf_impl_t *db = dr->dr_dbuf;
3444 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3445 
3446 	mutex_enter(&db->db_mtx);
3447 	if (!BP_EQUAL(zio->io_bp, obp)) {
3448 		if (!BP_IS_HOLE(obp))
3449 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3450 		arc_release(dr->dt.dl.dr_data, db);
3451 	}
3452 	mutex_exit(&db->db_mtx);
3453 
3454 	dbuf_write_done(zio, NULL, db);
3455 }
3456 
3457 /* Issue I/O to commit a dirty buffer to disk. */
3458 static void
3459 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3460 {
3461 	dmu_buf_impl_t *db = dr->dr_dbuf;
3462 	dnode_t *dn;
3463 	objset_t *os;
3464 	dmu_buf_impl_t *parent = db->db_parent;
3465 	uint64_t txg = tx->tx_txg;
3466 	zbookmark_phys_t zb;
3467 	zio_prop_t zp;
3468 	zio_t *zio;
3469 	int wp_flag = 0;
3470 
3471 	ASSERT(dmu_tx_is_syncing(tx));
3472 
3473 	DB_DNODE_ENTER(db);
3474 	dn = DB_DNODE(db);
3475 	os = dn->dn_objset;
3476 
3477 	if (db->db_state != DB_NOFILL) {
3478 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3479 			/*
3480 			 * Private object buffers are released here rather
3481 			 * than in dbuf_dirty() since they are only modified
3482 			 * in the syncing context and we don't want the
3483 			 * overhead of making multiple copies of the data.
3484 			 */
3485 			if (BP_IS_HOLE(db->db_blkptr)) {
3486 				arc_buf_thaw(data);
3487 			} else {
3488 				dbuf_release_bp(db);
3489 			}
3490 		}
3491 	}
3492 
3493 	if (parent != dn->dn_dbuf) {
3494 		/* Our parent is an indirect block. */
3495 		/* We have a dirty parent that has been scheduled for write. */
3496 		ASSERT(parent && parent->db_data_pending);
3497 		/* Our parent's buffer is one level closer to the dnode. */
3498 		ASSERT(db->db_level == parent->db_level-1);
3499 		/*
3500 		 * We're about to modify our parent's db_data by modifying
3501 		 * our block pointer, so the parent must be released.
3502 		 */
3503 		ASSERT(arc_released(parent->db_buf));
3504 		zio = parent->db_data_pending->dr_zio;
3505 	} else {
3506 		/* Our parent is the dnode itself. */
3507 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3508 		    db->db_blkid != DMU_SPILL_BLKID) ||
3509 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3510 		if (db->db_blkid != DMU_SPILL_BLKID)
3511 			ASSERT3P(db->db_blkptr, ==,
3512 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3513 		zio = dn->dn_zio;
3514 	}
3515 
3516 	ASSERT(db->db_level == 0 || data == db->db_buf);
3517 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3518 	ASSERT(zio);
3519 
3520 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3521 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3522 	    db->db.db_object, db->db_level, db->db_blkid);
3523 
3524 	if (db->db_blkid == DMU_SPILL_BLKID)
3525 		wp_flag = WP_SPILL;
3526 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3527 
3528 	dmu_write_policy(os, dn, db->db_level, wp_flag,
3529 	    (data != NULL && arc_get_compression(data) != ZIO_COMPRESS_OFF) ?
3530 	    arc_get_compression(data) : ZIO_COMPRESS_INHERIT, &zp);
3531 	DB_DNODE_EXIT(db);
3532 
3533 	/*
3534 	 * We copy the blkptr now (rather than when we instantiate the dirty
3535 	 * record), because its value can change between open context and
3536 	 * syncing context. We do not need to hold dn_struct_rwlock to read
3537 	 * db_blkptr because we are in syncing context.
3538 	 */
3539 	dr->dr_bp_copy = *db->db_blkptr;
3540 
3541 	if (db->db_level == 0 &&
3542 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3543 		/*
3544 		 * The BP for this block has been provided by open context
3545 		 * (by dmu_sync() or dmu_buf_write_embedded()).
3546 		 */
3547 		void *contents = (data != NULL) ? data->b_data : NULL;
3548 
3549 		dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy,
3550 		    contents, db->db.db_size, db->db.db_size, &zp,
3551 		    dbuf_write_override_ready, NULL, NULL,
3552 		    dbuf_write_override_done,
3553 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3554 		mutex_enter(&db->db_mtx);
3555 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3556 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3557 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3558 		mutex_exit(&db->db_mtx);
3559 	} else if (db->db_state == DB_NOFILL) {
3560 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3561 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3562 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3563 		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3564 		    dbuf_write_nofill_ready, NULL, NULL,
3565 		    dbuf_write_nofill_done, db,
3566 		    ZIO_PRIORITY_ASYNC_WRITE,
3567 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3568 	} else {
3569 		ASSERT(arc_released(data));
3570 
3571 		/*
3572 		 * For indirect blocks, we want to setup the children
3573 		 * ready callback so that we can properly handle an indirect
3574 		 * block that only contains holes.
3575 		 */
3576 		arc_done_func_t *children_ready_cb = NULL;
3577 		if (db->db_level != 0)
3578 			children_ready_cb = dbuf_write_children_ready;
3579 
3580 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3581 		    &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3582 		    &zp, dbuf_write_ready, children_ready_cb,
3583 		    dbuf_write_physdone, dbuf_write_done, db,
3584 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3585 	}
3586 }
3587