1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_send.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dbuf.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/spa.h> 41 #include <sys/zio.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/sa.h> 44 #include <sys/sa_impl.h> 45 #include <sys/zfeature.h> 46 #include <sys/blkptr.h> 47 #include <sys/range_tree.h> 48 #include <sys/callb.h> 49 #include <sys/abd.h> 50 #include <sys/vdev.h> 51 #include <sys/cityhash.h> 52 #include <sys/spa_impl.h> 53 54 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 55 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 56 57 #ifndef __lint 58 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 59 dmu_buf_evict_func_t *evict_func_sync, 60 dmu_buf_evict_func_t *evict_func_async, 61 dmu_buf_t **clear_on_evict_dbufp); 62 #endif /* ! __lint */ 63 64 /* 65 * Global data structures and functions for the dbuf cache. 66 */ 67 static kmem_cache_t *dbuf_kmem_cache; 68 static taskq_t *dbu_evict_taskq; 69 70 static kthread_t *dbuf_cache_evict_thread; 71 static kmutex_t dbuf_evict_lock; 72 static kcondvar_t dbuf_evict_cv; 73 static boolean_t dbuf_evict_thread_exit; 74 75 /* 76 * There are two dbuf caches; each dbuf can only be in one of them at a time. 77 * 78 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 79 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 80 * that represent the metadata that describes filesystems/snapshots/ 81 * bookmarks/properties/etc. We only evict from this cache when we export a 82 * pool, to short-circuit as much I/O as possible for all administrative 83 * commands that need the metadata. There is no eviction policy for this 84 * cache, because we try to only include types in it which would occupy a 85 * very small amount of space per object but create a large impact on the 86 * performance of these commands. Instead, after it reaches a maximum size 87 * (which should only happen on very small memory systems with a very large 88 * number of filesystem objects), we stop taking new dbufs into the 89 * metadata cache, instead putting them in the normal dbuf cache. 90 * 91 * 2. LRU cache of dbufs. The "dbuf cache" maintains a list of dbufs that 92 * are not currently held but have been recently released. These dbufs 93 * are not eligible for arc eviction until they are aged out of the cache. 94 * Dbufs that are aged out of the cache will be immediately destroyed and 95 * become eligible for arc eviction. 96 * 97 * Dbufs are added to these caches once the last hold is released. If a dbuf is 98 * later accessed and still exists in the dbuf cache, then it will be removed 99 * from the cache and later re-added to the head of the cache. 100 * 101 * If a given dbuf meets the requirements for the metadata cache, it will go 102 * there, otherwise it will be considered for the generic LRU dbuf cache. The 103 * caches and the refcounts tracking their sizes are stored in an array indexed 104 * by those caches' matching enum values (from dbuf_cached_state_t). 105 */ 106 typedef struct dbuf_cache { 107 multilist_t *cache; 108 zfs_refcount_t size; 109 } dbuf_cache_t; 110 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 111 112 /* Size limits for the caches */ 113 uint64_t dbuf_cache_max_bytes = 0; 114 uint64_t dbuf_metadata_cache_max_bytes = 0; 115 /* Set the default sizes of the caches to log2 fraction of arc size */ 116 int dbuf_cache_shift = 5; 117 int dbuf_metadata_cache_shift = 6; 118 119 /* 120 * For diagnostic purposes, this is incremented whenever we can't add 121 * something to the metadata cache because it's full, and instead put 122 * the data in the regular dbuf cache. 123 */ 124 uint64_t dbuf_metadata_cache_overflow; 125 126 /* 127 * The LRU dbuf cache uses a three-stage eviction policy: 128 * - A low water marker designates when the dbuf eviction thread 129 * should stop evicting from the dbuf cache. 130 * - When we reach the maximum size (aka mid water mark), we 131 * signal the eviction thread to run. 132 * - The high water mark indicates when the eviction thread 133 * is unable to keep up with the incoming load and eviction must 134 * happen in the context of the calling thread. 135 * 136 * The dbuf cache: 137 * (max size) 138 * low water mid water hi water 139 * +----------------------------------------+----------+----------+ 140 * | | | | 141 * | | | | 142 * | | | | 143 * | | | | 144 * +----------------------------------------+----------+----------+ 145 * stop signal evict 146 * evicting eviction directly 147 * thread 148 * 149 * The high and low water marks indicate the operating range for the eviction 150 * thread. The low water mark is, by default, 90% of the total size of the 151 * cache and the high water mark is at 110% (both of these percentages can be 152 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 153 * respectively). The eviction thread will try to ensure that the cache remains 154 * within this range by waking up every second and checking if the cache is 155 * above the low water mark. The thread can also be woken up by callers adding 156 * elements into the cache if the cache is larger than the mid water (i.e max 157 * cache size). Once the eviction thread is woken up and eviction is required, 158 * it will continue evicting buffers until it's able to reduce the cache size 159 * to the low water mark. If the cache size continues to grow and hits the high 160 * water mark, then callers adding elements to the cache will begin to evict 161 * directly from the cache until the cache is no longer above the high water 162 * mark. 163 */ 164 165 /* 166 * The percentage above and below the maximum cache size. 167 */ 168 uint_t dbuf_cache_hiwater_pct = 10; 169 uint_t dbuf_cache_lowater_pct = 10; 170 171 /* ARGSUSED */ 172 static int 173 dbuf_cons(void *vdb, void *unused, int kmflag) 174 { 175 dmu_buf_impl_t *db = vdb; 176 bzero(db, sizeof (dmu_buf_impl_t)); 177 178 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 179 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 180 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 181 multilist_link_init(&db->db_cache_link); 182 zfs_refcount_create(&db->db_holds); 183 184 return (0); 185 } 186 187 /* ARGSUSED */ 188 static void 189 dbuf_dest(void *vdb, void *unused) 190 { 191 dmu_buf_impl_t *db = vdb; 192 mutex_destroy(&db->db_mtx); 193 rw_destroy(&db->db_rwlock); 194 cv_destroy(&db->db_changed); 195 ASSERT(!multilist_link_active(&db->db_cache_link)); 196 zfs_refcount_destroy(&db->db_holds); 197 } 198 199 /* 200 * dbuf hash table routines 201 */ 202 static dbuf_hash_table_t dbuf_hash_table; 203 204 static uint64_t dbuf_hash_count; 205 206 /* 207 * We use Cityhash for this. It's fast, and has good hash properties without 208 * requiring any large static buffers. 209 */ 210 static uint64_t 211 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 212 { 213 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 214 } 215 216 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 217 ((dbuf)->db.db_object == (obj) && \ 218 (dbuf)->db_objset == (os) && \ 219 (dbuf)->db_level == (level) && \ 220 (dbuf)->db_blkid == (blkid)) 221 222 dmu_buf_impl_t * 223 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 224 { 225 dbuf_hash_table_t *h = &dbuf_hash_table; 226 uint64_t hv = dbuf_hash(os, obj, level, blkid); 227 uint64_t idx = hv & h->hash_table_mask; 228 dmu_buf_impl_t *db; 229 230 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 231 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 232 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 233 mutex_enter(&db->db_mtx); 234 if (db->db_state != DB_EVICTING) { 235 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 236 return (db); 237 } 238 mutex_exit(&db->db_mtx); 239 } 240 } 241 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 242 return (NULL); 243 } 244 245 static dmu_buf_impl_t * 246 dbuf_find_bonus(objset_t *os, uint64_t object) 247 { 248 dnode_t *dn; 249 dmu_buf_impl_t *db = NULL; 250 251 if (dnode_hold(os, object, FTAG, &dn) == 0) { 252 rw_enter(&dn->dn_struct_rwlock, RW_READER); 253 if (dn->dn_bonus != NULL) { 254 db = dn->dn_bonus; 255 mutex_enter(&db->db_mtx); 256 } 257 rw_exit(&dn->dn_struct_rwlock); 258 dnode_rele(dn, FTAG); 259 } 260 return (db); 261 } 262 263 /* 264 * Insert an entry into the hash table. If there is already an element 265 * equal to elem in the hash table, then the already existing element 266 * will be returned and the new element will not be inserted. 267 * Otherwise returns NULL. 268 */ 269 static dmu_buf_impl_t * 270 dbuf_hash_insert(dmu_buf_impl_t *db) 271 { 272 dbuf_hash_table_t *h = &dbuf_hash_table; 273 objset_t *os = db->db_objset; 274 uint64_t obj = db->db.db_object; 275 int level = db->db_level; 276 uint64_t blkid = db->db_blkid; 277 uint64_t hv = dbuf_hash(os, obj, level, blkid); 278 uint64_t idx = hv & h->hash_table_mask; 279 dmu_buf_impl_t *dbf; 280 281 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 282 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { 283 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 284 mutex_enter(&dbf->db_mtx); 285 if (dbf->db_state != DB_EVICTING) { 286 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 287 return (dbf); 288 } 289 mutex_exit(&dbf->db_mtx); 290 } 291 } 292 293 mutex_enter(&db->db_mtx); 294 db->db_hash_next = h->hash_table[idx]; 295 h->hash_table[idx] = db; 296 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 297 atomic_inc_64(&dbuf_hash_count); 298 299 return (NULL); 300 } 301 302 /* 303 * Remove an entry from the hash table. It must be in the EVICTING state. 304 */ 305 static void 306 dbuf_hash_remove(dmu_buf_impl_t *db) 307 { 308 dbuf_hash_table_t *h = &dbuf_hash_table; 309 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object, 310 db->db_level, db->db_blkid); 311 uint64_t idx = hv & h->hash_table_mask; 312 dmu_buf_impl_t *dbf, **dbp; 313 314 /* 315 * We mustn't hold db_mtx to maintain lock ordering: 316 * DBUF_HASH_MUTEX > db_mtx. 317 */ 318 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 319 ASSERT(db->db_state == DB_EVICTING); 320 ASSERT(!MUTEX_HELD(&db->db_mtx)); 321 322 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 323 dbp = &h->hash_table[idx]; 324 while ((dbf = *dbp) != db) { 325 dbp = &dbf->db_hash_next; 326 ASSERT(dbf != NULL); 327 } 328 *dbp = db->db_hash_next; 329 db->db_hash_next = NULL; 330 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 331 atomic_dec_64(&dbuf_hash_count); 332 } 333 334 typedef enum { 335 DBVU_EVICTING, 336 DBVU_NOT_EVICTING 337 } dbvu_verify_type_t; 338 339 static void 340 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 341 { 342 #ifdef ZFS_DEBUG 343 int64_t holds; 344 345 if (db->db_user == NULL) 346 return; 347 348 /* Only data blocks support the attachment of user data. */ 349 ASSERT(db->db_level == 0); 350 351 /* Clients must resolve a dbuf before attaching user data. */ 352 ASSERT(db->db.db_data != NULL); 353 ASSERT3U(db->db_state, ==, DB_CACHED); 354 355 holds = zfs_refcount_count(&db->db_holds); 356 if (verify_type == DBVU_EVICTING) { 357 /* 358 * Immediate eviction occurs when holds == dirtycnt. 359 * For normal eviction buffers, holds is zero on 360 * eviction, except when dbuf_fix_old_data() calls 361 * dbuf_clear_data(). However, the hold count can grow 362 * during eviction even though db_mtx is held (see 363 * dmu_bonus_hold() for an example), so we can only 364 * test the generic invariant that holds >= dirtycnt. 365 */ 366 ASSERT3U(holds, >=, db->db_dirtycnt); 367 } else { 368 if (db->db_user_immediate_evict == TRUE) 369 ASSERT3U(holds, >=, db->db_dirtycnt); 370 else 371 ASSERT3U(holds, >, 0); 372 } 373 #endif 374 } 375 376 static void 377 dbuf_evict_user(dmu_buf_impl_t *db) 378 { 379 dmu_buf_user_t *dbu = db->db_user; 380 381 ASSERT(MUTEX_HELD(&db->db_mtx)); 382 383 if (dbu == NULL) 384 return; 385 386 dbuf_verify_user(db, DBVU_EVICTING); 387 db->db_user = NULL; 388 389 #ifdef ZFS_DEBUG 390 if (dbu->dbu_clear_on_evict_dbufp != NULL) 391 *dbu->dbu_clear_on_evict_dbufp = NULL; 392 #endif 393 394 /* 395 * There are two eviction callbacks - one that we call synchronously 396 * and one that we invoke via a taskq. The async one is useful for 397 * avoiding lock order reversals and limiting stack depth. 398 * 399 * Note that if we have a sync callback but no async callback, 400 * it's likely that the sync callback will free the structure 401 * containing the dbu. In that case we need to take care to not 402 * dereference dbu after calling the sync evict func. 403 */ 404 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 405 406 if (dbu->dbu_evict_func_sync != NULL) 407 dbu->dbu_evict_func_sync(dbu); 408 409 if (has_async) { 410 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 411 dbu, 0, &dbu->dbu_tqent); 412 } 413 } 414 415 boolean_t 416 dbuf_is_metadata(dmu_buf_impl_t *db) 417 { 418 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 419 return (B_TRUE); 420 } else { 421 boolean_t is_metadata; 422 423 DB_DNODE_ENTER(db); 424 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 425 DB_DNODE_EXIT(db); 426 427 return (is_metadata); 428 } 429 } 430 431 /* 432 * This returns whether this dbuf should be stored in the metadata cache, which 433 * is based on whether it's from one of the dnode types that store data related 434 * to traversing dataset hierarchies. 435 */ 436 static boolean_t 437 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 438 { 439 DB_DNODE_ENTER(db); 440 dmu_object_type_t type = DB_DNODE(db)->dn_type; 441 DB_DNODE_EXIT(db); 442 443 /* Check if this dbuf is one of the types we care about */ 444 if (DMU_OT_IS_METADATA_CACHED(type)) { 445 /* If we hit this, then we set something up wrong in dmu_ot */ 446 ASSERT(DMU_OT_IS_METADATA(type)); 447 448 /* 449 * Sanity check for small-memory systems: don't allocate too 450 * much memory for this purpose. 451 */ 452 if (zfs_refcount_count( 453 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 454 dbuf_metadata_cache_max_bytes) { 455 dbuf_metadata_cache_overflow++; 456 DTRACE_PROBE1(dbuf__metadata__cache__overflow, 457 dmu_buf_impl_t *, db); 458 return (B_FALSE); 459 } 460 461 return (B_TRUE); 462 } 463 464 return (B_FALSE); 465 } 466 467 /* 468 * This function *must* return indices evenly distributed between all 469 * sublists of the multilist. This is needed due to how the dbuf eviction 470 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 471 * distributed between all sublists and uses this assumption when 472 * deciding which sublist to evict from and how much to evict from it. 473 */ 474 unsigned int 475 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 476 { 477 dmu_buf_impl_t *db = obj; 478 479 /* 480 * The assumption here, is the hash value for a given 481 * dmu_buf_impl_t will remain constant throughout it's lifetime 482 * (i.e. it's objset, object, level and blkid fields don't change). 483 * Thus, we don't need to store the dbuf's sublist index 484 * on insertion, as this index can be recalculated on removal. 485 * 486 * Also, the low order bits of the hash value are thought to be 487 * distributed evenly. Otherwise, in the case that the multilist 488 * has a power of two number of sublists, each sublists' usage 489 * would not be evenly distributed. 490 */ 491 return (dbuf_hash(db->db_objset, db->db.db_object, 492 db->db_level, db->db_blkid) % 493 multilist_get_num_sublists(ml)); 494 } 495 496 static inline boolean_t 497 dbuf_cache_above_hiwater(void) 498 { 499 uint64_t dbuf_cache_hiwater_bytes = 500 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100; 501 502 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 503 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes); 504 } 505 506 static inline boolean_t 507 dbuf_cache_above_lowater(void) 508 { 509 uint64_t dbuf_cache_lowater_bytes = 510 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100; 511 512 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 513 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes); 514 } 515 516 /* 517 * Evict the oldest eligible dbuf from the dbuf cache. 518 */ 519 static void 520 dbuf_evict_one(void) 521 { 522 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache); 523 multilist_sublist_t *mls = multilist_sublist_lock( 524 dbuf_caches[DB_DBUF_CACHE].cache, idx); 525 526 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 527 528 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 529 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 530 db = multilist_sublist_prev(mls, db); 531 } 532 533 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 534 multilist_sublist_t *, mls); 535 536 if (db != NULL) { 537 multilist_sublist_remove(mls, db); 538 multilist_sublist_unlock(mls); 539 (void) zfs_refcount_remove_many( 540 &dbuf_caches[DB_DBUF_CACHE].size, 541 db->db.db_size, db); 542 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 543 db->db_caching_status = DB_NO_CACHE; 544 dbuf_destroy(db); 545 } else { 546 multilist_sublist_unlock(mls); 547 } 548 } 549 550 /* 551 * The dbuf evict thread is responsible for aging out dbufs from the 552 * cache. Once the cache has reached it's maximum size, dbufs are removed 553 * and destroyed. The eviction thread will continue running until the size 554 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 555 * out of the cache it is destroyed and becomes eligible for arc eviction. 556 */ 557 /* ARGSUSED */ 558 static void 559 dbuf_evict_thread(void *unused) 560 { 561 callb_cpr_t cpr; 562 563 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 564 565 mutex_enter(&dbuf_evict_lock); 566 while (!dbuf_evict_thread_exit) { 567 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 568 CALLB_CPR_SAFE_BEGIN(&cpr); 569 (void) cv_timedwait_hires(&dbuf_evict_cv, 570 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 571 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 572 } 573 mutex_exit(&dbuf_evict_lock); 574 575 /* 576 * Keep evicting as long as we're above the low water mark 577 * for the cache. We do this without holding the locks to 578 * minimize lock contention. 579 */ 580 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 581 dbuf_evict_one(); 582 } 583 584 mutex_enter(&dbuf_evict_lock); 585 } 586 587 dbuf_evict_thread_exit = B_FALSE; 588 cv_broadcast(&dbuf_evict_cv); 589 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 590 thread_exit(); 591 } 592 593 /* 594 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 595 * If the dbuf cache is at its high water mark, then evict a dbuf from the 596 * dbuf cache using the callers context. 597 */ 598 static void 599 dbuf_evict_notify(void) 600 { 601 /* 602 * We check if we should evict without holding the dbuf_evict_lock, 603 * because it's OK to occasionally make the wrong decision here, 604 * and grabbing the lock results in massive lock contention. 605 */ 606 if (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 607 dbuf_cache_max_bytes) { 608 if (dbuf_cache_above_hiwater()) 609 dbuf_evict_one(); 610 cv_signal(&dbuf_evict_cv); 611 } 612 } 613 614 void 615 dbuf_init(void) 616 { 617 uint64_t hsize = 1ULL << 16; 618 dbuf_hash_table_t *h = &dbuf_hash_table; 619 int i; 620 621 /* 622 * The hash table is big enough to fill all of physical memory 623 * with an average 4K block size. The table will take up 624 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). 625 */ 626 while (hsize * 4096 < physmem * PAGESIZE) 627 hsize <<= 1; 628 629 retry: 630 h->hash_table_mask = hsize - 1; 631 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 632 if (h->hash_table == NULL) { 633 /* XXX - we should really return an error instead of assert */ 634 ASSERT(hsize > (1ULL << 10)); 635 hsize >>= 1; 636 goto retry; 637 } 638 639 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 640 sizeof (dmu_buf_impl_t), 641 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 642 643 for (i = 0; i < DBUF_MUTEXES; i++) 644 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 645 646 /* 647 * Setup the parameters for the dbuf caches. We set the sizes of the 648 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default) 649 * of the size of the ARC, respectively. If the values are set in 650 * /etc/system and they're not greater than the size of the ARC, then 651 * we honor that value. 652 */ 653 if (dbuf_cache_max_bytes == 0 || 654 dbuf_cache_max_bytes >= arc_max_bytes()) { 655 dbuf_cache_max_bytes = arc_max_bytes() >> dbuf_cache_shift; 656 } 657 if (dbuf_metadata_cache_max_bytes == 0 || 658 dbuf_metadata_cache_max_bytes >= arc_max_bytes()) { 659 dbuf_metadata_cache_max_bytes = 660 arc_max_bytes() >> dbuf_metadata_cache_shift; 661 } 662 663 /* 664 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 665 * configuration is not required. 666 */ 667 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0); 668 669 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 670 dbuf_caches[dcs].cache = 671 multilist_create(sizeof (dmu_buf_impl_t), 672 offsetof(dmu_buf_impl_t, db_cache_link), 673 dbuf_cache_multilist_index_func); 674 zfs_refcount_create(&dbuf_caches[dcs].size); 675 } 676 677 dbuf_evict_thread_exit = B_FALSE; 678 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 679 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 680 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 681 NULL, 0, &p0, TS_RUN, minclsyspri); 682 } 683 684 void 685 dbuf_fini(void) 686 { 687 dbuf_hash_table_t *h = &dbuf_hash_table; 688 int i; 689 690 for (i = 0; i < DBUF_MUTEXES; i++) 691 mutex_destroy(&h->hash_mutexes[i]); 692 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 693 kmem_cache_destroy(dbuf_kmem_cache); 694 taskq_destroy(dbu_evict_taskq); 695 696 mutex_enter(&dbuf_evict_lock); 697 dbuf_evict_thread_exit = B_TRUE; 698 while (dbuf_evict_thread_exit) { 699 cv_signal(&dbuf_evict_cv); 700 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 701 } 702 mutex_exit(&dbuf_evict_lock); 703 704 mutex_destroy(&dbuf_evict_lock); 705 cv_destroy(&dbuf_evict_cv); 706 707 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 708 zfs_refcount_destroy(&dbuf_caches[dcs].size); 709 multilist_destroy(dbuf_caches[dcs].cache); 710 } 711 } 712 713 /* 714 * Other stuff. 715 */ 716 717 #ifdef ZFS_DEBUG 718 static void 719 dbuf_verify(dmu_buf_impl_t *db) 720 { 721 dnode_t *dn; 722 dbuf_dirty_record_t *dr; 723 724 ASSERT(MUTEX_HELD(&db->db_mtx)); 725 726 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 727 return; 728 729 ASSERT(db->db_objset != NULL); 730 DB_DNODE_ENTER(db); 731 dn = DB_DNODE(db); 732 if (dn == NULL) { 733 ASSERT(db->db_parent == NULL); 734 ASSERT(db->db_blkptr == NULL); 735 } else { 736 ASSERT3U(db->db.db_object, ==, dn->dn_object); 737 ASSERT3P(db->db_objset, ==, dn->dn_objset); 738 ASSERT3U(db->db_level, <, dn->dn_nlevels); 739 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 740 db->db_blkid == DMU_SPILL_BLKID || 741 !avl_is_empty(&dn->dn_dbufs)); 742 } 743 if (db->db_blkid == DMU_BONUS_BLKID) { 744 ASSERT(dn != NULL); 745 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 746 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 747 } else if (db->db_blkid == DMU_SPILL_BLKID) { 748 ASSERT(dn != NULL); 749 ASSERT0(db->db.db_offset); 750 } else { 751 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 752 } 753 754 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) 755 ASSERT(dr->dr_dbuf == db); 756 757 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) 758 ASSERT(dr->dr_dbuf == db); 759 760 /* 761 * We can't assert that db_size matches dn_datablksz because it 762 * can be momentarily different when another thread is doing 763 * dnode_set_blksz(). 764 */ 765 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 766 dr = db->db_data_pending; 767 /* 768 * It should only be modified in syncing context, so 769 * make sure we only have one copy of the data. 770 */ 771 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 772 } 773 774 /* verify db->db_blkptr */ 775 if (db->db_blkptr) { 776 if (db->db_parent == dn->dn_dbuf) { 777 /* db is pointed to by the dnode */ 778 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 779 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 780 ASSERT(db->db_parent == NULL); 781 else 782 ASSERT(db->db_parent != NULL); 783 if (db->db_blkid != DMU_SPILL_BLKID) 784 ASSERT3P(db->db_blkptr, ==, 785 &dn->dn_phys->dn_blkptr[db->db_blkid]); 786 } else { 787 /* db is pointed to by an indirect block */ 788 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; 789 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 790 ASSERT3U(db->db_parent->db.db_object, ==, 791 db->db.db_object); 792 /* 793 * dnode_grow_indblksz() can make this fail if we don't 794 * have the parent's rwlock. XXX indblksz no longer 795 * grows. safe to do this now? 796 */ 797 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 798 ASSERT3P(db->db_blkptr, ==, 799 ((blkptr_t *)db->db_parent->db.db_data + 800 db->db_blkid % epb)); 801 } 802 } 803 } 804 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 805 (db->db_buf == NULL || db->db_buf->b_data) && 806 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 807 db->db_state != DB_FILL && !dn->dn_free_txg) { 808 /* 809 * If the blkptr isn't set but they have nonzero data, 810 * it had better be dirty, otherwise we'll lose that 811 * data when we evict this buffer. 812 * 813 * There is an exception to this rule for indirect blocks; in 814 * this case, if the indirect block is a hole, we fill in a few 815 * fields on each of the child blocks (importantly, birth time) 816 * to prevent hole birth times from being lost when you 817 * partially fill in a hole. 818 */ 819 if (db->db_dirtycnt == 0) { 820 if (db->db_level == 0) { 821 uint64_t *buf = db->db.db_data; 822 int i; 823 824 for (i = 0; i < db->db.db_size >> 3; i++) { 825 ASSERT(buf[i] == 0); 826 } 827 } else { 828 blkptr_t *bps = db->db.db_data; 829 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 830 db->db.db_size); 831 /* 832 * We want to verify that all the blkptrs in the 833 * indirect block are holes, but we may have 834 * automatically set up a few fields for them. 835 * We iterate through each blkptr and verify 836 * they only have those fields set. 837 */ 838 for (int i = 0; 839 i < db->db.db_size / sizeof (blkptr_t); 840 i++) { 841 blkptr_t *bp = &bps[i]; 842 ASSERT(ZIO_CHECKSUM_IS_ZERO( 843 &bp->blk_cksum)); 844 ASSERT( 845 DVA_IS_EMPTY(&bp->blk_dva[0]) && 846 DVA_IS_EMPTY(&bp->blk_dva[1]) && 847 DVA_IS_EMPTY(&bp->blk_dva[2])); 848 ASSERT0(bp->blk_fill); 849 ASSERT0(bp->blk_pad[0]); 850 ASSERT0(bp->blk_pad[1]); 851 ASSERT(!BP_IS_EMBEDDED(bp)); 852 ASSERT(BP_IS_HOLE(bp)); 853 ASSERT0(bp->blk_phys_birth); 854 } 855 } 856 } 857 } 858 DB_DNODE_EXIT(db); 859 } 860 #endif 861 862 static void 863 dbuf_clear_data(dmu_buf_impl_t *db) 864 { 865 ASSERT(MUTEX_HELD(&db->db_mtx)); 866 dbuf_evict_user(db); 867 ASSERT3P(db->db_buf, ==, NULL); 868 db->db.db_data = NULL; 869 if (db->db_state != DB_NOFILL) 870 db->db_state = DB_UNCACHED; 871 } 872 873 /* 874 * This function is used to lock the parent of the provided dbuf. This should be 875 * used when modifying or reading db_blkptr. 876 */ 877 db_lock_type_t 878 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag) 879 { 880 enum db_lock_type ret = DLT_NONE; 881 if (db->db_parent != NULL) { 882 rw_enter(&db->db_parent->db_rwlock, rw); 883 ret = DLT_PARENT; 884 } else if (dmu_objset_ds(db->db_objset) != NULL) { 885 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 886 tag); 887 ret = DLT_OBJSET; 888 } 889 /* 890 * We only return a DLT_NONE lock when it's the top-most indirect block 891 * of the meta-dnode of the MOS. 892 */ 893 return (ret); 894 } 895 896 /* 897 * We need to pass the lock type in because it's possible that the block will 898 * move from being the topmost indirect block in a dnode (and thus, have no 899 * parent) to not the top-most via an indirection increase. This would cause a 900 * panic if we didn't pass the lock type in. 901 */ 902 void 903 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag) 904 { 905 if (type == DLT_PARENT) 906 rw_exit(&db->db_parent->db_rwlock); 907 else if (type == DLT_OBJSET) 908 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 909 } 910 911 static void 912 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 913 { 914 ASSERT(MUTEX_HELD(&db->db_mtx)); 915 ASSERT(buf != NULL); 916 917 db->db_buf = buf; 918 ASSERT(buf->b_data != NULL); 919 db->db.db_data = buf->b_data; 920 } 921 922 /* 923 * Loan out an arc_buf for read. Return the loaned arc_buf. 924 */ 925 arc_buf_t * 926 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 927 { 928 arc_buf_t *abuf; 929 930 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 931 mutex_enter(&db->db_mtx); 932 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 933 int blksz = db->db.db_size; 934 spa_t *spa = db->db_objset->os_spa; 935 936 mutex_exit(&db->db_mtx); 937 abuf = arc_loan_buf(spa, B_FALSE, blksz); 938 bcopy(db->db.db_data, abuf->b_data, blksz); 939 } else { 940 abuf = db->db_buf; 941 arc_loan_inuse_buf(abuf, db); 942 db->db_buf = NULL; 943 dbuf_clear_data(db); 944 mutex_exit(&db->db_mtx); 945 } 946 return (abuf); 947 } 948 949 /* 950 * Calculate which level n block references the data at the level 0 offset 951 * provided. 952 */ 953 uint64_t 954 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset) 955 { 956 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 957 /* 958 * The level n blkid is equal to the level 0 blkid divided by 959 * the number of level 0s in a level n block. 960 * 961 * The level 0 blkid is offset >> datablkshift = 962 * offset / 2^datablkshift. 963 * 964 * The number of level 0s in a level n is the number of block 965 * pointers in an indirect block, raised to the power of level. 966 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 967 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 968 * 969 * Thus, the level n blkid is: offset / 970 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT))) 971 * = offset / 2^(datablkshift + level * 972 * (indblkshift - SPA_BLKPTRSHIFT)) 973 * = offset >> (datablkshift + level * 974 * (indblkshift - SPA_BLKPTRSHIFT)) 975 */ 976 return (offset >> (dn->dn_datablkshift + level * 977 (dn->dn_indblkshift - SPA_BLKPTRSHIFT))); 978 } else { 979 ASSERT3U(offset, <, dn->dn_datablksz); 980 return (0); 981 } 982 } 983 984 /* ARGSUSED */ 985 static void 986 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 987 arc_buf_t *buf, void *vdb) 988 { 989 dmu_buf_impl_t *db = vdb; 990 991 mutex_enter(&db->db_mtx); 992 ASSERT3U(db->db_state, ==, DB_READ); 993 /* 994 * All reads are synchronous, so we must have a hold on the dbuf 995 */ 996 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 997 ASSERT(db->db_buf == NULL); 998 ASSERT(db->db.db_data == NULL); 999 if (buf == NULL) { 1000 /* i/o error */ 1001 ASSERT(zio == NULL || zio->io_error != 0); 1002 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1003 ASSERT3P(db->db_buf, ==, NULL); 1004 db->db_state = DB_UNCACHED; 1005 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1006 /* we were freed in flight; disregard any error */ 1007 ASSERT(zio == NULL || zio->io_error == 0); 1008 if (buf == NULL) { 1009 buf = arc_alloc_buf(db->db_objset->os_spa, 1010 db, DBUF_GET_BUFC_TYPE(db), db->db.db_size); 1011 } 1012 arc_release(buf, db); 1013 bzero(buf->b_data, db->db.db_size); 1014 arc_buf_freeze(buf); 1015 db->db_freed_in_flight = FALSE; 1016 dbuf_set_data(db, buf); 1017 db->db_state = DB_CACHED; 1018 } else if (buf != NULL) { 1019 /* success */ 1020 ASSERT(zio == NULL || zio->io_error == 0); 1021 dbuf_set_data(db, buf); 1022 db->db_state = DB_CACHED; 1023 } 1024 cv_broadcast(&db->db_changed); 1025 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1026 } 1027 1028 1029 /* 1030 * This function ensures that, when doing a decrypting read of a block, 1031 * we make sure we have decrypted the dnode associated with it. We must do 1032 * this so that we ensure we are fully authenticating the checksum-of-MACs 1033 * tree from the root of the objset down to this block. Indirect blocks are 1034 * always verified against their secure checksum-of-MACs assuming that the 1035 * dnode containing them is correct. Now that we are doing a decrypting read, 1036 * we can be sure that the key is loaded and verify that assumption. This is 1037 * especially important considering that we always read encrypted dnode 1038 * blocks as raw data (without verifying their MACs) to start, and 1039 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1040 */ 1041 static int 1042 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1043 { 1044 int err = 0; 1045 objset_t *os = db->db_objset; 1046 arc_buf_t *dnode_abuf; 1047 dnode_t *dn; 1048 zbookmark_phys_t zb; 1049 1050 ASSERT(MUTEX_HELD(&db->db_mtx)); 1051 1052 if (!os->os_encrypted || os->os_raw_receive || 1053 (flags & DB_RF_NO_DECRYPT) != 0) 1054 return (0); 1055 1056 DB_DNODE_ENTER(db); 1057 dn = DB_DNODE(db); 1058 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1059 1060 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1061 DB_DNODE_EXIT(db); 1062 return (0); 1063 } 1064 1065 SET_BOOKMARK(&zb, dmu_objset_id(os), 1066 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1067 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1068 1069 /* 1070 * An error code of EACCES tells us that the key is still not 1071 * available. This is ok if we are only reading authenticated 1072 * (and therefore non-encrypted) blocks. 1073 */ 1074 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1075 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1076 (db->db_blkid == DMU_BONUS_BLKID && 1077 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1078 err = 0; 1079 1080 DB_DNODE_EXIT(db); 1081 1082 return (err); 1083 } 1084 1085 /* 1086 * Drops db_mtx and the parent lock specified by dblt and tag before 1087 * returning. 1088 */ 1089 static int 1090 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, 1091 db_lock_type_t dblt, void *tag) 1092 { 1093 dnode_t *dn; 1094 zbookmark_phys_t zb; 1095 arc_flags_t aflags = ARC_FLAG_NOWAIT; 1096 int err, zio_flags = 0; 1097 1098 DB_DNODE_ENTER(db); 1099 dn = DB_DNODE(db); 1100 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1101 ASSERT(MUTEX_HELD(&db->db_mtx)); 1102 ASSERT(db->db_state == DB_UNCACHED); 1103 ASSERT(db->db_buf == NULL); 1104 ASSERT(db->db_parent == NULL || 1105 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1106 1107 if (db->db_blkid == DMU_BONUS_BLKID) { 1108 /* 1109 * The bonus length stored in the dnode may be less than 1110 * the maximum available space in the bonus buffer. 1111 */ 1112 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1113 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1114 1115 /* if the underlying dnode block is encrypted, decrypt it */ 1116 err = dbuf_read_verify_dnode_crypt(db, flags); 1117 if (err != 0) { 1118 DB_DNODE_EXIT(db); 1119 mutex_exit(&db->db_mtx); 1120 return (err); 1121 } 1122 1123 ASSERT3U(bonuslen, <=, db->db.db_size); 1124 db->db.db_data = zio_buf_alloc(max_bonuslen); 1125 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1126 if (bonuslen < max_bonuslen) 1127 bzero(db->db.db_data, max_bonuslen); 1128 if (bonuslen) 1129 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 1130 DB_DNODE_EXIT(db); 1131 db->db_state = DB_CACHED; 1132 mutex_exit(&db->db_mtx); 1133 dmu_buf_unlock_parent(db, dblt, tag); 1134 return (0); 1135 } 1136 1137 /* 1138 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1139 * processes the delete record and clears the bp while we are waiting 1140 * for the dn_mtx (resulting in a "no" from block_freed). 1141 */ 1142 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || 1143 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || 1144 BP_IS_HOLE(db->db_blkptr)))) { 1145 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1146 1147 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type, 1148 db->db.db_size)); 1149 bzero(db->db.db_data, db->db.db_size); 1150 1151 if (db->db_blkptr != NULL && db->db_level > 0 && 1152 BP_IS_HOLE(db->db_blkptr) && 1153 db->db_blkptr->blk_birth != 0) { 1154 blkptr_t *bps = db->db.db_data; 1155 for (int i = 0; i < ((1 << 1156 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t)); 1157 i++) { 1158 blkptr_t *bp = &bps[i]; 1159 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 1160 1 << dn->dn_indblkshift); 1161 BP_SET_LSIZE(bp, 1162 BP_GET_LEVEL(db->db_blkptr) == 1 ? 1163 dn->dn_datablksz : 1164 BP_GET_LSIZE(db->db_blkptr)); 1165 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 1166 BP_SET_LEVEL(bp, 1167 BP_GET_LEVEL(db->db_blkptr) - 1); 1168 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 1169 } 1170 } 1171 DB_DNODE_EXIT(db); 1172 db->db_state = DB_CACHED; 1173 mutex_exit(&db->db_mtx); 1174 dmu_buf_unlock_parent(db, dblt, tag); 1175 return (0); 1176 } 1177 1178 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1179 db->db.db_object, db->db_level, db->db_blkid); 1180 1181 /* 1182 * All bps of an encrypted os should have the encryption bit set. 1183 * If this is not true it indicates tampering and we report an error. 1184 */ 1185 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) { 1186 spa_log_error(db->db_objset->os_spa, &zb); 1187 zfs_panic_recover("unencrypted block in encrypted " 1188 "object set %llu", dmu_objset_id(db->db_objset)); 1189 DB_DNODE_EXIT(db); 1190 mutex_exit(&db->db_mtx); 1191 dmu_buf_unlock_parent(db, dblt, tag); 1192 return (SET_ERROR(EIO)); 1193 } 1194 1195 err = dbuf_read_verify_dnode_crypt(db, flags); 1196 if (err != 0) { 1197 DB_DNODE_EXIT(db); 1198 dmu_buf_unlock_parent(db, dblt, tag); 1199 mutex_exit(&db->db_mtx); 1200 return (err); 1201 } 1202 1203 DB_DNODE_EXIT(db); 1204 1205 db->db_state = DB_READ; 1206 mutex_exit(&db->db_mtx); 1207 1208 if (DBUF_IS_L2CACHEABLE(db)) 1209 aflags |= ARC_FLAG_L2CACHE; 1210 1211 dbuf_add_ref(db, NULL); 1212 1213 zio_flags = (flags & DB_RF_CANFAIL) ? 1214 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1215 1216 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1217 zio_flags |= ZIO_FLAG_RAW; 1218 /* 1219 * The zio layer will copy the provided blkptr later, but we need to 1220 * do this now so that we can release the parent's rwlock. We have to 1221 * do that now so that if dbuf_read_done is called synchronously (on 1222 * an l1 cache hit) we don't acquire the db_mtx while holding the 1223 * parent's rwlock, which would be a lock ordering violation. 1224 */ 1225 blkptr_t bp = *db->db_blkptr; 1226 dmu_buf_unlock_parent(db, dblt, tag); 1227 (void) arc_read(zio, db->db_objset->os_spa, &bp, 1228 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1229 &aflags, &zb); 1230 return (err); 1231 } 1232 1233 /* 1234 * This is our just-in-time copy function. It makes a copy of buffers that 1235 * have been modified in a previous transaction group before we access them in 1236 * the current active group. 1237 * 1238 * This function is used in three places: when we are dirtying a buffer for the 1239 * first time in a txg, when we are freeing a range in a dnode that includes 1240 * this buffer, and when we are accessing a buffer which was received compressed 1241 * and later referenced in a WRITE_BYREF record. 1242 * 1243 * Note that when we are called from dbuf_free_range() we do not put a hold on 1244 * the buffer, we just traverse the active dbuf list for the dnode. 1245 */ 1246 static void 1247 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1248 { 1249 dbuf_dirty_record_t *dr = db->db_last_dirty; 1250 1251 ASSERT(MUTEX_HELD(&db->db_mtx)); 1252 ASSERT(db->db.db_data != NULL); 1253 ASSERT(db->db_level == 0); 1254 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1255 1256 if (dr == NULL || 1257 (dr->dt.dl.dr_data != 1258 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1259 return; 1260 1261 /* 1262 * If the last dirty record for this dbuf has not yet synced 1263 * and its referencing the dbuf data, either: 1264 * reset the reference to point to a new copy, 1265 * or (if there a no active holders) 1266 * just null out the current db_data pointer. 1267 */ 1268 ASSERT3U(dr->dr_txg, >=, txg - 2); 1269 if (db->db_blkid == DMU_BONUS_BLKID) { 1270 /* Note that the data bufs here are zio_bufs */ 1271 dnode_t *dn = DB_DNODE(db); 1272 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1273 dr->dt.dl.dr_data = zio_buf_alloc(bonuslen); 1274 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1275 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen); 1276 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1277 dnode_t *dn = DB_DNODE(db); 1278 int size = arc_buf_size(db->db_buf); 1279 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1280 spa_t *spa = db->db_objset->os_spa; 1281 enum zio_compress compress_type = 1282 arc_get_compression(db->db_buf); 1283 1284 if (arc_is_encrypted(db->db_buf)) { 1285 boolean_t byteorder; 1286 uint8_t salt[ZIO_DATA_SALT_LEN]; 1287 uint8_t iv[ZIO_DATA_IV_LEN]; 1288 uint8_t mac[ZIO_DATA_MAC_LEN]; 1289 1290 arc_get_raw_params(db->db_buf, &byteorder, salt, 1291 iv, mac); 1292 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1293 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1294 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1295 compress_type); 1296 } else if (compress_type != ZIO_COMPRESS_OFF) { 1297 ASSERT3U(type, ==, ARC_BUFC_DATA); 1298 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1299 size, arc_buf_lsize(db->db_buf), compress_type); 1300 } else { 1301 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1302 } 1303 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1304 } else { 1305 db->db_buf = NULL; 1306 dbuf_clear_data(db); 1307 } 1308 } 1309 1310 int 1311 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1312 { 1313 int err = 0; 1314 boolean_t prefetch; 1315 dnode_t *dn; 1316 1317 /* 1318 * We don't have to hold the mutex to check db_state because it 1319 * can't be freed while we have a hold on the buffer. 1320 */ 1321 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1322 1323 if (db->db_state == DB_NOFILL) 1324 return (SET_ERROR(EIO)); 1325 1326 DB_DNODE_ENTER(db); 1327 dn = DB_DNODE(db); 1328 1329 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1330 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1331 DBUF_IS_CACHEABLE(db); 1332 1333 mutex_enter(&db->db_mtx); 1334 if (db->db_state == DB_CACHED) { 1335 spa_t *spa = dn->dn_objset->os_spa; 1336 1337 /* 1338 * Ensure that this block's dnode has been decrypted if 1339 * the caller has requested decrypted data. 1340 */ 1341 err = dbuf_read_verify_dnode_crypt(db, flags); 1342 1343 /* 1344 * If the arc buf is compressed or encrypted and the caller 1345 * requested uncompressed data, we need to untransform it 1346 * before returning. We also call arc_untransform() on any 1347 * unauthenticated blocks, which will verify their MAC if 1348 * the key is now available. 1349 */ 1350 if (err == 0 && db->db_buf != NULL && 1351 (flags & DB_RF_NO_DECRYPT) == 0 && 1352 (arc_is_encrypted(db->db_buf) || 1353 arc_is_unauthenticated(db->db_buf) || 1354 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1355 zbookmark_phys_t zb; 1356 1357 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1358 db->db.db_object, db->db_level, db->db_blkid); 1359 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1360 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1361 dbuf_set_data(db, db->db_buf); 1362 } 1363 mutex_exit(&db->db_mtx); 1364 if (err == 0 && prefetch) { 1365 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1366 flags & DB_RF_HAVESTRUCT); 1367 } 1368 DB_DNODE_EXIT(db); 1369 } else if (db->db_state == DB_UNCACHED) { 1370 spa_t *spa = dn->dn_objset->os_spa; 1371 boolean_t need_wait = B_FALSE; 1372 1373 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1374 1375 if (zio == NULL && 1376 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1377 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1378 need_wait = B_TRUE; 1379 } 1380 err = dbuf_read_impl(db, zio, flags, dblt, FTAG); 1381 /* 1382 * dbuf_read_impl has dropped db_mtx and our parent's rwlock 1383 * for us 1384 */ 1385 if (!err && prefetch) { 1386 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1387 flags & DB_RF_HAVESTRUCT); 1388 } 1389 1390 DB_DNODE_EXIT(db); 1391 1392 if (!err && need_wait) 1393 err = zio_wait(zio); 1394 } else { 1395 /* 1396 * Another reader came in while the dbuf was in flight 1397 * between UNCACHED and CACHED. Either a writer will finish 1398 * writing the buffer (sending the dbuf to CACHED) or the 1399 * first reader's request will reach the read_done callback 1400 * and send the dbuf to CACHED. Otherwise, a failure 1401 * occurred and the dbuf went to UNCACHED. 1402 */ 1403 mutex_exit(&db->db_mtx); 1404 if (prefetch) { 1405 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1406 flags & DB_RF_HAVESTRUCT); 1407 } 1408 DB_DNODE_EXIT(db); 1409 1410 /* Skip the wait per the caller's request. */ 1411 mutex_enter(&db->db_mtx); 1412 if ((flags & DB_RF_NEVERWAIT) == 0) { 1413 while (db->db_state == DB_READ || 1414 db->db_state == DB_FILL) { 1415 ASSERT(db->db_state == DB_READ || 1416 (flags & DB_RF_HAVESTRUCT) == 0); 1417 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1418 db, zio_t *, zio); 1419 cv_wait(&db->db_changed, &db->db_mtx); 1420 } 1421 if (db->db_state == DB_UNCACHED) 1422 err = SET_ERROR(EIO); 1423 } 1424 mutex_exit(&db->db_mtx); 1425 } 1426 1427 return (err); 1428 } 1429 1430 static void 1431 dbuf_noread(dmu_buf_impl_t *db) 1432 { 1433 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1434 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1435 mutex_enter(&db->db_mtx); 1436 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1437 cv_wait(&db->db_changed, &db->db_mtx); 1438 if (db->db_state == DB_UNCACHED) { 1439 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1440 spa_t *spa = db->db_objset->os_spa; 1441 1442 ASSERT(db->db_buf == NULL); 1443 ASSERT(db->db.db_data == NULL); 1444 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size)); 1445 db->db_state = DB_FILL; 1446 } else if (db->db_state == DB_NOFILL) { 1447 dbuf_clear_data(db); 1448 } else { 1449 ASSERT3U(db->db_state, ==, DB_CACHED); 1450 } 1451 mutex_exit(&db->db_mtx); 1452 } 1453 1454 void 1455 dbuf_unoverride(dbuf_dirty_record_t *dr) 1456 { 1457 dmu_buf_impl_t *db = dr->dr_dbuf; 1458 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1459 uint64_t txg = dr->dr_txg; 1460 1461 ASSERT(MUTEX_HELD(&db->db_mtx)); 1462 /* 1463 * This assert is valid because dmu_sync() expects to be called by 1464 * a zilog's get_data while holding a range lock. This call only 1465 * comes from dbuf_dirty() callers who must also hold a range lock. 1466 */ 1467 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1468 ASSERT(db->db_level == 0); 1469 1470 if (db->db_blkid == DMU_BONUS_BLKID || 1471 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1472 return; 1473 1474 ASSERT(db->db_data_pending != dr); 1475 1476 /* free this block */ 1477 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1478 zio_free(db->db_objset->os_spa, txg, bp); 1479 1480 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1481 dr->dt.dl.dr_nopwrite = B_FALSE; 1482 dr->dt.dl.dr_has_raw_params = B_FALSE; 1483 1484 /* 1485 * Release the already-written buffer, so we leave it in 1486 * a consistent dirty state. Note that all callers are 1487 * modifying the buffer, so they will immediately do 1488 * another (redundant) arc_release(). Therefore, leave 1489 * the buf thawed to save the effort of freezing & 1490 * immediately re-thawing it. 1491 */ 1492 arc_release(dr->dt.dl.dr_data, db); 1493 } 1494 1495 /* 1496 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1497 * data blocks in the free range, so that any future readers will find 1498 * empty blocks. 1499 */ 1500 void 1501 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1502 dmu_tx_t *tx) 1503 { 1504 dmu_buf_impl_t db_search; 1505 dmu_buf_impl_t *db, *db_next; 1506 uint64_t txg = tx->tx_txg; 1507 avl_index_t where; 1508 1509 if (end_blkid > dn->dn_maxblkid && 1510 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1511 end_blkid = dn->dn_maxblkid; 1512 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1513 1514 db_search.db_level = 0; 1515 db_search.db_blkid = start_blkid; 1516 db_search.db_state = DB_SEARCH; 1517 1518 mutex_enter(&dn->dn_dbufs_mtx); 1519 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1520 ASSERT3P(db, ==, NULL); 1521 1522 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1523 1524 for (; db != NULL; db = db_next) { 1525 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1526 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1527 1528 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1529 break; 1530 } 1531 ASSERT3U(db->db_blkid, >=, start_blkid); 1532 1533 /* found a level 0 buffer in the range */ 1534 mutex_enter(&db->db_mtx); 1535 if (dbuf_undirty(db, tx)) { 1536 /* mutex has been dropped and dbuf destroyed */ 1537 continue; 1538 } 1539 1540 if (db->db_state == DB_UNCACHED || 1541 db->db_state == DB_NOFILL || 1542 db->db_state == DB_EVICTING) { 1543 ASSERT(db->db.db_data == NULL); 1544 mutex_exit(&db->db_mtx); 1545 continue; 1546 } 1547 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1548 /* will be handled in dbuf_read_done or dbuf_rele */ 1549 db->db_freed_in_flight = TRUE; 1550 mutex_exit(&db->db_mtx); 1551 continue; 1552 } 1553 if (zfs_refcount_count(&db->db_holds) == 0) { 1554 ASSERT(db->db_buf); 1555 dbuf_destroy(db); 1556 continue; 1557 } 1558 /* The dbuf is referenced */ 1559 1560 if (db->db_last_dirty != NULL) { 1561 dbuf_dirty_record_t *dr = db->db_last_dirty; 1562 1563 if (dr->dr_txg == txg) { 1564 /* 1565 * This buffer is "in-use", re-adjust the file 1566 * size to reflect that this buffer may 1567 * contain new data when we sync. 1568 */ 1569 if (db->db_blkid != DMU_SPILL_BLKID && 1570 db->db_blkid > dn->dn_maxblkid) 1571 dn->dn_maxblkid = db->db_blkid; 1572 dbuf_unoverride(dr); 1573 } else { 1574 /* 1575 * This dbuf is not dirty in the open context. 1576 * Either uncache it (if its not referenced in 1577 * the open context) or reset its contents to 1578 * empty. 1579 */ 1580 dbuf_fix_old_data(db, txg); 1581 } 1582 } 1583 /* clear the contents if its cached */ 1584 if (db->db_state == DB_CACHED) { 1585 ASSERT(db->db.db_data != NULL); 1586 arc_release(db->db_buf, db); 1587 rw_enter(&db->db_rwlock, RW_WRITER); 1588 bzero(db->db.db_data, db->db.db_size); 1589 rw_exit(&db->db_rwlock); 1590 arc_buf_freeze(db->db_buf); 1591 } 1592 1593 mutex_exit(&db->db_mtx); 1594 } 1595 mutex_exit(&dn->dn_dbufs_mtx); 1596 } 1597 1598 void 1599 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1600 { 1601 arc_buf_t *buf, *obuf; 1602 int osize = db->db.db_size; 1603 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1604 dnode_t *dn; 1605 1606 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1607 1608 DB_DNODE_ENTER(db); 1609 dn = DB_DNODE(db); 1610 1611 /* 1612 * XXX we should be doing a dbuf_read, checking the return 1613 * value and returning that up to our callers 1614 */ 1615 dmu_buf_will_dirty(&db->db, tx); 1616 1617 /* create the data buffer for the new block */ 1618 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1619 1620 /* copy old block data to the new block */ 1621 obuf = db->db_buf; 1622 bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); 1623 /* zero the remainder */ 1624 if (size > osize) 1625 bzero((uint8_t *)buf->b_data + osize, size - osize); 1626 1627 mutex_enter(&db->db_mtx); 1628 dbuf_set_data(db, buf); 1629 arc_buf_destroy(obuf, db); 1630 db->db.db_size = size; 1631 1632 if (db->db_level == 0) { 1633 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 1634 db->db_last_dirty->dt.dl.dr_data = buf; 1635 } 1636 mutex_exit(&db->db_mtx); 1637 1638 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1639 DB_DNODE_EXIT(db); 1640 } 1641 1642 void 1643 dbuf_release_bp(dmu_buf_impl_t *db) 1644 { 1645 objset_t *os = db->db_objset; 1646 1647 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1648 ASSERT(arc_released(os->os_phys_buf) || 1649 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1650 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1651 1652 (void) arc_release(db->db_buf, db); 1653 } 1654 1655 /* 1656 * We already have a dirty record for this TXG, and we are being 1657 * dirtied again. 1658 */ 1659 static void 1660 dbuf_redirty(dbuf_dirty_record_t *dr) 1661 { 1662 dmu_buf_impl_t *db = dr->dr_dbuf; 1663 1664 ASSERT(MUTEX_HELD(&db->db_mtx)); 1665 1666 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1667 /* 1668 * If this buffer has already been written out, 1669 * we now need to reset its state. 1670 */ 1671 dbuf_unoverride(dr); 1672 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1673 db->db_state != DB_NOFILL) { 1674 /* Already released on initial dirty, so just thaw. */ 1675 ASSERT(arc_released(db->db_buf)); 1676 arc_buf_thaw(db->db_buf); 1677 } 1678 } 1679 } 1680 1681 dbuf_dirty_record_t * 1682 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1683 { 1684 dnode_t *dn; 1685 objset_t *os; 1686 dbuf_dirty_record_t **drp, *dr; 1687 int txgoff = tx->tx_txg & TXG_MASK; 1688 boolean_t drop_struct_rwlock = B_FALSE; 1689 1690 ASSERT(tx->tx_txg != 0); 1691 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1692 DMU_TX_DIRTY_BUF(tx, db); 1693 1694 DB_DNODE_ENTER(db); 1695 dn = DB_DNODE(db); 1696 /* 1697 * Shouldn't dirty a regular buffer in syncing context. Private 1698 * objects may be dirtied in syncing context, but only if they 1699 * were already pre-dirtied in open context. 1700 */ 1701 #ifdef DEBUG 1702 if (dn->dn_objset->os_dsl_dataset != NULL) { 1703 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1704 RW_READER, FTAG); 1705 } 1706 ASSERT(!dmu_tx_is_syncing(tx) || 1707 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 1708 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1709 dn->dn_objset->os_dsl_dataset == NULL); 1710 if (dn->dn_objset->os_dsl_dataset != NULL) 1711 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 1712 #endif 1713 /* 1714 * We make this assert for private objects as well, but after we 1715 * check if we're already dirty. They are allowed to re-dirty 1716 * in syncing context. 1717 */ 1718 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 1719 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1720 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1721 1722 mutex_enter(&db->db_mtx); 1723 /* 1724 * XXX make this true for indirects too? The problem is that 1725 * transactions created with dmu_tx_create_assigned() from 1726 * syncing context don't bother holding ahead. 1727 */ 1728 ASSERT(db->db_level != 0 || 1729 db->db_state == DB_CACHED || db->db_state == DB_FILL || 1730 db->db_state == DB_NOFILL); 1731 1732 mutex_enter(&dn->dn_mtx); 1733 /* 1734 * Don't set dirtyctx to SYNC if we're just modifying this as we 1735 * initialize the objset. 1736 */ 1737 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 1738 if (dn->dn_objset->os_dsl_dataset != NULL) { 1739 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1740 RW_READER, FTAG); 1741 } 1742 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 1743 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? 1744 DN_DIRTY_SYNC : DN_DIRTY_OPEN); 1745 ASSERT(dn->dn_dirtyctx_firstset == NULL); 1746 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); 1747 } 1748 if (dn->dn_objset->os_dsl_dataset != NULL) { 1749 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 1750 FTAG); 1751 } 1752 } 1753 1754 if (tx->tx_txg > dn->dn_dirty_txg) 1755 dn->dn_dirty_txg = tx->tx_txg; 1756 mutex_exit(&dn->dn_mtx); 1757 1758 if (db->db_blkid == DMU_SPILL_BLKID) 1759 dn->dn_have_spill = B_TRUE; 1760 1761 /* 1762 * If this buffer is already dirty, we're done. 1763 */ 1764 drp = &db->db_last_dirty; 1765 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || 1766 db->db.db_object == DMU_META_DNODE_OBJECT); 1767 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) 1768 drp = &dr->dr_next; 1769 if (dr && dr->dr_txg == tx->tx_txg) { 1770 DB_DNODE_EXIT(db); 1771 1772 dbuf_redirty(dr); 1773 mutex_exit(&db->db_mtx); 1774 return (dr); 1775 } 1776 1777 /* 1778 * Only valid if not already dirty. 1779 */ 1780 ASSERT(dn->dn_object == 0 || 1781 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 1782 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 1783 1784 ASSERT3U(dn->dn_nlevels, >, db->db_level); 1785 1786 /* 1787 * We should only be dirtying in syncing context if it's the 1788 * mos or we're initializing the os or it's a special object. 1789 * However, we are allowed to dirty in syncing context provided 1790 * we already dirtied it in open context. Hence we must make 1791 * this assertion only if we're not already dirty. 1792 */ 1793 os = dn->dn_objset; 1794 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 1795 #ifdef DEBUG 1796 if (dn->dn_objset->os_dsl_dataset != NULL) 1797 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 1798 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 1799 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 1800 if (dn->dn_objset->os_dsl_dataset != NULL) 1801 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 1802 #endif 1803 ASSERT(db->db.db_size != 0); 1804 1805 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 1806 1807 if (db->db_blkid != DMU_BONUS_BLKID) { 1808 dmu_objset_willuse_space(os, db->db.db_size, tx); 1809 } 1810 1811 /* 1812 * If this buffer is dirty in an old transaction group we need 1813 * to make a copy of it so that the changes we make in this 1814 * transaction group won't leak out when we sync the older txg. 1815 */ 1816 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 1817 if (db->db_level == 0) { 1818 void *data_old = db->db_buf; 1819 1820 if (db->db_state != DB_NOFILL) { 1821 if (db->db_blkid == DMU_BONUS_BLKID) { 1822 dbuf_fix_old_data(db, tx->tx_txg); 1823 data_old = db->db.db_data; 1824 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 1825 /* 1826 * Release the data buffer from the cache so 1827 * that we can modify it without impacting 1828 * possible other users of this cached data 1829 * block. Note that indirect blocks and 1830 * private objects are not released until the 1831 * syncing state (since they are only modified 1832 * then). 1833 */ 1834 arc_release(db->db_buf, db); 1835 dbuf_fix_old_data(db, tx->tx_txg); 1836 data_old = db->db_buf; 1837 } 1838 ASSERT(data_old != NULL); 1839 } 1840 dr->dt.dl.dr_data = data_old; 1841 } else { 1842 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); 1843 list_create(&dr->dt.di.dr_children, 1844 sizeof (dbuf_dirty_record_t), 1845 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 1846 } 1847 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) 1848 dr->dr_accounted = db->db.db_size; 1849 dr->dr_dbuf = db; 1850 dr->dr_txg = tx->tx_txg; 1851 dr->dr_next = *drp; 1852 *drp = dr; 1853 1854 /* 1855 * We could have been freed_in_flight between the dbuf_noread 1856 * and dbuf_dirty. We win, as though the dbuf_noread() had 1857 * happened after the free. 1858 */ 1859 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1860 db->db_blkid != DMU_SPILL_BLKID) { 1861 mutex_enter(&dn->dn_mtx); 1862 if (dn->dn_free_ranges[txgoff] != NULL) { 1863 range_tree_clear(dn->dn_free_ranges[txgoff], 1864 db->db_blkid, 1); 1865 } 1866 mutex_exit(&dn->dn_mtx); 1867 db->db_freed_in_flight = FALSE; 1868 } 1869 1870 /* 1871 * This buffer is now part of this txg 1872 */ 1873 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 1874 db->db_dirtycnt += 1; 1875 ASSERT3U(db->db_dirtycnt, <=, 3); 1876 1877 mutex_exit(&db->db_mtx); 1878 1879 if (db->db_blkid == DMU_BONUS_BLKID || 1880 db->db_blkid == DMU_SPILL_BLKID) { 1881 mutex_enter(&dn->dn_mtx); 1882 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1883 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1884 mutex_exit(&dn->dn_mtx); 1885 dnode_setdirty(dn, tx); 1886 DB_DNODE_EXIT(db); 1887 return (dr); 1888 } 1889 1890 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 1891 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1892 drop_struct_rwlock = B_TRUE; 1893 } 1894 1895 /* 1896 * If we are overwriting a dedup BP, then unless it is snapshotted, 1897 * when we get to syncing context we will need to decrement its 1898 * refcount in the DDT. Prefetch the relevant DDT block so that 1899 * syncing context won't have to wait for the i/o. 1900 */ 1901 if (db->db_blkptr != NULL) { 1902 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1903 ddt_prefetch(os->os_spa, db->db_blkptr); 1904 dmu_buf_unlock_parent(db, dblt, FTAG); 1905 } 1906 1907 /* 1908 * We need to hold the dn_struct_rwlock to make this assertion, 1909 * because it protects dn_phys / dn_next_nlevels from changing. 1910 */ 1911 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 1912 dn->dn_phys->dn_nlevels > db->db_level || 1913 dn->dn_next_nlevels[txgoff] > db->db_level || 1914 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 1915 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 1916 1917 1918 if (db->db_level == 0) { 1919 ASSERT(!db->db_objset->os_raw_receive || 1920 dn->dn_maxblkid >= db->db_blkid); 1921 dnode_new_blkid(dn, db->db_blkid, tx, 1922 drop_struct_rwlock, B_FALSE); 1923 ASSERT(dn->dn_maxblkid >= db->db_blkid); 1924 } 1925 1926 if (db->db_level+1 < dn->dn_nlevels) { 1927 dmu_buf_impl_t *parent = db->db_parent; 1928 dbuf_dirty_record_t *di; 1929 int parent_held = FALSE; 1930 1931 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 1932 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1933 parent = dbuf_hold_level(dn, db->db_level + 1, 1934 db->db_blkid >> epbs, FTAG); 1935 ASSERT(parent != NULL); 1936 parent_held = TRUE; 1937 } 1938 if (drop_struct_rwlock) 1939 rw_exit(&dn->dn_struct_rwlock); 1940 ASSERT3U(db->db_level + 1, ==, parent->db_level); 1941 di = dbuf_dirty(parent, tx); 1942 if (parent_held) 1943 dbuf_rele(parent, FTAG); 1944 1945 mutex_enter(&db->db_mtx); 1946 /* 1947 * Since we've dropped the mutex, it's possible that 1948 * dbuf_undirty() might have changed this out from under us. 1949 */ 1950 if (db->db_last_dirty == dr || 1951 dn->dn_object == DMU_META_DNODE_OBJECT) { 1952 mutex_enter(&di->dt.di.dr_mtx); 1953 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 1954 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1955 list_insert_tail(&di->dt.di.dr_children, dr); 1956 mutex_exit(&di->dt.di.dr_mtx); 1957 dr->dr_parent = di; 1958 } 1959 mutex_exit(&db->db_mtx); 1960 } else { 1961 ASSERT(db->db_level + 1 == dn->dn_nlevels); 1962 ASSERT(db->db_blkid < dn->dn_nblkptr); 1963 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 1964 mutex_enter(&dn->dn_mtx); 1965 ASSERT(!list_link_active(&dr->dr_dirty_node)); 1966 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 1967 mutex_exit(&dn->dn_mtx); 1968 if (drop_struct_rwlock) 1969 rw_exit(&dn->dn_struct_rwlock); 1970 } 1971 1972 dnode_setdirty(dn, tx); 1973 DB_DNODE_EXIT(db); 1974 return (dr); 1975 } 1976 1977 /* 1978 * Undirty a buffer in the transaction group referenced by the given 1979 * transaction. Return whether this evicted the dbuf. 1980 */ 1981 static boolean_t 1982 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 1983 { 1984 dnode_t *dn; 1985 uint64_t txg = tx->tx_txg; 1986 dbuf_dirty_record_t *dr, **drp; 1987 1988 ASSERT(txg != 0); 1989 1990 /* 1991 * Due to our use of dn_nlevels below, this can only be called 1992 * in open context, unless we are operating on the MOS. 1993 * From syncing context, dn_nlevels may be different from the 1994 * dn_nlevels used when dbuf was dirtied. 1995 */ 1996 ASSERT(db->db_objset == 1997 dmu_objset_pool(db->db_objset)->dp_meta_objset || 1998 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 1999 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2000 ASSERT0(db->db_level); 2001 ASSERT(MUTEX_HELD(&db->db_mtx)); 2002 2003 /* 2004 * If this buffer is not dirty, we're done. 2005 */ 2006 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) 2007 if (dr->dr_txg <= txg) 2008 break; 2009 if (dr == NULL || dr->dr_txg < txg) 2010 return (B_FALSE); 2011 ASSERT(dr->dr_txg == txg); 2012 ASSERT(dr->dr_dbuf == db); 2013 2014 DB_DNODE_ENTER(db); 2015 dn = DB_DNODE(db); 2016 2017 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2018 2019 ASSERT(db->db.db_size != 0); 2020 2021 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2022 dr->dr_accounted, txg); 2023 2024 *drp = dr->dr_next; 2025 2026 /* 2027 * Note that there are three places in dbuf_dirty() 2028 * where this dirty record may be put on a list. 2029 * Make sure to do a list_remove corresponding to 2030 * every one of those list_insert calls. 2031 */ 2032 if (dr->dr_parent) { 2033 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2034 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2035 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2036 } else if (db->db_blkid == DMU_SPILL_BLKID || 2037 db->db_level + 1 == dn->dn_nlevels) { 2038 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2039 mutex_enter(&dn->dn_mtx); 2040 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2041 mutex_exit(&dn->dn_mtx); 2042 } 2043 DB_DNODE_EXIT(db); 2044 2045 if (db->db_state != DB_NOFILL) { 2046 dbuf_unoverride(dr); 2047 2048 ASSERT(db->db_buf != NULL); 2049 ASSERT(dr->dt.dl.dr_data != NULL); 2050 if (dr->dt.dl.dr_data != db->db_buf) 2051 arc_buf_destroy(dr->dt.dl.dr_data, db); 2052 } 2053 2054 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2055 2056 ASSERT(db->db_dirtycnt > 0); 2057 db->db_dirtycnt -= 1; 2058 2059 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2060 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 2061 dbuf_destroy(db); 2062 return (B_TRUE); 2063 } 2064 2065 return (B_FALSE); 2066 } 2067 2068 static void 2069 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2070 { 2071 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2072 2073 ASSERT(tx->tx_txg != 0); 2074 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2075 2076 /* 2077 * Quick check for dirtyness. For already dirty blocks, this 2078 * reduces runtime of this function by >90%, and overall performance 2079 * by 50% for some workloads (e.g. file deletion with indirect blocks 2080 * cached). 2081 */ 2082 mutex_enter(&db->db_mtx); 2083 dbuf_dirty_record_t *dr; 2084 for (dr = db->db_last_dirty; 2085 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) { 2086 /* 2087 * It's possible that it is already dirty but not cached, 2088 * because there are some calls to dbuf_dirty() that don't 2089 * go through dmu_buf_will_dirty(). 2090 */ 2091 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) { 2092 /* This dbuf is already dirty and cached. */ 2093 dbuf_redirty(dr); 2094 mutex_exit(&db->db_mtx); 2095 return; 2096 } 2097 } 2098 mutex_exit(&db->db_mtx); 2099 2100 DB_DNODE_ENTER(db); 2101 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2102 flags |= DB_RF_HAVESTRUCT; 2103 DB_DNODE_EXIT(db); 2104 (void) dbuf_read(db, NULL, flags); 2105 (void) dbuf_dirty(db, tx); 2106 } 2107 2108 void 2109 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2110 { 2111 dmu_buf_will_dirty_impl(db_fake, 2112 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2113 } 2114 2115 void 2116 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2117 { 2118 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2119 2120 db->db_state = DB_NOFILL; 2121 2122 dmu_buf_will_fill(db_fake, tx); 2123 } 2124 2125 void 2126 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2127 { 2128 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2129 2130 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2131 ASSERT(tx->tx_txg != 0); 2132 ASSERT(db->db_level == 0); 2133 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2134 2135 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2136 dmu_tx_private_ok(tx)); 2137 2138 dbuf_noread(db); 2139 (void) dbuf_dirty(db, tx); 2140 } 2141 2142 /* 2143 * This function is effectively the same as dmu_buf_will_dirty(), but 2144 * indicates the caller expects raw encrypted data in the db, and provides 2145 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2146 * blkptr_t when this dbuf is written. This is only used for blocks of 2147 * dnodes during a raw receive. 2148 */ 2149 void 2150 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2151 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2152 { 2153 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2154 dbuf_dirty_record_t *dr; 2155 2156 /* 2157 * dr_has_raw_params is only processed for blocks of dnodes 2158 * (see dbuf_sync_dnode_leaf_crypt()). 2159 */ 2160 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2161 ASSERT3U(db->db_level, ==, 0); 2162 2163 dmu_buf_will_dirty_impl(db_fake, 2164 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2165 2166 dr = db->db_last_dirty; 2167 while (dr != NULL && dr->dr_txg > tx->tx_txg) 2168 dr = dr->dr_next; 2169 2170 ASSERT3P(dr, !=, NULL); 2171 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2172 2173 dr->dt.dl.dr_has_raw_params = B_TRUE; 2174 dr->dt.dl.dr_byteorder = byteorder; 2175 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN); 2176 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN); 2177 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN); 2178 } 2179 2180 #pragma weak dmu_buf_fill_done = dbuf_fill_done 2181 /* ARGSUSED */ 2182 void 2183 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) 2184 { 2185 mutex_enter(&db->db_mtx); 2186 DBUF_VERIFY(db); 2187 2188 if (db->db_state == DB_FILL) { 2189 if (db->db_level == 0 && db->db_freed_in_flight) { 2190 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2191 /* we were freed while filling */ 2192 /* XXX dbuf_undirty? */ 2193 bzero(db->db.db_data, db->db.db_size); 2194 db->db_freed_in_flight = FALSE; 2195 } 2196 db->db_state = DB_CACHED; 2197 cv_broadcast(&db->db_changed); 2198 } 2199 mutex_exit(&db->db_mtx); 2200 } 2201 2202 void 2203 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2204 bp_embedded_type_t etype, enum zio_compress comp, 2205 int uncompressed_size, int compressed_size, int byteorder, 2206 dmu_tx_t *tx) 2207 { 2208 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2209 struct dirty_leaf *dl; 2210 dmu_object_type_t type; 2211 2212 if (etype == BP_EMBEDDED_TYPE_DATA) { 2213 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2214 SPA_FEATURE_EMBEDDED_DATA)); 2215 } 2216 2217 DB_DNODE_ENTER(db); 2218 type = DB_DNODE(db)->dn_type; 2219 DB_DNODE_EXIT(db); 2220 2221 ASSERT0(db->db_level); 2222 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2223 2224 dmu_buf_will_not_fill(dbuf, tx); 2225 2226 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); 2227 dl = &db->db_last_dirty->dt.dl; 2228 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2229 data, comp, uncompressed_size, compressed_size); 2230 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2231 BP_SET_TYPE(&dl->dr_overridden_by, type); 2232 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2233 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2234 2235 dl->dr_override_state = DR_OVERRIDDEN; 2236 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; 2237 } 2238 2239 /* 2240 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2241 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2242 */ 2243 void 2244 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2245 { 2246 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2247 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2248 ASSERT(db->db_level == 0); 2249 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2250 ASSERT(buf != NULL); 2251 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2252 ASSERT(tx->tx_txg != 0); 2253 2254 arc_return_buf(buf, db); 2255 ASSERT(arc_released(buf)); 2256 2257 mutex_enter(&db->db_mtx); 2258 2259 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2260 cv_wait(&db->db_changed, &db->db_mtx); 2261 2262 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2263 2264 if (db->db_state == DB_CACHED && 2265 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2266 /* 2267 * In practice, we will never have a case where we have an 2268 * encrypted arc buffer while additional holds exist on the 2269 * dbuf. We don't handle this here so we simply assert that 2270 * fact instead. 2271 */ 2272 ASSERT(!arc_is_encrypted(buf)); 2273 mutex_exit(&db->db_mtx); 2274 (void) dbuf_dirty(db, tx); 2275 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2276 arc_buf_destroy(buf, db); 2277 xuio_stat_wbuf_copied(); 2278 return; 2279 } 2280 2281 xuio_stat_wbuf_nocopy(); 2282 if (db->db_state == DB_CACHED) { 2283 dbuf_dirty_record_t *dr = db->db_last_dirty; 2284 2285 ASSERT(db->db_buf != NULL); 2286 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2287 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2288 2289 if (!arc_released(db->db_buf)) { 2290 ASSERT(dr->dt.dl.dr_override_state == 2291 DR_OVERRIDDEN); 2292 arc_release(db->db_buf, db); 2293 } 2294 dr->dt.dl.dr_data = buf; 2295 arc_buf_destroy(db->db_buf, db); 2296 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2297 arc_release(db->db_buf, db); 2298 arc_buf_destroy(db->db_buf, db); 2299 } 2300 db->db_buf = NULL; 2301 } 2302 ASSERT(db->db_buf == NULL); 2303 dbuf_set_data(db, buf); 2304 db->db_state = DB_FILL; 2305 mutex_exit(&db->db_mtx); 2306 (void) dbuf_dirty(db, tx); 2307 dmu_buf_fill_done(&db->db, tx); 2308 } 2309 2310 void 2311 dbuf_destroy(dmu_buf_impl_t *db) 2312 { 2313 dnode_t *dn; 2314 dmu_buf_impl_t *parent = db->db_parent; 2315 dmu_buf_impl_t *dndb; 2316 2317 ASSERT(MUTEX_HELD(&db->db_mtx)); 2318 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2319 2320 if (db->db_buf != NULL) { 2321 arc_buf_destroy(db->db_buf, db); 2322 db->db_buf = NULL; 2323 } 2324 2325 if (db->db_blkid == DMU_BONUS_BLKID) { 2326 int slots = DB_DNODE(db)->dn_num_slots; 2327 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2328 if (db->db.db_data != NULL) { 2329 zio_buf_free(db->db.db_data, bonuslen); 2330 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2331 db->db_state = DB_UNCACHED; 2332 } 2333 } 2334 2335 dbuf_clear_data(db); 2336 2337 if (multilist_link_active(&db->db_cache_link)) { 2338 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2339 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2340 2341 multilist_remove(dbuf_caches[db->db_caching_status].cache, db); 2342 (void) zfs_refcount_remove_many( 2343 &dbuf_caches[db->db_caching_status].size, 2344 db->db.db_size, db); 2345 2346 db->db_caching_status = DB_NO_CACHE; 2347 } 2348 2349 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2350 ASSERT(db->db_data_pending == NULL); 2351 2352 db->db_state = DB_EVICTING; 2353 db->db_blkptr = NULL; 2354 2355 /* 2356 * Now that db_state is DB_EVICTING, nobody else can find this via 2357 * the hash table. We can now drop db_mtx, which allows us to 2358 * acquire the dn_dbufs_mtx. 2359 */ 2360 mutex_exit(&db->db_mtx); 2361 2362 DB_DNODE_ENTER(db); 2363 dn = DB_DNODE(db); 2364 dndb = dn->dn_dbuf; 2365 if (db->db_blkid != DMU_BONUS_BLKID) { 2366 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2367 if (needlock) 2368 mutex_enter(&dn->dn_dbufs_mtx); 2369 avl_remove(&dn->dn_dbufs, db); 2370 atomic_dec_32(&dn->dn_dbufs_count); 2371 membar_producer(); 2372 DB_DNODE_EXIT(db); 2373 if (needlock) 2374 mutex_exit(&dn->dn_dbufs_mtx); 2375 /* 2376 * Decrementing the dbuf count means that the hold corresponding 2377 * to the removed dbuf is no longer discounted in dnode_move(), 2378 * so the dnode cannot be moved until after we release the hold. 2379 * The membar_producer() ensures visibility of the decremented 2380 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2381 * release any lock. 2382 */ 2383 mutex_enter(&dn->dn_mtx); 2384 dnode_rele_and_unlock(dn, db, B_TRUE); 2385 db->db_dnode_handle = NULL; 2386 2387 dbuf_hash_remove(db); 2388 } else { 2389 DB_DNODE_EXIT(db); 2390 } 2391 2392 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2393 2394 db->db_parent = NULL; 2395 2396 ASSERT(db->db_buf == NULL); 2397 ASSERT(db->db.db_data == NULL); 2398 ASSERT(db->db_hash_next == NULL); 2399 ASSERT(db->db_blkptr == NULL); 2400 ASSERT(db->db_data_pending == NULL); 2401 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 2402 ASSERT(!multilist_link_active(&db->db_cache_link)); 2403 2404 kmem_cache_free(dbuf_kmem_cache, db); 2405 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2406 2407 /* 2408 * If this dbuf is referenced from an indirect dbuf, 2409 * decrement the ref count on the indirect dbuf. 2410 */ 2411 if (parent && parent != dndb) { 2412 mutex_enter(&parent->db_mtx); 2413 dbuf_rele_and_unlock(parent, db, B_TRUE); 2414 } 2415 } 2416 2417 /* 2418 * Note: While bpp will always be updated if the function returns success, 2419 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2420 * this happens when the dnode is the meta-dnode, or {user|group|project}used 2421 * object. 2422 */ 2423 static int 2424 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2425 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2426 { 2427 *parentp = NULL; 2428 *bpp = NULL; 2429 2430 ASSERT(blkid != DMU_BONUS_BLKID); 2431 2432 if (blkid == DMU_SPILL_BLKID) { 2433 mutex_enter(&dn->dn_mtx); 2434 if (dn->dn_have_spill && 2435 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2436 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 2437 else 2438 *bpp = NULL; 2439 dbuf_add_ref(dn->dn_dbuf, NULL); 2440 *parentp = dn->dn_dbuf; 2441 mutex_exit(&dn->dn_mtx); 2442 return (0); 2443 } 2444 2445 int nlevels = 2446 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2447 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2448 2449 ASSERT3U(level * epbs, <, 64); 2450 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2451 /* 2452 * This assertion shouldn't trip as long as the max indirect block size 2453 * is less than 1M. The reason for this is that up to that point, 2454 * the number of levels required to address an entire object with blocks 2455 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2456 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2457 * (i.e. we can address the entire object), objects will all use at most 2458 * N-1 levels and the assertion won't overflow. However, once epbs is 2459 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2460 * enough to address an entire object, so objects will have 5 levels, 2461 * but then this assertion will overflow. 2462 * 2463 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2464 * need to redo this logic to handle overflows. 2465 */ 2466 ASSERT(level >= nlevels || 2467 ((nlevels - level - 1) * epbs) + 2468 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2469 if (level >= nlevels || 2470 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2471 ((nlevels - level - 1) * epbs)) || 2472 (fail_sparse && 2473 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2474 /* the buffer has no parent yet */ 2475 return (SET_ERROR(ENOENT)); 2476 } else if (level < nlevels-1) { 2477 /* this block is referenced from an indirect block */ 2478 int err = dbuf_hold_impl(dn, level+1, 2479 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2480 if (err) 2481 return (err); 2482 err = dbuf_read(*parentp, NULL, 2483 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2484 if (err) { 2485 dbuf_rele(*parentp, NULL); 2486 *parentp = NULL; 2487 return (err); 2488 } 2489 rw_enter(&(*parentp)->db_rwlock, RW_READER); 2490 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2491 (blkid & ((1ULL << epbs) - 1)); 2492 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2493 ASSERT(BP_IS_HOLE(*bpp)); 2494 rw_exit(&(*parentp)->db_rwlock); 2495 return (0); 2496 } else { 2497 /* the block is referenced from the dnode */ 2498 ASSERT3U(level, ==, nlevels-1); 2499 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2500 blkid < dn->dn_phys->dn_nblkptr); 2501 if (dn->dn_dbuf) { 2502 dbuf_add_ref(dn->dn_dbuf, NULL); 2503 *parentp = dn->dn_dbuf; 2504 } 2505 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2506 return (0); 2507 } 2508 } 2509 2510 static dmu_buf_impl_t * 2511 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2512 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2513 { 2514 objset_t *os = dn->dn_objset; 2515 dmu_buf_impl_t *db, *odb; 2516 2517 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2518 ASSERT(dn->dn_type != DMU_OT_NONE); 2519 2520 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2521 2522 db->db_objset = os; 2523 db->db.db_object = dn->dn_object; 2524 db->db_level = level; 2525 db->db_blkid = blkid; 2526 db->db_last_dirty = NULL; 2527 db->db_dirtycnt = 0; 2528 db->db_dnode_handle = dn->dn_handle; 2529 db->db_parent = parent; 2530 db->db_blkptr = blkptr; 2531 2532 db->db_user = NULL; 2533 db->db_user_immediate_evict = FALSE; 2534 db->db_freed_in_flight = FALSE; 2535 db->db_pending_evict = FALSE; 2536 2537 if (blkid == DMU_BONUS_BLKID) { 2538 ASSERT3P(parent, ==, dn->dn_dbuf); 2539 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 2540 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2541 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2542 db->db.db_offset = DMU_BONUS_BLKID; 2543 db->db_state = DB_UNCACHED; 2544 db->db_caching_status = DB_NO_CACHE; 2545 /* the bonus dbuf is not placed in the hash table */ 2546 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2547 return (db); 2548 } else if (blkid == DMU_SPILL_BLKID) { 2549 db->db.db_size = (blkptr != NULL) ? 2550 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2551 db->db.db_offset = 0; 2552 } else { 2553 int blocksize = 2554 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2555 db->db.db_size = blocksize; 2556 db->db.db_offset = db->db_blkid * blocksize; 2557 } 2558 2559 /* 2560 * Hold the dn_dbufs_mtx while we get the new dbuf 2561 * in the hash table *and* added to the dbufs list. 2562 * This prevents a possible deadlock with someone 2563 * trying to look up this dbuf before its added to the 2564 * dn_dbufs list. 2565 */ 2566 mutex_enter(&dn->dn_dbufs_mtx); 2567 db->db_state = DB_EVICTING; 2568 if ((odb = dbuf_hash_insert(db)) != NULL) { 2569 /* someone else inserted it first */ 2570 kmem_cache_free(dbuf_kmem_cache, db); 2571 mutex_exit(&dn->dn_dbufs_mtx); 2572 return (odb); 2573 } 2574 avl_add(&dn->dn_dbufs, db); 2575 2576 db->db_state = DB_UNCACHED; 2577 db->db_caching_status = DB_NO_CACHE; 2578 mutex_exit(&dn->dn_dbufs_mtx); 2579 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); 2580 2581 if (parent && parent != dn->dn_dbuf) 2582 dbuf_add_ref(parent, db); 2583 2584 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2585 zfs_refcount_count(&dn->dn_holds) > 0); 2586 (void) zfs_refcount_add(&dn->dn_holds, db); 2587 atomic_inc_32(&dn->dn_dbufs_count); 2588 2589 dprintf_dbuf(db, "db=%p\n", db); 2590 2591 return (db); 2592 } 2593 2594 typedef struct dbuf_prefetch_arg { 2595 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 2596 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 2597 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 2598 int dpa_curlevel; /* The current level that we're reading */ 2599 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 2600 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 2601 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 2602 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 2603 } dbuf_prefetch_arg_t; 2604 2605 /* 2606 * Actually issue the prefetch read for the block given. 2607 */ 2608 static void 2609 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 2610 { 2611 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2612 return; 2613 2614 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 2615 arc_flags_t aflags = 2616 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH; 2617 2618 /* dnodes are always read as raw and then converted later */ 2619 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 2620 dpa->dpa_curlevel == 0) 2621 zio_flags |= ZIO_FLAG_RAW; 2622 2623 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2624 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 2625 ASSERT(dpa->dpa_zio != NULL); 2626 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL, 2627 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 2628 } 2629 2630 /* 2631 * Called when an indirect block above our prefetch target is read in. This 2632 * will either read in the next indirect block down the tree or issue the actual 2633 * prefetch if the next block down is our target. 2634 */ 2635 /* ARGSUSED */ 2636 static void 2637 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 2638 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 2639 { 2640 dbuf_prefetch_arg_t *dpa = private; 2641 2642 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 2643 ASSERT3S(dpa->dpa_curlevel, >, 0); 2644 2645 if (abuf == NULL) { 2646 ASSERT(zio == NULL || zio->io_error != 0); 2647 kmem_free(dpa, sizeof (*dpa)); 2648 return; 2649 } 2650 ASSERT(zio == NULL || zio->io_error == 0); 2651 2652 /* 2653 * The dpa_dnode is only valid if we are called with a NULL 2654 * zio. This indicates that the arc_read() returned without 2655 * first calling zio_read() to issue a physical read. Once 2656 * a physical read is made the dpa_dnode must be invalidated 2657 * as the locks guarding it may have been dropped. If the 2658 * dpa_dnode is still valid, then we want to add it to the dbuf 2659 * cache. To do so, we must hold the dbuf associated with the block 2660 * we just prefetched, read its contents so that we associate it 2661 * with an arc_buf_t, and then release it. 2662 */ 2663 if (zio != NULL) { 2664 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 2665 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 2666 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 2667 } else { 2668 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 2669 } 2670 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 2671 2672 dpa->dpa_dnode = NULL; 2673 } else if (dpa->dpa_dnode != NULL) { 2674 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 2675 (dpa->dpa_epbs * (dpa->dpa_curlevel - 2676 dpa->dpa_zb.zb_level)); 2677 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 2678 dpa->dpa_curlevel, curblkid, FTAG); 2679 (void) dbuf_read(db, NULL, 2680 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 2681 dbuf_rele(db, FTAG); 2682 } 2683 2684 dpa->dpa_curlevel--; 2685 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 2686 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 2687 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 2688 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 2689 2690 if (BP_IS_HOLE(bp)) { 2691 kmem_free(dpa, sizeof (*dpa)); 2692 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 2693 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 2694 dbuf_issue_final_prefetch(dpa, bp); 2695 kmem_free(dpa, sizeof (*dpa)); 2696 } else { 2697 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2698 zbookmark_phys_t zb; 2699 2700 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2701 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 2702 iter_aflags |= ARC_FLAG_L2CACHE; 2703 2704 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 2705 2706 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 2707 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 2708 2709 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2710 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 2711 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2712 &iter_aflags, &zb); 2713 } 2714 2715 arc_buf_destroy(abuf, private); 2716 } 2717 2718 /* 2719 * Issue prefetch reads for the given block on the given level. If the indirect 2720 * blocks above that block are not in memory, we will read them in 2721 * asynchronously. As a result, this call never blocks waiting for a read to 2722 * complete. Note that the prefetch might fail if the dataset is encrypted and 2723 * the encryption key is unmapped before the IO completes. 2724 */ 2725 void 2726 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 2727 arc_flags_t aflags) 2728 { 2729 blkptr_t bp; 2730 int epbs, nlevels, curlevel; 2731 uint64_t curblkid; 2732 2733 ASSERT(blkid != DMU_BONUS_BLKID); 2734 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2735 2736 if (blkid > dn->dn_maxblkid) 2737 return; 2738 2739 if (level == 0 && dnode_block_freed(dn, blkid)) 2740 return; 2741 2742 /* 2743 * This dnode hasn't been written to disk yet, so there's nothing to 2744 * prefetch. 2745 */ 2746 nlevels = dn->dn_phys->dn_nlevels; 2747 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 2748 return; 2749 2750 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2751 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 2752 return; 2753 2754 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 2755 level, blkid); 2756 if (db != NULL) { 2757 mutex_exit(&db->db_mtx); 2758 /* 2759 * This dbuf already exists. It is either CACHED, or 2760 * (we assume) about to be read or filled. 2761 */ 2762 return; 2763 } 2764 2765 /* 2766 * Find the closest ancestor (indirect block) of the target block 2767 * that is present in the cache. In this indirect block, we will 2768 * find the bp that is at curlevel, curblkid. 2769 */ 2770 curlevel = level; 2771 curblkid = blkid; 2772 while (curlevel < nlevels - 1) { 2773 int parent_level = curlevel + 1; 2774 uint64_t parent_blkid = curblkid >> epbs; 2775 dmu_buf_impl_t *db; 2776 2777 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 2778 FALSE, TRUE, FTAG, &db) == 0) { 2779 blkptr_t *bpp = db->db_buf->b_data; 2780 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 2781 dbuf_rele(db, FTAG); 2782 break; 2783 } 2784 2785 curlevel = parent_level; 2786 curblkid = parent_blkid; 2787 } 2788 2789 if (curlevel == nlevels - 1) { 2790 /* No cached indirect blocks found. */ 2791 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 2792 bp = dn->dn_phys->dn_blkptr[curblkid]; 2793 } 2794 if (BP_IS_HOLE(&bp)) 2795 return; 2796 2797 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 2798 2799 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 2800 ZIO_FLAG_CANFAIL); 2801 2802 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 2803 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2804 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2805 dn->dn_object, level, blkid); 2806 dpa->dpa_curlevel = curlevel; 2807 dpa->dpa_prio = prio; 2808 dpa->dpa_aflags = aflags; 2809 dpa->dpa_spa = dn->dn_objset->os_spa; 2810 dpa->dpa_dnode = dn; 2811 dpa->dpa_epbs = epbs; 2812 dpa->dpa_zio = pio; 2813 2814 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2815 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 2816 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 2817 2818 /* 2819 * If we have the indirect just above us, no need to do the asynchronous 2820 * prefetch chain; we'll just run the last step ourselves. If we're at 2821 * a higher level, though, we want to issue the prefetches for all the 2822 * indirect blocks asynchronously, so we can go on with whatever we were 2823 * doing. 2824 */ 2825 if (curlevel == level) { 2826 ASSERT3U(curblkid, ==, blkid); 2827 dbuf_issue_final_prefetch(dpa, &bp); 2828 kmem_free(dpa, sizeof (*dpa)); 2829 } else { 2830 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 2831 zbookmark_phys_t zb; 2832 2833 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 2834 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 2835 iter_aflags |= ARC_FLAG_L2CACHE; 2836 2837 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 2838 dn->dn_object, curlevel, curblkid); 2839 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 2840 &bp, dbuf_prefetch_indirect_done, dpa, prio, 2841 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2842 &iter_aflags, &zb); 2843 } 2844 /* 2845 * We use pio here instead of dpa_zio since it's possible that 2846 * dpa may have already been freed. 2847 */ 2848 zio_nowait(pio); 2849 } 2850 2851 /* 2852 * Helper function for __dbuf_hold_impl() to copy a buffer. Handles 2853 * the case of encrypted, compressed and uncompressed buffers by 2854 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 2855 * arc_alloc_compressed_buf() or arc_alloc_buf().* 2856 * 2857 * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl(). 2858 */ 2859 static void 2860 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db, dbuf_dirty_record_t *dr) 2861 { 2862 arc_buf_t *data = dr->dt.dl.dr_data; 2863 enum zio_compress compress_type = arc_get_compression(data); 2864 2865 if (arc_is_encrypted(data)) { 2866 boolean_t byteorder; 2867 uint8_t salt[ZIO_DATA_SALT_LEN]; 2868 uint8_t iv[ZIO_DATA_IV_LEN]; 2869 uint8_t mac[ZIO_DATA_MAC_LEN]; 2870 2871 arc_get_raw_params(data, &byteorder, salt, iv, mac); 2872 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 2873 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 2874 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 2875 compress_type)); 2876 } else if (compress_type != ZIO_COMPRESS_OFF) { 2877 dbuf_set_data(db, arc_alloc_compressed_buf( 2878 dn->dn_objset->os_spa, db, arc_buf_size(data), 2879 arc_buf_lsize(data), compress_type)); 2880 } else { 2881 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 2882 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 2883 } 2884 2885 rw_enter(&db->db_rwlock, RW_WRITER); 2886 bcopy(data->b_data, db->db.db_data, arc_buf_size(data)); 2887 rw_exit(&db->db_rwlock); 2888 } 2889 2890 /* 2891 * Returns with db_holds incremented, and db_mtx not held. 2892 * Note: dn_struct_rwlock must be held. 2893 */ 2894 int 2895 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 2896 boolean_t fail_sparse, boolean_t fail_uncached, 2897 void *tag, dmu_buf_impl_t **dbp) 2898 { 2899 dmu_buf_impl_t *db, *parent = NULL; 2900 2901 ASSERT(blkid != DMU_BONUS_BLKID); 2902 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2903 ASSERT3U(dn->dn_nlevels, >, level); 2904 2905 *dbp = NULL; 2906 top: 2907 /* dbuf_find() returns with db_mtx held */ 2908 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 2909 2910 if (db == NULL) { 2911 blkptr_t *bp = NULL; 2912 int err; 2913 2914 if (fail_uncached) 2915 return (SET_ERROR(ENOENT)); 2916 2917 ASSERT3P(parent, ==, NULL); 2918 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 2919 if (fail_sparse) { 2920 if (err == 0 && bp && BP_IS_HOLE(bp)) 2921 err = SET_ERROR(ENOENT); 2922 if (err) { 2923 if (parent) 2924 dbuf_rele(parent, NULL); 2925 return (err); 2926 } 2927 } 2928 if (err && err != ENOENT) 2929 return (err); 2930 db = dbuf_create(dn, level, blkid, parent, bp); 2931 } 2932 2933 if (fail_uncached && db->db_state != DB_CACHED) { 2934 mutex_exit(&db->db_mtx); 2935 return (SET_ERROR(ENOENT)); 2936 } 2937 2938 if (db->db_buf != NULL) { 2939 arc_buf_access(db->db_buf); 2940 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 2941 } 2942 2943 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 2944 2945 /* 2946 * If this buffer is currently syncing out, and we are are 2947 * still referencing it from db_data, we need to make a copy 2948 * of it in case we decide we want to dirty it again in this txg. 2949 */ 2950 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2951 dn->dn_object != DMU_META_DNODE_OBJECT && 2952 db->db_state == DB_CACHED && db->db_data_pending) { 2953 dbuf_dirty_record_t *dr = db->db_data_pending; 2954 if (dr->dt.dl.dr_data == db->db_buf) 2955 dbuf_hold_copy(dn, db, dr); 2956 } 2957 2958 if (multilist_link_active(&db->db_cache_link)) { 2959 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2960 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2961 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2962 2963 multilist_remove(dbuf_caches[db->db_caching_status].cache, db); 2964 (void) zfs_refcount_remove_many( 2965 &dbuf_caches[db->db_caching_status].size, 2966 db->db.db_size, db); 2967 2968 db->db_caching_status = DB_NO_CACHE; 2969 } 2970 (void) zfs_refcount_add(&db->db_holds, tag); 2971 DBUF_VERIFY(db); 2972 mutex_exit(&db->db_mtx); 2973 2974 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 2975 if (parent) 2976 dbuf_rele(parent, NULL); 2977 2978 ASSERT3P(DB_DNODE(db), ==, dn); 2979 ASSERT3U(db->db_blkid, ==, blkid); 2980 ASSERT3U(db->db_level, ==, level); 2981 *dbp = db; 2982 2983 return (0); 2984 } 2985 2986 dmu_buf_impl_t * 2987 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 2988 { 2989 return (dbuf_hold_level(dn, 0, blkid, tag)); 2990 } 2991 2992 dmu_buf_impl_t * 2993 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 2994 { 2995 dmu_buf_impl_t *db; 2996 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 2997 return (err ? NULL : db); 2998 } 2999 3000 void 3001 dbuf_create_bonus(dnode_t *dn) 3002 { 3003 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3004 3005 ASSERT(dn->dn_bonus == NULL); 3006 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 3007 } 3008 3009 int 3010 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3011 { 3012 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3013 3014 if (db->db_blkid != DMU_SPILL_BLKID) 3015 return (SET_ERROR(ENOTSUP)); 3016 if (blksz == 0) 3017 blksz = SPA_MINBLOCKSIZE; 3018 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3019 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3020 3021 dbuf_new_size(db, blksz, tx); 3022 3023 return (0); 3024 } 3025 3026 void 3027 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3028 { 3029 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3030 } 3031 3032 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3033 void 3034 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 3035 { 3036 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3037 ASSERT3S(holds, >, 1); 3038 } 3039 3040 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3041 boolean_t 3042 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3043 void *tag) 3044 { 3045 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3046 dmu_buf_impl_t *found_db; 3047 boolean_t result = B_FALSE; 3048 3049 if (db->db_blkid == DMU_BONUS_BLKID) 3050 found_db = dbuf_find_bonus(os, obj); 3051 else 3052 found_db = dbuf_find(os, obj, 0, blkid); 3053 3054 if (found_db != NULL) { 3055 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3056 (void) zfs_refcount_add(&db->db_holds, tag); 3057 result = B_TRUE; 3058 } 3059 mutex_exit(&db->db_mtx); 3060 } 3061 return (result); 3062 } 3063 3064 /* 3065 * If you call dbuf_rele() you had better not be referencing the dnode handle 3066 * unless you have some other direct or indirect hold on the dnode. (An indirect 3067 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3068 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3069 * dnode's parent dbuf evicting its dnode handles. 3070 */ 3071 void 3072 dbuf_rele(dmu_buf_impl_t *db, void *tag) 3073 { 3074 mutex_enter(&db->db_mtx); 3075 dbuf_rele_and_unlock(db, tag, B_FALSE); 3076 } 3077 3078 void 3079 dmu_buf_rele(dmu_buf_t *db, void *tag) 3080 { 3081 dbuf_rele((dmu_buf_impl_t *)db, tag); 3082 } 3083 3084 /* 3085 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3086 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3087 * argument should be set if we are already in the dbuf-evicting code 3088 * path, in which case we don't want to recursively evict. This allows us to 3089 * avoid deeply nested stacks that would have a call flow similar to this: 3090 * 3091 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3092 * ^ | 3093 * | | 3094 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3095 * 3096 */ 3097 void 3098 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting) 3099 { 3100 int64_t holds; 3101 3102 ASSERT(MUTEX_HELD(&db->db_mtx)); 3103 DBUF_VERIFY(db); 3104 3105 /* 3106 * Remove the reference to the dbuf before removing its hold on the 3107 * dnode so we can guarantee in dnode_move() that a referenced bonus 3108 * buffer has a corresponding dnode hold. 3109 */ 3110 holds = zfs_refcount_remove(&db->db_holds, tag); 3111 ASSERT(holds >= 0); 3112 3113 /* 3114 * We can't freeze indirects if there is a possibility that they 3115 * may be modified in the current syncing context. 3116 */ 3117 if (db->db_buf != NULL && 3118 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3119 arc_buf_freeze(db->db_buf); 3120 } 3121 3122 if (holds == db->db_dirtycnt && 3123 db->db_level == 0 && db->db_user_immediate_evict) 3124 dbuf_evict_user(db); 3125 3126 if (holds == 0) { 3127 if (db->db_blkid == DMU_BONUS_BLKID) { 3128 dnode_t *dn; 3129 boolean_t evict_dbuf = db->db_pending_evict; 3130 3131 /* 3132 * If the dnode moves here, we cannot cross this 3133 * barrier until the move completes. 3134 */ 3135 DB_DNODE_ENTER(db); 3136 3137 dn = DB_DNODE(db); 3138 atomic_dec_32(&dn->dn_dbufs_count); 3139 3140 /* 3141 * Decrementing the dbuf count means that the bonus 3142 * buffer's dnode hold is no longer discounted in 3143 * dnode_move(). The dnode cannot move until after 3144 * the dnode_rele() below. 3145 */ 3146 DB_DNODE_EXIT(db); 3147 3148 /* 3149 * Do not reference db after its lock is dropped. 3150 * Another thread may evict it. 3151 */ 3152 mutex_exit(&db->db_mtx); 3153 3154 if (evict_dbuf) 3155 dnode_evict_bonus(dn); 3156 3157 dnode_rele(dn, db); 3158 } else if (db->db_buf == NULL) { 3159 /* 3160 * This is a special case: we never associated this 3161 * dbuf with any data allocated from the ARC. 3162 */ 3163 ASSERT(db->db_state == DB_UNCACHED || 3164 db->db_state == DB_NOFILL); 3165 dbuf_destroy(db); 3166 } else if (arc_released(db->db_buf)) { 3167 /* 3168 * This dbuf has anonymous data associated with it. 3169 */ 3170 dbuf_destroy(db); 3171 } else { 3172 boolean_t do_arc_evict = B_FALSE; 3173 blkptr_t bp; 3174 spa_t *spa = dmu_objset_spa(db->db_objset); 3175 3176 if (!DBUF_IS_CACHEABLE(db) && 3177 db->db_blkptr != NULL && 3178 !BP_IS_HOLE(db->db_blkptr) && 3179 !BP_IS_EMBEDDED(db->db_blkptr)) { 3180 do_arc_evict = B_TRUE; 3181 bp = *db->db_blkptr; 3182 } 3183 3184 if (!DBUF_IS_CACHEABLE(db) || 3185 db->db_pending_evict) { 3186 dbuf_destroy(db); 3187 } else if (!multilist_link_active(&db->db_cache_link)) { 3188 ASSERT3U(db->db_caching_status, ==, 3189 DB_NO_CACHE); 3190 3191 dbuf_cached_state_t dcs = 3192 dbuf_include_in_metadata_cache(db) ? 3193 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 3194 db->db_caching_status = dcs; 3195 3196 multilist_insert(dbuf_caches[dcs].cache, db); 3197 (void) zfs_refcount_add_many( 3198 &dbuf_caches[dcs].size, db->db.db_size, db); 3199 mutex_exit(&db->db_mtx); 3200 3201 if (db->db_caching_status == DB_DBUF_CACHE && 3202 !evicting) { 3203 dbuf_evict_notify(); 3204 } 3205 } 3206 3207 if (do_arc_evict) 3208 arc_freed(spa, &bp); 3209 } 3210 } else { 3211 mutex_exit(&db->db_mtx); 3212 } 3213 3214 } 3215 3216 #pragma weak dmu_buf_refcount = dbuf_refcount 3217 uint64_t 3218 dbuf_refcount(dmu_buf_impl_t *db) 3219 { 3220 return (zfs_refcount_count(&db->db_holds)); 3221 } 3222 3223 uint64_t 3224 dmu_buf_user_refcount(dmu_buf_t *db_fake) 3225 { 3226 uint64_t holds; 3227 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3228 3229 mutex_enter(&db->db_mtx); 3230 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 3231 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 3232 mutex_exit(&db->db_mtx); 3233 3234 return (holds); 3235 } 3236 3237 void * 3238 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 3239 dmu_buf_user_t *new_user) 3240 { 3241 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3242 3243 mutex_enter(&db->db_mtx); 3244 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3245 if (db->db_user == old_user) 3246 db->db_user = new_user; 3247 else 3248 old_user = db->db_user; 3249 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3250 mutex_exit(&db->db_mtx); 3251 3252 return (old_user); 3253 } 3254 3255 void * 3256 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3257 { 3258 return (dmu_buf_replace_user(db_fake, NULL, user)); 3259 } 3260 3261 void * 3262 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3263 { 3264 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3265 3266 db->db_user_immediate_evict = TRUE; 3267 return (dmu_buf_set_user(db_fake, user)); 3268 } 3269 3270 void * 3271 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3272 { 3273 return (dmu_buf_replace_user(db_fake, user, NULL)); 3274 } 3275 3276 void * 3277 dmu_buf_get_user(dmu_buf_t *db_fake) 3278 { 3279 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3280 3281 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3282 return (db->db_user); 3283 } 3284 3285 void 3286 dmu_buf_user_evict_wait() 3287 { 3288 taskq_wait(dbu_evict_taskq); 3289 } 3290 3291 blkptr_t * 3292 dmu_buf_get_blkptr(dmu_buf_t *db) 3293 { 3294 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3295 return (dbi->db_blkptr); 3296 } 3297 3298 objset_t * 3299 dmu_buf_get_objset(dmu_buf_t *db) 3300 { 3301 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3302 return (dbi->db_objset); 3303 } 3304 3305 dnode_t * 3306 dmu_buf_dnode_enter(dmu_buf_t *db) 3307 { 3308 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3309 DB_DNODE_ENTER(dbi); 3310 return (DB_DNODE(dbi)); 3311 } 3312 3313 void 3314 dmu_buf_dnode_exit(dmu_buf_t *db) 3315 { 3316 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3317 DB_DNODE_EXIT(dbi); 3318 } 3319 3320 static void 3321 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 3322 { 3323 /* ASSERT(dmu_tx_is_syncing(tx) */ 3324 ASSERT(MUTEX_HELD(&db->db_mtx)); 3325 3326 if (db->db_blkptr != NULL) 3327 return; 3328 3329 if (db->db_blkid == DMU_SPILL_BLKID) { 3330 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 3331 BP_ZERO(db->db_blkptr); 3332 return; 3333 } 3334 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 3335 /* 3336 * This buffer was allocated at a time when there was 3337 * no available blkptrs from the dnode, or it was 3338 * inappropriate to hook it in (i.e., nlevels mis-match). 3339 */ 3340 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 3341 ASSERT(db->db_parent == NULL); 3342 db->db_parent = dn->dn_dbuf; 3343 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 3344 DBUF_VERIFY(db); 3345 } else { 3346 dmu_buf_impl_t *parent = db->db_parent; 3347 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3348 3349 ASSERT(dn->dn_phys->dn_nlevels > 1); 3350 if (parent == NULL) { 3351 mutex_exit(&db->db_mtx); 3352 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3353 parent = dbuf_hold_level(dn, db->db_level + 1, 3354 db->db_blkid >> epbs, db); 3355 rw_exit(&dn->dn_struct_rwlock); 3356 mutex_enter(&db->db_mtx); 3357 db->db_parent = parent; 3358 } 3359 db->db_blkptr = (blkptr_t *)parent->db.db_data + 3360 (db->db_blkid & ((1ULL << epbs) - 1)); 3361 DBUF_VERIFY(db); 3362 } 3363 } 3364 3365 /* 3366 * When syncing out blocks of dnodes, adjust the block to deal with 3367 * encryption. Normally, we make sure the block is decrypted before writing 3368 * it. If we have crypt params, then we are writing a raw (encrypted) block, 3369 * from a raw receive. In this case, set the ARC buf's crypt params so 3370 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 3371 * 3372 * XXX we should handle decrypting the dnode block in dbuf_dirty(). 3373 */ 3374 static void 3375 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 3376 { 3377 int err; 3378 dmu_buf_impl_t *db = dr->dr_dbuf; 3379 3380 ASSERT(MUTEX_HELD(&db->db_mtx)); 3381 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 3382 ASSERT3U(db->db_level, ==, 0); 3383 3384 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 3385 zbookmark_phys_t zb; 3386 3387 /* 3388 * Unfortunately, there is currently no mechanism for 3389 * syncing context to handle decryption errors. An error 3390 * here is only possible if an attacker maliciously 3391 * changed a dnode block and updated the associated 3392 * checksums going up the block tree. 3393 */ 3394 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 3395 db->db.db_object, db->db_level, db->db_blkid); 3396 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 3397 &zb, B_TRUE); 3398 if (err) 3399 panic("Invalid dnode block MAC"); 3400 } else if (dr->dt.dl.dr_has_raw_params) { 3401 (void) arc_release(dr->dt.dl.dr_data, db); 3402 arc_convert_to_raw(dr->dt.dl.dr_data, 3403 dmu_objset_id(db->db_objset), 3404 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 3405 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 3406 } 3407 } 3408 3409 static void 3410 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3411 { 3412 dmu_buf_impl_t *db = dr->dr_dbuf; 3413 dnode_t *dn; 3414 zio_t *zio; 3415 3416 ASSERT(dmu_tx_is_syncing(tx)); 3417 3418 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3419 3420 mutex_enter(&db->db_mtx); 3421 3422 ASSERT(db->db_level > 0); 3423 DBUF_VERIFY(db); 3424 3425 /* Read the block if it hasn't been read yet. */ 3426 if (db->db_buf == NULL) { 3427 mutex_exit(&db->db_mtx); 3428 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 3429 mutex_enter(&db->db_mtx); 3430 } 3431 ASSERT3U(db->db_state, ==, DB_CACHED); 3432 ASSERT(db->db_buf != NULL); 3433 3434 DB_DNODE_ENTER(db); 3435 dn = DB_DNODE(db); 3436 /* Indirect block size must match what the dnode thinks it is. */ 3437 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3438 dbuf_check_blkptr(dn, db); 3439 DB_DNODE_EXIT(db); 3440 3441 /* Provide the pending dirty record to child dbufs */ 3442 db->db_data_pending = dr; 3443 3444 mutex_exit(&db->db_mtx); 3445 3446 dbuf_write(dr, db->db_buf, tx); 3447 3448 zio = dr->dr_zio; 3449 mutex_enter(&dr->dt.di.dr_mtx); 3450 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 3451 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3452 mutex_exit(&dr->dt.di.dr_mtx); 3453 zio_nowait(zio); 3454 } 3455 3456 static void 3457 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3458 { 3459 arc_buf_t **datap = &dr->dt.dl.dr_data; 3460 dmu_buf_impl_t *db = dr->dr_dbuf; 3461 dnode_t *dn; 3462 objset_t *os; 3463 uint64_t txg = tx->tx_txg; 3464 3465 ASSERT(dmu_tx_is_syncing(tx)); 3466 3467 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3468 3469 mutex_enter(&db->db_mtx); 3470 /* 3471 * To be synced, we must be dirtied. But we 3472 * might have been freed after the dirty. 3473 */ 3474 if (db->db_state == DB_UNCACHED) { 3475 /* This buffer has been freed since it was dirtied */ 3476 ASSERT(db->db.db_data == NULL); 3477 } else if (db->db_state == DB_FILL) { 3478 /* This buffer was freed and is now being re-filled */ 3479 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 3480 } else { 3481 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 3482 } 3483 DBUF_VERIFY(db); 3484 3485 DB_DNODE_ENTER(db); 3486 dn = DB_DNODE(db); 3487 3488 if (db->db_blkid == DMU_SPILL_BLKID) { 3489 mutex_enter(&dn->dn_mtx); 3490 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 3491 mutex_exit(&dn->dn_mtx); 3492 } 3493 3494 /* 3495 * If this is a bonus buffer, simply copy the bonus data into the 3496 * dnode. It will be written out when the dnode is synced (and it 3497 * will be synced, since it must have been dirty for dbuf_sync to 3498 * be called). 3499 */ 3500 if (db->db_blkid == DMU_BONUS_BLKID) { 3501 dbuf_dirty_record_t **drp; 3502 3503 ASSERT(*datap != NULL); 3504 ASSERT0(db->db_level); 3505 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 3506 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 3507 bcopy(*datap, DN_BONUS(dn->dn_phys), 3508 DN_MAX_BONUS_LEN(dn->dn_phys)); 3509 DB_DNODE_EXIT(db); 3510 3511 if (*datap != db->db.db_data) { 3512 int slots = DB_DNODE(db)->dn_num_slots; 3513 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 3514 zio_buf_free(*datap, bonuslen); 3515 arc_space_return(bonuslen, ARC_SPACE_BONUS); 3516 } 3517 db->db_data_pending = NULL; 3518 drp = &db->db_last_dirty; 3519 while (*drp != dr) 3520 drp = &(*drp)->dr_next; 3521 ASSERT(dr->dr_next == NULL); 3522 ASSERT(dr->dr_dbuf == db); 3523 *drp = dr->dr_next; 3524 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3525 ASSERT(db->db_dirtycnt > 0); 3526 db->db_dirtycnt -= 1; 3527 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE); 3528 return; 3529 } 3530 3531 os = dn->dn_objset; 3532 3533 /* 3534 * This function may have dropped the db_mtx lock allowing a dmu_sync 3535 * operation to sneak in. As a result, we need to ensure that we 3536 * don't check the dr_override_state until we have returned from 3537 * dbuf_check_blkptr. 3538 */ 3539 dbuf_check_blkptr(dn, db); 3540 3541 /* 3542 * If this buffer is in the middle of an immediate write, 3543 * wait for the synchronous IO to complete. 3544 */ 3545 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 3546 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 3547 cv_wait(&db->db_changed, &db->db_mtx); 3548 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 3549 } 3550 3551 /* 3552 * If this is a dnode block, ensure it is appropriately encrypted 3553 * or decrypted, depending on what we are writing to it this txg. 3554 */ 3555 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 3556 dbuf_prepare_encrypted_dnode_leaf(dr); 3557 3558 if (db->db_state != DB_NOFILL && 3559 dn->dn_object != DMU_META_DNODE_OBJECT && 3560 zfs_refcount_count(&db->db_holds) > 1 && 3561 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 3562 *datap == db->db_buf) { 3563 /* 3564 * If this buffer is currently "in use" (i.e., there 3565 * are active holds and db_data still references it), 3566 * then make a copy before we start the write so that 3567 * any modifications from the open txg will not leak 3568 * into this write. 3569 * 3570 * NOTE: this copy does not need to be made for 3571 * objects only modified in the syncing context (e.g. 3572 * DNONE_DNODE blocks). 3573 */ 3574 int psize = arc_buf_size(*datap); 3575 int lsize = arc_buf_lsize(*datap); 3576 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 3577 enum zio_compress compress_type = arc_get_compression(*datap); 3578 3579 if (arc_is_encrypted(*datap)) { 3580 boolean_t byteorder; 3581 uint8_t salt[ZIO_DATA_SALT_LEN]; 3582 uint8_t iv[ZIO_DATA_IV_LEN]; 3583 uint8_t mac[ZIO_DATA_MAC_LEN]; 3584 3585 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 3586 *datap = arc_alloc_raw_buf(os->os_spa, db, 3587 dmu_objset_id(os), byteorder, salt, iv, mac, 3588 dn->dn_type, psize, lsize, compress_type); 3589 } else if (compress_type != ZIO_COMPRESS_OFF) { 3590 ASSERT3U(type, ==, ARC_BUFC_DATA); 3591 *datap = arc_alloc_compressed_buf(os->os_spa, db, 3592 psize, lsize, compress_type); 3593 } else { 3594 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 3595 } 3596 bcopy(db->db.db_data, (*datap)->b_data, psize); 3597 } 3598 db->db_data_pending = dr; 3599 3600 mutex_exit(&db->db_mtx); 3601 3602 dbuf_write(dr, *datap, tx); 3603 3604 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3605 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 3606 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); 3607 DB_DNODE_EXIT(db); 3608 } else { 3609 /* 3610 * Although zio_nowait() does not "wait for an IO", it does 3611 * initiate the IO. If this is an empty write it seems plausible 3612 * that the IO could actually be completed before the nowait 3613 * returns. We need to DB_DNODE_EXIT() first in case 3614 * zio_nowait() invalidates the dbuf. 3615 */ 3616 DB_DNODE_EXIT(db); 3617 zio_nowait(dr->dr_zio); 3618 } 3619 } 3620 3621 void 3622 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 3623 { 3624 dbuf_dirty_record_t *dr; 3625 3626 while (dr = list_head(list)) { 3627 if (dr->dr_zio != NULL) { 3628 /* 3629 * If we find an already initialized zio then we 3630 * are processing the meta-dnode, and we have finished. 3631 * The dbufs for all dnodes are put back on the list 3632 * during processing, so that we can zio_wait() 3633 * these IOs after initiating all child IOs. 3634 */ 3635 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 3636 DMU_META_DNODE_OBJECT); 3637 break; 3638 } 3639 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 3640 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 3641 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 3642 } 3643 list_remove(list, dr); 3644 if (dr->dr_dbuf->db_level > 0) 3645 dbuf_sync_indirect(dr, tx); 3646 else 3647 dbuf_sync_leaf(dr, tx); 3648 } 3649 } 3650 3651 /* ARGSUSED */ 3652 static void 3653 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3654 { 3655 dmu_buf_impl_t *db = vdb; 3656 dnode_t *dn; 3657 blkptr_t *bp = zio->io_bp; 3658 blkptr_t *bp_orig = &zio->io_bp_orig; 3659 spa_t *spa = zio->io_spa; 3660 int64_t delta; 3661 uint64_t fill = 0; 3662 int i; 3663 3664 ASSERT3P(db->db_blkptr, !=, NULL); 3665 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 3666 3667 DB_DNODE_ENTER(db); 3668 dn = DB_DNODE(db); 3669 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 3670 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 3671 zio->io_prev_space_delta = delta; 3672 3673 if (bp->blk_birth != 0) { 3674 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 3675 BP_GET_TYPE(bp) == dn->dn_type) || 3676 (db->db_blkid == DMU_SPILL_BLKID && 3677 BP_GET_TYPE(bp) == dn->dn_bonustype) || 3678 BP_IS_EMBEDDED(bp)); 3679 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 3680 } 3681 3682 mutex_enter(&db->db_mtx); 3683 3684 #ifdef ZFS_DEBUG 3685 if (db->db_blkid == DMU_SPILL_BLKID) { 3686 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3687 ASSERT(!(BP_IS_HOLE(bp)) && 3688 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 3689 } 3690 #endif 3691 3692 if (db->db_level == 0) { 3693 mutex_enter(&dn->dn_mtx); 3694 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 3695 db->db_blkid != DMU_SPILL_BLKID) { 3696 ASSERT0(db->db_objset->os_raw_receive); 3697 dn->dn_phys->dn_maxblkid = db->db_blkid; 3698 } 3699 mutex_exit(&dn->dn_mtx); 3700 3701 if (dn->dn_type == DMU_OT_DNODE) { 3702 i = 0; 3703 while (i < db->db.db_size) { 3704 dnode_phys_t *dnp = 3705 (void *)(((char *)db->db.db_data) + i); 3706 3707 i += DNODE_MIN_SIZE; 3708 if (dnp->dn_type != DMU_OT_NONE) { 3709 fill++; 3710 i += dnp->dn_extra_slots * 3711 DNODE_MIN_SIZE; 3712 } 3713 } 3714 } else { 3715 if (BP_IS_HOLE(bp)) { 3716 fill = 0; 3717 } else { 3718 fill = 1; 3719 } 3720 } 3721 } else { 3722 blkptr_t *ibp = db->db.db_data; 3723 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3724 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 3725 if (BP_IS_HOLE(ibp)) 3726 continue; 3727 fill += BP_GET_FILL(ibp); 3728 } 3729 } 3730 DB_DNODE_EXIT(db); 3731 3732 if (!BP_IS_EMBEDDED(bp)) 3733 BP_SET_FILL(bp, fill); 3734 3735 mutex_exit(&db->db_mtx); 3736 3737 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 3738 *db->db_blkptr = *bp; 3739 dmu_buf_unlock_parent(db, dblt, FTAG); 3740 } 3741 3742 /* ARGSUSED */ 3743 /* 3744 * This function gets called just prior to running through the compression 3745 * stage of the zio pipeline. If we're an indirect block comprised of only 3746 * holes, then we want this indirect to be compressed away to a hole. In 3747 * order to do that we must zero out any information about the holes that 3748 * this indirect points to prior to before we try to compress it. 3749 */ 3750 static void 3751 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 3752 { 3753 dmu_buf_impl_t *db = vdb; 3754 dnode_t *dn; 3755 blkptr_t *bp; 3756 unsigned int epbs, i; 3757 3758 ASSERT3U(db->db_level, >, 0); 3759 DB_DNODE_ENTER(db); 3760 dn = DB_DNODE(db); 3761 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3762 ASSERT3U(epbs, <, 31); 3763 3764 /* Determine if all our children are holes */ 3765 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) { 3766 if (!BP_IS_HOLE(bp)) 3767 break; 3768 } 3769 3770 /* 3771 * If all the children are holes, then zero them all out so that 3772 * we may get compressed away. 3773 */ 3774 if (i == 1 << epbs) { 3775 /* 3776 * We only found holes. Grab the rwlock to prevent 3777 * anybody from reading the blocks we're about to 3778 * zero out. 3779 */ 3780 rw_enter(&db->db_rwlock, RW_WRITER); 3781 bzero(db->db.db_data, db->db.db_size); 3782 rw_exit(&db->db_rwlock); 3783 } 3784 DB_DNODE_EXIT(db); 3785 } 3786 3787 /* 3788 * The SPA will call this callback several times for each zio - once 3789 * for every physical child i/o (zio->io_phys_children times). This 3790 * allows the DMU to monitor the progress of each logical i/o. For example, 3791 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 3792 * block. There may be a long delay before all copies/fragments are completed, 3793 * so this callback allows us to retire dirty space gradually, as the physical 3794 * i/os complete. 3795 */ 3796 /* ARGSUSED */ 3797 static void 3798 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 3799 { 3800 dmu_buf_impl_t *db = arg; 3801 objset_t *os = db->db_objset; 3802 dsl_pool_t *dp = dmu_objset_pool(os); 3803 dbuf_dirty_record_t *dr; 3804 int delta = 0; 3805 3806 dr = db->db_data_pending; 3807 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 3808 3809 /* 3810 * The callback will be called io_phys_children times. Retire one 3811 * portion of our dirty space each time we are called. Any rounding 3812 * error will be cleaned up by dsl_pool_sync()'s call to 3813 * dsl_pool_undirty_space(). 3814 */ 3815 delta = dr->dr_accounted / zio->io_phys_children; 3816 dsl_pool_undirty_space(dp, delta, zio->io_txg); 3817 } 3818 3819 /* ARGSUSED */ 3820 static void 3821 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 3822 { 3823 dmu_buf_impl_t *db = vdb; 3824 blkptr_t *bp_orig = &zio->io_bp_orig; 3825 blkptr_t *bp = db->db_blkptr; 3826 objset_t *os = db->db_objset; 3827 dmu_tx_t *tx = os->os_synctx; 3828 dbuf_dirty_record_t **drp, *dr; 3829 3830 ASSERT0(zio->io_error); 3831 ASSERT(db->db_blkptr == bp); 3832 3833 /* 3834 * For nopwrites and rewrites we ensure that the bp matches our 3835 * original and bypass all the accounting. 3836 */ 3837 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 3838 ASSERT(BP_EQUAL(bp, bp_orig)); 3839 } else { 3840 dsl_dataset_t *ds = os->os_dsl_dataset; 3841 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 3842 dsl_dataset_block_born(ds, bp, tx); 3843 } 3844 3845 mutex_enter(&db->db_mtx); 3846 3847 DBUF_VERIFY(db); 3848 3849 drp = &db->db_last_dirty; 3850 while ((dr = *drp) != db->db_data_pending) 3851 drp = &dr->dr_next; 3852 ASSERT(!list_link_active(&dr->dr_dirty_node)); 3853 ASSERT(dr->dr_dbuf == db); 3854 ASSERT(dr->dr_next == NULL); 3855 *drp = dr->dr_next; 3856 3857 #ifdef ZFS_DEBUG 3858 if (db->db_blkid == DMU_SPILL_BLKID) { 3859 dnode_t *dn; 3860 3861 DB_DNODE_ENTER(db); 3862 dn = DB_DNODE(db); 3863 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 3864 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 3865 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 3866 DB_DNODE_EXIT(db); 3867 } 3868 #endif 3869 3870 if (db->db_level == 0) { 3871 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3872 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 3873 if (db->db_state != DB_NOFILL) { 3874 if (dr->dt.dl.dr_data != db->db_buf) 3875 arc_buf_destroy(dr->dt.dl.dr_data, db); 3876 } 3877 } else { 3878 dnode_t *dn; 3879 3880 DB_DNODE_ENTER(db); 3881 dn = DB_DNODE(db); 3882 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 3883 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 3884 if (!BP_IS_HOLE(db->db_blkptr)) { 3885 int epbs = 3886 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3887 ASSERT3U(db->db_blkid, <=, 3888 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 3889 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 3890 db->db.db_size); 3891 } 3892 DB_DNODE_EXIT(db); 3893 mutex_destroy(&dr->dt.di.dr_mtx); 3894 list_destroy(&dr->dt.di.dr_children); 3895 } 3896 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 3897 3898 cv_broadcast(&db->db_changed); 3899 ASSERT(db->db_dirtycnt > 0); 3900 db->db_dirtycnt -= 1; 3901 db->db_data_pending = NULL; 3902 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 3903 } 3904 3905 static void 3906 dbuf_write_nofill_ready(zio_t *zio) 3907 { 3908 dbuf_write_ready(zio, NULL, zio->io_private); 3909 } 3910 3911 static void 3912 dbuf_write_nofill_done(zio_t *zio) 3913 { 3914 dbuf_write_done(zio, NULL, zio->io_private); 3915 } 3916 3917 static void 3918 dbuf_write_override_ready(zio_t *zio) 3919 { 3920 dbuf_dirty_record_t *dr = zio->io_private; 3921 dmu_buf_impl_t *db = dr->dr_dbuf; 3922 3923 dbuf_write_ready(zio, NULL, db); 3924 } 3925 3926 static void 3927 dbuf_write_override_done(zio_t *zio) 3928 { 3929 dbuf_dirty_record_t *dr = zio->io_private; 3930 dmu_buf_impl_t *db = dr->dr_dbuf; 3931 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 3932 3933 mutex_enter(&db->db_mtx); 3934 if (!BP_EQUAL(zio->io_bp, obp)) { 3935 if (!BP_IS_HOLE(obp)) 3936 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 3937 arc_release(dr->dt.dl.dr_data, db); 3938 } 3939 mutex_exit(&db->db_mtx); 3940 dbuf_write_done(zio, NULL, db); 3941 3942 if (zio->io_abd != NULL) 3943 abd_put(zio->io_abd); 3944 } 3945 3946 typedef struct dbuf_remap_impl_callback_arg { 3947 objset_t *drica_os; 3948 uint64_t drica_blk_birth; 3949 dmu_tx_t *drica_tx; 3950 } dbuf_remap_impl_callback_arg_t; 3951 3952 static void 3953 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 3954 void *arg) 3955 { 3956 dbuf_remap_impl_callback_arg_t *drica = arg; 3957 objset_t *os = drica->drica_os; 3958 spa_t *spa = dmu_objset_spa(os); 3959 dmu_tx_t *tx = drica->drica_tx; 3960 3961 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 3962 3963 if (os == spa_meta_objset(spa)) { 3964 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 3965 } else { 3966 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 3967 size, drica->drica_blk_birth, tx); 3968 } 3969 } 3970 3971 static void 3972 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 3973 { 3974 blkptr_t bp_copy = *bp; 3975 spa_t *spa = dmu_objset_spa(dn->dn_objset); 3976 dbuf_remap_impl_callback_arg_t drica; 3977 3978 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 3979 3980 drica.drica_os = dn->dn_objset; 3981 drica.drica_blk_birth = bp->blk_birth; 3982 drica.drica_tx = tx; 3983 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 3984 &drica)) { 3985 /* 3986 * The db_rwlock prevents dbuf_read_impl() from 3987 * dereferencing the BP while we are changing it. To 3988 * avoid lock contention, only grab it when we are actually 3989 * changing the BP. 3990 */ 3991 if (rw != NULL) 3992 rw_enter(rw, RW_WRITER); 3993 *bp = bp_copy; 3994 if (rw != NULL) 3995 rw_exit(rw); 3996 } 3997 } 3998 3999 /* 4000 * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting 4001 * to remap a copy of every bp in the dbuf. 4002 */ 4003 boolean_t 4004 dbuf_can_remap(const dmu_buf_impl_t *db) 4005 { 4006 spa_t *spa = dmu_objset_spa(db->db_objset); 4007 blkptr_t *bp = db->db.db_data; 4008 boolean_t ret = B_FALSE; 4009 4010 ASSERT3U(db->db_level, >, 0); 4011 ASSERT3S(db->db_state, ==, DB_CACHED); 4012 4013 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 4014 4015 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 4016 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 4017 blkptr_t bp_copy = bp[i]; 4018 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) { 4019 ret = B_TRUE; 4020 break; 4021 } 4022 } 4023 spa_config_exit(spa, SCL_VDEV, FTAG); 4024 4025 return (ret); 4026 } 4027 4028 boolean_t 4029 dnode_needs_remap(const dnode_t *dn) 4030 { 4031 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4032 boolean_t ret = B_FALSE; 4033 4034 if (dn->dn_phys->dn_nlevels == 0) { 4035 return (B_FALSE); 4036 } 4037 4038 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 4039 4040 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 4041 for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) { 4042 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j]; 4043 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) { 4044 ret = B_TRUE; 4045 break; 4046 } 4047 } 4048 spa_config_exit(spa, SCL_VDEV, FTAG); 4049 4050 return (ret); 4051 } 4052 4053 /* 4054 * Remap any existing BP's to concrete vdevs, if possible. 4055 */ 4056 static void 4057 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 4058 { 4059 spa_t *spa = dmu_objset_spa(db->db_objset); 4060 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4061 4062 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 4063 return; 4064 4065 if (db->db_level > 0) { 4066 blkptr_t *bp = db->db.db_data; 4067 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 4068 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 4069 } 4070 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 4071 dnode_phys_t *dnp = db->db.db_data; 4072 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 4073 DMU_OT_DNODE); 4074 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; i++) { 4075 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 4076 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 4077 &dn->dn_dbuf->db_rwlock); 4078 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 4079 tx); 4080 } 4081 } 4082 } 4083 } 4084 4085 4086 /* Issue I/O to commit a dirty buffer to disk. */ 4087 static void 4088 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 4089 { 4090 dmu_buf_impl_t *db = dr->dr_dbuf; 4091 dnode_t *dn; 4092 objset_t *os; 4093 dmu_buf_impl_t *parent = db->db_parent; 4094 uint64_t txg = tx->tx_txg; 4095 zbookmark_phys_t zb; 4096 zio_prop_t zp; 4097 zio_t *zio; 4098 int wp_flag = 0; 4099 4100 ASSERT(dmu_tx_is_syncing(tx)); 4101 4102 DB_DNODE_ENTER(db); 4103 dn = DB_DNODE(db); 4104 os = dn->dn_objset; 4105 4106 if (db->db_state != DB_NOFILL) { 4107 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 4108 /* 4109 * Private object buffers are released here rather 4110 * than in dbuf_dirty() since they are only modified 4111 * in the syncing context and we don't want the 4112 * overhead of making multiple copies of the data. 4113 */ 4114 if (BP_IS_HOLE(db->db_blkptr)) { 4115 arc_buf_thaw(data); 4116 } else { 4117 dbuf_release_bp(db); 4118 } 4119 dbuf_remap(dn, db, tx); 4120 } 4121 } 4122 4123 if (parent != dn->dn_dbuf) { 4124 /* Our parent is an indirect block. */ 4125 /* We have a dirty parent that has been scheduled for write. */ 4126 ASSERT(parent && parent->db_data_pending); 4127 /* Our parent's buffer is one level closer to the dnode. */ 4128 ASSERT(db->db_level == parent->db_level-1); 4129 /* 4130 * We're about to modify our parent's db_data by modifying 4131 * our block pointer, so the parent must be released. 4132 */ 4133 ASSERT(arc_released(parent->db_buf)); 4134 zio = parent->db_data_pending->dr_zio; 4135 } else { 4136 /* Our parent is the dnode itself. */ 4137 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 4138 db->db_blkid != DMU_SPILL_BLKID) || 4139 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 4140 if (db->db_blkid != DMU_SPILL_BLKID) 4141 ASSERT3P(db->db_blkptr, ==, 4142 &dn->dn_phys->dn_blkptr[db->db_blkid]); 4143 zio = dn->dn_zio; 4144 } 4145 4146 ASSERT(db->db_level == 0 || data == db->db_buf); 4147 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 4148 ASSERT(zio); 4149 4150 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 4151 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 4152 db->db.db_object, db->db_level, db->db_blkid); 4153 4154 if (db->db_blkid == DMU_SPILL_BLKID) 4155 wp_flag = WP_SPILL; 4156 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 4157 4158 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 4159 4160 DB_DNODE_EXIT(db); 4161 4162 /* 4163 * We copy the blkptr now (rather than when we instantiate the dirty 4164 * record), because its value can change between open context and 4165 * syncing context. We do not need to hold dn_struct_rwlock to read 4166 * db_blkptr because we are in syncing context. 4167 */ 4168 dr->dr_bp_copy = *db->db_blkptr; 4169 4170 if (db->db_level == 0 && 4171 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 4172 /* 4173 * The BP for this block has been provided by open context 4174 * (by dmu_sync() or dmu_buf_write_embedded()). 4175 */ 4176 abd_t *contents = (data != NULL) ? 4177 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 4178 4179 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy, 4180 contents, db->db.db_size, db->db.db_size, &zp, 4181 dbuf_write_override_ready, NULL, NULL, 4182 dbuf_write_override_done, 4183 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 4184 mutex_enter(&db->db_mtx); 4185 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 4186 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 4187 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 4188 mutex_exit(&db->db_mtx); 4189 } else if (db->db_state == DB_NOFILL) { 4190 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 4191 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 4192 dr->dr_zio = zio_write(zio, os->os_spa, txg, 4193 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 4194 dbuf_write_nofill_ready, NULL, NULL, 4195 dbuf_write_nofill_done, db, 4196 ZIO_PRIORITY_ASYNC_WRITE, 4197 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 4198 } else { 4199 ASSERT(arc_released(data)); 4200 4201 /* 4202 * For indirect blocks, we want to setup the children 4203 * ready callback so that we can properly handle an indirect 4204 * block that only contains holes. 4205 */ 4206 arc_write_done_func_t *children_ready_cb = NULL; 4207 if (db->db_level != 0) 4208 children_ready_cb = dbuf_write_children_ready; 4209 4210 dr->dr_zio = arc_write(zio, os->os_spa, txg, 4211 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 4212 &zp, dbuf_write_ready, children_ready_cb, 4213 dbuf_write_physdone, dbuf_write_done, db, 4214 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 4215 } 4216 } 4217