xref: /illumos-gate/usr/src/uts/common/fs/zfs/btree.c (revision 698f4ab6008be205f4362675967638572eef4f21)
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15 /*
16  * Copyright (c) 2019 by Delphix. All rights reserved.
17  */
18 
19 #include	<sys/btree.h>
20 #include	<sys/bitops.h>
21 #include	<sys/zfs_context.h>
22 
23 kmem_cache_t *zfs_btree_leaf_cache;
24 
25 /*
26  * Control the extent of the verification that occurs when zfs_btree_verify is
27  * called. Primarily used for debugging when extending the btree logic and
28  * functionality. As the intensity is increased, new verification steps are
29  * added. These steps are cumulative; intensity = 3 includes the intensity = 1
30  * and intensity = 2 steps as well.
31  *
32  * Intensity 1: Verify that the tree's height is consistent throughout.
33  * Intensity 2: Verify that a core node's children's parent pointers point
34  * to the core node.
35  * Intensity 3: Verify that the total number of elements in the tree matches the
36  * sum of the number of elements in each node. Also verifies that each node's
37  * count obeys the invariants (less than or equal to maximum value, greater than
38  * or equal to half the maximum minus one).
39  * Intensity 4: Verify that each element compares less than the element
40  * immediately after it and greater than the one immediately before it using the
41  * comparator function. For core nodes, also checks that each element is greater
42  * than the last element in the first of the two nodes it separates, and less
43  * than the first element in the second of the two nodes.
44  * Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside
45  * of each node is poisoned appropriately. Note that poisoning always occurs if
46  * ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal
47  * operation.
48  *
49  * Intensity 4 and 5 are particularly expensive to perform; the previous levels
50  * are a few memory operations per node, while these levels require multiple
51  * operations per element. In addition, when creating large btrees, these
52  * operations are called at every step, resulting in extremely slow operation
53  * (while the asymptotic complexity of the other steps is the same, the
54  * importance of the constant factors cannot be denied).
55  */
56 int zfs_btree_verify_intensity = 0;
57 
58 /*
59  * A convenience function to silence warnings from memmove's return value and
60  * change argument order to src, dest.
61  */
62 void
63 bmov(const void *src, void *dest, size_t size)
64 {
65 	(void) memmove(dest, src, size);
66 }
67 
68 #ifdef _ILP32
69 #define	BTREE_POISON 0xabadb10c
70 #else
71 #define	BTREE_POISON 0xabadb10cdeadbeef
72 #endif
73 
74 static void
75 zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
76 {
77 #ifdef ZFS_DEBUG
78 	size_t size = tree->bt_elem_size;
79 	if (!hdr->bth_core) {
80 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
81 		(void) memset(leaf->btl_elems + hdr->bth_count * size, 0x0f,
82 		    BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t) -
83 		    hdr->bth_count * size);
84 	} else {
85 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
86 		for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) {
87 			node->btc_children[i] =
88 			    (zfs_btree_hdr_t *)BTREE_POISON;
89 		}
90 		(void) memset(node->btc_elems + hdr->bth_count * size, 0x0f,
91 		    (BTREE_CORE_ELEMS - hdr->bth_count) * size);
92 	}
93 #endif
94 }
95 
96 static inline void
97 zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
98     uint64_t offset)
99 {
100 #ifdef ZFS_DEBUG
101 	size_t size = tree->bt_elem_size;
102 	ASSERT3U(offset, >=, hdr->bth_count);
103 	if (!hdr->bth_core) {
104 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
105 		(void) memset(leaf->btl_elems + offset * size, 0x0f, size);
106 	} else {
107 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
108 		node->btc_children[offset + 1] =
109 		    (zfs_btree_hdr_t *)BTREE_POISON;
110 		(void) memset(node->btc_elems + offset * size, 0x0f, size);
111 	}
112 #endif
113 }
114 
115 static inline void
116 zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
117     uint64_t offset)
118 {
119 #ifdef ZFS_DEBUG
120 	size_t size = tree->bt_elem_size;
121 	uint8_t eval = 0x0f;
122 	if (hdr->bth_core) {
123 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
124 		zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON;
125 		VERIFY3P(node->btc_children[offset + 1], ==, cval);
126 		for (int i = 0; i < size; i++)
127 			VERIFY3U(node->btc_elems[offset * size + i], ==, eval);
128 	} else  {
129 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
130 		for (int i = 0; i < size; i++)
131 			VERIFY3U(leaf->btl_elems[offset * size + i], ==, eval);
132 	}
133 #endif
134 }
135 
136 void
137 zfs_btree_init(void)
138 {
139 	zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache",
140 	    BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL,
141 	    NULL, 0);
142 }
143 
144 void
145 zfs_btree_fini(void)
146 {
147 	kmem_cache_destroy(zfs_btree_leaf_cache);
148 }
149 
150 void
151 zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *),
152     size_t size)
153 {
154 	/*
155 	 * We need a minimmum of 4 elements so that when we split a node we
156 	 * always have at least two elements in each node. This simplifies the
157 	 * logic in zfs_btree_bulk_finish, since it means the last leaf will
158 	 * always have a left sibling to share with (unless it's the root).
159 	 */
160 	ASSERT3U(size, <=, (BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t)) / 4);
161 
162 	bzero(tree, sizeof (*tree));
163 	tree->bt_compar = compar;
164 	tree->bt_elem_size = size;
165 	tree->bt_height = -1;
166 	tree->bt_bulk = NULL;
167 }
168 
169 /*
170  * Find value in the array of elements provided. Uses a simple binary search.
171  */
172 static void *
173 zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint64_t nelems,
174     const void *value, zfs_btree_index_t *where)
175 {
176 	uint64_t max = nelems;
177 	uint64_t min = 0;
178 	while (max > min) {
179 		uint64_t idx = (min + max) / 2;
180 		uint8_t *cur = buf + idx * tree->bt_elem_size;
181 		int comp = tree->bt_compar(cur, value);
182 		if (comp == -1) {
183 			min = idx + 1;
184 		} else if (comp == 1) {
185 			max = idx;
186 		} else {
187 			ASSERT0(comp);
188 			where->bti_offset = idx;
189 			where->bti_before = B_FALSE;
190 			return (cur);
191 		}
192 	}
193 
194 	where->bti_offset = max;
195 	where->bti_before = B_TRUE;
196 	return (NULL);
197 }
198 
199 /*
200  * Find the given value in the tree. where may be passed as null to use as a
201  * membership test or if the btree is being used as a map.
202  */
203 void *
204 zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where)
205 {
206 	if (tree->bt_height == -1) {
207 		if (where != NULL) {
208 			where->bti_node = NULL;
209 			where->bti_offset = 0;
210 		}
211 		ASSERT0(tree->bt_num_elems);
212 		return (NULL);
213 	}
214 
215 	/*
216 	 * If we're in bulk-insert mode, we check the last spot in the tree
217 	 * and the last leaf in the tree before doing the normal search,
218 	 * because for most workloads the vast majority of finds in
219 	 * bulk-insert mode are to insert new elements.
220 	 */
221 	zfs_btree_index_t idx;
222 	if (tree->bt_bulk != NULL) {
223 		zfs_btree_leaf_t *last_leaf = tree->bt_bulk;
224 		int compar = tree->bt_compar(last_leaf->btl_elems +
225 		    ((last_leaf->btl_hdr.bth_count - 1) * tree->bt_elem_size),
226 		    value);
227 		if (compar < 0) {
228 			/*
229 			 * If what they're looking for is after the last
230 			 * element, it's not in the tree.
231 			 */
232 			if (where != NULL) {
233 				where->bti_node = (zfs_btree_hdr_t *)last_leaf;
234 				where->bti_offset =
235 				    last_leaf->btl_hdr.bth_count;
236 				where->bti_before = B_TRUE;
237 			}
238 			return (NULL);
239 		} else if (compar == 0) {
240 			if (where != NULL) {
241 				where->bti_node = (zfs_btree_hdr_t *)last_leaf;
242 				where->bti_offset =
243 				    last_leaf->btl_hdr.bth_count - 1;
244 				where->bti_before = B_FALSE;
245 			}
246 			return (last_leaf->btl_elems +
247 			    ((last_leaf->btl_hdr.bth_count - 1) *
248 			    tree->bt_elem_size));
249 		}
250 		if (tree->bt_compar(last_leaf->btl_elems, value) <= 0) {
251 			/*
252 			 * If what they're looking for is after the first
253 			 * element in the last leaf, it's in the last leaf or
254 			 * it's not in the tree.
255 			 */
256 			void *d = zfs_btree_find_in_buf(tree,
257 			    last_leaf->btl_elems, last_leaf->btl_hdr.bth_count,
258 			    value, &idx);
259 
260 			if (where != NULL) {
261 				idx.bti_node = (zfs_btree_hdr_t *)last_leaf;
262 				*where = idx;
263 			}
264 			return (d);
265 		}
266 	}
267 
268 	zfs_btree_core_t *node = NULL;
269 	uint64_t child = 0;
270 	uint64_t depth = 0;
271 
272 	/*
273 	 * Iterate down the tree, finding which child the value should be in
274 	 * by comparing with the separators.
275 	 */
276 	for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height;
277 	    node = (zfs_btree_core_t *)node->btc_children[child], depth++) {
278 		ASSERT3P(node, !=, NULL);
279 		void *d = zfs_btree_find_in_buf(tree, node->btc_elems,
280 		    node->btc_hdr.bth_count, value, &idx);
281 		EQUIV(d != NULL, !idx.bti_before);
282 		if (d != NULL) {
283 			if (where != NULL) {
284 				idx.bti_node = (zfs_btree_hdr_t *)node;
285 				*where = idx;
286 			}
287 			return (d);
288 		}
289 		ASSERT(idx.bti_before);
290 		child = idx.bti_offset;
291 	}
292 
293 	/*
294 	 * The value is in this leaf, or it would be if it were in the
295 	 * tree. Find its proper location and return it.
296 	 */
297 	zfs_btree_leaf_t *leaf = (depth == 0 ?
298 	    (zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node);
299 	void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems,
300 	    leaf->btl_hdr.bth_count, value, &idx);
301 
302 	if (where != NULL) {
303 		idx.bti_node = (zfs_btree_hdr_t *)leaf;
304 		*where = idx;
305 	}
306 
307 	return (d);
308 }
309 
310 /*
311  * To explain the following functions, it is useful to understand the four
312  * kinds of shifts used in btree operation. First, a shift is a movement of
313  * elements within a node. It is used to create gaps for inserting new
314  * elements and children, or cover gaps created when things are removed. A
315  * shift has two fundamental properties, each of which can be one of two
316  * values, making four types of shifts.  There is the direction of the shift
317  * (left or right) and the shape of the shift (parallelogram or isoceles
318  * trapezoid (shortened to trapezoid hereafter)). The shape distinction only
319  * applies to shifts of core nodes.
320  *
321  * The names derive from the following imagining of the layout of a node:
322  *
323  *  Elements:       *   *   *   *   *   *   *   ...   *   *   *
324  *  Children:     *   *   *   *   *   *   *   *   ...   *   *   *
325  *
326  * This layout follows from the fact that the elements act as separators
327  * between pairs of children, and that children root subtrees "below" the
328  * current node. A left and right shift are fairly self-explanatory; a left
329  * shift moves things to the left, while a right shift moves things to the
330  * right. A parallelogram shift is a shift with the same number of elements
331  * and children being moved, while a trapezoid shift is a shift that moves one
332  * more children than elements. An example follows:
333  *
334  * A parallelogram shift could contain the following:
335  *      _______________
336  *      \*   *   *   * \ *   *   *   ...   *   *   *
337  *     * \ *   *   *   *\  *   *   *   ...   *   *   *
338  *        ---------------
339  * A trapezoid shift could contain the following:
340  *          ___________
341  *       * / *   *   * \ *   *   *   ...   *   *   *
342  *     *  / *  *   *   *\  *   *   *   ...   *   *   *
343  *        ---------------
344  *
345  * Note that a parellelogram shift is always shaped like a "left-leaning"
346  * parallelogram, where the starting index of the children being moved is
347  * always one higher than the starting index of the elements being moved. No
348  * "right-leaning" parallelogram shifts are needed (shifts where the starting
349  * element index and starting child index being moved are the same) to achieve
350  * any btree operations, so we ignore them.
351  */
352 
353 enum bt_shift_shape {
354 	BSS_TRAPEZOID,
355 	BSS_PARALLELOGRAM
356 };
357 
358 enum bt_shift_direction {
359 	BSD_LEFT,
360 	BSD_RIGHT
361 };
362 
363 /*
364  * Shift elements and children in the provided core node by off spots.  The
365  * first element moved is idx, and count elements are moved. The shape of the
366  * shift is determined by shape. The direction is determined by dir.
367  */
368 static inline void
369 bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx,
370     uint64_t count, uint64_t off, enum bt_shift_shape shape,
371     enum bt_shift_direction dir)
372 {
373 	size_t size = tree->bt_elem_size;
374 	ASSERT(node->btc_hdr.bth_core);
375 
376 	uint8_t *e_start = node->btc_elems + idx * size;
377 	int sign = (dir == BSD_LEFT ? -1 : +1);
378 	uint8_t *e_out = e_start + sign * off * size;
379 	uint64_t e_count = count;
380 	bmov(e_start, e_out, e_count * size);
381 
382 	zfs_btree_hdr_t **c_start = node->btc_children + idx +
383 	    (shape == BSS_TRAPEZOID ? 0 : 1);
384 	zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off :
385 	    c_start + off);
386 	uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
387 	bmov(c_start, c_out, c_count * sizeof (*c_start));
388 }
389 
390 /*
391  * Shift elements and children in the provided core node left by one spot.
392  * The first element moved is idx, and count elements are moved. The
393  * shape of the shift is determined by trap; true if the shift is a trapezoid,
394  * false if it is a parallelogram.
395  */
396 static inline void
397 bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx,
398     uint64_t count, enum bt_shift_shape shape)
399 {
400 	bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT);
401 }
402 
403 /*
404  * Shift elements and children in the provided core node right by one spot.
405  * Starts with elements[idx] and children[idx] and one more child than element.
406  */
407 static inline void
408 bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx,
409     uint64_t count, enum bt_shift_shape shape)
410 {
411 	bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT);
412 }
413 
414 /*
415  * Shift elements and children in the provided leaf node by off spots.
416  * The first element moved is idx, and count elements are moved. The direction
417  * is determined by left.
418  */
419 static inline void
420 bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint64_t idx,
421     uint64_t count, uint64_t off, enum bt_shift_direction dir)
422 {
423 	size_t size = tree->bt_elem_size;
424 	ASSERT(!node->btl_hdr.bth_core);
425 
426 	uint8_t *start = node->btl_elems + idx * size;
427 	int sign = (dir == BSD_LEFT ? -1 : +1);
428 	uint8_t *out = start + sign * off * size;
429 	bmov(start, out, count * size);
430 }
431 
432 static inline void
433 bt_shift_leaf_right(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx,
434     uint64_t count)
435 {
436 	bt_shift_leaf(tree, leaf, idx, count, 1, BSD_RIGHT);
437 }
438 
439 static inline void
440 bt_shift_leaf_left(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx,
441     uint64_t count)
442 {
443 	bt_shift_leaf(tree, leaf, idx, count, 1, BSD_LEFT);
444 }
445 
446 /*
447  * Move children and elements from one core node to another. The shape
448  * parameter behaves the same as it does in the shift logic.
449  */
450 static inline void
451 bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint64_t sidx,
452     uint64_t count, zfs_btree_core_t *dest, uint64_t didx,
453     enum bt_shift_shape shape)
454 {
455 	size_t size = tree->bt_elem_size;
456 	ASSERT(source->btc_hdr.bth_core);
457 	ASSERT(dest->btc_hdr.bth_core);
458 
459 	bmov(source->btc_elems + sidx * size, dest->btc_elems + didx * size,
460 	    count * size);
461 
462 	uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
463 	bmov(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1),
464 	    dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1),
465 	    c_count * sizeof (*source->btc_children));
466 }
467 
468 static inline void
469 bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint64_t sidx,
470     uint64_t count, zfs_btree_leaf_t *dest, uint64_t didx)
471 {
472 	size_t size = tree->bt_elem_size;
473 	ASSERT(!source->btl_hdr.bth_core);
474 	ASSERT(!dest->btl_hdr.bth_core);
475 
476 	bmov(source->btl_elems + sidx * size, dest->btl_elems + didx * size,
477 	    count * size);
478 }
479 
480 /*
481  * Find the first element in the subtree rooted at hdr, return its value and
482  * put its location in where if non-null.
483  */
484 static void *
485 zfs_btree_first_helper(zfs_btree_hdr_t *hdr, zfs_btree_index_t *where)
486 {
487 	zfs_btree_hdr_t *node;
488 
489 	for (node = hdr; node->bth_core; node =
490 	    ((zfs_btree_core_t *)node)->btc_children[0])
491 		;
492 
493 	ASSERT(!node->bth_core);
494 	zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
495 	if (where != NULL) {
496 		where->bti_node = node;
497 		where->bti_offset = 0;
498 		where->bti_before = B_FALSE;
499 	}
500 	return (&leaf->btl_elems[0]);
501 }
502 
503 /* Insert an element and a child into a core node at the given offset. */
504 static void
505 zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent,
506     uint64_t offset, zfs_btree_hdr_t *new_node, void *buf)
507 {
508 	uint64_t size = tree->bt_elem_size;
509 	zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
510 	ASSERT3P(par_hdr, ==, new_node->bth_parent);
511 	ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS);
512 
513 	if (zfs_btree_verify_intensity >= 5) {
514 		zfs_btree_verify_poison_at(tree, par_hdr,
515 		    par_hdr->bth_count);
516 	}
517 	/* Shift existing elements and children */
518 	uint64_t count = par_hdr->bth_count - offset;
519 	bt_shift_core_right(tree, parent, offset, count,
520 	    BSS_PARALLELOGRAM);
521 
522 	/* Insert new values */
523 	parent->btc_children[offset + 1] = new_node;
524 	bmov(buf, parent->btc_elems + offset * size, size);
525 	par_hdr->bth_count++;
526 }
527 
528 /*
529  * Insert new_node into the parent of old_node directly after old_node, with
530  * buf as the dividing element between the two.
531  */
532 static void
533 zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node,
534     zfs_btree_hdr_t *new_node, void *buf)
535 {
536 	ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent);
537 	uint64_t size = tree->bt_elem_size;
538 	zfs_btree_core_t *parent = old_node->bth_parent;
539 	zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
540 
541 	/*
542 	 * If this is the root node we were splitting, we create a new root
543 	 * and increase the height of the tree.
544 	 */
545 	if (parent == NULL) {
546 		ASSERT3P(old_node, ==, tree->bt_root);
547 		tree->bt_num_nodes++;
548 		zfs_btree_core_t *new_root =
549 		    kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS *
550 		    size, KM_SLEEP);
551 		zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr;
552 		new_root_hdr->bth_parent = NULL;
553 		new_root_hdr->bth_core = B_TRUE;
554 		new_root_hdr->bth_count = 1;
555 
556 		old_node->bth_parent = new_node->bth_parent = new_root;
557 		new_root->btc_children[0] = old_node;
558 		new_root->btc_children[1] = new_node;
559 		bmov(buf, new_root->btc_elems, size);
560 
561 		tree->bt_height++;
562 		tree->bt_root = new_root_hdr;
563 		zfs_btree_poison_node(tree, new_root_hdr);
564 		return;
565 	}
566 
567 	/*
568 	 * Since we have the new separator, binary search for where to put
569 	 * new_node.
570 	 */
571 	zfs_btree_index_t idx;
572 	ASSERT(par_hdr->bth_core);
573 	VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
574 	    par_hdr->bth_count, buf, &idx), ==, NULL);
575 	ASSERT(idx.bti_before);
576 	uint64_t offset = idx.bti_offset;
577 	ASSERT3U(offset, <=, par_hdr->bth_count);
578 	ASSERT3P(parent->btc_children[offset], ==, old_node);
579 
580 	/*
581 	 * If the parent isn't full, shift things to accomodate our insertions
582 	 * and return.
583 	 */
584 	if (par_hdr->bth_count != BTREE_CORE_ELEMS) {
585 		zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf);
586 		return;
587 	}
588 
589 	/*
590 	 * We need to split this core node into two. Currently there are
591 	 * BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for
592 	 * BTREE_CORE_ELEMS + 2. Some of the children will be part of the
593 	 * current node, and the others will be moved to the new core node.
594 	 * There are BTREE_CORE_ELEMS + 1 elements including the new one. One
595 	 * will be used as the new separator in our parent, and the others
596 	 * will be split among the two core nodes.
597 	 *
598 	 * Usually we will split the node in half evenly, with
599 	 * BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we
600 	 * instead move only about a quarter of the elements (and children) to
601 	 * the new node. Since the average state after a long time is a 3/4
602 	 * full node, shortcutting directly to that state improves efficiency.
603 	 *
604 	 * We do this in two stages: first we split into two nodes, and then we
605 	 * reuse our existing logic to insert the new element and child.
606 	 */
607 	uint64_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ?
608 	    2 : 4)) - 1, 2);
609 	uint64_t keep_count = BTREE_CORE_ELEMS - move_count - 1;
610 	ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2);
611 	tree->bt_num_nodes++;
612 	zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) +
613 	    BTREE_CORE_ELEMS * size, KM_SLEEP);
614 	zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr;
615 	new_par_hdr->bth_parent = par_hdr->bth_parent;
616 	new_par_hdr->bth_core = B_TRUE;
617 	new_par_hdr->bth_count = move_count;
618 	zfs_btree_poison_node(tree, new_par_hdr);
619 
620 	par_hdr->bth_count = keep_count;
621 
622 	bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent,
623 	    0, BSS_TRAPEZOID);
624 
625 	/* Store the new separator in a buffer. */
626 	uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP);
627 	bmov(parent->btc_elems + keep_count * size, tmp_buf,
628 	    size);
629 	zfs_btree_poison_node(tree, par_hdr);
630 
631 	if (offset < keep_count) {
632 		/* Insert the new node into the left half */
633 		zfs_btree_insert_core_impl(tree, parent, offset, new_node,
634 		    buf);
635 
636 		/*
637 		 * Move the new separator to the existing buffer.
638 		 */
639 		bmov(tmp_buf, buf, size);
640 	} else if (offset > keep_count) {
641 		/* Insert the new node into the right half */
642 		new_node->bth_parent = new_parent;
643 		zfs_btree_insert_core_impl(tree, new_parent,
644 		    offset - keep_count - 1, new_node, buf);
645 
646 		/*
647 		 * Move the new separator to the existing buffer.
648 		 */
649 		bmov(tmp_buf, buf, size);
650 	} else {
651 		/*
652 		 * Move the new separator into the right half, and replace it
653 		 * with buf. We also need to shift back the elements in the
654 		 * right half to accomodate new_node.
655 		 */
656 		bt_shift_core_right(tree, new_parent, 0, move_count,
657 		    BSS_TRAPEZOID);
658 		new_parent->btc_children[0] = new_node;
659 		bmov(tmp_buf, new_parent->btc_elems, size);
660 		new_par_hdr->bth_count++;
661 	}
662 	kmem_free(tmp_buf, size);
663 	zfs_btree_poison_node(tree, par_hdr);
664 
665 	for (int i = 0; i <= new_parent->btc_hdr.bth_count; i++)
666 		new_parent->btc_children[i]->bth_parent = new_parent;
667 
668 	for (int i = 0; i <= parent->btc_hdr.bth_count; i++)
669 		ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent);
670 
671 	/*
672 	 * Now that the node is split, we need to insert the new node into its
673 	 * parent. This may cause further splitting.
674 	 */
675 	zfs_btree_insert_into_parent(tree, &parent->btc_hdr,
676 	    &new_parent->btc_hdr, buf);
677 }
678 
679 /* Insert an element into a leaf node at the given offset. */
680 static void
681 zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
682     uint64_t idx, const void *value)
683 {
684 	uint64_t size = tree->bt_elem_size;
685 	uint8_t *start = leaf->btl_elems + (idx * size);
686 	zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
687 	uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
688 	    sizeof (zfs_btree_hdr_t)) / size, 2);
689 	uint64_t count = leaf->btl_hdr.bth_count - idx;
690 	ASSERT3U(leaf->btl_hdr.bth_count, <, capacity);
691 
692 	if (zfs_btree_verify_intensity >= 5) {
693 		zfs_btree_verify_poison_at(tree, &leaf->btl_hdr,
694 		    leaf->btl_hdr.bth_count);
695 	}
696 
697 	bt_shift_leaf_right(tree, leaf, idx, count);
698 	bmov(value, start, size);
699 	hdr->bth_count++;
700 }
701 
702 /* Helper function for inserting a new value into leaf at the given index. */
703 static void
704 zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
705     const void *value, uint64_t idx)
706 {
707 	uint64_t size = tree->bt_elem_size;
708 	uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
709 	    sizeof (zfs_btree_hdr_t)) / size, 2);
710 
711 	/*
712 	 * If the leaf isn't full, shift the elements after idx and insert
713 	 * value.
714 	 */
715 	if (leaf->btl_hdr.bth_count != capacity) {
716 		zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
717 		return;
718 	}
719 
720 	/*
721 	 * Otherwise, we split the leaf node into two nodes. If we're not bulk
722 	 * inserting, each is of size (capacity / 2).  If we are bulk
723 	 * inserting, we move a quarter of the elements to the new node so
724 	 * inserts into the old node don't cause immediate splitting but the
725 	 * tree stays relatively dense. Since the average state after a long
726 	 * time is a 3/4 full node, shortcutting directly to that state
727 	 * improves efficiency.  At the end of the bulk insertion process
728 	 * we'll need to go through and fix up any nodes (the last leaf and
729 	 * its ancestors, potentially) that are below the minimum.
730 	 *
731 	 * In either case, we're left with one extra element. The leftover
732 	 * element will become the new dividing element between the two nodes.
733 	 */
734 	uint64_t move_count = MAX(capacity / (tree->bt_bulk == NULL ? 2 : 4) -
735 	    1, 2);
736 	uint64_t keep_count = capacity - move_count - 1;
737 	ASSERT3U(capacity - move_count, >=, 2);
738 	tree->bt_num_nodes++;
739 	zfs_btree_leaf_t *new_leaf = kmem_cache_alloc(zfs_btree_leaf_cache,
740 	    KM_SLEEP);
741 	zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr;
742 	new_hdr->bth_parent = leaf->btl_hdr.bth_parent;
743 	new_hdr->bth_core = B_FALSE;
744 	new_hdr->bth_count = move_count;
745 	zfs_btree_poison_node(tree, new_hdr);
746 
747 	leaf->btl_hdr.bth_count = keep_count;
748 
749 	if (tree->bt_bulk != NULL && leaf == tree->bt_bulk)
750 		tree->bt_bulk = new_leaf;
751 
752 	/* Copy the back part to the new leaf. */
753 	bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf,
754 	    0);
755 
756 	/* We store the new separator in a buffer we control for simplicity. */
757 	uint8_t *buf = kmem_alloc(size, KM_SLEEP);
758 	bmov(leaf->btl_elems + (keep_count * size), buf, size);
759 	zfs_btree_poison_node(tree, &leaf->btl_hdr);
760 
761 	if (idx < keep_count) {
762 		/* Insert into the existing leaf. */
763 		zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
764 	} else if (idx > keep_count) {
765 		/* Insert into the new leaf. */
766 		zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count -
767 		    1, value);
768 	} else {
769 		/*
770 		 * Shift the elements in the new leaf to make room for the
771 		 * separator, and use the new value as the new separator.
772 		 */
773 		bt_shift_leaf_right(tree, new_leaf, 0, move_count);
774 		bmov(buf, new_leaf->btl_elems, size);
775 		bmov(value, buf, size);
776 		new_hdr->bth_count++;
777 	}
778 
779 	/*
780 	 * Now that the node is split, we need to insert the new node into its
781 	 * parent. This may cause further splitting, bur only of core nodes.
782 	 */
783 	zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr,
784 	    buf);
785 	kmem_free(buf, size);
786 }
787 
788 static uint64_t
789 zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
790 {
791 	void *buf;
792 	if (hdr->bth_core) {
793 		buf = ((zfs_btree_core_t *)hdr)->btc_elems;
794 	} else {
795 		buf = ((zfs_btree_leaf_t *)hdr)->btl_elems;
796 	}
797 	zfs_btree_index_t idx;
798 	zfs_btree_core_t *parent = hdr->bth_parent;
799 	VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
800 	    parent->btc_hdr.bth_count, buf, &idx), ==, NULL);
801 	ASSERT(idx.bti_before);
802 	ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count);
803 	ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr);
804 	return (idx.bti_offset);
805 }
806 
807 /*
808  * Take the b-tree out of bulk insert mode. During bulk-insert mode, some
809  * nodes may violate the invariant that non-root nodes must be at least half
810  * full. All nodes violating this invariant should be the last node in their
811  * particular level. To correct the invariant, we take values from their left
812  * neighbor until they are half full. They must have a left neighbor at their
813  * level because the last node at a level is not the first node unless it's
814  * the root.
815  */
816 static void
817 zfs_btree_bulk_finish(zfs_btree_t *tree)
818 {
819 	ASSERT3P(tree->bt_bulk, !=, NULL);
820 	ASSERT3P(tree->bt_root, !=, NULL);
821 	zfs_btree_leaf_t *leaf = tree->bt_bulk;
822 	zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
823 	zfs_btree_core_t *parent = hdr->bth_parent;
824 	uint64_t size = tree->bt_elem_size;
825 	uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
826 	    sizeof (zfs_btree_hdr_t)) / size, 2);
827 
828 	/*
829 	 * The invariant doesn't apply to the root node, if that's the only
830 	 * node in the tree we're done.
831 	 */
832 	if (parent == NULL) {
833 		tree->bt_bulk = NULL;
834 		return;
835 	}
836 
837 	/* First, take elements to rebalance the leaf node. */
838 	if (hdr->bth_count < capacity / 2) {
839 		/*
840 		 * First, find the left neighbor. The simplest way to do this
841 		 * is to call zfs_btree_prev twice; the first time finds some
842 		 * ancestor of this node, and the second time finds the left
843 		 * neighbor. The ancestor found is the lowest common ancestor
844 		 * of leaf and the neighbor.
845 		 */
846 		zfs_btree_index_t idx = {
847 			.bti_node = hdr,
848 			.bti_offset = 0
849 		};
850 		VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
851 		ASSERT(idx.bti_node->bth_core);
852 		zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node;
853 		uint64_t common_idx = idx.bti_offset;
854 
855 		VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
856 		ASSERT(!idx.bti_node->bth_core);
857 		zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node;
858 		zfs_btree_hdr_t *l_hdr = idx.bti_node;
859 		uint64_t move_count = (capacity / 2) - hdr->bth_count;
860 		ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=,
861 		    capacity / 2);
862 
863 		if (zfs_btree_verify_intensity >= 5) {
864 			for (int i = 0; i < move_count; i++) {
865 				zfs_btree_verify_poison_at(tree, hdr,
866 				    leaf->btl_hdr.bth_count + i);
867 			}
868 		}
869 
870 		/* First, shift elements in leaf back. */
871 		bt_shift_leaf(tree, leaf, 0, hdr->bth_count, move_count,
872 		    BSD_RIGHT);
873 
874 		/* Next, move the separator from the common ancestor to leaf. */
875 		uint8_t *separator = common->btc_elems + (common_idx * size);
876 		uint8_t *out = leaf->btl_elems + ((move_count - 1) * size);
877 		bmov(separator, out, size);
878 		move_count--;
879 
880 		/*
881 		 * Now we move elements from the tail of the left neighbor to
882 		 * fill the remaining spots in leaf.
883 		 */
884 		bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count -
885 		    move_count, move_count, leaf, 0);
886 
887 		/*
888 		 * Finally, move the new last element in the left neighbor to
889 		 * the separator.
890 		 */
891 		bmov(l_neighbor->btl_elems + (l_hdr->bth_count -
892 		    move_count - 1) * size, separator, size);
893 
894 		/* Adjust the node's counts, and we're done. */
895 		l_hdr->bth_count -= move_count + 1;
896 		hdr->bth_count += move_count + 1;
897 
898 		ASSERT3U(l_hdr->bth_count, >=, capacity / 2);
899 		ASSERT3U(hdr->bth_count, >=, capacity / 2);
900 		zfs_btree_poison_node(tree, l_hdr);
901 	}
902 
903 	/*
904 	 * Now we have to rebalance any ancestors of leaf that may also
905 	 * violate the invariant.
906 	 */
907 	capacity = BTREE_CORE_ELEMS;
908 	while (parent->btc_hdr.bth_parent != NULL) {
909 		zfs_btree_core_t *cur = parent;
910 		zfs_btree_hdr_t *hdr = &cur->btc_hdr;
911 		parent = hdr->bth_parent;
912 		/*
913 		 * If the invariant isn't violated, move on to the next
914 		 * ancestor.
915 		 */
916 		if (hdr->bth_count >= capacity / 2)
917 			continue;
918 
919 		/*
920 		 * Because the smallest number of nodes we can move when
921 		 * splitting is 2, we never need to worry about not having a
922 		 * left sibling (a sibling is a neighbor with the same parent).
923 		 */
924 		uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
925 		ASSERT3U(parent_idx, >, 0);
926 		zfs_btree_core_t *l_neighbor =
927 		    (zfs_btree_core_t *)parent->btc_children[parent_idx - 1];
928 		uint64_t move_count = (capacity / 2) - hdr->bth_count;
929 		ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=,
930 		    capacity / 2);
931 
932 		if (zfs_btree_verify_intensity >= 5) {
933 			for (int i = 0; i < move_count; i++) {
934 				zfs_btree_verify_poison_at(tree, hdr,
935 				    hdr->bth_count + i);
936 			}
937 		}
938 		/* First, shift things in the right node back. */
939 		bt_shift_core(tree, cur, 0, hdr->bth_count, move_count,
940 		    BSS_TRAPEZOID, BSD_RIGHT);
941 
942 		/* Next, move the separator to the right node. */
943 		uint8_t *separator = parent->btc_elems + ((parent_idx - 1) *
944 		    size);
945 		uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size);
946 		bmov(separator, e_out, size);
947 
948 		/*
949 		 * Now, move elements and children from the left node to the
950 		 * right.  We move one more child than elements.
951 		 */
952 		move_count--;
953 		uint64_t move_idx = l_neighbor->btc_hdr.bth_count - move_count;
954 		bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0,
955 		    BSS_TRAPEZOID);
956 
957 		/*
958 		 * Finally, move the last element in the left node to the
959 		 * separator's position.
960 		 */
961 		move_idx--;
962 		bmov(l_neighbor->btc_elems + move_idx * size, separator, size);
963 
964 		l_neighbor->btc_hdr.bth_count -= move_count + 1;
965 		hdr->bth_count += move_count + 1;
966 
967 		ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2);
968 		ASSERT3U(hdr->bth_count, >=, capacity / 2);
969 
970 		zfs_btree_poison_node(tree, &l_neighbor->btc_hdr);
971 
972 		for (int i = 0; i <= hdr->bth_count; i++)
973 			cur->btc_children[i]->bth_parent = cur;
974 	}
975 
976 	tree->bt_bulk = NULL;
977 }
978 
979 /*
980  * Insert value into tree at the location specified by where.
981  */
982 void
983 zfs_btree_insert(zfs_btree_t *tree, const void *value,
984     const zfs_btree_index_t *where)
985 {
986 	zfs_btree_index_t idx = {0};
987 
988 	/* If we're not inserting in the last leaf, end bulk insert mode. */
989 	if (tree->bt_bulk != NULL) {
990 		if (where->bti_node != &tree->bt_bulk->btl_hdr) {
991 			zfs_btree_bulk_finish(tree);
992 			VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL);
993 			where = &idx;
994 		}
995 	}
996 
997 	tree->bt_num_elems++;
998 	/*
999 	 * If this is the first element in the tree, create a leaf root node
1000 	 * and add the value to it.
1001 	 */
1002 	if (where->bti_node == NULL) {
1003 		ASSERT3U(tree->bt_num_elems, ==, 1);
1004 		ASSERT3S(tree->bt_height, ==, -1);
1005 		ASSERT3P(tree->bt_root, ==, NULL);
1006 		ASSERT0(where->bti_offset);
1007 
1008 		tree->bt_num_nodes++;
1009 		zfs_btree_leaf_t *leaf = kmem_cache_alloc(zfs_btree_leaf_cache,
1010 		    KM_SLEEP);
1011 		tree->bt_root = &leaf->btl_hdr;
1012 		tree->bt_height++;
1013 
1014 		zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
1015 		hdr->bth_parent = NULL;
1016 		hdr->bth_core = B_FALSE;
1017 		hdr->bth_count = 0;
1018 		zfs_btree_poison_node(tree, hdr);
1019 
1020 		zfs_btree_insert_into_leaf(tree, leaf, value, 0);
1021 		tree->bt_bulk = leaf;
1022 	} else if (!where->bti_node->bth_core) {
1023 		/*
1024 		 * If we're inserting into a leaf, go directly to the helper
1025 		 * function.
1026 		 */
1027 		zfs_btree_insert_into_leaf(tree,
1028 		    (zfs_btree_leaf_t *)where->bti_node, value,
1029 		    where->bti_offset);
1030 	} else {
1031 		/*
1032 		 * If we're inserting into a core node, we can't just shift
1033 		 * the existing element in that slot in the same node without
1034 		 * breaking our ordering invariants. Instead we place the new
1035 		 * value in the node at that spot and then insert the old
1036 		 * separator into the first slot in the subtree to the right.
1037 		 */
1038 		ASSERT(where->bti_node->bth_core);
1039 		zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node;
1040 
1041 		/*
1042 		 * We can ignore bti_before, because either way the value
1043 		 * should end up in bti_offset.
1044 		 */
1045 		uint64_t off = where->bti_offset;
1046 		zfs_btree_hdr_t *subtree = node->btc_children[off + 1];
1047 		size_t size = tree->bt_elem_size;
1048 		uint8_t *buf = kmem_alloc(size, KM_SLEEP);
1049 		bmov(node->btc_elems + off * size, buf, size);
1050 		bmov(value, node->btc_elems + off * size, size);
1051 
1052 		/*
1053 		 * Find the first slot in the subtree to the right, insert
1054 		 * there.
1055 		 */
1056 		zfs_btree_index_t new_idx;
1057 		VERIFY3P(zfs_btree_first_helper(subtree, &new_idx), !=, NULL);
1058 		ASSERT0(new_idx.bti_offset);
1059 		ASSERT(!new_idx.bti_node->bth_core);
1060 		zfs_btree_insert_into_leaf(tree,
1061 		    (zfs_btree_leaf_t *)new_idx.bti_node, buf, 0);
1062 		kmem_free(buf, size);
1063 	}
1064 	zfs_btree_verify(tree);
1065 }
1066 
1067 /*
1068  * Return the first element in the tree, and put its location in where if
1069  * non-null.
1070  */
1071 void *
1072 zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where)
1073 {
1074 	if (tree->bt_height == -1) {
1075 		ASSERT0(tree->bt_num_elems);
1076 		return (NULL);
1077 	}
1078 	return (zfs_btree_first_helper(tree->bt_root, where));
1079 }
1080 
1081 /*
1082  * Find the last element in the subtree rooted at hdr, return its value and
1083  * put its location in where if non-null.
1084  */
1085 static void *
1086 zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr,
1087     zfs_btree_index_t *where)
1088 {
1089 	zfs_btree_hdr_t *node;
1090 
1091 	for (node = hdr; node->bth_core; node =
1092 	    ((zfs_btree_core_t *)node)->btc_children[node->bth_count])
1093 		;
1094 
1095 	zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
1096 	if (where != NULL) {
1097 		where->bti_node = node;
1098 		where->bti_offset = node->bth_count - 1;
1099 		where->bti_before = B_FALSE;
1100 	}
1101 	return (leaf->btl_elems + (node->bth_count - 1) * btree->bt_elem_size);
1102 }
1103 
1104 /*
1105  * Return the last element in the tree, and put its location in where if
1106  * non-null.
1107  */
1108 void *
1109 zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where)
1110 {
1111 	if (tree->bt_height == -1) {
1112 		ASSERT0(tree->bt_num_elems);
1113 		return (NULL);
1114 	}
1115 	return (zfs_btree_last_helper(tree, tree->bt_root, where));
1116 }
1117 
1118 /*
1119  * This function contains the logic to find the next node in the tree. A
1120  * helper function is used because there are multiple internal consumemrs of
1121  * this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each
1122  * node after we've finished with it.
1123  */
1124 static void *
1125 zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1126     zfs_btree_index_t *out_idx,
1127     void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *))
1128 {
1129 	if (idx->bti_node == NULL) {
1130 		ASSERT3S(tree->bt_height, ==, -1);
1131 		return (NULL);
1132 	}
1133 
1134 	uint64_t offset = idx->bti_offset;
1135 	if (!idx->bti_node->bth_core) {
1136 		/*
1137 		 * When finding the next element of an element in a leaf,
1138 		 * there are two cases. If the element isn't the last one in
1139 		 * the leaf, in which case we just return the next element in
1140 		 * the leaf. Otherwise, we need to traverse up our parents
1141 		 * until we find one where our ancestor isn't the last child
1142 		 * of its parent. Once we do, the next element is the
1143 		 * separator after our ancestor in its parent.
1144 		 */
1145 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1146 		uint64_t new_off = offset + (idx->bti_before ? 0 : 1);
1147 		if (leaf->btl_hdr.bth_count > new_off) {
1148 			out_idx->bti_node = &leaf->btl_hdr;
1149 			out_idx->bti_offset = new_off;
1150 			out_idx->bti_before = B_FALSE;
1151 			return (leaf->btl_elems + new_off * tree->bt_elem_size);
1152 		}
1153 
1154 		zfs_btree_hdr_t *prev = &leaf->btl_hdr;
1155 		for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
1156 		    node != NULL; node = node->btc_hdr.bth_parent) {
1157 			zfs_btree_hdr_t *hdr = &node->btc_hdr;
1158 			ASSERT(hdr->bth_core);
1159 			uint64_t i = zfs_btree_find_parent_idx(tree, prev);
1160 			if (done_func != NULL)
1161 				done_func(tree, prev);
1162 			if (i == hdr->bth_count) {
1163 				prev = hdr;
1164 				continue;
1165 			}
1166 			out_idx->bti_node = hdr;
1167 			out_idx->bti_offset = i;
1168 			out_idx->bti_before = B_FALSE;
1169 			return (node->btc_elems + i * tree->bt_elem_size);
1170 		}
1171 		if (done_func != NULL)
1172 			done_func(tree, prev);
1173 		/*
1174 		 * We've traversed all the way up and been at the end of the
1175 		 * node every time, so this was the last element in the tree.
1176 		 */
1177 		return (NULL);
1178 	}
1179 
1180 	/* If we were before an element in a core node, return that element. */
1181 	ASSERT(idx->bti_node->bth_core);
1182 	zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1183 	if (idx->bti_before) {
1184 		out_idx->bti_before = B_FALSE;
1185 		return (node->btc_elems + offset * tree->bt_elem_size);
1186 	}
1187 
1188 	/*
1189 	 * The next element from one in a core node is the first element in
1190 	 * the subtree just to the right of the separator.
1191 	 */
1192 	zfs_btree_hdr_t *child = node->btc_children[offset + 1];
1193 	return (zfs_btree_first_helper(child, out_idx));
1194 }
1195 
1196 /*
1197  * Return the next valued node in the tree.  The same address can be safely
1198  * passed for idx and out_idx.
1199  */
1200 void *
1201 zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1202     zfs_btree_index_t *out_idx)
1203 {
1204 	return (zfs_btree_next_helper(tree, idx, out_idx, NULL));
1205 }
1206 
1207 /*
1208  * Return the previous valued node in the tree.  The same value can be safely
1209  * passed for idx and out_idx.
1210  */
1211 void *
1212 zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1213     zfs_btree_index_t *out_idx)
1214 {
1215 	if (idx->bti_node == NULL) {
1216 		ASSERT3S(tree->bt_height, ==, -1);
1217 		return (NULL);
1218 	}
1219 
1220 	uint64_t offset = idx->bti_offset;
1221 	if (!idx->bti_node->bth_core) {
1222 		/*
1223 		 * When finding the previous element of an element in a leaf,
1224 		 * there are two cases. If the element isn't the first one in
1225 		 * the leaf, in which case we just return the previous element
1226 		 * in the leaf. Otherwise, we need to traverse up our parents
1227 		 * until we find one where our previous ancestor isn't the
1228 		 * first child. Once we do, the previous element is the
1229 		 * separator after our previous ancestor.
1230 		 */
1231 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1232 		if (offset != 0) {
1233 			out_idx->bti_node = &leaf->btl_hdr;
1234 			out_idx->bti_offset = offset - 1;
1235 			out_idx->bti_before = B_FALSE;
1236 			return (leaf->btl_elems + (offset - 1) *
1237 			    tree->bt_elem_size);
1238 		}
1239 		zfs_btree_hdr_t *prev = &leaf->btl_hdr;
1240 		for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
1241 		    node != NULL; node = node->btc_hdr.bth_parent) {
1242 			zfs_btree_hdr_t *hdr = &node->btc_hdr;
1243 			ASSERT(hdr->bth_core);
1244 			uint64_t i = zfs_btree_find_parent_idx(tree, prev);
1245 			if (i == 0) {
1246 				prev = hdr;
1247 				continue;
1248 			}
1249 			out_idx->bti_node = hdr;
1250 			out_idx->bti_offset = i - 1;
1251 			out_idx->bti_before = B_FALSE;
1252 			return (node->btc_elems + (i - 1) * tree->bt_elem_size);
1253 		}
1254 		/*
1255 		 * We've traversed all the way up and been at the start of the
1256 		 * node every time, so this was the first node in the tree.
1257 		 */
1258 		return (NULL);
1259 	}
1260 
1261 	/*
1262 	 * The previous element from one in a core node is the last element in
1263 	 * the subtree just to the left of the separator.
1264 	 */
1265 	ASSERT(idx->bti_node->bth_core);
1266 	zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1267 	zfs_btree_hdr_t *child = node->btc_children[offset];
1268 	return (zfs_btree_last_helper(tree, child, out_idx));
1269 }
1270 
1271 /*
1272  * Get the value at the provided index in the tree.
1273  *
1274  * Note that the value returned from this function can be mutated, but only
1275  * if it will not change the ordering of the element with respect to any other
1276  * elements that could be in the tree.
1277  */
1278 void *
1279 zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx)
1280 {
1281 	ASSERT(!idx->bti_before);
1282 	if (!idx->bti_node->bth_core) {
1283 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1284 		return (leaf->btl_elems + idx->bti_offset * tree->bt_elem_size);
1285 	}
1286 	ASSERT(idx->bti_node->bth_core);
1287 	zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1288 	return (node->btc_elems + idx->bti_offset * tree->bt_elem_size);
1289 }
1290 
1291 /* Add the given value to the tree. Must not already be in the tree. */
1292 void
1293 zfs_btree_add(zfs_btree_t *tree, const void *node)
1294 {
1295 	zfs_btree_index_t where = {0};
1296 	VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL);
1297 	zfs_btree_insert(tree, node, &where);
1298 }
1299 
1300 /* Helper function to free a tree node. */
1301 static void
1302 zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node)
1303 {
1304 	tree->bt_num_nodes--;
1305 	if (!node->bth_core) {
1306 		kmem_cache_free(zfs_btree_leaf_cache, node);
1307 	} else {
1308 		kmem_free(node, sizeof (zfs_btree_core_t) +
1309 		    BTREE_CORE_ELEMS * tree->bt_elem_size);
1310 	}
1311 }
1312 
1313 /*
1314  * Remove the rm_hdr and the separator to its left from the parent node. The
1315  * buffer that rm_hdr was stored in may already be freed, so its contents
1316  * cannot be accessed.
1317  */
1318 static void
1319 zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node,
1320     zfs_btree_hdr_t *rm_hdr)
1321 {
1322 	size_t size = tree->bt_elem_size;
1323 	uint64_t min_count = (BTREE_CORE_ELEMS / 2) - 1;
1324 	zfs_btree_hdr_t *hdr = &node->btc_hdr;
1325 	/*
1326 	 * If the node is the root node and rm_hdr is one of two children,
1327 	 * promote the other child to the root.
1328 	 */
1329 	if (hdr->bth_parent == NULL && hdr->bth_count <= 1) {
1330 		ASSERT3U(hdr->bth_count, ==, 1);
1331 		ASSERT3P(tree->bt_root, ==, node);
1332 		ASSERT3P(node->btc_children[1], ==, rm_hdr);
1333 		tree->bt_root = node->btc_children[0];
1334 		node->btc_children[0]->bth_parent = NULL;
1335 		zfs_btree_node_destroy(tree, hdr);
1336 		tree->bt_height--;
1337 		return;
1338 	}
1339 
1340 	uint64_t idx;
1341 	for (idx = 0; idx <= hdr->bth_count; idx++) {
1342 		if (node->btc_children[idx] == rm_hdr)
1343 			break;
1344 	}
1345 	ASSERT3U(idx, <=, hdr->bth_count);
1346 
1347 	/*
1348 	 * If the node is the root or it has more than the minimum number of
1349 	 * children, just remove the child and separator, and return.
1350 	 */
1351 	if (hdr->bth_parent == NULL ||
1352 	    hdr->bth_count > min_count) {
1353 		/*
1354 		 * Shift the element and children to the right of rm_hdr to
1355 		 * the left by one spot.
1356 		 */
1357 		bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
1358 		    BSS_PARALLELOGRAM);
1359 		hdr->bth_count--;
1360 		zfs_btree_poison_node_at(tree, hdr, hdr->bth_count);
1361 		return;
1362 	}
1363 
1364 	ASSERT3U(hdr->bth_count, ==, min_count);
1365 
1366 	/*
1367 	 * Now we try to take a node from a neighbor. We check left, then
1368 	 * right. If the neighbor exists and has more than the minimum number
1369 	 * of elements, we move the separator betweeen us and them to our
1370 	 * node, move their closest element (last for left, first for right)
1371 	 * to the separator, and move their closest child to our node. Along
1372 	 * the way we need to collapse the gap made by idx, and (for our right
1373 	 * neighbor) the gap made by removing their first element and child.
1374 	 *
1375 	 * Note: this logic currently doesn't support taking from a neighbor
1376 	 * that isn't a sibling (i.e. a neighbor with a different
1377 	 * parent). This isn't critical functionality, but may be worth
1378 	 * implementing in the future for completeness' sake.
1379 	 */
1380 	zfs_btree_core_t *parent = hdr->bth_parent;
1381 	uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1382 
1383 	zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
1384 	    parent->btc_children[parent_idx - 1]);
1385 	if (l_hdr != NULL && l_hdr->bth_count > min_count) {
1386 		/* We can take a node from the left neighbor. */
1387 		ASSERT(l_hdr->bth_core);
1388 		zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr;
1389 
1390 		/*
1391 		 * Start by shifting the elements and children in the current
1392 		 * node to the right by one spot.
1393 		 */
1394 		bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID);
1395 
1396 		/*
1397 		 * Move the separator between node and neighbor to the first
1398 		 * element slot in the current node.
1399 		 */
1400 		uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1401 		    size;
1402 		bmov(separator, node->btc_elems, size);
1403 
1404 		/* Move the last child of neighbor to our first child slot. */
1405 		zfs_btree_hdr_t **take_child = neighbor->btc_children +
1406 		    l_hdr->bth_count;
1407 		bmov(take_child, node->btc_children, sizeof (*take_child));
1408 		node->btc_children[0]->bth_parent = node;
1409 
1410 		/* Move the last element of neighbor to the separator spot. */
1411 		uint8_t *take_elem = neighbor->btc_elems +
1412 		    (l_hdr->bth_count - 1) * size;
1413 		bmov(take_elem, separator, size);
1414 		l_hdr->bth_count--;
1415 		zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count);
1416 		return;
1417 	}
1418 
1419 	zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
1420 	    NULL : parent->btc_children[parent_idx + 1]);
1421 	if (r_hdr != NULL && r_hdr->bth_count > min_count) {
1422 		/* We can take a node from the right neighbor. */
1423 		ASSERT(r_hdr->bth_core);
1424 		zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr;
1425 
1426 		/*
1427 		 * Shift elements in node left by one spot to overwrite rm_hdr
1428 		 * and the separator before it.
1429 		 */
1430 		bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
1431 		    BSS_PARALLELOGRAM);
1432 
1433 		/*
1434 		 * Move the separator between node and neighbor to the last
1435 		 * element spot in node.
1436 		 */
1437 		uint8_t *separator = parent->btc_elems + parent_idx * size;
1438 		bmov(separator, node->btc_elems + (hdr->bth_count - 1) * size,
1439 		    size);
1440 
1441 		/*
1442 		 * Move the first child of neighbor to the last child spot in
1443 		 * node.
1444 		 */
1445 		zfs_btree_hdr_t **take_child = neighbor->btc_children;
1446 		bmov(take_child, node->btc_children + hdr->bth_count,
1447 		    sizeof (*take_child));
1448 		node->btc_children[hdr->bth_count]->bth_parent = node;
1449 
1450 		/* Move the first element of neighbor to the separator spot. */
1451 		uint8_t *take_elem = neighbor->btc_elems;
1452 		bmov(take_elem, separator, size);
1453 		r_hdr->bth_count--;
1454 
1455 		/*
1456 		 * Shift the elements and children of neighbor to cover the
1457 		 * stolen elements.
1458 		 */
1459 		bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count,
1460 		    BSS_TRAPEZOID);
1461 		zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count);
1462 		return;
1463 	}
1464 
1465 	/*
1466 	 * In this case, neither of our neighbors can spare an element, so we
1467 	 * need to merge with one of them. We prefer the left one,
1468 	 * arabitrarily. Move the separator into the leftmost merging node
1469 	 * (which may be us or the left neighbor), and then move the right
1470 	 * merging node's elements. Once that's done, we go back and delete
1471 	 * the element we're removing. Finally, go into the parent and delete
1472 	 * the right merging node and the separator. This may cause further
1473 	 * merging.
1474 	 */
1475 	zfs_btree_hdr_t *new_rm_hdr, *keep_hdr;
1476 	uint64_t new_idx = idx;
1477 	if (l_hdr != NULL) {
1478 		keep_hdr = l_hdr;
1479 		new_rm_hdr = hdr;
1480 		new_idx += keep_hdr->bth_count + 1;
1481 	} else {
1482 		ASSERT3P(r_hdr, !=, NULL);
1483 		keep_hdr = hdr;
1484 		new_rm_hdr = r_hdr;
1485 		parent_idx++;
1486 	}
1487 
1488 	ASSERT(keep_hdr->bth_core);
1489 	ASSERT(new_rm_hdr->bth_core);
1490 
1491 	zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr;
1492 	zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr;
1493 
1494 	if (zfs_btree_verify_intensity >= 5) {
1495 		for (int i = 0; i < new_rm_hdr->bth_count + 1; i++) {
1496 			zfs_btree_verify_poison_at(tree, keep_hdr,
1497 			    keep_hdr->bth_count + i);
1498 		}
1499 	}
1500 
1501 	/* Move the separator into the left node. */
1502 	uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size;
1503 	uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1504 	    size;
1505 	bmov(separator, e_out, size);
1506 	keep_hdr->bth_count++;
1507 
1508 	/* Move all our elements and children into the left node. */
1509 	bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep,
1510 	    keep_hdr->bth_count, BSS_TRAPEZOID);
1511 
1512 	uint64_t old_count = keep_hdr->bth_count;
1513 
1514 	/* Update bookkeeping */
1515 	keep_hdr->bth_count += new_rm_hdr->bth_count;
1516 	ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1);
1517 
1518 	/*
1519 	 * Shift the element and children to the right of rm_hdr to
1520 	 * the left by one spot.
1521 	 */
1522 	ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr);
1523 	bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx,
1524 	    BSS_PARALLELOGRAM);
1525 	keep_hdr->bth_count--;
1526 
1527 	/* Reparent all our children to point to the left node. */
1528 	zfs_btree_hdr_t **new_start = keep->btc_children +
1529 	    old_count - 1;
1530 	for (int i = 0; i < new_rm_hdr->bth_count + 1; i++)
1531 		new_start[i]->bth_parent = keep;
1532 	for (int i = 0; i <= keep_hdr->bth_count; i++) {
1533 		ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep);
1534 		ASSERT3P(keep->btc_children[i], !=, rm_hdr);
1535 	}
1536 	zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count);
1537 
1538 	new_rm_hdr->bth_count = 0;
1539 	zfs_btree_node_destroy(tree, new_rm_hdr);
1540 	zfs_btree_remove_from_node(tree, parent, new_rm_hdr);
1541 }
1542 
1543 /* Remove the element at the specific location. */
1544 void
1545 zfs_btree_remove_from(zfs_btree_t *tree, zfs_btree_index_t *where)
1546 {
1547 	size_t size = tree->bt_elem_size;
1548 	zfs_btree_hdr_t *hdr = where->bti_node;
1549 	uint64_t idx = where->bti_offset;
1550 	uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
1551 	    sizeof (zfs_btree_hdr_t)) / size, 2);
1552 
1553 	ASSERT(!where->bti_before);
1554 	if (tree->bt_bulk != NULL) {
1555 		/*
1556 		 * Leave bulk insert mode. Note that our index would be
1557 		 * invalid after we correct the tree, so we copy the value
1558 		 * we're planning to remove and find it again after
1559 		 * bulk_finish.
1560 		 */
1561 		uint8_t *value = zfs_btree_get(tree, where);
1562 		uint8_t *tmp = kmem_alloc(size, KM_SLEEP);
1563 		bmov(value, tmp, size);
1564 		zfs_btree_bulk_finish(tree);
1565 		VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL);
1566 		kmem_free(tmp, size);
1567 		hdr = where->bti_node;
1568 		idx = where->bti_offset;
1569 	}
1570 
1571 	tree->bt_num_elems--;
1572 	/*
1573 	 * If the element happens to be in a core node, we move a leaf node's
1574 	 * element into its place and then remove the leaf node element. This
1575 	 * makes the rebalance logic not need to be recursive both upwards and
1576 	 * downwards.
1577 	 */
1578 	if (hdr->bth_core) {
1579 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1580 		zfs_btree_hdr_t *left_subtree = node->btc_children[idx];
1581 		void *new_value = zfs_btree_last_helper(tree, left_subtree,
1582 		    where);
1583 		ASSERT3P(new_value, !=, NULL);
1584 
1585 		bmov(new_value, node->btc_elems + idx * size, size);
1586 
1587 		hdr = where->bti_node;
1588 		idx = where->bti_offset;
1589 		ASSERT(!where->bti_before);
1590 	}
1591 
1592 	/*
1593 	 * First, we'll update the leaf's metadata. Then, we shift any
1594 	 * elements after the idx to the left. After that, we rebalance if
1595 	 * needed.
1596 	 */
1597 	ASSERT(!hdr->bth_core);
1598 	zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
1599 	ASSERT3U(hdr->bth_count, >, 0);
1600 
1601 	uint64_t min_count = (capacity / 2) - 1;
1602 
1603 	/*
1604 	 * If we're over the minimum size or this is the root, just overwrite
1605 	 * the value and return.
1606 	 */
1607 	if (hdr->bth_count > min_count || hdr->bth_parent == NULL) {
1608 		hdr->bth_count--;
1609 		bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx);
1610 		if (hdr->bth_parent == NULL) {
1611 			ASSERT0(tree->bt_height);
1612 			if (hdr->bth_count == 0) {
1613 				tree->bt_root = NULL;
1614 				tree->bt_height--;
1615 				zfs_btree_node_destroy(tree, &leaf->btl_hdr);
1616 			}
1617 		}
1618 		if (tree->bt_root != NULL)
1619 			zfs_btree_poison_node_at(tree, hdr, hdr->bth_count);
1620 		zfs_btree_verify(tree);
1621 		return;
1622 	}
1623 	ASSERT3U(hdr->bth_count, ==, min_count);
1624 
1625 	/*
1626 	 * Now we try to take a node from a sibling. We check left, then
1627 	 * right. If they exist and have more than the minimum number of
1628 	 * elements, we move the separator betweeen us and them to our node
1629 	 * and move their closest element (last for left, first for right) to
1630 	 * the separator. Along the way we need to collapse the gap made by
1631 	 * idx, and (for our right neighbor) the gap made by removing their
1632 	 * first element.
1633 	 *
1634 	 * Note: this logic currently doesn't support taking from a neighbor
1635 	 * that isn't a sibling. This isn't critical functionality, but may be
1636 	 * worth implementing in the future for completeness' sake.
1637 	 */
1638 	zfs_btree_core_t *parent = hdr->bth_parent;
1639 	uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1640 
1641 	zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
1642 	    parent->btc_children[parent_idx - 1]);
1643 	if (l_hdr != NULL && l_hdr->bth_count > min_count) {
1644 		/* We can take a node from the left neighbor. */
1645 		ASSERT(!l_hdr->bth_core);
1646 
1647 		/*
1648 		 * Move our elements back by one spot to make room for the
1649 		 * stolen element and overwrite the element being removed.
1650 		 */
1651 		bt_shift_leaf_right(tree, leaf, 0, idx);
1652 		uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1653 		    size;
1654 		uint8_t *take_elem = ((zfs_btree_leaf_t *)l_hdr)->btl_elems +
1655 		    (l_hdr->bth_count - 1) * size;
1656 		/* Move the separator to our first spot. */
1657 		bmov(separator, leaf->btl_elems, size);
1658 
1659 		/* Move our neighbor's last element to the separator. */
1660 		bmov(take_elem, separator, size);
1661 
1662 		/* Update the bookkeeping. */
1663 		l_hdr->bth_count--;
1664 		zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count);
1665 
1666 		zfs_btree_verify(tree);
1667 		return;
1668 	}
1669 
1670 	zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
1671 	    NULL : parent->btc_children[parent_idx + 1]);
1672 	if (r_hdr != NULL && r_hdr->bth_count > min_count) {
1673 		/* We can take a node from the right neighbor. */
1674 		ASSERT(!r_hdr->bth_core);
1675 		zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr;
1676 
1677 		/*
1678 		 * Move our elements after the element being removed forwards
1679 		 * by one spot to make room for the stolen element and
1680 		 * overwrite the element being removed.
1681 		 */
1682 		bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx -
1683 		    1);
1684 
1685 		uint8_t *separator = parent->btc_elems + parent_idx * size;
1686 		uint8_t *take_elem = ((zfs_btree_leaf_t *)r_hdr)->btl_elems;
1687 		/* Move the separator between us to our last spot. */
1688 		bmov(separator, leaf->btl_elems + (hdr->bth_count - 1) * size,
1689 		    size);
1690 
1691 		/* Move our neighbor's first element to the separator. */
1692 		bmov(take_elem, separator, size);
1693 
1694 		/* Update the bookkeeping. */
1695 		r_hdr->bth_count--;
1696 
1697 		/*
1698 		 * Move our neighbors elements forwards to overwrite the
1699 		 * stolen element.
1700 		 */
1701 		bt_shift_leaf_left(tree, neighbor, 1, r_hdr->bth_count);
1702 		zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count);
1703 		zfs_btree_verify(tree);
1704 		return;
1705 	}
1706 
1707 	/*
1708 	 * In this case, neither of our neighbors can spare an element, so we
1709 	 * need to merge with one of them. We prefer the left one,
1710 	 * arabitrarily. Move the separator into the leftmost merging node
1711 	 * (which may be us or the left neighbor), and then move the right
1712 	 * merging node's elements. Once that's done, we go back and delete
1713 	 * the element we're removing. Finally, go into the parent and delete
1714 	 * the right merging node and the separator. This may cause further
1715 	 * merging.
1716 	 */
1717 	zfs_btree_hdr_t *rm_hdr, *keep_hdr;
1718 	uint64_t new_idx = idx;
1719 	if (l_hdr != NULL) {
1720 		keep_hdr = l_hdr;
1721 		rm_hdr = hdr;
1722 		new_idx += keep_hdr->bth_count + 1; // 449
1723 	} else {
1724 		ASSERT3P(r_hdr, !=, NULL);
1725 		keep_hdr = hdr;
1726 		rm_hdr = r_hdr;
1727 		parent_idx++;
1728 	}
1729 
1730 	ASSERT(!keep_hdr->bth_core);
1731 	ASSERT(!rm_hdr->bth_core);
1732 	ASSERT3U(keep_hdr->bth_count, ==, min_count);
1733 	ASSERT3U(rm_hdr->bth_count, ==, min_count);
1734 
1735 	zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)keep_hdr;
1736 	zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr;
1737 
1738 	if (zfs_btree_verify_intensity >= 5) {
1739 		for (int i = 0; i < rm_hdr->bth_count + 1; i++) {
1740 			zfs_btree_verify_poison_at(tree, keep_hdr,
1741 			    keep_hdr->bth_count + i);
1742 		}
1743 	}
1744 	/*
1745 	 * Move the separator into the first open spot in the left
1746 	 * neighbor.
1747 	 */
1748 	uint8_t *out = keep->btl_elems + keep_hdr->bth_count * size;
1749 	uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1750 	    size;
1751 	bmov(separator, out, size);
1752 	keep_hdr->bth_count++;
1753 
1754 	/* Move our elements to the left neighbor. */
1755 	bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep,
1756 	    keep_hdr->bth_count);
1757 
1758 	/* Update the bookkeeping. */
1759 	keep_hdr->bth_count += rm_hdr->bth_count;
1760 	ASSERT3U(keep_hdr->bth_count, ==, min_count * 2 + 1);
1761 
1762 	/* Remove the value from the node */
1763 	keep_hdr->bth_count--;
1764 	bt_shift_leaf_left(tree, keep, new_idx + 1, keep_hdr->bth_count -
1765 	    new_idx);
1766 	zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count);
1767 
1768 	rm_hdr->bth_count = 0;
1769 	zfs_btree_node_destroy(tree, rm_hdr);
1770 	/* Remove the emptied node from the parent. */
1771 	zfs_btree_remove_from_node(tree, parent, rm_hdr);
1772 	zfs_btree_verify(tree);
1773 }
1774 
1775 /* Remove the given value from the tree. */
1776 void
1777 zfs_btree_remove(zfs_btree_t *tree, const void *value)
1778 {
1779 	zfs_btree_index_t where = {0};
1780 	VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL);
1781 	zfs_btree_remove_from(tree, &where);
1782 }
1783 
1784 /* Return the number of elements in the tree. */
1785 ulong_t
1786 zfs_btree_numnodes(zfs_btree_t *tree)
1787 {
1788 	return (tree->bt_num_elems);
1789 }
1790 
1791 /*
1792  * This function is used to visit all the elements in the tree before
1793  * destroying the tree. This allows the calling code to perform any cleanup it
1794  * needs to do. This is more efficient than just removing the first element
1795  * over and over, because it removes all rebalancing. Once the destroy_nodes()
1796  * function has been called, no other btree operations are valid until it
1797  * returns NULL, which point the only valid operation is zfs_btree_destroy().
1798  *
1799  * example:
1800  *
1801  *      zfs_btree_index_t *cookie = NULL;
1802  *      my_data_t *node;
1803  *
1804  *      while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL)
1805  *              free(node->ptr);
1806  *      zfs_btree_destroy(tree);
1807  *
1808  */
1809 void *
1810 zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie)
1811 {
1812 	if (*cookie == NULL) {
1813 		if (tree->bt_height == -1)
1814 			return (NULL);
1815 		*cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP);
1816 		return (zfs_btree_first(tree, *cookie));
1817 	}
1818 
1819 	void *rval = zfs_btree_next_helper(tree, *cookie, *cookie,
1820 	    zfs_btree_node_destroy);
1821 	if (rval == NULL)   {
1822 		tree->bt_root = NULL;
1823 		tree->bt_height = -1;
1824 		tree->bt_num_elems = 0;
1825 		kmem_free(*cookie, sizeof (**cookie));
1826 		tree->bt_bulk = NULL;
1827 	}
1828 	return (rval);
1829 }
1830 
1831 static void
1832 zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1833 {
1834 	if (hdr->bth_core) {
1835 		zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr;
1836 		for (int i = 0; i <= hdr->bth_count; i++) {
1837 			zfs_btree_clear_helper(tree, btc->btc_children[i]);
1838 		}
1839 	}
1840 
1841 	zfs_btree_node_destroy(tree, hdr);
1842 }
1843 
1844 void
1845 zfs_btree_clear(zfs_btree_t *tree)
1846 {
1847 	if (tree->bt_root == NULL) {
1848 		ASSERT0(tree->bt_num_elems);
1849 		return;
1850 	}
1851 
1852 	zfs_btree_clear_helper(tree, tree->bt_root);
1853 	tree->bt_num_elems = 0;
1854 	tree->bt_root = NULL;
1855 	tree->bt_num_nodes = 0;
1856 	tree->bt_height = -1;
1857 	tree->bt_bulk = NULL;
1858 }
1859 
1860 void
1861 zfs_btree_destroy(zfs_btree_t *tree)
1862 {
1863 	ASSERT0(tree->bt_num_elems);
1864 	ASSERT3P(tree->bt_root, ==, NULL);
1865 }
1866 
1867 /* Verify that every child of this node has the correct parent pointer. */
1868 static void
1869 zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1870 {
1871 	if (!hdr->bth_core)
1872 		return;
1873 
1874 	zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1875 	for (int i = 0; i <= hdr->bth_count; i++) {
1876 		VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr);
1877 		zfs_btree_verify_pointers_helper(tree, node->btc_children[i]);
1878 	}
1879 }
1880 
1881 /* Verify that every node has the correct parent pointer. */
1882 static void
1883 zfs_btree_verify_pointers(zfs_btree_t *tree)
1884 {
1885 	if (tree->bt_height == -1) {
1886 		VERIFY3P(tree->bt_root, ==, NULL);
1887 		return;
1888 	}
1889 	VERIFY3P(tree->bt_root->bth_parent, ==, NULL);
1890 	zfs_btree_verify_pointers_helper(tree, tree->bt_root);
1891 }
1892 
1893 /*
1894  * Verify that all the current node and its children satisfy the count
1895  * invariants, and return the total count in the subtree rooted in this node.
1896  */
1897 static uint64_t
1898 zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1899 {
1900 	if (!hdr->bth_core) {
1901 		if (tree->bt_root != hdr && hdr != &tree->bt_bulk->btl_hdr) {
1902 			uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
1903 			    sizeof (zfs_btree_hdr_t)) / tree->bt_elem_size, 2);
1904 			VERIFY3U(hdr->bth_count, >=, (capacity / 2) - 1);
1905 		}
1906 
1907 		return (hdr->bth_count);
1908 	} else {
1909 
1910 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1911 		uint64_t ret = hdr->bth_count;
1912 		if (tree->bt_root != hdr && tree->bt_bulk == NULL)
1913 			VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1);
1914 		for (int i = 0; i <= hdr->bth_count; i++) {
1915 			ret += zfs_btree_verify_counts_helper(tree,
1916 			    node->btc_children[i]);
1917 		}
1918 
1919 		return (ret);
1920 	}
1921 }
1922 
1923 /*
1924  * Verify that all nodes satisfy the invariants and that the total number of
1925  * elements is correct.
1926  */
1927 static void
1928 zfs_btree_verify_counts(zfs_btree_t *tree)
1929 {
1930 	EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1);
1931 	if (tree->bt_height == -1) {
1932 		return;
1933 	}
1934 	VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==,
1935 	    tree->bt_num_elems);
1936 }
1937 
1938 /*
1939  * Check that the subtree rooted at this node has a uniform height. Returns
1940  * the number of nodes under this node, to help verify bt_num_nodes.
1941  */
1942 static uint64_t
1943 zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
1944     int64_t height)
1945 {
1946 	if (!hdr->bth_core) {
1947 		VERIFY0(height);
1948 		return (1);
1949 	}
1950 
1951 	VERIFY(hdr->bth_core);
1952 	zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1953 	uint64_t ret = 1;
1954 	for (int i = 0; i <= hdr->bth_count; i++) {
1955 		ret += zfs_btree_verify_height_helper(tree,
1956 		    node->btc_children[i], height - 1);
1957 	}
1958 	return (ret);
1959 }
1960 
1961 /*
1962  * Check that the tree rooted at this node has a uniform height, and that the
1963  * bt_height in the tree is correct.
1964  */
1965 static void
1966 zfs_btree_verify_height(zfs_btree_t *tree)
1967 {
1968 	EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
1969 	if (tree->bt_height == -1) {
1970 		return;
1971 	}
1972 
1973 	VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root,
1974 	    tree->bt_height), ==, tree->bt_num_nodes);
1975 }
1976 
1977 /*
1978  * Check that the elements in this node are sorted, and that if this is a core
1979  * node, the separators are properly between the subtrees they separaate and
1980  * that the children also satisfy this requirement.
1981  */
1982 static void
1983 zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1984 {
1985 	size_t size = tree->bt_elem_size;
1986 	if (!hdr->bth_core) {
1987 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
1988 		for (int i = 1; i < hdr->bth_count; i++) {
1989 			VERIFY3S(tree->bt_compar(leaf->btl_elems + (i - 1) *
1990 			    size, leaf->btl_elems + i * size), ==, -1);
1991 		}
1992 		return;
1993 	}
1994 
1995 	zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1996 	for (int i = 1; i < hdr->bth_count; i++) {
1997 		VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size,
1998 		    node->btc_elems + i * size), ==, -1);
1999 	}
2000 	for (int i = 0; i < hdr->bth_count; i++) {
2001 		uint8_t *left_child_last = NULL;
2002 		zfs_btree_hdr_t *left_child_hdr = node->btc_children[i];
2003 		if (left_child_hdr->bth_core) {
2004 			zfs_btree_core_t *left_child =
2005 			    (zfs_btree_core_t *)left_child_hdr;
2006 			left_child_last = left_child->btc_elems +
2007 			    (left_child_hdr->bth_count - 1) * size;
2008 		} else {
2009 			zfs_btree_leaf_t *left_child =
2010 			    (zfs_btree_leaf_t *)left_child_hdr;
2011 			left_child_last = left_child->btl_elems +
2012 			    (left_child_hdr->bth_count - 1) * size;
2013 		}
2014 		if (tree->bt_compar(node->btc_elems + i * size,
2015 		    left_child_last) != 1) {
2016 			panic("btree: compar returned %d (expected 1) at "
2017 			    "%px %d: compar(%px,  %px)", tree->bt_compar(
2018 			    node->btc_elems + i * size, left_child_last),
2019 			    (void *)node, i, (void *)(node->btc_elems + i *
2020 			    size), (void *)left_child_last);
2021 		}
2022 
2023 		uint8_t *right_child_first = NULL;
2024 		zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1];
2025 		if (right_child_hdr->bth_core) {
2026 			zfs_btree_core_t *right_child =
2027 			    (zfs_btree_core_t *)right_child_hdr;
2028 			right_child_first = right_child->btc_elems;
2029 		} else {
2030 			zfs_btree_leaf_t *right_child =
2031 			    (zfs_btree_leaf_t *)right_child_hdr;
2032 			right_child_first = right_child->btl_elems;
2033 		}
2034 		if (tree->bt_compar(node->btc_elems + i * size,
2035 		    right_child_first) != -1) {
2036 			panic("btree: compar returned %d (expected -1) at "
2037 			    "%px %d: compar(%px,  %px)", tree->bt_compar(
2038 			    node->btc_elems + i * size, right_child_first),
2039 			    (void *)node, i, (void *)(node->btc_elems + i *
2040 			    size), (void *)right_child_first);
2041 		}
2042 	}
2043 	for (int i = 0; i <= hdr->bth_count; i++) {
2044 		zfs_btree_verify_order_helper(tree, node->btc_children[i]);
2045 	}
2046 }
2047 
2048 /* Check that all elements in the tree are in sorted order. */
2049 static void
2050 zfs_btree_verify_order(zfs_btree_t *tree)
2051 {
2052 	EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
2053 	if (tree->bt_height == -1) {
2054 		return;
2055 	}
2056 
2057 	zfs_btree_verify_order_helper(tree, tree->bt_root);
2058 }
2059 
2060 #ifdef ZFS_DEBUG
2061 /* Check that all unused memory is poisoned correctly. */
2062 static void
2063 zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
2064 {
2065 	size_t size = tree->bt_elem_size;
2066 	if (!hdr->bth_core) {
2067 		zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
2068 		uint8_t val = 0x0f;
2069 		for (int i = hdr->bth_count * size; i < BTREE_LEAF_SIZE -
2070 		    sizeof (zfs_btree_hdr_t); i++) {
2071 			VERIFY3U(leaf->btl_elems[i], ==, val);
2072 		}
2073 	} else {
2074 		zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2075 		uint8_t val = 0x0f;
2076 		for (int i = hdr->bth_count * size; i < BTREE_CORE_ELEMS * size;
2077 		    i++) {
2078 			VERIFY3U(node->btc_elems[i], ==, val);
2079 		}
2080 
2081 		for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) {
2082 			VERIFY3P(node->btc_children[i], ==,
2083 			    (zfs_btree_hdr_t *)BTREE_POISON);
2084 		}
2085 
2086 		for (int i = 0; i <= hdr->bth_count; i++) {
2087 			zfs_btree_verify_poison_helper(tree,
2088 			    node->btc_children[i]);
2089 		}
2090 	}
2091 }
2092 #endif
2093 
2094 /* Check that unused memory in the tree is still poisoned. */
2095 static void
2096 zfs_btree_verify_poison(zfs_btree_t *tree)
2097 {
2098 #ifdef ZFS_DEBUG
2099 	if (tree->bt_height == -1)
2100 		return;
2101 	zfs_btree_verify_poison_helper(tree, tree->bt_root);
2102 #endif
2103 }
2104 
2105 void
2106 zfs_btree_verify(zfs_btree_t *tree)
2107 {
2108 	if (zfs_btree_verify_intensity == 0)
2109 		return;
2110 	zfs_btree_verify_height(tree);
2111 	if (zfs_btree_verify_intensity == 1)
2112 		return;
2113 	zfs_btree_verify_pointers(tree);
2114 	if (zfs_btree_verify_intensity == 2)
2115 		return;
2116 	zfs_btree_verify_counts(tree);
2117 	if (zfs_btree_verify_intensity == 3)
2118 		return;
2119 	zfs_btree_verify_order(tree);
2120 
2121 	if (zfs_btree_verify_intensity == 4)
2122 		return;
2123 	zfs_btree_verify_poison(tree);
2124 }
2125